DS80C320ENG [ETC]

(434.89 k) ;
DS80C320ENG
型号: DS80C320ENG
厂家: ETC    ETC
描述:

(434.89 k)

文件: 总38页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS80C320/DS80C323  
DS80C320/DS80C323  
High–Speed/Low–Power Micro  
FEATURES  
PIN ASSIGNMENT  
80C32–Compatible  
1
2
3
4
5
6
40  
39  
38  
37  
36  
35  
P1.0/T2  
P1.1/T2EX  
P1.2/RXD1  
P1.3/TXD1  
P1.4/INT2  
P1.5/INT3  
VCC  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
EA  
8051 Pin and instruction set compatible  
Four 8–bit I/O ports  
Three 16–bit timer/counters  
256 bytes scratchpad RAM  
Addresses 64KB ROM and 64KB RAM  
7
8
34  
33  
P1.6/INT4  
P1.7/INT5  
9
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RST  
P3.0/RXD0  
P3.1/TXD0  
P3.2/INT0  
P3.3/INT1  
High–speed architecture  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DALLAS  
DS80C320  
10580C323  
4 clocks/machine cycle (8032=12)  
ALE  
PSEN  
DC to 33 MHz (DS80C320)  
DC to 18 MHz (DS80C323)  
Single–cycle instruction in 121 ns  
Uses less power for equivalent work  
Dual data pointer  
A15 (P2.7)  
A14 (P2.6)  
A13 (P2.5)  
A12 (P2.4)  
A11 (P2.3)  
A10 (P2.2)  
A9 (P2.1)  
A8 (P2.0)  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
XTAL1  
GND  
Optional variable length MOVX to access fast/  
slow RAM/peripherals  
40–PIN DIP  
1
High integration controller includes:  
Power–fail reset  
6
40  
Programmable Watchdog timer  
Early–warning power–fail interrupt  
7
39  
Two full–duplex hardware serial ports  
DALLAS  
DS80C320  
10580C323  
13 total interrupt sources with six external  
Available in 40–pin DIP, 44–pin PLCC and TQFP  
17  
29  
DESCRIPTION  
The DS80C320/DS80C323 is a fast 80C31/80C32–  
compatible microcontroller. Wasted clock and memory  
cycles have been removed using a redesigned proces-  
sor core. As a result, every 8051 instruction is executed  
between 1.5 and 3 times faster than the original for the  
same crystal speed. Typical applications will see a  
speed improvement of 2.5 times using the same code  
and same crystal. The DS80C320/DS80C323 offers a  
maximum crystal rate of 33 MHz, resulting in apparent  
execution speeds of 82.5 MHz (approximately 2.5X).  
18  
28  
23  
44–PIN PLCC  
33  
34  
44  
22  
12  
DALLAS  
DS80C320  
1
11  
44–PIN TQFP  
ECopyright 1995 by Dallas Semiconductor Corporation.  
All Rights Reserved. For important information regarding  
patents and other intellectual property rights, please refer to  
Dallas Semiconductor data books.  
110196 1/38  
DS80C320/DS80C323  
The DS80C320/DS80C323 is pin compatible with all  
three packages of the standard 80C32 and offers the  
same timer/counters, serial port, and I/O ports. In short,  
the device is extremely familiar to 8051 users but pro-  
vides the speed of a 16–bit processor.  
speed block data memory moves. It can also adjust the  
speed of off–chip data memory access to between two  
and nine machine cycles for flexibility in selecting  
memory and peripherals.  
The DS80C320 operating voltage ranges from 4.25V to  
5.5V, making it ideal as a high–performance upgrade to  
existing 5V systems. For applications in which power  
consumption is critical, the DS80C323 offers the same  
feature set as the DS80C320, but with 2.7V to 5.5V  
operation.  
The DS80C320 provides several extras in addition to  
greater speed. These include a second full hardware  
serial port, seven additional interrupts, programmable  
watchdog timer, power–fail interrupt and reset. The  
device also provides dual data pointers (DPTRs) to  
ORDERING INFORMATION  
PART NUMBER  
DS80C320–MCG  
DS80C320–QCG  
DS80C320–ECG  
DS80C320–MNG  
DS80C320–QNG  
DS80C320–ENG  
DS80C320–MCL  
DS80C320–QCL  
DS80C320–ECL  
DS80C320–MNL  
DS80C320–QNL  
DS80C320–ENL  
PACKAGE  
40–pin plastic DIP  
44–pin PLCC  
MAX CLOCK SPEED  
25 MHz  
TEMPERATURE RANGE  
0°C to +70°C  
25 MHz  
0°C to +70°C  
44–pin TQFP  
25 MHz  
0°C to +70°C  
40–pin plastic DIP  
44–pin PLCC  
25 MHz  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
25 MHz  
44–pin TQFP  
25 MHz  
40–pin plastic DIP  
44–pin PLCC  
33 MHz  
33 MHz  
0°C to +70°C  
44–pin TQFP  
33 MHz  
0°C to +70°C  
40–pin plastic DIP  
44–pin PLCC  
33 MHz  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
33 MHz  
44–pin TQFP  
33 MHz  
DS80C323–MCD 40–pin plastic DIP  
DS80C323–QCD 44–pin PLCC  
DS80C323–ECD 44–pin TQFP  
18 MHz  
18 MHz  
18 MHz  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
110196 2/38  
DS80C320/DS80C323  
DS80C320 BLOCK DIAGRAM Figure 1  
ACCUMULATOR  
ALU REG. 1  
PSW  
B REGISTER  
ALU REG. 2  
STACK POINTER  
ALU  
DPTR1  
PC ADDR. REG.  
BUFFER  
INTERRUPT  
LOGIC  
ADDRESS BUS  
256 BYTES  
SFR 8 RAM  
PC INCREMENT  
PROG. COUNTER  
DPTR0  
INTERRUPT REG.  
INSTRUCTION  
DECODE  
POWER CONTROL REG.  
WATCHDOG REG.  
CLOCKS AND  
MEMORY CONTROL  
RESET  
V
POWER MONITOR  
CC  
CONTROL  
OSCILLATOR  
WATCHDOG TIMER  
110196 3/38  
DS80C320/DS80C323  
PIN DESCRIPTION Table 1  
SIGNAL  
NAME  
DIP  
40  
20  
9
PLCC  
44  
TQFP  
38  
DESCRIPTION  
V
CC  
V
CC  
+5V.  
22, 23  
10  
16, 17  
4
GND  
RST  
GND – Digital circuit ground.  
RST – Input. The RST input pin contains a schmitt voltage input to  
recognize external active high Reset inputs. The pin also employs an  
internal pull–down resistor to allow for a combination of wired OR  
external Reset sources. An RC is not required for power–up, as the  
device provides this function internally.  
18  
19  
20  
21  
14  
15  
XTAL2  
XTAL1  
XTAL1, XTAL2 – The crystal oscillator pins XTAL1 and XTAL2 pro-  
vide support for parallel resonant, AT cut crystals. XTAL1 acts also as  
an input in the event that an external clock source is used in place of  
a crystal. XTAL2 serves as the output of the crystal amplifier.  
29  
32  
26  
PSEN  
PSEN – Output. The Program Store Enable output. This signal is  
commonly connected to external ROM memory as a chip enable.  
PSEN will provide an active low pulse width of 2.25 XTAL1 cycles  
with a period of four XTAL1 cycles. PSEN is driven high when data  
memory (RAM) is being accessed through the bus and during a reset  
condition.  
30  
33  
27  
ALE  
ALEOutput. TheAddressLatchEnableoutputfunctionsasaclock  
to latch the external address LSB from the multiplexed address/data  
bus. This signal is commonly connected to the latch enable of an  
external 373 family transparent latch. ALE has a pulse width of 1.5  
XTAL1 cycles and a period of four XTAL1 cycles. ALE is forced high  
when the device is in a Reset condition.  
39  
38  
37  
36  
35  
34  
33  
32  
43  
42  
41  
40  
39  
38  
37  
36  
37  
36  
35  
34  
33  
32  
31  
30  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD0–7(Port 0) – I/O. Port0isthemultiplexedaddress/databus. Dur-  
ing the time when ALE is high, the LSB of a memory address is pres-  
ented. When ALE falls, the port transitions to a bidirectional data bus.  
This bus is used to read external ROM and read/write external RAM  
memory or peripherals. The Port 0 has no true port latch and can not  
be written directly by software. The reset condition of Port 0 is high.  
No pull–up resistors are needed.  
1–8  
2–9  
40–44  
1–3  
P1.0–P1.7  
Port1–I/O. Port1functionsasbothan8–bitbidirectionalI/Oportand  
an alternate functional interface for Timer 2 I/O, new External Inter-  
rupts, and new Serial Port 1. The reset condition of Port 1 is with all  
bits at a logic 1. In this state, a weak pull–up holds the port high. This  
condition also serves as an input mode, since any external circuit that  
writes to the port will overcome the weak pull–up. When software  
writes a 0 to any port pin, the device will activate a strong pull–down  
that remains on until either a 1 is written or a reset occurs. Writing a  
1 after the port has been at 0 will cause a strong transition driver to  
turn on, followed by a weaker sustaining pull–up. Once the momen-  
tary strong driver turns off, the port once again becomes the output  
high (and input) state. The alternate modes of Port 1 are outlined as  
follows:  
Port  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
Alternate Function  
T2  
External I/O for Timer/Counter 2  
Timer/Counter 2 Capture/Reload Trigger  
Serial Port 1 Input  
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
40  
41  
42  
43  
44  
1
T2EX  
RXD1  
TXD1  
INT2  
INT3  
INT4  
INT5  
Serial Port 1 Output  
External Interrupt 2 (Positive Edge Detect)  
External Interrupt 3 (Negative Edge Detect)  
External Interrupt 4 (Positive Edge Detect)  
External Interrupt 5 (Negative Edge Detect)  
2
3
110196 4/38  
DS80C320/DS80C323  
SIGNAL  
NAME  
DIP  
PLCC  
TQFP  
DESCRIPTION  
21  
22  
23  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
29  
30  
31  
18  
19  
20  
21  
22  
23  
24  
25  
A8 (P2.0)  
A9 (P2.1)  
A15–A8 (Port 2) – Output. Port 2 serves as the MSB for external  
addressing. P2.7 is A15 and P2.0 is A8. The device will automatically  
place the MSB of an address on P2 for external ROM and RAM  
access. Although Port 2 can be accessed like an ordinary I/O port, the  
value stored on the Port 2 latch will never be seen on the pins (due  
to memory access). Therefore writing to Port 2, in software is only  
useful for the instructions MOVX A, @Ri or MOVX @Ri, A. These  
instructions use the Port 2 internal latch to supply the external  
address MSB. In this case, the Port 2 latch value will be supplied as  
the address information.  
A10 (P2.2)  
A11 (P2.3)  
A12 (P2.4)  
A13 (P2.5)  
A14 (P2.6)  
A15 (P2.7)  
10–  
17  
11,  
13–19  
5, 7–13  
P3.0–P3.7  
Port3–I/O. Port3functionsasbothan8–bitbidirectionalI/Oportand  
an alternate functional interface for External Interrupts, Serial Port 0,  
Timer 0 & 1 Inputs, RD and WR strobes. The reset condition of Port  
3 is with all bits at a logic 1. In this state, a weak pull–up holds the port  
high. This condition also serves as an input mode, since any external  
circuit that writes to the port will overcome the weak pull–up. When  
software writes a 0 to any port pin, the device will activate a strong  
pull–down that remains on until either a 1 is written or a reset occurs.  
Writing a 1 after the port has been at 0 will cause a strong transition  
driver to turn on, followed by a weaker sustaining pull–up. Once the  
momentary strong driver turns off, the port once again becomes both  
the output high and input state. The alternate modes of Port 3 are out-  
lined below:  
Port  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
Alternate Mode  
RXD0  
TXD0  
INT0  
INT1  
T0  
Serial Port 0 Input  
Serial Port 0 Output  
External Interrupt 0  
External Interrupt 1  
Timer 0 External Input  
Timer 1 External Input  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
8
9
10  
11  
12  
13  
T1  
WR  
RD  
External Data Memory Write Strobe  
External Data Memory Read Strobe  
31  
35  
29  
EA  
NC  
EA – Input. This pin must be connected to ground for proper opera-  
tion.  
12  
34  
6
28  
NC – Reserved. These pins should not be connected. They are  
reserved for use with future devices in this family.  
1
39  
NC – Reserved. These pins are reserved for additional ground pins  
on future products.  
The DS80C320/DS80C323 runs the standard 8051  
80C32 COMPATIBILITY  
The DS80C320/DS80C323 is a CMOS 80C32 compat-  
ible microcontroller designed for high performance. In  
most cases it will drop into an existing 80C32 design to  
significantly improve the operation. Every effort has  
beenmadetokeepthedevicefamiliarto8032users, yet  
it has many new features. In general, software written  
for existing 80C32 based systems will work on the  
DS80C320/DS80C323. The exception is critical timing  
since the High–Speed Microcontroller performs its  
instructionsmuch faster than the original. It may be nec-  
essary to use memories with faster access times if the  
same crystal frequency is used.  
instruction set and is pin compatible with an 80C32 in  
any of three standard packages. It also provides the  
same timer/counter resources, full–duplex serial port,  
256 bytes of scratchpad RAM and I/O ports as the stan-  
dard 80C32. Timers will default to a 12 clock per cycle  
operation to keep timing compatible with original 8051  
systems. However, they can be programmed to run at  
the new 4 clocks per cycle if desired.  
New hardware features are accessed using Special  
Function Registers that do not overlap with standard  
80C32 locations. A summary of these SFRs is provided  
below.  
110196 5/38  
DS80C320/DS80C323  
The DS80C320/DS80C323 addresses memory in an  
identical fashion to the standard 80C32. Electrical tim-  
ing will appear different due to the high speed nature of  
the product. However, the signals are essentially the  
same. Detailed timing diagrams are provided below in  
the electrical specifications.  
This data sheet assumes the user is familiar with the  
basic features of the standard 80C32. In addition to  
these standard features, the DS80C320/DS80C323  
includes many new functions. This data sheet provides  
onlyasummaryandoverview. Detaileddescriptionsare  
available in the High–Speed Microcontroller User’s  
Guide.  
COMPARATIVE TIMING OF THE DS80C320/DS80C323 AND 80C32 Figure 2  
DS80C320/DS80C323 TIMING  
SINGLE BYTE SINGLE CYCLE  
INSTRUCTION  
ALE  
PSEN  
AD7–AD0  
PORT 2  
XTAL1  
ALE  
PSEN  
AD7–AD0  
PORT 2  
SINGLE BYTE SINGLE CYCLE  
INSTRUCTION  
STANDARD 80C32 TIMING  
110196 6/38  
DS80C320/DS80C323  
below. However, counter/timers default to run at the  
older 12 clocks per increment. Therefore, while soft-  
wareruns at higher speed, timer–based events need no  
modification to operate as before. Timers can be set to  
run at 4 clocks per increment cycle to take advantage of  
higher speed operation.  
HIGH–SPEED OPERATION  
The DS80C320/DS80C323 is built around a high speed  
80C32 compatible core. Higher speed comes not just  
from increasing the clock frequency, but from a newer,  
more efficient design.  
In this updated core, dummy memory cycles have been  
eliminated. In a conventional 80C32, machine cycles  
are generated by dividing the clock frequency by 12. In  
the DS80C320/DS80C323, the same machine cycle is  
performed in 4 clocks. Thus the fastest instruction, one  
machine cycle, is executed three times faster for the  
same crystal frequency. Note that these are identical  
instructions. A comparison of the timing differences is  
shown in Figure 2. The majority of instructions will see  
the full 3 to 1 speed improvement. Some instructions  
will get between 1.5 and 2.4 X improvement. Note that  
all instructions are faster than the original 80C51.  
Table 2 below shows a summary of the instruction set  
including the speed.  
The relative time of two instructions might be different in  
the new architecture than it was previously. For exam-  
ple, in the original architecture, the “MOVX A, @DPTR”  
instruction and the “MOV direct, direct” instruction used  
two machine cycles or 24 oscillator cycles. Therefore,  
they required the same amount of time. In the  
DS80C320/DS80C323, the MOVX instruction can be  
done in two machine cycles or eight oscillator cycles but  
theMOVdirect, directusesthreemachinecyclesor12  
oscillatorcycles. While both are faster than their original  
counterparts, they now have different execution times  
from each other. This is because in most cases, the  
DS80C320/DS80C323 uses one cycle for each byte.  
The user concerned with precise program timing should  
examinethetimingofeachinstructionforfamiliaritywith  
the changes. Note that a machine cycle now requires  
just four clocks, and provides one ALE pulse per cycle.  
Many instructions require only one cycle, but some  
require five. In the original architecture, all were one or  
two cycles except for MUL and DIV.  
The numerical average of all opcodes is approximately  
a 2.5 to 1 speed improvement. Individual programs will  
be affected differently, depending on the actual instruc-  
tions used. Speed sensitive applications would make  
the most use of instructions that are three times faster.  
However, the sheer number of 3 to 1 improved opcodes  
makes dramatic speed improvements likely for any  
code. When these architecture improvements are com-  
bined with 0.8 µm CMOS, the result is a single cycle  
instruction execution in 160 ns. The Dual Data Pointer  
feature also allows the user to eliminate wasted instruc-  
tions when moving blocks of memory.  
INSTRUCTION SET SUMMARY Table 2  
Legends:  
A
Rn  
direct  
@Ri  
Accumulator  
Register R7–R0  
Internal Register address  
InternalRegisterpointed–tobyR0orR1  
(except MOVX)  
INSTRUCTION SET SUMMARY  
All instructions in the DS80C320/DS80C323 perform  
the same functions as their 80C32 counterparts. Their  
affect on bits, flags, and other status functions is identi-  
cal. However, the timing of each instruction is different.  
This applies both in absolute and relative number of  
clocks.  
rel  
bit  
#data  
#data 16  
addr 16  
addr 11  
2’s complement offset byte  
direct bit–address  
8–bit constant  
16–bit constant  
16–bit destination address  
11–bit destination address  
For absolute timing of real–time events, the timing of  
software loops will need to be calculated using the table  
110196 7/38  
DS80C320/DS80C323  
OSCILLATOR  
CYCLES  
OSCILLATOR  
CYCLES  
INSTRUCTION  
BYTE  
INSTRUCTION  
BYTE  
Arithmetic Instructions:  
ADD A, Rn  
ADD A, direct  
ADD A, @Ri  
ADD A, #data  
ADDC A, Rn  
ADDC A, direct  
ADDC A, @Ri  
ADDC A, #data  
SUBB A, Rn  
1
2
1
2
1
2
1
2
1
2
1
2
4
8
4
8
4
8
4
8
4
8
4
8
INC A  
INC Rn  
1
1
2
1
1
1
1
2
1
1
1
1
4
4
8
4
12  
4
4
8
4
INC direct  
INC @Ri  
INC DPTR  
DEC A  
DEC Rn  
DEC direct  
DEC @Ri  
MUL AB  
DIV AB  
SUBB A, direct  
SUBB A, @Ri  
SUBB A, #data  
20  
20  
4
DA A  
Logical Instructions:  
ANL A, Rn  
ANL A, direct  
ANL A, @Ri  
ANL A, #data  
ANL direct, A  
ANL direct, #data  
ORL A, Rn  
ORL A, direct  
ORL A, @Ri  
1
2
1
2
2
3
1
2
1
2
2
3
4
8
4
8
8
12  
4
8
4
8
XRL A, Rn  
XRL A, direct  
XRL A, @Ri  
XRL A, #data  
XRL direct, A  
XRL direct, #data  
CLR A  
CPL A  
RL A  
RLC A  
RR A  
1
2
1
2
2
3
1
1
1
1
1
1
1
4
8
4
8
8
12  
4
4
4
4
ORL A, #data  
ORL direct, A  
ORL direct, #data  
8
12  
4
4
4
RRC A  
SWAP A  
Data Transfer  
Instructions:  
MOV A, Rn  
MOV A, direct  
MOV A, @Ri  
MOV A, #data  
MOV Rn, A  
MOV Rn, direct  
MOV Rn, #data  
MOV direct, A  
MOV direct, Rn  
MOV direct1, direct2  
MOV direct, @Ri  
MOV direct, #data  
MOV @Ri, A  
1
2
1
2
1
2
2
2
2
3
2
3
1
2
2
3
4
8
4
8
4
8
8
8
8
12  
8
12  
4
8
8
MOVC A, @A+DPTR  
MOVC A, @A+PC  
MOVX A, @Ri  
MOVX A, @DPTR  
MOVX @Ri, A  
MOVX @DPTR, A  
PUSH direct  
POP direct  
XCH A, Rn  
XCH A, direct  
XCH A, @Ri  
1
1
1
1
1
1
2
2
1
2
1
1
12  
12  
8–36 *  
8–36 *  
8–36 *  
8–36 *  
8
8
4
8
4
4
XCHD A, @Ri  
MOV @Ri, direct  
MOV @Ri, #data  
MOV DPTR, #data 16  
12  
*User Selectable  
110196 8/38  
DS80C320/DS80C323  
Bit Manipulation  
Instructions:  
CLR C  
1
2
1
2
1
2
4
8
4
8
4
8
ANL C, bit  
ANL C, bit  
ORL C, bit  
ORL C, bit  
MOV C, bit  
MOV bit, C  
2
2
2
2
2
2
8
8
8
8
8
8
CLR bit  
SETB C  
SETB bit  
CPL C  
CPL bit  
Program Branching  
Instructions:  
ACALL addr 11  
LCALL addr 16  
RET  
2
3
1
1
2
3
2
1
2
2
2
3
12  
16  
16  
16  
12  
16  
12  
12  
12  
12  
12  
16  
CJNE A, direct, rel  
CJNE A, #data, rel  
CJNE Rn, #data, rel  
CJNE Ri, #data, rel  
NOP  
JC rel  
JNC rel  
JB bit, rel  
JNB bit, rel  
3
3
3
3
1
2
2
3
3
3
16  
16  
16  
16  
4
12  
12  
16  
16  
16  
RETI  
AJMP addr 11  
LJMP addr 16  
SJMP rel  
JMP @A+DPTR  
JZ rel  
JNZ rel  
DJNZ Rn, rel  
DJNZ direct, rel  
JBC bit, rel  
The table above shows the speed for each class of  
instruction. Note that many of the instructions have mul-  
tiple opcodes. There are 255 opcodes for 111 instruc-  
tions. Of the 255 opcodes, 159 are three times faster  
than the original 80C32. While a system that empha-  
sizes those instructions will see the most improvement,  
the large total number that receive a 3 to 1 improvement  
assure a dramatic speed increase for any system. The  
speed improvement summary is provided below.  
MEMORY ACCESS  
The DS80C320/DS80C323 contains no on–chip ROM  
and 256 bytes of scratchpad RAM. Off–chip memory is  
accessed using the multiplexed address/data bus on  
P0 and the MSB address on P2. A typical memory con-  
nection is shown in Figure 3. Timing diagrams are pro-  
vided in the Electrical Specifications. Program memory  
(ROM) is accessed at a fixed rate determined by the  
crystal frequency and the actual instructions. As men-  
tioned above, an instruction cycle requires 4 clocks.  
Data memory (RAM) is accessed according to a vari-  
able speed MOVX instruction as described below.  
SPEED ADVANTAGE SUMMARY  
#Opcodes  
Speed Improvement  
159  
51  
43  
2
3.0 x  
1.5 x  
2.0 x  
2.4 x  
255  
Average: 2.5  
110196 9/38  
DS80C320/DS80C323  
TYPICAL MEMORY CONNECTION Figure 3  
PSEN  
ALE  
OE  
27C256  
32K x 8  
EPROM  
LSB ADDRESS  
(8)  
(8)  
74F373  
LATCH  
PORT 1  
AD0–AD7  
DATA BUS  
(8)  
CE  
(7)  
DS80C320/  
DS80C323  
PORT 3  
(8)  
2K x 8  
SRAM  
P2.0–P2.7  
MSB ADDRESS  
(3)  
CE  
RD (P3.7)  
WR (P3.6)  
OE  
WE  
be performed at full speed. This is a convenience to  
existing designs that may not have fast RAM in place.  
When maximum speed is desired, the software should  
select a Stretch value of zero. When using very slow  
RAM or peripherals, a larger stretch value can be  
selected. Note that this affects data memory only and  
the only way to slow program memory (ROM) access is  
to use a slower crystal.  
STRETCH MEMORY CYCLE  
The DS80C320/DS80C323 allows the application soft-  
ware to adjust the speed of data memory access. The  
microcontrolleriscapableofperformingtheMOVXinas  
little as two instruction cycles. However, this value can  
be stretched as needed so that both fast memory and  
slow memory or peripherals can be accessed with no  
glue logic. Even in high–speed systems, it may not be  
necessary or desirable to perform data memory access  
at full speed. In addition, there are a variety of memory  
mapped peripherals such as LCD displays or UARTs  
that are not fast.  
Using a Stretch value between one and seven causes  
the microcontroller to stretch the read/write strobe and  
all related timing. This results in a wider read/write  
strobe allowing more time for memory/peripherals to  
respond. The timing of the variable speed MOVX is  
shown in the Electrical Specifications. Note that full  
speed access is not the reset default case. Table 3  
below shows the resulting strobe widths for each  
Stretch value. The memory stretch is implemented  
using the Clock Control Special Function Register at  
SFR location 8Eh. The stretch value is selected using  
bits CKCON.2–0. In the table, these bits are referred to  
as M2 through M0. The first stretch (default) allows the  
use of common 120 ns or 150 ns RAMs withoutdramati-  
cally lengthening the memory access.  
The Stretch MOVX is controlled by the Clock Control  
Register at SFR location 8Eh as described below. This  
allows the user to select a stretch value between zero  
and seven. A Stretch of zero will result in a two machine  
cycle MOVX. A Stretch of seven will result in a MOVX of  
nine machine cycles. Software can dynamically change  
this value depending on the particular memory or  
peripheral.  
On reset, the Stretch value will default to a one resulting  
in a three cycle MOVX. Therefore, RAM access will not  
110196 10/38  
DS80C320/DS80C323  
DATA MEMORY CYCLE STRETCH VALUES Table 3  
CKCON.2–0  
MEMORY  
CYCLES  
RD or WR STROBE  
WIDTH IN CLOCKS  
STROBE WIDTH  
TIME @ 25 MHz  
MD2  
MD1  
MD0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
2
4
8
12  
16  
20  
24  
28  
80 ns  
3 (default)  
160 ns  
320 ns  
480 ns  
640 ns  
800 ns  
960 ns  
1120 ns  
4
5
6
7
8
9
thesoftwaresimplyswitchesbetweenDPTRand1. The  
relevant register locations are as follows.  
DUAL DATA POINTER  
Data memory block moves can be accelerated using  
the Dual Data Pointer (DPTR). The standard 8032  
DPTR is a 16–bit value that is used to address off–chip  
dataRAM or peripherals. In the DS80C320/DS80C323,  
the standard data pointer is called DPTR 0 and is  
located at SFR addresses 82h and 83h. These are the  
standard locations. No modification of standard code is  
needed to use DPTR. The new DPTR is located at SFR  
84h and 85h and is called DPTR1. The DPTR Select bit  
(DPS) chooses the active pointer and is located at the  
LSB of the SFR location 86h. No other bits in register  
86h have any effect and are set to 0. The user switches  
between data pointers by toggling the LSB of register  
86h. The increment (INC) instruction is the fastest way  
to accomplish this. All DPTR–related instructions use  
the currently selected DPTR for any activity. Therefore  
only one instruction is required to switch from a source  
to a destination address. Using the Dual–Data Pointer  
saves code from needing to save source and destina-  
tion addresses when doing a block move. Once loaded,  
DPL  
82h  
83h  
84h  
85h  
86h  
Low byte original DPTR  
High byte original DPTR  
Low byte new DPTR  
High byte new DPTR  
DPTR Select (LSB)  
DPH  
DPL1  
DPH1  
DPS  
Sample code listed below illustrates the saving from  
using the dual DPTR. The example program was origi-  
nal code written for an 8051 and requires a total of 1869  
machine cycles on the DS80C320/DS80C323. This  
takes 299 µs to execute at 25 MHz. The new code using  
the Dual DPTR requires only 1097 machine cycles tak-  
ing 175.5 µs. The Dual DPTR saves 772 machine  
cycles or 123.5 µs for a 64 byte block move. Since each  
pass through the loop saves 12 machine cycles when  
compared to the single DPTR approach, larger blocks  
gain more efficiency using this feature.  
64 BYTE BLOCK MOVE WITHOUT DUAL DATA POINTER  
; SH and SL are high and low byte source address.  
; DH and DL are high and low byte of destination address.  
# CYCLES  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
R5, #64d  
DPTR, #SHSL  
R1, #SL  
R2, #SH  
R3, #DL  
; NUMBER OF BYTES TO MOVE  
; LOAD SOURCE ADDRESS  
; SAVE LOW BYTE OF SOURCE  
; SAVE HIGH BYTE OF SOURCE  
; SAVE LOW BYTE OF DESTINATION  
; SAVE HIGH BYTE OF DESTINATION  
2
3
2
2
2
2
R4, #DH  
MOVE:  
; THIS LOOP IS PERFORMED THE NUMBER OF TIMES LOADED INTO R5, IN THIS EXAMPLE 64  
MOVX  
MOV  
MOV  
A, @DPTR  
R1, DPL  
R2, DPH  
; READ SOURCE DATA BYTE  
; SAVE NEW SOURCE POINTER  
;
2
2
2
110196 11/38  
DS80C320/DS80C323  
MOV  
MOV  
MOVX  
INC  
MOV  
MOV  
MOV  
MOV  
INC  
DJNZ  
DPL, R3  
; LOAD NEW DESTINATION  
;
; WRITE DATA TO DESTINATION  
; NEXT DESTINATION ADDRESS  
; SAVE NEW DESTINATION POINTER  
;
; GET NEW SOURCE POINTER  
;
; NEXT SOURCE ADDRESS  
; FINISHED WITH TABLE?  
2
2
2
3
2
2
2
2
3
3
DPH, R4  
@DPTR, A  
DPTR  
R3, DPL  
R4, DPH  
DPL, R1  
DPH, R2  
DPTR  
R5, MOVE  
64 BYTE BLOCK MOVE WITH DUAL DATA POINTER  
; SH and SL are high and low byte source address.  
; DH and DL are high and low byte of destination address.  
; DPS is the data pointer select. Reset condition is DPS=0, DPTR0 is selected.  
# CYCLES  
EQU  
DPS, #86h  
; TELL ASSEMBLER ABOUT DPS  
MOV  
MOV  
INC  
MOV  
R5, #64  
DPTR, #DHDL  
DPS  
; NUMBER OF BYTES TO MOVE  
; LOAD DESTINATION ADDRESS  
; CHANGE ACTIVE DPTR  
2
3
2
2
DPTR, #SHSL  
; LOAD SOURCE ADDRESS  
MOVE:  
; THIS LOOP IS PERFORMED THE NUMBER OF TIMES LOADED INTO R5, IN THIS EXAMPLE 64  
MOVX  
INC  
MOVX  
INC  
INC  
INC  
A, @DPTR  
DPS  
@DPTR, A  
DPTR  
DPS  
DPTR  
; READ SOURCE DATA BYTE  
2
2
2
3
2
3
3
; CHANGE DPTR TO DESTINATION  
; WRITE DATA TO DESTINATION  
; NEXT DESTINATION ADDRESS  
; CHANGE DATA POINTER TO SOURCE  
; NEXT SOURCE ADDRESS  
DJNZ  
R5, MOVE  
; FINISHED WITH TABLE?  
The second serial port operates in a comparable man-  
ner with the first. Both can operate simultaneously but,  
can be at different baud rates.  
PERIPHERAL OVERVIEW  
Peripherals in the DS80C320/DS80C323 are accessed  
using Special Function Registers (SFRs). The device  
provides several of the most commonly needed periph-  
eralfunctionsinmicrocomputer–basedsystems. These  
functions are new to the 80C32 family and include a  
second serial port, Power–fail Reset, Power–fail Inter-  
rupt, and a programmable Watchdog Timer. These are  
described below, and more details are available in the  
High–Speed Microcontroller User’s Guide.  
The second serial port has similar control registers  
(SCON1 at C0h, SBUF1 at C1h) to the original. One dif-  
ference is that for timer based baud rates, the original  
serial port can use Timer 1 or Timer 2 to generate baud  
rates. This is selected via SFR bits. The new serial port  
can only use Timer 1.  
TIMER RATE CONTROL  
SERIAL PORTS  
One important difference exists between the  
DS80C320/DS80C323 and 80C32 regarding timers.  
The original 80C32 used a 12 clock per cycle scheme  
for timers and consequently for some serial baud rates  
(depending on the mode). The DS80C320/DS80C323  
architecture normally runs using 4 clocks per cycle.  
However, in the area of timers, it will default to a 12 clock  
The DS80C320/DS80C323 provides a serial port  
(UART)thatisidenticaltothe80C32.Manyapplications  
require serial communication with multiple devices.  
Thereforeasecondhardwareserialportisprovidedthat  
is a full duplicate of the standard one. It optionally uses  
pins P1.2 (RXD1) and P1.3 (TXD1). This port has dupli-  
cate control functions included in new SFR locations.  
110196 12/38  
DS80C320/DS80C323  
per cycle scheme on a reset. This allows existing code  
with real–time dependencies such as baud rates to  
operate properly. If an application needs higher speed  
timersorserialbaudrates, thetimerscanbesettorunat  
the 4 clock rate.  
Power–fail Interrupt (PFI). When enabled by the  
application software, this interrupt always has the high-  
est priority. On detecting that the V  
has dropped  
CC  
below V  
and that the PFI is enabled, the processor  
PFW  
will vector to ROM address 0033h. The PFI enable is  
located in the Watchdog Control SFR (WDCON – D8h).  
SettingWDCON.5toalogiconewillenablethePFI. The  
application software can also read a flag at WDCON.4.  
This bit is set when a PFI condition has occurred. The  
flag is independent of the interrupt enable and software  
must manually clear it.  
The Clock Control register (CKCON – 8Eh) determines  
these timer speeds. When the relevant CKCON bit is a  
logic 1, the device uses 4 clocks per cycle to generate  
timer speeds. When the control bit is set to a zero, the  
deviceuses12clocksfortimerspeeds. Theresetcondi-  
tion is a 0. CKCON.5 selects the speed of Timer 2.  
CKCON.4 selects Timer 1 and CKCON.3 selects Timer  
zero. Note that unless a user desires very fast timing, it  
is unnecessary to alter these bits. Note that the timer  
controls are independent.  
WATCHDOG TIMER  
For applications that can not afford to run out–of–con-  
trol, the DS80C320/DS80C323 incorporates a pro-  
grammable Watchdog Timer circuit. It resets the micro-  
controller if software fails to reset the Watchdog before  
the selected time interval has elapsed. The user selects  
one of four time–out values. After enabling the Watch-  
dog, software must reset the timer prior to expiration of  
theinterval, or the CPU will be reset. Both the Watchdog  
Enable and the Watchdog Reset bits are protected by a  
“Timed Access” circuit. This prevents accidentally  
clearing the Watchdog. Time–out values are precise  
since they are related to the crystal frequency as shown  
below in Table 4. For reference, the time periods at 25  
MHz are also shown.  
POWER FAIL RESET  
The DS80C320/DS80C323 incorporates a precision  
band–gap voltage reference to determine when V is  
CC  
out–of–tolerance. While powering up, internal circuits  
will hold the device in a reset state until V rises above  
CC  
the V  
reset threshold. Once V is above this level,  
CC  
RST  
the oscillator will begin running. An internal reset circuit  
will then count 65536 clocks to allow time for power and  
the oscillator to stabilize. The microcontroller will then  
exit the reset condition. No external components are  
needed to generate a power on reset. During power–  
downorduringaseverepowerglitch, asV fallsbelow  
The Watchdog Timer also provides a useful option for  
systems that may not require a reset. If enabled, then  
512 clocks before giving a reset, the Watchdog will give  
an interrupt. The interrupt can also serve as a conve-  
nient time–base generator, or be used to wake–up the  
processor from Idle mode. The Watchdog function is  
controlled in the Clock Control (CKCON – 8Eh), Watch-  
dog Control (WDCON – D8h), and Extended Interrupt  
Enable(EIE – E8h) SFRs. CKCON.7andCKCON.6are  
called WD1 and WD0 respectively and are used to  
select the Watchdog time–out period as shown in  
Table 4.  
CC  
V , the microcontroller will also generate its own  
RST  
reset. It will hold the reset condition as long as power  
remains below the threshold. This reset will occur auto-  
matically, needing no action from the user or from the  
software. Refer to the Electrical Specifications for the  
exact value of V  
.
RST  
POWER FAIL INTERRUPT  
The same reference that generates a precision reset  
threshold can also generate an optional early warning  
WATCHDOG TIME–OUT VALUES Table 4  
INTERRUPT  
TIME–OUT  
17  
TIME  
(@25 MHz)  
RESET  
TIME–OUT  
17  
TIME  
(@25 MHz)  
WD1  
WD0  
0
0
1
1
0
1
0
1
2
2
2
2
clocks  
clocks  
clocks  
clocks  
5.243 ms  
41.94 ms  
335.54 ms  
2684.35 ms  
2
2
2
2
+ 512 clocks  
5.263 ms  
41.96 ms  
335.56 ms  
2684.38 ms  
20  
23  
26  
20  
23  
26  
+ 512 clocks  
+ 512 clocks  
+ 512 clocks  
110196 13/38  
DS80C320/DS80C323  
As shown above, the Watchdog Timer uses the crystal  
frequency as a time base. A user selects one of four  
counter values to determine the time–out. These clock  
tected by Timed Access discussed below. RWT  
(WDCON.0) is the bit that software uses to restart the  
Watchdog Timer. Setting this bit restarts the timer for  
another full interval. Application software must set this  
bit prior to the time–out. As mentioned previously, WD1  
and0 (CKCON .7 and 6) select the time–out. Finally, the  
Watchdog Interrupt is enabled using EWDI (EIE.4). The  
Special Function Register map is shown below.  
17  
20  
counter lengths are  
2
= 131,072 clocks; 2  
=
23  
26  
1,048,576; 2 = 8,388,608 clocks; or 2 = 67,108,864  
clocks. The times shown in Table 4 above are with a  
25 MHz crystal frequency. Note that once the counter  
chain has reached a conclusion, the optional interrupt is  
generated. Regardless of whether the user enables this  
interrupt, there are then 512 clocks left until a reset  
occurs. There are five control bits in special function  
registers that affect the Watchdog Timer and two status  
flags that report to the user.  
INTERRUPTS  
The DS80C320/DS80C323 provides 13 sources of  
interrupt with three priority levels. The Power–fail Inter-  
rupt (PFI), if enabled, always has the highest priority.  
There are two remaining user selectable priorities: high  
and low. If two interrupts that have the same priority  
occur simultaneously, the natural precedence given  
below determines which is a acted upon. Except for the  
PFI, all interrupts that are new to the 8051 family have a  
lower natural priority than the originals.  
WDIF (WDCON.3) is the interrupt flag that is set when  
there are 512 clocks remaining until a reset occurs.  
WTRF (WDCON.2) is the flag that is set when a Watch-  
dog reset has occurred. This allows the application soft-  
ware to determine the source of a reset.  
EWT (WDCON.1) is the enable for the WatchdogTimer.  
Software sets this bit to enable the timer. The bit is pro-  
INTERRUPT PRIORITY Table 5  
NAME  
DESCRIPTION  
VECTOR  
NATURAL PRIORITY  
OLD/NEW  
PFI  
INT0  
TF0  
INT1  
TF1  
SCON0  
TF2  
SCON1  
INT2  
INT3  
INT4  
INT5  
WDTI  
Power Fail Interrupt  
External Interrupt 0  
Timer 0  
External Interrupt 1  
Timer 1  
33h  
03h  
0Bh  
13h  
1Bh  
23h  
2Bh  
3Bh  
43h  
4Bh  
53h  
5Bh  
63h  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NEW  
OLD  
OLD  
OLD  
OLD  
OLD  
OLD  
NEW  
NEW  
NEW  
NEW  
NEW  
NEW  
TI0 or RI0 from serial port 0  
Timer 2  
TI1 or RI1 from serial port 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
Watchdog Time–out Interrupt  
cally reduced. Since clocks are running, the Idle power  
consumptionis related to crystal frequency. It should be  
approximately 1/2 of the operational power. The CPU  
can exit the Idle state with any interrupt or a reset.  
POWER MANAGEMENT  
The DS80C320/DS80C323 provides the standard Idle  
and power–down (Stop) that are available on the stan-  
dard 80C32. However the device has enhancements  
that make these modes more useful, and allow more  
power saving.  
Thepower–downorStopmodeisinvokedbysettingthe  
PCON.1 bit. Stop mode is a lower power state than Idle  
The Idle mode is invoked by setting the LSB of the  
Power Control register (PCON – 87h). Idle will leave  
internal clocks, serial port and timer running. No  
memory access will be performed so power is dramati-  
since it turns off all internal clocking. The I of a stan-  
CC  
dardStop mode is approximately 1 µA but is specified in  
the Electrical Specifications. The CPU will exit Stop  
mode from an external interrupt or a reset condition.  
110196 14/38  
DS80C320/DS80C323  
Note that internally generated interrupts (timer, serial  
port, watchdog) are not useful since they require clock-  
ing activity.  
this bit has no control of the reference during full power  
or Idle modes.  
The second feature allows an additional power saving  
option. This is the ability to start instantly when exiting  
Stop mode. It is accomplished using an internal ring  
oscillator that can be used when exiting Stop mode in  
response to an interrupt. The benefit of the ring oscilla-  
tor is as follows.  
IDLE MODE ENHANCEMENTS  
A simple enhancement to Idle mode makes it substan-  
tially more useful. The innovation involves not the Idle  
mode itself, but the watchdog timer. As mentioned  
above, the Watchdog Timer provides an optional inter-  
rupt capability. This interrupt can provide a periodic  
interval timer to bring the DS80C320/DS80C323 out of  
Idle mode. This can be useful even if the Watchdog is  
notnormallyused. ByenablingtheWatchdogTimerand  
its interrupt prior to invoking Idle, a user can periodically  
comeoutofIdleperformanoperation, thenreturntoIdle  
untilthe next operation. This will lower the overall power  
consumption. When using the Watchdog Interrupt to  
cancel the Idle state, make sure to restart the Watchdog  
Timer or it will cause a reset.  
Using Stop mode turns off the crystal oscillator and all  
internal clocks to save power. This requires that the  
oscillator be restarted when exiting Stop mode. Actual  
start–up time is crystal dependent, but is normally at  
least 4 ms. A common recommendation is 10 ms. In an  
applicationthatwillwake–up, performashortoperation,  
then return to sleep, the crystal start–up can be longer  
than the real transaction. However, the ring oscillator  
will start instantly. The user can perform a simple opera-  
tion and return to sleep before the crystal has even sta-  
bilized. If the ring is used to start and the processor  
remains running, hardware will automatically switch to  
the crystal once a power–on reset interval (65536  
clocks)hasexpired. Thisvalueisusedtoguaranteesta-  
bility even though power is not being cycled.  
STOP MODE ENHANCEMENTS  
The DS80C320/DS80C323 provides two enhance-  
ments to the Stop mode. As documented above, the  
device provides a band–gap reference to determine  
Power–fail Interrupt and Reset thresholds. The default  
state is that the band–gap reference is off when Stop  
mode is invoked. This allows the extremely low power  
statementioned above. A user can optionally choose to  
have the band–gap enabled during Stop mode. This  
means that PFI and power–fail reset will be activated  
and are valid means for leaving Stop mode.  
If the user returns to Stop mode prior to switching of  
crystal, then all clocks will be turned off again. The ring  
oscillator runs at approximately 4 MHz but will not be a  
precision value. No real–time precision operations  
(including serial communication) should be conducted  
during this ring period. Figure 7 shows how the opera-  
tion would compare when using the ring, and when  
starting up normally. The default state is to come out of  
Stop mode without using the ring oscillator.  
In Stop mode with the band–gap on, I will be approxi-  
CC  
mately50µAcomparedwith1µAwiththeband–gapoff.  
If a user does not require a Power–fail Reset or Interrupt  
while in Stop mode, the band–gap can remain turned  
off. Note that only the most power sensitive applications  
shouldturnofftheband–gap,asthisresultsinanuncon-  
trolled power down condition.  
ThisfunctioniscontrolledusingtheRGSLRingSelect  
bit at EXIF.1 (EXIF – 91h). When EXIF.1 is set, the ring  
oscillator will be used to come out of Stop mode quickly.  
As mentioned above, the processor will automatically  
switch from the ring (if enabled) to the crystal after a  
delay of 65536 crystal clocks. For a 3.57 MHz crystal,  
this is approximately 18 ms. The processor sets a flag  
calledRGMDRingModetotellsoftwarethattheringis  
being used. This bit at EXIF.2 will be a logic 1 when the  
ring is in use. No serial communication or precision tim-  
ing should be attempted while this bit is set, since the  
operating frequency is not precise.  
The control of the band–gap reference is located in the  
Extended Interrupt Flag register (EXIF – 91h). Setting  
BGS (EXIF.0) to an one will leave the band–gap refer-  
ence enabled during Stop mode. The default or reset  
condition is with the bit at a logic 0. This results in the  
band–gap being turned off during Stop mode. Note that  
110196 15/38  
DS80C320/DS80C323  
RING OSCILLATOR START–UP Figure 4  
STOP MODE WITHOUT RING STARTUP  
4–10 ms  
uC OPERATING  
uC OPERATING  
CRYSTAL  
OSCILLATION  
uC ENTERS  
STOP MODE  
INTERRUPT;  
CLOCK STARTS  
CLOCK  
STABLE  
uC ENTERS  
STOP MODE  
POWER  
STOP MODE WITH RING STARTUP  
uC OPERATING  
CRYSTAL  
OSCILLATION  
uC OPERATING  
RING  
OSCILLATION  
uC ENTERS  
STOP MODE  
INTERRUPT;  
RING STARTS  
uC ENTERS  
STOP MODE  
POWER SAVED  
POWER  
Diagram assumes that the operation following Stop requires less than 18 ms complete.  
EXIF.0  
BGS Band–gap Select  
POR Power–on Reset flag  
EWT Enable Watchdog  
RWT Reset Watchdog  
TIMED ACCESS PROTECTION  
Selected SFR bits are critical to operation, making it  
desirable to protect against an accidental write opera-  
tion. The Timed Access procedure prevents an errant  
cpufromaccidentallyalteringabitthatwouldcausediffi-  
culty. The Timed Access procedure requires that the  
write of a protected bit be preceded by the following  
instructions :  
WDCON.6  
WDCON.1  
WDCON.0  
WDCON.3  
WDIF Watchdog Interrupt Flag  
SPECIAL FUNCTION REGISTERS  
Most special features of the DS80C320/DS80C323 or  
80C32arecontrolledbybitsinspecialfunctionregisters  
(SFRs). This allows the device to add many features but  
use the same instruction set. When writing software to  
use a new feature, the SFR must be defined to an  
assembler or compiler using an equate statement. This  
is the only change needed to access the new function.  
The DS80C320/DS80C323 duplicates the SFRs that  
are contained in the standard 80C32. Table 6 shows the  
registeraddresses and bit locations. Many are standard  
80C32 registers. The High–Speed Microcontroller  
User’s Guide describes all SFRs.  
MOV  
MOV  
0C7h, #0AAh  
0C7h, #55h  
BywritinganAAhfollowedbya55htotheTimedAccess  
register (location C7h), the hardware opens a two cycle  
window that allows software to modify one of the pro-  
tectedbits. Iftheinstructionthatseekstomodifythepro-  
tected bit is not immediately proceeded by these  
instructions, the write will not take effect. The protected  
bits are:  
110196 16/38  
DS80C320/DS80C323  
SPECIAL FUNCTION REGISTER LOCATIONS Table 6  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDRESS  
81h  
SP  
DPL  
82h  
DPH  
83h  
DPL1  
DPH1  
DPS  
84h  
85h  
0
0
0
0
0
0
0
SEL  
IDLE  
IT0  
86h  
PCON  
TCON  
TMOD  
TL0  
SMOD_0  
TF1  
SMOD0  
TR1  
GF1  
IE1  
GF0  
IT1  
C/T  
STOP  
IE0  
87h  
TF0  
M1  
TR0  
M0  
88h  
GATE  
C/T  
GATE  
M1  
M0  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
90h  
TL1  
TH0  
TH1  
CKCON  
P1  
WD1  
P1.7  
WD0  
P1.6  
T2M  
P1.5  
T1M  
P1.4  
T0M  
P1.3  
MD2  
P1.2  
MD1  
P1.1  
MD0  
P1.0  
BGS  
RI_0  
EXIF  
IE5  
IE4  
IE3  
IE2  
RGMD  
RB8_0  
RGSL  
TI_0  
91h  
SCON0  
SBUF0  
P2  
SM0/FE_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
98h  
99h  
P2.0  
EA  
P2.6  
ES1  
P2.5  
ET2  
P2.4  
ES0  
P2.3  
ET1  
P2.2  
EX1  
P2.1  
ET0  
P2.0  
EX0  
A0h  
A8h  
A9h  
AAh  
B0h  
B8h  
B9h  
BAh  
C0h  
C1h  
C5h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
D0h  
D8h  
E0h  
E8h  
F0h  
F8h  
IE  
SADDR0  
SADDR1  
P3  
P3.7  
P3.6  
PS1  
P3.5  
PT2  
P3.4  
PS0  
P3.3  
PT1  
P3.2  
PX1  
P3.1  
PT0  
P3.0  
PX0  
IP  
SADEN0  
SADEN1  
SCON1  
SBUF1  
STATUS  
TA  
SM0/FE_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
PIP  
HIP  
LIP  
1
1
1
1
1
T2CON  
T2MOD  
RCAP2L  
RCAP2H  
TL2  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
DCEN  
T2OE  
TH2  
PSW  
CY  
AC  
F0  
RS1  
RS0  
OV  
FL  
P
WDCON  
ACC  
SMOD_1  
POR  
EPFI  
PFI  
WDIF  
WTRF  
EWT  
RWT  
EIE  
EWDI  
PWDI  
EX5  
PX5  
EX4  
PX4  
EX3  
PX3  
EX2  
PX2  
B
EIP  
110196 17/38  
DS80C320/DS80C323  
ELECTRICAL SPECIFICATIONS  
VCC=+5V ± 10%; tA=0°C to 70°C  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on Any Pin Relative to Ground  
Operating Temperature  
–1.0V to +7.0V  
–40°C to +85°C  
–55°C to +125°C  
Storage Temperature  
Soldering Temperature  
260°C for 10 seconds  
* This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods of time may affect reliability.  
DC ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC=4.0V to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
4.5  
TYP  
5.0  
MAX  
5.5  
UNITS  
NOTES  
Operating Supply Voltage  
Power Fail Warning  
V
CC  
V
V
1
1
1
2
V
PFW  
4.25  
4.0  
4.38  
4.1  
4.55  
4.25  
45  
Minimum Operating Voltage  
V
RST  
V
Supply Current Active Mode  
@ 25 MHz  
I
30  
mA  
CC  
Supply Current Idle Mode  
@ 25 MHz  
I
15  
35  
20  
.01  
50  
25  
mA  
mA  
mA  
µA  
3
2
IDLE  
Supply Current Active Mode  
@ 33 MHz  
I
CC  
Supply Current Idle Mode  
@ 33 MHz  
I
3
IDLE  
Supply Current Stop Mode,  
Band–gap Reference Disabled  
I
1
4
STOP  
Supply Current Stop Mode,  
I
80  
µA  
4, 10  
SPBG  
Band–gap Reference Enabled  
Input Low Level  
V
–0.3  
2.0  
+0.8  
V
V
1
1
IL  
Input High Level (Except XTAL1  
and RST)  
V
IH1  
V
V
+0.3  
CC  
Input High Level XTAL1 and RST  
V
IH2  
3.5  
+0.3  
V
V
1
1
CC  
Output Low Voltage Ports 1, 3,  
V
V
0.45  
OL1  
@I =1.6 mA  
OL  
Output Low Voltage Ports 0, 2,  
0.45  
V
V
1, 5  
1, 6  
1, 7  
1, 5  
OL2  
OH1  
OH2  
OH3  
ALE, PSEN @I =3.2 mA  
OL  
Output High Voltage Ports 1, 3,  
ALE, PSEN, @I =–50 µA  
V
V
V
2.4  
2.4  
2.4  
OH  
Output High Voltage Ports 1, 3,  
V
@I =–1.5 mA  
OH  
Output High Voltage Ports 0, 2,  
V
ALE, PSEN I =–8 mA  
OH  
Input Low Current Ports 1, 3,  
@0.45V  
I
–55  
µA  
µA  
IL  
Transition Current from 1 to 0  
Ports 1, 3, @2V  
I
TL  
–650  
8
9
Input Leakage Port 0, Bus Mode  
RST Pull–down Resistance  
I
–300  
50  
+300  
170  
µA  
L
R
KΩ  
RST  
110196 18/38  
DS80C320/DS80C323  
NOTES FOR DC ELECTRICAL CHARACTERISTICS:  
All parameters apply to both commercial and industrial temperature operation unless otherwise noted.  
1. All voltages are referenced to ground.  
2. Active current is measured with a 25 MHz clock source driving XTAL1, V =RST=5.5V, all other pins discon-  
CC  
nected.  
3. Idle mode current is measured with a 25 MHz clock source driving XTAL1, V =5.5V, RST at ground, all  
CC  
other pins disconnected.  
4. Stop mode current measured with XTAL1 and RST grounded, V =5.5V, all other pins disconnected.  
CC  
5. When addressing external memory.  
6. RST=V . This condition mimics operation of pins in I/O mode.  
CC  
7. During a 0 to 1 transition, a one–shot drives the ports hard for two clock cycles. This measurement reflects  
port in transition mode.  
8. Ports 1, 2, and 3 source transition current when being pulled down externally. It reaches its maximum at  
approximately 2V.  
9. 0.45<V <V . Not a high impedance input. This port is a weak address holding latch because Port 0 is  
IN  
CC  
dedicated as an address bus on the DS80C320. Peak current occurs near the input transition point of the  
latch, approximately 2V.  
10.Over the industrial temperature range, this specification has a maximum value of 200 µA.  
TYPICAL ICC VERSUS FREQUENCY Figure 5  
I
CC  
@ 5V  
mA  
35  
30  
25  
20  
15  
11  
@ 3V  
5
3
2
0
2
4
6
8
10 12  
16  
18 20  
24  
25  
30  
33 MHz XTAL  
FREQUENCY  
110196 19/38  
DS80C320/DS80C323  
AC ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC=4.0V to 5.5V)  
VARIABLE  
CLOCK  
MIN  
VARIABLE  
CLOCK  
MAX  
25 MHz  
MIN  
25 MHz  
MAX  
PARAMETER  
SYMBOL  
UNITS  
MHz  
ns  
Oscillator Frequency  
ALE Pulse Width  
1/t  
0
50  
9
25  
0
25  
CLCL  
LHLL  
AVLL  
t
t
1.5t  
0.5t  
–10  
–11  
CLCL  
Port 0 Address Valid to ALE Low  
Address Hold After ALE Low  
ns  
CLCL  
t
t
5
note 5  
73  
0.25t –5  
CLCL  
note 5  
ns  
LLAX1  
LLAX2  
Address Hold After ALE Low for  
MOVX WR  
13  
0.5t  
–7  
ns  
CLCL  
ALE Low to Valid Instruction In  
ALE Low to PSEN Low  
t
2.5t –27  
CLCL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LLIV  
t
3
0.25t –7  
CLCL  
LLPL  
PSEN Pulse Width  
t
83  
2.25t –7  
CLCL  
PLPH  
PSEN Low to Valid Instr. In  
Input Instruction Hold After PSEN  
Input Instruction Float After PSEN  
Port 0 Address to Valid Instr. In  
Port 2 Address to Valid Instr. In  
PSEN Low to Address Float  
t
69  
2.25t –21  
CLCL  
PLIV  
PXIX  
t
0
0
t
35  
93  
t
–5  
PXIZ  
CLCL  
t
3t –27  
CLCL  
AVIV1  
AVIV2  
t
107  
3.5t –33  
CLCL  
t
note 5  
note 5  
PLAZ  
NOTES FOR AC ELECTRICAL CHARACTERISTICS:  
All parameters apply to both commercial and industrial temperature range operation unless otherwise noted.  
1. All signals rated over operating temperature at 25 MHz.  
2. All signals characterized with load capacitance of 80 pF except Port 0, ALE, PSEN, RD and WR at 100 pF.  
Note that loading should be approximately equal for valid timing.  
3. Interfacing to memory devices with float times (turn off times) over 35 ns may cause contention. This will not  
damage the parts, but will cause an increase in operating current.  
4. Specifications assume a 50% duty cycle for the oscillator. Port 2 timing will change with the duty cycle varia-  
tions.  
5. Address is held in a weak latch until over driven by external memory.  
110196 20/38  
DS80C320/DS80C323  
MOVX CHARACTERISTICS  
(0°C to 70°C; VCC=4.0 to 5.5V)  
VARIABLE CLOCK VARIABLE CLOCK  
MIN MAX  
PARAMETER  
SYMBOL  
UNITS  
STRETCH  
RD Pulse Width  
t
2t  
–11  
–11  
ns  
t
t
=0  
>0  
RLRH  
CLCL  
MCS  
MCS  
t
MCS  
WR Pulse Width  
t
2t  
–11  
–11  
ns  
ns  
t
t
=0  
>0  
WLWH  
CLCL  
MCS  
MCS  
t
MCS  
RD Low to Valid Data In  
t
2t  
–25  
–25  
t
t
=0  
>0  
RLDV  
CLCL  
MCS  
MCS  
t
MCS  
Data Hold After Read  
Data Float After Read  
t
0
ns  
ns  
RHDX  
t
t
2t  
–5  
t
t
=0  
>0  
RHDZ  
CLCL  
MCS  
MCS  
–5  
CLCL  
ALE Low to Valid Data In  
t
2.5t  
–26  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
=0  
>0  
LLDV  
CLCL  
MCS  
MCS  
1.5t  
–28+t  
CLCL  
MCS  
Port 0 Address to Valid  
Data In  
t
t
3t  
CLCL  
–24  
t
t
=0  
>0  
AVDV1  
AVDV2  
MCS  
MCS  
2t  
–31+t  
CLCL  
MCS  
Port 2 Address to Valid  
Data In  
3.5t  
–32  
t
t
=0  
>0  
CLCL  
MCS  
MCS  
2.5t  
–34+t  
CLCL  
MCS  
ALE Low to RD or WR  
Low  
t
0.5t  
1.5t  
–5  
–5  
0.5t  
1.5t  
+6  
+8  
t
t
=0  
>0  
LLWL  
CLCL  
CLCL  
CLCL  
CLCL  
MCS  
MCS  
Port 0 Address Valid to RD  
or WR Low  
t
t
t
2t  
–9  
–10  
t
t
=0  
>0  
AVWL1  
CLCL  
CLCL  
MCS  
MCS  
Port 2 Address Valid to RD  
or WR Low  
1.5t  
–9  
–13  
t
t
=0  
>0  
AVWL2  
CLCL  
MCS  
MCS  
2.5t  
CLCL  
Data Valid to WR  
Transition  
t
–9  
t
t
=0  
>0  
QVWX  
MCS  
MCS  
t
–10  
CLCL  
Data Hold After Write  
t
t
–7  
–5  
t
t
=0  
>0  
WHQX  
CLCL  
MCS  
MCS  
2t  
CLCL  
RD Low to Address Float  
t
note 5  
10  
ns  
ns  
RLAZ  
RD or WR High to ALE  
High  
t
0
CLCL  
t
t
=0  
>0  
WHLH  
MCS  
MCS  
t
–5  
t
+11  
CLCL  
NOTE: t  
is a time period related to the Stretch memory cycle selection. The following table shows the value of  
MCS  
t
for each Stretch selection.  
MCS  
M2  
0
M1  
0
M0  
0
MOVX CYCLES  
2 machine cycles  
3 machine cycles (default)  
4 machine cycles  
5 machine cycles  
6 machine cycles  
7 machine cycles  
8 machine cycles  
9 machine cycles  
t
MCS  
0
0
0
1
4 t  
CLCL  
8 t  
CLCL  
0
1
0
0
1
1
12 t  
16 t  
20 t  
24 t  
28 t  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
1
0
0
1
0
1
1
1
0
1
1
1
110196 21/38  
DS80C320/DS80C323  
AC ELECTRICAL CHARACTERISTICS UP TO 33 MHz  
33 MHz  
(0°C to 70°C; VCC=4.0V to 5.5V)  
VARIABLE  
CLOCK  
MIN  
VARIABLE  
CLOCK  
MAX  
33 MHz  
MAX  
PARAMETER  
SYMBOL  
UNITS  
MHz  
ns  
MIN  
Oscillator Frequency  
ALE Pulse Width  
1/t  
0
33  
0
33  
CLCL  
LHLL  
AVLL  
t
t
35  
4
1.5t –10  
CLCL  
Port 0 Address Valid to ALE Low  
Address Hold After ALE Low  
.5t –11  
CLCL  
ns  
t
t
2
note 5  
49  
.25t –5  
CLCL  
note 5  
ns  
LLAX1  
LLAX2  
Address Hold After ALE Low for  
MOVX WR  
8
.5t  
CLCL  
–7  
ns  
ALE Low to Valid Instruction In  
ALE Low to PSEN Low  
t
2.5t  
–27  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LLIV  
CLCL  
t
0.5  
61  
.25t –7  
CLCL  
LLPL  
PSEN Pulse Width  
t
2.25t –7  
CLCL  
PLPH  
PSEN Low to Valid Instr. In  
Input Instruction Hold After PSEN  
Input Instruction Float After PSEN  
Port 0 Address to Valid Instr. In  
Port 2 Address to Valid Instr. In  
PSEN Low to Address Float  
t
48  
2.25t  
–21  
CLCL  
PLIV  
PXIX  
t
0
0
t
25  
64  
t
–5  
PXIZ  
CLCL  
t
3t  
CLCL  
–27  
AVIV1  
AVIV2  
t
73  
3.5t  
–33  
CLCL  
t
note 5  
note 5  
PLAZ  
NOTES FOR AC ELECTRICAL CHARACTERISTICS:  
All parameters apply to both commercial and industrial temperature range operation unless otherwise noted.  
1. All signals rated over operating temperature at 33 MHz.  
2. All signals characterized with load capacitance of 80 pF except Port 0, ALE, PSEN, RD and WR at 100 pF.  
Note that loading should be approximately equal for valid timing.  
3. Interfacing to memory devices with float times (turn off times) over 30 ns may cause contention. This will not  
damage the parts, but will cause an increase in operating current.  
4. Specifications assume a 50% duty cycle for the oscillator. Port 2 timing will change with the duty cycle varia-  
tions.  
5. Address is held in a weak latch until over driven by external memory.  
110196 22/38  
DS80C320/DS80C323  
MOVX CHARACTERISTICS UP TO 33 MHz  
(0°C to 70°C; VCC=4.0 to 5.5V)  
VARIABLE CLOCK VARIABLE CLOCK  
MIN MAX  
PARAMETER  
SYMBOL  
UNITS  
STRETCH  
RD Pulse Width  
t
2t  
–11  
–11  
ns  
t
t
=0  
>0  
RLRH  
CLCL  
MCS  
MCS  
t
MCS  
WR Pulse Width  
t
2t  
–11  
–11  
ns  
ns  
t
t
=0  
>0  
WLWH  
CLCL  
MCS  
MCS  
t
MCS  
RD Low to Valid Data In  
t
2t  
–25  
–25  
t
t
=0  
>0  
RLDV  
CLCL  
MCS  
MCS  
t
MCS  
Data Hold After Read  
Data Float After Read  
t
0
ns  
ns  
RHDX  
t
t
2t  
–5  
t
t
=0  
>0  
RHDZ  
CLCL  
MCS  
MCS  
–5  
CLCL  
ALE Low to Valid Data In  
t
2.5t  
–26  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
=0  
>0  
LLDV  
CLCL  
MCS  
MCS  
1.5t  
–28+t  
CLCL  
MCS  
Port 0 Address to Valid  
Data In  
t
t
3t  
CLCL  
–24  
t
t
=0  
>0  
AVDV1  
AVDV2  
MCS  
MCS  
2t  
–31+t  
CLCL  
MCS  
Port 2 Address to Valid  
Data In  
3.5t  
–32  
t
t
=0  
>0  
CLCL  
MCS  
MCS  
2.5t  
–34+t  
CLCL  
MCS  
ALE Low to RD or WR  
Low  
t
0.5t  
1.5t  
–5  
–5  
0.5t  
1.5t  
+6  
+8  
t
t
=0  
>0  
LLWL  
CLCL  
CLCL  
CLCL  
CLCL  
MCS  
MCS  
Port 0 Address Valid to RD  
or WR Low  
t
t
t
2t  
–9  
–10  
t
t
=0  
>0  
AVWL1  
CLCL  
CLCL  
MCS  
MCS  
Port 2 Address Valid to RD  
or WR Low  
1.5t  
–9  
–13  
t
t
=0  
>0  
AVWL2  
CLCL  
MCS  
MCS  
2.5t  
CLCL  
Data Valid to WR  
Transition  
t
–9  
t
t
=0  
>0  
QVWX  
MCS  
MCS  
t
–10  
CLCL  
Data Hold After Write  
t
t
–7  
–5  
t
t
=0  
>0  
WHQX  
CLCL  
MCS  
MCS  
2t  
CLCL  
RD Low to Address Float  
t
note 5  
10  
ns  
ns  
RLAZ  
RD or WR High to ALE  
High  
t
0
CLCL  
t
t
=0  
>0  
WHLH  
MCS  
MCS  
t
–5  
t
+11  
CLCL  
NOTE: t  
is a time period related to the Stretch memory cycle selection. The following table shows the value of  
MCS  
t
for each Stretch selection.  
MCS  
M2  
0
M1  
0
M0  
0
MOVX CYCLES  
2 machine cycles  
3 machine cycles (default)  
4 machine cycles  
5 machine cycles  
6 machine cycles  
7 machine cycles  
8 machine cycles  
9 machine cycles  
t
MCS  
0
0
0
1
4 t  
CLCL  
8 t  
CLCL  
0
1
0
0
1
1
12 t  
16 t  
20 t  
24 t  
28 t  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
1
0
0
1
0
1
1
1
0
1
1
1
110196 23/38  
DS80C320/DS80C323  
DS80C323 DC ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC=2.7V to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
2.7  
2.6  
2.5  
TYP  
3.0  
2.7  
2.6  
10  
MAX  
5.5  
UNITS  
NOTES  
Operating Supply Voltage  
Power Fail Warning  
V
CC  
V
V
1
1
1
2
V
PFW  
2.8  
Minimum Operating Voltage  
V
RST  
2.7  
V
Supply Current Active Mode,  
18 MHz  
I
mA  
CC  
Supply Current Idle Mode,  
18 MHz  
I
6
mA  
µA  
µA  
3
2
IDLE  
Supply Current Stop Mode,  
Band–gap Reference Disabled  
I
0.1  
40  
STOP  
SPBG  
Supply Current Stop Mode,  
I
4, 10  
Band–gap Reference Enabled  
Input Low Level  
V
–0.3  
0.2 V  
V
V
1
1
IL  
CC  
Input High Level (Except XTAL1  
and RST)  
V
IH1  
0.7 V  
V
CC  
+0.3  
CC  
Input High Level XTAL1 and RST  
V
0.7 V  
0.25V  
+
V
CC  
+0.3  
V
V
1
IH2  
CC  
Output Low Voltage, Ports 1, 3  
V
V
0.4  
1
OL1  
OL2  
OH1  
OH2  
OH3  
@I =1.6 mA  
OL  
Output Low Voltage, Ports 0, 2,  
0.4  
V
1, 5  
1, 6  
1, 7  
1, 5  
PSEN/ALE @I =3.2 mA  
OL  
Output High Voltage Ports 1, 2,  
V
V
V
V
DD  
V
PSEN/ALE, @I =–15 µA  
0.4V  
OH  
Output High Voltage Ports 1, 3  
V
DD  
V
@I =–1.5 mA  
0.4V  
OH  
Output High Voltage Ports 0, 2,  
V
DD  
V
PSEN/ALE I =–3 mA  
0.4V  
OH  
Input Low Current Ports 1, 3  
@0.45V  
I
–30  
µA  
µA  
IL  
Transition Current from 1 > 0,  
Ports 1, 3, @2V  
I
TL  
–400  
8
9
Input Leakage Port 0, Bus Mode  
RST Pull–down Resistance  
I
–300  
50  
+300  
170  
µA  
L
R
KΩ  
RST  
NOTES FOR DS80C323 DC ELECTRICAL CHARACTERISTICS:  
All parameters apply to both commercial and industrial temperature operation unless otherwise noted.  
1. All voltages are referenced to ground. Device operating range is 2.7V – 5.5V. DC Electrical specifications are  
for operation 2.7V – 3.3V.  
2. Active mode current is measured with a 18 MHz clock source driving XTAL1, V =RST=3.3V, all other pins  
CC  
disconnected.  
3. Idle mode current is measured with a 18 MHz clock source driving XTAL1, V =3.3V, all other pins discon-  
CC  
nected.  
4. Stop mode current measured with XTAL1 and RST grounded, V =3.3V, all other pins disconnected.  
CC  
5. When addressing external memory.  
110196 24/38  
DS80C320/DS80C323  
6. RST=V . This condition mimics operation of pins in I/O mode.  
CC  
7. During a 0 to 1 transition, an one–shot drives the ports hard for two clock cycles. This measurement reflects  
port in transition mode.  
8. Ports 1, 2, and 3 source transition current when being pulled down externally. It reaches its maximum at  
approximately 2V.  
9. V between ground and V – 0.3V. Not a high impedance input. This port is a weak address latch because  
IN  
CC  
Port 0 is dedicated as an address bus on the DS80C323. Peak current occurs near the input transition point  
of the latch, approximately 2V.  
10.Over the industrial temperature range, this specification has a maximum value of 200 µA.  
110196 25/38  
DS80C320/DS80C323  
DS80C323 ELECTRICAL CHARACTERISTICS  
(0°C to 70°C; VCC=2.7V to 5.5V)  
VARIABLE  
CLOCK  
MIN  
VARIABLE  
CLOCK  
MAX  
18 MHz  
MIN  
18 MHz  
MAX  
PARAMETER  
SYMBOL  
UNITS  
MHz  
ns  
Oscillator Frequency  
ALE Pulse Width  
1/t  
0
18  
0
18  
CLCL  
LHLL  
AVLL  
t
t
73  
16  
8
1.5t  
0.5t  
–10  
–11  
CLCL  
Port 0 Address Valid to ALE Low  
Address Hold After ALE Low  
ns  
CLCL  
t
t
note 5  
112  
0.25t –5  
CLCL  
note 5  
ns  
LLAX1  
LLAX2  
Address Hold After ALE Low for  
MOVX WR  
20  
0.5t  
–7  
ns  
CLCL  
ALE Low to Valid Instruction In  
ALE Low to PSEN Low  
t
2.5t –27  
CLCL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LLIV  
t
6
0.25t –7  
CLCL  
LLPL  
PSEN Pulse Width  
t
118  
2.25t –7  
CLCL  
PLPH  
PSEN Low to Valid Instr. In  
Input Instruction Hold After PSEN  
Input Instruction Float After PSEN  
Port 0 Address to Valid Instr. In  
Port 2 Address to Valid Instr. In  
PSEN Low to Address Float  
t
104  
2.25t –21  
CLCL  
PLIV  
PXIX  
t
0
0
t
51  
140  
t
–5  
PXIZ  
CLCL  
t
3t –27  
CLCL  
AVIV1  
AVIV2  
t
162  
3.5t –33  
CLCL  
t
note 5  
note 5  
PLAZ  
NOTES FOR AC ELECTRICAL CHARACTERISTICS:  
All parameters apply to both commercial and industrial temperature range operation unless otherwise noted.  
1. All signals rated over operating temperature at 18 MHz.  
2. All signals characterized with load capacitance of 80 pF except Port 0, ALE, PSEN, RD and WR at 100 pF.  
Note that loading should be approximately equal for valid timing.  
3. Interfacing to memory devices with float times (turn off times) over 35 ns may cause contention. This will not  
damage the parts, but will cause an increase in operating current.  
4. Specifications assume a 50% duty cycle for the oscillator. Port 2 timing will change with the duty cycle varia-  
tions.  
5. Address is held in a weak latch until over driven by external memory.  
110196 26/38  
DS80C320/DS80C323  
DS80C323 MOVX CHARACTERISTICS  
(0°C to 70°C; VCC=2.7V to 5.5V)  
VARIABLE CLOCK VARIABLE CLOCK  
MIN MAX  
PARAMETER  
SYMBOL  
UNITS  
STRETCH  
RD Pulse Width  
t
2t  
–11  
–11  
ns  
t
t
=0  
>0  
RLRH  
CLCL  
MCS  
MCS  
t
MCS  
WR Pulse Width  
t
2t  
–11  
–11  
ns  
ns  
t
t
=0  
>0  
WLWH  
CLCL  
MCS  
MCS  
t
MCS  
RD Low to Valid Data In  
t
2t  
–25  
–25  
t
t
=0  
>0  
RLDV  
CLCL  
MCS  
MCS  
t
MCS  
Data Hold After Read  
Data Float After Read  
t
0
ns  
ns  
RHDX  
t
t
2t  
–5  
t
t
=0  
>0  
RHDZ  
CLCL  
MCS  
MCS  
–5  
CLCL  
ALE Low to Valid Data In  
t
2.5t  
–26  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
=0  
>0  
LLDV  
CLCL  
MCS  
MCS  
1.5t  
–28+t  
CLCL  
MCS  
Port 0 Address to Valid  
Data In  
t
t
3t  
CLCL  
–24  
t
t
=0  
>0  
AVDV1  
AVDV2  
MCS  
MCS  
2t  
–31+t  
CLCL  
MCS  
Port 2 Address to Valid  
Data In  
3.5t  
–32  
t
t
=0  
>0  
CLCL  
MCS  
MCS  
2.5t  
–34+t  
CLCL  
MCS  
ALE Low to RD or WR  
Low  
t
0.5t  
1.5t  
–5  
–5  
0.5t  
1.5t  
+6  
+8  
t
t
=0  
>0  
LLWL  
CLCL  
CLCL  
CLCL  
CLCL  
MCS  
MCS  
Port 0 Address Valid to RD  
or WR Low  
t
t
t
2t  
–9  
–10  
t
t
=0  
>0  
AVWL1  
CLCL  
CLCL  
MCS  
MCS  
Port 2 Address Valid to RD  
or WR Low  
1.5t  
–9  
–13  
t
t
=0  
>0  
AVWL2  
CLCL  
MCS  
MCS  
2.5t  
CLCL  
Data Valid to WR  
Transition  
t
–9  
t
t
=0  
>0  
QVWX  
MCS  
MCS  
t
–10  
CLCL  
Data Hold After Write  
t
t
–7  
–5  
t
t
=0  
>0  
WHQX  
CLCL  
MCS  
MCS  
2t  
CLCL  
RD Low to Address Float  
t
note 5  
10  
ns  
ns  
RLAZ  
RD or WR High to ALE  
High  
t
0
CLCL  
t
t
=0  
>0  
WHLH  
MCS  
MCS  
t
–5  
t
+11  
CLCL  
NOTE: t  
is a time period related to the Stretch memory cycle selection. The following table shows the value of  
MCS  
t
for each Stretch selection.  
MCS  
M2  
0
M1  
0
M0  
0
MOVX CYCLES  
2 machine cycles  
3 machine cycles (default)  
4 machine cycles  
5 machine cycles  
6 machine cycles  
7 machine cycles  
8 machine cycles  
9 machine cycles  
t
MCS  
0
0
0
1
4 t  
CLCL  
8 t  
CLCL  
0
1
0
0
1
1
12 t  
16 t  
20 t  
24 t  
28 t  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
1
0
0
1
0
1
1
1
0
1
1
1
110196 27/38  
DS80C320/DS80C323  
EXTERNAL CLOCK CHARACTERISTICS  
(0°C to 70°C; VCC=4.0 to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
10  
TYP  
MAX  
UNITS  
ns  
NOTES  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
t
CHCX  
t
10  
ns  
CLCX  
CLCH  
CHCL  
t
t
5
5
ns  
ns  
SERIAL PORT MODE 0 TIMING CHARACTERISTICS  
(0°C to 70°C; VCC=4.0 to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Serial Port Clock Cycle Time  
SM2=0 12 clocks per cycle  
SM2=1 4 clocks per cycle  
t
ns  
XLXL  
12t  
4t  
CLCL  
CLCL  
Output Data Setup to Clock  
Rising Edge  
SM2=0 12 clocks per cycle  
SM2=1 4 clocks per cycle  
t
t
ns  
ns  
QVXH  
10t  
3t  
CLCL  
CLCL  
Output Data Hold from Clock  
Rising  
XHQX  
SM2=0 12 clocks per cycle  
SM2=1 4 clocks per cycle  
2t  
t
CLCL  
CLCL  
Input Data Hold after Clock Rising  
SM2=0 12 clocks per cycle  
SM2=1 4 clocks per cycle  
t
t
ns  
ns  
XHDX  
t
t
CLCL  
CLCL  
Clock Rising Edge to Input Data  
Valid  
XHDV  
SM2=0 12 clocks per cycle  
SM2=1 4 clocks per cycle  
11t  
3t  
CLCL  
CLCL  
EXPLANATION OF AC SYMBOLS  
In an effort to remain compatible with the original 8051  
family, this device specifies the same parameter as  
such devices, using the same symbols. For complete-  
ness, the following is an explanation of the symbols.  
L
I
Logic level low  
Instruction  
PSEN  
Output data  
RD signal  
Valid  
WR signal  
No longer a valid logic level  
Tristate  
P
Q
R
V
W
X
Z
t
Time  
A
C
D
H
Address  
Clock  
Input data  
Logic level high  
110196 28/38  
DS80C320/DS80C323  
POWER CYCLE TIMING CHARACTERISTICS  
(0°C to 70°C; VCC=4.0 to 5.5V)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Crystal Start–up Time  
Power–on Reset Delay  
t
1.8  
ms  
1
2
CSU  
POR  
t
65536  
t
CLCL  
NOTES FOR POWER CYCLE TIMING CHARACTERISTICS:  
1. Start–up time for crystals varies with load capacitance and manufacturer. Time shown is for an 11.0592 MHz  
crystal manufactured by Fox crystal.  
2. Reset delay is a synchronous counter of crystal oscillations after crystal start–up. At 25 MHz, this time is  
2.62 ms.  
PROGRAM MEMORY READ CYCLE  
t
LHLL  
t
LLIV  
ALE  
t
AVLL  
t
PLPH  
t
PLIV  
PSEN  
t
LLPL  
t
t
PXIZ  
PLAZ  
t
PXIX  
t
LLAX1  
ADDRESS  
A0–A7  
INSTRUCTION  
IN  
ADDRESS  
A0–A7  
AD0–AD7  
t
AVIV1  
t
AVIV2  
ADDRESS A8–A15 OUT  
ADDRESS A8–A15 OUT  
PORT 2  
110196 29/38  
DS80C320/DS80C323  
DATA MEMORY READ CYCLE  
t
LLDV  
ALE  
t
WHLH  
t
t
LLWL  
LLAX1  
PSEN  
RD  
t
RLRH  
t
RLDV  
t
AVLL  
t
RLAZ  
t
RHDZ  
t
RHDX  
t
AVWL1  
INSTRUCTION  
ADDRESS  
A0–A7  
ADDRESS  
A0–A7  
DATA IN  
AD0–AD7  
IN  
t
AVDV1  
t
AVDV2  
PORT 2  
ADDRESS A8–A15 OUT  
t
AVWL2  
DATA MEMORY WRITE CYCLE  
ALE  
t
WHLH  
t
LLWL  
PSEN  
WR  
t
LLAX2  
t
WLWH  
t
AVLL  
t
WHQX  
INSTRUCTION  
IN  
ADDRESS  
A0–A7  
ADDRESS  
A0–A7  
DATA OUT  
AD0–AD7  
t
QVWX  
t
AVWL1  
PORT 2  
ADDRESS A8–A15 OUT  
t
AVWL2  
110196 30/38  
DS80C320/DS80C323  
DATA MEMORY WRITE WITH STRETCH=1  
Last Cycle of  
Previous  
Instruction  
First  
Machine  
Cycle  
Second  
Machine  
Cycle  
Third  
Machine  
Cycle  
Need  
Instruction  
Machine Cycle  
MOVX Instruction  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
C1  
C2  
C3  
C4  
CLK  
ALE  
PSEN  
WR  
AD0–AD7  
A0–A7  
MOVX  
Instruction  
Address  
D0–D7  
A0–A7  
D0–D7  
Next  
A0–A7  
D0–D7  
A0–A7  
D0–D7  
Next Instr.  
Address  
MOVX  
Data  
Address  
MOVX Data  
MOVX  
Instruction  
Instruction  
Read  
PORT 2  
A8–A15  
A8–A15  
A8–A15  
A8–A15  
110196 31/38  
DS80C320/DS80C323  
DATA MEMORY WRITE WITH STRETCH=2  
Last Cycle  
of Previous  
Instruction  
First  
Machine  
Cycle  
Second  
Machine  
Cycle  
Third  
Machine  
Cycle  
Fourth  
Machine  
Cycle  
Need  
Instruction  
Machine  
Cycle  
MOVX Instruction  
C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4  
C1 C2 C3 C4  
C1 C2 C3 C4 C1 C2 C3 C4  
CLK  
ALE  
PSEN  
WR  
D0–D7  
A0–A7  
D0–D7 A0–A7  
D0–D7  
A0–A7  
D0–D7  
A0–A7  
AD0–AD7  
MOVX  
Instruction  
Address  
Next Instr.  
Address  
MOVX  
Data  
Address  
MOVX Data  
MOVX  
Next  
Instruction  
Instruction  
Read  
PORT 2  
A8–A15  
A8–A15  
A8–A15  
A8–A15  
FOUR CYCLE DATA MEMORY WRITE  
STRETCH VALUE=2  
EXTERNAL CLOCK DRIVE  
t
CLCL  
t
CHCX  
XTAL1  
t
t
CLCH  
CHCL  
t
CLCX  
110196 32/38  
DS80C320/DS80C323  
SERIAL PORT MODE 0 TIMING  
SERIAL PORT 0 (SYNCHRONOUS MODE)  
HIGH SPEED OPERATION SM2=1=>TXD CLOCK=XTAL/4  
ALE  
PSEN  
t
QVXL  
D0  
t
XHQX  
WRITE TO SBUF  
RXD  
D1  
D2  
D3  
D4  
D5  
D7  
D8  
DATA OUT  
TRANSMIT  
TXD  
CLOCK  
t
XLXL  
TI  
WRITE TO SCON  
TO CLEAR RI  
RXD  
DATA IN  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
D8  
TXD  
CLOCK  
RECEIVE  
t
t
XHDX  
XHDV  
RI  
SERIAL PORT 0 (SYNCHRONOUS MODE)  
SM2=0=>TXD CLOCK=XTAL/12  
ALE  
PSEN  
1/(XTAL FREQ/12)  
D1  
WRITE TO SBUF  
RXD  
DATA OUT  
D0  
D6  
D7  
TXD  
CLOCK  
TI  
WRITE TO SCON TO CLEAR RI  
RXD DATA IN  
D0  
D1  
D6  
D7  
TXD CLOCK  
RI  
110196 33/38  
DS80C320/DS80C323  
POWER CYCLE TIMING  
V
V
CC  
PFW  
V
V
RST  
SS  
INTERRUPT  
SERVICE ROUTINE  
t
CSU  
XTAL1  
t
POR  
INTERNAL RESET  
110196 34/38  
DS80C320/DS80C323  
40–PIN PDIP (600 MIL)  
ALL DIMENSIONS ARE IN INCHES.  
PKG  
DIM  
A
40–PIN  
MIN  
MAX  
0.200  
A1  
A2  
b
0.015  
0.140  
0.014  
0.008  
1.980  
0.600  
0.530  
0.090  
0.115  
0.600  
0.160  
0.022  
0.012  
2.085  
0.625  
0.555  
0.110  
0.145  
0.700  
c
D
E
E1  
e
L
eB  
56–G5000–000  
110196 35/38  
DS80C320/DS80C323  
44–PIN TQFP  
1
PKG  
DIM  
A
44–PIN  
MIN  
MAX  
1.20  
0.15  
1.05  
12.20  
A1  
A2  
D
0.05  
0.95  
11.80  
D1  
E
10.00 BSC  
11.80  
12.20  
E1  
L
10.00 BSC  
0.45  
0.75  
e
0.80 BSC  
B
0.30  
0.09  
0.45  
0.20  
C
56–G4012–001  
110196 36/38  
DS80C320/DS80C323  
44–PIN PLCC  
PKG  
DIM  
A
44–PIN  
MIN  
MAX  
0.180  
0.120  
0.165  
0.090  
0.020  
0.026  
0.013  
0.009  
0.042  
0.685  
0.650  
0.590  
0.685  
0.650  
0.590  
A1  
A2  
B
0.033  
0.021  
0.012  
0.048  
0.695  
0.656  
0.630  
0.695  
0.656  
0.630  
B1  
c
CH1  
D
D1  
D2  
E
E1  
E2  
e1  
N
0.050 BSC  
0.44  
56–G4003–001  
110196 37/38  
DS80C320/DS80C323  
DATA SHEET REVISION SUMMARY  
Thefollowing represent the key differences between 05/23/96 and 05/22/96 version of the DS80C320 data sheet and  
between 05/23/96 and 03/27/95 version of the DS80C323 data sheet. Please review this summary carefully.  
DS80C320:  
1. Add DS80C323 Characteristics.  
2. Change DS80C320 V  
specification from 4.5V to 4.55V (PCN E62802).  
PFW  
3. Update DS80C320 33 MHz AC Characteristics.  
DS80C323:  
1. Delete Data Sheet. Contents moved to DS80C320/DS80C323.  
DATA SHEET REVISION SUMMARY  
The following represent the key differences between the 031096 and the 052296 version of the DS80C320 data  
sheet. Please review this summary carefully.  
1. Add Data Sheet Revision Summary.  
The following represent the key differences between the 041895 and the 031096 version of the DS80C320 data  
sheet. Please review this summary carefully.  
1. Remove Port 0, Port 2 from V  
specification (PCN B60802).  
OH1  
2. V  
test specification clarified (RST = V ).  
CC  
OH1  
3. Add t  
marking to External Memory Read Cycle figure.  
AVWL2  
4. Correct TQFP drawing to read 44–pin TQFP.  
5. Rotate page 1 TQFP illustration to match assembly specifications.  
The following represent the key differences between the 103196 and the 041896 version of the DS80C320 data  
sheet. Please review this summary carefully.  
1. Update DS80C320 25 MHz AC Characteristics.  
110196 38/38  

相关型号:

DS80C320MCG

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PDIP40, 0.600 INCH, PLASTIC, DIP-40
MAXIM

DS80C320MNG

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PDIP40, 0.600 INCH, PLASTIC, DIP-40
MAXIM

DS80C320QCG

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PQCC44, PLASTIC, LCC-44
MAXIM

DS80C320QNG

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PQCC44, PLASTIC, LCC-44
MAXIM

DS80C320_06

High-Speed/Low-Power Microcontrollers
MAXIM

DS80C323

High-Speed/Low-Power Micro
DALLAS

DS80C323+ECD

Microcontroller, 8-Bit, MROM, 8051 CPU, 18MHz, CMOS, PQFP44, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, TQFP-44
MAXIM

DS80C323+END

Microcontroller, 8-Bit, MROM, 8051 CPU, 18MHz, CMOS, PQFP44, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, TQFP-44
MAXIM

DS80C323+MCD

Microcontroller, 8-Bit, MROM, 8051 CPU, 18MHz, CMOS, PDIP40, 0.600 INCH, ROHS COMPLIANT, PLASTIC, DIP-40
MAXIM

DS80C323+MND

暂无描述
MAXIM

DS80C323+QCD

Microcontroller, 8-Bit, MROM, 8051 CPU, 18MHz, CMOS, PQCC44, ROHS COMPLIANT, PLASTIC, LCC-44
MAXIM

DS80C323+QND

暂无描述
MAXIM