EX128-PTQ64PP [ETC]

eX Family FPGAs; 的eX系列FPGA
EX128-PTQ64PP
型号: EX128-PTQ64PP
厂家: ETC    ETC
描述:

eX Family FPGAs
的eX系列FPGA

文件: 总36页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v3.0  
eX Family FPGAs  
Leading Edge Performance  
• 240 MHz System Performance  
• Individual Output Slew Rate Control  
• 2.5V, 3.3V, and 5.0V Mixed Voltage Operation with 5.0V  
Input Tolerance and 5.0V Drive Strength  
• Software Design Support with Actel Designer Series and  
Libero Tools  
• 3.9ns Clock-to-Out (Pad-to-Pad)  
• 350 MHz Internal Performance  
Specifications  
• Up to 100% Resource Utilization with 100% Pin Locking  
• Deterministic Timing  
• 3,000 to 12,000 Available System Gates  
• As Many as 512 Maximum Flip-Flops (Using CC Macros)  
• 0.22µ CMOS Process Technology  
• Unique In-System Diagnostic and Verification Capability  
with Silicon Explorer II  
• Up to 132 User-Programmable I/O Pins  
• Boundary Scan Testing in Compliance with IEEE Standard  
1149.1 (JTAG)  
Features  
• Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
• High-Performance, Low-Power Antifuse FPGA  
• LP/Sleep Mode for Additional Power Savings  
• Advanced Small-footprint Packages  
• Hot-Swap Compliant I/Os  
General Description  
The eX family of FPGAs is a low-cost solution for low-power,  
high-performance designs. The inherent low power  
attributes of the antifuse technology, coupled with an  
additional low static power mode, make these devices ideal  
for power-sensitive applications. Fabricated with an  
advanced 0.22µ CMOS antifuse technology, these devices  
achieve high performance with no power penalty.  
• Single-Chip Solution  
• Nonvolatile  
• Live on power up  
• Power-Up/Down Friendly (No Sequencing Required for  
Supply Voltages)  
• Configurable Weak-Resistor Pull-Up or Pull-Down for  
Tristated Outputs during Power Up  
eX Product Profile  
Device  
eX64  
eX128  
eX256  
Capacity  
System Gates  
Typical Gates  
3,000  
2,000  
6,000  
4,000  
12,000  
8,000  
Register Cells (Dedicated Flip-Flops)  
Combinatorial Cells  
64  
128  
84  
128  
256  
256  
512  
Maximum User I/Os  
100  
132  
Speed Grades  
F, Std, –P  
C, I  
F, Std, –P  
C, I  
F, Std, –P  
C, I  
Temperature Grades  
Package (by pin count)  
TQFP  
CSP  
64, 100  
49, 128  
64, 100  
49, 128  
100  
128, 180  
December 2001  
1
© 2001 Actel Corporation  
eX Family FPGAs  
Ordering Information  
eX128  
–P  
TQ  
100  
Application (Temperature Range)  
Blank = Commercial (0 to +70°C)  
I = Industrial (40 to +85°C)  
PP = Pre-production  
Package Lead Count  
Package Type  
TQ = Thin (1.4mm) Quad Flat Pack  
CS = Chip-Scale Package (0.8mm pitch)  
Speed Grade  
Blank = Standard Speed  
P = Approximately 30% Faster than Standard  
F = Approximately 40% Slower than Standard  
Part Number  
eX64  
=
64 Dedicated Flip-Flops (3,000 System Gates)  
eX128 = 128 Dedicated Flip-Flops (6,000 System Gates)  
eX256 = 256 Dedicated Flip-Flops (12,000 System Gates)  
Product Plan  
Speed Grade  
Application  
F  
Std  
P  
C
I†  
eX64 Device  
64-Pin Thin Quad Flat Pack (TQFP)  
100-Pin Thin Quad Flat Pack (TQFP)  
49-Pin Chip Scale Package (CSP)  
128-Pin Chip Scale Package (CSP)  
eX128 Device  
64-Pin Thin Quad Flat Pack (TQFP)  
100-Pin Thin Quad Flat Pack (TQFP)  
49-Pin Chip Scale Package (CSP)  
128-Pin Chip Scale Package (CSP)  
eX256 Device  
100-Pin Thin Quad Flat Pack (TQFP)  
128-Pin Chip Scale Package (CSP)  
180-Pin Chip Scale Package (CSP)  
Contact your Actel sales representative for product availability.  
Speed Grade: –P = Approx. 30% faster than Standard  
–F = Approx. 40% slower than Standard  
Availability: = Available  
Applications:  
C = Commercial  
I
= Industrial  
† Only Std Speed Grade  
Plastic Device Resources  
User I/Os (including clock buffers)  
TQFP 64-Pin TQFP 100-Pin CSP 49-Pin CSP 128-Pin  
84  
Device  
CSP 180-Pin  
eX64  
41  
46  
56  
70  
81  
36  
36  
eX128  
eX256  
100  
100  
132  
Package Definitions: TQFP = Thin Quad Flat Pack, CSP = Chip Scale Package  
2
v3.0  
eX Family FPGAs  
eX Family Architecture  
The eX family architecture uses a sea-of-modules”  
structure where the entire floor of the device is covered  
with a grid of logic modules with virtually no chip area lost  
to interconnect elements or routing. Interconnection  
among these logic modules is achieved using Actels  
The C-cell implements a range of combinatorial functions  
up to 5 inputs (Figure 2). Inclusion of the DB input and its  
associated inverter function dramatically increases the  
number of combinatorial functions that can be  
implemented in a single module from 800 options in  
previous architectures to more than 4,000 in the eX  
architecture.  
patented  
metal-to-metal  
programmable  
antifuse  
interconnect elements. Actels eX family provides two types  
of logic modules, the register cell (R-cell) and the  
combinatorial cell (C-cell).  
Module Organization  
Actel has arranged all C-cell and R-cell logic modules into  
horizontal banks called Clusters. The eX devices contain  
one type of Cluster, which contains two C-cells and one  
R-cell.  
The R-cell contains a flip-flop featuring asynchronous clear,  
asynchronous preset, and clock enable (using the S0 and S1  
lines) control signals (Figure 1). The R-cell registers  
feature programmable clock polarity selectable on a  
register-by-register basis. This provides additional flexibility  
while allowing mapping of synthesized functions into the eX  
FPGA. The clock source for the R-cell can be chosen from  
either the hard-wired clock or the routed clock.  
To increase design efficiency and device performance, Actel  
has further organized these modules into SuperClusters  
(Figure 3 on page 4). The eX devices contain one type of  
SuperClusters, which are two-wide groupings of one type of  
clusters.  
Routed  
Data Input  
S0  
S1  
PSET  
DirectConnect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
CLR  
Internal Logic  
CKS  
CKP  
Figure 1 R-Cell  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
B1  
A1  
A0 B0  
Figure 2 C-Cell  
v3.0  
3
 
 
eX Family FPGAs  
Routing Resources  
FastConnect enables horizontal routing between any two  
logic modules within a given SuperCluster and vertical  
routing with the SuperCluster immediately below it. Only  
one programmable connection is used in a FastConnect  
path, delivering maximum pin-to-pin propagation of 0.3 ns  
(P speed grade).  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect, which enable extremely  
fast and predictable interconnection of modules within  
Clusters and SuperClusters (Figure 4). This routing  
architecture also dramatically reduces the number of  
antifuses required to complete a circuit, ensuring the  
highest possible performance.  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
resources known as segmented routing and high-drive  
routing. Actels segmented routing structure provides a  
variety of track lengths for extremely fast routing between  
SuperClusters. The exact combination of track lengths and  
antifuses within each path is chosen by the 100 percent  
automatic place-and-route software to minimize signal  
propagation delays.  
DirectConnect is a horizontal routing resource that provides  
connections from a C-cell to its neighboring R-cell in a given  
SuperCluster. DirectConnect uses a hard-wired signal path  
requiring no programmable interconnection to achieve its  
fast signal propagation time of less than 0.1 ns (P speed  
grade).  
R-Cell  
C-Cell  
D0  
D1  
Routed  
Data Input  
S1  
S0  
PSET  
Y
D2  
DirectConnect  
Input  
D3  
D
Q
Y
Sa  
Sb  
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLR  
DB  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 1  
Type 1 SuperCluster  
Figure 3 Cluster Organization  
DirectConnect  
• No antifuses  
Type 1 SuperClusters  
• 0.1 ns routing delay  
FastConnect  
• One antifuse  
• 0.3 ns routing delay  
Routing Segments  
Typically 2 antifuses  
• Max. 5 antifuses  
Figure 4 DirectConnect and FastConnect for Type 1 SuperClusters  
4
v3.0  
 
eX Family FPGAs  
Clock Resources  
platform upon which to integrate the functionality  
previously contained in CPLDs. In addition, designs that  
previously would have required a gate array to meet  
performance goals can now be integrated into an eX device  
with dramatic improvements in cost and time to market.  
Using timing-driven place-and-route tools, designers can  
achieve highly deterministic device performance.  
Actels high-drive routing structure provides three clock  
networks. The first clock, called HCLK, is hardwired from  
the HCLK buffer to the clock select MUX in each R-Cell.  
HCLK cannot be connected to combinational logic. This  
provides a fast propagation path for the clock signal,  
enabling the 3.9ns clock-to-out (pad-to-pad) performance of  
the eX devices. The hard-wired clock is tuned to provide a  
clock skew of less than 0.1ns worst case.  
I/O Modules  
Each I/O on an eX device can be configured as an input, an  
output, a tristate output, or a bidirectional pin. Even without  
the inclusion of dedicated I/O registers, these I/Os, in  
combination with array registers, can achieve clock-to-out  
(pad-to-pad) timing as fast as 3.9ns. I/O cells that have  
embedded latches and flip-flops require instantiation in HDL  
code; this is a design complication not encountered in eX  
FPGAs. Fast pin-to-pin timing ensures that the device will  
have little trouble interfacing with any other device in the  
system, which in turn enables parallel design of system  
components and reduces overall design time. See Table 1 for  
more information.  
The remaining two clocks (CLKA, CLKB) are global clocks  
that can be sourced from external pins or from internal  
logic signals within the eX device. CLKA and CLKB may be  
connected to sequential cells or to combinational logic. If  
CLKA or CLKB is sourced from internal logic signals then  
the external clock pin cannot be used for any other input  
and must be tied low or high. Figure 5 describes the clock  
circuit used for the constant load HCLK. Figure 6 describes  
the CLKA and CLKB circuit used in eX devices.  
Table 1 I/O Features  
Constant Load  
Clock Network  
Function  
Description  
HCLKBUF  
Input Buffer  
Threshold  
Selection  
TTL/3.3V LVTTL  
Figure 5 eX HCLK Clock Pad  
Flexible  
Output  
Driver  
2.5V LVCMOS 2  
3.3V LVTTL  
Clock Network  
5.0V TTL/CMOS  
Output  
Buffer  
Hot-SwapCapability  
From Internal Logic  
I/O on an unpowered device does not  
sink current  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Can be used for cold sparing”  
Selectable on an individual I/O basis  
Individually selectable low-slew option  
Power Up  
Individually selectable pull ups and pull  
downs during power up (default is to power  
up in tristate)  
Figure 6 eX Routed Clock Buffer  
Other Architectural Features  
Enables deterministic power up of device  
VCCA and VCCI can be powered in any order  
Technology  
Actels eX family is implemented on a high-voltage twin-well  
CMOS process using 0.22µ design rules. The metal-to-metal  
antifuse is made up of a combination of amorphous silicon  
and dielectric material with barrier metals and has an on”  
state resistance of 25with a capacitance of 1.0 fF for low  
signal impedance.  
Hot Swapping  
eX I/Os are configured to be hot swappable. During power  
up/down (or partial up/down), all I/Os are tristated. VCCA  
and VCCI do not have to be stable during power up/down,  
and they do not require a specific power-up or power-down  
sequence in order to avoid damage to the eX devices. After  
the eX device is plugged into an electrically active system,  
the device will not degrade the reliability of or cause  
damage to the host system. The devices output pins are  
driven to a high impedance state until normal chip  
Performance  
The combination of architectural features described above  
enables eX devices to operate with internal clock  
frequencies exceeding 350 MHz for very fast execution of  
complex logic functions. Thus, the eX family is an optimal  
v3.0  
5
 
 
 
 
eX Family FPGAs  
operating conditions are reached. Please see the Actel SX-A  
and RT54SX-S Devices in Hot-Swap and Cold-Sparing  
Applications application note for more information on hot  
swapping.  
in conjunction with the program fuse. The functionality of  
each pin is described in Table 3. In the dedicated test mode,  
TCK, TDI, and TDO are dedicated pins and cannot be used  
as regular I/Os. In flexible mode, TMS should be set HIGH  
through a pull-up resistor of 10k. TMS can be pulled LOW  
to initiate the test sequence.  
Power Requirements  
The eX family supports mixed voltage operation and is  
designed to tolerate 5.0V inputs in each case (Table 2).  
Power consumption is extremely low due to the very short  
distances signals, which are required to travel to complete a  
circuit. Power requirements are further reduced because of  
the small number of low-resistance antifuses in the path.  
The antifuse architecture does not require active circuitry  
to hold a charge (as do SRAM or EPROM), making it the  
lowest-power architecture FPGA available today. Also, when  
the device is in low power mode, the clock pins must not  
float. They must be driven either HIGH or LOW. We  
recommend that signals driving the clock pins be fixed at  
HIGH or LOW rather than toggle to achieve maximum power  
efficiency.  
Table 3 Boundary Scan Pin Functionality  
Program Fuse Blown  
(Dedicated Test Mode)  
Program Fuse Not Blown  
(Flexible Mode)  
TCK, TDI, TDO are  
dedicated BST pins  
TCK, TDI, TDO are flexible  
and may be used as I/Os  
No need for pull-up resistor Use a pull-up resistor of  
for TMS  
10kon TMS  
Configuring Diagnostic Pins  
The JTAG and Probe pins (TDI, TCK, TMS, TDO, PRA, and  
PRB) are placed in the desired mode by selecting the  
appropriate check boxes in the Variationdialog window.  
This dialog window is accessible through the Design Setup  
Wizard under the Tools menu in Actel's Designer software.  
Table 2 Supply Voltages  
Maximum Maximum  
TRST Pin  
Input  
Output  
Drive  
When the Reserve JTAG Resetbox is checked, the TRST  
pin will become a Boundary Scan Reset pin. In this mode,  
the TRST pin will function as an asynchronous, active-low  
input to initialize or reset the BST circuit. An internal  
pull-up resistor will be automatically enabled on the TRST  
pin.  
VCCA  
VCCI Tolerance  
2.5V  
2.5V  
2.5V  
2.5V  
3.3V  
5.0V  
5.0V  
5.0V  
5.0V  
2.5V  
3.3V  
5.0V  
eX64  
eX128  
eX256  
Low Power Mode  
The TRST pin will function as a user I/O when the Reserve  
JTAG Resetbox is not checked. The internal pull-up  
resistor will be disabled in this mode.  
The new Actel eX family has been designed with a Low  
Power Mode. This feature, activated with a special LP pin, is  
particularly useful for battery-operated systems where  
battery life is a primary concern. In this mode, the core of  
the device is turned off and the device consumes minimal  
power with low standby current. In addition, all input  
buffers are turned off, and all outputs and bidirectional  
buffers are tristated when the device enters this mode.  
Since the core of the device is turned off, the states of the  
registers are lost. The device must be re-initialized when  
normal operating mode is achieved.  
Dedicated Test Mode  
When the Reserve JTAGbox is checked, the eX device is  
placed in Dedicated Test mode, which configures the TDI,  
TCK, and TDO pins for BST or in-circuit verification with  
Silicon Explorer II. An internal pull-up resistor is  
automatically enabled on both the TMS and TDI pins. In  
Dedicated Test Mode, TCK, TDI, and TDO are dedicated test  
pins and become unavailable for pin assignment in the Pin  
Editor. The TMS pin will function as specified in the IEEE  
1149.1 (JTAG) Specification.  
2.5V LP/Sleep Mode Specifications  
Typical Conditions, VCCA, VCCI = 2.5V, TJ = 25° C  
Flexible Mode  
Product  
Low Power Standby Current  
Units  
When the Reserve JTAGbox is not selected (default  
setting in Designer software), eX is placed in Flexible mode,  
which allows the TDI, TCK, and TDO pins to function as user  
I/Os or BST pins. In this mode the internal pull-up resistors  
on the TMS and TDI pins are disabled. An external 10kΩ  
pull-up resistor to VCCI is required on the TMS pin.  
eX64  
100  
111  
134  
µA  
µA  
µA  
eX128  
eX256  
Boundary Scan Testing (BST)  
The TDI, TCK, and TDO pins are transformed from user I/Os  
into BST pins when a rising edge on TCK is detected while  
TMS is at logical low. Once the BST pins are in test mode  
they will remain in BST mode until the internal BST state  
All eX devices are IEEE 1149.1 compliant. eX devices offer  
superior diagnostic and testing capabilities by providing  
Boundary Scan Testing (BST) and probing capabilities.  
These functions are controlled through the special test pins  
6
v3.0  
 
 
 
eX Family FPGAs  
machine reaches the logic resetstate. At this point the  
BST pins will be released and will function as regular I/O  
pins. The logic resetstate is reached five TCK cycles after  
the TMS pin is set to logical HIGH.  
verification and logic analysis tool that can sample data at  
100 MHz (asynchronous) or 66 MHz (synchronous). Silicon  
Explorer II attaches to a PCs standard COM port, turning  
the PC into a fully functional 18-channel logic analyzer.  
Silicon Explorer II allows designers to complete the design  
verification process at their desks and reduces verification  
time from several hours per cycle to only a few seconds.  
The Program fuse determines whether the device is in  
Dedicated Test or Flexible mode. The default (fuse not  
programmed) is Flexible mode.  
eX Probe Circuit Control Pins  
Development Tool Support  
The Silicon Explorer II tool uses the boundary scan ports  
(TDI, TCK, TMS and TDO) to select the desired nets for  
verification. The selected internal nets are assigned to the  
PRA/PRB pins for observation. Figure 7 illustrates the  
interconnection between Silicon Explorer II and the FPGA  
to perform in-circuit verification. The TRST pin is equipped  
with an internal pull-up resistor. To remove the boundary  
scan state machine from the reset state during probing, it is  
recommended that the TRST pin be left floating.  
The eX devices are fully supported by Actels line of FPGA  
development tools, including the Actel Designer Series suite  
and Libero, the FPGA design tool suite. Designer Series,  
Actels suite of FPGA development tools for PCs and  
Workstations, includes the ACTgen Macro Builder, timing  
driven place-and-route, timing analysis tools, and fuse file  
generation. Libero is a design management environment  
that integrates the needed design tools, streamlines the  
design flow, manages all design and log files, and passes  
necessary design data between tools. Libero includes  
Synplify, ViewDraw, Actels Designer Series, ModelSim HDL  
Simulator, WaveFormer Lite, and Actel Silicon Explorer.  
Design Considerations  
For prototyping, the TDI, TCK, TDO, PRA, and PRB pins  
should not be used as input or bidirectional ports. Because  
these pins are active during probing, critical signals input  
through these pins are not available while probing. In  
addition, the Security Fuse should not be programmed  
because doing so disables the probe circuitry.  
In addition, the eX devices contain internal probe circuitry  
that provides built-in access to the output of every C-cell,  
R-cell, and routed clock in the design, enabling 100-percent  
real-time observation and analysis of a device's internal  
logic nodes without design iteration. The probe circuitry is  
accessed by Silicon Explorer II, an easy-to-use integrated  
eX FPGA  
TDI  
TCK  
TMS  
Serial Connection  
Silicon Explorer II  
TDO  
PRA  
PRB  
Figure 7 Probe Setup  
v3.0  
7
 
eX Family FPGAs  
Recommended Operating Conditions  
Parameter Commercial Industrial  
2.5V/3.3V/5.0V Operating Conditions  
Absolute Maximum Ratings1  
Units  
Temperature  
Symbol  
Parameter  
Limits  
Units  
0 to +70  
2.3-2.7  
40 to +85  
2.3-2.7  
°C  
Range1  
VCCI  
VCCA  
VI  
DC Supply Voltage  
DC Supply Voltage  
Input Voltage  
0.3 to +6.0  
0.3 to +3.0  
V
V
2.5V Power Supply  
Range (VCCA, VCCI  
V
V
V
)
0.5 to +5.5  
V
3.3V Power Supply  
3.0-3.6  
3.0-3.6  
Range (VCCI  
)
VO  
Output Voltage  
0.5 to +VCCI + 0.5  
65 to +150  
V
5.0V Power Supply  
TSTG  
Note:  
Storage Temperature  
°C  
4.75-5.25  
4.5-5.5  
Range (VCCI  
)
Note:  
1. Stresses beyond those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device. Exposure  
to absolute maximum rated conditions for extended periods  
may affect device reliability. Devices should not be operated  
outside the Recommended Operating Conditions.  
1. Ambient temperature (TA).  
Typical eX Standby Current at 25°C  
VCCA= 2.5V  
VCCI = 2.5V  
VCCA = 2.5V  
VCCI = 3.3V  
Product  
eX64  
397µA  
696µA  
698µA  
497µA  
795µA  
796µA  
eX128  
eX256  
2.5V Electrical Specifications  
Commercial  
Industrial  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
VDD = MIN, VI = VIH or VIL  
VDD = MIN, VI = VIH or VIL  
(IOH = -100µA) 2.1  
2.1  
2.0  
1.7  
V
V
VOH  
(IOH = -1 mA)  
(IOH = -2 mA)  
(IOL= 100µA)  
(IOL= 1mA)  
2.0  
1.7  
V
DD = MIN, VI = VIH or VIL  
VDD = MIN, VI = VIH or VIL  
DD = MIN, VI = VIH or VIL  
V
0.2  
0.4  
0.7  
0.7  
0.2  
0.4  
0.7  
0.7  
V
VOL  
V
V
VDD = MIN,VI = VIH or VIL  
(IOL= 2 mA)  
V
VIL  
VIH  
IOZ  
Input Low Voltage, VOUT VVOL(max)  
Input High Voltage, VOUT VVOH(min)  
-0.3  
-0.3  
V
1.7 VDD + 0.3 1.7 VDD + 0.3  
V
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time tR, tF  
I/O Capacitance  
10  
10  
10  
10  
1.0  
10  
10  
10  
10  
3.0  
µA  
ns  
pF  
mA  
1,2  
tR, tF  
CIO  
3,4  
ICC  
Standby Current  
IV Curve5 Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Notes:  
1. tR is the transition time from 0.7 V to 1.7V.  
2. tF is the transition time from 1.7V to 0.7V.  
3. ICC max Commercial F = 5.0mA  
4. ICC=ICCI + ICCA  
8
v3.0  
 
 
eX Family FPGAs  
3.3V Electrical Specifications  
Commercial  
Industrial  
Symbol Parameter  
Min.  
Max.  
Min.  
Max. Units  
VDD = MIN, VI = VIH or VIL  
VOH  
(IOH = -1mA) 0.9 VCCI  
0.9 VCCI  
2.4  
V
V
VDD = MIN, VI = VIH or VIL  
(IOH = -8mA)  
(IOL= 1mA)  
(IOL= 12mA)  
2.4  
VDD = MIN, VI = VIH or VIL  
VOL  
0.1 VCCI  
0.4  
0.1 VCCI  
0.4  
V
V
VDD = MIN, VI = VIH or VIL  
VIL  
Input Low Voltage  
0.8  
0.8  
V
VIH  
Input High Voltage  
2.0  
10  
10  
2.0  
10  
10  
V
IIL/ IIH  
IOZ  
Input Leakage Current, VIN = VCCI or GND  
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time tR, tF  
I/O Capacitance  
10  
10  
10  
10  
1.5  
10  
10  
10  
10  
10  
µA  
µA  
ns  
pF  
mA  
1,2  
tR, tF  
CIO  
3,4  
ICC  
Standby Current  
IV Curve5 Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Notes:  
1. tR is the transition time from 0.8 V to 2.0V.  
2. tF is the transition time from 2.0V to 0.8V.  
3. ICC max Commercial F=5.0mA  
4.  
ICC=ICCI + ICCA  
5.0V Electrical Specifications  
Commercial  
Industrial  
Symbol Parameter  
Min.  
Max.  
Min.  
Max. Units  
VDD = MIN, VI = VIH or VIL  
VOH  
(IOH = -1mA) 0.9 VCCI  
0.9 VCCI  
2.4  
V
V
VDD = MIN, VI = VIH or VIL  
(IOH = -8mA)  
(IOL= 1mA)  
(IOL= 12mA)  
2.4  
VDD = MIN, VI = VIH or VIL  
VOL  
0.1 VCCI  
0.4  
0.1 VCCI  
0.4  
V
V
VDD = MIN, VI = VIH or VIL  
VIL  
Input Low Voltage  
0.8  
0.8  
V
VIH  
Input High Voltage  
2.0  
10  
10  
2.0  
10  
10  
V
IIL/ IIH  
Input Leakage Current, VIN = VCCI or GND  
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time tR, tF  
I/O Capacitance  
10  
10  
10  
10  
15  
10  
10  
10  
10  
20  
µA  
µA  
ns  
pF  
mA  
IOZ  
1,2  
tR, tF  
CIO  
3,4  
ICC  
Standby Current  
IV Curve5 Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html  
Notes:  
1. tR is the transition time from 0.8 V to 2.0V.  
2. tF is the transition time from 2.0V to 0.8V.  
3. ICC max Commercial F=20mA  
4. ICC=ICCI + ICCA  
v3.0  
9
 
 
eX Family FPGAs  
eX Dynamic Power Consumption High Frequency  
300  
250  
200  
150  
100  
50  
eX64  
eX128  
eX256  
0
50  
100  
150  
200  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7V, device tested at room temperature.  
eX Dynamic Power Consumption Low Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
eX64  
eX128  
eX256  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7V, device tested at room temperature.  
10  
v3.0  
eX Family FPGAs  
Total Dynamic Power (mW)  
180  
160  
140  
120  
100  
80  
32-bit Decoder  
8 x 8-bit Counters  
SDRAM Controller  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
175  
200  
Frequency (MHz)  
System Power at 5%, 10%, and 15% Duty Cycle  
12,000  
10,000  
8,000  
6,000  
4,000  
2,000  
0
5% DC  
10% DC  
15% DC  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
v3.0  
11  
 
 
eX Family FPGAs  
Junction Temperature (TJ)  
The temperature variable in the Designer Series software  
refers to the junction temperature, not the ambient  
temperature. This is an important distinction because the  
heat generated from dynamic power consumption is usually  
hotter than the ambient temperature. Equation 1, shown  
below, can be used to calculate junction temperature.  
θ
= Junction to ambient of package. θ numbers are  
ja ja  
located in the Package Thermal Characteristics section  
below.  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
Junction Temperature = T + Ta  
(1)  
Where:  
Ta = Ambient Temperature  
The maximum junction temperature is 150°C.  
T = Temperature gradient between junction (silicon) and  
ambient  
A sample calculation of the absolute maximum power  
dissipation allowed for a TQFP 100-pin package at  
commercial temperature and still air is as follows:  
T = θ * P  
ja  
P = Power  
Max. junction temp. (°C) – Max. ambient temp. (°C) 150°C – 70°C  
--------------------------------------------------------------------------------------------------------------------------------- ----------------------------------  
= 2.1W  
Maximum Power Allowed =  
=
θja(°C/W)  
37.5°C/W  
θja  
Still Air  
θja  
300 ft/min  
Package Type  
Pin Count  
θjc  
Units  
Thin Quad Flat Pack (TQFP)  
Thin Quad Flat Pack (TQFP)  
Chip Scale Package (CSP)  
Chip Scale Package (CSP)  
Chip Scale Package (CSP)  
64  
100  
49  
14  
12  
3
51.2  
37.5  
71.3  
54.1  
57.8  
35  
30  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
56.0  
47.8  
51  
128  
180  
3
3
12  
v3.0  
 
eX Family FPGAs  
eX Timing Model*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.3 ns  
= 0.4 ns  
I/O Module  
I/O Module  
IRD1  
IRD2  
t
= 0.7 ns  
INYH  
t
= 2.6 ns  
DHL  
t
= 0.7 ns  
PD  
t
t
t
= 0.3 ns  
RD1  
= 0.7 ns  
RD4  
= 1.2 ns  
RD8  
I/O Module  
Register  
Cell  
t
= 1.9 ns  
ENZL  
D
Q
t
t
t
RD1  
= 0.5 ns  
= 0.3 ns  
SUD  
HD  
= 0.0 ns  
t
= 2.6 ns  
DHL  
Routed  
Clock  
t
= 1.3 ns  
RCKH  
t
= 0.6 ns  
(100% Load)  
RCO  
I/O Module  
Register  
Cell  
I/O Module  
t
= 0.7 ns  
t
= 1.9 ns  
INYH  
ENZL  
t
= 0.3 ns  
= 0.5ns  
IRD1  
D
Q
t
t
t
RD1  
= 0.3 ns  
SUD  
= 0.0 ns  
HD  
t
= 2.6 ns  
DHL  
Hard-Wired  
Clock  
t
t
RCO  
= 1.1 ns  
= 0.6 ns  
HCKH  
*Values shown for eX128P, worst-case commercial conditions (5.0V, 35pF Pad Load).  
Hard-Wired Clock  
Routed Clock  
External Setup = tINYH + tIRD1 + tSUD tHCKH  
External Setup = tINYH + tIRD2 + tSUD tRCKH  
= 0.7 + 0.4 + 0.5 1.3= 0.3 ns  
= 0.7 + 0.3 + 0.5 1.1 = 0.4 ns  
Clock-to-Out (Pad-to-Pad), typical  
= tHCKH + tRCO + tRD1 + tDHL  
Clock-to-Out (Pad-to-Pad), typical  
= tRCKH + tRCO + tRD1 + tDHL  
= 1.1 + 0.6 + 0.3 + 2.6 = 4.6 ns  
= 1.3+ 0.6 + 0.3 + 2.6 = 4.8 ns  
v3.0  
13  
 
eX Family FPGAs  
Output Buffer Delays  
E
D
To AC test loads (shown below)  
PAD  
TRIBUFF  
VCC  
VCC  
VCC  
In  
GND  
50%  
VOH  
En  
Out  
GND  
10%  
50%  
En  
GND  
90%  
50%  
50%  
VCC  
50%  
VOH  
50%  
1.5V  
1.5V  
VOL  
Out  
VOL  
Out  
GND  
1.5V  
1.5V  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tENHZ  
AC Test Loads  
Load 3  
Load 2  
Load 1  
(Used to measure  
propagation delay)  
(Used to measure disable delays)  
(Used to measure enable delays)  
VCC  
VCC  
GND  
GND  
To the output  
under test  
35 pF  
R to VCC for tPLZ  
R to GND for tPHZ  
R = 1 kΩ  
R to VCC for tPZL  
R to GND for tPZH  
R = 1 kΩ  
To the output  
under test  
To the output  
under test  
5 pF  
35 pF  
Input Buffer Delays  
C-Cell Delays  
S
A
B
Y
Y
PAD  
INBUF  
VCC  
GND  
S, A or B  
50% 50%  
VCC  
3V  
In  
0V  
50%  
1.5V  
VCC  
1.5V  
50%  
Out  
50%  
GND  
tPD  
tPD  
Out  
GND  
50%  
VCC  
50%  
Out  
GND  
tPD  
50%  
tPD  
14  
v3.0  
eX Family FPGAs  
Cell Timing Characteristics  
Flip-Flops  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tSUD  
CLK  
tHP  
tHPWH  
tRPWH  
,
tHPWL  
,
tRPWL  
tRCO  
Q
tCLR  
tPRESET  
CLR  
tWASYN  
PRESET  
Long Tracks  
Timing Characteristics  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows, columns,  
or modules. Long tracks employ three to five antifuse  
connections. This increases capacitance and resistance,  
resulting in longer net delays for macros connected to long  
tracks. Typically, no more than six percent of nets in a fully  
utilized device require long tracks. Long tracks contribute  
approximately 4 ns to 8.4 ns delay. This additional delay is  
represented statistically in higher fanout routing delays.  
Timing characteristics for eX devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all eX family members.  
Internal routing delays are device-dependent. Design  
dependency means actual delays are not determined until  
after placement and routing of the users design are  
complete. Delay values may then be determined by using  
the Timer utility or performing simulation with post-layout  
delays.  
Timing Derating  
eX devices are manufactured with a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case processing.  
Maximum timing parameters reflect minimum operating  
voltage, maximum operating temperature, and worst-case  
processing.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most timing  
critical paths. Critical nets are determined by net property  
assignment prior to placement and routing. Up to  
six percent of the nets in a design may be designated as  
critical.  
Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.3V)  
Junction Temperature (TJ)  
VCCA  
2.3  
55  
0.75  
0.70  
0.66  
40  
0.79  
0.74  
0.69  
0
25  
70  
85  
125  
1.16  
1.08  
1.02  
0.88  
0.82  
0.79  
0.89  
0.83  
0.79  
1.00  
0.93  
0.88  
1.04  
0.97  
0.92  
2.5  
2.7  
v3.0  
15  
eX Family FPGAs  
eX Family Timing Characteristics  
(Worst-Case Commercial Conditions, VCCA = 2.3V, TJ = 70°C)  
‘–PSpeed  
StdSpeed  
‘–FSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.7  
1.0  
1.4  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, DirectConnect  
0.1  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.1  
0.5  
0.5  
0.6  
0.8  
1.0  
1.7  
2.5  
0.2  
0.7  
0.7  
0.8  
1.1  
1.3  
2.4  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, FastConnect  
FO=1 Routing Delay  
tRD1  
tRD2  
FO=2 Routing Delay  
tRD3  
FO=3 Routing Delay  
tRD4  
FO=4 Routing Delay  
tRD8  
FO=8 Routing Delay  
tRD12  
R-Cell Timing  
FO=12 Routing Delay  
tRCO  
Sequential Clock-to-Q  
0.6  
0.6  
0.7  
0.9  
0.8  
0.9  
1.3  
1.2  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
tPRESET  
tSUD  
0.5  
0.0  
1.3  
0.3  
0.3  
0.7  
0.0  
1.9  
0.5  
0.5  
1.0  
0.0  
2.6  
0.7  
0.7  
tHD  
tWASYN  
tRECASYN  
tHASYN  
2.5V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.6  
0.8  
0.9  
1.1  
1.3  
1.5  
ns  
ns  
3.3V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.7  
0.9  
1.0  
1.3  
1.4  
1.8  
ns  
ns  
5.0V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.7  
0.9  
1.0  
1.3  
1.4  
1.8  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.4  
0.6  
0.8  
1.0  
1.7  
2.5  
0.5  
0.8  
1.1  
1.3  
2.4  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
16  
v3.0  
 
eX Family FPGAs  
eX Family Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 4.75V, TJ = 70°C)  
‘–PSpeed  
Min. Max.  
StdSpeed  
‘–FSpeed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hard-Wired) Array Clock Networks  
tHCKH  
tHCKL  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.1  
1.1  
1.6  
1.6  
2.3  
2.3  
ns  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
2.0  
2.0  
2.8  
2.8  
ns  
<0.1  
357  
<0.1  
250  
<0.1  
178  
ns  
Minimum Period  
2.8  
4.0  
5.6  
ns  
fHMAX  
Maximum Frequency  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input) MAX.  
1.1  
1.0  
1.2  
1.2  
1.3  
1.3  
1.6  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.0  
2.4  
2.4  
2.6  
2.6  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input) MAX.  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
Min. Pulse Width HIGH  
1.5  
1.5  
2.1  
2.1  
3.0  
3.0  
Min. Pulse Width LOW  
1
1
1
tRCKSW  
tRCKSW  
tRCKSW  
Note:  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.2  
0.1  
0.1  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
1. Clock skew improves as the clock network becomes more heavily loaded.  
v3.0  
17  
eX Family FPGAs  
eX Family Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3V or 3.0V, TJ = 70°C)  
‘–PSpeed StdSpeed ‘–FSpeed  
Min. Max. Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
Dedicated (Hard-Wired) Array Clock Networks  
tHCKH  
tHCKL  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.1  
1.1  
1.6  
1.6  
2.3  
2.3  
ns  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
2.0  
2.0  
2.8  
2.8  
ns  
<0.1  
357  
<0.1  
250  
<0.1  
178  
ns  
Minimum Period  
2.8  
4.0  
5.6  
ns  
fHMAX  
Maximum Frequency  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input) MAX.  
1.0  
1.0  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.7  
1.7  
2.0  
2.0  
2.0  
2.0  
2.4  
2.4  
2.8  
2.8  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input) MAX.  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
tRPWL  
Min. Pulse Width HIGH  
1.4  
1.4  
2.0  
2.0  
2.8  
2.8  
Min. Pulse Width LOW  
1
1
1
tRCKSW  
tRCKSW  
tRCKSW  
Note:  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.2  
0.2  
0.1  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
1. Clock skew improves as the clock network becomes more heavily loaded.  
18  
v3.0  
eX Family FPGAs  
eX Family Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions VCCA = 2.3V, TJ = 70°C)  
‘–PSpeed  
StdSpeed  
‘–FSpeed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
2.5V LVTTL Output Module Timing1 (VCCI = 2.3V)  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWLow Slew  
Enable-to-Pad, Z to L  
3.3  
3.5  
4.7  
5.0  
6.6  
7.0  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
11.6  
2.5  
16.6  
3.6  
23.2  
5.1  
ns  
ns  
Enable-to-Pad Z to LLow Slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
16.9  
4.9  
23.7  
6.9  
ns  
ns  
Enable-to-Pad, L to Z  
2.1  
3.0  
4.2  
ns  
Enable-to-Pad, H to Z  
2.4  
5.67  
0.046  
0.022  
7.94  
0.066  
0.05  
ns  
Delta Delay vs. Load LOW to HIGH  
Delta Delay vs. Load HIGH to LOW  
0.034  
0.016  
ns/pF  
ns/pF  
dTHL  
Delta Delay vs. Load HIGH to LOWLow  
Slew  
dTHLS  
0.05  
0.072  
0.1  
ns/pF  
3.3V LVTTL Output Module Timing1 (VCCI = 3.0V)  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWLow Slew  
Enable-to-Pad, Z to L  
2.8  
2.7  
4.0  
3.9  
5.6  
5.4  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
9.7  
13.9  
3.2  
19.5  
4.4  
ns  
2.2  
ns  
Enable-to-Pad Z to LLow Slew  
Enable-to-Pad, Z to H  
9.7  
13.9  
4.0  
19.6  
5.6  
ns  
2.8  
ns  
Enable-to-Pad, L to Z  
2.8  
4.0  
5.6  
ns  
Enable-to-Pad, H to Z  
2.6  
3.8  
5.3  
ns  
Delta Delay vs. Load LOW to HIGH  
Delta Delay vs. Load HIGH to LOW  
0.02  
0.016  
0.03  
0.022  
0.046  
0.05  
ns/pF  
ns/pF  
dTHL  
Delta Delay vs. Load HIGH to LOWLow  
Slew  
dTHLS  
0.05  
0.072  
0.1  
ns/pF  
5.0V TTL Output Module Timing1 (VCCI = 4.75V)  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWLow Slew  
Enable-to-Pad, Z to L  
2.0  
2.6  
6.8  
1.9  
6.8  
2.1  
3.3  
2.9  
3.7  
9.7  
2.7  
9.8  
3.0  
4.8  
4.0  
5.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
Note:  
13.6  
3.8  
Enable-to-Pad Z to LLow Slew  
Enable-to-Pad, Z to H  
13.7  
4.1  
Enable-to-Pad, L to Z  
6.6  
1. Delays based on 35 pF loading.  
v3.0  
19  
eX Family FPGAs  
Pin Description  
CLKA/B  
Clock A and B  
TCK, I/O  
Test Clock  
These pins are clock inputs for clock distribution networks.  
Input levels are compatible with standard TTL or LVTTL  
specifications. The clock input is buffered prior to clocking  
the R-cells. If not used, this pin must be set LOW or HIGH on  
the board. It must not be left floating.  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active when  
the TMS pin is set LOW (refer to Table 3 on page 6). This pin  
functions as an I/O when the boundary scan state machine  
reaches the logic resetstate.  
GND  
Ground  
TDI, I/O  
Test Data Input  
LOW supply voltage.  
Serial input for boundary scan testing and diagnostic probe.  
In flexible mode, TDI is active when the TMS pin is set LOW  
(refer to Table 3 on page 6). This pin functions as an I/O  
when the boundary scan state machine reaches the logic  
resetstate.  
HCLK  
Dedicated (Hard-wired)  
Array Clock  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL or LVTTL  
specifications. This input is directly wired to each R-cell and  
offers clock speeds independent of the number of R-cells  
being driven. If not used, this pin must be set LOW or HIGH  
on the board. It must not be left floating.  
TDO, I/O  
Test Data Output  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set LOW (refer to Table 3  
on page 6). This pin functions as an I/O when the boundary  
scan state machine reaches the "logic reset" state. When  
Silicon Explorer is being used, TDO will act as an output  
when the "checksum" command is run. It will return to user  
IO when "checksum" is complete.  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations, input  
and output levels are compatible with standard TTL or  
LVTTL specifications. Unused I/O pins are automatically  
tristated by the Designer Series software.  
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE 1149.1 Boundary  
Scan pins (TCK, TDI, TDO, TRST). In flexible mode when  
the TMS pin is set LOW, the TCK, TDI, and TDO pins are  
boundary scan pins (refer to Table 3 on page 6). Once the  
boundary scan pins are in test mode, they will remain in that  
mode until the internal boundary scan state machine  
reaches the logic resetstate. At this point, the boundary  
scan pins will be released and will function as regular I/O  
pins. The logic resetstate is reached 5 TCK cycles after  
the TMS pin is set HIGH. In dedicated test mode, TMS  
functions as specified in the IEEE 1149.1 specifications.  
LP  
Low Power Pin  
Controls the low power mode of the eX devices. The device  
is placed in the low power mode by connecting the LP pin  
to logic high. In low power mode, all I/Os are tristated, all  
input buffers are turned OFF, and the core of the devices is  
turned OFF. To exit the low power mode, the LP pin must  
be set LOW. The device enters the low power mode 800ns  
after the LP pin is driven to a logic HIGH. It will resume  
normal operation in 200µs after the LP pin is driven to a  
logic low. The logic high level on the LP pin must never  
exceed the VSV voltage. Refer to the VSV pin description.  
TRST, I/O  
Boundary Scan Reset Pin  
Once it is configured as the JTAG Reset pin, the TRST pin  
functions as an active-low input to asynchronously initialize  
or reset the boundary scan circuit. The TRST pin is equipped  
with an internal pull-up resistor. This pin functions as an I/O  
when the Reserve JTAG Reset Pinis not selected in  
Designer.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
PRA, I/O  
PRB, I/O  
Probe A/B  
VCCI  
Supply Voltage  
The Probe pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the other probe pin to  
allow real-time diagnostic output of any signal path within  
the device. The Probe pin can be used as a user-defined I/O  
when verification has been completed. The pins probe  
capabilities can be permanently disabled to protect  
programmed design confidentiality.  
Supply voltage for I/Os. See Table 2 on page 6.  
VCCA  
Supply Voltage  
Supply voltage for Array. See Table 2 on page 6.  
VSV  
Programming Voltage  
Supply voltage used for device programming. This pin can be  
tied to VCCA or VCCI but cannot exceed 3.6V. If the security  
fuse is programmed, the VSV limit is extended to 6.0V.  
20  
v3.0  
 
eX Family FPGAs  
Package Pin Assignments  
64-Pin TQFP (Top View)  
64  
1
64-Pin  
TQFP  
v3.0  
21  
eX Family FPGAs  
64-Pin TQFP  
eX64  
Function  
eX128  
Function  
eX64  
Function  
eX128  
Function  
Pin Number  
Pin Number  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GND  
I/O  
GND  
I/O  
2
3
I/O  
I/O  
1
1
4
TMS  
GND  
VCCI  
I/O  
TMS  
GND  
VCCI  
I/O  
VSV  
VSV  
5
VCCI  
I/O  
VCCI  
I/O  
6
7
I/O  
I/O  
8
I/O  
I/O  
NC  
I/O  
9
NC  
I/O  
NC  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NC  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
VCCA  
GND/LP1  
GND  
I/O  
VCCA  
GND/ LP1  
GND  
I/O  
NC  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
TDO, I/O  
TCK, I/O  
TCK, I/O  
1. Please read the VSV and LP pin descriptions for restrictions on their use.  
22  
v3.0  
 
eX Family FPGAs  
Package Pin Assignments (Continued)  
100-Pin TQFP (Top View)  
100  
1
100-Pin  
TQFP  
v3.0  
23  
 
eX Family FPGAs  
100-TQFP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
Pin Number  
Function  
Function  
Function  
1
GND  
TDI, I/O  
NC  
GND  
TDI, I/O  
NC  
GND  
TDI, I/O  
I/O  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GND  
NC  
NC  
NC  
I/O  
GND  
NC  
NC  
NC  
I/O  
GND  
I/O  
2
3
I/O  
4
NC  
NC  
I/O  
I/O  
5
NC  
NC  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
1
1
1
7
TMS  
VCCI  
GND  
NC  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
VSV  
VSV  
VSV  
8
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
TRST, I/O  
NC  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND/LP1  
GND  
I/O  
VCCA  
GND/LP1  
GND  
I/O  
VCCA  
GND/LP1  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
GND  
NC  
PRB, I/O  
VCCA  
GND  
NC  
PRB, I/O  
VCCA  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
NC  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
1. Please read the VSV and LP pin descriptions for restrictions on their use.  
24  
v3.0  
 
eX Family FPGAs  
Package Pin Assignments (Continued)  
49-Pin CSP (Top View)  
A1 Ball Pad Corner  
1
2
3
5
6
7
4
A
B
C
D
E
F
G
49-Pin CSP  
eX64  
Function  
eX128  
Function  
eX64  
Function  
eX128  
Function  
Pin Number  
Pin Number  
1
1
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
I/O  
I/O  
I/O  
I/O  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
VSV  
VSV  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
PRA, I/O  
CLKA  
I/O  
PRA, I/O  
CLKA  
I/O  
I/O  
I/O  
I/O  
I/O  
GND/LP1  
GND/LP1  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
I/O  
PRB, I/O  
VCCA  
I/O  
I/O  
I/O  
TMS  
GND  
GND  
TMS  
GND  
GND  
I/O  
I/O  
1. Please read the VSV and LP pin descriptions for restrictions on their use.  
v3.0  
25  
 
eX Family FPGAs  
Package Pin Assignments (Continued)  
128-Pin CSP (Top View)  
A1 Ball Pad Corner  
2
3
4
5
6
8
12  
1
7
9
10 11  
A
B
C
D
E
F
G
H
J
K
L
M
26  
v3.0  
eX Family FPGAs  
128-CSP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
Pin Number  
Function  
Function  
Function  
A1  
A2  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
D4  
D5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A3  
D6  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A4  
D7  
A5  
I/O  
I/O  
I/O  
D8  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A6  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
D9  
A7  
D10  
D11  
D12  
E1  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A9  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
A10  
A11  
A12  
B1  
I/O  
I/O  
I/O  
E2  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
E3  
TMS  
I/O  
TMS  
I/O  
TMS  
I/O  
E4  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
B2  
E9  
B3  
I/O  
I/O  
I/O  
E10  
E11  
E12  
F1  
B4  
I/O  
I/O  
I/O  
GND/LP1  
VCCA  
NC  
GND/LP1  
VCCA  
I/O  
GND/LP1  
VCCA  
I/O  
B5  
I/O  
I/O  
I/O  
B6  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
B7  
F2  
NC  
I/O  
I/O  
B8  
F3  
NC  
I/O  
I/O  
B9  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
I/O  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
D1  
D2  
D3  
I/O  
I/O  
I/O  
F9  
GND  
NC  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
F10  
F11  
F12  
G1  
G2  
G3  
G4  
G9  
G10  
G11  
G12  
H1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
NC  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
NC  
GND  
GND  
I/O  
GND  
GND  
I/O  
CLKA  
I/O  
CLKA  
I/O  
CLKA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
NC  
I/O  
I/O  
H2  
I/O  
I/O  
I/O  
H3  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
NC  
I/O  
I/O  
H4  
I/O  
I/O  
I/O  
H9  
I/O  
I/O  
I/O  
H10  
VCCI  
VCCI  
VCCI  
v3.0  
27  
 
eX Family FPGAs  
128-CSP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
Pin Number  
Function  
Function  
Function  
1
1
1
H11  
H12  
J1  
VSV  
VSV  
VSV  
K12  
L1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
NC  
I/O  
VSV1  
I/O  
L2  
I/O  
J2  
I/O  
I/O  
L3  
NC  
I/O  
J3  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
L4  
J4  
L5  
I/O  
J5  
I/O  
I/O  
I/O  
L6  
I/O  
J6  
I/O  
I/O  
I/O  
L7  
I/O  
J7  
GND  
I/O  
GND  
I/O  
GND  
I/O  
L8  
I/O  
J8  
L9  
I/O  
J9  
GND  
I/O  
GND  
I/O  
GND  
I/O  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
NC  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
HCLK  
I/O  
PRB, I/O  
HCLK  
I/O  
PRB, I/O  
HCLK  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
TDO, I/O  
TDO, I/O  
I/O  
1. Please read the VSV and LP pin descriptions for restrictions on their use.  
28  
v3.0  
eX Family FPGAs  
Package Pin Assignments (Continued)  
180-Pin CSP (Top View)  
A1 Ball Pad Corner  
12  
1
2
3
4
5
6
7
9
10  
14  
13  
8
11  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
v3.0  
29  
eX Family FPGAs  
180-Pin CSP  
eX256  
eX256  
eX256  
eX256  
Pin Number  
Function  
Pin Number  
Function  
Pin Number  
Function  
Pin Number  
Function  
A1  
A2  
I/O  
I/O  
D6  
D7  
I/O  
CLKA  
I/O  
H5  
H10  
H11  
H12  
H13  
H14  
J1  
GND  
GND  
I/O  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
I/O  
I/O  
A3  
GND  
NC  
D8  
A4  
D9  
I/O  
I/O  
A5  
NC  
D10  
D11  
D12  
D13  
D14  
E1  
I/O  
I/O  
A6  
NC  
I/O  
I/O  
A7  
NC  
I/O  
I/O  
A8  
NC  
I/O  
J2  
GND  
I/O  
A9  
NC  
I/O  
J3  
A10  
A11  
A12  
A13  
A14  
B1  
NC  
I/O  
J4  
VCCI  
GND  
I/O  
NC  
E2  
I/O  
J5  
I/O  
E3  
I/O  
J10  
J11  
J12  
J13  
J14  
K1  
I/O  
E4  
I/O  
VCCI  
N2  
1
I/O  
E5  
I/O  
VSV  
N3  
I/O  
E6  
I/O  
I/O  
I/O  
I/O  
N4  
B2  
I/O  
E7  
GND  
I/O  
N5  
B3  
TCK, I/O  
VCCI  
I/O  
E8  
N6  
1
B4  
E9  
GND  
I/O  
K2  
VSV  
N7  
B5  
E10  
E11  
E12  
E13  
E14  
F1  
K3  
I/O  
VCCI  
I/O  
N8  
B6  
I/O  
I/O  
K4  
N9  
B7  
VCCA  
I/O  
I/O  
K5  
N10  
N11  
N12  
N13  
N14  
P1  
B8  
VCCI  
I/O  
K6  
I/O  
B9  
I/O  
K7  
I/O  
B10  
B11  
B12  
B13  
B14  
C1  
VCCI  
I/O  
I/O  
K8  
GND  
I/O  
F2  
I/O  
K9  
I/O  
F3  
VCCI  
I/O  
K10  
K11  
K12  
K13  
K14  
L1  
GND  
I/O  
I/O  
F4  
P2  
I/O  
F5  
GND  
GND  
I/O  
GND/LP1  
VCCA  
I/O  
I/O  
P3  
I/O  
F10  
F11  
F12  
F13  
F14  
G1  
I/O  
P4  
C2  
TMS  
I/O  
I/O  
P5  
C3  
I/O  
P6  
C4  
I/O  
L2  
I/O  
P7  
C5  
I/O  
L3  
I/O  
P8  
C6  
I/O  
VCCA  
I/O  
L4  
I/O  
P9  
C7  
PRA, I/O  
CLKB  
I/O  
G2  
L5  
I/O  
P10  
P11  
P12  
P13  
P14  
C8  
G3  
I/O  
L6  
I/O  
C9  
G4  
I/O  
L7  
PRB, I/O  
HCLK  
I/O  
C10  
C11  
C12  
C13  
C14  
D1  
I/O  
G5  
I/O  
L8  
I/O  
G10  
G11  
G12  
G13  
G14  
H1  
GND  
I/O  
L9  
GND  
I/O  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
I/O  
VCCA  
I/O  
D2  
I/O  
I/O  
D3  
TDI, I/O  
I/O  
H2  
I/O  
I/O  
D4  
H3  
TRST, I/O  
I/O  
I/O  
D5  
I/O  
H4  
I/O  
1. Please read the VSV and LP pin descriptions for restrictions on their use.  
30  
v3.0  
 
eX Family FPGAs  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (v3.0)  
Page  
The Recommended Operating Conditionson page 8 has been changed.  
The 3.3V Electrical Specificationson page 9 has been updated.  
page 8  
page 9  
page 9  
page 11  
page 11  
page 13  
page 5  
The 5.0V Electrical Specificationson page 9 has been updated.  
v2.0.1  
The Total Dynamic Power (mW)on page 11 is new.  
The System Power at 5%, 10%, and 15% Duty Cycle is new.  
The eX Timing Model*on page 13 has been updated.  
The I/O Features table, Table 1 on page 5, was updated.  
The table, 2.5V LP/Sleep Mode Specifications Typical Conditions, VCCA, VCCI =  
2.5V, TJ = 25° Con page 6, was updated.  
page 6  
Typical eX Standby Current at 25°Con page 8 is a new table.  
page 8  
The table in the section, Package Thermal Characteristicson page 12 has been  
updated for the 49-Pin CSP.  
page 11  
page 12  
pages 15-18  
page 18  
The eX Timing Model*on page 13 has been updated.  
Advanced v0.4  
The timing numbers found in, eX Family Timing Characteristicson page 16 have  
been updated.  
The VSV pin has been added to the Pin Descriptionon page 20.  
Please see the following pin tables for the VSV pin and an important footnote  
including the pin: 64-Pin TQFPon page 22,100-TQFPon page 24,49-Pin CSP”  
on page 25,128-CSPon page 27, and 180-Pin CSPon page 30.  
pages- 21, 23, 24,  
26, 27, 29  
The figure, 100-Pin TQFP (Top View)on page 23 has been updated.  
page 22  
page 1  
In the Product Profile table, the Maximum User I/Os for eX64 was changed to 84.  
Advanced v0.3  
In the Product Profile table, the Maximum User I/Os for eX128 was changed to 100. page 1  
The Mechanical Drawings section has been removed from the data sheet. The  
mechanical drawings are now contained in a separate document, Package  
Characteristics and Mechanical Drawings,available on the Actel web site.  
A new section describing Clock Resources has been added.  
A new table describing I/O Features has been added.  
page 5  
page 6  
page 21  
The Pin Description section has been updated and clarified.  
The original Electrical Specifications table was separated into two tables (2.5V and  
Page 8 and 9  
3.3/5.0V). In both tables, several different currents are specified for VOH and VOL  
.
Advanced v0.2  
A new table listing 2.5V low power specifications and associated power graphs were  
added.  
page 9  
Pin functions for eX256 TQ100 have been added to the 100-TQFP table.  
page 25  
page 26  
A CS49 pin drawing and pin assignment table including eX64 and eX128 pin  
functions have been added.  
A CS128 pin drawing and pin assignment table including eX64, eX128, and eX256  
pin functions have been added.  
pages 26-27  
pages 27, 31  
A CS180 pin drawing and pin assignment table for eX256 pin functions have been  
added.  
The following table note was added to the eX Timing Characteristics table for  
clarification: Clock skew improves as the clock network becomes more heavily  
loaded.  
Advanced v.1  
pages 14-15  
v3.0  
31  
eX Family FPGAs  
Data Sheet Categories  
In order to provide the latest information to designers, some data sheets are published before data has been fully  
characterized. Product Briefs are modified versions of data sheets. Data sheets are marked as Advanced,” “Preliminary,and  
Web-only.The definition of these categories are as follows:  
Product Brief  
The product brief is a modified version of an Advanced data sheet containing general product information. This brief  
summarizes specific device and family information for non-release products.  
Advanced  
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This  
information can be used as estimates, but not for production.  
Preliminary  
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be  
correct, but changes are possible.  
Unmarked (production)  
The data sheet contains information that is considered to be final.  
Web-only Versions  
Web-only versions have three numbers in the version number (example: v2.0.1). A web-only version means Actel is posting  
the data sheet so customers have the latest information, but we are not printing the version because some information is  
going to change shortly after posting.  
32  
v3.0  
eX Family FPGAs  
v3.0  
33  
eX Family FPGAs  
34  
v3.0  
eX Family FPGAs  
v3.0  
35  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Europe Ltd.  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Asia-Pacific  
Maxfli Court, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: +44 (0)1276 401450  
Fax: +44 (0)1276 401490  
Tel: (408) 739-1010  
Fax: (408) 739-1540  
Tel: +81 03-3445-7671  
Fax: +81 03-3445-7668  
5172154-4/12.01  

相关型号:

EX128-PTQ64X79

Field Programmable Gate Array, 256 CLBs, 6000 Gates, 357MHz, 384-Cell, CMOS, PQFP64, 0.50 MM PITCH, PLASTIC, TQFP-64
ACTEL

EX128-PTQG100

eX Automotive Family FPGAs
ACTEL

EX128-PTQG100A

eX Family FPGAs
ACTEL

EX128-PTQG100I

eX Family FPGAs
ACTEL

EX128-PTQG100I

暂无描述
MICROSEMI

EX128-PTQG100PP

eX Family FPGAs
ACTEL

EX128-TQ100

eX Family FPGAs
ACTEL

EX128-TQ100A

eX Automotive Family FPGAs
ACTEL

EX128-TQ100AX79

Field Programmable Gate Array, 6000 Gates, 250MHz, 384-Cell, CMOS, PQFP100, 1.40 MM PITCH, TQFP-100
ACTEL

EX128-TQ100I

eX Family FPGAs
ACTEL

EX128-TQ100PP

eX Family FPGAs
ACTEL

EX128-TQ100X79

Field Programmable Gate Array, 256 CLBs, 6000 Gates, 250MHz, 384-Cell, CMOS, PQFP100, 0.50 MM PITCH, PLASTIC, TQFP-100
ACTEL