ESDALC6V1W [ETC]

QUAD TRANSIL ARRAY FOR ESD PROTECTION ; QUAD TRANSIL阵列,用于ESD保护\n
ESDALC6V1W
型号: ESDALC6V1W
厂家: ETC    ETC
描述:

QUAD TRANSIL ARRAY FOR ESD PROTECTION
QUAD TRANSIL阵列,用于ESD保护\n

文件: 总9页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ESDALC6V1W5  
QUAD TRANSIL™ ARRAY  
FOR ESD PROTECTION  
Application Specific Discretes  
A.S.D.  
MAIN APPLICATIONS  
Where transient overvoltage protection in ESD  
sensitive equipment is required, such as :  
Computers  
Printers  
Communication systems and cellular phones  
Video equipment  
Set top boxes  
FEATURES  
SOT323-5L  
4 unidirectional TRANSIL™ functions.  
ESD Protection: IEC61000-4-2 level 4  
Breakdown voltage VBR = 6.1V min  
Low leakage current < 1µA @ 3 Volts  
Low capacitance device  
FUNCTIONAL DIAGRAM  
DESCRIPTION  
The ESDALC6V1W5 is a 4-bit wide monolithic  
suppressor which is designed to protect component  
connected to data and transmission lines against  
ESD.  
I/01  
GND  
I/02  
I/04  
I/03  
It clamps the voltage just above the logic level  
supply for positive transients, and to a diode drop  
below ground for negative transients.  
BENEFITS  
High ESD protection level : up to 25 kV.  
Capacitance: 12pF @ 0V Typ.  
High integration.  
Suitable for high density boards.  
COMPLIES WITH THE FOLLOWING STANDARDS :  
IEC61000-4-2 level 4: 15 kV (air discharge)  
8 kV (contact discharge)  
MIL STD 883C-Method 3015-6 : class 3.  
(human body model) 25kV (HBM)  
June 2002 - Ed: 4A  
1/9  
ESDALC6V1W5  
ABSOLUTE MAXIMUM RATINGS (Tamb = 25°C)  
Symbol  
Parameter  
Test conditions  
Value  
Unit  
VPP  
ESD discharge - MIL STD 883E - Method 3015-7  
IEC61000-4-2 air discharge  
± 25  
± 15  
± 8  
kV  
IEC61000-4-2 contact discharge  
PPP  
Tj  
Peak pulse power (8/20 µs)  
Junction temperature  
25  
W
°C  
°C  
°C  
150  
Tstg  
Top  
Storage temperature range  
Operating temperature range  
- 55 to + 150  
- 40 to + 150  
ELECTRICAL CHARACTERISTICS (Tamb = 25°C)  
Symbol  
VRM  
VBR  
VCL  
IRM  
Parameter  
Stand-off voltage  
I
Breakdown voltage  
Clamping voltage  
Leakage current  
VCL VBR VRM  
V
IRM  
IR  
IPP  
Peak pulse current  
Capacitance per line  
Dynamic resistance  
C
Rd  
slope : 1 / Rd  
IPP  
Types  
VBR  
@
IR  
IRM  
@
VRM  
Rd  
αT  
C
C
min.  
max.  
max.  
typ.  
note 1  
mΩ  
max.  
note 2  
10-4/°C  
6
typ.  
max.  
3V bias 3V bias  
V
V
mA  
1
µA  
V
3
pF  
pF  
6.1  
7.2  
1
1100  
7.5  
9.5  
ESDALC6V1W5  
Note 1 : Square pulse Ipp = 15A, tp=2.5µs.  
Note 2 : V  
= αT* (Tamb -25°C) * V  
(25°C)  
BR  
BR  
2/9  
ESDALC6V1W5  
Fig. 1: Relative variation of peak pulse power  
versus initial junction temperature.  
Fig. 2: Peak pulse power versus exponential pulse  
duration.  
Ppp[Tj initial] / Ppp [Tj initial = 25°C]  
1.1  
Ppp(W)  
100  
Tj initial = 25°C  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
tp(µs)  
Tj(°C)  
0.0  
10  
0
25  
50  
75  
100  
125  
150  
175  
1
10  
100  
Fig. 3: Junction capacitance versus reverse voltage  
applied (typical values).  
Fig. 4: Clamping voltage versus peak pulse cur-  
rent (maximum values, rectangular waveform).  
Ipp(A)  
100.0  
C(pF)  
14  
F=1MHz  
Vosc=30mVRMS  
Tj=25°C  
12  
10  
8
10.0  
1.0  
6
4
2
tp=2.5µs  
Tj initial =25°C  
Vcl(V)  
VR(V)  
0.1  
0
0
10  
20  
30  
40  
50  
60  
0
1
2
3
4
5
Fig. 5: Relative variation of leakage current versus  
junction temperature (typical values).  
Fig. 6: Application example  
IR [Tj] / IR [Tj=25°C]  
100  
I/02  
I/01  
IC  
to be  
I/04  
protected  
I/03  
10  
Tj(°C)  
75  
1
25  
50  
100  
125  
3/9  
ESDALC6V1W5  
TECHNICAL INFORMATION  
1. ESD protection by ESDALC6V1W5  
With the focus of lowering the operation levels, the problem of malfunction caused by the environment is  
critical. Electrostatic discharge (ESD) is a major cause of failure in electronic systems.  
As a transient voltage suppressor, ESDALC6V1W5 is an ideal choice for ESD protection by suppressing  
ESD events. It is capable of clamping the incoming transient to a low enough level such that any damage is  
prevented on the device protected by ESDALC6V1W5.  
ESDALC6V1W5 serves as a parallel protection elements, connected between the signal line and ground.  
As the transient rises above the operating voltage of the device, the ESDALC6V1W5 becomes a low  
impedance path diverting the transient current to ground.  
The clamping voltage is given by the following formula:  
VCL = VBR + Rd.IPP  
As shown in figure A1, the ESD strikes are clamped by the transient voltage suppressor.  
Fig. A1: ESD clamping behavior  
RG  
I
PP  
Rd  
RL OAD  
V
G
V(i/o)  
V
BR  
Device  
to be  
ESD surge  
ESDALC6V1W5  
protected  
To have a good approximation of the remaining voltages at both Vi/o side, we provide the typical dynamical  
resistance value Rd. By taking into account the following hypothesis:  
Rg > Rd and Rload > Rd  
we have:  
Vg  
V i / o = V + Rd ×  
( )  
BR  
Rg  
The results of the calculation done Vg = 8kV, Rg = 330(IEC61000-4-2 standard), VBR = 6.1V (min) and  
Rd = 1.1(typ.) give:  
V i / o = 32,8Volts  
( )  
This confirms the very low remaining voltage across the device to be protected. It is also important to note  
that in this approximation the parasitic inductance effect was not taken into account. This could be a few  
tenths of volts during a few ns at the Vi/o side.  
4/9  
ESDALC6V1W5  
Fig. A2: ESD test board  
Fig. A3: ESD test configuration  
TEST BOARD  
I/O1, I/O2, I/O3 or I/O4  
(i/o)
± 8kV  
ESD Contact  
discharge  
V(i/o)  
B2  
The measurements done here after show very clearly (Fig. A4) the high efficiency of the ESD protection:  
the clamping voltage V(i/o) becomes very close to +VBR (positive way, Fig. A4a) and -VBR (negative way,  
Fig. A4b).  
Fig. A4: Remaining voltage during ESD surge  
V(i/o)  
V(i/o)  
a: Response in the positive way  
b: Response in the negative way  
5/9  
ESDALC6V1W5  
CROSSTALK BEHAVIOR  
Fig. A5: Crosstalk phenomenon  
RG1  
Line 1  
Line 2  
VG1  
RL1  
α1VG1 + β12VG2  
RG2  
VG2  
RL2  
α2VG2 + β21VG1  
DRIVERS  
RECEIVERS  
The crosstalk phenomena are due to the coupling between 2 lines. Coupling factors ( β12 or β21 ) increase  
when the gap across lines decreases, particularly in silicon dice. In the example above, the expected  
signal on load RL2 is α2VG2, in fact the real voltage at this point has got an extra value β21VG2. This part of  
the VG1 signal represents the effect of the crosstalk phenomenon of the line 1 on the line 2. This  
phenomenon has to be taken into account when the drivers impose fast digital data or high frequency  
analog signals. The perturbed line will be more affected if it works with low voltage signal or high load  
impedance (few k)  
Fig. A6: Analog crosstalk measurements  
TESTBOARD
I/O4  
To Port1  
To Port2  
I/O1  
6/9  
ESDALC6V1W5  
Fig. A7: Typical analog crosstalk measurements.  
ESDALC6V1W5 : typical analog crosstalk response  
0.00  
dB  
-10.00  
-20.00  
-30.00  
-40.00  
-50.00  
-60.00  
-70.00  
-80.00  
-90.00  
-100.0  
1.0M  
3.0M  
10.0M  
30.0M  
100.0M 300.0M  
f/Hz  
1.0G  
3.0G  
Figure A6 gives the measurement circuit for the analog crosstalk application. In figure A7, the curve shows  
the effect of the line I/O1 on the line I/O4. In usual frequency range of analog signals (up to 100MHz) the  
effect on disturbed line is less than -60dB.  
Fig. A8: Digital crosstalk measurements configu-  
ration.  
Fig. A9: Digital crosstalk results.  
I/O1  
unloaded  
rise time: t10-90% = 3ns  
VG1  
V
G1  
0 - 3kV  
pulse generator  
GND  
F= 5MHz  
tR = 3ns  
β21VG1  
β21VG1  
crosstalk  
unloaded  
I/O4  
Figure A8 shows the measurement circuit used to quantify the crosstalk effect in a classical digital  
application.  
Figure A9 shows that in such a condition, the impact on the disturbed line is less than 50 mV peak to peak.  
No data disturbance was noted on the concerned line. The measurements performed with falling edges  
give an impact within the same range.  
7/9  
ESDALC6V1W5  
Fig. A10: Aplac model  
Lbond  
D6V1  
Lbond  
D6V1  
Cz 9.2pF  
Rs 100m  
I/O1  
I/O4  
Lbond 1.2nH  
Lhole 380pH  
Caphole 0.2pF  
Rhole 450m  
caphole  
Model D6V1  
BV = 7  
IBV = 1m  
CJO = Cz  
M = 0.3333  
RS = 1  
Rhole Lhole  
Lbond  
D6V1  
D6V1  
Lbond  
VJ = 0.6  
TT = 100n  
I/O2  
I/O3  
ORDER CODE  
ESDA LC 6V1 W5  
PACKAGE: SOT323-5L  
ESD ARRAY  
LOW CAPACITANCE  
VBR min  
Ordering type  
Marking  
Package  
Weight  
Base qty  
Delivery mode  
ESDALC6V1W5  
C61  
SOT323-5L  
5.4 mg.  
3000  
Tape & reel  
8/9  
ESDALC6V1W5  
PACKAGE MECHANICAL DATA  
SOT323-5L  
DIMENSIONS  
Millimeters Inches  
Min. Max. Min.  
0.8 1.1  
REF.  
A
A2  
Max.  
0.043  
0.004  
0.039  
0.012  
0.007  
0.086  
0.053  
A1  
A
A1  
A2  
b
0.031  
0
0
0.1  
1
0.8  
0.031  
0.006  
0.004  
0.071  
0.045  
D
e
e
0.15  
0.1  
0.3  
0.18  
2.2  
1.35  
c
D
1.8  
H
E
E
1.15  
e
0.65 Typ.  
0.026 Typ.  
H
1.8  
0.1  
2.4  
0.4  
0.071  
0.004  
0.094  
0.016  
Q1  
c
Q1  
b
FOOT PRINT (in millimeters)  
0.3mm  
Mechanical specifications  
Lead plating Tin-lead  
1mm  
Lead plating thickness 5µm min.  
25 µm max.  
Lead material  
Sn / Pb  
(70% to 90% Sn)  
2.9mm  
Lead coplanarity  
Body material  
Epoxy meets  
10µm max.  
1mm  
Molded epoxy  
UL94,V0  
0.35mm  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of  
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by  
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied.  
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-  
proval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - Printed in Italy - All rights reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore  
Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
9/9  

相关型号:

ESDALC6V1W5

QUAD TRANSIL⑩ ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDALC6V1W5_06

Quad TRANSIL array for data protection
STMICROELECTR

ESDALD03BC

ESD Protection Diodes Array
WEEN

ESDALD05BC

ESD Protection Diodes Array
WEEN

ESDALD08BC

ESD Protection Diodes Array
WEEN

ESDALD12BC

ESD Protection Diodes Array
WEEN

ESDALD15BC

ESD Protection Diodes Array
WEEN

ESDALD24BC

ESD Protection Diodes Array
WEEN

ESDALD36BC

ESD Protection Diodes Array
WEEN

ESDALDXXBC

ESD Protection Diodes Array
WEEN

ESDALDXXXX

ESD Protection Diodes Array
WEEN

ESDARF01-1BM2

ESD protection for AM and FM antenna
STMICROELECTR