DEMO-ATF5X14-3A [ETC]

Evaluation board for the ATF-54143 and ATF-55143 ; 评估板为ATF - 54143和ATF- 55143\n
DEMO-ATF5X14-3A
型号: DEMO-ATF5X14-3A
厂家: ETC    ETC
描述:

Evaluation board for the ATF-54143 and ATF-55143
评估板为ATF - 54143和ATF- 55143\n

文件: 总16页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent ATF-54143 Low Noise  
Enhancement Mode  
Pseudomorphic HEMT in a  
Surface Mount Plastic Package  
Data Sheet  
Features  
• High linearity performance  
• Enhancement Mode Technology[1]  
• Low noise figure  
• Excellent uniformity in product  
specifications  
• 800 micron gate width  
Surface Mount Package  
Description  
SOT-343  
Agilent Technologies’s ATF-54143  
is a high dynamic range, low  
noise, E-PHEMT housed in a  
4-lead SC-70 (SOT-343) surface  
mount plastic package.  
• Low cost surface mount small  
plastic package SOT-343 (4 lead  
SC-70)  
• Tape-and-Reel packaging option  
available  
The combination of high gain,  
high linearity and low noise  
makes the ATF-54143 ideal for  
cellular/PCS base stations,  
MMDS, and other systems in the  
450 MHz to 6 GHz frequency  
range.  
Specifications  
2 GHz; 3 V, 60 mA (Typ.)  
Pin Connections and  
• 36.2 dBm output 3rd order intercept  
Package Marking  
• 20.4 dBm output power at 1 dB  
gain compression  
DRAIN  
SOURCE  
• 0.5 dB noise figure  
SOURCE  
GATE  
• 16.6 dB associated gain  
Note:  
Applications  
• Low noise amplifier for cellular/  
PCS base stations  
Top View. Package marking provides orientation  
and identification  
“4F” = Device Code  
• LNA for WLAN, WLL/RLL and  
MMDS applications  
“x” = Date code character  
identifies month of manufacture.  
• General purpose discrete E-PHEMT  
for other ultra low noise applications  
Note:  
1. Enhancement mode technology requires  
positive Vgs, thereby eliminating the need for  
the negative gate voltage associated with  
conventional depletion mode devices.  
ATF-54143 Absolute Maximum Ratings[1]  
Notes:  
Absolute  
1. Operation of this device in excess of any one  
of these parameters may cause permanent  
damage.  
Symbol  
Parameter  
Units  
Maximum  
VDS  
VGS  
VGD  
IDS  
Drain - Source Voltage[2]  
Gate - Source Voltage[2]  
Gate Drain Voltage[2]  
Drain Current[2]  
V
5
2. Assumes DC quiescent conditions.  
3. Source lead temperature is 25°C. Derate  
6.2 mW/°C for TL > 33°C.  
V
-5 to 1  
5
V
4. Thermal resistance measured using  
mA  
mW  
dBm  
mA  
°C  
120  
150°C Liquid Crystal Measurement method.  
5. The device can handle +10 dBm RF Input  
Power provided IGS is limited to 2 mA. IGS at  
P1dB drive level is bias circuit dependent. See  
application section for additional information.  
Pdiss  
Pin max.  
IGS  
Total Power Dissipation[3]  
RF Input Power  
725  
10[5]  
2[5]  
Gate Source Current  
Channel Temperature  
Storage Temperature  
Thermal Resistance[4]  
TCH  
TSTG  
θjc  
150  
°C  
-65 to 150  
162  
°C/W  
120  
100  
80  
0.7V  
0.6V  
60  
0.5V  
40  
20  
0.4V  
0.3V  
0
0
1
2
3
4
5
6
7
V
(V)  
DS  
Figure 1. Typical I-V Curves.  
(VGS = 0.1 V per step)  
Product Consistency Distribution Charts[6, 7]  
160  
160  
120  
80  
40  
0
200  
160  
120  
80  
Cpk = 0.77  
Cpk = 1.67  
Cpk = 1.35  
Stdev = 0.4  
Stdev = 1.41  
Stdev = 0.073  
120  
+3 Std  
-3 Std  
+3 Std  
-3 Std  
80  
40  
0
40  
0
30  
32  
34  
36  
38  
40  
42  
14  
15  
16  
17  
18  
19  
0.25  
0.45  
0.65  
0.85  
1.05  
GAIN (dB)  
OIP3 (dBm)  
NF (dB)  
Figure 3. Gain @ 2 GHz, 3 V, 60 mA.  
USL = 18.5, LSL = 15, Nominal = 16.6  
Figure 2. OIP3 @ 2 GHz, 3 V, 60 mA.  
LSL = 33.0, Nominal = 36.575  
Figure 4. NF @ 2 GHz, 3 V, 60 mA.  
USL = 0.9, Nominal = 0.49  
Notes:  
6. Distribution data sample size is 450 samples taken from 9 different wafers. Future wafers allocated to this product may have nominal values anywhere  
between the upper and lower limits.  
7. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on  
production test equipment. Circuit losses have been de-embedded from actual measurements.  
2
ATF-54143 Electrical Specifications  
TA = 25°C, RF parameters measured in a test circuit for a typical device  
Symbol  
Parameter and Test Condition  
Units  
Min.  
Typ.[2]  
Max.  
Vgs  
Vth  
Idss  
Gm  
Operational Gate Voltage  
Threshold Voltage  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 4 mA  
Vds = 3V, Vgs = 0V  
V
0.4  
0.59  
0.38  
1
0.75  
0.52  
5
V
0.18  
Saturated Drain Current  
Transconductance  
µA  
Vds = 3V, gm = Idss/Vgs;  
Vgs = 0.75-0.7 = 0.05V  
mmho  
230  
410  
560  
Igss  
NF  
Gate Leakage Current  
Vgd = Vgs = -3V  
µA  
200  
Noise Figure[1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dB  
dB  
0.5  
0.3  
0.9  
Ga  
Associated Gain [1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dB  
dB  
15  
16.6  
23.4  
18.5  
OIP3  
P1dB  
Notes:  
Output 3rd Order  
Intercept Point[1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dBm  
dBm  
33  
36.2  
35.5  
1dB Compressed  
Output Power[1]  
f = 2 GHz  
f = 900 MHz  
Vds = 3V, Ids = 60 mA  
Vds = 3V, Ids = 60 mA  
dBm  
dBm  
20.4  
18.4  
1. Measurements obtained using production test board described in Figure 5.  
2. Typical values measured from a sample size of 450 parts from 9 wafers.  
50 Ohm  
Input  
Output  
50 Ohm  
Input  
Output  
Transmission  
Line Including  
Gate Bias T  
(0.3 dB loss)  
Matching Circuit  
Γ_mag = 0.30  
Γ_ang = 150°  
(0.3 dB loss)  
Matching Circuit  
Γ_mag = 0.035  
Γ_ang = -71°  
(0.4 dB loss)  
Transmission  
Line Including  
Drain Bias T  
(0.3 dB loss)  
DUT  
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit repre-  
sents a trade-off between an optimal noise match and associated impedance matching circuit losses. Circuit losses have been de-embedded from  
actual measurements.  
3
ATF-54143 Typical Performance Curves  
0.7  
19  
18  
17  
16  
15  
14  
13  
12  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
3V  
4V  
0.3  
3V  
4V  
3V  
4V  
0.2  
0
20  
40  
I
60  
80  
100  
0
20  
40  
I
60  
(mA)  
80  
100  
0
20  
40  
I
60  
80  
100  
(mA)  
(mA)  
d
ds  
d
Figure 6. Fmin vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
Figure 8. Gain vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
ds  
ds  
Figure 7. Fmin vs. I and V Tuned for  
ds ds  
Max OIP3 and Min NF at 900 MHz.  
ds  
ds  
42  
37  
32  
27  
22  
17  
12  
25  
24  
23  
22  
21  
20  
19  
18  
40  
35  
30  
25  
20  
15  
3V  
4V  
3V  
4V  
3V  
4V  
0
20  
40  
60  
(mA)  
80  
100  
0
20  
40  
60  
(mA)  
80  
100  
0
20  
40  
60  
(mA)  
80  
100  
I
I
ds  
I
ds  
ds  
Figure 10. OIP3 vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
Figure 11. OIP3 vs. I and V Tuned for  
Max OIP3 and Fmin at 900 MHz.  
Figure 9. Gain vs. I and V Tuned for  
Max OIP3 and Fmin at 900 MHz.  
ds  
ds  
ds  
ds  
ds  
ds  
24  
22  
20  
18  
16  
14  
12  
23  
22  
21  
20  
19  
18  
17  
16  
15  
35  
30  
25  
20  
15  
10  
5
25°C  
-40°C  
85°C  
3V  
4V  
3V  
4V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
6
[1]  
[1]  
I
dq  
(mA)  
I
dq  
(mA)  
FREQUENCY (GHz)  
Figure 12. P1dB vs. I and V Tuned for  
Max OIP3 and Fmin at 2 GHz.  
Figure 14. Gain vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
Figure 13. P1dB vs. I and V Tuned for  
Max OIP3 and Fmin at 900 MHz.  
dq  
ds  
dq  
ds  
Notes:  
1. Idq represents the quiescent drain current  
without RF drive applied. Under low values of  
Ids, the application of RF drive will cause Id to  
increase substantially as P1dB is approached.  
2. Fmin values at 2 GHz and higher are based on  
measurements while the Fmins below 2 GHz  
have been extrapolated. The Fmin values are  
based on a set of 16 noise figure measure-  
ments made at 16 different impedances using  
an ATN NP5 test system. From these  
measurements a true Fmin is calculated.  
Refer to the noise parameter application  
section for more information.  
4
ATF-54143 Typical Performance Curves, continued  
45  
40  
35  
30  
25  
20  
15  
10  
21  
20.5  
20  
2
1.5  
1.0  
0.5  
0
25°C  
-40°C  
85°C  
19.5  
19  
18.5  
18  
25°C  
-40°C  
85°C  
25°C  
-40°C  
85°C  
17.5  
17  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Fmin[2] vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
Figure 16. OIP3 vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
Figure 17. P1dB vs. Frequency and Temp  
Tuned for Max OIP3 and Fmin at 3V, 60 mA.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
60 mA  
40 mA  
80 mA  
0.2  
0
0
1
2
3
4
5
6
7
FREQUENCY (GHz)  
[1]  
Figure 18. Fmin vs. Frequency and I  
at 3V.  
ds  
Note:  
ATF-54143 Reflection Coefficient Parameters tuned for Maximum Output IP3,  
VDS = 3V, IDS = 60 mA  
1. Fmin values at 2 GHz and higher are based on  
measurements while the Fmins below 2 GHz  
have been extrapolated. The Fmin values are  
based on a set of 16 noise figure measure-  
ments made at 16 different impedances using  
an ATN NP5 test system. From these  
measurements a true Fmin is calculated.  
Refer to the noise parameter application  
section for more information.  
Freq  
(GHz)  
ΓOut_Mag.[1]  
ΓOut_Ang.[1]  
OIP3  
(dBm)  
P1dB  
(dBm)  
(Mag)  
(Degrees)  
0.9  
2.0  
3.9  
5.8  
0.017  
0.026  
0.013  
0.025  
115  
-85  
35.54  
36.23  
37.54  
35.75  
18.4  
20.38  
20.28  
18.09  
173  
102  
Note:  
1. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.  
5
ATF-54143 Typical Scattering Parameters, VDS = 3V, IDS = 40 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.99  
0.83  
0.72  
0.70  
0.65  
0.63  
0.62  
0.61  
0.61  
0.63  
0.66  
0.69  
0.71  
0.72  
0.76  
0.83  
0.85  
0.88  
0.89  
0.87  
0.88  
0.87  
0.87  
0.92  
-17.6  
-76.9  
-114  
27.99  
25.47  
22.52  
21.86  
19.09  
17.38  
17.00  
15.33  
13.91  
11.59  
9.65  
25.09  
18.77  
13.37  
12.39  
9.01  
7.40  
7.08  
5.84  
4.96  
3.80  
3.04  
2.51  
2.15  
1.86  
1.62  
1.39  
1.18  
1.03  
0.91  
0.78  
0.64  
0.52  
0.44  
0.38  
168.5  
130.1  
108  
0.009  
0.036  
0.047  
0.049  
0.057  
0.063  
0.065  
0.072  
0.080  
0.094  
0.106  
0.118  
0.128  
0.134  
0.145  
0.150  
0.149  
0.150  
0.149  
0.143  
0.132  
0.121  
0.116  
0.109  
80.2  
52.4  
40.4  
38.7  
33.3  
30.4  
29.8  
26.6  
22.9  
14  
0.59  
0.44  
0.33  
0.31  
0.24  
0.20  
0.19  
0.15  
0.12  
0.10  
0.14  
0.17  
0.20  
0.22  
0.27  
0.37  
0.45  
0.51  
0.54  
0.61  
0.65  
0.70  
0.73  
0.76  
-12.8  
-54.6  
-78.7  
-83.2  
-99.5  
-108.6  
-110.9  
-122.6  
-137.5  
176.5  
138.4  
117.6  
98.6  
34.45  
27.17  
24.54  
24.03  
21.99  
20.70  
20.37  
19.09  
17.92  
15.33  
12.99  
11.50  
10.24  
8.83  
0.5  
0.9  
1.0  
-120.6  
-146.5  
-162.1  
-165.6  
178.5  
164.2  
138.4  
116.5  
97.9  
103.9  
87.4  
1.5  
1.9  
76.6  
2.0  
74.2  
2.5  
62.6  
3.0  
51.5  
4.0  
31  
5.0  
11.6  
4.2  
6.0  
8.01  
-6.7  
-6.1  
7.0  
80.8  
6.64  
-24.5  
-42.5  
-60.8  
-79.8  
-96.9  
-112.4  
-129.7  
-148  
-164.8  
-178.4  
170.1  
156.1  
-17.6  
-29.3  
-40.6  
-56.1  
-69.3  
-81.6  
-95.7  
-110.3  
-124  
-134.6  
-144.1  
-157.4  
8.0  
62.6  
5.38  
73.4  
9.0  
45.2  
4.20  
52.8  
8.17  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
28.2  
2.84  
38.3  
8.57  
13.9  
1.42  
25.8  
7.47  
-0.5  
0.23  
12.7  
7.50  
-15.1  
-31.6  
-46.1  
-54.8  
-62.8  
-73.6  
-0.86  
-2.18  
-3.85  
-5.61  
-7.09  
-8.34  
-4.1  
6.60  
-20.1  
-34.9  
-45.6  
-55.9  
-68.7  
4.57  
3.47  
2.04  
1.05  
1.90  
Typical Noise Parameters, VDS = 3V, IDS = 40 mA  
40  
35  
30  
25  
20  
15  
10  
5
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn/50  
Ga  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
0.17  
0.22  
0.24  
0.42  
0.45  
0.51  
0.59  
0.69  
0.90  
1.14  
1.17  
1.24  
1.57  
1.64  
0.34  
0.32  
0.32  
0.29  
0.29  
0.30  
0.32  
0.34  
0.45  
0.50  
0.52  
0.58  
0.60  
0.69  
34.80  
0.04  
0.04  
0.04  
0.04  
0.04  
0.04  
0.05  
0.05  
0.09  
0.16  
0.18  
0.33  
0.56  
0.87  
27.83  
23.57  
22.93  
18.35  
17.91  
16.39  
15.40  
13.26  
11.89  
10.95  
10.64  
9.61  
53.00  
MAG  
60.50  
108.10  
111.10  
136.00  
169.90  
-151.60  
-119.50  
-101.60  
-99.60  
-79.50  
-57.90  
-39.70  
S
21  
0
-5  
10  
-15  
0
5
10  
15  
20  
FREQUENCY (GHz)  
Figure 19. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 40 mA.  
8.36  
7.77  
10.0  
1.8  
0.80  
-22.20  
1.34  
7.68  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source  
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed  
within 0.010 inch from each source lead contact point, one via on each side of that point.  
6
ATF-54143 Typical Scattering Parameters, VDS = 3V, IDS = 60 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.99  
0.81  
0.71  
0.69  
0.64  
0.62  
0.62  
0.60  
0.60  
0.62  
0.66  
0.69  
0.70  
0.72  
0.76  
0.83  
0.85  
0.88  
0.89  
0.88  
0.88  
0.88  
0.88  
0.92  
-18.9  
-80.8  
-117.9  
-124.4  
-149.8  
-164.9  
-168.3  
176.2  
162.3  
137.1  
115.5  
97.2  
28.84  
26.04  
22.93  
22.24  
19.40  
17.66  
17.28  
15.58  
14.15  
11.81  
9.87  
27.66  
20.05  
14.01  
12.94  
9.34  
7.64  
7.31  
6.01  
5.10  
3.90  
3.11  
2.58  
2.20  
1.90  
1.66  
1.42  
1.20  
1.05  
0.93  
0.80  
0.66  
0.54  
0.46  
0.40  
167.6  
128.0  
106.2  
102.2  
86.1  
0.01  
0.03  
0.04  
0.05  
0.05  
0.06  
0.06  
0.07  
0.08  
0.09  
0.11  
0.12  
0.13  
0.14  
0.15  
0.15  
0.15  
0.15  
0.15  
0.14  
0.13  
0.12  
0.12  
0.11  
80.0  
0.54  
0.40  
0.29  
0.27  
0.21  
0.17  
0.17  
0.13  
0.11  
0.10  
0.14  
0.18  
0.20  
0.23  
0.29  
0.38  
0.46  
0.51  
0.55  
0.61  
0.66  
0.70  
0.73  
0.76  
-14.0  
-58.8  
-83.8  
-88.5  
-105.2  
-114.7  
-117.0  
-129.7  
-146.5  
165.2  
131.5  
112.4  
94.3  
34.42  
28.25  
25.44  
24.13  
22.71  
21.05  
20.86  
19.34  
18. 04  
1 4.87  
13.27  
11.72  
10.22  
9.02  
0.5  
52.4  
0.9  
41.8  
1.0  
40.4  
1.5  
36.1  
1.9  
75.6  
33.8  
2.0  
73.3  
33.3  
2.5  
61.8  
30.1  
3.0  
51.0  
26.5  
4.0  
30.8  
17.1  
5.0  
11.7  
6.8  
6.0  
8.22  
-6.4  
-3.9  
7.0  
80.2  
6.85  
-24.0  
-41.8  
-59.9  
-78.7  
-95.8  
-111.1  
-128.0  
-146.1  
-162.7  
-176.6  
171.9  
157.9  
-15.8  
-28.0  
-39.6  
-55.1  
-68.6  
-80.9  
-94.9  
-109.3  
-122.9  
-133.7  
-143.2  
-156.3  
8.0  
62.2  
5.58  
70.1  
9.0  
45.0  
4.40  
50.6  
8.38  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
28.4  
3.06  
36.8  
8.71  
13.9  
1.60  
24.4  
7.55  
-0.2  
0.43  
11.3  
7.55  
-14.6  
-30.6  
-45.0  
-54.5  
-62.5  
-73.4  
-0.65  
-1.98  
-3.62  
-5.37  
-6.83  
-8.01  
-5.2  
6.70  
-20.8  
-35.0  
-45.8  
-56.1  
-68.4  
5.01  
3.73  
2.54  
1.57  
2.22  
Typical Noise Parameters, VDS = 3V, IDS = 60 mA  
40  
35  
30  
25  
20  
15  
10  
5
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn/50  
Ga  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.15  
0.20  
0.22  
0.42  
0.45  
0.52  
0.59  
0.70  
0.93  
1.16  
1.19  
1.26  
1.63  
1.69  
1.73  
0.34  
0.32  
0.32  
0.27  
0.27  
0.26  
0.29  
0.36  
0.47  
0.52  
0.55  
0.60  
0.62  
0.70  
0.79  
42.3  
0.04  
0.04  
0.04  
0.04  
0.04  
0.04  
0.05  
0.05  
0.10  
0.18  
0.20  
0.37  
0.62  
0.95  
1.45  
28.50  
24.18  
23.47  
18.67  
18.29  
16.65  
15.56  
13.53  
12.13  
11.10  
10.95  
9.73  
62.8  
MAG  
67.6  
116.3  
120.1  
145.8  
178.0  
-145.4  
-116.0  
-98.9  
-96.5  
-77.1  
-56.1  
-38.5  
-21.5  
S
21  
0
-5  
10  
-15  
0
5
10  
15  
20  
FREQUENCY (GHz)  
Figure 20. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 60 mA.  
8.56  
7.97  
7.76  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source  
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed  
within 0.010 inch from each source lead contact point, one via on each side of that point.  
7
ATF-54143 Typical Scattering Parameters, VDS = 3V, IDS = 80 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.98  
0.80  
0.72  
0.70  
0.66  
0.65  
0.64  
0.64  
0.63  
0.66  
0.69  
0.72  
0.73  
0.74  
0.78  
0.84  
0.86  
0.88  
0.89  
0.87  
0.87  
0.86  
0.86  
0.91  
-20.4  
-85.9  
-123.4  
-129.9  
-154.6  
-169.5  
-172.8  
172.1  
158.5  
133.8  
112.5  
94.3  
28.32  
25.32  
22.10  
21.40  
18.55  
16.81  
16.42  
14.69  
13.24  
10.81  
8.74  
26.05  
18.45  
12.73  
11.75  
8.46  
6.92  
6.62  
5.42  
4.59  
3.47  
2.74  
2.25  
1.91  
1.63  
1.41  
1.19  
1.00  
0.88  
0.78  
0.67  
0.56  
0.47  
0.40  
0.36  
167.1  
126.8  
105.2  
101.3  
85.4  
0.01  
0.04  
0.05  
0.05  
0.06  
0.07  
0.07  
0.09  
0.10  
0.12  
0.13  
0.14  
0.15  
0.16  
0.17  
0.16  
0.16  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
79.4  
0.26  
0.29  
0.30  
0.30  
0.30  
0.29  
0.29  
0.29  
0.29  
0.33  
0.39  
0.42  
0.44  
0.47  
0.52  
0.59  
0.64  
0.68  
0.70  
0.73  
0.76  
0.78  
0.79  
0.81  
-27.6  
-104.9  
-138.8  
-144.3  
-165.0  
-177.6  
179.4  
164.4  
150.2  
126.1  
107.8  
91.8  
34.16  
26.64  
24.06  
23.71  
21.49  
19.95  
19.76  
17.80  
16.62  
14.61  
12.03  
10.52  
9.12  
0.5  
53.3  
0.9  
43.9  
1.0  
42.7  
1.5  
38.6  
1.9  
74.9  
35.7  
2.0  
72.6  
35.0  
2.5  
61.1  
30.6  
3.0  
50.1  
25.5  
4.0  
29.9  
13.4  
5.0  
11.1  
1.2  
6.0  
7.03  
-6.5  
-11.3  
-24.5  
-38.1  
-51.1  
-66.8  
-79.8  
-91.7  
-105.6  
-119.5  
-132.3  
-141.7  
-150.4  
-163.0  
7.0  
77.4  
5.63  
-23.5  
-41.1  
-58.7  
-76.4  
-92.0  
-105.9  
-121.7  
-138.7  
-153.9  
-165.9  
-175.9  
171.2  
75.5  
8.0  
59.4  
4.26  
55.5  
7.78  
9.0  
42.1  
2.98  
37.8  
7.12  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
25.6  
1.51  
24.0  
6.96  
11.4  
0.00  
11.8  
6.11  
-2.6  
-1.15  
-2.18  
-3.48  
-5.02  
-6.65  
-7.92  
-8.92  
-0.8  
5.67  
-17.0  
-33.3  
-47.3  
-55.6  
-63.4  
-74.2  
-16.7  
-31.7  
-44.9  
-54.9  
-64.2  
-76.2  
5.08  
3.67  
2.65  
1.48  
0.49  
1.29  
Typical Noise Parameters, VDS = 3V, IDS = 80 mA  
40  
35  
30  
25  
20  
15  
10  
5
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn/50  
Ga  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.19  
0.24  
0.25  
0.43  
0.42  
0.51  
0.61  
0.70  
0.94  
1.20  
1.26  
1.34  
1.74  
1.82  
1.94  
0.23  
0.24  
0.25  
0.28  
0.29  
0.30  
0.35  
0.41  
0.52  
0.56  
0.58  
0.62  
0.63  
0.71  
0.79  
66.9  
0.04  
0.04  
0.04  
0.04  
0.04  
0.03  
0.03  
0.06  
0.13  
0.23  
0.26  
0.46  
0.76  
1.17  
1.74  
27.93  
24.13  
23.30  
18.55  
18.15  
16.44  
15.13  
12.97  
11.42  
10.48  
10.11  
8.86  
84.3  
MAG  
87.3  
S
21  
134.8  
138.8  
159.5  
-173  
0
-5  
10  
-15  
-141.6  
-113.5  
-97.1  
-94.8  
-75.8  
-55.5  
-37.7  
-20.8  
0
5
10  
15  
20  
FREQUENCY (GHz)  
Figure 21. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 80 mA.  
7.59  
6.97  
6.65  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source  
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed  
within 0.010 inch from each source lead contact point, one via on each side of that point.  
8
ATF-54143 Typical Scattering Parameters, VDS = 4V, IDS = 60 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.99  
0.81  
0.71  
0.69  
0.64  
0.62  
0.61  
0.60  
0.60  
0.62  
0.65  
0.68  
0.70  
0.72  
0.76  
0.83  
0.86  
0.88  
0.90  
0.87  
0.88  
0.88  
0.87  
0.92  
-18.6  
-80.2  
-117.3  
-123.8  
-149.2  
-164.5  
-167.8  
176.6  
162.6  
137.4  
115.9  
97.6  
28.88  
26.11  
23.01  
22.33  
19.49  
17.75  
17.36  
15.66  
14.23  
11.91  
10.00  
8.36  
27.80  
20.22  
14.15  
13.07  
9.43  
7.72  
7.38  
6.07  
5.15  
3.94  
3.16  
2.62  
2.24  
1.94  
1.70  
1.46  
1.24  
1.08  
0.96  
0.82  
0.68  
0.55  
0.46  
0.40  
167.8  
128.3  
106.4  
102.4  
86.2  
0.01  
0.03  
0.04  
0.04  
0.05  
0.06  
0.06  
0.07  
0.07  
0.09  
0.10  
0.11  
0.12  
0.13  
0.14  
0.15  
0.15  
0.15  
0.15  
0.15  
0.14  
0.13  
0.12  
0.11  
80.1  
0.58  
0.42  
0.31  
0.29  
0.22  
0.18  
0.18  
0.14  
0.11  
0.07  
0.09  
0.12  
0.15  
0.17  
0.23  
0.32  
0.41  
0.47  
0.51  
0.58  
0.63  
0.69  
0.72  
0.75  
-12.6  
-52.3  
-73.3  
-76.9  
-89.4  
-95.5  
-97.0  
-104.0  
-113.4  
-154.7  
152.5  
127.9  
106.9  
78.9  
34.44  
28.29  
25.49  
25.14  
22.76  
21.09  
20.90  
19.38  
18.67  
15.46  
13.20  
11.73  
10.47  
9.31  
0.5  
52.4  
0.9  
41.7  
1.0  
40.2  
1.5  
36.1  
1.9  
75.7  
34.0  
2.0  
73.3  
33.5  
2.5  
61.9  
30.7  
3.0  
51.1  
27.3  
4.0  
30.9  
18.7  
5.0  
11.7  
9.0  
6.0  
-6.6  
-1.4  
7.0  
80.6  
7.01  
-24.3  
-42.3  
-60.5  
-79.6  
-97.0  
-112.8  
-130.2  
-148.8  
-166.0  
179.8  
168.4  
154.3  
-12.9  
-24.7  
-36.1  
-51.8  
-65.4  
-78.0  
-92.2  
-107.3  
-121.2  
-132.2  
-142.3  
-155.6  
8.0  
62.6  
5.76  
9.0  
45.4  
4.60  
56.8  
8.69  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
28.5  
3.28  
42.1  
9.88  
14.1  
1.87  
29.4  
9.17  
-0.4  
0.69  
16.0  
8.57  
-14.9  
-31.4  
-46.0  
-54.8  
-62.8  
-73.7  
-0.39  
-1.72  
-3.38  
-5.17  
-6.73  
-7.93  
-1.1  
8.06  
-17.6  
-32.6  
-43.7  
-54.2  
-67.2  
4.90  
3.86  
2.65  
1.33  
2.26  
Typical Noise Parameters, VDS = 4V, IDS = 60 mA  
40  
35  
30  
25  
20  
15  
10  
5
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn/50  
Ga  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.17  
0.25  
0.27  
0.45  
0.49  
0.56  
0.63  
0.73  
0.96  
1.20  
1.23  
1.33  
1.66  
1.71  
1.85  
0.33  
0.31  
0.31  
0.27  
0.27  
0.26  
0.28  
0.35  
0.47  
0.52  
0.54  
0.60  
0.63  
0.71  
0.82  
34.30  
0.03  
0.04  
0.04  
0.04  
0.04  
0.04  
0.04  
0.05  
0.11  
0.19  
0.21  
0.38  
0.64  
0.99  
1.51  
28.02  
24.12  
23.43  
18.72  
18.35  
16.71  
15.58  
13.62  
12.25  
11.23  
11.02  
9.94  
60.30  
MAG  
MSG  
68.10  
S
MAG  
21  
115.00  
119.80  
143.50  
176.80  
-145.90  
-116.20  
-98.80  
-96.90  
-77.40  
-56.20  
-38.60  
-21.30  
0
-5  
10  
-15  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 22. MSG/MAG and |S21|2 vs.  
Frequency at 4V, 60 mA.  
8.81  
8.22  
8.12  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source  
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed  
within 0.010 inch from each source lead contact point, one via on each side of that point.  
9
C4  
OUTPUT  
Whereas a depletion mode  
C1  
INPUT  
ATF-54143 Applications  
Information  
Q1  
L2  
Zo  
Zo  
PHEMT pulls maximum drain  
current when Vgs = 0V, an en-  
hancement mode PHEMT pulls  
only a small amount of leakage  
current when Vgs=0V. Only when  
Vgs is increased above Vto, the  
device threshold voltage, will  
drain current start to flow. At a  
L1  
L4  
L3  
Introduction  
C2  
C3  
C5  
R3  
R4  
R5  
Agilent Technologiess ATF-54143  
is a low noise enhancement mode  
PHEMT designed for use in low  
cost commercial applications in  
the VHF through 6 GHz frequency  
range. As opposed to a typical  
depletion mode PHEMT where the  
gate must be made negative with  
respect to the source for proper  
operation, an enhancement mode  
PHEMT requires that the gate be  
made more positive than the  
source for normal operation.  
Therefore a negative power  
supply voltage is not required for  
an enhancement mode device.  
Biasing an enhancement mode  
PHEMT is much like biasing the  
typical bipolar junction transistor.  
Instead of a 0.7V base to emitter  
voltage, the ATF-54143 enhance-  
ment mode PHEMT requires  
about a 0.6V potential between  
the gate and source for a nominal  
drain current of 60 mA.  
C6  
R1  
R2  
Vds of 3V and a nominal Vgs of  
Vdd  
0.6V, the drain current Id will be  
approximately 60 mA. The data  
sheet suggests a minimum and  
maximum Vgs over which the  
desired amount of drain current  
will be achieved. It is also impor-  
tant to note that if the gate  
terminal is left open circuited,  
the device will pull some amount  
of drain current due to leakage  
current creating a voltage differ-  
ential between the gate and  
source terminals.  
Figure 1. Typical ATF-54143 LNA with Passive  
Biasing.  
Capacitors C2 and C5 provide a  
low impedance in-band RF  
bypass for the matching net-  
works. Resistors R3 and R4  
provide a very important low  
frequency termination for the  
device. The resistive termination  
improves low frequency stability.  
Capacitors C3 and C6 provide  
the low frequency RF bypass for  
resistors R3 and R4. Their value  
should be chosen carefully as C3  
and C6 also provide a termina-  
tion for low frequency mixing  
products. These mixing products  
are as a result of two or more in-  
band signals mixing and produc-  
ing third order in-band distortion  
products. The low frequency or  
difference mixing products are  
bypassed by C3 and C6. For best  
suppression of third order  
Passive Biasing  
Passive biasing of the ATF-54143  
is accomplished by the use of a  
voltage divider consisting of R1  
and R2. The voltage for the  
divider is derived from the drain  
voltage which provides a form of  
voltage feedback through the use  
of R3 to help keep drain current  
constant. Resistor R5 (approxi-  
mately 10k) provides current  
limiting for the gate of enhance-  
ment mode devices such as the  
ATF-54143. This is especially  
important when the device is  
Matching Networks  
The techniques for impedance  
matching an enhancement mode  
device are very similar to those  
for matching a depletion mode  
device. The only difference is in  
the method of supplying gate  
bias. S and Noise Parameters for  
various bias conditions are listed  
in this data sheet. The circuit  
shown in Figure 1 shows a typical  
LNA circuit normally used for  
900 and 1900 MHz applications  
(Consult the Agilent Technologies  
website for application notes  
covering specific applications).  
High pass impedance matching  
networks consisting of L1/C1 and  
L4/C4 provide the appropriate  
match for noise figure, gain, S11  
and S22. The high pass structure  
also provides low frequency gain  
reduction which can be beneficial  
from the standpoint of improving  
out-of-band rejection at lower  
frequencies.  
distortion products based on the  
CDMA 1.25 MHz signal spacing,  
C3 and C6 should be 0.1 µF in  
value. Smaller values of capaci-  
tance will not suppress the  
driven to P1dB or PSAT  
.
generation of the 1.25 MHz  
Resistor R3 is calculated based  
on desired Vds, Ids and available  
power supply voltage.  
difference signal and as a result  
will show up as poorer two tone  
IP3 results.  
VDD Vds  
Bias Networks  
R3 =  
(1)  
p
Ids + IBB  
One of the major advantages of  
the enhancement mode technol-  
ogy is that it allows the designer  
to be able to dc ground the  
source leads and then merely  
apply a positive voltage on the  
gate to set the desired amount of  
quiescent drain current Id.  
VDD is the power supply voltage.  
Vds is the device drain to source  
voltage.  
Ids is the desired drain current.  
IBB is the current flowing through  
the R1/R2 resistor voltage  
divider network.  
10  
C4  
The values of resistors R1 and R2  
are calculated with the following  
formulas  
OUTPUT  
and rearranging equation (5)  
provides the following formula  
C1  
INPUT  
Q1  
L2  
Zo  
Zo  
L1  
L4  
L3  
VDD  
C2  
C3  
9
Vgs  
R1 =  
(5A)  
C5  
R4  
R5  
R6  
R1 =  
(2)  
VDD VB  
p
p
IBB 1 +  
IBB  
(
)
VB  
C7  
Q2  
C6  
(Vds Vgs) R1  
Example Circuit  
VDD = 5V  
Vdd  
R2 =  
(3)  
R7  
R3  
p
Vgs  
R2  
R1  
Vds = 3V  
Example Circuit  
Ids = 60 mA  
Figure 2. Typical ATF-54143 LNA with  
Active Biasing.  
R4 = 10Ω  
VDD = 5V  
Vds = 3V  
Ids = 60 mA  
Vgs = 0.59V  
VBE = 0.7V  
An active bias scheme is shown  
in Figure 2. R1 and R2 provide a  
constant voltage source at the  
base of a PNP transistor at Q2.  
The constant voltage at the base  
of Q2 is raised by 0.7 volts at the  
emitter. The constant emitter  
voltage plus the regulated VDD  
supply are present across resis-  
tor R3. Constant voltage across  
R3 provides a constant current  
supply for the drain current.  
Resistors R1 and R2 are used to  
set the desired Vds. The com-  
bined series value of these  
Equation (1) calculates the  
required voltage at the emitter of  
the PNP transistor based on  
desired Vds and Ids through  
resistor R4 to be 3.6V. Equation  
(2) calculates the value of resis-  
tor R3 which determines the  
drain current Ids. In the example  
R3=23.3. Equation (3) calcu-  
lates the voltage required at the  
junction of resistors R1 and R2.  
This voltage plus the step-up of  
the base emitter junction deter-  
mines the regulated Vds. Equa-  
tions (4) and (5) are solved  
simultaneously to determine the  
value of resistors R1 and R2. In  
the example R1=1450and  
R2=1050. R7 is chosen to be  
1k. This resistor keeps a small  
amount of current flowing  
Choose IBB to be at least 10X the  
normal expected gate leakage  
current. IBB was chosen to be  
2 mA for this example. Using  
equations (1), (2), and (3) the  
resistors are calculated as  
follows  
R1 = 295Ω  
R2 = 1205Ω  
R3 = 32.3Ω  
resistors also sets the amount of  
extra current consumed by the  
bias network. The equations that  
describe the circuits operation  
are as follows.  
Active Biasing  
Active biasing provides a means  
of keeping the quiescent bias  
point constant over temperature  
and constant over lot to lot  
variations in device dc perfor-  
mance. The advantage of the  
active biasing of an enhancement  
mode PHEMT versus a depletion  
mode PHEMT is that a negative  
power source is not required. The  
techniques of active biasing an  
enhancement mode device are  
very similar to those used to bias  
a bipolar junction transistor.  
VE = Vds + (Ids R4)  
(1)  
through Q2 to help maintain bias  
stability. R6 is chosen to be  
10k. This value of resistance is  
necessary to limit Q1 gate  
current in the presence of high  
RF drive level (especially when  
Q1 is driven to P1dB gain com-  
pression point).  
VDD VE  
R3 =  
(2)  
(3)  
p
Ids  
VB = VE VBE  
R1  
VB =  
VDD  
(4)  
(5)  
p
R1 + R2  
VDD = IBB (R1 + R2)  
Rearranging equation (4)  
provides the following formula  
R1 (VDD VB)  
R2 =  
(4A)  
p
VB  
11  
ATF-54143 Die Model  
Advanced_Curtice2_Model  
MESFETM1  
NFET=yes  
PFET=no  
Vto=0.3  
Rf=  
Crf=0.1 F  
Gsfwd=  
Gsrev=  
Gdfwd=  
Gdrev=  
R1=  
R2=  
Vbi=0.8  
Vbr=  
Vjr=  
Is=  
Ir=  
Imax=  
Xti=  
N=  
Fnc=1 MHz  
R=0.08  
P=0.2  
C=0.1  
Taumdl=no  
wVgfwd=  
wBvgs=  
wBvgd=  
wBvds=  
wldsmax=  
wPmax=  
AllParams=  
Gscap=2  
Cgs=1.73 pF  
Cgd=0.255 pF  
Gdcap=2  
Beta=0.9  
Lambda=82e-3  
Alpha=13  
Tau=  
Fc=0.65  
Rgd=0.25 Ohm  
Rd=1.0125 Ohm  
Rg=1.0 Ohm  
Rs=0.3375 Ohm  
Ld=  
Lg=0.18 nH  
Ls=  
Cds=0.27 pF  
Rc=250 Ohm  
Tnom=16.85  
Idstc=  
Ucrit=-0.72  
Vgexp=1.91  
Gamds=1e-4  
Vtotc=  
Betatce=  
Rgs=0.25 Ohm  
Eg=  
ATF-54143 curtice ADS Model  
INSIDE Package  
VAR  
VAR1  
K=5  
Var  
Egn  
TLINP  
TL1  
TLINP  
TL2  
Z2=85  
Z1=30  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
C
A=0.0000  
F=1 GHz  
TanD=0.001  
A=0.0000  
F=1 GHz  
TanD=0.001  
GaAsFET  
C1  
FET1  
GATE  
SOURCE  
C=0.13 pF  
Mode1=MESFETM1  
Mode=Nonlinear  
L
L6  
L
L1  
Port  
G
Num=1  
TLINP  
TL7  
TLINP  
TL8  
TLINP  
TL4  
TLINP  
TL3  
Z=Z1 Ohm Z=Z2 Ohm  
Port  
S2  
L=0.175 nH  
R=0.001  
L=0.477 nH  
R=0.001  
Z=Z2/2 OhmZ=Z1 Ohm  
L=5.0 mil L=15.0 mil  
Num=4  
L=15 mil  
K=1  
A=0.000  
F=1 GHz  
L=25 mil  
K=K  
A=0.000  
F=1 GHz  
K=K  
K=1  
C
C2  
A=0.0000 A=0.0000  
F=1 GHz F=1 GHz  
TanD=0.001 TanD=0.001  
C=0.159 pF  
DRAIN  
TanD=0.001 TanD=0.001  
SOURCE  
L
TLINP  
TL5  
TLINP  
TL6  
Port  
D
Num=3  
L7  
L=0.746 nH  
R=0.001  
L
Port  
TLINP  
Z=Z2 Ohm Z=Z1 Ohm  
L=26.0 mil L=15.0 mil  
TLINP  
L4  
MSub  
S1  
TL9  
TL10  
L=0.4 nH  
R=0.001  
Num=2  
Z=Z2 Ohm  
L=10.0 mil  
K=K  
A=0.000  
F=1 GHz  
TanD=0.001  
K=K  
K=1  
Z=Z1 Ohm  
L=15 mil  
K=1  
A=0.000  
F=1 GHz  
TanD=0.001  
MSUB  
MSub1  
A=0.0000 A=0.0000  
F=1 GHz F=1 GHz  
TanD=0.001 TanD=0.001  
H=25.0 mil  
Er=9.6  
Mur=1  
Cond=1.0E+50  
Hu=3.9e+034 mil  
T=0.15 mil  
TanD=0  
Rough=0 mil  
12  
Designing with S and Noise  
eters and the simulated non-  
Parameters and the Non-Linear Model linear model, be sure to include  
The non-linear model describing  
the ATF-54143 includes both the  
die and associated package  
the effect of the printed circuit  
board to get an accurate compari-  
son. This is shown schematically  
in Figure 3.  
model. The package model  
includes the effect of the pins but  
does not include the effect of the  
additional source inductance  
associated with grounding the  
source leads through the printed  
circuit board. The device S and  
Noise Parameters do include the  
effect of 0.020 inch thickness  
printed circuit board vias. When  
comparing simulation results  
between the measured S param-  
For Further Information  
The information presented here is  
an introduction to the use of the  
ATF-54143 enhancement mode  
PHEMT. More detailed application  
circuit information is available  
from Agilent Technologies.  
Consult the web page or your  
local Agilent Technologies sales  
representative.  
VIA2  
V3  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
VIA2  
V1  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
DRAIN  
SOURCE  
ATF-54143  
Rho=1.0  
W=40.0 mil  
VIA2  
V4  
MSub  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
MSUB  
MSub1  
H=25.0 mil  
Er=9.6  
Mur=1  
Cond=1.0E+50  
Hu=3.9e+034 mil  
T=0.15 mil  
TanD=0  
SOURCE  
GATE  
VIA2  
V2  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
Rough=0 mil  
Figure 3. Adding Vias to the ATF-54143 Non-Linear Model for Comparison to Measured S and Noise Parameters.  
13  
Noise Parameter Applications  
Information  
If the reflection coefficient of the much higher than 50is required  
matching network is other than  
Go, then the noise figure of the  
device will be greater than Fmin  
based on the following equation.  
for the device to produce Fmin. At  
VHF frequencies and even lower  
L Band frequencies, the required  
impedance can be in the vicinity  
of several thousand ohms. Match-  
ing to such a high impedance  
requires very hi-Q components in  
order to minimize circuit losses.  
As an example at 900 MHz, when  
airwwound coils (Q>100) are  
used for matching networks, the  
loss can still be up to 0.25 dB  
which will add directly to the  
noise figure of the device. Using  
muiltilayer molded inductors with  
Qs in the 30 to 50 range results in  
additional loss over the airwound  
coil. Losses as high as 0.5 dB or  
greater add to the typical 0.15 dB  
Fmin values at 2 GHz and higher  
are based on measurements  
while the Fmins below 2 GHz have  
been extrapolated. The Fmin  
values are based on a set of  
16 noise figure measurements  
made at 16 different impedances  
using an ATN NP5 test system.  
From these measurements, a true  
NF = Fmin + 4 Rn  
|Γs Γo | 2  
Zo (|1 + Γo|2)(1- |Γs|2)  
Where Rn/Zo is the normalized  
noise resistance, Γo is the opti-  
mum reflection coefficient  
required to produce Fmin and Γs is  
the reflection coefficient of the  
source impedance actually  
Fmin is calculated. Fmin repre-  
sents the true minimum noise  
figure of the device when the  
device is presented with an  
impedance matching network  
that transforms the source  
presented to the device. The  
losses of the matching networks  
are non-zero and they will also  
add to the noise figure of the  
device creating a higher amplifier  
noise figure. The losses of the  
matching networks are related to  
the Q of the components and  
associated printed circuit board  
loss. Γo is typically fairly low at  
higher frequencies and increases  
as frequency is lowered. Larger  
gate width devices will typically  
have a lower Γo as compared to  
narrower gate width devices.  
Typically for FETs, the higher Γo  
usually infers that an impedance  
impedance, typically 50, to an  
impedance represented by the  
reflection coefficient Go. The  
designer must design a matching  
network that will present Go to  
the device with minimal associ-  
ated circuit losses. The noise  
figure of the completed amplifier  
is equal to the noise figure of the  
device plus the losses of the  
matching network preceding the  
device. The noise figure of the  
device is equal to Fmin only when  
the device is presented with Go.  
Fmin of the device creating an  
amplifier noise figure of nearly  
0.65 dB. A discussion concerning  
calculated and measured circuit  
losses and their effect on ampli-  
fier noise figure is covered in  
Agilent Application 1085.  
14  
Ordering Information  
Part Number  
No. of Devices  
Container  
ATF-54143-TR1  
ATF-54143-TR2  
ATF-54143-BLK  
3000  
10000  
100  
7Reel  
13Reel  
antistatic bag  
Package Dimensions  
Outline 43  
SOT-343 (SC70 4-lead)  
1.30 (0.051)  
BSC  
1.30 (.051) REF  
2.60 (.102)  
E
1.30 (.051)  
E1  
0.85 (.033)  
0.55 (.021) TYP  
1.15 (.045) BSC  
e
1.15 (.045) REF  
D
h
A
A1  
b TYP  
C TYP  
L
θ
DIMENSIONS  
MIN. MAX.  
SYMBOL  
A
A1  
b
0.80 (0.031)  
0 (0)  
1.00 (0.039)  
0.10 (0.004)  
0.35 (0.014)  
0.20 (0.008)  
2.10 (0.083)  
2.20 (0.087)  
0.65 (0.025)  
0.25 (0.010)  
0.10 (0.004)  
1.90 (0.075)  
2.00 (0.079)  
0.55 (0.022)  
C
D
E
e
h
0.450 TYP (0.018)  
E1  
L
1.15 (0.045)  
0.10 (0.004)  
0
1.35 (0.053)  
0.35 (0.014)  
10  
θ
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
15  
Device Orientation  
REEL  
TOP VIEW  
4 mm  
END VIEW  
CARRIER  
TAPE  
8 mm  
71  
71  
71  
71  
USER  
FEED  
DIRECTION  
COVER TAPE  
Tape Dimensions  
For Outline 4T  
P
P
D
2
P
0
E
F
W
C
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
0
8° MAX.  
5° MAX.  
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
D
2.24 0.10  
2.34 0.10  
1.22 0.10  
4.00 0.10  
1.00 + 0.25  
0.088 0.004  
0.092 0.004  
0.048 0.004  
0.157 0.004  
0.039 + 0.010  
0
0
0
BOTTOM HOLE DIAMETER  
1
0
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
P
E
1.55 0.05  
4.00 0.10  
1.75 0.10  
0.061 0.002  
0.157 0.004  
0.069 0.004  
CARRIER TAPE WIDTH  
THICKNESS  
W
8.00 0.30  
0.315 0.012  
t
0.255 0.013 0.010 0.0005  
5.4 0.10 0.205 0.004  
0.062 0.001 0.0025 0.00004  
1
COVER TAPE  
WIDTH  
C
TAPE THICKNESS  
T
t
DISTANCE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
0.138 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 0.05  
0.079 0.002  
For product information and a complete list of Agilent  
contacts and distributors, please go to our web site.  
www.agilent.com/semiconductors  
E-mail: SemiconductorSupport@agilent.com  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
Obsoletes 5988-6275EN  
December 2, 2002  
5988-8408EN  

相关型号:

DEMO-HMPP-389T

Demonstration circuit board for HMPP-389T
ETC

DEMO-HMPP-38X0

Demonstration circuit board for the HMPP-3860 and HMPP-3890
ETC

DEMO-HPMD-7904

Demo board for HPMD-7904
ETC

DEMO-HSMP38-XX

Demonstration Circuit Board
ETC

DEMO-HSMS285-0

2.45 GHz TAG circuit using the HSMS-2850 zero bias Schottky diode
ETC

DEMO-IAM9156-3

IAM-91563 down-converting mixer demonstration board
ETC

DEMO-MGA-12516B

Low Noise, High Linearity Match Pair Low Noise Amplifier
BOARDCOM

DEMO-MGA-16X16A

Dual LNA for Balanced Application 450 – 1450 MHz
BOARDCOM

DEMO-MGA-16X16B

Dual LNA for Balanced Application 450 – 1450 MHz
BOARDCOM

DEMO-MGA-1X516A

Low Noise, High Linearity Match Pair Low Noise Amplifier
BOARDCOM

DEMO-MGA-30X16

½ Watt High Linearity Amplifi er
BOARDCOM

DEMO-MGA-30X16B

150MHz – 1GHz ½ Watt High Linearity Amplifi er
BOARDCOM