FMMT560A [ETC]

;
FMMT560A
型号: FMMT560A
厂家: ETC    ETC
描述:

文件: 总247页 (文件大小:2448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Index of /ds/FM/  
Name  
Last modified  
Size Description  
Parent Directory  
FM24C256.pdf  
FM93C06.pdf  
FM93C46.pdf  
FM93C46A.pdf  
FM93C56.pdf  
FM93C56A.pdf  
FM93C66.pdf  
FM93C66A.pdf  
FM93C86A.pdf  
FM93CS06.pdf  
FM93CS46.pdf  
FM93CS56.pdf  
FM93CS66.pdf  
FMB100.pdf  
20-Aug-99 00:00 79K  
10-Jan-00 17:14 91K  
22-Dec-99 00:04 110K  
20-Jan-00 00:00 98K  
22-Dec-99 00:04 110K  
20-Jan-00 00:00 97K  
22-Dec-99 00:04 112K  
20-Jan-00 00:00 98K  
20-Jan-00 00:00 93K  
09-Feb-00 00:00 164K  
09-Feb-00 00:00 163K  
09-Feb-00 00:00 163K  
09-Feb-00 00:00 162K  
22-Dec-99 00:04 44K  
22-Dec-99 00:04 29K  
22-Dec-99 00:04 50K  
22-Dec-99 00:04 61K  
22-Dec-99 00:04 28K  
22-Dec-99 00:04 62K  
22-Dec-99 00:04 77K  
11-Feb-00 00:00 81K  
22-Dec-99 00:04 30K  
22-Dec-99 00:04 53K  
FMB1020.pdf  
FMB200.pdf  
FMB2222A.pdf  
FMB2227A.pdf  
FMB2907A.pdf  
FMB3904.pdf  
FMB3906.pdf  
FMB3946.pdf  
FMBA06.pdf  
FMBA0656.pdf  
FMBA14.pdf  
22-Dec-99 00:04 28K  
22-Dec-99 00:04 48K  
22-Dec-99 00:04 42K  
22-Dec-99 00:04 32K  
22-Dec-99 00:04 194K  
22-Dec-99 00:04 25K  
03-Dec-99 15:42 26K  
03-Dec-99 15:42 26K  
03-Dec-99 15:42 26K  
03-Dec-99 15:42 26K  
22-Dec-99 00:04 110K  
FMBA56.pdf  
FMKA140.pdf  
FMMT449.pdf  
FMMT549.pdf  
FMMT560.pdf  
FMMT560A.pdf  
FMMT660.pdf  
FMMT660A.pdf  
FMS2701.pdf  
PRELIMINARY  
August 1999  
FM24C256  
256 KBit 2-Wire Bus Interface  
Serial EEPROM with Write Protect  
General Description  
Features  
The FM24C256/C256L/C256LZ devices are 256 Kbits CMOS  
nonvolatile electrically erasable memory. These devices offer the  
designer different low voltage and low power options. They  
conform to all requirements in the Extended I2C™ 2-wire protocol.  
Furthermore, they are designed to minimize device pin count and  
simplify PC board layout requirements.  
I Extended Operating Voltages  
— C256: 4.5V - 5.5V  
— C256L: 2.7V - 5.5V  
— C256LZ: 2.7V - 5.5V  
I Low Power CMOS  
— 1mA active current typical  
— C256/C256L: 10µA standby current typical  
— C256LZ: less than 1µA standby current  
I 2-wire I2C serial interface  
The entire memory array can be disabled (Write Protection) by  
connecting the WP pin to VCC  
.
Functional address lines allow up to eight devices on the same  
bus, for up to a total of 2 Mbit address space.  
I 64 byte page write mode  
I Max write cycle time of 6ms byte/page  
I 40 years data retention  
The I2C communication protocol uses CLOCK (SCL) and DATA  
I/O (SDA) lines to synchronously clock data between the master  
(forexampleamicroprocessor)andtheslaveEEPROMdevice(s).  
I Endurance: 100,000 data changes  
I Hardware write protect for entire array  
I Schmitt trigger inputs for noise suppression  
I Electrostatic discharge protection > 4000V  
I 8-pin DIP and 8-pin SO (150 mil) packages  
Fairchild EEPROMs are designed and tested for applications  
requiring high endurance, high reliability, and low power con-  
sumption.  
Block Diagram  
WRITE  
LOCKOUT  
V
CC  
H.V. GENERATION  
TIMING &CONTROL  
WP  
START CYCLE  
START  
STOP  
SDA  
LOGIC  
CONTROL  
LOGIC  
SLAVE ADDRESS  
REGISTER &  
COMPARATOR  
2
E
PROM  
ARRAY  
XDEC  
SCL  
LOAD  
INC  
A2  
A1  
A0  
WORD  
ADDRESS  
COUNTER  
R/W  
YDEC  
CK  
D
OUT  
DATA REGISTER  
D
IN  
DS800023-1  
1
www.fairchildsemi.com  
© 1999 Fairchild Semiconductor Corporation  
FM24C256 rev. A.2  
 
Connection Diagram  
Dual-In-Line Package (N)  
and 8-Pin SO Package (M8)  
A0  
A1  
A2  
1
2
3
4
8
7
6
5
V
CC  
WP  
FM24C256  
FM24C256L  
FM24C256LZ  
SCL  
SDA  
V
SS  
DS800023-2  
Top View  
See Package Number N08E and M08A  
Pin Names  
A0, A1, A2  
VSS  
Device Address Input  
Ground  
SDA  
Data I/O  
SCL  
Clock Input  
WP  
Write Protect  
Power Supply  
VCC  
Ordering Information  
FM  
24  
C
XX  
F
LZ  
E
XX  
Letter Description  
Package  
N
M8  
8-pin DIP  
8-pin SO8  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
SCL Clock Frequency  
Density  
Blank  
F
100KHz  
400KHz  
256  
C
256K with write protect  
CMOS  
Interface  
24  
IIC - 2 Wire  
FM  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM24C256 rev. A.2  
Absolute Maximum Ratings  
Operating Conditions  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM24C256  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
FM24C256E  
FM24C256V  
6.5V to –0.3V  
Lead Temperature  
Positive Power Supply  
FM24C256  
(Soldering, 10 seconds)  
+300°C  
4.5V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
FM24C256L  
FM24C256LZ  
ESD Rating  
4000V min.  
Standard VCC (4.5V to 5.5V) DC Electrical Characteristics  
Symbol  
Parameter  
Test Conditions  
Limits  
Typ  
Units  
Min  
Max  
ICCA  
Active Power Supply Current  
fSCL = 100 kHz  
fSCL = 400 kHz  
0.5  
1.0  
mA  
ISB  
ILI  
Standby Current  
VIN = GND or VCC  
VIN = GND to VCC  
VOUT = GND to VCC  
10  
0.1  
0.1  
50  
µA  
µA  
µA  
V
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
1
1
ILO  
VIL  
VIH  
VOL  
–0.3  
VCC x 0.3  
VCC + 0.5  
0.4  
Input High Voltage  
Output Low Voltage  
VCC x 0.7  
V
IOL = 2.1 mA  
V
Low VCC (2.7V to 5.5V) DC Electrical Characteristics  
Symbol  
Parameter  
Test Conditions  
Limits  
Typ  
Units  
mA  
Min  
Max  
ICCA  
Active Power Supply Current  
fSCL = 100 kHz  
0.5  
1.0  
fSCL = 400 kHz  
ISB  
(Note 1)  
Standby Current for L  
Standby Current for LZ  
VIN = GND or VCC = 4.5V - 5.5V  
VIN = GND or VCC = 2.7V - 4.5V  
VIN = GND or VCC = 4.5V - 5.5V  
VIN = GND or VCC = 2.7V - 4.5V  
10  
1
10  
0.1  
50  
10  
50  
1
µA  
ILI  
ILO  
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
VIN = GND to VCC  
0.1  
0.1  
1
1
µA  
µA  
V
VOUT = GND to VCC  
VIL  
VIH  
VOL  
–0.3  
VCC x 0.3  
VCC + 0.5  
0.4  
Input High Voltage  
VCC x 0.7  
V
Output Low Voltage  
IOL = 2.1 mA  
V
Capacitance TA = +25°C, f = 1.0 MHz, VCC = 5V  
Symbol  
CI/O  
Test  
Conditions  
VI/O = 0V  
Max Units  
Input/Output Capacitance (SDA)  
Input Capacitance (A0, A1, A2, SCL)  
8
6
pF  
pF  
CIN  
VIN = 0V  
Note 1: Typical values are for T = 25°C and nominal supply voltage (5V).  
A
3
www.fairchildsemi.com  
FM24C256 rev. A.2  
AC Conditions of Test  
Input Pulse Levels  
VCC x 0.1 to VCC x 0.9  
10 ns  
Input Rise and Fall Times  
Input & Output Timing Levels VCC x 0.5  
Output Load  
1 TTL Gate and CL = 100 pF  
Read and Write Cycle Limits (Standard and Low VCC Range - 2.7V-5.5V)  
Symbol  
Parameter  
100 kHz  
Max  
400 kHz  
Max  
Units  
kHz  
Min  
Min  
fSCL  
TI  
SCL Clock Frequency  
100  
100  
3.5  
400  
Noise Suppression Time Constant at  
SCL, SDA Inputs (Minimum VIN  
Pulse width)  
50  
ns  
tAA  
SCL Low to SDA Data Out Valid  
0.3  
4.7  
0.3  
1.3  
1.2  
µs  
µs  
tBUF  
Time the Bus Must Be Free before  
a New Transmission Can Start  
tHD:STA  
tLOW  
Start Condition Hold Time  
Clock Low Period  
4.0  
4.7  
4.0  
4.7  
0.6  
1.5  
0.6  
0.6  
µs  
µs  
µs  
µs  
tHIGH  
Clock High Period  
tSU:STA  
Start Condition Setup Time  
(for a Repeated Start Condition)  
tHD:DAT  
tSU:DAT  
tR  
Data in Hold Time  
0
0
µs  
ns  
µs  
ns  
µs  
ns  
ms  
Data in Setup Time  
250  
100  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
Stop Condition Setup Time  
Data Out Hold Time  
1
0.3  
tF  
300  
300  
tSU:STO  
tDH  
4.7  
0.6  
100  
100  
tWR  
(Note 2)  
Write Cycle Time - FM24C256  
- FM24C256L, FM24C256LZ  
6
6
6
6
Note 2: The write cycle time (tWR) is the time from a valid stop condition of a write sequence to the end of the internal erase/program cycle. During the write cycle, the  
FM24C256 bus interface circuits are disabled, SDA is allowed to remain high per the bus-level pull-up resistor, and the device does not respond to its slave address  
4
www.fairchildsemi.com  
FM24C256 rev. A.2  
Bus Timing  
t
t
R
F
t
HIGH  
t
t
LOW  
LOW  
SCL  
t
SU:STO  
t
t
t
SU:DAT  
SU:STA  
HD:DAT  
t
HD:STA  
SDA  
IN  
t
BUF  
t
AA  
t
DH  
SDA  
OUT  
Note 3: SCL = Serial Clock Data  
DS800023-3  
SDA = Serial Data I/O  
BACKGROUND INFORMATION (I2C Bus)  
SERIAL DATA (SDA)  
As mentioned, the I2C bus allows synchronous bidirectional com-  
munication between Transmitter/Receiver using the SCL (clock)  
and SDA (Data I/O) lines. All communication must be started with a  
valid START condition, concluded with a STOP condition and  
acknowledgedbytheReceiverwithanACKNOWLEDGEcondition.  
SDA is a bidirectional pin used to transfer data to and from the  
device. It is an open drain output and may be wire-ORed with any  
number of open drain or open collector outputs.  
Device Address Inputs (A0, A1, A2)  
In addition, since the I2C bus is designed to support other devices  
such as RAM, EPROM, etc., the device type identifier string, or  
control byte, must follow the START condition. For EEPROMs, the  
first 4-bit of the control byte is 1010 binary for READ and WRITE  
operations. This is then followed by the device selection bits A2, A1  
and A0, and acts as the three most significant bits of the word  
address.The final bit in the control byte determines the type of  
operation performed (READ/WRITE). A "1" signifies a READ while  
a"0"signifiesaWRITE.Thecontrolbyteisthenfollowedbytwobytes  
that define the word address, which is then followed by the data byte.  
The EEPROMs on the I2C bus may be configured in any manner  
required, providing the total memory addressed does not exceed  
512Kbits(64Kbytes). EEPROMmemoryaddressingiscontrolled  
by hardware configuring the A2, A1, and A0 pins (Device Address  
pins) with pull-up or pull-down resistors. ALL UNUSED PINS  
MUST BE GROUNDED (tied to VSS).  
Device address pins A0, A1, and A2 are connected to VCC or VSS  
to configure the EEPROM address for multiple device configura-  
tion. A total of eight different devices can be attached to the same  
SDA bus.  
Write Protection (WP)  
If WP is tied to VCC, program WRITE operations onto the entire  
array of the memory will not be executed. READ operations are  
always available.  
If WP is tied to VSS, normal memory operation is enabled for  
READ/WRITE over the entire 256K bit memory array.  
Thisfeatureallowstheusertoassigntheentirearrayofthememory  
as ROM, which can be protected against accidental programming  
writes. When WRITE is disabled, slave address and word address  
will be acknowledged but data will not be acknowledged.  
Addressing an EEPROM memory location involves sending a  
command string with the following information:  
Device Operation  
The FM24C256xxx supports a bidirectional bus oriented protocol.  
The protocol defines any device that sends data onto the bus as a  
transmitter and the receiving devices as the receiver. The device  
controlling the transfer is the master and the device that is con-  
trolledistheslave.Themasterwillalwaysinitiatedatatransfersand  
provide the clock for both transmit and receive operations. There-  
fore, the FM24C256xxx is considered a slave in all applications.  
[DEVICE TYPE]-[DEVICE ADDRESS]-[PAGE BLOCK AD-  
DRESS]-[BYTE ADDRESS]  
Pin Description  
SERIAL CLOCK (SCL)  
Definitions  
CLOCK AND DATA CONVENTIONS  
Data states on the SDA line can change only during SCL LOW.  
SDA state changes during SCL HIGH and are reserved for  
indication of start and stop conditions. Refer to Figures 1 and 2.  
Word  
Page  
8 bits (byte) of data  
64 sequential addresses (one byte each) that  
may be programmed during a "Page Write"  
programming cycle.  
START CONDITION  
All commands are preceded by the start condition, which is a  
HIGH to LOW transition of SDA when SCL is HIGH. The  
FM24C256xxx continuously monitors the SDA and SCL lines for  
the start condition and will not respond to any command until this  
condition has been met.  
Master  
Any I2C device CONTROLLING the transfer of  
data (such as a microcontroller).  
Slave  
Device being controlled (EEPROMS are  
always considered Slaves).  
Transmitter  
Receiver  
Device currently SENDING data on the bus  
(may be either a Master or Slave).  
STOP CONDITION  
All communications are terminated by a stop condition, which is a  
LOW to HIGH transition of SDA when SCL is HIGH. The stop  
condition is also used by the FM24C256xxx to place the device in  
the standby power mode.  
Device currently receiving data on the bus  
(Master or Slave).  
The SCL input is used to clock all data into and out of the device.  
5
www.fairchildsemi.com  
FM24C256 rev. A.2  
both the device and a WRITE operation have been selected, the  
FM24C256xxx will respond with an acknowledge after the receipt  
of each subsequent eight bit word.  
Write Cycle Timing  
ACKNOWLEDGE  
ACK (acknowledge) is a software convention used to indicate  
successful data transfers. The transmitting device, either master or  
slave,willreleasethebusaftertransmittingeightbits.Duringtheninth  
clock cycle the receiver will pull the SDA line LOW to acknowledge  
that it received the eight bits of data. Refer to Figure 3.  
In the READ mode the FM24C256xxx slave will transmit eight bits  
of data, release the SDA line and monitor the line for an acknowl-  
edge. If an acknowledge is detected and no stop condition is  
generated by the master, the slave will continue to transmit data.  
If an acknowledge is not detected, the slave will terminate further  
data transmissions and await the stop condition to return to the  
standby power mode.  
The FM24C256xxx device will always respond with an acknowl-  
edge after recognition of a start condition and its slave address. If  
Write Cycle Timing:  
SCL  
SDA  
8th BIT  
WORD n  
ACK  
t
WR  
STOP  
CONDITION  
START  
CONDITION  
DS800023-4  
Data Validity (Figure 1)  
SCL  
SDA  
DATA  
CHANGE  
DATA STABLE  
DS800023-5  
Definition of Start and Stop (Figure 2)  
SCL  
SDA  
START CONDITION  
STOP CONDITION  
DS800023-6  
Acknowledge Response from Receiver (Figure 3)  
SCL FROM  
MASTER  
1
8
9
Data Output  
from Transmitter  
Data Output  
from Receiver  
START  
ACKNOWLEDGE  
DS800023-7  
6
www.fairchildsemi.com  
FM24C256 rev. A.2  
transfer by generating a stop condition, at which time the  
FM24C256xxx begins the internal write cycle to the nonvolatile  
memory. While the internal write cycle is in progress, the device's  
inputsaredisabledandthedevicewillnotrespondtoanyrequests  
from the master. Refer to Figure 5 for the address, acknowledge  
and data transfer sequence.  
DEVICE ADDRESSING  
Following a start condition the master must output the address of  
the slave it is accessing. The most significant four bits of the slave  
address are those of the device type identifier. This is fixed as  
1010 for all different FM24C256xxx devices.  
The next three bits identify the device address. Address from 000  
to 111 are acceptable thus allowing up to eight devices to be  
connected to the I2C bus.  
PAGE WRITE  
The FM24C256xxx is capable of 64 byte page write operation. It  
is initiated in the same manner as the byte write operation; but  
instead of termination the write cycle after the first data word is  
transfered, themastercantransmitupto63morewords. Afterthe  
receipt of each word, the device responds with an acknowledge.  
The last bit of the slave address defines whether a write or read  
condition is requested by the master. A "1" indicates that a READ  
operation is to be executed and a "0" initiates the WRITE mode.  
A simple review: After the FM24C256xxx recognizes the start  
condition, the device interfaced to the I2C bus waits for a slave  
address to be transmitted over the SDA line. If the transmitted  
slave address matches an address of one of the devices, the  
designated slave pulls the line LOW with an acknowledge signal  
and awaits further transmissions.  
After the receipt of each word, the internal address counter  
increments to the next address and the next SDA data is ac-  
cepted. If the master should transmit more than 64 words prior to  
generating the stop condition, the address counter will "roll over"  
and the previous written data will be overwritten. As with the byte  
write operation, all inputs are disabled until completion of the  
internal write cycle. Refer to Figure 6 for the address, acknowl-  
edge and data transfer sequence.  
Write Operations  
BYTE WRITE  
For a WRITE operation, two additional address fields are required  
afterthecontrolbyteacknowledge.Thesearethewordaddresses  
and are comprised of fifteen bits to provide access to any one of  
the 32K words. The first byte indicates the high-order byte of the  
wordaddress. Onlythesevenleastsignicantbitscanbechanged,  
themostsignificantbitispre-assignedthevalue"0". Followingthe  
acknowledgement from the first word address, the next byte  
indicates the low-order byte of the word address. Upon receipt of  
the word address, the FM24C256xxx responds with another  
acknowledge and waits for the next eight bits of data, again,  
responding with an acknowledge. The master then terminates the  
Acknowledge Polling  
Once the stop condition is isssued to indicate the end of the host's  
write operation, the FM24C256xxx initiates the internal write  
cycle. ACK polling can be initiated immediately. This involves  
issuingthestartconditionfollowedbytheslaveaddressforawrite  
operation. If the FM24C256xxx is still busy with the write opera-  
tion, noACKwillbereturned. Ifthedevicehascompletedthewrite  
operation, an ACK will be returned and the host can then proceed  
with the next read or write operation.  
Byte Write (Figure 5)  
S
S
SLAVE  
ADDRESS  
WORD  
ADDRESS (1)  
WORD  
ADDRESS (0)  
DATA  
T
A
R
T
T
O
P
Bus Activity:  
Master  
1
0
1 0  
0
SDA Line  
A
C
K
A
C
K
A
C
K
A
C
K
Bus Activity  
DS800023-8  
7
www.fairchildsemi.com  
FM24C256 rev. A.2  
withtheR/Wbitsetto"1", themastermustfirstperforma"dummy"  
write operation. The master issues a start condition, a slave  
address, and then the word address to be read. After the word  
address acknowledge, the master immediately reissues the start  
conditionandtheslaveaddresswiththeR/Wbitsetto"1". Thiswill  
be followed by an acknowledge from the FM24C256xxx and then  
by theeightbit word. The master willnotacknowledge the transfer  
but does generate the stop condition, and therefore the  
FM24C256xxx discontinues transmission. Refer to Figure 8 for  
the address, acknowledge, and data transfer sequence.  
Write Protection  
Programming of the memory array will not take place if the WP pin  
is connected to VCC. The device will accept control and word  
addresses; but if the memory accessed is write protected by the  
WPpin, theFM24C256xxxwillnotgenerateanacknowledgeafter  
the first byte of data has been received, and thus the program  
cycle will not be started when the stop condition is asserted.  
Read Operation  
Read operations are initiated in the same manner as write  
operations,withtheexceptionthattheR/Wbitoftheslaveaddress  
is set to "1". There are three basic read operations: current  
address read, random read and sequential read.  
SEQUENTIAL READ  
Sequential reads can be initiated as either a current address read  
or random access read. The first word is transmitted in the same  
manner as the other read modes; however, the master now  
responds with an acknowledge, indicating it requires additional  
data. The FM24C256xxx continues to output data for each ac-  
knowledge received. The read operation is terminated by the  
master not responding with an acknowledge or by generating a  
stop condition.  
CURRENT ADDRESS READ  
Internally the FM24C256xxx contains an address counter that  
maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) was to  
address n, the next read operation would access data from  
address n+1. Upon receipt of the slave address with R/W set to  
"1," the FM24C256xxx issues an acknowledge and transmits the  
eight bit word. The master will not acknowledge the transfer but  
does generate a stop condition, and therefore discontinues trans-  
mission. Refer to Figure 7 for the sequence of address, acknowl-  
edge and data transfer.  
The data output is sequential, with the data from address n,  
followedbythedatan+1. Theaddresscounterforreadoperations  
increments all word address bits, allowing the entire memory  
contents to be serially read during one operation. After the entire  
memory has been read, the counter "rolls over" and the  
FM24C256xxx continues to output data for each acknowledge  
received. Refer to Figure 9 for the address, acknowledge, and  
data transfer sequence.  
RANDOM READ  
Random read operations allow the master to access any memory  
location in a random manner. Prior to issuing the slave address  
Page Write (Figure 6)  
S
S
SLAVE  
ADDRESS  
WORD  
ADDRESS (1)  
WORD  
ADDRESS (0)  
DATA n  
DATA n+31  
T
A
R
T
T
O
P
Bus Activity:  
Master  
1
0
1 0  
0
SDA Line  
A
C
K
A
C
K
A
C
K
A
C
K
Bus Activity  
DS800023-9  
8
www.fairchildsemi.com  
FM24C256 rev. A.2  
Current Address Read (Figure 7)  
S
T
A
R
T
S
T
O
P
SLAVE ADDRESS  
1 0 1 0  
DATA  
A
C
K
NO  
DS800023-10  
A
C
K
Random Read (Figure 8)  
S
T
A
S
T
A
R
T
S
T
O
P
SLAVE  
WORD  
ADDRESS (1)  
WORD  
ADDRESS (0)  
SLAVE  
ADDRESS  
Bus Activity:  
R
DATA n  
ADDRESS  
Master  
T
1
0
1 0  
0
1 0 1 0  
1 0  
SDA Line  
A
C
K
A
C
K
A
C
K
A
C
K
NO  
A
C
K
Bus Activity  
DS800023-11  
Sequential Read (Figure 9)  
S
T
A
R
T
S
T
O
P
SLAVE  
ADDRESS  
DATA n  
DATA n + 1  
DATA n + x  
Bus Activity:  
Master  
1
0 1 0  
SDA Line  
A
C
K
A
C
K
A
C
K
A
C
K
NO  
A
C
Bus Activity  
K
DS800023-12  
9
www.fairchildsemi.com  
FM24C256 rev. A.2  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
3
5
4
0.228 - 0.244  
(5.791 - 6.198)  
1
2
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Out-Line Package (M8)  
Order Number FM24C256xxxM8 or FM24C256xxxEM8  
Package Number M08A  
10  
www.fairchildsemi.com  
FM24C256 rev. A.2  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
0.009 - 0.015  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
(0.508)  
Min  
(0.229 - 0.381)  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Order Number FM24C256xxxN or FM24C256xxxEN  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
11  
www.fairchildsemi.com  
FM24C256 rev. A.2  
December 1999  
FM93C06  
256-Bit Serial CMOS EEPROM  
(MICROWIRE™ Bus Interface)  
General Description  
Features  
The FM93C06 device is 256 bits of CMOS non-volatile electrically  
erasable memory organized as 16x16 bit array. They are fabri-  
cated using Fairchild Semiconductor's floating-gate CMOS pro-  
cess for high reliability, high endurance and low power consump-  
tion. These memory devices are available in an 8-pin SOIC or 8-  
pin TSSOP package for small space considerations.  
I Device status during programming mode  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No erase required before write  
I Reliable CMOS floating gate technology  
I 2.7V to 5.5V operation in all modes  
I MICROWIRE compatible serial l/O  
I Self-timed programming cycle  
I 40 years data retention  
FM93C06 is compatible with MICROWIRE serial interface, which  
offers simple interface to standard microcontrollers and micropro-  
cessors. There are 7 instructions which control this device: Read,  
WriteEnable, Erase, EraseAll, Write, WriteAll, andWriteDisable.  
The ready/busy status is available on the DO pin to indicate the  
completion of a programming cycle.  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC,  
AND CLOCK  
GENERATORS  
INSTRUCTION  
REGISTER  
DI  
HIGH VOLTAGE  
GENERATOR  
AND  
ADDRESS  
REGISTER  
PROGRAM  
TIMER  
VPP  
DECODER  
1 OF 16  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
DS800024-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C06  
www.fairchildsemi.com  
 
Connection Diagrams  
Dual-In-Line Package (N),  
8-Pin SO (M8) and 8-Pin TSSOP (MT8)  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
VCC  
NC  
NC  
DO  
GND  
DS800024-2  
Top View  
See Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
Chip Select  
SK  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
VCC  
Power Supply  
Ordering Information  
FM  
93  
C
XX LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Density  
06  
256 bit  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
FM  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C06  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C06  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C06E  
FM93C06V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
Standby Current  
CS = VIH, SK = 1MHz  
CS = VIL  
1
50  
1
mA  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1mA  
IOH = -400 µA  
0.4  
0.2  
1
V
V
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
V
V
VCC -0.2  
0
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
MHz  
ns  
tSKH  
FM93C06  
FM93C06E/V  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS  
Low Time  
(Note 4)  
250  
ns  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
50  
70  
ns  
ns  
ns  
tDIS  
FM93C06  
FM93C06E/V  
100  
200  
tCSH  
tDIH  
tPD  
CS Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ms  
DI Hold Time  
20  
Output Delay  
500  
500  
100  
10  
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
tWP  
3
www.fairchildsemi.com  
FM93C06  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Operating Temperature  
Ambient Storage Temperature  
–65°C to +150°C  
FM93C06L/LZ  
FM93C06LE/LZE  
FM93C06LV/LZV  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 4)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: StressabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamage  
to the device. This is a stress rating only and functional operation of the device at these or any other  
conditionsabovethoseindicatedintheoperationalsectionsofthespecificationisnotimplied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Note 2: Typical leakage values are in the 20nA range.  
Symbol  
COUT  
Test  
Typ Max Units  
Note 3: TheshortestallowableSKclockperiod=1/fSK (asshownunderthefSK parameter). Maximum  
SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated  
in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not  
allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
CIN  
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all internal  
device registers (device reset) prior to beginning another opcode cycle. (This is shown in the opcode  
diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C06  
Write (WRITE):  
Functional Description  
TheWRITEinstructionisfollowedbytheaddressand16bitsofdata  
to be written into the specified address. After the last bit of data is  
put in the data-in (DI) pin, CS must be brought low before the next  
rising edge of the SK clock. This falling edge of the CS initiates the  
self-timed programming cycle. The D0 pin indicates the READY/  
The FM93C06device has7 instructionsas describedbelow. Note  
that the MSB of any instruction is a “1” and is viewed as a start bit  
in the interface sequence. The next 8 bits carry the op code and  
the 6-bit address for register selection.  
Read (READ):  
BUSYstatusofthechipifCSisbroughthighafteraminimumoft  
.
CS  
D0 = logical 1 indicates that the register at the address specified in  
theinstructionhasbeenwrittenwiththedatapatternspecifiedinthe  
instruction and the part is ready for another instruction.  
The READ instruction outputs serial data on the D0 pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a 16-bit serial-out shift register. A dummy bit (logical  
0)precedesthe16-bitdataoutputstring. Outputdatachangesare  
initiated by a low to high transition of the SK clock.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
thememoryarrayandseteachbittothelogical1state.TheErase  
All cycle is identical to the ERASE cycle except for the different op-  
code. As in the ERASE mode, the DO pin indicates the READY/  
BUSY status of the chip if CS is brought high after the tCS interval.  
Write Enable (WEN):  
When VCC is applied to the part, it 'powers-up' in the Write Disable  
(WDS) state. Therefore, all programming modes must be pre-  
ceded by a Write Enable (WEN) instruction. Once a Write Enable  
instructionisexecuted,programmingremainsenableduntilaWrite  
Disable (WDS) instruction is executed or VCC is removed from the  
part.  
Write All (WRALL):  
The WRALL instruction will simultaneously program all registers  
with the data pattern specified in the instruction. As in the WRITE  
mode, the DO pin indicates the READY/BUSY status of the chip  
Erase (ERASE):  
if CS is brought high after the t interval.  
CS  
The ERASE instruction will program all bits in the specified  
register to the logical “1” state. CS is brought low following the  
loading of the last address bit. This falling edge of the CS pin  
initiates the self-timed programming cycle.  
Write Disable (WDS):  
To protect against accidental data disturb, the WDS instruction  
disables all programming modes and should follow all program-  
ming operations. Execution of a READ instruction is independent  
of both the WEN and WDS instructions.  
The DO pin indicates the READY/BUSY status of the chip if CS is  
broughthighafteraminimumtimeoftCS. DO=logical0indicates  
that the register, at the address specified in the instruction, has  
been erased, and the part is ready for another instruction.  
Note: The Fairchild CMOS EEPROMs do not require an "ERASE" or "ERASE ALL"  
operationpriortothe"WRITE"and"WRITEALL"instructions. The"ERASE"and"ERASE  
ALL"instructionsareincludedtomaintaincompatibilitywithearliertechnologyEEPROMs.  
Instruction Set for the FM93C06  
Instruction  
READ  
SB  
1
Op. Code  
Address  
00 A3 A2 A1 A0  
11xxxx  
Data  
Comments  
Reads data stored in memory, at specified address.  
Write enable must precede all programming modes.  
Erase selected register.  
10  
00  
11  
01  
00  
00  
00  
WEN  
1
ERASE  
WRITE  
ERAL  
1
00 A3 A2 A1 A0  
1
00 A3 A2 A1 A0 D15-D0  
10xxxx  
Writes selected register.  
1
Erases all registers.  
WRALL  
WDS  
1
01xxxx  
00xxxx  
D15-D0  
Writes all registers.  
1
Disables all programming instructions.  
Note:  
Address bits A5 and A4 should be set to '0' for READ, ERASE and WRITE instructions.  
x = Don't care  
5
www.fairchildsemi.com  
FM93C06  
Timing Diagrams  
Synchronous Data Timing  
V
IH  
CS  
SK  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
DS800024-4  
OL  
READ  
CS  
SK  
DI  
t
CS  
. . .  
1
1
0
0
0
A3  
A0  
. . .  
DO  
0
D15  
D0  
DS800024-5  
WEN  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
1
1
X
X
DS800024-6  
WDS  
CS  
SK  
DI  
tCS  
. . .  
1
0
0
0
0
X
X
DS800024-7  
6
www.fairchildsemi.com  
FM93C06  
Timing Diagrams (Continued)  
WRITE  
CS  
SK  
t
CS  
. . .  
. . .  
1
0
1
0
0
A3  
A0  
D15  
D0  
DI  
DO  
BUSY  
READY  
t
WP  
DS800024-8  
WRALL  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
0
1
DON'T CARE (4 BITS) D15  
D0  
DO  
BUSY  
READY  
t
WP  
DS800024-9  
ERASE  
t
CS  
CS  
SK  
STANDBY  
. . .  
DI  
1
1
1
0
0
A3  
A0  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800024-10  
ERAL  
t
CS  
CS  
STANDBY  
SK  
DI  
1
0
0
1
0
DON'T CARE BITS (4 BITS)  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800024-11  
7
www.fairchildsemi.com  
FM93C06  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Out-Line Package (M8)  
Package Number M08A  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
8
www.fairchildsemi.com  
FM93C06  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
3
5
4
0.092  
(2.337)  
Min  
0.250 - 0.005  
(6.35 0.127)  
Pin #1 IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
Option 2  
0.280  
(7.112)  
DIA  
0.040  
(1.016)  
Typ.  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
Max.  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
+0.040  
-0.015  
NOM  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
9
www.fairchildsemi.com  
FM93C06  
December 1999  
FM93C46  
1K-Bit Serial CMOS EEPROM  
(MICROWIRE™ Bus Interface)  
General Description  
Features  
The FM93C46 device is 1024 bits of CMOS non-volatile electri-  
cally erasable memory organized as 64x16 bit array. They are  
fabricated using Fairchild Semiconductor's floating-gate CMOS  
process for high reliability, high endurance and low power con-  
sumption. These memory devices are available in an 8-pin SOIC  
or 8-pin TSSOP package for small space considerations.  
I Device status during programming mode  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No erase required before write  
I Reliable CMOS floating gate technology  
I 2.7V to 5.5V operation in all modes  
I MICROWIRE compatible serial l/O  
I Self-timed programming cycle  
I 40 years data retention  
FM93C46 is compatible with MICROWIRE serial interface, which  
offers simple interface to standard microcontrollers and micropro-  
cessors. There are 7 instructions which control this device: Read,  
WriteEnable, Erase, EraseAll, Write, WriteAll, andWriteDisable.  
The ready/busy status is available on the DO pin to indicate the  
completion of a programming cycle.  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC,  
AND CLOCK  
GENERATORS  
INSTRUCTION  
REGISTER  
DI  
HIGH VOLTAGE  
GENERATOR  
AND  
ADDRESS  
REGISTER  
PROGRAM  
TIMER  
VPP  
DECODER  
1 OF 64  
EEPROM ARRAY  
READ/WRITE AMPS  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
DS800025-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C46  
www.fairchildsemi.com  
 
Connection Diagrams  
Dual-In-Line Package (N),  
8-Pin SO (M8) and 8-Pin TSSOP (MT8)  
Rotated Die (93C46T)  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CS  
SK  
DI  
NC  
VCC  
NC  
NC  
GND  
DO  
DI  
V
CC  
NC  
CS  
DO  
GND  
SK  
DS800025-2  
DS800025-12  
Top View  
See Package Number N08E, M08A and MTC08  
Pin Names  
CS  
Chip Select  
SK  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
VCC  
Power Supply  
Ordering Information  
FM  
93  
C
XX  
T
LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Blank  
T
Normal Pin Out  
Rotated Die Pin Out  
Density  
46  
1K  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
FM  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C46  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C46  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C46E  
FM93C46V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
2000V  
Standard VCC (4.5V to 5.5V) DC and AC Electrical Characteristics  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
Standby Current  
CS = VIH, SK = 1MHz  
CS = VIL  
1
50  
1
mA  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1mA  
IOH = -400 µA  
0.4  
0.2  
1
V
V
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
V
V
VCC -0.2  
0
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
MHz  
ns  
tSKH  
FM93C46  
FM93C46E/V  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS  
Low Time  
(Note 4)  
250  
ns  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
50  
70  
ns  
ns  
ns  
tDIS  
FM93C46  
FM93C46E/V  
100  
200  
tCSH  
tDIH  
tPD  
CS Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ms  
DI Hold Time  
20  
Output Delay  
500  
500  
100  
10  
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
tWP  
3
www.fairchildsemi.com  
FM93C46  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C46L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C46LE/LZE  
FM93C46LV/LZV  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 4.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 4.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 4)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Note 2: Typical leakage values are in the 20nA range.  
Symbol  
COUT  
Test  
Typ Max Units  
Note 3: The shortest allowable SK clock period = 1/fSK (as shown under the fSK parameter).  
Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC  
parametersstatedinthedatasheet.WithinthisSKperiod,bothtSKH andtSKL limitsmustbeobserved.  
Therefore,itisnotallowabletoset1/fSK =tSKHminimum +tSKLminimum forshorterSKcycletimeoperation.  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
CIN  
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all  
internaldeviceregisters(devicereset)priortobeginninganotheropcodecycle. (Thisisshowninthe  
opcode diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C46  
Write (WRITE):  
Functional Description  
TheWRITEinstructionisfollowedbytheaddressand16bitsofdata  
to be written into the specified address. After the last bit of data is  
put in the data-in (DI) pin, CS must be brought low before the next  
rising edge of the SK clock. This falling edge of the CS initiates the  
self-timed programming cycle. The D0 pin indicates the READY/  
The FM93C46device has7 instructionsas describedbelow. Note  
that the MSB of any instruction is a “1” and is viewed as a start bit  
in the interface sequence. The next 8 bits carry the op code and  
the 6-bit address for register selection.  
Read (READ):  
BUSYstatusofthechipifCSisbroughthighafteraminimumoft  
.
CS  
D0 = logical 1 indicates that the register at the address specified in  
theinstructionhasbeenwrittenwiththedatapatternspecifiedinthe  
instruction and the part is ready for another instruction.  
The READ instruction outputs serial data on the D0 pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a 16-bit serial-out shift register. A dummy bit (logical  
0)precedesthe16-bitdataoutputstring. Outputdatachangesare  
initiated by a low to high transition of the SK clock.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
thememoryarrayandseteachbittothelogical1state.TheErase  
All cycle is identical to the ERASE cycle except for the different op-  
code. As in the ERASE mode, the DO pin indicates the READY/  
BUSY status of the chip if CS is brought high after the tCS interval.  
Write Enable (WEN):  
When VCC is applied to the part, it 'powers-up' in the Write Disable  
(WDS) state. Therefore, all programming modes must be pre-  
ceded by a Write Enable (WEN) instruction. Once a Write Enable  
instructionisexecuted,programmingremainsenableduntilaWrite  
Disable (WDS) instruction is executed or VCC is removed from the  
part.  
Write All (WRALL):  
The WRALL instruction will simultaneously program all registers  
with the data pattern specified in the instruction. As in the WRITE  
mode, the DO pin indicates the READY/BUSY status of the chip  
Erase (ERASE):  
if CS is brought high after the t interval.  
CS  
The ERASE instruction will program all bits in the specified  
register to the logical “1” state. CS is brought low following the  
loading of the last address bit. This falling edge of the CS pin  
initiates the self-timed programming cycle.  
Write Disable (WDS):  
To protect against accidental data disturb, the WDS instruction  
disables all programming modes and should follow all program-  
ming operations. Execution of a READ instruction is independent  
of both the WEN and WDS instructions.  
The DO pin indicates the READY/BUSY status of the chip if CS is  
broughthighafteraminimumtimeoftCS. DO=logical0indicates  
that the register, at the address specified in the instruction, has  
been erased, and the part is ready for another instruction.  
Note: The Fairchild CMOS EEPROMs do not require an "ERASE" or "ERASE ALL"  
operationpriortothe"WRITE"and"WRITEALL"instructions. The"ERASE"and"ERASE  
ALL"instructionsareincludedtomaintaincompatibilitywithearliertechnologyEEPROMs.  
Instruction Set for the FM93C46  
Instruction  
READ  
SB  
1
Op. Code  
Address  
A5-A0  
Data  
Comments  
Reads data stored in memory, at specified address.  
Write enable must precede all programming modes.  
Erase selected register.  
10  
00  
11  
01  
00  
00  
00  
WEN  
1
11xxxx  
A5-A0  
ERASE  
WRITE  
ERAL  
1
1
A5-A0  
D15-D0  
D15-D0  
Writes selected register.  
1
10xxxx  
01xxxx  
00xxxx  
Erases all registers.  
WRALL  
WDS  
1
Writes all registers.  
1
Disables all programming instructions.  
x = Don't care.  
5
www.fairchildsemi.com  
FM93C46  
Timing Diagrams  
Synchronous Data Timing  
V
IH  
CS  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
SK  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800025-4  
READ  
CS  
SK  
DI  
t
CS  
. . .  
1
1
0
A5  
A0  
. . .  
DO  
0
D15  
D0  
DS800025-5  
WEN  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
1
1
X
X
DS800025-6  
WDS  
CS  
SK  
DI  
tCS  
. . .  
1
0
0
0
0
X
X
DS800025-7  
6
www.fairchildsemi.com  
FM93C46  
Timing Diagrams (Continued)  
WRITE  
CS  
SK  
t
CS  
. . .  
1
0
1
A5  
A0  
D15  
D0  
DI  
DO  
BUSY  
READY  
t
WP  
DS800025-8  
WRALL  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
0
1
DON'T CARE (4 BITS) D15  
D0  
DO  
BUSY  
READY  
t
WP  
DS800025-9  
ERASE  
t
CS  
CS  
SK  
STANDBY  
. . .  
DI  
1
1
1
A5  
A4  
A3  
A0  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800025-10  
ERAL  
t
CS  
CS  
STANDBY  
SK  
DI  
1
0
0
1
0
DON'T CARE BITS (4 BITS)  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800025-11  
7
www.fairchildsemi.com  
FM93C46  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Out-Line Package (M8)  
Package Number M08A  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
8
www.fairchildsemi.com  
FM93C46  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
9
www.fairchildsemi.com  
FM93C46  
January 2000  
FM93C46A  
1K-Bit Serial CMOS EEPROM  
(MICROWIRE™ Synchronous Bus)  
General Description  
Features  
The FM93C46A is 1024 bits of CMOS nonvolatile EEPROM  
(Electrically Erasable Programmable Read Only Memory) with  
MICROWIRE serial interface. FM93C46A can be configured for  
either 64 x 16 bit or 128 x 8 bit array using an organization (ORG)  
inputpin.ThisdeviceisfabricatedusingFairchildSemiconductor's  
floating gate CMOS process for high reliability, high endurance  
and low power consumption. This device is available in 8-pin DIP,  
SO and TSSOP packages.  
I 2.7V to 5.5V operation in all modes  
I Typical active current 200µA  
10 µA standby current typical  
1 µA standby current typical (L)  
0.1 µA standby current typical (LZ)  
I Self-timed programming cycle  
I Device status indication during programming mode  
I No erase required before write  
The MICROWIRE serial interface offered by this EEPROM en-  
ables simple interface to a wide variety of microcontrollers and  
microprocessors. There are 7 instructions that operate the  
FM93C46A: Read, Erase/Write Enable, Erase, Write, Erase/  
Write Disable, Write All and Erase All.  
I Reliable CMOS floating gate technology  
I MICROWIRE compatible serial I/O  
I 40 years data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin TSSOP, 8-pin SO, 8-pin DIP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
CS  
V
CC  
Instruction  
Decoder  
SK  
Control Logic,  
And Clock  
Generators  
Instruction  
Register  
DI  
High Voltage  
Generator  
And  
Address  
Register  
ORG  
Program  
Timer  
V
PP  
EEPROM Array  
1024 Bits  
(64x16) or (128x8)  
Decoder  
1 of 64  
(or 128)  
Read/Write Amps  
Data In/Out Register  
16 (or 8) Bits  
GND  
Data Out Buffer  
DO  
DS800028-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C46A Rev. A  
www.fairchildsemi.com  
 
Connection Diagrams  
Dual-In-Line Package (N),  
8-Pin SO Package (M8)  
Rotated Die  
(93C46AT)  
and 8-Pin TSSOP Package (MT8)  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
NC  
CS  
SK  
DI  
ORG  
V
CC  
V
V
NC  
CC  
CS  
SS  
FM93C46A  
FM93C46A  
DO  
DI  
ORG  
SK  
DO  
V
SS  
DS800028-2  
Top View  
See Package Number N08E, M08A and MTC08  
Pin Names  
CS  
SK  
Chip Select  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
VSS  
ORG  
NC  
VCC  
Memory Organizational Select  
No Connect  
Positive Power Supply  
Ordering Information  
FM 93 XX  
C
A
T
LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Blank  
T
Normal Pin Out  
Rotated Die Pin Out  
A
x8 or x16 Configuration  
1K  
Density  
46  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
FM  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C46A Rev. A  
Absolute Maximum Ratings (Note 1)  
Ambient Storage Temperature  
-65°C to +150°C  
Operating Range  
Ambient Operating Temperature  
FM93C46A  
All Input or Output Voltages:  
with Respect to Ground  
VCC +1 to -0.3V  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
FM93C46AE  
FM93C46AV  
Lead Temperature  
(Soldering, 10 Seconds)  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
EDS Rating  
2000V  
Standard VCC (4.5V to 5.5V) DC and AC Electrical Characteristics  
Symbol  
ICCA  
Parameter  
Operating Current  
Standby Current  
Input Leakage  
Part Number  
Conditions  
CS = VIH ,SK=1 MHz  
Min  
Max  
Units  
mA  
1
50  
1
ICCS  
CS = 0V, ORG = VCC or NC  
VIN = 0V to VCC (Note 2)  
µA  
IIL  
-1  
µA  
IILO  
Input Leakage  
ORG Pin  
ORG tied to VCC  
ORG tied to VSS (Note 3)  
-1  
-2.5  
1
2.5  
µA  
IOL  
VIL  
Output Leakage  
VIN = 0V to VCC  
-1  
-0.1  
2
1
0.8  
µA  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
SK Clock Frequency  
SK High Time  
VIH  
VCC +1  
0.4  
V
VOL1  
VOH1  
VOL2  
VOH2  
fSK  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOL = -10 µA  
(Note 4)  
V
2.4  
V
0.2  
1
V
VCC - 0.2  
0
V
MHz  
ns  
tSKH  
FM93C46A  
FM93C46AE/V  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
tCSS  
tDH  
Minimum CS  
(Note 5)  
250  
50  
ns  
ns  
ns  
ns  
CS Setup Time  
DO Hold Time  
DI Setup Time  
70  
tDIS  
FM93C46A  
FM93C46AE/V  
100  
200  
tCSH  
tDIH  
tPD  
CS Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ms  
DI Hold Time  
20  
Output Delay  
500  
500  
100  
10  
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
tWP  
3
www.fairchildsemi.com  
FM93C46A Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Operating Temperature  
Ambient Storage Temperature  
–65°C to +150°C  
FM93C46AL/LZ  
FM93C46ALE/LZE  
FM93C46A LV/LZV  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
Input Leakage  
VIN = 0V to VCC (Note 2)  
1
µA  
µA  
IILO  
Input Leakage  
ORG Pin  
ORG tied to VCC  
ORG tied to VSS (Note 3)  
-1  
-2.5  
1
2.5  
IOL  
Output Leakage  
VIN = 0V to VCC  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 4)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 5)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz  
Symbol  
Test  
Typ Max Units  
Note 2: Typical leakage values are in the 20 nA range.  
Note 3: The ORG pin may draw > 1 µA when in the x8 mode ude to an internal pull-up transistor.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: The shortest allowable SK clock period = 1/fSK (as shown under the fSK fSK parameter).  
Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC  
parameters stated in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed.  
Therefore, it is not allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
Note 5: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all  
internal device registers (device reset) prior to beginning another opcode cycle. (This is shown in  
the opcode diagrams in the following pages.)  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C46A Rev. A  
Serial Clock (SK):  
MICROWIRE I/O Pin Description  
This pin is the clock input (rising edge active) for clocking in all  
opcodesanddataontheDIpinandclockingoutalldataontheDO  
pin.However,thispinhasnoeffectontheasynchronousprogram-  
ming cycle (see the CS pin section) as the BUSY/READY status  
is a function of the CS pin only.  
Chip Select (CS):  
This pin enables and disables the MICROWIRE device and  
performs 3 general functions:  
1. When in the low state, the MICROWIRE device is disabled  
and the output tri-stated (high impedance). If this pin is  
brought high (rising edge active), all internal registers are  
reset and the device is enabled, allowing MICROWIRE  
communication via DI/DO pins. To restate, the CS pin must  
be held high during all device communication and opcode  
functions. If the CS pin is brought low, all functions will be  
disabled and reset when CS is brought high again. The  
exception to this is when a programming cycle is initiated  
(see 2 and 3). Again, all activity on the CS, DI and DO pins  
is ignored until CS is brought high.  
Data-In (DI):  
All serial communication into the device is performed using this  
input pin (rising edge active). In order to avoid false Start Bits, or  
related issues, it is advised to keep the DI pin in the low state  
unless actually clocking in data bits (Start Bit, Opcode, Address or  
incoming data bits to be programmed). Please note that the first  
'1' clocked into the device (after CS is brought high) is seen as a  
Start Bit and the beginning of a serial command string, so caution  
must be observed when bringing CS high.  
2. After entering all required opcode and address data, bringing  
CS low initiates the (asynchronous) programming cycle.  
Data-Out (DO):  
All serial communication out of the device, Read Data ( during  
normal reads) as well as READY/BUSY status indication ( during  
programming ) are performed using this output pin. Note that,  
during READ operations, the EEPROM device starts to drive the  
DO output pin "active" after the last address bit (A0) is clocked in.  
Hence in applications where 3-wire configuration is required (  
whereDIandDOpinsaretiedtogether)cautionmustbeobserved  
for correct operation. Please refer AN-758 for further information.  
3. When programming is in progress, the Data-Out pin will  
display the programming status as either BUSY (DO low) or  
READY (DO high) when CS is brought high. (Again, the  
output will be tri-stated when CS is low.) To restate, during  
programming, the CS pin may be brought high and low any  
number of times to view the programming status without  
affect the programming operation. Once programming is  
completed (Output in READY state), the output is 'cleared'  
(returned to normal tri-state condition) by clocking in a Start  
Bit. After the Start Bit is clocked in, the output will return to a  
tri-stated condition. When clocked in, this Start Bit can be the  
first bit in a command string, or CS can be brought low again  
to reset all internal circuits.  
Organization (ORG):  
This pin controls the device architecture (8-bit data word vs. 16-bit  
data word). If the ORG pin is brought to VCC, the device is  
configured with a 16-bit data word and if the ORG pin is brought  
to VSS (Ground), the device is configured with an 8-bit data word.  
If the ORG pin is left floating, the device will default to a 16-bit data  
word.  
Instruction Set for the FM93C46A  
ORG  
Memory  
Pin  
Logic  
Configuration  
# of Address Bits  
0
1
128 x 8  
64 x 16  
7 Bits  
6 Bits  
5
www.fairchildsemi.com  
FM93C46A Rev. A  
64 by 16-Bit Organization (FM93C46A when ORG = VCC or NC)  
Instruction  
SB  
OP-Code  
2 Bits  
Address  
6 Bits  
Data  
16 Bits  
Comments  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
10  
00  
00  
11  
01  
00  
00  
A5–A0  
11XXXX  
00XXXX  
A5–A0  
Read data stored in selected registers.  
Enables programming modes.  
Disables all programming modes.  
Erases selected register.  
A5–A0  
D15–D0  
D15–D0  
Writes data pattern D15–D0 into selected register.  
Erases all registers.  
10XXXX  
01XXXX  
WRAL  
Writes data pattern D15–D0 into all registers.  
X = Don't care.  
128 by 8-Bit Organization (FM93C46A when ORG = GND)  
Instruction  
SB  
OP-Code  
2 Bits  
Address  
7 Bits  
Data  
8 Bits  
Comments  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
10  
00  
00  
11  
01  
00  
00  
A6–A0  
11XXXXX  
00XXXXX  
A6–A0  
Read data stored in selected registers.  
Enables programming modes.  
Disables all programming modes.  
Erases selected register.  
A6–A0  
D7–D0  
D7–D0  
Writes data pattern D7–D0 into selected register.  
Erases all registers.  
10XXXXX  
01XXXXX  
WRAL  
Writes data pattern D7–D0 into all registers.  
X = Don't care.  
Functional Description  
Programming:  
Read (READ):  
1. Programming is initiated by clocking in the Start Bit, Opcode  
bits, Address bits and the 8/16 data bits (refer to the ORG  
pin section).  
The READ instruction outputs serial data on the DO pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a serial-out shift register. A dummy bit (logical 0)  
precedes the serial data output string. Output data changes are  
initiated by a low to high transition of SK after the last address bit  
(A0) is clocked in.  
2. Programming is started by bringing the CS pin low. Once the  
programming cycle is started, it cannot be stopped. (Bringing  
VCC low will stop any programming, but will also result in  
data corruption.)  
3. The status of the programming cycle (BUSY or READY) is  
observed by bringing the CS pin high and observing the  
output state. If the output is LOW, the device is still program-  
ming (BUSY). If the output is HIGH, the programming cycle  
has been completed and the device is ready for the next  
operation. Note that the output will be tri-stated each time  
CS is brought low and the READY/BUSY status will be  
shown each time CS is brought high.  
Erase/Write Enable (EWEN):  
When VCC is applied to the part, it “powers up” in the Erase/Write  
Disable (EWDS) state. Therefore, all programming modes must  
be preceded by an Erase/Write Enable (EWEN) instruction. Once  
an Erase/Write Enable instruction is executed, programming  
remains enabled until an Erase/Write Disable (EWDS) instruction  
is executed or VCC is removed from the part.  
4. After programming, the READY state (output HIGH) can be  
reset and the output tri-stated by clocking in a single Start  
Bit. This Start Bit can be the first bit in a command string, or  
CS can be brought low again to reset all internal circuits. In  
any case, clocking in a '1' bit will tri-state the output.  
6
www.fairchildsemi.com  
FM93C46A Rev. A  
Write (WRITE):  
Functional Description (Continued)  
The WRITE instruction is followed by 16 bits of data (or 8 bits of  
data when using the FM93C46A in the x8 organization) to be  
written into the specified address. Please refer to the Program-  
ming section for details.  
Erase/Write Disable (EWDS):  
To protect against accidental data overwrites, the Erase/Write  
Disable (EWDS) instruction disables all programming modes and  
should follow all programming operations. Execution of a READ  
instruction is independent of both the EVEN and EWDS instruc-  
tions.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
the memory array to the logical 1state.  
Erase (ERASE):  
Write All (WRAL):  
The ERASE instruction will program all bits in the specified  
register to the logical 1state. Please refer to the Programming  
section for details.  
The WRAL instruction will simultaneously program all registers  
with the data pattern specified in the instruction.  
Timing Diagrams for the FM93C46A  
Synchronous Data Timing  
V
IH  
CS  
SK  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800028-4  
7
www.fairchildsemi.com  
FM93C46A Rev. A  
Timing Diagrams for the FM93C46A (Continued)  
Key for Timing Diagrams  
Organization of Address and Data Fields for FM93C46A  
ORG Pin  
VCC or NC  
VSS  
Organization  
64 x 16  
AN  
A5  
A6  
DN  
D15  
D7  
128 x 8  
READ  
CS  
SK  
DI  
tCS  
. . .  
1
1
0
AN  
A0  
. . .  
DO  
0
DN  
D0  
DS800028-5  
EWEN  
DO = HI-Z  
tCS  
CS  
SK  
DI  
. . .  
X
X
1
0
0
1
1
ORG = V , 4 X'S  
CC  
DS800028-6  
ORG = V , 5 X'S  
SS  
EWDS  
DO = HI-Z  
tCS  
CS  
SK  
DI  
. . .  
X
X
1
0
0
0
0
ORG = V , 4 X'S  
CC  
DS800028-7  
ORG = V , 5 X'S  
SS  
ERASE  
tCS  
CS  
SK  
Standby  
DI  
. . .  
AN  
1
1
1
A0  
HI-Z  
HI-Z  
Busy  
Ready  
DO  
DS800028-8  
tWP  
8
www.fairchildsemi.com  
FM93C46A Rev. A  
Timing Diagrams for the FM93C46A (Continued)  
WRITE  
tCS  
CS  
SK  
. . .  
. . .  
1
0
1
AN  
A0 DN  
D0  
DI  
Busy  
tWP  
Ready  
DO  
DS800028-9  
ERAL  
tCS  
CS  
STANDBY  
SK  
DI  
. . .  
1
0
0
1
0
X
X
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
DO  
BUSY  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800028-10  
WRAL  
tCS  
CS  
STANDBY  
SK  
DI  
. . .  
. . .  
D0  
1
0
0
0
1
X
X
DN  
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
DO  
BUSY  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800028-11  
9
www.fairchildsemi.com  
FM93C46A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Outline Package (M8)  
Package Number M08A  
10  
www.fairchildsemi.com  
FM93C46A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
11  
www.fairchildsemi.com  
FM93C46A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
12  
www.fairchildsemi.com  
FM93C46A Rev. A  
December 1999  
FM93C56  
2K-Bit Serial CMOS EEPROM  
(MICROWIRE™ Bus Interface)  
General Description  
Features  
The FM93C56 device is 2048 bits of CMOS non-volatile electri-  
cally erasable memory organized as 128x16 bit array. They are  
fabricated using Fairchild Semiconductor's floating-gate CMOS  
process for high reliability, high endurance and low power con-  
sumption. These memory devices are available in an 8-pin SOIC  
or 8-pin TSSOP package for small space considerations.  
I Device status during programming mode  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No erase required before write  
I Reliable CMOS floating gate technology  
I 2.7V to 5.5V operation in all modes  
I MICROWIRE compatible serial l/O  
I Self-timed programming cycle  
I 40 years data retention  
FM93C56 is compatible with MICROWIRE serial interface, which  
offers simple interface to standard microcontrollers and micropro-  
cessors. There are 7 instructions which control this device: Read,  
WriteEnable, Erase, EraseAll, Write, WriteAll, andWriteDisable.  
The ready/busy status is available on the DO pin to indicate the  
completion of a programming cycle.  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC,  
AND CLOCK  
GENERATORS  
INSTRUCTION  
REGISTER  
DI  
HIGH VOLTAGE  
GENERATOR  
AND  
ADDRESS  
REGISTER  
PROGRAM  
TIMER  
VPP  
DECODER  
1 OF 128  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
DS800026-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C56  
www.fairchildsemi.com  
 
Connection Diagrams  
Dual-In-Line Package (N),  
8-Pin SO (M8) and 8-Pin TSSOP (MT8)  
Rotated Die (93C56T)  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CS  
SK  
DI  
NC  
VCC  
NC  
NC  
GND  
DO  
DI  
V
CC  
NC  
CS  
DO  
GND  
SK  
DS800026-2  
DS800026-12  
Top View  
See Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
Chip Select  
SK  
Serial Data Clock  
Serial Data Input  
DI  
DO  
GND  
VCC  
Serial Data Output  
Ground  
Power Supply  
Ordering Information  
FM  
93  
C
XX  
T
LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Blank  
T
Normal Pin Out  
Rotated Die Pin Out  
Density  
56  
2K  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
FM  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C56  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C56  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C56E  
FM93C56V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
Standby Current  
CS = VIH, SK = 1MHz  
CS = VIL  
1
50  
1
mA  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1mA  
IOH = -400 µA  
0.4  
0.2  
1
V
V
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
V
V
VCC -0.2  
0
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
MHz  
ns  
tSKH  
FM93C56  
FM93C56E/V  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS  
Low Time  
(Note 4)  
250  
ns  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
50  
70  
ns  
ns  
ns  
tDIS  
FM93C56  
FM93C56E/V  
100  
200  
tCSH  
tDIH  
tPD  
CS Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ms  
DI Hold Time  
20  
Output Delay  
500  
500  
100  
10  
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
tWP  
3
www.fairchildsemi.com  
FM93C56  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C56L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C56LE/LZE  
FM93C56LV/LZV  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 4)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Symbol  
Test  
Typ Max Units  
Note 2: Typical leakage values are in the 20nA range.  
Note 3: The shortest allowable SK clock period = 1/fSK (as shown under the fSK parameter).  
Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC  
parametersstatedinthedatasheet.WithinthisSKperiod,bothtSKH andtSKL limitsmustbeobserved.  
Therefore,itisnotallowabletoset1/fSK =tSKHminimum +tSKLminimum forshorterSKcycletimeoperation.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all  
internaldeviceregisters(devicereset)priortobeginninganotheropcodecycle. (Thisisshowninthe  
opcode diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C56  
Write (WRITE):  
Functional Description  
TheWRITEinstructionisfollowedbytheaddressand16bitsofdata  
to be written into the specified address. After the last bit of data is  
put in the data-in (DI) pin, CS must be brought low before the next  
rising edge of the SK clock. This falling edge of the CS initiates the  
self-timed programming cycle. The D0 pin indicates the READY/  
The FM93C56device has7 instructionsas describedbelow. Note  
that the MSB of any instruction is a “1” and is viewed as a start bit  
in the interface sequence. The next 10 bits carry the op code and  
the 8-bit address for register selection.  
Read (READ):  
BUSYstatusofthechipifCSisbroughthighafteraminimumoft  
.
CS  
D0 = logical 1 indicates that the register at the address specified in  
theinstructionhasbeenwrittenwiththedatapatternspecifiedinthe  
instruction and the part is ready for another instruction.  
The READ instruction outputs serial data on the D0 pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a 16-bit serial-out shift register. A dummy bit (logical  
0)precedesthe16-bitdataoutputstring. Outputdatachangesare  
initiated by a low to high transition of the SK clock.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
thememoryarrayandseteachbittothelogical1state.TheErase  
All cycle is identical to the ERASE cycle except for the different op-  
code. As in the ERASE mode, the DO pin indicates the READY/  
BUSY status of the chip if CS is brought high after the tCS interval.  
Write Enable (WEN):  
When VCC is applied to the part, it 'powers-up' in the Write Disable  
(WDS) state. Therefore, all programming modes must be pre-  
ceded by a Write Enable (WEN) instruction. Once a Write Enable  
instructionisexecuted,programmingremainsenableduntilaWrite  
Disable (WDS) instruction is executed or VCC is removed from the  
part.  
Write All (WRALL):  
The WRALL instruction will simultaneously program all registers  
with the data pattern specified in the instruction. As in the WRITE  
mode, the DO pin indicates the READY/BUSY status of the chip  
Erase (ERASE):  
if CS is brought high after the t interval.  
CS  
The ERASE instruction will program all bits in the specified  
register to the logical “1” state. CS is brought low following the  
loading of the last address bit. This falling edge of the CS pin  
initiates the self-timed programming cycle.  
Write Disable (WDS):  
To protect against accidental data disturb, the WDS instruction  
disables all programming modes and should follow all program-  
ming operations. Execution of a READ instruction is independent  
of both the WEN and WDS instructions.  
The DO pin indicates the READY/BUSY status of the chip if CS is  
broughthighafteraminimumtimeoftCS. DO=logical0indicates  
that the register, at the address specified in the instruction, has  
been erased, and the part is ready for another instruction.  
Note: The Fairchild CMOS EEPROMs do not require an "ERASE" or "ERASE ALL"  
operationpriortothe"WRITE"and"WRITEALL"instructions. The"ERASE"and"ERASE  
ALL"instructionsareincludedtomaintaincompatibilitywithearliertechnologyEEPROMs.  
Instruction Set for the FM93C56  
Instruction  
READ  
SB  
1
Op. Code  
Address  
A7-A0  
Data  
Comments  
Reads data stored in memory, at specified address.  
Write enable must precede all programming modes.  
Erase selected register.  
10  
00  
11  
01  
00  
00  
00  
WEN  
1
11xxxxxx  
A7-A0  
ERASE  
WRITE  
ERAL  
1
1
A7-A0  
D15-D0  
D15-D0  
Writes selected register.  
1
10xxxxxx  
01xxxxxx  
00xxxxxx  
Erases all registers.  
WRALL  
WDS  
1
Writes all registers.  
1
Disables all programming instructions.  
Note:  
Note:  
A7 is "don't care" bit, but must be included in the address string.  
x = Don't care.  
5
www.fairchildsemi.com  
FM93C56  
Timing Diagrams  
Synchronous Data Timing  
V
IH  
CS  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
SK  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800026-4  
READ  
CS  
SK  
DI  
t
CS  
. . .  
1
1
0
A7  
A0  
. . .  
DO  
0
D15  
D0  
DS800026-5  
WEN  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
1
1
X
X
DS800026-6  
WDS  
CS  
SK  
DI  
tCS  
. . .  
1
0
0
0
0
X
X
DS800026-7  
6
www.fairchildsemi.com  
FM93C56  
Timing Diagrams (Continued)  
WRITE  
CS  
SK  
t
CS  
. . .  
1
0
1
A7  
A0  
D15  
D0  
DI  
DO  
BUSY  
READY  
t
WP  
DS800026-8  
WRALL  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
0
1
DON'T CARE (6 BITS) D15  
D0  
DO  
BUSY  
READY  
t
WP  
DS800026-9  
ERASE  
t
CS  
CS  
SK  
STANDBY  
. . .  
DI  
1
1
1
A7  
A6  
A5  
A0  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800026-10  
ERAL  
t
CS  
CS  
STANDBY  
SK  
DI  
1
0
0
1
0
DON'T CARE BITS (6 BITS)  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800026-11  
7
www.fairchildsemi.com  
FM93C56  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Out-Line Package (M8)  
Package Number M08A  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
8
www.fairchildsemi.com  
FM93C56  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
9
www.fairchildsemi.com  
FM93C56  
January 2000  
FM93C56A  
2K-Bit Serial CMOS EEPROM  
(MICROWIRE™ Synchronous Bus)  
General Description  
Features  
The FM93C56A is 2048 bits of CMOS nonvolatile EEPROM (  
Electrically Erasable Programmable Read Only Memory) with  
MICROWIRE serial interface. FM93C56A can be configured for  
either 128 x 16 bit or 256 x 8 bit array using an organization (ORG)  
inputpin.ThisdeviceisfabricatedusingFairchildSemiconductor's  
floating gate CMOS process for high reliability, high endurance  
and low power consumption. This device is available in 8-pin DIP,  
SO and TSSOP packages.  
I 2.7V to 5.5V operation in all modes  
I Typical active current 200µA  
10 µA standby current typical  
1 µA standby current typical (L)  
0.1 µA standby current typical (LZ)  
I Self-timed programming cycle  
I Device status indication during programming mode  
I No erase required before write  
The MICROWIRE serial interface offered by this EEPROM en-  
ables simple interface to a wide variety of microcontrollers and  
microprocessors. There are 7 instructions that operate the  
FM93C56A: Read, Erase/Write Enable, Erase, Write, Erase/  
Write Disable, Write All and Erase All.  
I Reliable CMOS floating gate technology  
I MICROWIRE compatible serial I/O  
I 40 years data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-Pin TSSOP, 8-pin SO, 8-pin DIP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
CS  
V
CC  
Instruction  
Decoder  
SK  
Control Logic,  
And Clock  
Generators  
Instruction  
Register  
DI  
High Voltage  
Generator  
And  
Address  
Register  
ORG  
Program  
Timer  
V
PP  
EEPROM Array  
2048 Bits  
(128x16) or (256x8)  
Decoder  
1 of 128  
(or 256)  
Read/Write Amps  
Data In/Out Register  
16 (or 8) Bits  
GND  
Data Out Buffer  
DO  
DS800029-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C56A Rev. A  
www.fairchildsemi.com  
 
Connection Diagram  
Rotated Die  
(93C56AT)  
Dual-In-Line Package (N)  
8-Pin SO Package (M8)  
and 8-Pin TSSOP Package (MT8)  
1
8
NC  
1
8
7
6
5
ORG  
CS  
SK  
DI  
V
CC  
2 FM93C56A  
7
V
V
2 FM93C56A  
NC  
CC  
CS  
SS  
3
6
DO  
DI  
3
ORG  
4
5
SK  
4
DO  
V
SS  
DS800029-2  
Top View  
See Package Number N08E, M08A and MTC08  
Pin Names  
Pin  
CS  
Description  
Chip Select  
SK  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
VSS  
ORG  
NC  
Memory Organization Select  
No Connect  
VCC  
Positive Power Supply  
Ordering Information  
FM 93 XX  
C
A
T
LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Blank  
T
Normal Pin Out  
Rotated Die Pin Out  
A
x8 or x16 Configuration  
2K  
Density  
56  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
FM  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C56A Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93C56A  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
FM93C56AE  
FM93C56AV  
VCC +1 to -0.3V  
Lead Temperature  
Power Supply (VCC) Range  
4.5V to 5.5V  
(Soldering, 10 seconds)  
+300°C  
ESD Rating  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V  
Symbol  
ICCA  
Parameter  
Operating Current  
Standby Current  
Input Leakage  
Part Number  
Conditions  
CS = VIH SK = 1 MHz  
Min  
Max  
Units  
mA  
1
50  
1
ICCS  
CS = 0V ORG = VCC or NC  
VIN = 0V to VCC (Note 2)  
µA  
IIL  
-1  
µA  
IILO  
Input Leakage  
ORG Pin  
ORG Tied to VCC  
ORG Tied to VSS (Note 3)  
-1  
-2.5  
1
2.5  
µA  
IOL  
VIL  
Output Leakage  
VIN = 0V to VCC  
-1  
-0.1  
2
1
0.8  
µA  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
SK Clock Frequency  
SK High Time  
VIH  
VCC +1  
0.4  
V
VOL1  
VOH1  
VOL2  
VOH2  
fSK  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOL = -10 µA  
(Note 4)  
V
2.4  
V
0.2  
1
V
VCC -0.2  
0
V
MHz  
ns  
tSKH  
FM93C56A  
FM93C56AE  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS  
Low Time  
(Note 5)  
250  
ns  
tCSS  
tDH  
CS Set-Up Time  
D0 Hold Time  
50  
70  
ns  
ns  
ns  
tDIS  
DI Set-Up Time  
FM93C56A  
FM93C56AE/V  
100  
200  
tCSH  
tDIH  
tPD  
tSV  
CS Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ms  
DI Hold Time  
20  
Output Delay  
500  
500  
100  
10  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
tWP  
3
www.fairchildsemi.com  
FM93C56A Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Operating Temperature  
Ambient Storage Temperature  
–65°C to +150°C  
FM93C56AL/LZ  
FM93C56ALE/LZE  
FM93C56A LV/LZV  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
Input Leakage  
VIN = 0V to VCC (Note 2)  
1
µA  
µA  
IILO  
Input Leakage  
ORG Pin  
ORG tied to VCC  
ORG tied to VSS (Note 3)  
-1  
-2.5  
1
2.5  
IOL  
Output Leakage  
VIN = 0V to VCC  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 4)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 5)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz  
Symbol  
COUT  
Test  
Typ Max Units  
Note 2: Typical leakage values are in the 20 nA range.  
Note 3: The ORG pin may draw > 1 µA when in the x8 mode ude to an internal pull-up transistor.  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: The shortest allowable SK clock period = 1/fSK (as shown under the fSK fSK parameter).  
Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC  
parameters stated in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed.  
Therefore, it is not allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
CIN  
Note 5: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all  
internal device registers (device reset) prior to beginning another opcode cycle. (This is shown in  
the opcode diagrams in the following pages.)  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C56A Rev. A  
Serial Clock (SK):  
MICROWIRE I/O Pin Description  
This pin is the clock input (rising edge active) for clocking in all  
opcodesanddataontheDIpinandclockingoutalldataontheDO  
pin.However,thispinhasnoeffectontheasynchronousprogram-  
ming cycle (see the CS pin section) as the BUSY/READY status  
is a function of the CS pin only.  
Chip Select (CS):  
This pin enables and disables the MICROWIRE device and  
performs 3 general functions:  
1. When in the low state, the MICROWIRE device is disabled  
and the output tri-stated (high impedance). If this pin is  
brought high (rising edge active), all internal registers are  
reset and the device is enabled, allowing MICROWIRE  
communication via DI/DO pins. To restate, the CS pin must  
be held high during all device communication and opcode  
functions. If the CS pin is brought low, all functions will be  
disabled and reset when CS is brought high again. The  
exception to this is when a programming cycle is initiated  
(see 2 and 3). Again, all activity on the CS, DI and DO pins  
is ignored until CS is brought high.  
Data-In (DI):  
All serial communication into the device is performed using this  
input pin (rising edge active). In order to avoid false Start Bits, or  
related issues, it is advised to keep the DI pin in the low state  
unless actually clocking in data bits (Start Bit, Opcode, Address or  
incoming data bits to be programmed). Please note that the first  
'1' clocked into the device (after CS is brought high) is seen as a  
Start Bit and the beginning of a serial command string, so caution  
must be observed when bringing CS high.  
2. After entering all required opcode and address data, bringing  
CS low initiates the (asynchronous) programming cycle.  
Data-Out (DO):  
All serial communication out of the device, Read Data ( during  
normal reads) as well as READY/BUSY status indication ( during  
programming ) are performed using this output pin. Note that,  
during READ operations, the EEPROM device starts to drive the  
DO output pin "active" after the last address bit (A0) is clocked in.  
Hence in applications where 3-wire configuration is required (  
whereDIandDOpinsaretiedtogether)cautionmustbeobserved  
for correct operation. Please refer AN-758 for further information.  
3. When programming is in progress, the Data-Out pin will  
display the programming status as either BUSY (DO low) or  
READY (DO high) when CS is brought high. (Again, the  
output will be tri-stated when CS is low.) To restate, during  
programming, the CS pin may be brought high and low any  
number of times to view the programming status without  
affect the programming operation. Once programming is  
completed (Output in READY state), the output is 'cleared'  
(returned to normal tri-state condition) by clocking in a Start  
Bit. After the Start Bit is clocked in, the output will return to a  
tri-stated condition. When clocked in, this Start Bit can be the  
first bit in a command string, or CS can be brought low again  
to reset all internal circuits.  
Organization (ORG):  
This pin controls the device architecture (8-bit data word vs. 16-bit  
data word). If the ORG pin is brought to VCC, the device is  
configured wiht a 16-bit data word and if the ORG pin is brought  
to VSS (Ground), the device is configured with an 8-bit data word.  
If the ORG pin is left floating, the device will default to a 16-bit data  
word.  
Instruction Set for the FM93C56A  
ORG  
Memory  
Pin  
Logic  
Configuration  
# of Address Bits  
0
1
256 x 8  
9 Bits  
8 Bits  
128 x 16  
Note:  
Theleading(MSB)bitisa"don'tcare,"butmustbeincludedintheaddressstring.  
5
www.fairchildsemi.com  
FM93C56A Rev. A  
128 by 16-Bit Organization (FM93C56A when ORG = VCC or NC)  
Instruction  
SB  
OP-Code  
2 Bits  
Address  
8 Bits  
Data  
16 Bits  
Comments  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
10  
00  
00  
11  
01  
00  
00  
A7–A0  
11XXXXXX  
00XXXXXX  
A7–A0  
Read data stored in selected registers.  
Enables programming modes.  
Disables all programming modes.  
Erase selected register.  
A7–A0  
D15–D0  
D15–D0  
Writes data pattern D15–D0 into selected register.  
Erases all registers.  
10XXXXXX  
01XXXXXX  
WRAL  
Writes data pattern D15–D0 into all registers.  
Note: The A7 bit is a "don't care" bit, but must be entered in the Address string.  
Note: X = Don't care.  
256 by 8-Bit Organization (FM93C56A when ORG = GND)  
Instruction  
SB  
OP-Code  
2 Bits  
Address  
9 Bits  
Data  
8 Bits  
Comments  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
10  
00  
00  
11  
01  
00  
00  
A8–A0  
11XXXXXXX  
00XXXXXXX  
A8–A0  
Read data stored in selected registers.  
Enables programming modes.  
Disables all programming modes.  
Erase selected register.  
A8–A0  
D7–D0  
D7–D0  
Writes data pattern D7–D0 into selected registers.  
Erases all registers.  
10XXXXXXX  
01XXXXXXX  
WRAL  
Writes data pattern D7–D0 into all registers.  
Note: The A8 bit is a "don't care" bit, but must be entered in the Address string.  
Note: X = Don't care.  
Read (READ)  
Functional Description  
The READ instruction outputs serial data on the DO pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a serial-out shift register. A dummy bit (logical 0)  
precedes the serial data output string. Output data changes are  
initiated by a low to high transition of SK after the last address bit  
(A0) is clocked in.  
Programming:  
1. Programming is initiated by clocking in the Start Bit, Opcode  
bits, Address bits and the 8/16 data bits (refer to the ORG  
pin section).  
2. Programming is started by bringing the CS pin low. Once the  
programming cycle is started, it cannot be stopped. (Bringing  
V
CC low will stop any programming, but will also result in  
Erase/Write Enable (EWEN)  
data corruption.)  
When VCC is applied to the part, it “powers up” in the Erase/Write  
Disable (EWDS) state. Therefore, all programming modes must  
be preceded by an Erase/Write Enable (EWEN) instruction. Once  
an Erase/Write Enable instruction is executed, programming  
remains enabled until an Erase/Write Disable (EWDS) instruction  
is executed or VCC is removed from the part.  
3. The status of the programming cycle (BUSY or READY) is  
observed by bringing the CS pin high and observing the  
output state. If the output is LOW, the device is still program-  
ming (BUSY). If the output is HIGH, the programming cycle  
has been completed and the device is ready for the next  
operation. Note that the output will be tri-stated each time  
CS is brought low and the READY/BUSY status will be  
shown each time CS is brought high.  
4. After programming, the READY state (output HIGH) can be  
reset and the output tri-stated by clocking in a single Start  
Bit. This Start Bit can be the first bit in a command string, or  
CS can be brought low again to reset all internal circuits. In  
any case, clocking in a '1' bit will tri-state the output.  
6
www.fairchildsemi.com  
FM93C56A Rev. A  
Write (WRITE):  
Functional Description (Continued)  
The WRITE instruction is followed by 16 bits of data (or 8 bits of  
data when using the FM93C56A in the x8 organization) to be  
written into the specified address. Please refer to the Program-  
ming section for details.  
Erase/Write Disable (EWDS):  
To protect against accidental data overwrites, the Erase/Write  
Disable (EWDS) instruction disables all programming modes and  
should follow all programming operations. Execution of a READ  
instruction is independent of both the EWEN and EWDS instruc-  
tions.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
the memory array to the logical “1” state.  
Erase (ERASE):  
Write All (WRAL):  
The ERASE instruction will program all bits in the specified  
register to the logical “1” state. Please refer to the Programming  
section for details.  
The WRAL instruction will simultaneously program all registers  
with the data pattern specified in the instruction.  
Timing Diagrams for the FM93C56A  
Synchronous Data Timing  
V
IH  
CS  
SK  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
t
t
DF  
SV  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800029-4  
7
www.fairchildsemi.com  
FM93C56A Rev. A  
Timing Diagrams for the FM93C56A (Continued)  
Key for Timing Diagrams  
Organization of Address and Data Fields for FM93C56A  
ORG Pin  
VCC or NC  
VSS  
Organization  
128 x 16  
AN DN  
A7  
D15  
256 x 8  
A8  
D7  
Note:  
The MSB is "don't care."  
READ  
CS  
SK  
DI  
tCS  
. . .  
1
1
0
A
N
A0  
. . .  
DO  
0
DN  
D0  
DS800029-5  
EWEN  
DO = HI-Z  
t
CS  
SK  
DI  
CS  
. . .  
X
X
1
0
0
1
1
ORG = V , 4 X'S  
CC  
DS800029-6  
ORG = V , 5 X'S  
SS  
EWDS  
DO = HI-Z  
t
CS  
SK  
DI  
CS  
. . .  
X
X
1
0
0
0
0
ORG = V , 4 X'S  
CC  
DS800029-7  
ORG = V , 5 X'S  
SS  
ERASE  
tCS  
CS  
SK  
Standby  
DI  
. . .  
AN  
1
1
1
A0  
HI-Z  
HI-Z  
Busy  
Ready  
DO  
DS800029-8  
tWP  
8
www.fairchildsemi.com  
FM93C56A Rev. A  
Timing Diagrams for the FM93C56A (Continued)  
WRITE  
tCS  
CS  
SK  
. . .  
. . .  
1
0
1
AN  
A0 DN  
D0  
DI  
Busy  
tWP  
Ready  
DO  
DS800029-9  
ERAL  
tCS  
CS  
STANDBY  
SK  
DI  
. . .  
1
0
0
1
0
X
X
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
DO  
BUSY  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800029-10  
WRAL  
tCS  
CS  
SK  
DI  
STANDBY  
. . .  
. . .  
D0  
1
0
0
0
1
X
X
DN  
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
BUSY  
DO  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800029-11  
9
www.fairchildsemi.com  
FM93C56A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Outline Package (M8)  
Package Number M08A  
10  
www.fairchildsemi.com  
FM93C56A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
11  
www.fairchildsemi.com  
FM93C56A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
12  
www.fairchildsemi.com  
FM93C56A Rev. A  
December 1999  
FM93C66  
4K-Bit Serial CMOS EEPROM  
(MICROWIRE™ Bus Interface)  
General Description  
Features  
The FM93C66 device is 4096 bits of CMOS non-volatile electri-  
cally erasable memory organized as 256x16 bit array. They are  
fabricated using Fairchild Semiconductor's floating-gate CMOS  
process for high reliability, high endurance and low power con-  
sumption. These memory devices are available in an 8-pin SOIC  
or 8-pin TSSOP package for small space considerations.  
I Device status during programming mode  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No erase required before write  
I Reliable CMOS floating gate technology  
I 2.7V to 5.5V operation in all modes  
I MICROWIRE compatible serial l/O  
I Self-timed programming cycle  
I 40 years data retention  
FM93C66 is compatible with MICROWIRE interface, which offers  
simple interface to standard microcontrollers and microproces-  
sors. There are 7 instructions which control this device: Read,  
WriteEnable, Erase, EraseAll, Write, WriteAll, andWriteDisable.  
The ready/busy status is available on the DO pin to indicate the  
completion of a programming cycle.  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC,  
AND CLOCK  
GENERATORS  
INSTRUCTION  
REGISTER  
DI  
HIGH VOLTAGE  
GENERATOR  
AND  
ADDRESS  
REGISTER  
PROGRAM  
TIMER  
VPP  
DECODER  
1 OF 256  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
DS800027-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C66  
www.fairchildsemi.com  
 
Connection Diagrams  
Dual-In-Line Package (N),  
8-Pin SO (M8) and 8-Pin TSSOP (MT8)  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
VCC  
NC  
NC  
DO  
GND  
DS800027-2  
Top View  
See Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
Chip Select  
SK  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
VCC  
Power Supply  
Ordering Information  
FM  
93  
C
XX LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Density  
66  
C
4K  
CMOS  
Interface  
93  
FM  
MICROWIRE  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C66  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C66  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C66E  
FM93C66V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
Standby Current  
CS = VIH, SK = 1MHz  
CS = VIL  
1
50  
1
mA  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1mA  
IOH = -400 µA  
0.4  
0.2  
1
V
V
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
V
V
VCC -0.2  
0
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
MHz  
ns  
tSKH  
FM93C66  
FM93C66E/V  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS  
Low Time  
(Note 4)  
250  
ns  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
50  
70  
ns  
ns  
ns  
tDIS  
FM93C66  
FM93C66E/V  
100  
200  
tCSH  
tDIH  
tPD  
CS Hold Time  
0
ns  
ns  
ns  
ns  
ns  
ms  
DI Hold Time  
20  
Output Delay  
500  
500  
100  
10  
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
tWP  
3
www.fairchildsemi.com  
FM93C66  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
–65°C to +150°C  
Ambient Operating Temperature  
FM93C66L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
FM93C66LE/LZE  
FM93C66LV/LZV  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
Input Leakage  
VIN = 0V to VCC  
1
µA  
IOL  
Output Leakage  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 4)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Symbol  
Test  
Typ Max Units  
Note 2: Typical leakage values are in the 20nA range.  
Note 3: TheshortestallowableSKclockperiod=1/fSK (asshownunderthefSK parameter).Maximum  
SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated  
in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not  
allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: CS (Chip Select) must be brought low (to V ) for an interval of tCS in order to reset all internal  
IL  
device registers (device reset) prior to beginning another opcode cycle. (This is shown in the opcode  
diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C66  
Write (WRITE):  
Functional Description  
TheWRITEinstructionisfollowedbytheaddressand16bitsofdata  
to be written into the specified address. After the last bit of data is  
put in the data-in (DI) pin, CS must be brought low before the next  
rising edge of the SK clock. This falling edge of the CS initiates the  
self-timed programming cycle. The D0 pin indicates the READY/  
The FM93C66device has7 instructionsas describedbelow. Note  
that the MSB of any instruction is a “1” and is viewed as a start bit  
in the interface sequence. The next 10 bits carry the op code and  
the 8-bit address for register selection.  
Read (READ):  
BUSYstatusofthechipifCSisbroughthighafteraminimumoft  
.
CS  
D0 = logical 1 indicates that the register at the address specified in  
theinstructionhasbeenwrittenwiththedatapatternspecifiedinthe  
instruction and the part is ready for another instruction.  
The READ instruction outputs serial data on the D0 pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a 16-bit serial-out shift register. A dummy bit (logical  
0)precedesthe16-bitdataoutputstring. Outputdatachangesare  
initiated by a low to high transition of the SK clock.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
thememoryarrayandseteachbittothelogical1state.TheErase  
All cycle is identical to the ERASE cycle except for the different op-  
code. As in the ERASE mode, the DO pin indicates the READY/  
BUSY status of the chip if CS is brought high after the tCS interval.  
Write Enable (WEN):  
When VCC is applied to the part, it 'powers-up' in the Write Disable  
(WDS) state. Therefore, all programming modes must be pre-  
ceded by a Write Enable (WEN) instruction. Once a Write Enable  
instructionisexecuted,programmingremainsenableduntilaWrite  
Disable (WDS) instruction is executed or VCC is removed from the  
part.  
Write All (WRALL):  
The WRALL instruction will simultaneously program all registers  
with the data pattern specified in the instruction. As in the WRITE  
mode, the DO pin indicates the READY/BUSY status of the chip  
Erase (ERASE):  
if CS is brought high after the t interval.  
CS  
The ERASE instruction will program all bits in the specified  
register to the logical “1” state. CS is brought low following the  
loading of the last address bit. This falling edge of the CS pin  
initiates the self-timed programming cycle.  
Write Disable (WDS):  
To protect against accidental data disturb, the WDS instruction  
disables all programming modes and should follow all program-  
ming operations. Execution of a READ instruction is independent  
of both the WEN and WDS instructions.  
The DO pin indicates the READY/BUSY status of the chip if CS is  
broughthighafteraminimumtimeoftCS. DO=logical0indicates  
that the register, at the address specified in the instruction, has  
been erased, and the part is ready for another instruction.  
Note: The Fairchild CMOS EEPROMs do not require an "ERASE" or "ERASE ALL"  
operationpriortothe"WRITE"and"WRITEALL"instructions. The"ERASE"and"ERASE  
ALL"instructionsareincludedtomaintaincompatibilitywithearliertechnologyEEPROMs.  
Instruction Set for the FM93C66  
Instruction  
READ  
SB  
1
Op. Code  
Address  
A7-A0  
Data  
Comments  
Reads data stored in memory, at specified address.  
Write enable must precede all programming modes.  
Erase selected register.  
10  
00  
11  
01  
00  
00  
00  
WEN  
1
11xxxxxx  
A7-A0  
ERASE  
WRITE  
ERAL  
1
1
A7-A0  
D15-D0  
D15-D0  
Writes selected register.  
1
10xxxxxx  
01xxxxxx  
00xxxxxx  
Erases all registers.  
WRALL  
WDS  
1
Writes all registers.  
1
Disables all programming instructions.  
X = Don't care.  
5
www.fairchildsemi.com  
FM93C66  
Timing Diagrams  
Synchronous Data Timing  
V
IH  
CS  
SK  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800027-4  
READ  
CS  
SK  
DI  
t
CS  
. . .  
1
1
0
A7  
A0  
. . .  
DO  
0
D15  
D0  
DS800027-5  
WEN  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
1
1
X
X
DS800027-6  
WDS  
CS  
SK  
DI  
tCS  
. . .  
1
0
0
0
0
X
X
DS800027-7  
6
www.fairchildsemi.com  
FM93C66  
Timing Diagrams (Continued)  
WRITE  
CS  
SK  
t
CS  
. . .  
1
0
1
A7  
A0  
D15  
D0  
DI  
DO  
BUSY  
READY  
t
WP  
DS800027-8  
WRALL  
CS  
SK  
DI  
t
CS  
. . .  
1
0
0
0
1
DON'T CARE (6 BITS) D15  
D0  
DO  
BUSY  
READY  
t
WP  
DS800027-9  
ERASE  
t
CS  
CS  
SK  
STANDBY  
. . .  
DI  
1
1
1
A7  
A6  
A5  
A0  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800027-10  
ERAL  
t
CS  
CS  
STANDBY  
SK  
DI  
1
0
0
1
0
DON'T CARE BITS (6 BITS)  
HI-Z  
HI-Z  
DO  
BUSY  
READY  
t
WP  
DS800027-11  
7
www.fairchildsemi.com  
FM93C66  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Out-Line Package (M8)  
Package Number M08A  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
8
www.fairchildsemi.com  
FM93C66  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
9
www.fairchildsemi.com  
FM93C66  
January 2000  
FM93C66A  
4K-Bit Serial CMOS EEPROM  
(MICROWIRE™ Bus Interface)  
General Description  
Features  
The FM93C66A is 4096 bits of CMOS nonvolatile EEPROM  
(Electrically Erasable Programmable Read Only Memory) with  
MICROWIRE serial interface. FM93C66A can be configured for  
either 256 x 16 bit or 512 x 8 bit array using an organization (ORG)  
inputpin.ThisdeviceisfabricatedusingFairchildSemiconductor's  
floating gate CMOS process for high reliability, high endurance  
and low power consumption. This device is available in 8-pin DIP,  
SO and TSSOP packages.  
I 2.7V to 5.5V operation in all modes  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I Self-timed programming cycle  
I Device status indication during programming mode  
I No erase required before write  
The MICROWIRE serial interface offered by this EEPROM en-  
ables simple interface to a wide variety of microcontrollers and  
microprocessors. There are 7 instructions that operate the  
FM93C66A: Read, Erase/Write Enable, Erase, Write, Erase/  
Write Disable, Write All and Erase All.  
I Reliable CMOS floating gate technology  
I MICROWIRE compatible serial I/O  
I 40 years data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin TSSOP, 8-pin SO, 8-pin DIP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
CS  
V
CC  
Instruction  
Decoder  
SK  
Control Logic,  
And Clock  
Generators  
Instruction  
Register  
DI  
High Voltage  
Generator  
And  
Address  
Register  
ORG  
Program  
Timer  
V
PP  
EEPROM Array  
2048 Bits  
(256 x16) or (512 x8)  
Decoder  
1 of 256  
(or 512)  
Read/Write Amps  
Data In/Out Register  
16 (or 8) Bits  
GND  
Data Out Buffer  
DO  
DS800030-1  
1
© 1999 Fairchild Semiconductor Corporation  
FM93C66A Rev. A  
www.fairchildsemi.com  
 
Connection Diagram  
Dual-In-Line Package (N)  
8-Pin SO Package (M8)  
and 8-Pin TSSOP Package (MT8)  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
V
CC  
NC  
FM93C66A  
Top View  
ORG  
DO  
V
SS  
DS800030-2  
See Package Number  
N08E, M08A and MTC08  
Pin Names  
Pin  
Description  
Chip Select  
CS  
SK  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
VSS  
ORG  
NC  
VCC  
Memory Organization Select  
No Connect  
Positive Power Supply  
Ordering Information  
FM  
93  
C
XX  
A
LZ  
E
XX  
Letter Description  
Package  
N
8-Pin DIP  
M8  
MT8  
8-Pin SO8  
8-Pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
A
x8 or x16 Configuration  
Density  
66  
C
4K  
CMOS  
Interface  
93  
FM  
MICROWIRE  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C66A Rev. A  
Absolute Maximum Ratings (Note 1)  
Ambient Storage Temperature  
-65°C to +150°C  
Operating Conditions  
Ambient Operating Temperature  
FM93C66A  
All Input or Output Voltages  
with Respect to Ground  
VCC +1 to -0.3V  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
FM93C66AE  
FM93C66AV  
Lead Temperature  
(Soldering, 10 seconds)  
+300°C  
Power Supply (VCC) Range  
4.5V to 5.5V  
ESD Rating  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V  
Symbol  
Parameter  
Part Number  
Conditions  
Min  
Max  
Units  
ICCA  
Operating Current  
CS = VIH,SK=1 MHz  
1
mA  
ICCS  
IIL  
Standby Current  
Input Leakage  
CS = 0V ORG = VCC or NC  
VIN = 0V to VCC (Note 2)  
50  
1
µA  
µA  
µA  
-1  
IILO  
Input Leakage  
ORG Pin  
ORG Tied to VCC  
ORG Tied to VSS  
(Note 3)  
-1  
-2.5  
1
2.5  
IOL  
VIL  
Output Leakage  
VIN = 0V to VCC  
-1  
-0.1  
2
1
0.8  
µA  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
SK Clock Frequency  
SK High Time  
VIH  
VCC +1  
0.4  
V
VOL1  
VOH1  
VOL2  
VOH2  
fSK  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOL = -10 µA  
(Note 4)  
V
2.4  
V
0.2  
1
V
VCC - 0.2  
0
V
MHz  
ns  
tSKH  
FM93C66A  
FM93C66AE  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS  
Low Time  
(Note 5)  
250  
ns  
tCSS  
tDH  
CS Set-Up Time  
DO Hold Time  
DI Set-Up Time  
50  
70  
ns  
ns  
ns  
tDIS  
FM93C66A  
FM93C66AE/V  
100  
200  
tCSH  
tDIH  
tPD  
CS Hold Time  
DI Hold Time  
0
ns  
ns  
ns  
ns  
20  
Output Delay  
500  
500  
tSV  
CS to Status Valid  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
100  
10  
ns  
tWP  
ms  
3
www.fairchildsemi.com  
FM93C66A Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Operating Temperature  
Ambient Storage Temperature  
–65°C to +150°C  
FM93C66AL/LZ  
FM93C66ALE/LZE  
FM93C66ALV/LZV  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
Input Leakage  
VIN = 0V to VCC (Note 2)  
1
µA  
µA  
IILO  
Input Leakage  
ORG Pin  
ORG tied to VCC  
ORG tied to VSS (Note 3)  
-1  
-2.5  
1
2.5  
IOL  
Output Leakage  
VIN = 0V to VCC  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 4)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 5)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz  
Symbol  
Test  
Typ Max Units  
Note 2: Typical leakage values are in the 20 nA range.  
Note 3: The ORG pin may draw > 1 µA when in the x8 mode ude to an internal pull-up transistor.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: The shortest allowable SK clock period = 1/fSK (as shown under the fSK fSK parameter).  
Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC  
parameters stated in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed.  
Therefore, it is not allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
Note 5: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all  
internal device registers (device reset) prior to beginning another opcode cycle. (This is shown in  
the opcode diagrams in the following pages.)  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C66A Rev. A  
Serial Clock (SK):  
MICROWIRE I/O Pin Description  
This pin is the clock input (rising edge active) for clocking in all  
opcodesanddataontheDIpinandclockingoutalldataontheDO  
pin.However,thispinhasnoeffectontheasynchronousprogram-  
ming cycle (see the CS pin section) as the READY/BUSY status  
is a function of the CS pin only.  
Chip Select (CS):  
This pin enables and disables the MICROWIRE device and  
performs 3 general functions:  
1. When in the low state, the MICROWIRE device is disabled  
and the output tri-stated (high impedance). If this pin is  
brought high (rising edge active), all internal registers are  
reset and the device is enabled, allowing MICROWIRE  
communication via DI/DO pins. To restate, the CS pin must  
be held high during all device communication and opcode  
functions. If the CS pin is brought low, all functions will be  
disabled and reset when CS is brought high again. The  
exception to this is when a programming cycle is initiated  
(see 2 and 3). Again, all activity on the CS, DI and DO pins  
is ignored until CS is brought high.  
Data-In (DI):  
All serial communication into the device is performed using this  
input pin (rising edge active). In order to avoid false Start Bits, or  
related issues, it is advised to keep the DI pin in the low state  
unless actually clocking in data bits (Start Bit, Opcode, Address or  
incoming data bits to be programmed). Please note that the first  
'1' clocked into the device (after CS is brought high) is seen as a  
Start Bit and the beginning of a serial command string, so caution  
must be observed when bringing CS high.  
2. After entering all required opcode and address data, bringing  
CS low initiates the (asynchronous) programming cycle.  
Data-Out (DO):  
All serial communication out of the device, Read Data ( during  
normal reads) as well as READY/BUSY status indication ( during  
programming ) are performed using this output pin. Note that,  
during READ operations, the EEPROM device starts to drive the  
DO output pin "active" after the last address bit (A0) is clocked in.  
Hence in applications where 3-wire configuration is required (  
whereDIandDOpinsaretiedtogether)cautionmustbeobserved  
for correct operation. Please refer AN-758 for further information.  
3. When programming is in progress, the Data-Out pin will  
display the programming status as either BUSY (DO low) or  
READY (DO high) when CS is brought high. (Again, the  
output will be tri-stated when CS is low.) To restate, during  
programming, the CS pin may be brought high and low any  
number of times to view the programming status without  
affect the programming operation. Once programming is  
completed (Output in READY state), the output is 'cleared'  
(returned to normal tri-state condition) by clocking in a Start  
Bit. After the Start Bit is clocked in, the output will return to a  
tri-stated condition. When clocked in, this Start Bit can be the  
first bit in a command string, or CS can be brought low again  
to reset all internal circuits.  
Organization (ORG):  
This pin controls the device architecture (8-bit data word vs. 16-bit  
data word). If the ORG pin is brought to VCC, the device is  
configured with a 16-bit data word and if the ORG pin is brought  
to VSS (Ground), the device is configured with an 8-bit data word.  
If the ORG pin is left floating, the device will default to a 16-bit data  
word.  
Instruction Set for FM93C66A  
ORG  
Memory  
Pin  
Logic  
Configuration  
# of Address Bits  
0
1
512 x 8  
9 Bits  
8 Bits  
256 x 16  
5
www.fairchildsemi.com  
FM93C66A Rev. A  
256 by 16-Bit Organization (FM93C66A when ORG = VCC or NC)  
Instruction  
SB  
OP-Code  
2 Bits  
Address  
8 Bits  
Data  
16 Bits  
Comments  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
10  
00  
00  
11  
01  
00  
00  
A7–A0  
11XXXXXX  
00XXXXXX  
A7–A0  
Read data stored in selected registers.  
Enables programming modes.  
Disables all programming modes.  
Erase selected register.  
A7–A0  
D15–D0  
D15–D0  
Writes data pattern D15–D0 into selected register.  
Erases all registers.  
10XXXXXX  
01XXXXXX  
WRAL  
Writes data pattern D15–D0 into all registers.  
X = Don't care.  
512 by 8-Bit Organization (FM93C66A when ORG = GND)  
Instruction  
SB  
OP-Code  
2 Bits  
Address  
9 Bits  
Data  
8 Bits  
Comments  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
10  
00  
00  
11  
01  
00  
00  
A8–A0  
11XXXXXXX  
00XXXXXXX  
A8–A0  
Read data stored in selected registers.  
Enables programming modes.  
Disables all programming modes.  
Erase selected register.  
A8–A0  
D7–D0  
D7–D0  
Writes data pattern D7–D0 into selected register.  
Erases all registers.  
10XXXXXXX  
01XXXXXXX  
WRAL  
Writes data pattern D7–D0 into all registers.  
X = Don't care.  
Read (READ):  
Functional Description  
The READ instruction outputs serial data on the DO pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a serial-out shift register. A dummy bit (logical 0)  
precedes the serial data output string. Output data changes are  
initiated by a low to high transition of SK after the last address bit  
(A0) is clocked in.  
Programming:  
1. Programming is initiated by clocking in the Start Bit, Opcode  
bits, Address bits and the 8/16 data bits (refer to the ORG  
pin section).  
2. Programming is started by bringing the CS pin low. Once the  
programming cycle is started, it cannot be stopped. (Bringing  
VCC low will stop any programming, but will also result in  
data corruption.)  
Erase/Write Enable (EWEN):  
When VCC is applied to the part, it “powers up” in the Erase/Write  
Disable (EWDS) state. Therefore, all programming modes must  
be preceded by an Erase/Write Enable (EWEN) instruction. Once  
an Erase/Write Enable instruction is executed, programming  
remains enabled until an Erase/Write Disable (EWDS) instruction  
is executed or VCC is removed from the part.  
3. The status of the programming cycle (BUSY or READY) is  
observed by bringing the CS pin high and observing the  
output state. If the output is LOW, the device is still program-  
ming (BUSY). If the output is HIGH, the programming cycle  
has been completed and the device is ready for the next  
operation. Note that the output will be tri-stated each time  
CS is brought low and the READY/BUSY status will be  
shown each time CS is brought high.  
4. After programming, the READY state (output HIGH) can be  
reset and the output tri-stated by clocking in a single Start  
Bit. This Start Bit can be the first bit in a command string, or  
CS can be brought low again to reset all internal circuits. In  
any case, clocking in a '1' bit will tri-state the output.  
6
www.fairchildsemi.com  
FM93C66A Rev. A  
Write (WRITE):  
Functional Description (Continued)  
The WRITE instruction is followed by 16 bits of data (or 8 bits of  
data when using the FM93C66A in the x8 organization) to be  
written into the specified address. Please refer to the Program-  
ming section for details.  
Erase/Write Disable (EWDS):  
To protect against accidental data overwrites, the Erase/Write  
Disable (EWDS) instruction disables all programming modes and  
should follow all programming operations. Execution of a READ  
instruction is independent of both the EWEN and EWDS instruc-  
tions.  
Erase All (ERAL):  
The ERAL instruction will simultaneously program all registers in  
the memory array to the logical “1” state.  
Erase (ERASE):  
Write All (WRAL):  
The ERASE instruction will program all bits in the specified  
register to the logical “1” state. Please refer to the Programming  
section for details.  
The WRAL instruction will simultaneously program all registers  
with the data pattern specified in the instruction.  
Timing Diagrams for the FM93C66A  
Synchronous Data Timing  
V
IH  
CS  
SK  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800030-4  
7
www.fairchildsemi.com  
FM93C66A Rev. A  
Timing Diagrams for the FM93C66A (Continued)  
Key for Timing Diagrams  
Organization of Address and Data Fields for the FM93C66A  
ORG Pin  
VCC or NC  
VSS  
Organization  
256 x 16  
AN DN  
A7  
A8  
D15  
D7  
512 x 8  
READ  
CS  
SK  
DI  
tCS  
. . .  
1
1
0
A
N
A0  
. . .  
DO  
0
DN  
D0  
DS800030-5  
EWEN  
DO = HI-Z  
t
CS  
SK  
DI  
CS  
. . .  
X
X
1
0
0
1
1
ORG = V , 4 X'S  
CC  
DS800030-6  
ORG = V , 5 X'S  
SS  
EWDS  
DO = HI-Z  
t
CS  
SK  
DI  
CS  
. . .  
X
X
1
0
0
0
0
ORG = V , 4 X'S  
CC  
DS800030-7  
ORG = V , 5 X'S  
SS  
8
www.fairchildsemi.com  
FM93C66A Rev. A  
Timing Diagrams for the FM93C66A (Continued)  
ERASE  
tCS  
CS  
SK  
Standby  
DI  
. . .  
AN  
1
1
1
A0  
HI-Z  
HI-Z  
Busy  
Ready  
DO  
DS800030-8  
tWP  
WRITE  
tCS  
CS  
SK  
DI  
. . .  
. . .  
1
0
1
AN  
A0 DN  
D0  
Busy  
tWP  
Ready  
DO  
DS800030-9  
ERAL  
tCS  
CS  
SK  
DI  
STANDBY  
. . .  
1
0
0
1
0
X
X
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
DO  
BUSY  
DS800030-10  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
WRAL  
tCS  
CS  
SK  
STANDBY  
. . .  
. . .  
D0  
1
0
0
0
1
X
X
DN  
DI  
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
DO  
BUSY  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800030-11  
9
www.fairchildsemi.com  
FM93C66A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Outline Package (M8)  
Package Number M08A  
10  
www.fairchildsemi.com  
FM93C66A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
11  
www.fairchildsemi.com  
FM93C66A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
12  
www.fairchildsemi.com  
FM93C66A Rev. A  
January 2000  
FM93C86A  
16K-Bit Serial EEPROM  
(MICROWIRE™ Bus Interface)  
General Description  
Features  
The FM93C86A is 16,384 bits of CMOS nonvolatile EEPROM  
(Electrically Erasable Programmable Read Only Memory) with  
MICROWIRE serial interface. FM93C86A can be configured for  
either 1024 x 16 bit or 2048 x 8 bit array using an organization  
(ORG) input pin. This device is fabricated using Fairchild  
Semiconductor's floating gate CMOS process for high reliability,  
high endurance and low power consumption. This device is  
available in 8-pin DIP and SO packages.  
I 2.7V to 5.5V operation in all modes  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I Device status indication during programming mode  
I No erase required before write  
I Reliable CMOS floating gate technology  
I MICROWIRE™ compatible serial I/O  
I Self-timed programming cycle  
The MICROWIRE serial interface offered by this EEPROM en-  
ables simple interface to a wide variety of microcontrollers and  
microprocessors. There are 7 instructions that operate the  
FM93C86A: Read, Erase/Write Enable, Erase, Write, Erase/  
Write Disable, Write All and Erase All.  
I 40 years data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP  
I Schmitt Trigger inputs and VCC lockout to prevent data  
corruption  
Block Diagram  
CS  
V
CC  
Instruction  
Decoder  
SK  
Control Logic,  
And Clock  
Generators  
Instruction  
Register  
DI  
High Voltage  
Generator  
And  
Address  
Register  
ORG  
Program  
Timer  
V
PP  
EEPROM Array  
16384 Bits  
(1024x16) or (2048x8)  
Decoder  
1 of 1024  
(or 2048)  
Read/Write Amps  
Data In/Out Register  
16 (or 8) Bits  
GND  
Data Out Buffer  
DO  
DS800031-12  
1
© 1999 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FM93C86A Rev. A  
 
Connection Diagram  
Dual-In-Line Package (N)  
and 8-Pin SO Package (M8)  
CS  
SK  
DI  
1
2
3
4
8
7
6
5
VCC  
NC  
NM93C86A  
ORG  
VSS  
DO  
DS800031-14  
Top View  
See Package Number  
N08E and M08A  
Pin Names  
Pin  
Description  
CS  
SK  
Chip Select  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
VSS  
ORG  
NC  
Memory Organization Select  
No Connect  
VCC  
Positive Power Supply  
Ordering Information  
FM  
93  
C
XX  
A
LZ  
E
XX  
Letter Description  
Package  
N
M8  
8-Pin DIP  
8-Pin SO8  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
A
x8 or x16 Configuration  
16K  
Density  
86  
C
CMOS  
Interface  
93  
FM  
MICROWIRE  
Fairchild Non-Volatile  
Memory  
2
www.fairchildsemi.com  
FM93C86A Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93C86A  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
FM93C86AE  
FM93C86AV  
VCC + 1 to -0.3V  
Lead Temperature  
Power Supply (VCC) Range  
4.5V to 5.5V  
(Soldering, 10 seconds)  
+300°C  
ESD Rating  
2000V  
DC and AC Electrical Characteristics 4.5V VCC 5.5V  
Symbol  
Parameter  
Part Number  
Conditions  
Min  
Max  
Units  
ICCA  
Operating Current  
CS = VIH, SK=1 MHz  
1
mA  
ICCS  
IIL  
Standby Current  
Input Leakage  
CS = 0V ORG = VCC or NC  
VIN = 0V to VCC (Note 2)  
50  
1
µA  
µA  
-1  
IILO  
Input Leakage ORG Pin  
ORG tied to VCC  
ORG tied to VSS  
(Note 3)  
-1  
-2.5  
1
2.5  
µA  
IOL  
VIL  
Output Leakage  
VIN = 0V to VCC  
-1  
-0.1  
2
1
0.8  
µA  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
SK Clock Frequency  
SK High Time  
VIH  
VCC +1  
0.4  
V
VOL1  
VOH1  
VOL2  
VOH2  
fSK  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOL = -10 µA  
(Note 4)  
V
2.4  
V
0.2  
1
V
VCC - 0.2  
0
V
MHz  
ns  
tSKH  
FM93C86A  
FM93C86AE/V  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes  
high  
tCS  
Minimum CS Low Time  
(Note 5)  
250  
ns  
tCSS  
tDH  
CS Set-up Time  
DO Hold Time  
50  
70  
ns  
ns  
tDIS  
DI Set-up Time  
FM93C86A  
FM93C86AE/V  
100  
200  
ns  
tCSH  
tDIH  
tPD  
tSV  
CS Hold Time  
DI Hold Time  
0
ns  
ns  
20  
Output Delay  
500  
500  
ns  
ns  
CS to Status Valid  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
100  
10  
ns  
tWP  
ms  
3
www.fairchildsemi.com  
FM93C86A Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Range  
Ambient Operating Temperature  
Ambient Storage Temperature  
65°C to +150°C  
FM93C86AL/LZ  
FM93C86ALE/LZE  
FM93C86ALV/LZV  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltage  
with Respect to Ground  
+6.5V to -0.3V  
Lead Temperature (Soldering, 10 sec.)  
ESD Rating  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
Parameter  
Part Number  
Conditions  
Min.  
Max.  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK = 250KHz  
CS = VIL  
1
mA  
Standby Current  
L
LZ  
10  
1
µA  
µA  
IIL  
Input Leakage  
VIN = 0V to VCC (Note 2)  
1
µA  
µA  
IILO  
Input Leakage  
ORG Pin  
ORG tied to VCC  
ORG tied to VSS (Note 3)  
-1  
-2.5  
1
2.5  
IOL  
Output Leakage  
VIN = 0V to VCC  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8 VCC  
0.15 VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10 µA  
IOH = -10 µA  
0.1 VCC  
V
V
0.9 VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 4)  
0
1
250  
KHz  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
µs  
SK Setup Time  
SK must be at VIL for  
tSKS before CS goes high  
0.2  
µs  
tCS  
Minimum CS  
Low Time  
(Note 5)  
1
µs  
tCSS  
tDH  
CS Setup Time  
DO Hold Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
0.2  
70  
0.4  
0
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ms  
tDIS  
tCSH  
tDIH  
tPD  
0.4  
Output Delay  
2
1
tSV  
CS to Status Valid  
CS to DO in Hi-Z  
Write Cycle Time  
tDF  
CS = VIL  
0.4  
15  
tWP  
Note 1: Stress above those listed under Absolute Maximum Ratingsmay cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz  
Symbol  
Test  
Typ Max Units  
Note 2: Typical leakage values are in the 20 nA range.  
Note 3: The ORG pin may draw > 1 µA when in the x8 mode ude to an internal pull-up transistor.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: The shortest allowable SK clock period = 1/fSK (as shown under the fSK fSK parameter).  
Maximum SK clock speed (minimum SK period) is determined by the interaction of several AC  
parameters stated in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed.  
Therefore, it is not allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
Note 5: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all  
internal device registers (device reset) prior to beginning another opcode cycle. (This is shown in  
the opcode diagrams in the following pages.)  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
.03V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
(Extended Voltage Levels)  
1.0V  
10µA  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93C86A Rev. A  
Serial Clock (SK):  
MICROWIRE I/O Pin Description  
This pin is the clock input (rising edge active) for clocking in all  
opcodesanddataontheDIpinandclockingoutalldataontheDO  
pin.However,thispinhasnoeffectontheasynchronousprogram-  
ming cycle (see the CS pin section) as the BUSY/READY status  
is a function of the CS pin only.  
Chip Select (CS):  
This pin enables and disables the MICROWIRE device and  
performs 2 general functions:  
1. When in the low state, the MICROWIRE device is disabled  
and the output tri-stated (high impedance). If this pin is  
brought high (rising edge active), all internal registers are  
reset and the device is enabled, allowing MICROWIRE  
communication via DI/DO pins. To restate, the CS pin must  
be held high during all device communication and opcode  
functions. If the CS pin is brought low, all functions will be  
disabled and reset when CS is brought high again. The  
exception to this is when a programming cycle is initiated.  
Again, all activity on the CS, DI and DO pins is ignored until  
CS is brought high.  
Data-In (DI):  
All serial communication into the device is performed using this  
input pin (rising edge active). In order to avoid false Start Bits, or  
related issues, it is advised to keep the DI pin in the low state  
unless actually clocking in data bits (Start Bit, Opcode, Address or  
incoming data bits to be programmed). Please note that the first  
'1' clocked into the device (after CS is brought high) is seen as a  
Start Bit and the beginning of a serial command string, so caution  
must be observed when bringing CS high.  
2. When programming is in progress, the Data-Out pin will  
display the programming status as either BUSY (DO low) or  
READY (DO high) when CS is brought high. (Again, the  
output will be tri-stated when CS is low.) To restate, during  
programming, the CS pin may be brought high and low any  
number of times to view the programming status without  
affect the programming operation. Once programming is  
completed (Output in READY state), the output is 'cleared'  
(returned to normal tri-state condition) by clocking in a Start  
Bit. After the Start Bit is clocked in, the output will return to a  
tri-stated condition. When clocked in, this Start Bit can be the  
first bit in a command string, or CS can be brought low again  
to reset all internal circuits.  
Data-Out (DO):  
All serial communication out of the device, Read Data ( during  
normal reads) as well as READY/BUSY status indication ( during  
programming ) are performed using this output pin. Note that,  
during READ operations, the EEPROM device starts to drive the  
DO output pin "active" after the last address bit (A0) is clocked in.  
Hence in applications where 3-wire configuration is required (  
whereDIandDOpinsaretiedtogether)cautionmustbeobserved  
for correct operation. Please refer AN-758 for further information.  
Organization (ORG):  
This pin controls the device architecture (8-bit data word vs. 16-bit  
data word). If the ORG pin is brought to VCC, the device is  
configured with a 16-bit data word and if the ORG pin is brought  
to VSS (Ground), the device is configured with an 8-bit data word.  
If the ORG pin is left floating, the device will default to a 16-bit data  
word.  
Unlike the lower density members of the Microwire product  
family (FM93C06, FM93C46, FM93C56, FM93C66)  
programming is not initiated by bringing CS low but initiated  
as soon as the last bit of information (address bit or data bit  
depending on the instruction type) is clocked in. Refer the  
section on Programming for further detail.  
Instruction Set for the FM93C86A  
ORG  
Memory  
Pin  
Logic  
Configuration  
# of Address Bits  
0
1
2048 x 8  
11 Bits  
10 Bits  
1024 x 16  
5
www.fairchildsemi.com  
FM93C86A Rev. A  
1024 by 16-Bit Organization (FM93C86A when ORG = VCC or NC)  
Instruction SB Op Code Address  
Data  
Function  
2 Bits  
10  
10 Bits  
16 Bits  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
A9A0  
Read data stored in selected registers.  
Enables programming modes.  
00  
11XXXXXXXX  
00XXXXXXXX  
A9A0  
00  
Disables all programming modes.  
Erases selected register.  
11  
01  
A9A0  
D15D0  
D15D0  
Writes data pattern D15D0 into selected register.  
Erases all registers.  
00  
10XXXXXXXX  
01XXXXXXXX  
WRAL  
00  
Writes data pattern D15D0 into all registers.  
X = Don't care.  
2048 by 8-Bit Organization (FM93C86A when ORG = GND)  
Instruction SB Op Code Address  
Data  
Function  
2 Bits  
10  
11 Bits  
8 Bits  
READ  
EWEN  
EWDS  
ERASE  
WRITE  
ERAL  
1
1
1
1
1
1
1
A10A0  
Read data stored in selected registers.  
Enables programming modes.  
00  
11XXXXXXXXX  
00XXXXXXXXX  
A10A0  
00  
Disables all programming modes.  
Erases selected register.  
11  
01  
A10A0  
D7D0  
D7D0  
Writes data pattern D7D0 into selected register.  
Erases all registers.  
00  
10XXXXXXXXX  
01XXXXXXXXX  
WRAL  
00  
Writes data pattern D7D0 into all registers.  
X = Don't care.  
BUSYstatusofthedevice.DO=logical0indicatesthatprogram-  
ming is still in progress and no other instruction can be executed.  
DO = logical 1indicates that the device is READY for another  
instruction. If CS is forced lowthe DO pin will return to the high  
impedance state. After the programming cycle has been com-  
pleted and DO = logical 1, the DO pin can be reset back to the  
high impedance state by clocking a logical 1into the DI pin. (This  
is also performed with the start bit on all op codes, thus clocking  
an instruction has the same effect.)  
Functional Description  
Programming  
The programming cycle is automatically started after entering the  
LAST bit of the programming instruction string (unlike other  
Microwire family members which use the falling edge of CS to  
initiate programming). This feature, counting the number of in-  
struction bits, decreases the likelihood of inadvertent program-  
ming and allows the programming to be cancelled before sending  
out the last bit in the string (by bringing CS low).  
Read (READ)  
The READ instruction outputs serial data on the DO pin. After a  
READ instruction is received, the instruction and address are  
decoded, followed by data transfer from the selected memory  
register into a serial-out shift register. A dummy bit (logical 0)  
precedes the serial data output string. Output data changes are  
initiatedbyalowtohightransitionofSKclockafterthelastaddress  
bit (A0) is clocked in.  
Programming Instruction Last Bit in String  
WRITE  
WRAL  
ERASE  
ERAL  
D0  
D0  
A0  
A0  
Erase/Write Enable (EWEN)  
Note that, in the ERASE/ERAL instructions, the A0 bit is the last  
bit in the string and clocking in that bit will initiate programming. In  
order to maintain compatibility, CS may be brought low after  
clocking in the last bit, but it is not necessary.  
When VCC is applied to the part, it powers upin the Erase/Write  
Disable (EWDS) state. Therefore, all programming modes must  
be preceded by an Erase/Write Enable (EWEN) instruction. Once  
an Erase/Write Enable instruction is executed, programming  
remains enabled until an Erase/Write Disable (EWDS) instruction  
is executed or VCC is removed from the part.  
In all programming modes the READY/BUSY status of the device  
can be determined by polling the DO pin. After clocking in the last  
bit of the instruction sequence and with the CS held high, the DO  
pin will exit the high impedance state and indicate the READY/  
6
www.fairchildsemi.com  
FM93C86A Rev. A  
instruction will be aborted. The self-timed programming cycle is  
initiated on the rising edge of the SK clock as the last data bit (D0)  
is clocked in. At this point, CS, SK and DI become dont care  
states. No separate ERASE cycle is required before a WRITE  
instruction.  
Functional Description (Continued)  
Erase/Write Disable (EWDS)  
To protect against accidental data overwrites, the Erase/Write  
Disable (EWDS) instruction disables all programming modes and  
should follow all programming operations. Execution of a READ  
instruction is independent of both the EWEN and EWDS instruc-  
tions.  
As in the ERASE instruction, after starting a WRITE cycle, the DO  
pin indicates the READY/BUSY status of the chip if CS is held  
high. DO = logical 0indicates that programming is still in  
progress. DO = logical 1indicates that the register, at the  
address specified in the instruction, has been written and that the  
part is ready for another instruction.  
Erase (ERASE)  
The ERASE instruction will program all bits in the specified  
register to the logical 1state. The self-timed programming cycle  
is initiated on the rising edge of the SK clock as the last address  
bit(A0)isclockedin.AtthispointCS,SKandDIbecomedontcare  
states. After starting an Erase cycle the DO pin indicates the  
READY/BUSY status of the chip if CS is held high. DO = logical  
0indicates that programming is still in progress. DO = logical 1”  
indicates that the register, at the address specified in the instruc-  
tion, has been erased.  
Erase All (ERAL)  
The ERAL instruction will simultaneously program all registers in  
the memory array to the logical 1state.  
Write All (WRAL)  
The WRAL instruction will simultaneously program all registers  
with the data pattern specified in the instruction.  
Write (WRITE)  
The WRITE instruction is followed by 16 bits of data (or 8 bits of  
data when using the FM93C86A in the x8 organization) to be  
written into the specified address. Note that if the CS is brought  
lowbefore clocking in all of the data bits, then the WRITE  
Timing Diagrams for the FM93C86A  
Synchronous Data Timing  
V
IH  
CS  
SK  
V
t
IL  
CSS  
t
t
t
CSH  
SKH  
SKL  
t
SKS  
V
IH  
V
IL  
t
t
DIH  
DIS  
V
IH  
DI  
V
IL  
t
PD  
t
DF  
t
DH  
V
OH  
DO (READ)  
V
OL  
t
SV  
t
t
DF  
DH  
V
OH  
DO (PROGRAM)  
STATUS VALID  
V
OL  
DS800031-3  
7
www.fairchildsemi.com  
FM93C86A Rev. A  
Timing Diagrams for the FM93C86A (Continued)  
Key for Timing Diagrams  
Organization of Address and Data Fields for the FM93C86A  
ORG  
VCC or NC  
VSS  
Organization  
1024 x 16  
AN  
A9  
DN  
D15  
D7  
2048 x 8  
A10  
READ  
CS  
SK  
DI  
t
CS  
. . .  
1
1
0
AN  
A
0
. . .  
DO  
0
D
D
0
N
DS800031-4  
DS800031-5  
DS800031-6  
EWEN  
DO = HI-Z  
t
CS  
CS  
SK  
DI  
. . .  
X
X
1
0
0
1
1
ORG = V , 4 XS  
CC  
ORG = V , 5 XS  
SS  
EWDS  
DO = HI-Z  
tCS  
CS  
SK  
DI  
. . .  
X
X
1
0
0
0
0
ORG = V , 4 XS  
CC  
ORG = V , 5 XS  
SS  
ERASE  
tCS  
CS  
SK  
Standby  
DI  
. . .  
A0  
AN  
1
1
1
HI-Z  
HI-Z  
Busy  
Ready  
DO  
tWP  
DS800031-7  
8
www.fairchildsemi.com  
FM93C86A Rev. A  
Timing Diagrams for the FM93C86A (Continued)  
WRITE  
tCS  
CS  
SK  
. . .  
. . .  
1
0
1
AN  
A0 DN  
D0  
DI  
Busy  
Ready  
DO  
tWP  
DS800031-8  
ERAL  
tCS  
CS  
STANDBY  
SK  
DI  
. . .  
1
0
0
1
0
X
X
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
DO  
BUSY  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800031-9  
WRAL  
tCS  
CS  
SK  
DI  
STANDBY  
. . .  
. . .  
D0  
1
0
0
0
1
X
X
DN  
ORG = VCC, 4 X's  
ORG = VSS, 5 X's  
READY  
BUSY  
DO  
READY STATUS SIGNAL RESETS  
TO HI-Z AFTER CLOCKING IN  
ONE SK CYCLE WITH DI = 1  
tWP  
DS800031-10  
9
www.fairchildsemi.com  
FM93C86A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Small Outline Package (M8)  
Package Number M08A  
10  
www.fairchildsemi.com  
FM93C86A Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-in-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
11  
www.fairchildsemi.com  
FM93C86A Rev. A  
February 2000  
FM93CS06  
(MICROWIRE™ Bus Interface) 256-Bit Serial EEPROM  
with Data Protect and Sequential Read  
General Description  
Features  
FM93CS06 is a 256-bit CMOS non-volatile EEPROM organized  
as 16 x 16-bit array. This device features MICROWIRE interface  
which is a 4-wire serial bus with chipselect (CS), clock (SK), data  
input (DI) and data output (DO) signals. This interface is compat-  
ible to many of standard Microcontrollers and Microprocessors.  
FM93CS06 offers programmable write protection to the memory  
array using a special register called Protect Register. Selected  
memory locations can be protected against write by programming  
this Protect Register with the address of the first memory location  
to be protected (all locations greater than or equal to this first  
addressarethenprotectedfromfurtherchange). Additionally, this  
address can be “permanently locked” into the device, making all  
future attempts to change data impossible. In addition this device  
features “sequential read”, by which, entire memory can be read  
in one cycle instead of multiple single byte read cycles. There are  
10 instructions implemented on the FM93CS06, 5 of which are for  
memory operations and the remaining 5 are for Protect Register  
operations. This device is fabricated using Fairchild Semiconduc-  
torfloating-gateCMOSprocessforhighreliability,highendurance  
and low power consumption.  
I Wide VCC 2.7V - 5.5V  
I Programmable write protection  
I Sequential register read  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No Erase instruction required before Write instruction  
I Self timed write cycle  
I Device status during programming cycles  
I 40 year data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
“LZ” and “L” versions of FM93CS06 offer very low standby current  
makingthemsuitableforlowpowerapplications.Thisdeviceisoffered  
in both SO and TSSOP packages for small space considerations.  
Functional Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC  
AND CLOCK  
PRE  
PE  
INSTRUCTION  
REGISTER  
DI  
GENERATORS  
COMPARATOR  
AND  
WRITE ENABLE  
HIGH VOLTAGE  
GENERATOR  
AND  
PROGRAM  
TIMER  
ADDRESS  
REGISTER  
PROTECT  
REGISTER  
DECODER  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
1
© 1999 Fairchild Semiconductor Corporation  
FM93CS06 Rev. A  
www.fairchildsemi.com  
 
Connection Diagram  
Dual-In-Line Package (N)  
8–Pin SO (M8) and 8–Pin TSSOP (MT8)  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
VCC  
PRE  
PE  
DO  
GND  
Top View  
Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
SK  
Chip Select  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
PE  
Program Enable  
Protect Register Enable  
Power Supply  
PRE  
VCC  
Ordering Information  
FM  
93  
CS XX LZ  
E
XXX  
Letter Description  
Package  
N
8-pin DIP  
M8  
MT8  
8-pin SO  
8-pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Density  
06  
256 bits  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
Fairchild Memory Prefix  
2
www.fairchildsemi.com  
FM93CS06 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS06  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS06E  
FM93CS06V  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 4.5V to 5.5V unless otherwise specified  
SymbolParameter  
Conditions  
Min  
Max  
Units  
ICCA  
Operating Current  
CS = VIH, SK=1.0 MHz  
1
mA  
ICCS  
Standby Current  
CS = VIL  
50  
-1  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
V
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOH = -10 µA  
(Note 3)  
0.4  
0.2  
1
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
VCC - 0.2  
fSK  
SK Clock Frequency  
SK High Time  
MHz  
ns  
tSKH  
0°C to +70°C  
-40°C to +125°C  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
tCS  
Minimum CS Low Time  
(Note 4)  
250  
ns  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
70  
tPES  
tDIS  
50  
100  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
ns  
ns  
250  
50  
20  
tPD  
500  
500  
tSV  
CS to Status Valid  
ns  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
100  
10  
ns  
tWP  
ms  
3
www.fairchildsemi.com  
FM93CS06 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS06L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS06LE/LZE  
FM93CS06LV/LZV  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
SymbolParameter  
Conditions  
Min  
Max  
Units  
ICCA  
Operating Current  
CS = VIH, SK=1.0 MHz  
1
mA  
ICCS  
Standby Current  
L
CS = VIL  
10  
1
µA  
µA  
LZ (2.7V to 4.5V)  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8VCC  
0.15VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10µA  
IOH = -10µA  
0.1VCC  
V
0.9VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
SK Setup Time  
0.2  
µs  
tCS  
Minimum CS Low Time  
(Note 4)  
1
µs  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
0.2  
50  
70  
50  
0.4  
µs  
ns  
ns  
ns  
µs  
tPES  
tDIS  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
µs  
µs  
250  
50  
0.4  
tPD  
2
1
tSV  
CS to Status Valid  
µs  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
0.4  
15  
µs  
ms  
tWP  
Note 1: StressabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamage  
to the device. This is a stress rating only and functional operation of the device at these or any other  
conditionsabovethoseindicatedintheoperationalsectionsofthespecificationisnotimplied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Note 2: Typical leakage values are in the 20nA range.  
SymbolTest  
Typ Max Units  
Note 3: TheshortestallowableSKclockperiod=1/fSK (asshownunderthefSK parameter). Maximum  
SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated  
in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not  
allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
pF  
pF  
5
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all internal  
device registers (device reset) prior to beginning another opcode cycle. (This is shown in the opcode  
diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
0.3V/1.8V  
VIL/VIH  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
Timing Level  
2.7V VCC 5.5V  
1.0V  
10µA  
(Extended Voltage Levels)  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93CS06 Rev. A  
Program Enable (PE)  
Pin Description  
This is an active high input pin to the device and is used to enable  
operations, that are write in nature, to the memory array and to the  
Protect register. When this pin is held high, operations that are  
writein nature are enabled. When this pin is held low, operations  
that are writein nature are disabled. This pin operates in  
conjunctionwithPREpin. ReferTable1forfunctionalmatrixofthis  
pin for various operations.  
Chip Select (CS)  
ThisisanactivehighinputpintoFM93CS06EEPROM(thedevice)  
and is generated by a master that is controlling the device. A high  
level on this pin selects the device and a low level deselects the  
device. All serial communications with the device is enabled only  
when this pin is held high. However this pin cannot be permanently  
tied high, as a rising edge on this signal is required to reset the  
internal state-machine to accept a new cycle and a falling edge to  
initiateaninternalprogrammingafterawritecycle.Allactivityonthe  
SK, DI and DO pins are ignored while CS is held low.  
Microwire Interface  
AtypicalcommunicationontheMicrowirebusismadethroughthe  
CS, SK, DI and DO signals. To facilitate various operations on the  
Memory array and on the Protect Register, a set of 10 instructions  
are implemented on FM93CS06. The format of each instruction is  
listed in Table 1.  
Serial Clock (SK)  
Thisisaninputpintothedeviceandisgeneratedbythemasterthat  
is controlling the device. This is a clock signal that synchronizes the  
communicationbetweenamasterandthedevice. Allinputinforma-  
tion(DI)tothedeviceislatchedontherisingedgeofthisclockinput,  
whileoutputdata(DO)fromthedeviceisdrivenfromtherisingedge  
of this clock input. This pin is gated by CS signal.  
Instruction  
Each of the above 10 instructions is explained under individual  
instruction descriptions.  
Start Bit  
Serial Input (DI)  
This is a 1-bit field and is the first bit that is clocked into the device  
whenaMicrowirecyclestarts.Thisbithastobe1foravalidcycle  
to begin. Any number of preceding 0can be clocked into the  
device before clocking a 1.  
This is an input pin to the device and is generated by the master  
that is controlling the device. The master transfers Input informa-  
tion (Start bit, Opcode bits, Array addresses and Data) serially via  
this pin into the device. This Input information is latched on the  
rising edge of the SCK. This pin is gated by CS signal.  
Opcode  
Serial Output (DO)  
This is a 2-bit field and should immediately follow the start bit.  
These two bits (along with PRE, PE signals and 2 MSB of address  
field) select a particular instruction to be executed.  
This is an output pin from the device and is used to transfer Output  
data via this pin to the controlling master. Output data is serially  
shifted out on this pin from the rising edge of the SCK. This pin is  
active only when the device is selected.  
Address Field  
This is a 6-bit field and should immediately follow the Opcode bits.  
In FM93CS06, only the LSB 4 bits are used for address decoding  
during READ, WRITE and PRWRITE instructions. During these  
instructions (READ, WRITE and PRWRITE), the MSB 2 bits are  
"don't care" (can be 0 or 1). During all other instructions (with the  
exception of PRREAD), the MSB 2 bits are used to decode  
instruction (along with Opcode bits, PRE and PE signals).  
Protect Register Enable (PRE)  
This is an active high input pin to the device and is used to  
distinguish operations to memory array and operations to Protect  
Register. When this pin is held low, operations to the memory  
array are enabled. When this pin is held high, operations to the  
Protect Register are enabled. This pin operates in conjunction  
with PE pin. Refer Table1 for functional matrix of this pin for  
various operations.  
Data Field  
This is a 16-bit field and should immediately follow the Address  
bits. Only the WRITE and WRALL instructions require this field.  
D15 (MSB) is clocked first and D0 (LSB) is clocked last (both  
during writes as well as reads).  
TABLE 1. Instruction set  
Instruction  
READ  
Start Bit  
Opcode Field  
Address Field  
Data Field PRE Pin  
PE Pin  
1
1
1
1
1
1
1
1
1
1
10  
00  
01  
00  
00  
10  
00  
11  
01  
00  
X
1
X
0
0
X
1
1
X
0
X
1
X
1
0
X
1
1
X
0
A3 A2 A1 A0  
0
0
X
1
1
1
X
X
1
1
1
1
WEN  
X
X
X
X
WRITE  
WRALL  
WDS  
A3 A2 A1 A0  
D15-D0  
D15-D0  
0
0
0
1
1
1
1
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
PRREAD  
PREN  
PRCLEAR  
PRWRITE  
PRDS  
A3 A2 A1 A0  
0
0
0
0
5
www.fairchildsemi.com  
FM93CS06 Rev. A  
the part. Input information (Start bit, Opcode and Address) for this  
WEN instruction should be issued as listed under Table1. The  
device becomes write-enabled at the end of this cycle when the  
CS signal is brought low. The PRE pin should be held low during  
thiscycle.ExecutionofaREADinstructionisindependentofWEN  
instruction. Refer Write Enable cycle diagram.  
Functional Description  
A typical Microwire cycle starts by first selecting the device  
(bringing the CS signal high). Once the device is selected, a valid  
Start bit (1) should be issued to properly recognize the cycle.  
Following this, the 2-bit opcode of appropriate instruction should  
be issued. After the opcode bits, the 6-bit address information  
should be issued. For certain instructions, some (or all) of these  
6 bits are dont care values (can be 0or 1), but they should still  
be issued. Following the address information, depending on the  
instruction (WRITE and WRALL), 16-Bit data is issued. Other-  
wise, depending on the instruction (READ and PRREAD), the  
device starts to drive the output data on the DO line. Other  
instructions perform certain control functions and do not deal with  
data bits. The Microwire cycle ends when the CS signal is brought  
low. However during certain instructions, falling edge of the CS  
signal initiates an internal cycle (Programming), and the device  
remains busy till the completion of the internal cycle. Each of the  
10 instructions is explained in detail in the following sections.  
3) Write (WRITE)  
WRITE instruction allows write operation to a specified location in  
the memory with a specified data. This instruction is valid only  
when the following are true:  
I Device is write-enabled (Refer WEN instruction)  
I Address of the write location is not write-protected  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRITE instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Memory Instructions  
Following five instructions, READ, WEN, WRITE, WRALL and  
WDS are specific to operations intended for memory array. The  
PRE pin should be held low during these instructions.  
1) Read and Sequential Read (READ)  
The status of the internal programming cycle can be polled at any  
time by bringing the CS signal high again, after tCS interval. When  
CS signal is high, the DO pin indicates the READY/BUSY status  
of the chip. DO = logical 0 indicates that the programming is still  
in progress. DO = logical 1 indicates that the programming is  
finished and the device is ready for another instruction. It is not  
required to provide the SK clock during this status polling. While  
the device is busy, it is recommended that no new instruction be  
issued. Refer Write cycle diagram.  
READ instruction allows data to be read from a selected location  
in the memory array. Input information (Start bit, Opcode and  
Address) for this instruction should be issued as listed under  
Table1. Upon receiving a valid input information, decoding of the  
opcode and the address is made, followed by data transfer from  
the selected memory location into a 16-bit serial-out shift register.  
This 16-bit data is then shifted out on the DO pin. D15 bit (MSB)  
is shifted out first and D0 bit (LSB) is shifted out last. A dummy-bit  
(logical 0) precedes this 16-bit data output string. Output data  
changes are initiated on the rising edge of the SK clock. After  
reading the 16-bit data, the CS signal can be brought low to end  
the Read cycle. The PRE pin should be held low during this cycle.  
Refer Read cycle diagram.  
It is also recommended to follow this instruction (after the device  
becomes READY) with a Write Disable (WDS) instruction to  
safeguarddataagainstcorruptionduetospuriousnoise,inadvert-  
ent writes etc.  
4) Write All (WRALL)  
This device also offers sequential memory readoperation to  
allowreadingofdatafromtheadditionalmemorylocationsinstead  
ofjustonelocation.Itisstartedinthesamemannerasnormalread  
but the cycle is continued to read further data (instead of terminat-  
ing after reading the first 16-bit data). After providing 16-bit data,  
the device automatically increments the address pointer to the  
next location and continues to provide the data from that location.  
Any number of locations can be read out in this manner, however,  
after reading out from the last location, the address pointer points  
back to the first location. If the cycle is continued further, data will  
be read from this first location onward. In this mode of read, the  
dummy-bit is present only when the very first data is read (like  
normal read cycle) and is not present on subsequent data reads.  
The PRE pin should be held low during this cycle. Refer Sequen-  
tial Read cycle diagram.  
Write all (WRALL) instruction is similar to the Write instruction  
except that WRALL instruction will simultaneously program all  
memorylocationswiththedatapatternspecifiedintheinstruction.  
This instruction is valid only when the following are true:  
I Protect Register has been cleared (Refer PRCLEAR  
instruction)  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRALL instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. ReferWrite All  
cycle diagram.  
2) Write Enable (WEN)  
When VCC is applied to the part, it powers upin the Write Disable  
(WDS) state. Therefore, all programming operations (for both  
memory array and Protect Register) must be preceded by a Write  
Enable (WEN) instruction. Once a Write Enable instruction is  
executed, programming remains enabled until a Write Disable  
(WDS) instruction is executed or VCC is completely removed from  
6
www.fairchildsemi.com  
FM93CS06 Rev. A  
content of the Protect Register with a pattern of all 1s. However,  
in this case, WRITE operation to the last memory address  
(0x001111) is still enabled. PRCLEAR instruction is enabled  
(valid) only when the following are true:  
5) Write Disable (WDS)  
Write Disable (WDS) instruction disables all programming opera-  
tions and is recommended to follow all programming operations.  
Executing this instruction after a valid write instruction would  
protect against accidental data disturb due to spurious noise,  
glitches,inadvertentwritesetc.Inputinformation(Startbit,Opcode  
and Address) for this WDS instruction should be issued as listed  
under Table1. The device becomes write-disabled at the end of  
this cycle when the CS signal is brought low. Execution of a READ  
instructionisindependentofWDSinstruction. ReferWriteDisable  
cycle diagram.  
I PREN instruction was executed immediately prior to  
PRCLEAR instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRCLEAR  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed clear cycle. It takes tWP time (Refer  
appropriate DC and AC Electrical Characteristics table) for the  
internal clear cycle to finish. During this time, the device remains  
busyandisnotreadyforanotherinstruction. Statusoftheinternal  
programmingcanbepolledasdescribedunderWRITEinstruction  
description. While the device is busy, it is recommended that no  
new instruction be issued. Refer Protect Register Clear cycle  
diagram.  
Protect Register Instructions  
Following five instructions, PRREAD, PREN, PRCLEAR,  
PRWRITE and PRDS are specific to operations intended for  
Protect Register. The PRE pin should be held high during these  
instructions.  
1) Protect Register Read (PRREAD)  
This instruction reads the content of the internal Protect Register.  
Content of this register is 6-bit wide and is the starting address of  
the write-protectedsection of the memory array. All memory  
locationsgreaterthanorequaltothisaddressarewrite-protected.  
Inputinformation(Startbit,OpcodeandAddress)forthisPRREAD  
instruction should be issued as listed under Table1. Upon receiv-  
ing a valid input information, decoding of the opcode and the  
address is made, followed by data transfer (address information)  
from the Protect Register. This 6-bit data is then shifted out on the  
DO pin with the MSB first and the LSB last. Like the READ  
instruction a dummy-bit (logical 0) precedes this 6-bit data output  
string. Output data changes are initiated on the rising edge of the  
SK clock. After reading the 6-bit data, the CS signal can be  
brought low to end the PRREAD cycle. The PRE pin should be  
held high during this cycle. Refer Protect Register Read cycle  
diagram.  
4) Protect Register Write (PRWRITE)  
Thisinstructionisusedtowritethestartingaddressofthememory  
section to be write-protected into the Protect register. After the  
execution of PRWRITE instruction, all memory locations greater  
than or equal to this address are write-protected. PRWRITE  
instruction is enabled (valid) only the following are true:  
I PRCLEAR instruction was executed first (to clear the Protect  
Register)  
I PREN instruction was executed immediately prior to  
PRWRITE instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRWRITE  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. Refer Protect  
Register Write cycle diagram.  
Though the content of this register is 6-bit wide, only the last 4 bits  
(LSB) are valid for FM93CS06 device.  
2) Protect Register Enable (PREN)  
This instruction is required to enable PRCLEAR, PRWRITE and  
PRDS instructions and should be executed prior to executing  
PRCLEAR, PRWRITE and PRDS instructions. However, this  
PREN instruction is enabled (valid) only the following are true  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
5) Protect Register Disable (PRDS)  
Input information (Start bit, Opcode and Address) for this PREN  
instruction should be issued as listed under Table1. The Protect  
Register becomes enabled for PRCLEAR, PRWRITE and PRDS  
instructions at the end of this cycle when the CS signal is brought  
low. Note that this PREN instruction must immediately precede  
a PRCLEAR, PRWRITE or PRDS instruction. In other words, no  
other instruction should be executed between a PREN instruction  
and a PRCLEAR, PRWRITE or PRDS instruction. Refer Protect  
Register Enable cycle diagram.  
Unlike all other instructions, this instruction is a one-time-only  
instruction which when executed permanently write-protects  
the Protect Register and renders it unalterable in the future. This  
instruction is useful to safeguard vital data (typically read only  
data) in the memory against any possible corruption. PRDS  
instruction is enabled (valid) only the following are true:  
I PREN instruction was executed immediately prior to PRDS  
instruction  
3) Protect Register Clear (PRCLEAR)  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
This instruction clears the content of the Protect register and  
therefore enables write operations (WRITE or WRALL) to all  
memory locations. Executing this instruction will program the  
7
www.fairchildsemi.com  
FM93CS06 Rev. A  
Input information (Start bit, Opcode and Address) for this PRDS  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. The Protect  
Register is permanently write-protected at the end of this cycle.  
Refer Protect Register Disable cycle diagram.  
Clearing of Ready/Busy status  
When programming is in progress, the Data-Out pin will display  
the programming status as either BUSY (low) or READY (high)  
when CS is brought high (DO output will be tri-stated when CS is  
low). To restate, during programming, the CS pin may be brought  
high and low any number of times to view the programming status  
without affecting the programming operation. Once programming  
is completed (Output in READY state), the output is cleared’  
(returned to normal tri-state condition) by clocking in a Start Bit.  
After the Start Bit is clocked in, the output will return to a tri-stated  
condition. When clocked in, this Start Bit can be the first bit in a  
command string, or CS can be brought low again to reset all  
internal circuits. Refer Clearing Ready Status diagram.  
Related Document  
Application Note: AN758 - Using Fairchilds MICROWIREEE-  
PROM.  
8
www.fairchildsemi.com  
FM93CS06 Rev. A  
Timing Diagrams  
SYNCHRONOUS DATA TIMING  
CS  
SK  
PRE  
PE  
DI  
t
t
t
t
t
CSH  
SKS  
CSS  
SKH  
SKL  
t
t
PREH  
PRES  
t
t
PEH  
PES  
t
t
DIH  
DIS  
Valid  
Input  
Valid  
Input  
t
PD  
t
t
DF  
DF  
t
t
PD  
DH  
Valid  
Output  
Valid  
Output  
DO (Data Read)  
t
SV  
Valid Status  
DO (Status Read)  
NORMAL READ CYCLE (READ)  
PRE  
PE  
tCS  
CS  
SK  
1
1
0
A5  
A4  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
0
D15  
D1  
D0  
DO  
Dummy  
Bit  
93CS06:  
Address bits pattern -> x-x-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); (A3-A0 -> User defined)  
SEQUENTIAL READ CYCLE (PRE = 0; PE = X)  
PRE  
t
CS  
CS  
SK  
1
1
0
A5  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
0
D15  
D0  
D15  
D0  
D15  
D0  
DO  
Dummy  
Bit  
Data(n)  
Data(n+1)  
Data(n+2)  
93CS06:  
Address bits pattern -> x-x-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); (A3-A0 -> User defined)  
9
www.fairchildsemi.com  
FM93CS06 Rev. A  
Timing Diagrams (Continued)  
WRITE ENABLE CYCLE (WEN)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A5  
A4  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
93CS06:  
Address bits pattern -> 1-1-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE DISABLE CYCLE (WDS)  
PRE  
PE  
t
CS  
CS  
SK  
DI  
1
0
0
A5  
A4  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
93CS06:  
Address bits pattern -> 0-0-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE CYCLE (WRITE)  
PRE  
PE  
t
CS  
CS  
SK  
1
0
1
A5  
A4  
A1  
A0  
D15 D14  
D1  
D0  
DI  
t
WP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS06:  
Address bits pattern -> x-x-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); (A3-A0 -> User defined)  
Data bits pattern -> User defined  
10  
www.fairchildsemi.com  
FM93CS06 Rev. A  
Timing Diagrams (Continued)  
WRITE ALL CYCLE (WRALL)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A5  
A4  
A1  
A0  
D15 D14  
D1  
D0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS06:  
Address bits pattern -> 0-1-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
Data bits pattern -> User defined  
PROTECT REGISTER READ CYCLE (PRREAD)  
PRE  
PE  
tCS  
CS  
SK  
1
1
0
A5  
A4  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
0
D5  
D1  
D0  
DO  
Dummy  
Bit  
93CS06:  
Address bits pattern -> x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
Of the 6-bit output data(D5-D0), only D3 to D0 are valid and they correspond to A3 to A0 respectively.  
PROTECT REGISTER ENABLE CYCLE (PREN)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A5  
A4  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
93CS06:  
Address bits pattern -> 1-1-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
11  
www.fairchildsemi.com  
FM93CS06 Rev. A  
Timing Diagrams (Continued)  
PROTECT REGISTER CLEAR CYCLE (PRCLEAR)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
1
1
A5  
A4  
A1  
A0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
Ready  
DO  
Busy  
93CS06:  
Address bits pattern -> 1-1-1-1-1-1  
PROTECT REGISTER WRITE CYCLE (PRWRITE)  
PRE  
PE  
t
CS  
CS  
SK  
DI  
1
0
1
A5  
A4  
A1  
A0  
t
WP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
Ready  
DO  
Busy  
93CS06:  
Address bits pattern -> x-x-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); (A3-A0 -> User defined)  
PROTECT REGISTER DISABLE CYCLE (PRDS)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A5  
A4  
A1  
A0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
Ready  
DO  
Busy  
93CS06:  
Address bits pattern -> 0-0-0-0-0-0  
12  
www.fairchildsemi.com  
FM93CS06 Rev. A  
Timing Diagrams (Continued)  
CLEARING READY STATUS  
PRE  
PE  
CS  
SK  
DI  
Start  
Bit  
High - Z  
High - Z  
Ready  
DO  
Busy  
Note: This Start bit can also be part of a next instruction. Hence the cycle  
can be continued(instead of getting terminated, as shown) as if a new  
instruction is being issued.  
13  
www.fairchildsemi.com  
FM93CS06 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
3
5
4
0.228 - 0.244  
(5.791 - 6.198)  
1
2
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Package, Small Outline, 0.15 Wide, 8-Lead (M8)  
Package Number M08A  
14  
www.fairchildsemi.com  
FM93CS06 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
Notes: Unless otherwise specified  
1. Reference JEDEC registration MO153. Variation AA. Dated 7/93  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
15  
www.fairchildsemi.com  
FM93CS06 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
16  
www.fairchildsemi.com  
FM93CS06 Rev. A  
February 2000  
FM93CS46  
(MICROWIRE™ Bus Interface) 1024-Bit Serial EEPROM  
with Data Protect and Sequential Read  
General Description  
Features  
FM93CS46 is a 1024-bit CMOS non-volatile EEPROM organized  
as 64 x 16-bit array. This device features MICROWIRE interface  
which is a 4-wire serial bus with chipselect (CS), clock (SK), data  
input (DI) and data output (DO) signals. This interface is compat-  
ible to many of standard Microcontrollers and Microprocessors.  
FM93CS46 offers programmable write protection to the memory  
array using a special register called Protect Register. Selected  
memory locations can be protected against write by programming  
this Protect Register with the address of the first memory location  
to be protected (all locations greater than or equal to this first  
addressarethenprotectedfromfurtherchange). Additionally, this  
address can be “permanently locked” into the device, making all  
future attempts to change data impossible. In addition this device  
features “sequential read”, by which, entire memory can be read  
in one cycle instead of multiple single byte read cycles. There are  
10 instructions implemented on the FM93CS46, 5 of which are for  
memory operations and the remaining 5 are for Protect Register  
operations. This device is fabricated using Fairchild Semiconduc-  
torfloating-gateCMOSprocessforhighreliability,highendurance  
and low power consumption.  
I Wide VCC 2.7V - 5.5V  
I Programmable write protection  
I Sequential register read  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No Erase instruction required before Write instruction  
I Self timed write cycle  
I Device status during programming cycles  
I 40 year data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
“LZ” and “L” versions of FM93CS46 offer very low standby current  
makingthemsuitableforlowpowerapplications.Thisdeviceisoffered  
in both SO and TSSOP packages for small space considerations.  
Functional Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC  
AND CLOCK  
PRE  
PE  
INSTRUCTION  
REGISTER  
DI  
GENERATORS  
COMPARATOR  
AND  
WRITE ENABLE  
HIGH VOLTAGE  
GENERATOR  
AND  
PROGRAM  
TIMER  
ADDRESS  
REGISTER  
PROTECT  
REGISTER  
DECODER  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
1
© 1999 Fairchild Semiconductor Corporation  
FM93CS46 Rev. A  
www.fairchildsemi.com  
 
Connection Diagram  
Dual-In-Line Package (N)  
8–Pin SO (M8) and 8–Pin TSSOP (MT8)  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CS  
SK  
DI  
PRE  
VCC  
PRE  
PE  
PE  
V
CC  
GND  
DO  
DI  
Normal  
Pinout  
Rotated  
Pinout  
CS  
SK  
DO  
GND  
Top View  
Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
SK  
Chip Select  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
PE  
Program Enable  
Protect Register Enable  
Power Supply  
PRE  
VCC  
Ordering Information  
FM 93 CS XX  
T
LZ  
E
XXX  
Letter Description  
Package  
N
8-pin DIP  
M8  
MT8  
8-pin SO  
8-pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Blank  
T
Normal Pin Out  
Rotated Pin Out  
Density  
46  
1024 bits  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
Fairchild Memory Prefix  
2
www.fairchildsemi.com  
FM93CS46 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS46  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS46E  
FM93CS46V  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 4.5V to 5.5V unless otherwise specified  
SymbolParameter  
Conditions  
Min  
Max  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK=1.0 MHz  
1
mA  
Standby Current  
CS = VIL  
50  
-1  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
V
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOH = -10 µA  
(Note 3)  
0.4  
0.2  
1
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
VCC - 0.2  
fSK  
SK Clock Frequency  
SK High Time  
MHz  
ns  
tSKH  
0°C to +70°C  
-40°C to +125°C  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
tCS  
Minimum CS Low Time  
(Note 4)  
250  
ns  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
70  
tPES  
tDIS  
50  
100  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
ns  
ns  
250  
50  
20  
tPD  
500  
500  
tSV  
CS to Status Valid  
ns  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
100  
10  
ns  
tWP  
ms  
3
www.fairchildsemi.com  
FM93CS46 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS46L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS46LE/LZE  
FM93CS46LV/LZV  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
SymbolParameter  
Conditions  
Min  
Max  
Units  
ICCA  
ICCS  
Operating Current  
CS = VIH, SK=1.0 MHz  
1
mA  
Standby Current  
L
LZ (2.7V to 4.5V)  
CS = VIL  
10  
1
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8VCC  
0.15VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10µA  
IOH = -10µA  
0.1VCC  
V
0.9VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
SK Setup Time  
0.2  
µs  
tCS  
Minimum CS Low Time  
(Note 4)  
1
µs  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
0.2  
50  
70  
50  
0.4  
µs  
ns  
ns  
ns  
µs  
tPES  
tDIS  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
µs  
µs  
250  
50  
0.4  
tPD  
2
1
tSV  
CS to Status Valid  
µs  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
0.4  
15  
µs  
ms  
tWP  
Note 1: StressabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamage  
to the device. This is a stress rating only and functional operation of the device at these or any other  
conditionsabovethoseindicatedintheoperationalsectionsofthespecificationisnotimplied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Note 2: Typical leakage values are in the 20nA range.  
SymbolTest  
Typ Max Units  
Note 3: TheshortestallowableSKclockperiod=1/fSK (asshownunderthefSK parameter). Maximum  
SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated  
in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not  
allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
pF  
pF  
5
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all internal  
device registers (device reset) prior to beginning another opcode cycle. (This is shown in the opcode  
diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
0.3V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
1.0V  
10µA  
(Extended Voltage Levels)  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93CS46 Rev. A  
Program Enable (PE)  
Pin Description  
This is an active high input pin to the device and is used to enable  
operations, that are write in nature, to the memory array and to the  
Protect register. When this pin is held high, operations that are  
writein nature are enabled. When this pin is held low, operations  
that are writein nature are disabled. This pin operates in  
conjunctionwithPREpin. ReferTable1forfunctionalmatrixofthis  
pin for various operations.  
Chip Select (CS)  
ThisisanactivehighinputpintoFM93CS46EEPROM(thedevice)  
and is generated by a master that is controlling the device. A high  
level on this pin selects the device and a low level deselects the  
device. All serial communications with the device is enabled only  
when this pin is held high. However this pin cannot be permanently  
tied high, as a rising edge on this signal is required to reset the  
internal state-machine to accept a new cycle and a falling edge to  
initiateaninternalprogrammingafterawritecycle.Allactivityonthe  
SK, DI and DO pins are ignored while CS is held low.  
Microwire Interface  
AtypicalcommunicationontheMicrowirebusismadethroughthe  
CS, SK, DI and DO signals. To facilitate various operations on the  
Memory array and on the Protect Register, a set of 10 instructions  
are implemented on FM93CS46. The format of each instruction is  
listed in Table 1.  
Serial Clock (SK)  
Thisisaninputpintothedeviceandisgeneratedbythemasterthat  
is controlling the device. This is a clock signal that synchronizes the  
communicationbetweenamasterandthedevice. Allinputinforma-  
tion(DI)tothedeviceislatchedontherisingedgeofthisclockinput,  
whileoutputdata(DO)fromthedeviceisdrivenfromtherisingedge  
of this clock input. This pin is gated by CS signal.  
Instruction  
Each of the above 10 instructions is explained under individual  
instruction descriptions.  
Start Bit  
Serial Input (DI)  
This is a 1-bit field and is the first bit that is clocked into the device  
whenaMicrowirecyclestarts.Thisbithastobe1foravalidcycle  
to begin. Any number of preceding 0can be clocked into the  
device before clocking a 1.  
This is an input pin to the device and is generated by the master  
that is controlling the device. The master transfers Input informa-  
tion (Start bit, Opcode bits, Array addresses and Data) serially via  
this pin into the device. This Input information is latched on the  
rising edge of the SCK. This pin is gated by CS signal.  
Opcode  
Serial Output (DO)  
This is a 2-bit field and should immediately follow the start bit.  
These two bits (along with PRE, PE signals and 2 MSB of address  
field) select a particular instruction to be executed.  
This is an output pin from the device and is used to transfer Output  
data via this pin to the controlling master. Output data is serially  
shifted out on this pin from the rising edge of the SCK. This pin is  
active only when the device is selected.  
Address Field  
This is a 6-bit field and should immediately follow the Opcode bits.  
In FM93CS46, all 6 bits are used for address decoding during  
READ, WRITE and PRWRITE instructions. During all other in-  
structions (with the exception of PRREAD), the MSB 2 bits are  
used to decode instruction (along with Opcode bits, PRE and PE  
signals).  
Protect Register Enable (PRE)  
This is an active high input pin to the device and is used to  
distinguish operations to memory array and operations to Protect  
Register. When this pin is held low, operations to the memory  
array are enabled. When this pin is held high, operations to the  
Protect Register are enabled. This pin operates in conjunction  
with PE pin. Refer Table1 for functional matrix of this pin for  
various operations.  
Data Field  
This is a 16-bit field and should immediately follow the Address  
bits. Only the WRITE and WRALL instructions require this field.  
D15 (MSB) is clocked first and D0 (LSB) is clocked last (both  
during writes as well as reads).  
TABLE 1. Instruction set  
Instruction  
READ  
Start Bit  
Opcode Field  
Address Field  
Data Field PRE Pin  
PE Pin  
1
1
1
1
1
1
1
1
1
1
10  
00  
01  
00  
00  
10  
00  
11  
01  
00  
A5 A4 A3 A2 A1 A0  
0
0
X
1
1
1
X
X
1
1
1
1
WEN  
1
1
X
X
X
X
WRITE  
WRALL  
WDS  
A5 A4 A3 A2 A1 A0  
D15-D0  
D15-D0  
0
0
0
1
1
1
1
1
0
0
X
1
1
1
0
X
1
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
PRREAD  
PREN  
PRCLEAR  
PRWRITE  
PRDS  
A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
5
www.fairchildsemi.com  
FM93CS46 Rev. A  
the part. Input information (Start bit, Opcode and Address) for this  
WEN instruction should be issued as listed under Table1. The  
device becomes write-enabled at the end of this cycle when the  
CS signal is brought low. The PRE pin should be held low during  
thiscycle.ExecutionofaREADinstructionisindependentofWEN  
instruction. Refer Write Enable cycle diagram.  
Functional Description  
A typical Microwire cycle starts by first selecting the device  
(bringing the CS signal high). Once the device is selected, a valid  
Start bit (1) should be issued to properly recognize the cycle.  
Following this, the 2-bit opcode of appropriate instruction should  
be issued. After the opcode bits, the 6-bit address information  
should be issued. For certain instructions, some (or all) of these  
6 bits are dont care values (can be 0or 1), but they should still  
be issued. Following the address information, depending on the  
instruction (WRITE and WRALL), 16-Bit data is issued. Other-  
wise, depending on the instruction (READ and PRREAD), the  
device starts to drive the output data on the DO line. Other  
instructions perform certain control functions and do not deal with  
data bits. The Microwire cycle ends when the CS signal is brought  
low. However during certain instructions, falling edge of the CS  
signal initiates an internal cycle (Programming), and the device  
remains busy till the completion of the internal cycle. Each of the  
10 instructions is explained in detail in the following sections.  
3) Write (WRITE)  
WRITE instruction allows write operation to a specified location in  
the memory with a specified data. This instruction is valid only  
when the following are true:  
I Device is write-enabled (Refer WEN instruction)  
I Address of the write location is not write-protected  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRITE instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Memory Instructions  
Following five instructions, READ, WEN, WRITE, WRALL and  
WDS are specific to operations intended for memory array. The  
PRE pin should be held low during these instructions.  
1) Read and Sequential Read (READ)  
The status of the internal programming cycle can be polled at any  
time by bringing the CS signal high again, after tCS interval. When  
CS signal is high, the DO pin indicates the READY/BUSY status  
of the chip. DO = logical 0 indicates that the programming is still  
in progress. DO = logical 1 indicates that the programming is  
finished and the device is ready for another instruction. It is not  
required to provide the SK clock during this status polling. While  
the device is busy, it is recommended that no new instruction be  
issued. Refer Write cycle diagram.  
READ instruction allows data to be read from a selected location  
in the memory array. Input information (Start bit, Opcode and  
Address) for this instruction should be issued as listed under  
Table1. Upon receiving a valid input information, decoding of the  
opcode and the address is made, followed by data transfer from  
the selected memory location into a 16-bit serial-out shift register.  
This 16-bit data is then shifted out on the DO pin. D15 bit (MSB)  
is shifted out first and D0 bit (LSB) is shifted out last. A dummy-bit  
(logical 0) precedes this 16-bit data output string. Output data  
changes are initiated on the rising edge of the SK clock. After  
reading the 16-bit data, the CS signal can be brought low to end  
the Read cycle. The PRE pin should be held low during this cycle.  
Refer Read cycle diagram.  
It is also recommended to follow this instruction (after the device  
becomes READY) with a Write Disable (WDS) instruction to  
safeguarddataagainstcorruptionduetospuriousnoise,inadvert-  
ent writes etc.  
4) Write All (WRALL)  
This device also offers sequential memory readoperation to  
allowreadingofdatafromtheadditionalmemorylocationsinstead  
ofjustonelocation.Itisstartedinthesamemannerasnormalread  
but the cycle is continued to read further data (instead of terminat-  
ing after reading the first 16-bit data). After providing 16-bit data,  
the device automatically increments the address pointer to the  
next location and continues to provide the data from that location.  
Any number of locations can be read out in this manner, however,  
after reading out from the last location, the address pointer points  
back to the first location. If the cycle is continued further, data will  
be read from this first location onward. In this mode of read, the  
dummy-bit is present only when the very first data is read (like  
normal read cycle) and is not present on subsequent data reads.  
The PRE pin should be held low during this cycle. Refer Sequen-  
tial Read cycle diagram.  
Write all (WRALL) instruction is similar to the Write instruction  
except that WRALL instruction will simultaneously program all  
memorylocationswiththedatapatternspecifiedintheinstruction.  
This instruction is valid only when the following are true:  
I Protect Register has been cleared (Refer PRCLEAR  
instruction)  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRALL instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. ReferWrite All  
cycle diagram.  
2) Write Enable (WEN)  
When VCC is applied to the part, it powers upin the Write Disable  
(WDS) state. Therefore, all programming operations (for both  
memory array and Protect Register) must be preceded by a Write  
Enable (WEN) instruction. Once a Write Enable instruction is  
executed, programming remains enabled until a Write Disable  
(WDS) instruction is executed or VCC is completely removed from  
6
www.fairchildsemi.com  
FM93CS46 Rev. A  
in this case, WRITE operation to the last memory address  
(0x111111) is still enabled. PRCLEAR instruction is enabled  
(valid) only when the following are true:  
5) Write Disable (WDS)  
Write Disable (WDS) instruction disables all programming opera-  
tions and is recommended to follow all programming operations.  
Executing this instruction after a valid write instruction would  
protect against accidental data disturb due to spurious noise,  
glitches,inadvertentwritesetc.Inputinformation(Startbit,Opcode  
and Address) for this WDS instruction should be issued as listed  
under Table1. The device becomes write-disabled at the end of  
this cycle when the CS signal is brought low. Execution of a READ  
instructionisindependentofWDSinstruction. ReferWriteDisable  
cycle diagram.  
I PREN instruction was executed immediately prior to  
PRCLEAR instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRCLEAR  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed clear cycle. It takes tWP time (Refer  
appropriate DC and AC Electrical Characteristics table) for the  
internal clear cycle to finish. During this time, the device remains  
busyandisnotreadyforanotherinstruction. Statusoftheinternal  
programmingcanbepolledasdescribedunderWRITEinstruction  
description. While the device is busy, it is recommended that no  
new instruction be issued. Refer Protect Register Clear cycle  
diagram.  
Protect Register Instructions  
Following five instructions, PRREAD, PREN, PRCLEAR,  
PRWRITE and PRDS are specific to operations intended for  
Protect Register. The PRE pin should be held high during these  
instructions.  
1) Protect Register Read (PRREAD)  
This instruction reads the content of the internal Protect Register.  
Content of this register is 6-bit wide and is the starting address of  
the write-protectedsection of the memory array. All memory  
locationsgreaterthanorequaltothisaddressarewrite-protected.  
Inputinformation(Startbit,OpcodeandAddress)forthisPRREAD  
instruction should be issued as listed under Table1. Upon receiv-  
ing a valid input information, decoding of the opcode and the  
address is made, followed by data transfer (address information)  
from the Protect Register. This 6-bit data is then shifted out on the  
DO pin with the MSB first and the LSB last. Like the READ  
instruction a dummy-bit (logical 0) precedes this 6-bit data output  
string. Output data changes are initiated on the rising edge of the  
SK clock. After reading the 6-bit data, the CS signal can be  
brought low to end the PRREAD cycle. The PRE pin should be  
held high during this cycle. Refer Protect Register Read cycle  
diagram.  
4) Protect Register Write (PRWRITE)  
Thisinstructionisusedtowritethestartingaddressofthememory  
section to be write-protected into the Protect register. After the  
execution of PRWRITE instruction, all memory locations greater  
than or equal to this address are write-protected. PRWRITE  
instruction is enabled (valid) only the following are true:  
I PRCLEAR instruction was executed first (to clear the Protect  
Register)  
I PREN instruction was executed immediately prior to  
PRWRITE instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRWRITE  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. Refer Protect  
Register Write cycle diagram.  
2) Protect Register Enable (PREN)  
This instruction is required to enable PRCLEAR, PRWRITE and  
PRDS instructions and should be executed prior to executing  
PRCLEAR, PRWRITE and PRDS instructions. However, this  
PREN instruction is enabled (valid) only the following are true  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Input information (Start bit, Opcode and Address) for this PREN  
instruction should be issued as listed under Table1. The Protect  
Register becomes enabled for PRCLEAR, PRWRITE and PRDS  
instructions at the end of this cycle when the CS signal is brought  
low. Note that this PREN instruction must immediately precede  
a PRCLEAR, PRWRITE or PRDS instruction. In other words, no  
other instruction should be executed between a PREN instruction  
and a PRCLEAR, PRWRITE or PRDS instruction. Refer Protect  
Register Enable cycle diagram.  
5) Protect Register Disable (PRDS)  
Unlike all other instructions, this instruction is a one-time-only  
instruction which when executed permanently write-protects  
the Protect Register and renders it unalterable in the future. This  
instruction is useful to safeguard vital data (typically read only  
data) in the memory against any possible corruption. PRDS  
instruction is enabled (valid) only the following are true:  
I PREN instruction was executed immediately prior to PRDS  
instruction  
3) Protect Register Clear (PRCLEAR)  
This instruction clears the content of the Protect register and  
therefore enables write operations (WRITE or WRALL) to all  
memory locations. Executing this instruction will program the  
content of the Protect Register with a pattern of all 1s. However,  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
7
www.fairchildsemi.com  
FM93CS46 Rev. A  
Input information (Start bit, Opcode and Address) for this PRDS  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. The Protect  
Register is permanently write-protected at the end of this cycle.  
Refer Protect Register Disable cycle diagram.  
Clearing of Ready/Busy status  
When programming is in progress, the Data-Out pin will display  
the programming status as either BUSY (low) or READY (high)  
when CS is brought high (DO output will be tri-stated when CS is  
low). To restate, during programming, the CS pin may be brought  
high and low any number of times to view the programming status  
without affecting the programming operation. Once programming  
is completed (Output in READY state), the output is cleared’  
(returned to normal tri-state condition) by clocking in a Start Bit.  
After the Start Bit is clocked in, the output will return to a tri-stated  
condition. When clocked in, this Start Bit can be the first bit in a  
command string, or CS can be brought low again to reset all  
internal circuits. Refer Clearing Ready Status diagram.  
Related Document  
Application Note: AN758 - Using Fairchilds MICROWIREEE-  
PROM.  
8
www.fairchildsemi.com  
FM93CS46 Rev. A  
Timing Diagrams  
SYNCHRONOUS DATA TIMING  
CS  
SK  
PRE  
PE  
DI  
t
t
t
t
t
CSH  
SKS  
CSS  
SKH  
SKL  
t
t
PREH  
PRES  
t
t
PEH  
PES  
t
t
DIH  
DIS  
Valid  
Input  
Valid  
Input  
t
PD  
t
t
DF  
DF  
t
t
PD  
DH  
Valid  
Output  
Valid  
Output  
DO (Data Read)  
t
SV  
Valid Status  
DO (Status Read)  
NORMAL READ CYCLE (READ)  
PRE  
PE  
t
CS  
CS  
SK  
1
1
0
A5  
A4  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
0
D15  
D1  
D0  
DO  
Dummy  
Bit  
93CS46:  
Address bits pattern -> User defined  
SEQUENTIAL READ CYCLE (PRE = 0; PE = X)  
PRE  
t
CS  
CS  
SK  
1
1
0
A5  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
0
D15  
D0  
D15  
D0  
D15  
D0  
DO  
Dummy  
Bit  
Data(n)  
Data(n+1)  
Data(n+2)  
93CS46:  
Address bits pattern -> User defined  
9
www.fairchildsemi.com  
FM93CS46 Rev. A  
Timing Diagrams (Continued)  
WRITE ENABLE CYCLE (WEN)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A5  
A4  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
93CS46:  
Address bits pattern -> 1-1-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE DISABLE CYCLE (WDS)  
PRE  
PE  
t
CS  
CS  
SK  
DI  
1
0
0
A5  
A4  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
93CS46:  
Address bits pattern -> 0-0-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE CYCLE (WRITE)  
PRE  
PE  
tCS  
CS  
SK  
1
0
1
A5  
A4  
A1  
A0  
D15 D14  
D1  
D0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS46:  
Address bits pattern -> User defined  
Data bits pattern -> User defined  
10  
www.fairchildsemi.com  
FM93CS46 Rev. A  
Timing Diagrams (Continued)  
WRITE ALL CYCLE (WRALL)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A5  
A4  
A1  
A0  
D15 D14  
D1  
D0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS46:  
Address bits pattern -> 0-1-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
Data bits pattern -> User defined  
PROTECT REGISTER READ CYCLE (PRREAD)  
PRE  
PE  
t
CS  
CS  
SK  
1
1
0
A5  
A4  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
0
D5  
D1  
D0  
DO  
Dummy  
Bit  
93CS46:  
Address bits pattern -> x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
PROTECT REGISTER ENABLE CYCLE (PREN)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A5  
A4  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
93CS46:  
Address bits pattern -> 1-1-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
11  
www.fairchildsemi.com  
FM93CS46 Rev. A  
Timing Diagrams (Continued)  
PROTECT REGISTER CLEAR CYCLE (PRCLEAR)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
1
1
A5  
A4  
A1  
A0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
Ready  
Ready  
Ready  
DO  
Busy  
93CS46:  
Address bits pattern -> 1-1-1-1-1-1  
PROTECT REGISTER WRITE CYCLE (PRWRITE)  
PRE  
PE  
tCS  
CS  
SK  
1
0
1
A5  
A4  
A1  
A0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
Busy  
93CS46:  
Address bits pattern -> User defined  
PROTECT REGISTER DISABLE CYCLE (PRDS)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A5  
A4  
A1  
A0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(6)  
High - Z  
DO  
Busy  
93CS46:  
Address bits pattern -> 0-0-0-0-0-0  
12  
www.fairchildsemi.com  
FM93CS46 Rev. A  
Timing Diagrams (Continued)  
CLEARING READY STATUS  
PRE  
PE  
CS  
SK  
DI  
Start  
Bit  
High - Z  
High - Z  
Ready  
DO  
Busy  
Note: This Start bit can also be part of a next instruction. Hence the cycle  
can be continued(instead of getting terminated, as shown) as if a new  
instruction is being issued.  
13  
www.fairchildsemi.com  
FM93CS46 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Package, Small Outline, 0.15 Wide, 8-Lead (M8)  
Package Number M08A  
14  
www.fairchildsemi.com  
FM93CS46 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
Notes: Unless otherwise specified  
1. Reference JEDEC registration MO153. Variation AA. Dated 7/93  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
15  
www.fairchildsemi.com  
FM93CS46 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
16  
www.fairchildsemi.com  
FM93CS46 Rev. A  
February 2000  
FM93CS56  
(MICROWIRE™ Bus Interface) 2048-Bit Serial EEPROM  
with Data Protect and Sequential Read  
General Description  
Features  
FM93CS56 is a 2048-bit CMOS non-volatile EEPROM organized  
as 128 x 16-bit array. This device features MICROWIRE interface  
which is a 4-wire serial bus with chipselect (CS), clock (SK), data  
input (DI) and data output (DO) signals. This interface is compat-  
ible to many of standard Microcontrollers and Microprocessors.  
FM93CS56 offers programmable write protection to the memory  
array using a special register called Protect Register. Selected  
memory locations can be protected against write by programming  
this Protect Register with the address of the first memory location  
to be protected (all locations greater than or equal to this first  
addressarethenprotectedfromfurtherchange). Additionally, this  
address can be “permanently locked” into the device, making all  
future attempts to change data impossible. In addition this device  
features “sequential read”, by which, entire memory can be read  
in one cycle instead of multiple single byte read cycles. There are  
10 instructions implemented on the FM93CS56, 5 of which are for  
memory operations and the remaining 5 are for Protect Register  
operations. This device is fabricated using Fairchild Semiconduc-  
torfloating-gateCMOSprocessforhighreliability,highendurance  
and low power consumption.  
I Wide VCC 2.7V - 5.5V  
I Programmable write protection  
I Sequential register read  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No Erase instruction required before Write instruction  
I Self timed write cycle  
I Device status during programming cycles  
I 40 year data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
“LZ” and “L” versions of FM93CS56 offer very low standby current  
makingthemsuitableforlowpowerapplications.Thisdeviceisoffered  
in both SO and TSSOP packages for small space considerations.  
Functional Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC  
AND CLOCK  
PRE  
PE  
INSTRUCTION  
REGISTER  
DI  
GENERATORS  
COMPARATOR  
AND  
WRITE ENABLE  
HIGH VOLTAGE  
GENERATOR  
AND  
PROGRAM  
TIMER  
ADDRESS  
REGISTER  
PROTECT  
REGISTER  
DECODER  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
1
© 1999 Fairchild Semiconductor Corporation  
FM93CS56 Rev. A  
www.fairchildsemi.com  
 
Connection Diagram  
Dual-In-Line Package (N)  
8–Pin SO (M8) and 8–Pin TSSOP (MT8)  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
VCC  
PRE  
PE  
DO  
GND  
Top View  
Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
SK  
Chip Select  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
PE  
Program Enable  
Protect Register Enable  
Power Supply  
PRE  
VCC  
Ordering Information  
FM  
93  
CS XX LZ  
E
XXX  
Letter Description  
Package  
N
8-pin DIP  
M8  
MT8  
8-pin SO  
8-pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Density  
56  
2048 bits  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
Fairchild Memory Prefix  
2
www.fairchildsemi.com  
FM93CS56 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS56  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS56E  
FM93CS56V  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 4.5V to 5.5V unless otherwise specified  
Symbol  
ICCA  
Parameter  
Conditions  
CS = VIH, SK=1.0 MHz  
CS = VIL  
Min  
Max  
Units  
Operating Current  
1
mA  
ICCS  
Standby Current  
50  
-1  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
V
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOH = -10 µA  
(Note 3)  
0.4  
0.2  
1
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
VCC - 0.2  
fSK  
SK Clock Frequency  
SK High Time  
MHz  
ns  
tSKH  
0°C to +70°C  
-40°C to +125°C  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
tCS  
Minimum CS Low Time  
(Note 4)  
250  
ns  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
70  
tPES  
tDIS  
50  
100  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
ns  
ns  
250  
50  
20  
tPD  
500  
500  
tSV  
CS to Status Valid  
ns  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
100  
10  
ns  
tWP  
ms  
3
www.fairchildsemi.com  
FM93CS56 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS56L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS56LE/LZE  
FM93CS56LV/LZV  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
ICCA  
Parameter  
Conditions  
CS = VIH, SK=1.0 MHz  
CS = VIL  
Min  
Max  
Units  
Operating Current  
1
mA  
ICCS  
Standby Current  
L
LZ (2.7V to 4.5V)  
10  
1
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8VCC  
0.15VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10µA  
IOH = -10µA  
0.1VCC  
V
0.9VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
SK Setup Time  
0.2  
µs  
tCS  
Minimum CS Low Time  
(Note 4)  
1
µs  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
0.2  
50  
70  
50  
0.4  
µs  
ns  
ns  
ns  
µs  
tPES  
tDIS  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
µs  
µs  
250  
50  
0.4  
tPD  
2
1
tSV  
CS to Status Valid  
µs  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
0.4  
15  
µs  
ms  
tWP  
Note 1: StressabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamage  
to the device. This is a stress rating only and functional operation of the device at these or any other  
conditionsabovethoseindicatedintheoperationalsectionsofthespecificationisnotimplied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Note 2: Typical leakage values are in the 20nA range.  
Symbol  
Test  
Typ Max Units  
Note 3: TheshortestallowableSKclockperiod=1/fSK (asshownunderthefSK parameter). Maximum  
SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated  
in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not  
allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all internal  
device registers (device reset) prior to beginning another opcode cycle. (This is shown in the opcode  
diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
0.3V/1.8V  
VIL/VIH  
Timing Level  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
2.7V VCC 5.5V  
1.0V  
10µA  
(Extended Voltage Levels)  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93CS56 Rev. A  
Program Enable (PE)  
Pin Description  
This is an active high input pin to the device and is used to enable  
operations, that are write in nature, to the memory array and to the  
Protect register. When this pin is held high, operations that are  
writein nature are enabled. When this pin is held low, operations  
that are writein nature are disabled. This pin operates in  
conjunctionwithPREpin. ReferTable1forfunctionalmatrixofthis  
pin for various operations.  
Chip Select (CS)  
ThisisanactivehighinputpintoFM93CS56EEPROM(thedevice)  
and is generated by a master that is controlling the device. A high  
level on this pin selects the device and a low level deselects the  
device. All serial communications with the device is enabled only  
when this pin is held high. However this pin cannot be permanently  
tied high, as a rising edge on this signal is required to reset the  
internal state-machine to accept a new cycle and a falling edge to  
initiateaninternalprogrammingafterawritecycle.Allactivityonthe  
SK, DI and DO pins are ignored while CS is held low.  
Microwire Interface  
AtypicalcommunicationontheMicrowirebusismadethroughthe  
CS, SK, DI and DO signals. To facilitate various operations on the  
Memory array and on the Protect Register, a set of 10 instructions  
are implemented on FM93CS56. The format of each instruction is  
listed in Table 1.  
Serial Clock (SK)  
Thisisaninputpintothedeviceandisgeneratedbythemasterthat  
is controlling the device. This is a clock signal that synchronizes the  
communicationbetweenamasterandthedevice. Allinputinforma-  
tion(DI)tothedeviceislatchedontherisingedgeofthisclockinput,  
whileoutputdata(DO)fromthedeviceisdrivenfromtherisingedge  
of this clock input. This pin is gated by CS signal.  
Instruction  
Each of the above 10 instructions is explained under individual  
instruction descriptions.  
Start Bit  
Serial Input (DI)  
This is a 1-bit field and is the first bit that is clocked into the device  
whenaMicrowirecyclestarts.Thisbithastobe1foravalidcycle  
to begin. Any number of preceding 0can be clocked into the  
device before clocking a 1.  
This is an input pin to the device and is generated by the master  
that is controlling the device. The master transfers Input informa-  
tion (Start bit, Opcode bits, Array addresses and Data) serially via  
this pin into the device. This Input information is latched on the  
rising edge of the SCK. This pin is gated by CS signal.  
Opcode  
Serial Output (DO)  
This is a 2-bit field and should immediately follow the start bit.  
These two bits (along with PRE, PE signals and 2 MSB of address  
field) select a particular instruction to be executed.  
This is an output pin from the device and is used to transfer Output  
data via this pin to the controlling master. Output data is serially  
shifted out on this pin from the rising edge of the SCK. This pin is  
active only when the device is selected.  
Address Field  
This is a 8-bit field and should immediately follow the Opcode bits.  
In FM93CS56, only the LSB 7 bits are used for address decoding  
during READ, WRITE and PRWRITE instructions. During these  
three instructions (READ, WRITE and PRWRITE), the MSB is  
dont care(can be 0 or 1). During all other instructions (with the  
exception of PRREAD), the MSB 2 bits are used to decode  
instruction (along with Opcode bits, PRE and PE signals).  
Protect Register Enable (PRE)  
This is an active high input pin to the device and is used to  
distinguish operations to memory array and operations to Protect  
Register. When this pin is held low, operations to the memory  
array are enabled. When this pin is held high, operations to the  
Protect Register are enabled. This pin operates in conjunction  
with PE pin. Refer Table1 for functional matrix of this pin for  
various operations.  
Data Field  
This is a 16-bit field and should immediately follow the Address  
bits. Only the WRITE and WRALL instructions require this field.  
D15 (MSB) is clocked first and D0 (LSB) is clocked last (both  
during writes as well as reads).  
TABLE 1. Instruction set  
Instruction Start Bit Opcode Field  
Address Field  
Data Field PRE Pin  
PE Pin  
READ  
WEN  
1
1
1
1
1
1
1
1
1
1
10  
00  
01  
00  
00  
10  
00  
11  
01  
00  
X
1
X
0
0
X
1
1
X
0
A6 A5 A4 A3 A2 A1 A0  
0
0
X
1
1
1
X
X
1
1
1
1
1
X
X
X
X
X
X
WRITE  
WRALL  
WDS  
A6 A5 A4 A3 A2 A1 A0  
D15-D0  
D15-D0  
0
0
0
1
1
1
1
1
1
0
X
1
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
PRREAD  
PREN  
PRCLEAR  
PRWRITE  
PRDS  
A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
0
5
www.fairchildsemi.com  
FM93CS56 Rev. A  
the part. Input information (Start bit, Opcode and Address) for this  
WEN instruction should be issued as listed under Table1. The  
device becomes write-enabled at the end of this cycle when the  
CS signal is brought low. The PRE pin should be held low during  
thiscycle.ExecutionofaREADinstructionisindependentofWEN  
instruction. Refer Write Enable cycle diagram.  
Functional Description  
A typical Microwire cycle starts by first selecting the device  
(bringing the CS signal high). Once the device is selected, a valid  
Start bit (1) should be issued to properly recognize the cycle.  
Following this, the 2-bit opcode of appropriate instruction should  
be issued. After the opcode bits, the 8-bit address information  
should be issued. For certain instructions, some (or all) of these  
8 bits are dont care values (can be 0or 1), but they should still  
be issued. Following the address information, depending on the  
instruction (WRITE and WRALL), 16-Bit data is issued. Other-  
wise, depending on the instruction (READ and PRREAD), the  
device starts to drive the output data on the DO line. Other  
instructions perform certain control functions and do not deal with  
data bits. The Microwire cycle ends when the CS signal is brought  
low. However during certain instructions, falling edge of the CS  
signal initiates an internal cycle (Programming), and the device  
remains busy till the completion of the internal cycle. Each of the  
10 instructions is explained in detail in the following sections.  
3) Write (WRITE)  
WRITE instruction allows write operation to a specified location in  
the memory with a specified data. This instruction is valid only  
when the following are true:  
I Device is write-enabled (Refer WEN instruction)  
I Address of the write location is not write-protected  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRITE instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Memory Instructions  
Following five instructions, READ, WEN, WRITE, WRALL and  
WDS are specific to operations intended for memory array. The  
PRE pin should be held low during these instructions.  
1) Read and Sequential Read (READ)  
The status of the internal programming cycle can be polled at any  
time by bringing the CS signal high again, after tCS interval. When  
CS signal is high, the DO pin indicates the READY/BUSY status  
of the chip. DO = logical 0 indicates that the programming is still  
in progress. DO = logical 1 indicates that the programming is  
finished and the device is ready for another instruction. It is not  
required to provide the SK clock during this status polling. While  
the device is busy, it is recommended that no new instruction be  
issued. Refer Write cycle diagram.  
READ instruction allows data to be read from a selected location  
in the memory array. Input information (Start bit, Opcode and  
Address) for this instruction should be issued as listed under  
Table1. Upon receiving a valid input information, decoding of the  
opcode and the address is made, followed by data transfer from  
the selected memory location into a 16-bit serial-out shift register.  
This 16-bit data is then shifted out on the DO pin. D15 bit (MSB)  
is shifted out first and D0 bit (LSB) is shifted out last. A dummy-bit  
(logical 0) precedes this 16-bit data output string. Output data  
changes are initiated on the rising edge of the SK clock. After  
reading the 16-bit data, the CS signal can be brought low to end  
the Read cycle. The PRE pin should be held low during this cycle.  
Refer Read cycle diagram.  
It is also recommended to follow this instruction (after the device  
becomes READY) with a Write Disable (WDS) instruction to  
safeguarddataagainstcorruptionduetospuriousnoise,inadvert-  
ent writes etc.  
4) Write All (WRALL)  
This device also offers sequential memory readoperation to  
allowreadingofdatafromtheadditionalmemorylocationsinstead  
ofjustonelocation.Itisstartedinthesamemannerasnormalread  
but the cycle is continued to read further data (instead of terminat-  
ing after reading the first 16-bit data). After providing 16-bit data,  
the device automatically increments the address pointer to the  
next location and continues to provide the data from that location.  
Any number of locations can be read out in this manner, however,  
after reading out from the last location, the address pointer points  
back to the first location. If the cycle is continued further, data will  
be read from this first location onward. In this mode of read, the  
dummy-bit is present only when the very first data is read (like  
normal read cycle) and is not present on subsequent data reads.  
The PRE pin should be held low during this cycle. Refer Sequen-  
tial Read cycle diagram.  
Write all (WRALL) instruction is similar to the Write instruction  
except that WRALL instruction will simultaneously program all  
memorylocationswiththedatapatternspecifiedintheinstruction.  
This instruction is valid only when the following are true:  
I Protect Register has been cleared (Refer PRCLEAR  
instruction)  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRALL instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. ReferWrite All  
cycle diagram.  
2) Write Enable (WEN)  
When VCC is applied to the part, it powers upin the Write Disable  
(WDS) state. Therefore, all programming operations (for both  
memory array and Protect Register) must be preceded by a Write  
Enable (WEN) instruction. Once a Write Enable instruction is  
executed, programming remains enabled until a Write Disable  
(WDS) instruction is executed or VCC is completely removed from  
6
www.fairchildsemi.com  
FM93CS56 Rev. A  
in this case, WRITE operation to the last memory address  
(0x01111111) is still enabled. PRCLEAR instruction is enabled  
(valid) only when the following are true:  
5) Write Disable (WDS)  
Write Disable (WDS) instruction disables all programming opera-  
tions and is recommended to follow all programming operations.  
Executing this instruction after a valid write instruction would  
protect against accidental data disturb due to spurious noise,  
glitches,inadvertentwritesetc.Inputinformation(Startbit,Opcode  
and Address) for this WDS instruction should be issued as listed  
under Table1. The device becomes write-disabled at the end of  
this cycle when the CS signal is brought low. Execution of a READ  
instructionisindependentofWDSinstruction. ReferWriteDisable  
cycle diagram.  
I PREN instruction was executed immediately prior to  
PRCLEAR instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRCLEAR  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed clear cycle. It takes tWP time (Refer  
appropriate DC and AC Electrical Characteristics table) for the  
internal clear cycle to finish. During this time, the device remains  
busy and is not ready for another instruction. Status of the internal  
programmingcanbepolledasdescribedunderWRITEinstruction  
description. While the device is busy, it is recommended that no  
new instruction be issued. Refer Protect Register Clear cycle  
diagram.  
Protect Register Instructions  
Following five instructions, PRREAD, PREN, PRCLEAR,  
PRWRITE and PRDS are specific to operations intended for  
Protect Register. The PRE pin should be held high during these  
instructions.  
1) Protect Register Read (PRREAD)  
This instruction reads the content of the internal Protect Register.  
Content of this register is 8-bit wide and is the starting address of  
the write-protectedsection of the memory array. All memory  
locationsgreaterthanorequaltothisaddressarewrite-protected.  
Inputinformation(Startbit,OpcodeandAddress)forthisPRREAD  
instruction should be issued as listed under Table 1. Upon  
receivingavalidinputinformation,decodingoftheopcodeandthe  
address is made, followed by data transfer (address information)  
from the Protect Register. This 8-bit data is then shifted out on the  
DO pin with the MSB first and the LSB last. Like the READ  
instruction a dummy-bit (logical 0) precedes this 8-bit data output  
string. Output data changes are initiated on the rising edge of the  
SKclock.Afterreadingthe8-bitdata,theCSsignalcanbebrought  
low to end the PRREAD cycle. The PRE pin should be held high  
during this cycle. Refer Protect Register Read cycle diagram.  
4) Protect Register Write (PRWRITE)  
Thisinstructionisusedtowritethestartingaddressofthememory  
section to be write-protected into the Protect register. After the  
execution of PRWRITE instruction, all memory locations greater  
than or equal to this address are write-protected. PRWRITE  
instruction is enabled (valid) only the following are true:  
I PRCLEAR instruction was executed first (to clear the Protect  
Register)  
I PREN instruction was executed immediately prior to  
PRWRITE instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRWRITE  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. Refer Protect  
Register Write cycle diagram.  
Though the content of this register is 8-bit wide, only the last 7 bits  
(LSB) are valid for FM93CS56 device.  
2) Protect Register Enable (PREN)  
This instruction is required to enable PRCLEAR, PRWRITE and  
PRDS instructions and should be executed prior to executing  
PRCLEAR, PRWRITE and PRDS instructions. However, this  
PREN instruction is enabled (valid) only the following are true  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
5) Protect Register Disable (PRDS)  
Input information (Start bit, Opcode and Address) for this PREN  
instruction should be issued as listed under Table1. The Protect  
Register becomes enabled for PRCLEAR, PRWRITE and PRDS  
instructions at the end of this cycle when the CS signal is brought  
low. Note that this PREN instruction must immediately precede  
a PRCLEAR, PRWRITE or PRDS instruction. In other words, no  
other instruction should be executed between a PREN instruction  
and a PRCLEAR, PRWRITE or PRDS instruction. Refer Protect  
Register Enable cycle diagram.  
Unlike all other instructions, this instruction is a one-time-only  
instruction which when executed permanently write-protects  
the Protect Register and renders it unalterable in the future. This  
instruction is useful to safeguard vital data (typically read only  
data) in the memory against any possible corruption. PRDS  
instruction is enabled (valid) only the following are true:  
I PREN instruction was executed immediately prior to PRDS  
instruction  
3) Protect Register Clear (PRCLEAR)  
I PE pin is held high during this cycle  
This instruction clears the content of the Protect register and  
therefore enables write operations (WRITE or WRALL) to all  
memory locations. Executing this instruction will program the  
content of the Protect Register with a pattern of all 1s. However,  
I PRE pin is held high during this cycle  
Input information (Start bit, Opcode and Address) for this PRDS  
7
www.fairchildsemi.com  
FM93CS56 Rev. A  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. The Protect  
Register is permanently write-protected at the end of this cycle.  
Refer Protect Register Disable cycle diagram.  
When programming is in progress, the Data-Out pin will display  
the programming status as either BUSY (low) or READY (high)  
when CS is brought high (DO output will be tri-stated when CS is  
low). To restate, during programming, the CS pin may be brought  
high and low any number of times to view the programming status  
without affecting the programming operation. Once programming  
is completed (Output in READY state), the output is cleared’  
(returned to normal tri-state condition) by clocking in a Start Bit.  
After the Start Bit is clocked in, the output will return to a tri-stated  
condition. When clocked in, this Start Bit can be the first bit in a  
command string, or CS can be brought low again to reset all  
internal circuits. Refer Clearing Ready Status diagram.  
Clearing of Ready/Busy status  
Related Document  
Application Note: AN758 - Using Fairchilds MICROWIREEE-  
PROM.  
8
www.fairchildsemi.com  
FM93CS56 Rev. A  
Timing Diagrams  
SYNCHRONOUS DATA TIMING  
CS  
SK  
PRE  
PE  
DI  
t
t
t
t
t
CSH  
SKS  
CSS  
SKH  
SKL  
t
t
PREH  
PRES  
t
t
PEH  
PES  
t
t
DIH  
DIS  
Valid  
Input  
Valid  
Input  
t
PD  
t
t
DF  
DF  
t
t
PD  
DH  
Valid  
Output  
Valid  
Output  
DO (Data Read)  
t
SV  
Valid Status  
DO (Status Read)  
NORMAL READ CYCLE (READ)  
PRE  
PE  
tCS  
CS  
SK  
1
1
0
A7  
A6  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
0
D15  
D1  
D0  
0
DO  
Dummy  
Bit  
93CS56:  
Address bits pattern -> x-A6-A5-A4-A3-A2-A1-A0; (x -> Don't Care, can be  
or 1); ( A6-A0 -> User defined )  
SEQUENTIAL READ CYCLE (PRE = 0; PE = X)  
PRE  
t
CS  
CS  
SK  
1
1
0
A7  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
0
D15  
D0  
D15  
D0  
D15  
D0  
DO  
Dummy  
Bit  
Data(n)  
Data(n+1)  
Data(n+2)  
93CS56:  
Address bits pattern ->x-A6-A5-A4-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); ( A6-A0 -> User defined )  
9
www.fairchildsemi.com  
FM93CS56 Rev. A  
Timing Diagrams (Continued)  
WRITE ENABLE CYCLE (WEN)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A7  
A6  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
93CS56:  
Address bits pattern -> 1-1-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE DISABLE CYCLE (WDS)  
PRE  
PE  
t
CS  
CS  
SK  
DI  
1
0
0
A7  
A6  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
93CS56:  
Address bits pattern -> 0-0-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE CYCLE (WRITE)  
PRE  
PE  
tCS  
CS  
SK  
1
0
1
A7  
A6  
A1  
A0  
D15 D14  
D1  
D0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS56:  
Address bits pattern -> x-A6-A5-A4-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); ( A6-A0 -> User defined )  
Data bits pattern -> User defined  
10  
www.fairchildsemi.com  
FM93CS56 Rev. A  
Timing Diagrams (Continued)  
WRITE ALL CYCLE (WRALL)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A7  
A6  
A1  
A0  
D15 D14  
D1  
D0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS56:  
Address bits pattern -> 0-1-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
Data bits pattern -> User defined  
PROTECT REGISTER READ CYCLE (PRREAD)  
PRE  
PE  
t
CS  
CS  
SK  
1
1
0
A7  
A6  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
0
D7  
D1  
D0  
DO  
Dummy  
Bit  
93CS56:  
Address bits pattern -> x-x-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
PROTECT REGISTER ENABLE CYCLE (PREN)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A7  
A6  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
93CS56:  
Address bits pattern -> 1-1-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
11  
www.fairchildsemi.com  
FM93CS56 Rev. A  
Timing Diagrams (Continued)  
PROTECT REGISTER CLEAR CYCLE (PRCLEAR)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
1
1
A7  
A6  
A1  
A0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
Ready  
DO  
Busy  
93CS56:  
Address bits pattern -> 1-1-1-1-1-1-1-1  
PROTECT REGISTER WRITE CYCLE (PRWRITE)  
PRE  
PE  
t
CS  
CS  
SK  
DI  
1
0
1
A7  
A6  
A1  
A0  
t
WP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
Ready  
DO  
Busy  
93CS56:  
Address bits pattern -> x-A6-A5-A4-A3-A2-A1-A0; (x -> Don't Care, can be 0 or 1); ( A6-A0 -> User defined )  
PROTECT REGISTER DISABLE CYCLE (PRDS)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A7  
A6  
A1  
A0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
Ready  
DO  
Busy  
93CS56:  
Address bits pattern -> 0-0-0-0-0-0-0-0  
12  
www.fairchildsemi.com  
FM93CS56 Rev. A  
Timing Diagrams (Continued)  
CLEARING READY STATUS  
PRE  
PE  
CS  
SK  
DI  
Start  
Bit  
High - Z  
High - Z  
Ready  
DO  
Busy  
Note: This Start bit can also be part of a next instruction. Hence the cycle  
can be continued(instead of getting terminated, as shown) as if a new  
instruction is being issued.  
13  
www.fairchildsemi.com  
FM93CS56 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
5
0.228 - 0.244  
(5.791 - 6.198)  
1
2
3
4
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Package, Small Outline, 0.15 Wide, 8-Lead (M8)  
Package Number M08A  
14  
www.fairchildsemi.com  
FM93CS56 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
Notes: Unless otherwise specified  
1. Reference JEDEC registration MO153. Variation AA. Dated 7/93  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
15  
www.fairchildsemi.com  
FM93CS56 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
16  
www.fairchildsemi.com  
FM93CS56 Rev. A  
February 2000  
FM93CS66  
(MICROWIRE™ Bus Interface) 4096-Bit Serial EEPROM  
with Data Protect and Sequential Read  
General Description  
Features  
FM93CS66 is a 4096-bit CMOS non-volatile EEPROM organized  
as 256 x 16-bit array. This device features MICROWIRE interface  
which is a 4-wire serial bus with chipselect (CS), clock (SK), data  
input (DI) and data output (DO) signals. This interface is compat-  
ible to many of standard Microcontrollers and Microprocessors.  
FM93CS66 offers programmable write protection to the memory  
array using a special register called Protect Register. Selected  
memory locations can be protected against write by programming  
this Protect Register with the address of the first memory location  
to be protected (all locations greater than or equal to this first  
addressarethenprotectedfromfurtherchange). Additionally, this  
address can be “permanently locked” into the device, making all  
future attempts to change data impossible. In addition this device  
features “sequential read”, by which, entire memory can be read  
in one cycle instead of multiple single byte read cycles. There are  
10 instructions implemented on the FM93CS66, 5 of which are for  
memory operations and the remaining 5 are for Protect Register  
operations. This device is fabricated using Fairchild Semiconduc-  
torfloating-gateCMOSprocessforhighreliability,highendurance  
and low power consumption.  
I Wide VCC 2.7V - 5.5V  
I Programmable write protection  
I Sequential register read  
I Typical active current of 200µA  
10µA standby current typical  
1µA standby current typical (L)  
0.1µA standby current typical (LZ)  
I No Erase instruction required before Write instruction  
I Self timed write cycle  
I Device status during programming cycles  
I 40 year data retention  
I Endurance: 1,000,000 data changes  
I Packages available: 8-pin SO, 8-pin DIP, 8-pin TSSOP  
“LZ” and “L” versions of FM93CS66 offer very low standby current  
makingthemsuitableforlowpowerapplications.Thisdeviceisoffered  
in both SO and TSSOP packages for small space considerations.  
Functional Diagram  
VCC  
CS  
SK  
INSTRUCTION  
DECODER  
CONTROL LOGIC  
AND CLOCK  
PRE  
PE  
INSTRUCTION  
REGISTER  
DI  
GENERATORS  
COMPARATOR  
AND  
WRITE ENABLE  
HIGH VOLTAGE  
GENERATOR  
AND  
PROGRAM  
TIMER  
ADDRESS  
REGISTER  
PROTECT  
REGISTER  
DECODER  
EEPROM ARRAY  
16  
READ/WRITE AMPS  
16  
VSS  
DATA IN/OUT REGISTER  
16 BITS  
DO  
DATA OUT BUFFER  
1
© 1999 Fairchild Semiconductor Corporation  
FM93CS66 Rev. A  
www.fairchildsemi.com  
 
Connection Diagram  
Dual-In-Line Package (N)  
8–Pin SO (M8) and 8–Pin TSSOP (MT8)  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
VCC  
PRE  
PE  
DO  
GND  
Top View  
Package Number  
N08E, M08A and MTC08  
Pin Names  
CS  
SK  
Chip Select  
Serial Data Clock  
Serial Data Input  
Serial Data Output  
Ground  
DI  
DO  
GND  
PE  
Program Enable  
Protect Register Enable  
Power Supply  
PRE  
VCC  
Ordering Information  
FM  
93  
CS XX LZ  
E
XXX  
Letter Description  
Package  
N
8-pin DIP  
M8  
MT8  
8-pin SO  
8-pin TSSOP  
Temp. Range  
None  
0 to 70°C  
V
E
-40 to +125°C  
-40 to +85°C  
Voltage Operating Range  
Blank  
L
4.5V to 5.5V  
2.7V to 5.5V  
LZ  
2.7V to 5.5V and  
<1µA Standby Current  
Density  
66  
4096 bits  
C
CMOS  
CS  
Data protect and sequential  
read  
Interface  
93  
MICROWIRE  
Fairchild Memory Prefix  
2
www.fairchildsemi.com  
FM93CS66 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS66  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS66E  
FM93CS66V  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
4.5V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 4.5V to 5.5V unless otherwise specified  
Symbol  
ICCA  
Parameter  
Conditions  
CS = VIH, SK=1.0 MHz  
CS = VIL  
Min  
Max  
Units  
Operating Current  
1
mA  
ICCS  
Standby Current  
50  
-1  
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
2
0.8  
VCC +1  
V
V
V
VOL1  
VOH1  
Output Low Voltage  
Output High Voltage  
IOL = 2.1 mA  
IOH = -400 µA  
IOL = 10 µA  
IOH = -10 µA  
(Note 3)  
0.4  
0.2  
1
2.4  
VOL2  
VOH2  
Output Low Voltage  
Output High Voltage  
VCC - 0.2  
fSK  
SK Clock Frequency  
SK High Time  
MHz  
ns  
tSKH  
0°C to +70°C  
-40°C to +125°C  
250  
300  
tSKL  
tSKS  
SK Low Time  
250  
50  
ns  
ns  
SK Setup Time  
tCS  
Minimum CS Low Time  
(Note 4)  
250  
ns  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
70  
tPES  
tDIS  
50  
100  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
ns  
ns  
250  
50  
20  
tPD  
500  
500  
tSV  
CS to Status Valid  
ns  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
100  
10  
ns  
tWP  
ms  
3
www.fairchildsemi.com  
FM93CS66 Rev. A  
Absolute Maximum Ratings (Note 1)  
Operating Conditions  
Ambient Storage Temperature  
-65°C to +150°C  
Ambient Operating Temperature  
FM93CS66L/LZ  
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
All Input or Output Voltages  
with Respect to Ground  
+6.5V to -0.3V  
FM93CS66LE/LZE  
FM93CS66LV/LZV  
Lead Temperature  
(Soldering, 10 sec.)  
+300°C  
Power Supply (VCC  
)
2.7V to 5.5V  
ESD rating  
2000V  
DC and AC Electrical Characteristics VCC = 2.7V to 5.5V unless otherwise specified  
Symbol  
ICCA  
Parameter  
Conditions  
CS = VIH, SK=1.0 MHz  
CS = VIL  
Min  
Max  
Units  
Operating Current  
1
mA  
ICCS  
Standby Current  
L
LZ (2.7V to 4.5V)  
10  
1
µA  
µA  
IIL  
IOL  
Input Leakage  
Output Leakage  
VIN = 0V to VCC  
(Note 2)  
1
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.1  
0.8VCC  
0.15VCC  
VCC +1  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 10µA  
IOH = -10µA  
0.1VCC  
V
0.9VCC  
fSK  
SK Clock Frequency  
SK High Time  
(Note 3)  
0
1
250  
KHz  
µs  
µs  
tSKH  
tSKL  
tSKS  
SK Low Time  
1
SK Setup Time  
0.2  
µs  
tCS  
Minimum CS Low Time  
(Note 4)  
1
µs  
tCSS  
tPRES  
tDH  
CS Setup Time  
PRE Setup Time  
DO Hold Time  
PE Setup Time  
DI Setup Time  
0.2  
50  
70  
50  
0.4  
µs  
ns  
ns  
ns  
µs  
tPES  
tDIS  
tCSH  
tPEH  
tPREH  
tDIH  
CS Hold Time  
PE Hold Time  
PRE Hold Time  
DI Hold Time  
Output Delay  
0
ns  
ns  
ns  
µs  
µs  
250  
50  
0.4  
tPD  
2
1
tSV  
CS to Status Valid  
µs  
tDF  
CS to DO in Hi-Z  
Write Cycle Time  
CS = VIL  
0.4  
15  
µs  
ms  
tWP  
Note 1: StressabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamage  
to the device. This is a stress rating only and functional operation of the device at these or any other  
conditionsabovethoseindicatedintheoperationalsectionsofthespecificationisnotimplied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
Capacitance TA = 25°C, f = 1 MHz (Note 5)  
Note 2: Typical leakage values are in the 20nA range.  
Symbol  
Test  
Typ Max Units  
Note 3: TheshortestallowableSKclockperiod=1/fSK (asshownunderthefSK parameter). Maximum  
SK clock speed (minimum SK period) is determined by the interaction of several AC parameters stated  
in the datasheet. Within this SK period, both tSKH and tSKL limits must be observed. Therefore, it is not  
allowable to set 1/fSK = tSKHminimum + tSKLminimum for shorter SK cycle time operation.  
COUT  
CIN  
Output Capacitance  
Input Capacitance  
5
5
pF  
pF  
Note 4: CS (Chip Select) must be brought low (to VIL) for an interval of tCS in order to reset all internal  
device registers (device reset) prior to beginning another opcode cycle. (This is shown in the opcode  
diagram on the following page.)  
Note 5: This parameter is periodically sampled and not 100% tested.  
AC Test Conditions  
VCC Range  
VIL/VIH  
Input Levels  
0.3V/1.8V  
VIL/VIH  
VOL/VOH  
Timing Level  
0.8V/1.5V  
IOL/IOH  
Timing Level  
2.7V VCC 5.5V  
1.0V  
10µA  
(Extended Voltage Levels)  
4.5V VCC 5.5V  
0.4V/2.4V  
1.0V/2.0V  
0.4V/2.4V  
2.1mA/-0.4mA  
(TTL Levels)  
Output Load: 1 TTL Gate (CL = 100 pF)  
4
www.fairchildsemi.com  
FM93CS66 Rev. A  
Program Enable (PE)  
Pin Description  
This is an active high input pin to the device and is used to enable  
operations, that are write in nature, to the memory array and to the  
Protect register. When this pin is held high, operations that are  
writein nature are enabled. When this pin is held low, operations  
that are writein nature are disabled. This pin operates in  
conjunctionwithPREpin. ReferTable1forfunctionalmatrixofthis  
pin for various operations.  
Chip Select (CS)  
ThisisanactivehighinputpintoFM93CS66EEPROM(thedevice)  
and is generated by a master that is controlling the device. A high  
level on this pin selects the device and a low level deselects the  
device. All serial communications with the device is enabled only  
when this pin is held high. However this pin cannot be permanently  
tied high, as a rising edge on this signal is required to reset the  
internal state-machine to accept a new cycle and a falling edge to  
initiateaninternalprogrammingafterawritecycle.Allactivityonthe  
SK, DI and DO pins are ignored while CS is held low.  
Microwire Interface  
AtypicalcommunicationontheMicrowirebusismadethroughthe  
CS, SK, DI and DO signals. To facilitate various operations on the  
Memory array and on the Protect Register, a set of 10 instructions  
are implemented on FM93CS66. The format of each instruction is  
listed in Table 1.  
Serial Clock (SK)  
Thisisaninputpintothedeviceandisgeneratedbythemasterthat  
is controlling the device. This is a clock signal that synchronizes the  
communicationbetweenamasterandthedevice. Allinputinforma-  
tion(DI)tothedeviceislatchedontherisingedgeofthisclockinput,  
whileoutputdata(DO)fromthedeviceisdrivenfromtherisingedge  
of this clock input. This pin is gated by CS signal.  
Instruction  
Each of the above 10 instructions is explained under individual  
instruction descriptions.  
Start Bit  
Serial Input (DI)  
This is a 1-bit field and is the first bit that is clocked into the device  
whenaMicrowirecyclestarts.Thisbithastobe1foravalidcycle  
to begin. Any number of preceding 0can be clocked into the  
device before clocking a 1.  
This is an input pin to the device and is generated by the master  
that is controlling the device. The master transfers Input informa-  
tion (Start bit, Opcode bits, Array addresses and Data) serially via  
this pin into the device. This Input information is latched on the  
rising edge of the SCK. This pin is gated by CS signal.  
Opcode  
Serial Output (DO)  
This is a 2-bit field and should immediately follow the start bit.  
These two bits (along with PRE, PE signals and 2 MSB of address  
field) select a particular instruction to be executed.  
This is an output pin from the device and is used to transfer Output  
data via this pin to the controlling master. Output data is serially  
shifted out on this pin from the rising edge of the SCK. This pin is  
active only when the device is selected.  
Address Field  
This is a 8-bit field and should immediately follow the Opcode bits.  
In FM93CS66, all 8 bits are used for address decoding during  
READ, WRITE and PRWRITE instructions.During all other in-  
structions (with the exception of PRREAD), the MSB 2 bits are  
used to decode instruction (along with Opcode bits, PRE and PE  
signals).  
Protect Register Enable (PRE)  
This is an active high input pin to the device and is used to  
distinguish operations to memory array and operations to Protect  
Register. When this pin is held low, operations to the memory  
array are enabled. When this pin is held high, operations to the  
Protect Register are enabled. This pin operates in conjunction  
with PE pin. Refer Table1 for functional matrix of this pin for  
various operations.  
Data Field  
This is a 16-bit field and should immediately follow the Address  
bits. Only the WRITE and WRALL instructions require this field.  
D15 (MSB) is clocked first and D0 (LSB) is clocked last (both  
during writes as well as reads).  
TABLE 1. Instruction set  
Instruction Start Bit Opcode Field  
Address Field  
Data Field PRE Pin  
PE Pin  
READ  
WEN  
1
1
1
1
1
1
1
1
1
1
10  
00  
01  
00  
00  
10  
00  
11  
01  
00  
A7 A6 A5 A4 A3 A2 A1 A0  
0
0
X
1
1
1
X
X
1
1
1
1
1
1
X
X
X
X
X
X
WRITE  
WRALL  
WDS  
A7 A6 A5 A4 A3 A2 A1 A0  
D15-D0  
D15-D0  
0
0
0
1
1
1
1
1
0
0
X
1
1
1
0
X
1
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
X
X
X
X
1
PRREAD  
PREN  
PRCLEAR  
PRWRITE  
PRDS  
A7 A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
0
0
5
www.fairchildsemi.com  
FM93CS66 Rev. A  
the part. Input information (Start bit, Opcode and Address) for this  
WEN instruction should be issued as listed under Table1. The  
device becomes write-enabled at the end of this cycle when the  
CS signal is brought low. The PRE pin should be held low during  
thiscycle.ExecutionofaREADinstructionisindependentofWEN  
instruction. Refer Write Enable cycle diagram.  
Functional Description  
A typical Microwire cycle starts by first selecting the device  
(bringing the CS signal high). Once the device is selected, a valid  
Start bit (1) should be issued to properly recognize the cycle.  
Following this, the 2-bit opcode of appropriate instruction should  
be issued. After the opcode bits, the 8-bit address information  
should be issued. For certain instructions, some (or all) of these  
8 bits are dont care values (can be 0or 1), but they should still  
be issued. Following the address information, depending on the  
instruction (WRITE and WRALL), 16-Bit data is issued. Other-  
wise, depending on the instruction (READ and PRREAD), the  
device starts to drive the output data on the DO line. Other  
instructions perform certain control functions and do not deal with  
data bits. The Microwire cycle ends when the CS signal is brought  
low. However during certain instructions, falling edge of the CS  
signal initiates an internal cycle (Programming), and the device  
remains busy till the completion of the internal cycle. Each of the  
10 instructions is explained in detail in the following sections.  
3) Write (WRITE)  
WRITE instruction allows write operation to a specified location in  
the memory with a specified data. This instruction is valid only  
when the following are true:  
I Device is write-enabled (Refer WEN instruction)  
I Address of the write location is not write-protected  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRITE instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Memory Instructions  
Following five instructions, READ, WEN, WRITE, WRALL and  
WDS are specific to operations intended for memory array. The  
PRE pin should be held low during these instructions.  
1) Read and Sequential Read (READ)  
The status of the internal programming cycle can be polled at any  
time by bringing the CS signal high again, after tCS interval. When  
CS signal is high, the DO pin indicates the READY/BUSY status  
of the chip. DO = logical 0 indicates that the programming is still  
in progress. DO = logical 1 indicates that the programming is  
finished and the device is ready for another instruction. It is not  
required to provide the SK clock during this status polling. While  
the device is busy, it is recommended that no new instruction be  
issued. Refer Write cycle diagram.  
READ instruction allows data to be read from a selected location  
in the memory array. Input information (Start bit, Opcode and  
Address) for this instruction should be issued as listed under  
Table1. Upon receiving a valid input information, decoding of the  
opcode and the address is made, followed by data transfer from  
the selected memory location into a 16-bit serial-out shift register.  
This 16-bit data is then shifted out on the DO pin. D15 bit (MSB)  
is shifted out first and D0 bit (LSB) is shifted out last. A dummy-bit  
(logical 0) precedes this 16-bit data output string. Output data  
changes are initiated on the rising edge of the SK clock. After  
reading the 16-bit data, the CS signal can be brought low to end  
the Read cycle. The PRE pin should be held low during this cycle.  
Refer Read cycle diagram.  
It is also recommended to follow this instruction (after the device  
becomes READY) with a Write Disable (WDS) instruction to  
safeguarddataagainstcorruptionduetospuriousnoise,inadvert-  
ent writes etc.  
4) Write All (WRALL)  
This device also offers sequential memory readoperation to  
allowreadingofdatafromtheadditionalmemorylocationsinstead  
ofjustonelocation.Itisstartedinthesamemannerasnormalread  
but the cycle is continued to read further data (instead of terminat-  
ing after reading the first 16-bit data). After providing 16-bit data,  
the device automatically increments the address pointer to the  
next location and continues to provide the data from that location.  
Any number of locations can be read out in this manner, however,  
after reading out from the last location, the address pointer points  
back to the first location. If the cycle is continued further, data will  
be read from this first location onward. In this mode of read, the  
dummy-bit is present only when the very first data is read (like  
normal read cycle) and is not present on subsequent data reads.  
The PRE pin should be held low during this cycle. Refer Sequen-  
tial Read cycle diagram.  
Write all (WRALL) instruction is similar to the Write instruction  
except that WRALL instruction will simultaneously program all  
memorylocationswiththedatapatternspecifiedintheinstruction.  
This instruction is valid only when the following are true:  
I Protect Register has been cleared (Refer PRCLEAR  
instruction)  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin should be held low during this cycle  
Input information (Start bit, Opcode, Address and Data) for this  
WRALL instruction should be issued as listed under Table1. After  
inputtingthelastbitofdata(D0bit), CSsignalmustbebroughtlow  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. ReferWrite All  
cycle diagram.  
2) Write Enable (WEN)  
When VCC is applied to the part, it powers upin the Write Disable  
(WDS) state. Therefore, all programming operations (for both  
memory array and Protect Register) must be preceded by a Write  
Enable (WEN) instruction. Once a Write Enable instruction is  
executed, programming remains enabled until a Write Disable  
(WDS) instruction is executed or VCC is completely removed from  
6
www.fairchildsemi.com  
FM93CS66 Rev. A  
I PREN instruction was executed immediately prior to  
PRCLEAR instruction  
5) Write Disable (WDS)  
Write Disable (WDS) instruction disables all programming opera-  
tions and is recommended to follow all programming operations.  
Executing this instruction after a valid write instruction would  
protect against accidental data disturb due to spurious noise,  
glitches,inadvertentwritesetc.Inputinformation(Startbit,Opcode  
and Address) for this WDS instruction should be issued as listed  
under Table1. The device becomes write-disabled at the end of  
this cycle when the CS signal is brought low. Execution of a READ  
instructionisindependentofWDSinstruction. ReferWriteDisable  
cycle diagram.  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRCLEAR  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed clear cycle. It takes tWP time (Refer  
appropriate DC and AC Electrical Characteristics table) for the  
internal clear cycle to finish. During this time, the device remains  
busy and is not ready for another instruction. Status of the internal  
programmingcanbepolledasdescribedunderWRITEinstruction  
description. While the device is busy, it is recommended that no  
new instruction be issued. Refer Protect Register Clear cycle  
diagram.  
Protect Register Instructions  
Following five instructions, PRREAD, PREN, PRCLEAR,  
PRWRITE and PRDS are specific to operations intended for  
Protect Register. The PRE pin should be held high during these  
instructions.  
4) Protect Register Write (PRWRITE)  
1) Protect Register Read (PRREAD)  
Thisinstructionisusedtowritethestartingaddressofthememory  
section to be write-protected into the Protect register. After the  
execution of PRWRITE instruction, all memory locations greater  
than or equal to this address are write-protected. PRWRITE  
instruction is enabled (valid) only the following are true:  
This instruction reads the content of the internal Protect Register.  
Content of this register is 8-bit wide and is the starting address of  
the write-protectedsection of the memory array. All memory  
locationsgreaterthanorequaltothisaddressarewrite-protected.  
Inputinformation(Startbit,OpcodeandAddress)forthisPRREAD  
instruction should be issued as listed under Table 1. Upon  
receivingavalidinputinformation,decodingoftheopcodeandthe  
address is made, followed by data transfer (address information)  
from the Protect Register. This 8-bit data is then shifted out on the  
DO pin with the MSB first and the LSB last. Like the READ  
instruction a dummy-bit (logical 0) precedes this 8-bit data output  
string. Output data changes are initiated on the rising edge of the  
SKclock.Afterreadingthe8-bitdata,theCSsignalcanbebrought  
low to end the PRREAD cycle. The PRE pin should be held high  
during this cycle. Refer Protect Register Read cycle diagram.  
I PRCLEAR instruction was executed first (to clear the Protect  
Register)  
I PREN instruction was executed immediately prior to  
PRWRITE instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
Inputinformation(Startbit,OpcodeandAddress)forthisPRWRITE  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. Refer Protect  
Register Write cycle diagram.  
2) Protect Register Enable (PREN)  
This instruction is required to enable PRCLEAR, PRWRITE and  
PRDS instructions and should be executed prior to executing  
PRCLEAR, PRWRITE and PRDS instructions. However, this  
PREN instruction is enabled (valid) only the following are true  
I Device is write-enabled (Refer WEN instruction)  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
5) Protect Register Disable (PRDS)  
Input information (Start bit, Opcode and Address) for this PREN  
instruction should be issued as listed under Table1. The Protect  
Register becomes enabled for PRCLEAR, PRWRITE and PRDS  
instructions at the end of this cycle when the CS signal is brought  
low. Note that this PREN instruction must immediately precede  
a PRCLEAR, PRWRITE or PRDS instruction. In other words, no  
other instruction should be executed between a PREN instruction  
and a PRCLEAR, PRWRITE or PRDS instruction. Refer Protect  
Register Enable cycle diagram.  
Unlike all other instructions, this instruction is a one-time-only  
instruction which when executed permanently write-protects  
the Protect Register and renders it unalterable in the future. This  
instruction is useful to safeguard vital data (typically read only  
data) in the memory against any possible corruption. PRDS  
instruction is enabled (valid) only the following are true:  
I PREN instruction was executed immediately prior to PRDS  
instruction  
I PE pin is held high during this cycle  
I PRE pin is held high during this cycle  
3) Protect Register Clear (PRCLEAR)  
This instruction clears the content of the Protect register and  
therefore enables write operations (WRITE or WRALL) to all  
memory locations. Executing this instruction will program the  
content of the Protect Register with a pattern of all 1s. However,  
in this case, WRITE operation to the last memory address  
(0x11111111) is still enabled. PRCLEAR instruction is enabled  
(valid) only when the following are true:  
7
www.fairchildsemi.com  
FM93CS66 Rev. A  
Input information (Start bit, Opcode and Address) for this PRDS  
instructionshouldbeissuedaslistedunderTable1. Afterinputting  
the last bit of address (A0 bit), CS signal must be brought low  
before the next rising edge of the SK clock. This falling edge of the  
CS initiates the self-timed programming cycle. It takes tWP time  
(Refer appropriate DC and AC Electrical Characteristics table) for  
the internal programming cycle to finish. During this time, the  
device remains busy and is not ready for another instruction.  
Status of the internal programming can be polled as described  
under WRITE instruction description. While the device is busy, it  
is recommended that no new instruction be issued. The Protect  
Register is permanently write-protected at the end of this cycle.  
Refer Protect Register Disable cycle diagram.  
Clearing of Ready/Busy status  
When programming is in progress, the Data-Out pin will display  
the programming status as either BUSY (low) or READY (high)  
when CS is brought high (DO output will be tri-stated when CS is  
low). To restate, during programming, the CS pin may be brought  
high and low any number of times to view the programming status  
without affecting the programming operation. Once programming  
is completed (Output in READY state), the output is cleared’  
(returned to normal tri-state condition) by clocking in a Start Bit.  
After the Start Bit is clocked in, the output will return to a tri-stated  
condition. When clocked in, this Start Bit can be the first bit in a  
command string, or CS can be brought low again to reset all  
internal circuits. Refer Clearing Ready Status diagram.  
Related Document  
Application Note: AN758 - Using Fairchilds MICROWIREEE-  
PROM.  
8
www.fairchildsemi.com  
FM93CS66 Rev. A  
Timing Diagrams  
SYNCHRONOUS DATA TIMING  
CS  
SK  
PRE  
PE  
DI  
t
t
t
t
t
CSH  
SKS  
CSS  
SKH  
SKL  
t
t
PREH  
PRES  
t
t
PEH  
PES  
t
t
DIH  
DIS  
Valid  
Input  
Valid  
Input  
t
PD  
t
t
DF  
DF  
t
t
PD  
DH  
Valid  
Output  
Valid  
Output  
DO (Data Read)  
t
SV  
Valid Status  
DO (Status Read)  
NORMAL READ CYCLE (READ)  
PRE  
PE  
t
CS  
CS  
SK  
1
1
0
A7  
A6  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
0
D15  
D1  
D0  
DO  
Dummy  
Bit  
93CS66:  
Address bits pattern -> User defined  
SEQUENTIAL READ CYCLE (PRE = 0; PE = X)  
PRE  
t
CS  
CS  
SK  
1
1
0
A7  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
0
D15  
D0  
D15  
D0  
D15  
D0  
DO  
Dummy  
Bit  
Data(n)  
Data(n+1)  
Data(n+2)  
93CS66:  
Address bits pattern -> User defined  
9
www.fairchildsemi.com  
FM93CS66 Rev. A  
Timing Diagrams (Continued)  
WRITE ENABLE CYCLE (WEN)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A7  
A6  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
93CS66:  
Address bits pattern -> 1-1-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE DISABLE CYCLE (WDS)  
PRE  
PE  
t
CS  
CS  
SK  
DI  
1
0
0
A7  
A6  
A1  
A0  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
93CS66:  
Address bits pattern -> 0-0-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
WRITE CYCLE (WRITE)  
PRE  
PE  
tCS  
CS  
SK  
1
0
1
A7  
A6  
A1  
A0  
D15 D14  
D1  
D0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS66:  
Address bits pattern -> User defined  
Data bits pattern -> User defined  
10  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Timing Diagrams (Continued)  
WRITE ALL CYCLE (WRALL)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
0
0
A7  
A6  
A1  
A0  
D15 D14  
D1  
D0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
Data  
Bits(16)  
High - Z  
Ready  
DO  
Busy  
93CS66:  
Address bits pattern -> 0-1-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
Data bits pattern -> User defined  
PROTECT REGISTER READ CYCLE (PRREAD)  
PRE  
PE  
t
CS  
CS  
SK  
1
1
0
A7  
A6  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
0
D7  
D1  
D0  
DO  
Dummy  
Bit  
93CS66:  
Address bits pattern -> x-x-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
PROTECT REGISTER ENABLE CYCLE (PREN)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A7  
A6  
A1  
A0  
DI  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
93CS66:  
Address bits pattern -> 1-1-x-x-x-x-x-x; (x -> Don't Care, can be 0 or 1)  
11  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Timing Diagrams (Continued)  
PROTECT REGISTER CLEAR CYCLE (PRCLEAR)  
PRE  
PE  
tCS  
CS  
SK  
DI  
1
1
1
A7  
A6  
A1  
A0  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
Ready  
Ready  
Ready  
DO  
Busy  
93CS66:  
Address bits pattern -> 1-1-1-1-1-1-1-1  
PROTECT REGISTER WRITE CYCLE (PRWRITE)  
PRE  
PE  
tCS  
CS  
SK  
1
0
1
A7  
A6  
A1  
A0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
Busy  
93CS66:  
Address bits pattern -> User defined  
PROTECT REGISTER DISABLE CYCLE (PRDS)  
PRE  
PE  
tCS  
CS  
SK  
1
0
0
A7  
A6  
A1  
A0  
DI  
tWP  
Start Opcode  
Bit Bits(2)  
Address  
Bits(8)  
High - Z  
DO  
Busy  
93CS66:  
Address bits pattern -> 0-0-0-0-0-0-0-0  
12  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Timing Diagrams (Continued)  
CLEARING READY STATUS  
PRE  
PE  
CS  
SK  
DI  
Start  
Bit  
High - Z  
High - Z  
Ready  
DO  
Busy  
Note: This Start bit can also be part of a next instruction. Hence the cycle  
can be continued(instead of getting terminated, as shown) as if a new  
instruction is being issued.  
13  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.189 - 0.197  
(4.800 - 5.004)  
8
7
6
3
5
4
0.228 - 0.244  
(5.791 - 6.198)  
1
2
Lead #1  
IDENT  
0.150 - 0.157  
(3.810 - 3.988)  
0.053 - 0.069  
(1.346 - 1.753)  
0.010 - 0.020  
(0.254 - 0.508)  
0.004 - 0.010  
(0.102 - 0.254)  
x 45°  
8° Max, Typ.  
All leads  
Seating  
Plane  
0.04  
0.0075 - 0.0098  
(0.190 - 0.249)  
Typ. All Leads  
(0.102)  
All lead tips  
0.014  
(0.356)  
0.016 - 0.050  
(0.406 - 1.270)  
Typ. All Leads  
0.050  
(1.270)  
Typ  
0.014 - 0.020  
(0.356 - 0.508)  
Typ.  
Molded Package, Small Outline, 0.15 Wide, 8-Lead (M8)  
Package Number M08A  
14  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.114 - 0.122  
(2.90 - 3.10)  
8
5
(7.72) Typ  
(4.16) Typ  
0.169 - 0.177  
(4.30 - 4.50)  
0.246 - 0.256  
(6.25 - 6.5)  
(1.78) Typ  
(0.42) Typ  
0.123 - 0.128  
(3.13 - 3.30)  
(0.65) Typ  
Land pattern recommendation  
1
4
Pin #1 IDENT  
0.0433  
Max  
(1.1)  
0.0035 - 0.0079  
See detail A  
0.002 - 0.006  
(0.05 - 0.15)  
0.0256 (0.65)  
Typ.  
Gage  
plane  
0.0075 - 0.0098  
(0.19 - 0.30)  
0°-8°  
DETAIL A  
Typ. Scale: 40X  
0.0075 - 0.0098  
(0.19 - 0.25)  
0.020 - 0.028  
(0.50 - 0.70)  
Seating  
plane  
Notes: Unless otherwise specified  
1. Reference JEDEC registration MO153. Variation AA. Dated 7/93  
8-Pin Molded TSSOP, JEDEC (MT8)  
Package Number MTC08  
15  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Physical Dimensions inches (millimeters) unless otherwise noted  
0.373 - 0.400  
(9.474 - 10.16)  
0.090  
(2.286)  
8
7
0.032 0.005  
(0.813 0.127)  
RAD  
8
7
6
5
4
0.092  
(2.337)  
DIA  
0.250 - 0.005  
(6.35 0.127)  
Pin #1  
IDENT  
+
Pin #1 IDENT  
1
Option 1  
1
2
3
Option 2  
0.280  
MIN  
0.040  
(1.016)  
Typ.  
(7.112)  
0.030  
0.145 - 0.200  
(3.683 - 5.080)  
0.039  
(0.991)  
MAX  
(0.762)  
0.300 - 0.320  
(7.62 - 8.128)  
20° 1°  
0.130 0.005  
(3.302 0.127)  
0.125 - 0.140  
95° 5°  
(3.175 - 3.556)  
0.065  
(1.651)  
0.125  
(3.175)  
DIA  
0.020  
90° 4°  
Typ  
0.009 - 0.015  
(0.229 - 0.381)  
(0.508)  
Min  
0.018 0.003  
(0.457 0.076)  
NOM  
+0.040  
-0.015  
0.325  
0.100 0.010  
+1.016  
-0.381  
8.255  
(2.540 0.254)  
0.045 0.015  
(1.143 0.381)  
0.060  
(1.524)  
0.050  
(1.270)  
Molded Dual-In-Line Package (N)  
Package Number N08E  
Life Support Policy  
Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written  
approval of the President of Fairchild Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which,  
(a)areintendedforsurgicalimplantintothebody,or(b)support  
or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably ex-  
pected to cause the failure of the life support device or system,  
or to affect its safety or effectiveness.  
Fairchild Semiconductor  
Americas  
Fairchild Semiconductor  
Europe  
Fairchild Semiconductor  
Hong Kong  
Fairchild Semiconductor  
Japan Ltd.  
Customer Response Center  
Tel. 1-888-522-5372  
Fax:  
Tel:  
Tel:  
Tel:  
Tel:  
+44 (0) 1793-856858  
8/F, Room 808, Empire Centre  
68 Mody Road, Tsimshatsui East  
Kowloon. Hong Kong  
Tel; +852-2722-8338  
Fax: +852-2722-8383  
4F, Natsume Bldg.  
Deutsch  
English  
Français  
Italiano  
+49 (0) 8141-6102-0  
+44 (0) 1793-856856  
+33 (0) 1-6930-3696  
+39 (0) 2-249111-1  
2-18-6, Yushima, Bunkyo-ku  
Tokyo, 113-0034 Japan  
Tel: 81-3-3818-8840  
Fax: 81-3-3818-8841  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
16  
www.fairchildsemi.com  
FM93CS66 Rev. A  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMB100  
C2  
E1  
C1  
B2  
E2  
B1  
pin #1  
SuperSOT -6  
Mark: .NA  
NPN Multi-Chip General Purpose Amplifier  
This device is designed for general purpose amplifier applications at collector  
currents to 300 mA. Sourced from Process 10.  
Absolute Maximum Ratings*  
TA =25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
45  
75  
V
V
6.0  
V
Collector Current - Continuous  
500  
mA  
°C  
Operating and Storage Junction Temperature Range  
-55 to +150  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA= 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FMB100  
PD  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
700  
5.6  
180  
mW  
mW/°C  
°C/W  
RθJA  
1998 Fairchild Semiconductor Corporation  
 
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA= 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
BVCBO  
Collector-Base Breakdown Voltage  
75  
45  
V
V
I
C = 10 µA, IB = 0  
BVCEO  
Collector-Emitter Breakdown  
Voltage*  
IC = 1 mA, IE = 0  
BVEBO  
ICBO  
Emitter-Base Breakdown Voltage  
6.0  
V
IE = 10 µA, IC = 0  
VCB = 60 V  
Collector Cutoff Current  
Collector Cutoff Current  
Emitter Cutoff Current  
50  
50  
50  
nA  
nA  
nA  
ICES  
VCE = 40 V  
IEBO  
VEB = 4 V  
ON CHARACTERISTICS  
hFE  
DC Current Gain  
80  
I
C = 100 µA, VCE = 1.0 V  
100  
100  
100  
450  
350  
IC = 10 mA, VCE = 1.0 V  
IC = 100 mA, VCE = 1.0 V*  
IC = 150 mA, VCE = 5.0 V*  
Collector-Emitter Saturation Voltage IC = 10 mA, IB = 1.0 mA  
IC = 200 mA, IB = 20 mA*  
0.2  
0.4  
0.85  
1.0  
V
V
V
V
VCE(sat)  
VBE(sat)  
Base-Emitter Saturation Voltage  
IC = 10 mA, IB = 1.0 mA  
IC = 200 mA, IB = 20 mA*  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
Output Capacitance  
VCE = 20 V, IC = 20 mA  
VCB = 5.0 V, f = 1.0 MHz  
300  
3.5  
2.5  
MHz  
pF  
Cobo  
NF  
Noise Figure  
dB  
I
C = 100 µA, VCE = 5.0 V,  
G = 2.0 k, f = 1.0 kHz  
R
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
Typical Characteristics  
Typical Pulsed Current Gain  
Collector-Emitter Saturation  
Voltage vs Collector Current  
vs Collector Current  
400  
0.4  
0.3  
0.2  
0.1  
Vce = 5V  
125 °C  
β
= 10  
300  
200  
100  
0
25 °C  
25 °C  
- 40 °C  
125 °C  
- 40 °C  
10  
20 30  
50  
100  
200 300 500  
1
10  
100  
400  
IC - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Base-Emitter Saturation  
Voltage vs Collector Current  
Base-Emitter ON Voltage vs  
Collector Current  
1
1
- 40 °C  
- 40 °C  
0.8  
0.8  
25 °C  
25 °C  
0.6  
0.6  
125 °C  
125 °C  
0.4  
0.4  
V
= 5V  
β
= 10  
CE  
0.2  
0.2  
0.1  
1
10  
100  
500  
1
10  
100  
300  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Input and Output Capacitance  
vs Reverse Voltage  
Collector-Cutoff Current  
vs Ambient Temperature  
100  
10  
1
10  
f = 1.0 MHz  
VCB = 60V  
Cib  
1
Cob  
0.1  
0.1  
25  
50  
75  
100  
125  
º
150  
0.1  
1
10  
100  
TA- AMBIENT TEMPERATURE ( C)  
V
- COLLECTOR VOLTAGE(V)  
ce  
Switching Times vs  
Collector Current  
Power Dissipation vs  
Ambient Temperature  
1
0.75  
0.5  
300  
270  
240  
210  
180  
150  
120  
90  
t
s
SOT-6  
IB1 = IB2 = Ic / 10  
V
= 10 V  
cc  
t
f
t
0.25  
0
r
60  
30  
t
d
0
10  
20  
30  
50  
100  
200 300  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (oC)  
IC - COLLECTOR CURRENT (mA)  
Discrete Power  
&
Signal Technologies  
FMB1020  
Package: SuperSOT-6  
Device Marking: .004  
Note: The " . " (dot) signifies Pin 1  
Transistor 1 is NPN device,  
transistor 2 is PNP device.  
NPN & PNP Complementary Dual Transistor  
SuperSOT-6 Surface Mount Package  
This dual complementary device was designed for use as a general purpose amplifier applications at  
collector currents to 300mA. Sourced from Process 10 (NPN ) and Process 68 (PNP).  
Absolute Maximum Ratings*  
TA  
= 25°C unless otherwise noted  
Value  
Symbol  
VCEO  
VCBO  
VEBO  
Parameter  
Units  
Collector-Emitter Voltage  
45  
V
Collector-Base Voltage  
Emitter-Base Voltage  
Collector Current  
60  
V
V
6
500  
mA  
°C  
IC  
Operating and Storage Junction Temperature Range  
-55 to +150  
TJ, TSTG  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150°C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics TA  
= 25°C unless otherwise noted  
Symbol  
Characteristics  
Total Device Dissipation, total  
per side  
Thermal Resistance, Junction to Ambient, total  
Max  
Units  
700  
350  
mW  
PD  
180  
°C/W  
RqJA  
ã 1998 Fairchild Semiconductor Corporation  
Page 1 of 2  
fmb1020.lwpPr10&68(Y4)  
 
NPN & PNP Complementary Dual Transistor  
(continued)  
Electrical Characteristics TA  
= 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Units  
OFF CHARACTERISTICS  
Collector to Emitter Voltage  
Ic = 1.0 mA  
45  
60  
6
V
V
BVCEO  
BVCBO  
BVEBO  
ICBO  
Collector to Base Voltage  
Emitter to Base Voltage  
Collector Cutoff Current  
Collector Cutoff Current  
Emitter Cutoff Current  
Ic = 10 uA  
Ie = 10 uA  
Vcb = 50 V  
Vce = 40 V  
Veb = 4 V  
V
50  
50  
50  
nA  
nA  
nA  
ICES  
IEBO  
ON CHARACTERISTICS  
DC Current Gain  
hFE  
Vce = 1V, Ic = 100uA  
Vce = 1V, Ic = 10mA  
Vce = 1V, Ic = 100mA  
Vce = 5V, Ic = 150mA  
80  
-
100  
100  
100  
450  
350  
Collector-Emitter Saturation Voltage Ic = 10mA, Ib = 1mA  
Ic = 200mA, Ib = 20mA  
0.2  
0.4  
V
V
VCE(sat)  
VBE(sat)  
Base-Emitter Saturation Voltage  
Ic = 10mA, Ib = 1mA  
0.85  
1.0  
Ic = 200mA, Ib = 20mA  
SMALL SIGNAL CHARACTERISTICS  
TYP  
Output Capacitance  
COB  
Vcb = 10V, f = 1MHz  
4.5  
pF  
MHz  
dB  
Current Gain - Bandwidth Product Vce = 20V, Ic = 20mA, f = 100MHz  
300  
2.5  
fT  
NF  
Noise Figure  
Vce = 5V, Ic = 100uA,  
Rs = 2kohms, f = 1 kHz  
ã 1998 Fairchild Semiconductor Corporation  
Page 2 of 2  
fmb1020.lwpPr10&68(Y4)  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMB200  
C2  
E1  
C1  
B2  
E2  
B1  
pin #1  
SuperSOT -6  
Mark: .N2  
PNP Multi-Chip General Purpose Amplifier  
This device is designed for general purpose amplifier applications at collector  
currents to 300 mA. Sourced from Process 68.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
45  
60  
V
V
6.0  
V
Collector Current - Continuous  
500  
mA  
°C  
Operating and Storage Junction Temperature Range  
-55 to +150  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FMB200  
PD  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
700  
5.6  
180  
mW  
mW/°C  
°C/W  
RθJA  
1998 Fairchild Semiconductor Corporation  
 
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
BVCBO  
Collector-Base Breakdown Voltage  
60  
45  
V
V
I
C = 10 µA, IB = 0  
BVCEO  
Collector-Emitter Breakdown  
Voltage*  
IC = 1.0 mA, IE = 0  
BVEBO  
ICBO  
Emitter-Base Breakdown Voltage  
6.0  
V
IE = 10 µA, IC = 0  
VCB = 50 V, IE = 0  
VCE = 40 V, IE = 10  
VEB = 4.0 V, IC = 0  
Collector Cutoff Current  
Collector Cutoff Current  
Emitter Cutoff Current  
50  
50  
50  
nA  
nA  
nA  
ICES  
IEBO  
ON CHARACTERISTICS  
hFE  
DC Current Gain  
80  
I
C = 100 µA, VCE = 1.0 V  
100  
100  
450  
350  
IC = 10 mA, VCE = 1.0 V  
IC = 150 mA, VCE = 5.0 V*  
Collector-Emitter Saturation Voltage IC = 10 mA, IB = 1.0 mA  
IC = 200 mA, IB = 20 mA*  
0.2  
0.4  
0.85  
1.0  
V
V
V
V
VCE(sat)  
VBE(sat)  
Base-Emitter Saturation Voltage  
IC = 10 mA, IB = 1.0 mA  
IC = 200 mA, IB = 20 mA*  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
VCE = 20 V, IC = 20 mA  
VCB = 10 V, f = 1.0 MHz  
300  
4.5  
2.5  
MHz  
pF  
Output Capacitance  
Cobo  
NF  
Noise Figure  
dB  
IC = 100 µA, VCE = 5.0 V,  
RG = 2.0 k, f = 1.0 kHz  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
Typical Characteristics  
Typical Pulsed Current Gain  
Collector-Emitter Saturation  
Voltage vs Collector Current  
vs Collector Current  
500  
0.3  
0.25  
0.2  
VCE = 5V  
125 °C  
β
= 10  
400  
300  
200  
100  
0
0.15  
0.1  
25 °C  
25 °C  
- 40 °C  
0.05  
125 ºC  
- 40 ºC  
0
0.1  
1
10  
100  
300  
0.01  
0.1  
1
10  
100  
I C - COLLECTOR CURRENT (mA)  
IC - COLLECTOR CURRENT (mA)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Base-Emitter Saturation  
Base Emitter ON Voltage vs  
Voltage vs Collector Current  
Collector Current  
1.2  
1
β
= 10  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
- 40 ºC  
25 °C  
- 40 ºC  
0.6  
25 °C  
125 ºC  
125 ºC  
0.4  
V
= 5V  
0.2  
0
CE  
0.1  
1
10  
100  
300  
0.1  
1
10  
100 200  
IC - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Collector-Cutoff Current  
vs. Ambient Temperature  
Collector-Emitter Breakdown  
Voltage with Resistance  
Between Emitter-Base  
100  
10  
V
= 50V  
CB  
95  
90  
85  
80  
75  
70  
1
0.1  
0.01  
25  
50  
75  
100  
125  
0.1  
1
10  
100  
1000  
TA- AMBIENT TEMPERATURE (ºC)  
RESISTANCE (k)  
Input and Output Capacitance  
vs Reverse Voltage  
Collector Saturation Region  
4
3
2
1
0
100  
Ta = 25°C  
f = 1.0 MHz  
Ic =  
10  
100 uA  
300 mA  
50 mA  
Cib  
Cob  
100  
300  
700  
2000 4000  
0.1  
1
10  
100  
I
- BASE CURRENT (uA)  
V
- COLLECTOR VOLTAGE(V)  
B
ce  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Switching Times vs  
Gain Bandwidth Product  
Collector Current  
vs Collector Current  
300  
40  
270  
240  
210  
180  
150  
120  
90  
t
V
= 5V  
s
ce  
30  
20  
10  
0
IB1 = IB2 = Ic / 10  
V
= 10 V  
cc  
t
f
t
r
60  
30  
t
d
0
10  
20  
30  
50  
100  
200 300  
1
10  
20  
50  
100 150  
IC - COLLECTOR CURRENT (mA)  
IC- COLLECTOR CURRENT (mA)  
Power Dissipation vs  
Ambient Temperature  
1
SOT-6  
0.75  
0.5  
0.25  
0
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (oC)  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMB2222A  
FFB2222A  
MMPQ2222A  
B4  
E2  
B2  
C2  
E1  
E4  
B3  
E3  
C1  
B2  
E2  
C1  
B1  
E1  
C4  
C4  
C3  
C2  
B1  
B2  
E2  
C3  
C2  
pin #1  
E1  
B1  
pin #1  
C2  
C1  
C1  
SuperSOT -6  
SC70-6  
Mark: .1P  
SOIC-16  
Mark: .1P  
NPN Multi-Chip General Purpose Amplifier  
This device is for use as a medium power amplifier and switch requiring collector  
currents up to 500 mA. Sourced from Process 19.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
40  
75  
V
V
6.0  
500  
V
Collector Current - Continuous  
mA  
°C  
Operating and Storage Junction Temperature Range  
-55 to +150  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FFB2222A  
FMB2222A  
MMPQ2222A  
PD  
RθJA  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
Effective 4 Die  
300  
2.4  
415  
700  
5.6  
180  
1,000  
8.0  
mW  
mW/°C  
°C/W  
°C/W  
°C/W  
125  
240  
Each Die  
1998 Fairchild Semiconductor Corporation  
 
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CEO  
Collector-Emitter Breakdown  
IC = 10 mA, IB = 0  
40  
V
Voltage*  
V(BR)CBO  
V(BR)EBO  
ICEX  
Collector-Base Breakdown Voltage  
75  
V
V
I
I
C = 10 µA, IE = 0  
E = 10 µA, IC = 0  
Emitter-Base Breakdown Voltage  
Collector Cutoff Current  
6.0  
VCE = 60 V, VEB(OFF) = 3.0 V  
10  
nA  
ICBO  
Collector Cutoff Current  
VCB = 60 V, IE = 0  
VCB = 60 V, IE = 0, TA = 125°C  
VEB = 3.0 V, IC = 0  
0.01  
10  
µA  
µA  
nA  
IEBO  
IBL  
Emitter Cutoff Current  
Base Cutoff Current  
10  
20  
VCE = 60 V, VEB(OFF) = 3.0 V  
nA  
ON CHARACTERISTICS  
hFE  
DC Current Gain  
IC = 0.1 mA, VCE = 10 V  
IC = 1.0 mA, VCE = 10 V  
IC = 10 mA, VCE = 10 V  
35  
50  
75  
35  
100  
50  
IC= 10 mA,VCE= 10 V,TA= -55°C  
IC = 150 mA, VCE = 10 V*  
IC = 150 mA, VCE = 1.0 V*  
IC = 500 mA, VCE = 10 V*  
300  
40  
Collector-Emitter Saturation Voltage* IC = 150 mA, IB = 15 mA  
IC = 500 mA, IB = 50 mA  
0.3  
1.0  
1.2  
2.0  
V
V
V
V
VCE(sat)  
VBE(sat)  
Base-Emitter Saturation Voltage*  
IC = 150 mA, IB = 1.0 mA  
IC = 500 mA, IB = 50 mA  
0.6  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 20 mA, VCE = 20 V,  
f = 100 MHz  
300  
MHz  
Output Capacitance  
Input Capacitance  
Noise Figure  
VCB = 10 V, IE = 0, f = 100 kHz  
4.0  
20  
pF  
pF  
dB  
Cobo  
Cibo  
NF  
VEB = 0.5 V, IC = 0, f = 100 kHz  
2.0  
I
C = 100 µA, VCE = 10 V,  
RS = 1.0 k, f = 1.0 kHz  
SWITCHING CHARACTERISTICS  
Delay Time  
Rise Time  
Storage Time  
Fall Time  
VCC = 30 V, VBE(OFF) = 0.5 V,  
IC = 150 mA, IB1 = 15 mA  
VCC = 30 V, IC = 150 mA,  
IB1 = IB2 = 15 mA  
8
ns  
ns  
ns  
ns  
td  
tr  
20  
180  
40  
ts  
tf  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics  
Typical Pulsed Current Gain  
Collector-Emitter Saturation  
vs Collector Current  
Voltage vs Collector Current  
500  
0.4  
V
= 5V  
CE  
β
= 10  
400  
300  
200  
100  
0
0.3  
0.2  
0.1  
125 °C  
25 °C  
125 °C  
25 °C  
- 40 °C  
- 40 °C  
0.1  
0.3  
1
3
10  
30  
100 300  
1
10  
100  
500  
IC - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Base-Emitter ON Voltage vs  
Collector Current  
Base-Emitter Saturation  
Voltage vs Collector Current  
1
0.8  
0.6  
0.4  
0.2  
β = 10  
V
= 5V  
1
0.8  
0.6  
0.4  
CE  
- 40 °C  
- 40 °C  
25 °C  
25 °C  
125 °C  
125 °C  
0.1  
1
10  
25  
1
10  
100  
500  
I C - COLLECTOR CURRENT (mA)  
IC - COLLECTOR CURRENT (mA)  
Collector-Cutoff Current  
vs Ambient Temperature  
Emitter Transition and Output  
Capacitance vs Reverse Bias Voltage  
500  
100  
20  
16  
12  
8
f = 1 MHz  
V
= 40V  
CB  
10  
1
C
te  
0.1  
C
ob  
4
25  
50  
75  
100  
125  
150  
0.1  
1
10  
100  
°
TA - AMBIENT TEMPERATURE ( C)  
REVERSE BIAS VOLTAGE (V)  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Turn On and Turn Off Times  
Switching Times  
vs Collector Current  
vs Collector Current  
400  
400  
I
I
c
c
IB1= IB2  
=
IB1 = IB2  
=
10  
10  
320  
240  
160  
80  
320  
240  
160  
80  
V
= 25 V  
V
= 25 V  
cc  
cc  
t
s
t
r
t
off  
t
f
t
t
on  
d
0
10  
0
10  
100  
1000  
100  
- COLLECTOR CURRENT (mA)  
1000  
I
- COLLECTOR CURRENT (mA)  
I
C
C
Power Dissipation vs  
Ambient Temperature  
1
0.75  
0.5  
SOT-6  
0.25  
0
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (oC)  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Test Circuits  
30 V  
200 Ω  
16 V  
1.0 KΩ  
0
200ns  
500 Ω  
FIGURE 1: Saturated Turn-On Switching Time  
6.0 V  
- 15 V  
1k  
37 Ω  
30 V  
1.0 KΩ  
0
200ns  
50 Ω  
FIGURE 2: Saturated Turn-Off Switching Time  
Discrete Power  
&
Signal Technologies  
FMB2227A  
C2  
E1  
Package: SuperSOT-6  
Device Marking: .001  
C1  
Note: The " . " (dot) signifies Pin 1  
Transistor 1 is NPN device,  
transistor 2 is PNP device.  
B2  
E2  
B1  
NPN & PNP Complementary Dual Transistor  
SuperSOT-6 Surface Mount Package  
This complementary dual device was designed for use as a medium power amplifier and switch requiring  
collector currents up to 300mA. Sourced from Pr19 (NPN) and Pr63 (PNP).  
Absolute Maximum Ratings  
TA  
= 25°C unless otherwise noted  
Value  
Symbol  
VCEO  
VCBO  
VEBO  
IC  
Parameter  
Units  
Collector-Emitter Voltage  
30  
V
Collector-Base Voltage  
Emitter-Base Voltage  
60  
V
V
5
500  
Collector Current  
mA  
W
Power Dissipation @Ta = 25°C*  
Storage Temperature Range  
Junction Temperature  
0.7  
PD  
-55 to +150  
150  
°C  
TSTG  
TJ  
°C  
Thermal Resistance, Junction to Ambient  
180  
°C/W  
RqJA  
Electrical Characteristics  
TA  
= 25°C unless otherwise noted  
Test Conditions  
Min  
Symbol  
BVCEO  
BVCBO  
BVEBO  
Parameter  
Max  
Units  
Collector to Emitter Voltage  
Ic = 10 mA  
30  
V
Collector to Base Voltage  
Emitter to Base Voltage  
Ic = 10 uA  
Ie = 10 uA  
60  
5
V
V
ã
1998 Fairchild Semiconductor Corporation  
Page 1 of 2  
2227A.lwpPr19&63(Y1)  
 
NPN & PNP Complementary Dual Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Test Conditions  
Min  
Symbol  
Parameter  
Max  
Units  
Collector Cutoff Current  
Vcb = 50V  
30  
nA  
ICBO  
Emitter Cutoff Current  
DC Current Gain  
Veb = 3.0V  
30  
nA  
-
IEBO  
hFE  
Vce = 10V, Ic = 1.0mA  
Vce = 10V, Ic = 10mA  
Vce = 10V, Ic = 150mA  
Vce = 10V, Ic = 300mA  
50  
75  
100  
30  
Collector-Emitter Saturation Voltage Ic = 150mA, Ib=15mA  
Ic = 300mA, Ib=30mA  
0.4  
1.4  
V
V
VCE(sat)  
VBE(sat)  
Base-Emitter Saturation Voltage  
Ic = 150mA, Ib=15mA  
1.3  
Small - Signal Characteristics  
Typical  
Output Capacitance  
COB  
Vcb = 10V, f = 1.0MHz  
6
pF  
pF  
Input Capacitance  
CIB  
Veb = 0.5V, f = 100kHz  
20  
Current Gain - Bandwidth Product  
Vce = 20V, Ic = 50mA, f = 100MHz  
250  
MHz  
fT  
ã
1998 Fairchild Semiconductor Corporation  
Page 2 of 2  
2227A.lwpPr19&63(Y1)  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMB2907A  
FFB2907A  
MMPQ2907A  
B4  
E2  
B2  
C2  
E1  
E4  
B3  
E3  
C1  
B2  
E2  
C1  
B1  
E1  
C4  
C4  
C3  
C2  
B1  
B2  
E2  
C3  
C2  
pin #1  
E1  
B1  
pin #1  
C2  
C1  
C1  
SuperSOT -6  
SC70-6  
Mark: .2F  
SOIC-16  
Mark: .2F  
PNP Multi-Chip General Purpose Amplifier  
This device is designed for use as a general purpose amplifier and switch requiring  
collector currents to 500 mA. Sourced from Process 63.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
60  
60  
V
V
5.0  
600  
V
Collector Current - Continuous  
mA  
°C  
Operating and Storage Junction Temperature Range  
-55 to +150  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FFB2907A  
FMB2907A  
MMPQ2907A  
PD  
RθJA  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
Effective 4 Die  
300  
2.4  
415  
700  
5.6  
180  
1,000  
8.0  
mW  
mW/°C  
°C/W  
°C/W  
°C/W  
125  
240  
Each Die  
1998 Fairchild Semiconductor Corporation  
 
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CEO  
Collector-Emitter Breakdown  
IC = 10 mA, IB = 0  
60  
V
Voltage*  
V(BR)CBO  
V(BR)EBO  
IB  
Collector-Base Breakdown Voltage  
60  
V
V
I
I
C = 10 µA, IE = 0  
E = 10 µA, IC = 0  
Emitter-Base Breakdown Voltage  
Base Cutoff Current  
5.0  
VCB = 30 V, VEB = 0.5 V  
VCE = 30 V, VBE = 0.5 V  
50  
50  
nA  
nA  
ICEX  
Collector Cutoff Current  
Collector Cutoff Current  
ICBO  
VCB = 50 V, IE = 0  
VCB = 50 V, IE = 0, TA = 125°C  
0.02  
20  
µA  
µA  
ON CHARACTERISTICS  
hFE  
DC Current Gain  
IC = 0.1 mA, VCE = 10 V  
IC = 1.0 mA, VCE = 10 V  
IC = 10 mA, VCE = 10 V  
IC = 150 mA, VCE = 10 V*  
IC = 500 mA, VCE = 10 V*  
75  
100  
100  
100  
50  
300  
Collector-Emitter Saturation Voltage* IC = 150 mA, IB = 15 mA  
IC = 500 mA, IB = 50 mA  
0.4  
1.6  
1.3  
2.6  
V
V
V
V
VCE(sat)  
VBE(sat)  
Base-Emitter Saturation Voltage  
IC = 150 mA, IB = 15 mA*  
IC = 500 mA, IB = 50 mA  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 50 mA, VCE = 20 V,  
f = 100 MHz  
VCB = 10 V, IE = 0,  
f = 100 kHz  
VEB = 2.0 V, IC = 0,  
f = 100 kHz  
250  
6.0  
12  
MHz  
pF  
Output Capacitance  
Cobo  
Cibo  
Input Capacitance  
pF  
SWITCHING CHARACTERISTICS  
Turn-on Time  
Delay Time  
Rise Time  
VCC = 30 V, IC = 150 mA,  
IB1 = 15 mA  
30  
8.0  
20  
80  
60  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ton  
td  
tr  
Turn-off Time  
Storage Time  
Fall Time  
VCC = 6.0 V, IC = 150 mA  
IB1 = IB2 = 15 mA  
toff  
ts  
tf  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics  
Typical Pulsed Current Gain  
vs Collector Current  
Collector-Emitter Saturation  
Voltage vs Collector Current  
500  
400  
300  
200  
100  
0
0.5  
VCE = 5V  
β = 10  
0.4  
125 °C  
0.3  
25 °C  
25 °C  
0.2  
125 ºC  
0.1  
- 40 °C  
- 40 ºC  
0
0.1  
0.3  
1
3
10  
30  
100 300  
1
10  
100  
500  
IC - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Base-Emitter Saturation  
Voltage vs Collector Current  
Base Emitter ON Voltage vs  
Collector Current  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
- 40 ºC  
25 °C  
- 40 ºC  
25 °C  
125 ºC  
125 ºC  
= 10  
β
V
= 5V  
CE  
1
10  
100  
500  
0.1  
1
10  
25  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Collector-Cutoff Current  
vs. Ambient Temperature  
Input and Output Capacitance  
vs Reverse Bias Voltage  
100  
10  
20  
V
= 35V  
CB  
16  
12  
8
1
C
ib  
0.1  
0.01  
4
C
ob  
0
25  
50  
75  
100  
º
125  
0.1  
1
10  
50  
TA- AMBIENT TEMPERATURE ( C)  
REVERSE BIAS VOLTAGE (V)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Switching Times  
Turn On and Turn Off Times  
vs Collector Current  
vs Collector Current  
250  
500  
I
I
c
c
IB1= IB2  
=
IB1 = IB2=  
10  
10  
200  
150  
100  
50  
400  
300  
200  
100  
0
V
= 15 V  
V
= 15 V  
cc  
cc  
t
s
t
f
t
r
t
off  
t
d
t
on  
0
10  
100  
- COLLECTOR CURRENT (mA)  
1000  
10  
100  
- COLLECTOR CURRENT (mA)  
1000  
I
I
C
C
Rise Time vs Collector  
and Turn On Base Currents  
Power Dissipation vs  
Ambient Temperature  
50  
1
0.75  
0.5  
20  
10  
5
SOT-6  
t
= 15 V  
r
30 ns  
60 ns  
0.25  
0
2
1
10  
100  
500  
0
25  
50  
75  
100  
125  
150  
I
- COLLECTOR CURRENT (mA)  
C
TEMPERATURE (oC)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Test Circuits  
30 V  
200 Ω  
1.0 KΩ  
0
- 16 V  
50 Ω  
200ns  
FIGURE 1: Saturated Turn-On Switching Time Test Circuit  
- 6.0 V  
15 V  
1 KΩ  
37 Ω  
1.0 KΩ  
0
- 30 V  
50 Ω  
200ns  
FIGURE 2: Saturated Turn-Off Switching Time Test Circuit  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMB3904  
FFB3904  
MMPQ3904  
B4  
E2  
B2  
C2  
E1  
E4  
B3  
E3  
C1  
B2  
E2  
C1  
B1  
E1  
C4  
C4  
C3  
C2  
B2  
B1  
E2  
C3  
C2  
pin #1  
E1  
B1  
pin #1  
C2  
C1  
C1  
SuperSOT -6  
SC70-6  
Mark: .1A  
SOIC-16  
Mark: .1A  
NPN General Purpose Amplifier  
This device is designed as a general purpose amplifier and switch.  
The useful dynamic range extends to 100 mA as a switch and to  
100 MHz as an amplifier. Sourced from Process 23.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
40  
60  
V
V
Collector-Base Voltage  
Emitter-Base Voltage  
6.0  
V
Collector Current - Continuous  
Operating and Storage Junction Temperature Range  
200  
mA  
-55 to +150  
C
°
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FFB3904  
FMB3904  
MMPQ3904  
PD  
RθJA  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
Effective 4 Die  
300  
2.4  
415  
700  
5.6  
180  
1,000  
8.0  
mW  
mW/°C  
°C/W  
°C/W  
°C/W  
125  
240  
Each Die  
1998 Fairchild Semiconductor Corporation  
 
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CEO  
V(BR)CBO  
V(BR)EBO  
IBL  
Collector-Emitter Breakdown Voltage IC = 1.0 mA, IB = 0  
40  
60  
V
V
Collector-Base Breakdown Voltage  
Emitter-Base Breakdown Voltage  
Base Cutoff Current  
I
I
C = 10 µA, IE = 0  
E = 10 µA, IC = 0  
6.0  
V
VCE = 30 V, VEB = 0  
VCE = 30 V, VEB = 0  
50  
50  
nA  
nA  
ICEX  
Collector Cutoff Current  
ON CHARACTERISTICS*  
hFE  
DC Current Gain  
IC = 0.1 mA, VCE = 1.0 V  
40  
70  
I
C = 1.0 mA, VCE = 1.0 V  
IC = 10 mA, VCE = 1.0 V  
IC = 50 mA, VCE = 1.0 V  
IC = 100 mA, VCE = 1.0 V  
100  
60  
30  
300  
VCE(sat)  
VBE(sat)  
Collector-Emitter Saturation Voltage IC = 10 mA, IB = 1.0 mA  
IC = 50 mA, IB = 5.0 mA  
0.2  
0.3  
0.85  
0.95  
V
V
V
V
Base-Emitter Saturation Voltage  
IC = 10 mA, IB = 1.0 mA  
IC = 50 mA, IB = 5.0 mA  
0.65  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 10 mA, VCE = 20 V,  
f = 100 MHz  
VCB = 5.0 V, IE = 0,  
f = 1.0 MHz  
VEB = 0.5 V, IC = 0,  
f = 1.0 MHz  
IC = 100 µA, VCE = 5.0 V,  
450  
2.5  
6.0  
2.0  
MHz  
pF  
Output Capacitance  
Cobo  
Cibo  
NF  
Input Capacitance  
pF  
Noise Figure (except MMPQ3904)  
dB  
RS =1.0k, f=10 Hz to 15.7 kHz  
SWITCHING CHARACTERISTICS  
Delay Time  
Rise Time  
Storage Time  
Fall Time  
VCC = 3.0 V, VBE = 0.5 V,  
IC = 10 mA, IB1 = 1.0 mA  
VCC = 3.0 V, IC = 10mA  
IB1 = IB2 = 1.0 mA  
18  
20  
ns  
ns  
ns  
ns  
td  
tr  
150  
25  
ts  
tf  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics  
Typical Pulsed Current Gain  
Collector-Emitter Saturation  
Voltage vs Collector Current  
vs Collector Current  
500  
VCE = 5V  
0.15  
β
= 10  
400  
300  
200  
100  
0
125 °C  
125 °C  
0.1  
25 °C  
25 °C  
0.05  
- 40º C  
- 40 °C  
0.1  
1
10  
100  
0.1  
1
10  
100  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Base-Emitter Saturation  
Voltage vs Collector Current  
Base-Emitter ON Voltage vs  
Collector Current  
1
0.8  
0.6  
0.4  
0.2  
V
= 5V  
1
0.8  
0.6  
0.4  
β
= 10  
CE  
- 40 °C  
- 40 °C  
25 °C  
25 °C  
125 °C  
125 °C  
0.1  
1
10  
100  
0.1  
1
10  
100  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Capacitance vs  
Reverse Bias Voltage  
Collector-Cutoff Current  
vs Ambient Temperature  
10  
500  
100  
f = 1.0 MHz  
VCB= 30V  
5
4
10  
1
C
ibo  
3
2
C
0.1  
obo  
1
0.1  
25  
50  
75  
100  
125  
150  
1
10  
100  
°
TA - AMBIENT TEMPERATURE ( C)  
REVERSE BIAS VOLTAGE (V)  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Noise Figure vs Frequency  
Noise Figure vs Source Resistance  
12  
12  
I
= 1.0 mA  
C
R
V CE = 5.0V  
I
= 1.0 mA  
C
= 200Ω  
S
10  
8
10  
8
I
= 50 µA  
= 1.0 kΩ  
I
= 5.0 mA  
C
S
C
R
I
= 50 µA  
C
I
= 0.5 mA  
C
R
6
6
= 200Ω  
S
I
= 100 µA  
4
4
C
2
2
I
= 100 µA, R = 500 Ω  
C
S
0
0
0.1  
1
10  
100  
0.1  
1
10  
100  
f - FREQUENCY (kHz)  
R
S
- SOURCE RESISTANCE (  
)
kΩ  
Power Dissipation vs  
Ambient Temperature  
Current Gain and Phase Angle  
vs Frequency  
1
0.75  
0.5  
50  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
40  
h fe  
SOT-6  
60  
80  
100  
120  
θ
140  
160  
180  
VCE = 40V  
0.25  
0
I C = 10 mA  
0
1
10  
100  
1000  
0
25  
50  
75  
100  
125  
150  
f - FREQUENCY (MHz)  
TEMPERATURE (oC)  
Turn-On Time vs Collector Current  
Rise Time vs Collector Current  
500  
500  
100  
I
c
I
c
IB1= IB2  
=
VCC = 40V  
IB1= IB2=  
10  
10  
40V  
15V  
100  
T
= 25°C  
J
t
@ VCC = 3.0V  
r
T
= 125°C  
J
2.0V  
t
10  
5
10  
5
@ VCB = 0V  
d
1
10  
- COLLECTOR CURRENT (mA)  
100  
1
10  
- COLLECTOR CURRENT (mA)  
100  
I
C
I
C
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Storage Time vs Collector Current  
Fall Time vs Collector Current  
500  
500  
I
I
c
c
IB1= IB2  
=
IB1= IB2  
=
10  
10  
T
= 25°C  
J
T
= 125°C  
VCC = 40V  
J
100  
100  
T
= 125°C  
J
T
= 25°C  
J
10  
5
10  
5
1
10  
- COLLECTOR CURRENT (mA)  
100  
1
10  
100  
I
I
- COLLECTOR CURRENT (mA)  
C
C
Test Circuits  
3.0 V  
275 Ω  
300 ns  
10.6 V  
Duty Cycle  
= 2%  
10 KΩ  
0
C1 < 4.0 pF  
- 0.5 V  
< 1.0 ns  
FIGURE 1: Delay and Rise Time Equivalent Test Circuit  
3.0 V  
t1  
10 < t1  
< 500 µs  
10.9 V  
275 Ω  
Duty Cycle  
=
2%  
0
10 KΩ  
C1 < 4.0 pF  
1N916  
- 9.1 V  
< 1.0 ns  
FIGURE 2: Storage and Fall Time Equivalent Test Circuit  
FMB3906  
FFB3906  
MMPQ3906  
E2  
B2  
B4  
C2  
E1  
E4  
B3  
E3  
C1  
B2  
E2  
C1  
B1  
E1  
C4  
C4  
C3  
C2  
B2  
SC70-6  
Mark: .2A  
B1  
E2  
C3  
C2  
pin #1  
E1  
B1  
pin #1  
C2  
C1  
NOTE: The pinouts are symmetrical; pin 1 and pin  
4 are interchangeable. Units inside the carrier can  
be of either orientation and will not affect the  
functionality of the device.  
C1  
pin #1  
SOIC-16  
Mark: MMPQ3906  
SuperSOT -6  
Mark: .2A  
PNP Multi-Chip General Purpose Amplifier  
This device is designed for general purpose amplifier and switching  
applications at collector currents of 10 µA to 100 mA. Sourced  
from Process 66.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
40  
40  
V
V
5.0  
V
Collector Current - Continuous  
200  
mA  
Operating and Storage Junction Temperature Range  
-55 to +150  
C
°
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FFB3904  
FMB3904  
MMPQ3904  
PD  
RθJA  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
Effective 4 Die  
300  
2.4  
415  
700  
5.6  
180  
1,000  
8.0  
mW  
mW/°C  
°C/W  
°C/W  
°C/W  
125  
240  
Each Die  
1998 Fairchild Semiconductor Corporation  
 
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CEO  
Collector-Emitter Breakdown  
Voltage*  
Collector-Base Breakdown Voltage  
IC = 1.0 mA, IB = 0  
C = 10 µA, IE = 0  
40  
V
V(BR)CBO  
V(BR)EBO  
IBL  
40  
V
V
I
Emitter-Base Breakdown Voltage  
Base Cutoff Current  
5.0  
IE = 10 µA, IC = 0  
VCE = 30 V, VBE = 3.0 V  
VCE = 30 V, VBE = 3.0 V  
50  
50  
nA  
nA  
ICEX  
Collector Cutoff Current  
ON CHARACTERISTICS  
hFE  
DC Current Gain *  
IC = 0.1 mA, VCE = 1.0 V  
IC = 1.0 mA, VCE = 1.0 V  
IC = 10 mA, VCE = 1.0 V  
IC = 50 mA, VCE = 1.0 V  
IC = 100 mA, VCE = 1.0 V  
60  
80  
100  
60  
300  
30  
VCE(sat)  
VBE(sat)  
Collector-Emitter Saturation Voltage IC = 10 mA, IB = 1.0 mA  
IC = 50 mA, IB = 5.0 mA  
0.25  
0.4  
0.85  
0.95  
V
V
V
V
Base-Emitter Saturation Voltage  
IC = 10 mA, IB = 1.0 mA  
IC = 50 mA, IB = 5.0 mA  
0.65  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 10 mA, VCE = 20 V,  
f = 100 MHz  
VCB = 5.0 V, IE = 0,  
f = 100 kHz  
VEB = 0.5 V, IC = 0,  
f = 100 kHz  
IC = 100 µA, VCE = 5.0 V,  
450  
3.0  
8.0  
2.5  
MHz  
pF  
Output Capacitance  
Cobo  
Cibo  
NF  
Input Capacitance  
pF  
Noise Figure (except MMPQ3906)  
dB  
RS =1.0k, f=10 Hz to 15.7 kHz  
SWITCHING CHARACTERISTICS  
Delay Time  
Rise Time  
Storage Time  
Fall Time  
VCC = 3.0 V, VBE = 0.5 V,  
IC = 10 mA, IB1 = 1.0 mA  
VCC = 3.0 V, IC = 10mA  
IB1 = IB2 = 1.0 mA  
15  
20  
ns  
ns  
ns  
ns  
td  
tr  
110  
40  
ts  
tf  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
Spice Model  
PNP (Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 Bf=180.7 Ne=1.5 Ise=0 Ikf=80m Xtb=1.5 Br=4.977 Nc=2 Isc=0 Ikr=0  
Rc=2.5 Cjc=9.728p Mjc=.5776 Vjc=.75 Fc=.5 Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n Tf=179.3p Itf=.4 Vtf=4  
Xtf=6 Rb=10)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics  
Collector-Emitter Saturation  
Voltage vs Collector Current  
Typical Pulsed Current Gain  
vs Collector Current  
250  
0.3  
V
= 1.0V  
β = 10  
CE  
0.25  
0.2  
125 °C  
200  
150  
100  
50  
0.15  
0.1  
0.05  
0
25 °C  
25 °C  
125 ºC  
- 40 °C  
- 40 ºC  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100  
1
10  
I C - COLLECTOR CURRENT (mA)  
100  
200  
IC - COLLECTOR CURRENT (mA)  
Base-Emitter Saturation  
Voltage vs Collector Current  
Base Emitter ON Voltage vs  
Collector Current  
1
0.8  
0.6  
0.4  
0.2  
0
β = 10  
1
0.8  
0.6  
0.4  
0.2  
0
- 40 ºC  
- 40 ºC  
25 °C  
125 ºC  
25 °C  
125 ºC  
V
= 1V  
CE  
1
10  
100  
200  
0.1  
1
10  
25  
I C - COLLECTOR CURRENT (mA)  
IC - COLLECTOR CURRENT (mA)  
Collector-Cutoff Current  
vs Ambient Temperature  
Common-Base Open Circuit  
Input and Output Capacitance  
vs Reverse Bias Voltage  
100  
10  
V
= 25V  
10  
8
CB  
C
obo  
6
1
C
4
ibo  
0.1  
2
0.01  
0
0.1  
25  
50  
75  
100  
125  
1
10  
T - AMBIENT TEMPERATURE ( C)  
º
A
REVERSE BIAS VOLTAGE (V)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Noise Figure vs Frequency  
Noise Figure vs Source Resistance  
6
12  
VCE = 5.0V  
VCE = 5.0V  
f = 1.0 kHz  
5
4
10  
I
= 1.0 mA  
C
8
6
4
2
0
3
2
1
0
I
= 100 µA, R = 200Ω  
C
S
I
I
= 1.0 mA, R = 200Ω  
C
C
S
I
= 100 µA  
C
= 100 µA, R = 2.0 kΩ  
S
0.1  
1
10  
100  
0.1  
1
10  
100  
f - FREQUENCY (kHz)  
R
- SOURCE RESISTANCE (  
kΩ  
S
Switching Times  
vs Collector Current  
Turn On and Turn Off Times  
vs Collector Current  
500  
100  
500  
100  
t
t
s
off  
I
c
t
I B1  
=
t
on  
f
10  
t
on  
VBE(OFF)= 0.5V  
I
10  
1
10  
1
t
r
I
c
c
t
IB1= IB2  
=
IB1= IB2  
=
off  
10  
10  
t
d
1
10  
100  
1
10  
100  
I
- COLLECTOR CURRENT (mA)  
I
- COLLECTOR CURRENT (mA)  
C
C
Power Dissipation vs  
Ambient Temperature  
1
SOIC-16  
SOT-6  
0.75  
0.5  
0.25  
0
SC70-6  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (ºC)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Input Impedance  
Voltage Feedback Ratio  
100  
10  
V
= 10 V  
CE  
f = 1.0 kHz  
10  
1
1
0.1  
0.1  
1
10  
0.1  
1
10  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Output Admittance  
Current Gain  
1000  
500  
1000  
V
= 10 V  
V
= 10 V  
CE  
CE  
f = 1.0 kHz  
f = 1.0 kHz  
200  
100  
50  
100  
20  
10  
10  
0.1  
0.1  
1
10  
1
10  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
UHC™  
VCX™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Discrete Power  
&
Signal Technologies  
FMB3946  
C2  
E1  
C1  
Package: SuperSOT-6  
Device Marking: .002  
Note: The " . " (dot) signifies Pin 1  
B2  
E2  
B1  
Transistor 1 is NPN device,  
transistor 2 is PNP device.  
NPN & PNP Complementary Dual Transistor  
SuperSOT-6 Surface Mount Package  
This complementary dual device was designed for use as a general purpose amplifier and switch. The useful  
dynamic range extends to 100mA as a switch and to 100MHz as an amplifier. Sourced from Process 23  
(NPN) and Process 66 (PNP).  
Absolute Maximum Ratings*  
TA  
= 25°C unless otherwise noted  
Value  
Symbol  
VCEO  
VCBO  
VEBO  
IC  
Parameter  
Units  
Collector-Emitter Voltage  
40  
V
Collector-Base Voltage  
Emitter-Base Voltage  
Collector Current  
40  
V
V
5
200  
mA  
°C  
Operating and Storage Junction Temperature Range  
-55 to +150  
TJ,  
T
stg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150°C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics TA  
= 25°C unless otherwise noted  
Symbol  
Characteristics  
Max  
Units  
Total Device Dissipation  
Derate above 25°C  
700  
5.6  
mW  
mW/°C  
PD  
Thermal Resistance, Junction to Ambient  
180  
°C/W  
RqJA  
ã 1997 Fairchild Semiconductor Corporation  
Page 1 of 2  
fmb3946.lwpPr23&66(Y2)  
 
NPN & PNP Complementary Dual Transistor  
(continued)  
Electrical Characteristics TA  
= 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Units  
OFF CHARACTERISTICS  
Collector to Emitter Voltage  
Ic = 1.0 mA  
40  
40  
5
V
V
BVCEO  
BVCBO  
BVEBO  
ICBO  
Collector to Base Voltage  
Emitter to Base Voltage  
Collector Cutoff Current  
Emitter Cutoff Current  
Ic = 10 uA  
Ie = 10 uA  
Vcb = 30 V  
Veb = 4.0 V  
V
50  
50  
nA  
nA  
IEBO  
ON CHARACTERISTICS  
DC Current Gain  
hFE  
Vce = 1V, Ic = 100uA  
Vce = 1V, Ic = 1.0mA  
Vce = 1V, Ic = 10mA  
Vce = 1V, Ic = 50mA  
Vce = 1V, Ic = 100mA  
40  
70  
100  
60  
-
30  
Collector-Emitter Saturation Voltage Ic = 10mA, Ib = 1mA  
Base-Emitter Saturation Voltage Ic = 10mA, Ib = 1mA  
0.25  
0.9  
V
V
VCE(sat)  
VBE(sat)  
SMALL SIGNAL CHARACTERISTICS  
TYP  
Output Capacitance  
COB  
Vcb = 5V, f = 1MHz  
3
pF  
pF  
Input Capacitance  
CIB  
Veb = 0.5V, f = 1MHz  
7
Current Gain - Bandwidth Product  
fT  
Vce = 20V, Ic = 10mA, f = 100MHz  
450  
2.5  
MHz  
dB  
NF Noise Figure  
Vce = 5V, Ic = 100uA,  
Rs = 1kohms, f = 10Hz to 15.7kHz  
SWITCHING CHARACTERISTICS  
TYP  
Delay Time  
td  
Vcc = 3V, Vbe = 0.5V,  
Ic = 10 mA, Ib1 = 1 mA  
18  
ns  
ns  
ns  
ns  
Rise Time  
tr  
20  
150  
40  
Storage Time  
ts  
Vcc = 3V,Ic = 10 mA,  
Ib1 = Ib2 = 1 mA  
Fall Time  
tf  
ã 1997 Fairchild Semiconductor Corporation  
Page 2 of 2  
fmb3946.lwpPr23&66(Y2)  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMBA06  
C2  
E1  
C1  
B2  
E2  
B1  
pin #1  
SuperSOT -6  
Mark: .1G  
NPN Multi-Chip General Purpose Amplifier  
This device is designed for general purpose amplifier applications at collector  
currents to 300 mA. Sourced from Process 33.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCEO  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
80  
80  
V
V
4.0  
V
Collector Current - Continuous  
500  
mA  
Operating and Storage Junction Temperature Range  
-55 to +150  
C
°
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FMBA06  
PD  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
700  
5.6  
180  
mW  
mW/°C  
°C/W  
RθJA  
1998 Fairchild Semiconductor Corporation  
 
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CEO  
V(BR)EBO  
ICEO  
Collector-Emitter Sustaining Voltage* IC = 1.0 mA, IB = 0  
80  
V
V
Emitter-Base Breakdown Voltage  
Collector-Cutoff Current  
4.0  
I
E = 100 µA, IC = 0  
VCE = 60 V, IB = 0  
VCB = 80 V, IE = 0  
0.1  
0.1  
µA  
µA  
ICBO  
Collector-Cutoff Current  
ON CHARACTERISTICS  
hFE  
DC Current Gain  
IC = 10 mA, VCE = 1.0 V  
IC = 100 mA, VCE = 1.0 V  
IC = 100 mA, IB = 10 mA  
100  
100  
Collector-Emitter Saturation Voltage  
Base-Emitter On Voltage  
0.25  
1.2  
V
V
VCE(sat)  
VBE(on)  
IC = 100 mA, VCE = 1.0 V  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 10 mA, VCE = 2.0 V,  
f = 100 MHz  
150  
MHz  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
Typical Characteristics  
Collector-Emitter Saturation  
Voltage vs Collector Current  
Typical Pulsed Current Gain  
vs Collector Current  
0.5  
0.4  
0.3  
0.2  
0.1  
0
200  
β
= 10  
VCE = 1V  
125 °C  
150  
25 °C  
125 °C  
100  
25 °C  
- 40 ºC  
50  
- 40 ºC  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (A)  
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Base Emitter ON Voltage vs  
Collector Current  
Base-Emitter Saturation  
Voltage vs Collector Current  
1
β
= 10  
1
0.8  
0.6  
0.4  
- 40 ºC  
0.8  
25 °C  
- 40 ºC  
25 °C  
0.6  
125 °C  
125 °C  
0.4  
V
= 5V  
CE  
0.2  
0
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
IC - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Collector Saturation Region  
Collector-Cutoff Current  
vs. Ambient Temperature  
2
1.5  
1
T
= 25°C  
A
10  
1
V
= 80 V  
CB  
0.1  
I
=
100 mA  
1 mA  
10 mA  
C
0.5  
0
0.01  
0.001  
25  
50  
75  
100  
125  
4000  
10000  
20000  
30000  
50000  
º
TA - AMBIENT TEMPERATURE ( C)  
I
- BASE CURRENT (uA)  
B
Collector-Emitter Breakdown  
Voltage with Resistance  
Between Emitter-Base  
Input and Output Capacitance  
vs Reverse Voltage  
100  
10  
1
f = 1.0 MHz  
117  
116  
115  
114  
113  
112  
111  
C
ib  
C
ob  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
V
- COLLECTOR VOLTAGE(V)  
CE  
RESISTANCE (k  
)
NPN Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Gain Bandwidth Product  
Power Dissipation vs  
Ambient Temperature  
vs Collector Current  
1
400  
V
= 5V  
ce  
350  
300  
250  
200  
150  
100  
SOT-6  
0.75  
0.5  
0.25  
0
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (oC)  
1
10  
20  
50  
100  
I
- COLLECTOR CURRENT (mA)  
C
Discrete Power  
&
Signal Technologies  
FMBA0656  
Package: SuperSOT-6  
C2  
E1  
Device Marking: .003  
C1  
Note: The " . " (dot) signifies Pin 1  
Transistor 1 is NPN device,  
transistor 2 is PNP device.  
B2  
E2  
B1  
NPN & PNP Complementary Dual Transistor  
SuperSOT- 6 Surface Mount Package  
This device was designed for general purpose amplifier applications at collector currents to 300mA.  
Sourced from Process 33 (NPN) and Process 73 (PNP).  
Absolute Maximum Ratings  
TA  
= 25°C unless otherwise noted  
Value  
Symbol  
VCEO  
VCBO  
VEBO  
IC  
Parameter  
Units  
Collector-Emitter Voltage  
80  
V
Collector-Base Voltage  
80  
V
V
Emitter-Base Voltage  
4
500  
Collector Current (continuous)  
Power Dissipation @Ta = 25°C*  
Storage Temperature Range  
Junction Temperature  
mA  
W
0.7  
PD  
-55 to +150  
150  
°C  
TSTG  
TJ  
°C  
Thermal Resistance, Junction to Ambient  
180  
°C/W  
RqJA  
*Pd total, for both transistors. For each transistor, Pd = 350mW.  
Electrical Characteristics  
TA  
= 25°C unless otherwise noted  
Test Conditions  
Min  
Symbol  
BVCEO  
BVCBO  
BVEBO  
Parameter  
Max  
Units  
Collector to Emitter Voltage  
Ic = 1.0 mA  
80  
V
Collector to Base Voltage  
Emitter to Base Voltage  
Ic = 100 uA  
Ie = 100 uA  
80  
4
V
V
Ó 1997 Fairchild Semiconductor Corporation  
Page 1 of 2  
fmba0656.lwpPr33&73(Y3)  
 
NPN & PNP Complementary Dual Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Test Conditions  
Min  
Symbol  
ICBO  
Parameter  
Max  
Units  
Collector Cutoff Current  
Vcb = 80 V  
Vce = 60 V  
100  
nA  
Collector Cutoff Current  
DC Current Gain  
100  
nA  
-
ICEO  
Vce = 1 V, Ic = 10 mA  
Vce = 1 V, Ic = 100 mA  
100  
100  
hFE  
Collector-Emitter Saturation Voltage Ic = 100 mA, Ib = 10 mA  
0.25  
1.2  
V
V
VCE(sat)  
VBE(on)  
Base-Emitter On Voltage  
Ic = 100 mA, Vce = 1 V  
Small - Signal Characteristics  
Current Gain - Bandwidth Product  
Vce = 1 V, Ic = 100 mA, f = 100 MHz  
50  
-
fT  
Ó 1997 Fairchild Semiconductor Corporation  
Page 2 of 2  
fmba0656.lwpPr33&73(Y3)  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMBA14  
C2  
E1  
C1  
B2  
E2  
B1  
pin #1  
SuperSOT -6  
Mark: .1N  
NPN Multi-Chip Darlington Transistor  
This device is designed for applications requiring extremely high current  
gain at collector currents to 1.0 A. Sourced from Process 05.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCES  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
30  
V
V
V
A
30  
10  
Collector Current - Continuous  
1.2  
Operating and Storage Junction Temperature Range  
-55 to +150  
C
°
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FMBA14  
PD  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
700  
5.6  
180  
mW  
mW/°C  
°C/W  
RθJA  
1998 Fairchild Semiconductor Corporation  
 
NPN Multi-Chip Darlington Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CES  
Collector-Emitter Breakdown Voltage  
30  
V
I
C = 100 µA, IB = 0  
ICBO  
Collector-Cutoff Current  
Emitter-Cutoff Current  
VCB = 30 V, IE = 0  
VEB = 10 V, IC = 0  
100  
100  
nA  
nA  
IEBO  
ON CHARACTERISTICS*  
hFE  
DC Current Gain  
IC = 10 mA, VCE = 5.0 V  
IC = 100 mA, VCE = 5.0 V  
10K  
20K  
Collector-Emitter Saturation Voltage IC = 100 mA, IB = 0.1 mA  
1.5  
2.0  
V
V
VCE(sat)  
VBE(on)  
Base-Emitter On Voltage  
IC = 100 mA, VCE = 5.0 V  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 10 mA, VCE = 10 V,  
f = 100 MHz  
200  
MHz  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
Typical Characteristics  
Typical Pulsed Current Gain  
Collector-Emitter Saturation  
Voltage vs Collector Current  
vs Collector Current  
250  
1.6  
1.2  
0.8  
0.4  
0
β
= 1000  
VCE = 5V  
200  
150  
100  
50  
125 °C  
- 40 ºC  
25 °C  
25°C  
125 ºC  
- 40 °C  
0
0.001  
0.01  
0.1  
1
1
10  
100  
1000  
IC - COLLECTOR CURRENT (A)  
I C - COLLECTOR CURRENT (mA)  
Base Emitter ON Voltage vs  
Collector Current  
Base-Emitter Saturation  
Voltage vs Collector Current  
2
2
1.6  
1.2  
0.8  
0.4  
0
β
= 1000  
1.6  
1.2  
0.8  
0.4  
0
- 40 ºC  
- 40 ºC  
25 °C  
25 °C  
125 ºC  
125 ºC  
VCE= 5V  
1
10  
100  
1000  
1
10  
100  
1000  
IC - COLLECTOR CURRENT (mA)  
IC - COLLECTOR CURRENT (mA)  
NPN Multi-Chip Darlington Transistor  
(continued)  
Typical Characteristics (continued)  
Collector-Emitter Breakdown  
Voltage with Resistance  
Collector-Cutoff Current  
vs Ambient Temperature  
Between Emitter-Base  
100  
62.5  
VCB = 30V  
62  
61.5  
61  
10  
1
60.5  
60  
0.1  
0.01  
59.5  
0.1  
25  
50  
75  
100  
125  
1
10  
100  
1000  
TA- AMBIENT TEMPERATURE (ºC)  
RESISTANCE (k)  
Input and Output Capacitance  
vs Reverse Voltage  
Gain Bandwidth Product  
vs Collector Current  
50  
40  
30  
20  
10  
0
f = 1.0 MHz  
V
= 5V  
ce  
20  
10  
5
Cib  
Cob  
2
0.1  
1
10  
100  
1
10  
20  
50  
100 150  
V
- COLLECTOR VOLTAGE(V)  
IC- COLLECTOR CURRENT (mA)  
ce  
Power Dissipation vs  
Ambient Temperature  
1
SOT-6  
0.75  
0.5  
0.25  
0
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (oC)  
Discr ete P OWER & Sign a l  
Tech n ologies  
FMBA56  
C2  
E1  
C1  
B2  
E2  
B1  
pin #1  
SuperSOT -6  
Mark: .2G  
PNP Multi-Chip General Purpose Amplifier  
This device is designed for general purpose amplifier applications at collector  
currents to 300 mA. Sourced from Process 73.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Value  
Units  
VCES  
VCBO  
VEBO  
IC  
Collector-Emitter Voltage  
Collector-Base Voltage  
Emitter-Base Voltage  
80  
80  
V
V
4.0  
V
Collector Current - Continuous  
500  
mA  
Operating and Storage Junction Temperature Range  
-55 to +150  
C
°
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150 degrees C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Characteristic  
Max  
Units  
FMBA56  
PD  
Total Device Dissipation  
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
700  
5.6  
180  
mW  
mW/°C  
°C/W  
RθJA  
1998 Fairchild Semiconductor Corporation  
 
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min Typ Max Units  
OFF CHARACTERISTICS  
V(BR)CEO  
Collector-Emitter Breakdown  
IC = 1.0 mA, IB = 0  
80  
V
Voltage*  
V(BR)CBO  
V(BR)EBO  
ICEO  
Collector-Base Breakdown Voltage  
80  
V
V
I
I
C = 100 µA, IE = 0  
E = 100 µA, IC = 0  
Emitter-Base Breakdown Voltage  
Collector-Cutoff Current  
4.0  
VCE = 60 V, IB = 0  
VCB = 80 V, IE = 0  
0.1  
0.1  
µA  
µA  
ICBO  
Collector-Cutoff Current  
ON CHARACTERISTICS  
hFE  
DC Current Gain  
IC = 10 mA, VCE = 1.0 V  
IC = 100 mA, VCE = 1.0 V  
100  
100  
Collector-Emitter Saturation Voltage IC = 100 mA, IB = 10 mA  
0.25  
1.2  
V
V
VCE(sat)  
VBE(on)  
Base-Emitter On Voltage  
IC = 100 mA, VCE = 1.0 V  
SMALL SIGNAL CHARACTERISTICS  
fT  
Current Gain - Bandwidth Product  
IC = 100 mA, VCE = 1.0 V,  
f = 100 MHz  
125  
MHz  
*Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%  
Typical Characteristics  
Typical Pulsed Current Gain  
Collector-Emitter Saturation  
Voltage vs Collector Current  
vs Collector Current  
300  
0.8  
0.6  
0.4  
0.2  
0
VCE = 1V  
β = 10  
250  
200  
150  
100  
50  
125 °C  
25 °C  
25 °C  
- 40 ºC  
- 40 ºC  
125 °C  
0.001  
0.01  
0.1  
10  
100  
I C - COLLECTOR CURRENT (A)  
I C - COLLECTOR CURRENT (mA)  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Base-Emitter Saturation  
Base Emitter ON Voltage vs  
Voltage vs Collector Current  
Collector Current  
1.2  
1.2  
β
= 10  
1
1
0.8  
0.6  
0.4  
- 40 ºC  
0.8  
- 40 ºC  
25 °C  
25 °C  
0.6  
0.4  
0.2  
0
125 °C  
125 °C  
V
= 1V  
CE  
10  
100  
1000  
0.1  
1
10  
100  
1000  
I C - COLLECTOR CURRENT (mA)  
I C - COLLECTOR CURRENT (mA)  
Collector-Cutoff Current  
vs. Ambient Temperature  
Collector Saturation Region  
10  
10  
V
= 60Vz  
8
6
4
2
0
T
= 25°C  
A
CB  
1
I
=
100 mA  
1 mA  
10 mA  
C
0.1  
0.01  
0.001  
25  
50  
75  
100  
125  
3000  
5000  
10000  
20000 30000  
50000  
º
TA- AMBIENT TEMPERATURE ( C)  
I
- BASE CURRENT (uA)  
B
Input and Output Capacitance  
vs Reverse Voltage  
Gain Bandwidth Product  
vs Collector Current  
40  
30  
20  
10  
f = 1.0 MHz  
V
= 5V  
CE  
100  
C
ib  
C
ob  
0
1
10  
20  
50  
100  
0.1  
1
10  
100  
I C - COLLECTOR CURRENT (mA)  
V
- COLLECTOR VOLTAGE(V)  
CE  
PNP Multi-Chip General Purpose Amplifier  
(continued)  
Typical Characteristics (continued)  
Power Dissipation vs  
Ambient Temperature  
1
0.75  
0.5  
SOT-6  
0.25  
0
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (oC)  
DISCRETE POWER AND SIGNAL  
TECHNOLOGIES  
FMKA140  
SCHOTTKY POWER RECTIFIER  
General Description:  
Features:  
Schottky Barrier Diodes make use of the rectification effect  
of a metal to silicon barrier. They are ideally suited for high  
frequency rectification in switching regulators & converters.  
This device offers a low forward voltage performance in a  
power surface mount package in applications where size and  
weight are critical.  
Compact surface mount package with J-bend leads (SMA).  
1.2 Watt Power Dissipation package.  
1.0 Ampere, forward voltage less than 600 mv  
Ordering:  
13 inch reel (330 mm); 12 mm Tape; 5,000 units per reel.  
Absolute Maximum Ratings* TA = 25OC unless otherwise noted  
Parameter  
Value  
Units  
Storage Temperature  
-65 to +150  
OC  
OC  
V
Maximum Junction Temperature  
-65 to +125  
Repetitive Peak Reverse Voltage (VRRM  
)
40  
1.0  
30  
Average Rectified Forward Current (TL = 120OC)  
Surge Non Repetitive Forward Current  
(Half wave, single phase, 60 Hz)  
A
A
Junction to Case for Thermal Resistance (RØJL  
)
9.6  
OC/W  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired  
SMA Package  
(DO-214AC)  
Top Mark: A140  
1
2
Actual Size  
Electrical Characteristics  
TA = 25OC unless otherwise noted  
SYM  
CHARACTERISTICS  
MIN  
MAX  
UNITS  
TEST CONDITIONS  
IR  
Reverse Leakage Current  
PW 300 us, <2% Duty Cycle  
1.0  
10  
mA  
mA  
VR = 40 V; Tj = 25OC  
VR = 40 V; Tj = 100OC  
VF  
Forward Voltage  
PW 300 us, <2% Duty Cycle  
600  
mV  
IF = 1.0 A; Tj = 25OC  
© 1997 Fairchild Semiconductor Corporation  
 
Reverse Leakage Current  
vs. Temperature  
Forward Voltage  
vs. Temperature  
5
5
o
2
1
125 C  
2
1
25oC  
100oC  
o
100 C  
75oC  
25oC  
0.1  
0.01  
0.5  
0.1  
0.001  
0.05  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
5
10  
15  
20  
25  
30  
35  
40  
V F - FORWARD VOLTAGE (V)  
V R - REVERSE VOLTAGE (V)  
Capacitance  
vs. Reverse Bias Voltage  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
0
5
10  
15  
20  
25  
30  
35  
40  
V R - REVERSE BIAS VOLTAGE (V)  
DISCRETE POWER AND SIGNAL  
TECHNOLOGIES  
MIN MAX MIN MAX  
Actual Size  
DIM (mils) (mils) (mm) (mm)  
A
B
C
D
E
F
90  
160  
79  
190  
---  
50  
4
115  
180  
103  
220  
---  
2.286 2.921  
4.064 4.572  
2.007 2.616  
4.826 5.588  
A
1
2
---  
---  
64  
1.270 1.626  
0.102 0.203  
0.762 1.524  
0.152 0.305  
B
G
H
I
8
30  
6
60  
12  
D
D
C
I
F
H
G
SMA PACKAGE  
PACKAGE CODE = (MA)  
Fairchild Semiconductor's Criteria  
FMMT449  
C
E
B
SuperSOTTM-3  
NPN Low Saturation Transistor  
These devices are designed with high current gain and low saturation voltage with collector currents up to 2A  
continuous. Sourced from Process NB.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
FMMT449  
Symbol  
Parameter  
Units  
Collector-Emitter Voltage  
30  
V
VCEO  
Collector-Base Voltage  
Emitter-Base Voltage  
50  
5
V
V
VCBO  
VEBO  
Collector Current - Continuous  
1
2
A
IC  
- Peak Pulse Current  
Operating and Storage Junction Temperature Range  
-55 to +150  
°C  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150°C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Max  
Characteristic  
Symbol  
Units  
FMMT449  
Total Device Dissipation*  
Derate above 25°C  
500  
4
mW  
mW/°C  
PD  
Thermal Resistance, Junction to Ambient  
250  
°C/W  
RqJA  
*Device mounted on FR-4 PCB 4.5” X 5”; mounting pad 0.02 in2 of 2oz copper.  
ã
1998Fairchild Semiconducto Corporation  
Page 1 of 2  
fmmt449.lwpPrNB revA  
 
NPN Low Saturation Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Units  
OFF CHARACTERISTICS  
Collector-Emitter Breakdown Voltage  
Collector-Base Breakdown Voltage  
Emitter-Base Breakdown Voltage  
Collector Cutoff Current  
30  
50  
5
V
V
V
BVCEO  
BVCBO  
BVEBO  
ICBO  
IC = 10 mA  
IC = 1mA  
IE = 100 mA  
100  
10  
nA  
uA  
VCB = 40 V  
VCB = 40 V, Ta=100°C  
Emitter Cutoff Current  
100  
nA  
IEBO  
VEB = 4V  
ON CHARACTERISTICS*  
DC Current Gain  
hFE  
70  
100  
80  
-
IC = 50 mA, VCE = 2V  
IC = 500 mA, VCE = 2V  
IC = 1A, VCE = 2V  
300  
IC = 2A, VCE = 2V  
40  
Collector-Emitter Saturation Voltage  
500  
1.0  
mV  
V
VCE(sat)  
IC = 1 A, IB = 100 mA  
IC = 2 A, IB = 200 mA  
Base-Emitter Saturation Voltage  
Base-Emitter On Voltage  
1.25  
1
V
V
VBE(sat)  
VBE(on)  
IC = 1 A, IB = 100 mA  
IC = 1 A, VCE = 2 V  
SMALL SIGNAL CHARACTERISTICS  
Output Capacitance  
Cobo  
15  
pF  
VCB = 10 V, IE = 0, f = 1MHz  
Transition Frequency  
fT  
150  
MHz  
IC = 50mA,VCE = 10 V, f=100MHz  
*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%  
ã
1998Fairchild Semiconducto Corporation  
Page 2 of 2  
fmmt449.lwpPrNB revA  
SuperSOTTM-3 Tape and Reel Data and Package Dimensions  
SSOT-3 Packaging  
Configuration: Figure 1.0  
Packaging Description:  
SSOT-3 parts are shipped in tape. The carrier tape is  
Customize Label  
made from dissipative (carbon filled) polycarbonate  
a
resin. The cover tape is a multilayer film (Heat Activated  
Adhesive in nature) primarily composed of polyester film,  
adhesive layer, sealant, and anti-static sprayed agent.  
These reeled parts in standard option are shipped with  
3,000 units per 7" or 177cm diameter reel. The reels are  
dark blue in color and is made of polystyrene plastic (anti-  
static coated). Other option comes in 10,000 units per 13"  
or 330cm diameter reel. This and some other options are  
described in the Packaging Information table.  
Antistatic Cover Tape  
These full reels are individually labeled and placed inside  
a
standard intermediate made of recyclable corrugated  
brown paper with a Fairchild logo printing. One pizza box  
contains eight reels maximum. And these intermediate  
boxes are placed inside  
a labeled shipping box which  
comes in different sizes depending on the number of parts  
shipped.  
Human Readable  
Label  
Embossed  
Carrier Tape  
3P  
3P  
3P  
3P  
SSOT-3 Std Packaging Information  
Standard  
(no flow code)  
Packaging Option  
D87Z  
Packaging type  
TNR  
TNR  
10,000  
13"  
SSOT-3 Std Unit Orientation  
Qty per Reel/Tube/Bag  
Reel Size  
3,000  
7" Dia  
Box Dimension (mm)  
Max qty per Box  
187x107x183 343x343x64  
343mm x 342mm x 64mm  
Intermediate box for D87Z Option  
Human Readable Label  
24,000  
0.0097  
0.1230  
30,000  
0.0097  
0.4150  
Weight per unit (gm)  
Weight per Reel (kg)  
Note/Comments  
Human Readable Label sample  
Human Readable  
Label  
187mm x 107mm x 183mm  
SSOT-3 Tape Leader and Trailer  
Intermediate Box for Standard Option  
Configuration: Figure 2.0  
Carrier Tape  
Cover Tape  
Components  
Trailer Tape  
Leader Tape  
300mm minimum or  
75 empty pockets  
500mm minimum or  
125 empty pockets  
August 1999, Rev. C  
SuperSOTTM-3 Tape and Reel Data and Package Dimensions, continued  
SSOT-3 Embossed Carrier Tape  
Configuration: Figure 3.0  
P0  
P2  
D0  
D1  
T
E1  
E2  
W
F
Wc  
B0  
Tc  
K0  
A0  
P1  
User Direction of Feed  
Dimensions are in millimeter  
E1 E2  
A0  
B0  
W
D0  
D1  
F
P1  
P0  
K0  
T
Wc  
Tc  
Pkg type  
SSOT-3  
(8mm)  
3.15  
+/-0.10  
2.77  
+/-0.10  
8.0  
+/-0.3  
1.55  
+/-0.05  
1.125  
+/-0.125  
1.75  
+/-0.10  
6.25  
min  
3.50  
+/-0.05  
4.0  
+/-0.1  
4.0  
+/-0.1  
1.30  
+/-0.10  
0.228  
+/-0.013  
5.2  
+/-0.3  
0.06  
+/-02  
Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481  
rotational and lateral movement requirements (see sketches A, B, and C).  
0.5mm  
maximum  
20 deg maximum  
Typical  
component  
cavity  
center line  
0.5mm  
maximum  
B0  
20 deg maximum component rotation  
Typical  
component  
center line  
Sketch A (Side or Front Sectional View)  
Component Rotation  
Sketch C (Top View)  
Component lateral movement  
A0  
Sketch B (Top View)  
Component Rotation  
SSOT-3 Reel Configuration: Figure 4.0  
W1 Measured at Hub  
Dim A  
Max  
Dim A  
max  
See detail AA  
Dim N  
7"Diameter Option  
B Min  
Dim C  
See detail AA  
Dim D  
min  
W3  
13" Diameter Option  
W2 max Measured at Hub  
DETAIL AA  
Dim W2  
Dimensions are in inches and millimeters  
Reel  
Option  
Tape Size  
8mm  
Dim A  
Dim B  
Dim C  
Dim D  
Dim N  
Dim W1  
Dim W3 (LSL-USL)  
7.00  
177.8  
0.059  
1.5  
512 +0.020/-0.008  
13 +0.5/-0.2  
0.795  
20.2  
2.165  
55  
0.331 +0.059/-0.000  
8.4 +1.5/0  
0.567  
14.4  
0.311 – 0.429  
7.9 – 10.9  
7" Dia  
13.00  
330  
0.059  
1.5  
512 +0.020/-0.008  
13 +0.5/-0.2  
0.795  
20.2  
4.00  
100  
0.331 +0.059/-0.000  
8.4 +1.5/0  
0.567  
14.4  
0.311 – 0.429  
7.9 – 10.9  
8mm  
13" Dia  
July 1999, Rev. C  
SuperSOTTM-3 Tape and Reel Data and Package Dimensions, continued  
SuperSOT -3 (FS PKG Code 32)  
1 : 1  
Scale 1:1 on letter size paper  
Dimensions shown below are in:  
inches [millimeters]  
Part Weight per unit (gram): 0.0097  
September 1998, Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
UHC™  
VCX™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
FMMT549  
C
E
B
SuperSOTTM-3 (SOT-23)  
PNP Low Saturation Transistor  
These devices are designed with high current gain and low saturation voltage with collector currents up to 2A  
continuous.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
FMMT549  
Symbol  
Parameter  
Units  
Collector-Emitter Voltage  
30  
V
VCEO  
Collector-Base Voltage  
Emitter-Base Voltage  
35  
5
V
V
VCBO  
VEBO  
Collector Current - Continuous  
1
2
A
IC  
- Peak Pulse Current  
Operating and Storage Junction Temperature Range  
-55 to +150  
°C  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150°C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Max  
Characteristic  
Symbol  
Units  
FMMT549  
Total Device Dissipation*  
Derate above 25°C  
500  
4
mW  
mW/°C  
PD  
Thermal Resistance, Junction to Ambient  
250  
°C/W  
RqJA  
*Device mounted on FR-4 PCB 4.5” X 5”; mounting pad 0.02 in2 of 2oz copper.  
ã
1998 Fairchild Semiconducto Corporation  
Page 1 of 2  
fmmt549.lwpPrPB 7/10/98 revB  
 
PNP Low Saturation Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Units  
OFF CHARACTERISTICS  
Collector-Emitter Breakdown Voltage  
Collector-Base Breakdown Voltage  
Emitter-Base Breakdown Voltage  
Collector Cutoff Current  
30  
35  
5
V
V
V
BVCEO  
BVCBO  
BVEBO  
ICBO  
IC = 10 mA  
IC = 100 mA  
IE = 100 mA  
100  
10  
nA  
uA  
VCB = 30 V  
VCB = 30 V, Ta=100°C  
Emitter Cutoff Current  
100  
nA  
IEBO  
VEB = 4V  
ON CHARACTERISTICS*  
DC Current Gain  
hFE  
70  
100  
80  
-
IC = 50 mA, VCE = 2V  
IC = 500 mA, VCE = 2V  
IC = 1A, VCE = 2V  
300  
IC = 2A, VCE = 2V  
40  
Collector-Emitter Saturation Voltage  
500  
750  
mV  
mV  
VCE(sat)  
IC = 1 A, IB = 100 mA  
IC = 2 A, IB = 200 mA  
Base-Emitter Saturation Voltage  
Base-Emitter On Voltage  
1.25  
1
V
V
VBE(sat)  
VBE(on)  
IC = 1 A, IB = 100 mA  
IC = 1 A, VCE = 2 V  
SMALL SIGNAL CHARACTERISTICS  
Output Capacitance  
Cobo  
25  
pF  
VCB = 10 V, IE = 0, f = 1MHz  
Transition Frequency  
fT  
100  
MHz  
IC = 100 mA,VCE = 5 V, f=100MHz  
*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%  
ã
1998 Fairchild Semiconducto Corporation  
Page 2 of 2  
fmmt549.lwpPrPB 7/10/98 revB  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Discrete Power & Signal  
Technologies  
July 1998  
FMMT560 / FMMT560A  
C
E
B
SuperSOTTM-3 (SOT-23)  
NPN Low Saturation Transistor  
These devices are designed with high current gain and low saturation voltage with collector currents up to 2A  
continuous.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
FMMT560/FMMT560A  
Symbol  
Parameter  
Units  
Collector-Emitter Voltage  
60  
V
VCEO  
Collector-Base Voltage  
Emitter-Base Voltage  
80  
5
V
V
VCBO  
VEBO  
Collector Current - Continuous  
2
A
IC  
Operating and Storage Junction Temperature Range  
-55 to +150  
°C  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150°C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Max  
Characteristic  
Symbol  
Units  
FMMT560/FMMT560A  
Total Device Dissipation  
Thermal Resistance, Junction to Ambient  
500  
mW  
PD  
250  
°C/W  
RqJA  
Page 1 of 2  
ã 1998 Fairchild Semiconductor Corporation  
fmmt560.lwpPrNA 7/1098 RevB  
 
NPN Low Saturation Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Units  
OFF CHARACTERISTICS  
Collector-Emitter Breakdown Voltage  
Collector-Base Breakdown Voltage  
Emitter-Base Breakdown Voltage  
Collector Cutoff Current  
60  
80  
5
V
V
V
BVCEO  
BVCBO  
BVEBO  
ICBO  
IC = 10 mA  
IC = 100 mA  
IE = 100 mA  
100  
10  
nA  
uA  
VCB = 30 V  
VCB = 30 V, TA=100°C  
Emitter Cutoff Current  
100  
nA  
IEBO  
VEB = 4V  
ON CHARACTERISTICS*  
DC Current Gain  
hFE  
70  
100  
250  
80  
-
IC = 100 mA, VCE = 2 V  
IC=500mA, VCE =2V FMMT560  
FMMT560A  
300  
550  
IC = 1 A, VCE = 2 V  
40  
IC = 2 A, VCE = 2 V  
Collector-Emitter Saturation Voltage  
300  
350  
300  
1.25  
mV  
VCE(sat)  
IC = 1 A, IB = 100 mA  
IC = 2 A, IB=200 mA FMMT560  
FMMT560A  
Base-Emitter Saturation Voltage  
Base-Emitter On Voltage  
V
V
VBE(sat)  
VBE(on)  
IC = 1 A, IB = 100 mA  
IC = 1 A, VCE = 2 V  
1
SMALL SIGNAL CHARACTERISTICS  
Output Capacitance  
Cobo  
30  
pF  
-
VCB = 10 V, IE = 0, f = 1MHz  
Transition Frequency  
fT  
75  
IC = 100 mA,VCE = 5 V, f=100MHz  
*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%  
Page 2 of 2  
ã 1998 Fairchild Semiconductor Corporation  
fmmt560.lwpPrNA 7/1098 RevB  
Discrete Power & Signal  
Technologies  
July 1998  
FMMT660 / FMMT660A  
C
E
B
SuperSOTTM-3 (SOT-23)  
PNP Low Saturation Transistor  
These devices are designed with high current gain and low saturation voltage with collector currents up to 2A  
continuous.  
Absolute Maximum Ratings*  
TA = 25°C unless otherwise noted  
FMMT660/FMMT660A  
Symbol  
Parameter  
Units  
Collector-Emitter Voltage  
60  
V
VCEO  
Collector-Base Voltage  
Emitter-Base Voltage  
80  
5
V
V
VCBO  
VEBO  
Collector Current - Continuous  
2
A
IC  
Operating and Storage Junction Temperature Range  
-55 to +150  
°C  
TJ, Tstg  
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.  
NOTES:  
1) These ratings are based on a maximum junction temperature of 150°C.  
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.  
Thermal Characteristics  
TA = 25°C unless otherwise noted  
Max  
Characteristic  
Symbol  
Units  
FMMT660/FMMT660A  
Total Device Dissipation  
Thermal Resistance, Junction to Ambient  
500  
mW  
PD  
250  
°C/W  
RqJA  
ã
1998 Fairchild Semiconductor Corporation  
Page 1 of 2  
fmmt660.lwpPrPA 7/10/98 RevB  
 
PNP Low Saturation Transistor  
(continued)  
Electrical Characteristics  
TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Units  
OFF CHARACTERISTICS  
Collector-Emitter Breakdown Voltage  
Collector-Base Breakdown Voltage  
Emitter-Base Breakdown Voltage  
Collector Cutoff Current  
60  
80  
5
V
V
V
BVCEO  
BVCBO  
BVEBO  
ICBO  
IC = 10 mA  
IC = 100 mA  
IE = 100 mA  
100  
10  
nA  
uA  
VCB = 30 V  
VCB = 30 V, TA=100°C  
Emitter Cutoff Current  
100  
nA  
IEBO  
VEB = 4V  
ON CHARACTERISTICS*  
DC Current Gain  
hFE  
70  
100  
250  
80  
-
IC = 100 mA, VCE = 2 V  
IC=500mA, VCE =2V FMMT660  
FMMT660A  
300  
550  
IC = 1 A, VCE = 2 V  
40  
IC = 2 A, VCE = 2 V  
Collector-Emitter Saturation Voltage  
300  
350  
300  
1.25  
mV  
VCE(sat)  
IC = 1 A, IB = 100 mA  
IC = 2 A, IB=200 mA FMMT660  
FMMT660A  
Base-Emitter Saturation Voltage  
Base-Emitter On Voltage  
V
V
VBE(sat)  
VBE(on)  
IC = 1 A, IB = 100 mA  
IC = 1 A, VCE = 2 V  
1
SMALL SIGNAL CHARACTERISTICS  
Output Capacitance  
Cobo  
30  
pF  
-
VCB = 10 V, IE = 0, f = 1MHz  
Transition Frequency  
fT  
75  
IC = 100 mA,VCE = 5 V, f=100MHz  
*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%  
Page 2 of 2  
fmmt660.lwpPrPA 7/10/98 RevB  
www.fairchildsemi.com  
FMS2701  
Temperature and Power Supply Voltage Monitor  
Features  
Description  
• Remote diode temperature sensing  
• Ambient (on-chip) temperature sense  
• Dual 3.3 volt supply monitoring  
• SMBus interface to internal registers  
• Status registers  
The FMS2701 is a temperature- and voltage-monitoring  
device that can be interrogated and controlled through an  
SMBus serial interface. Outputs are an analog fan control  
voltage, thermal alarm and interrupts.  
• Thermal trip output  
• Interrupt output  
• Fan speed control output  
• ACPI Thermal Management compliant  
Remote (DIODE+ and DIODE-) and ambient diode temper-  
ature sensor inputs are selected in sequence at a 1Hz rate by  
a multiplexer that drives an A/D converter. Digitized diode  
temperatures are stored in registers. Violation of a program-  
mable limit or trip point will set an interrupt register bit and/  
or assert a digital output.  
Applications  
Power supply voltages are monitored through two pins:  
VCCAUX3 monitors the power to the FMC2701; VCC3 is a  
separate 3.3 volt sense voltage input. AUXRST and RST out-  
puts indicate the status of voltage monitoring.  
• PCs and Servers, Workstations  
• Office Equipment  
• Test and Measurement Instruments  
Analog output, FAN_SPD can be used as an input to a fan  
speed control circuit while THERM, INT and FAN_OFF are  
additional digital control outputs.  
Power is derived from a +3.3V supply. Package is 16-lead  
Quad Small Outline Pack (QSOP).  
Block Diagram  
VCC3AUX  
Aux Reset  
AUXRST  
Oscillator  
INTRST  
VCC3  
Main Reset  
RST  
Timing  
and Control  
MR  
Current  
Generators  
D/A  
Register  
D/A  
Converter  
FAN_SPD  
DIODE+  
DIODE-  
Low-pass  
Filter  
Interrupt  
Status  
Registers  
A/D  
Converter  
Limit  
Comparators  
Mux  
THERM  
DSP  
On-chip  
Bias &  
Diode  
Interrupt  
Mask  
Register  
Value & Limit  
Registers  
ADD  
Mask  
Gating  
SDA  
SCL  
SMBus  
Interface  
INT  
Internal Bus  
GPI  
Configuration  
Register  
FAN_OFF  
Lit. No. 600402-001  
Rev. 1.0.3  
PRELIMINARY INFORMATION describes products that are not in full production at the time of printing. Specifications are based on design goals  
and limited characterization. They may change without notice. Contact Fairchild Semiconductor for current information.  
 
PRODUCT SPECIFICATION  
FMS2701  
Following the A/D converter is a DSP block which averages  
digitized temperature over several samples.  
Architectural Overview  
Overall operation of the FMS2701 is controlled by the  
SMBus which sets register values and interrupt masking.  
Four sensing inputs are monitored:  
Upper and lower temperature limits are loaded into the limit  
registers. If a limit is violated, an interrupt is generated. Remote  
diode open or short circuit fault condition is also sensed.  
1. Remote temperature diode voltage  
2. Ambient temperature sensing diode voltage  
3. Remote 3.3 volt power supply voltage  
4. Local 3.3 volt power supply  
Power Supply Voltage Monitors  
Two Voltage Monitors operating over a 1.0 to 3.8 volt  
supply range, sense VCC3 and VCC3AUX voltages. If  
input VCC3 < 2.93 volt or master reset input, MR = L, then  
RST= L until 140 msec after sensing the fault condition.  
Following comparisons against either preset or programma-  
ble thresholds, the following hardware outputs are set:  
1. Master reset  
2. Auxiliary reset  
3. Temperature trip point violated (THERM)  
4. Interrupt (INT)  
If the FMS2701 supply, VCC3AUX < 2.93 volt, AUXRST = L  
until 140 msec. after sensing the fault condition, and the main  
reset RST = L until 180 msec. after AUXRST is cleared.  
When AUXRST = L, internal reset, INTRST =L. AUXRST  
is bi-directional, accepting a hard reset input.  
Also set are the following register bits:  
1. GPI active (General Purpose Input)  
2. Remote Temperature limit exceeded  
3. THERM input asserted  
SMBus Interface  
FMS2701 Registers are accessed through the SMBus inter-  
face located at the address 0x2C + n; where n = 0, 1, 2  
depending upon the state of ADD, a tri-level input. Within  
the FMS2701, registers are accessed through an 8-bit bus.  
4. Remote diode fault  
Fan Speed control voltage, FAN_SPD is set in the range  
0–2.5V by loading the D/A Register through the SMBus.  
External THERM = L forces FAN_SPD = 2.5V. A Master  
Reset clears the D/A Register.  
Addressable Memory  
Within the FMS2701, there are three sections of addressable  
memory which implement the following functions.  
Temperature Channel  
There are two temperature sense inputs: one for remote sens-  
ing; the other for measuring ambient temperature. Both  
inputs utilize the thermal variation of the voltage drop across  
a diode, to derive the diode temperature.  
Command Register (5 locations)  
• Configuration  
• Interrupt status  
• Interrupt mask  
• Interrupt status mirror  
• Extended function  
Instead of sensing the change in V at one current, which is  
D
approximately –2mV/°C, V is sampled at two currents  
D
(I  
MAX  
= 10 and I  
= 100 µA) to cancel out common error  
MIN  
Read only RAM (2 locations)  
voltages. Difference voltage between the two currents is  
proportional to absolute temperature:  
• Company ID  
• Revision No.  
nkT  
q
IMAX  
IMIN  
VD =  
ln  
Value RAM (13 locations)  
• Diode temperature, °C  
Where:  
• THERM temperature trip points, °C  
• INT temperature limits, °C  
• Analog output D/A converter  
n = PN junction ideality factor, typically 1.0065 for the  
Pentium II thermal diode. Nominal diode sensitivity is  
199.7 µV/°C.  
Write accessible locations have default values that may be  
overridden by programming through the SMBus interface.  
2
FMS2701  
PRODUCT SPECIFICATION  
Pin Assignment  
1
2
3
4
5
6
7
8
FAN_OFF  
MR  
16  
15  
14  
13  
12  
11  
10  
9
SDA  
SCL  
AUXRST  
GND  
INT  
ADD/NTESTOUT  
GPI  
VCC3AUX  
VCC3  
THERM  
DIODE(+)  
DIODE(-)  
RST  
FAN_SPD/NTEST_IN  
Pin Descriptions  
Pin No.  
Reset  
7
Pin Name  
Type/Value  
Pin Function Description  
RST  
Output  
Reset. Output pulse from Main Reset Generator, which  
is tripped by either MR =L or Internal Reset or VCC3 <  
2.93 V. When active, RST = L and register D  
cleared.  
is  
7-0  
3
2
AUXRST  
MR  
Bi-directional  
Input  
Auxiliary Reset Input/Output. As an output, AUXRST =  
L pulse is triggered by VCC3AUX < 2.93 V. As an input,  
AUXRST = L trips Internal Reset. NAND test input,  
NTEST_IN is sampled by trailing edge of AUXRST pulse.  
Manual Reset. Input to Master Reset Generator. If MR =  
L, a master reset cycle is initiated. MR pin has a 20 k  
pull-up to VCC3AUX.  
Analog I/O  
10  
DIODE+  
Voltage input/  
current source  
Positive diode sense input. Current source to remote  
temperature sensing diode anode and upper voltage  
sense input.  
9
DIODE-  
Voltage input/  
current sink  
Negative diode sense input. Current sink from remote  
temperature sensing diode cathode and lower voltage  
sense input.  
8
FAN_SPD/NTEST_IN Analog output/  
digital input  
Fan speed control voltage output/NAND Test Input.  
Proportional to the value in register 0x19, output is  
0–2.5V. External THERM = L forces a 2.5 volt output. If  
NTEST_IN = H, the NAND tree test input is enabled for  
ATE.  
Serial Port  
16  
15  
13  
SDA  
Bi-directional  
Input  
Data. SMBus data to/from FMS2701  
Clock. SMBus clock into FMS2701  
SCL  
ADD/NTEST_OUT  
Tri-level  
SMBus Address Input/NAND Test Output. Lowest two  
bits of serial port address with three states: 00, 01 and  
10, corresponding to H, L and Z inputs. If NTEST_IN is  
sampled HIGH, the NAND tree test output is enabled.  
Digital I/O  
11  
THERM  
I//O (Open drain)  
Open drain  
Thermal Overload. THERM = L indicates that a  
temperature trip point has been exceeded. Input THERM  
= L sets the THERM bit in the Interrupt Status Register.  
14  
INT  
System interrupt. INT = L when a voltage, temperature  
limit or temperature trip point is violated and bit 1 of the  
Configuration Register is set H.  
3
PRODUCT SPECIFICATION  
FMS2701  
Pin No.  
Pin Name  
Type/Value  
Input  
Pin Function Description  
12  
GPI  
General Purpose Input. Sets a bit in the interrupt  
registers. Assertion polarity is set by the GPI_INV bit.  
(default is GPI = H causes interrupt)  
1
FAN_OFF  
Open Drain Output Fan off request. FAN_OFF reflects the state of the  
Configuration Register FAN_OFF bit. FAN_OFF = L is a  
request to shut the fan off.  
Power and Ground  
6
VCC3  
+3.3 V Input  
Voltage Monitor Input. Voltage monitor input to Main  
Reset Generator. If VCC3 drops below 2.93V. a Main  
Reset cycle is initiated.  
4
5
GND  
0 V  
Ground. Return for 3.3 volt supply, VCC3AUX.  
VCC3AUX  
+3.3 V Power  
Auxiliary 3.3 volt. Power source for FMS2701. If  
VCC3AUX drops below 2.93 volt, an Auxiliary Reset  
cycle is initiated.  
Addressable Memory  
Addressable memory is divided into two sections:  
1. Command, consisting of five registers  
2. Value RAM, consisting of thirteen locations, of which: eleven are used to store temperature data, limits and trip points;  
two are used to store the company ID, version and revision number.  
Table 1. Addressable Memory Map  
Name  
Address  
0x40  
0x41  
0x43  
0x4C  
0x13  
0x14  
0x17  
0x18  
0x19  
0x26  
0x27  
0x37  
0x38  
0x39  
0x3A  
0x3E  
0x3F  
Power-up Value, [7:0]  
Configuration Register  
Interrupt Status Register  
Interrupt Mask Register  
Interrupt Status Register Mirror  
0x25  
0x00  
0x00  
0x00  
0x46  
0x64  
0x46  
0x64  
0x00  
0x46  
0x3C  
0x50  
0x3C  
0x46  
0x32  
0xFC  
0xCn  
PTA  
PTR  
7-0  
7-0  
7-0  
7-0  
FTA  
FTR  
DAC  
7-0  
TR  
TA  
7-0  
7-0  
TRHI  
7-0  
TRLO  
7-0  
TAHI  
7-0  
TALO  
7-0  
Manufacturer ID  
Version, Revision  
Register Definitions  
Configuration Register (0x40)  
BIT#  
Name  
Type  
Description  
0
START  
R/W  
Start Temperature and Voltage Monitoring  
0: Standby mode. (INT is not cleared)  
1: Run (Power-up default). All limit and trip values should be entered into  
FMS2701 registers prior to setting START = 1.  
4
FMS2701  
PRODUCT SPECIFICATION  
BIT#  
Name  
Type  
Description  
1
INT_EN  
R/W  
Interrupt Enable  
0: Disabled (Power-up default)  
1: Enables the INT output.  
2
3
INT_CLR  
R/W  
Interrupt Clear  
0: INT output unaffected.  
1: Clears the INT output. Contents of the Interrupt Status Register  
preserved. (Power-up default = 1)  
TRIP_LOCK  
R/(W-once)  
Temperature Trip Point Lock  
0: THERM trip points set by fixed value registers FTA  
7-0  
and FTR .  
7-0  
Writes to programmable registers PTA  
(Power-up default = 0)  
and PTR are enabled.  
7-0  
7-0  
1: THERM trip points set by values preserved in programmable registers  
PTA and PTR , while RST = H.  
7-0  
7-0  
4
5
SOFT_RST  
FAN_OFF  
R/W  
R/W  
R/W  
Soft Reset  
0: Power-up default restored by SOFT_RST cycle.  
1: Restore power-up values to the Configuration, Interrupt Status,  
Interrupt Status Mirror and Interrupt Mask registers.  
Fan Off  
0: Set output pin FAN_OFF = L. (fan-off)  
1: Set output pin FAN_OFF = Z. (Power-up default, fan-on)  
If pin THERM = L, then FAN_OFF = H.  
6
7
GPI_INV  
Reserved  
GPI Polarity Invert  
0: GPI input passed to Interrupt registers. (Power-up default)  
1: Invert the GPI input passed to Interrupt registers  
R/W  
Reserved (Default=0)  
1
Interrupt Status Register (0x41)  
BIT#  
Name  
ATV  
Type  
Description  
0
R
Ambient Temperature Violation  
0: On-chip temperature within limits.  
1: On-chip temperature limit violated  
1
2
3
4
Reserved  
Reserved  
Reserved  
GPI  
R
R
R
R
Reserved for Remote Thermal Diode 2 temp error  
Reserved for Remote Thermal Diode 2 fault  
Undefined  
General Purpose Input Status.  
GPI is set according to the following truth table:  
GPI pin  
GPI_INV  
GPI bit  
0
1
0
1
0
0
1
1
0
1
1
0
Reading this register will not clear the GPI bit.  
5
6
RTV  
R
R
Remote Temperature Violation.  
0: Remote temperature within limits.  
1: Remote temperature limit violated  
THERM  
THERM input status.  
0: THERM input negated. (THERM = H)  
1: THERM input asserted. (THERM = L)  
5
PRODUCT SPECIFICATION  
FMS2701  
BIT#  
Name  
FAULT  
Type  
Description  
7
R
Remote Diode Fault.  
0: Diode functional  
1: Remote temperature sensing diode short or open circuit.  
Note:  
1.  
Reading this register will clear ATV, RTV THERM and FAULT bits.  
Interrupt Mask Register (0x43)  
BIT#  
Name  
Type  
Description  
0
MSKATV  
R/W Mask Ambient Temperature Violation bit.  
0: Allow ATV bit to affect INT output.  
1: Prohibit ATV bit from affecting the INT output.  
1
2
3
4
Reserved  
Reserved  
Reserved  
MSKGPI  
R
R
R
Undefined  
Undefined  
Undefined  
R/W Mask GPI bit  
0: Allow GPI bit to affect INT output.  
1: Prohibit GPI bit from affecting the INT output.  
5
6
7
MSKRTV  
R/W Mask Remote Temperature Violation bit.  
0: Allow RTV bit to affect INT output.  
1: Prohibit RTV bit from affecting the INT output.  
MSKTHERM  
MSKFAULT  
R/W Mask THERM bit.  
0: Allow THERM bit to affect INT output.  
1: Prohibit THERM bit from affecting the INT output.  
R/W Mask Remote Fault bit.  
0: Allow FAULT bit to affect INT output.  
1: Prohibit FAULT bit from affecting the INT output.  
Note:  
1.  
An error that causes continuous interrupts to be generated may be masked using the mask register, until the error can be  
alleviated.  
1
Interrupt Status Mirror Register (0x4C)  
BIT#  
Name  
MATV  
Read/Write  
Description  
0
R
Mirrored Ambient Temperature Violation  
0: On-chip temperature within limits.  
1: On-chip temperature limit violated  
1
2
3
4
Reserved  
Reserved  
Reserved  
MGPI  
R
R
R
R
Reserved for Remote Thermal Diode 2 temp error  
Reserved for Remote Thermal Diode 2 fault  
Undefined  
Mirrored General Purpose Input Status.  
MGPI is set according to the following ????? table:  
GPI pin  
GPI_INV  
MGPI  
0
1
0
1
0
0
1
1
0
1
1
0
Reading this register will not clear the GPI bit.  
5
MRTV  
R
Mirrored Remote Temperature Violation.  
0: Remote temperature within limits.  
1: Remote temperature limit violated  
6
FMS2701  
PRODUCT SPECIFICATION  
BIT#  
Name  
Read/Write  
Description  
Mirrored THERM input status.  
6
MTHERM  
R
0: THERM input negated. (THERM = H)  
1: THERM input asserted. (THERM = L)  
7
MFAULT  
R
Mirrored Remote Diode Fault.  
0: Diode functional  
1: Remote temperature sensing diode short or open circuit.  
Note:  
1. Reading this register will clear MATV, MRTV, MTHERM and MFAULT bits.  
Extended Function Register (0x15)  
BIT#  
Name  
Type  
Description  
0
MIT  
R
Mask Internal THERM  
0: Internally generated THERM affects INT output.  
1: Internally generated THERM does not impact INT output.  
7–1  
-
N/A  
Reserved  
Value RAM (0x13–0x4A)  
Unless stated otherwise, Power-on defaults are not defined,.  
Address  
Name  
PTA  
Type  
Description  
0x13  
R/W Programmable Ambient Temperature Automatic Trip Point. If TA  
> PTA  
7-0  
7-0  
, then THERM = L. Write access is disabled if the TRIP_LOCK bit in the  
7-  
0
Configuration Register been set. (default: 46h (70°C)  
0x14  
PTR  
R/W Programmable Remote Thermal Diode Automatic Trip Point. If TR > PTR  
7-0  
7-  
, then THERM = L. Write access is disabled if the TRIP_LOCK bit in the  
7-  
0
Configuration Register been set. (default: 64h (100°C)  
0x17  
0x18  
0x19  
FTA  
R
R
Fixed Ambient Temperature Automatic Trip Point. (default: 46h (70°C)  
Fixed Remote Thermal Diode Automatic Trip Point. (default: 64h (100°C)  
7-0  
FTR  
7-0  
7-0  
DAC  
R/W D/A Converter Input. Value supplied to D/A converter to generate fan speed  
control voltage. (default: 00h)  
0x20  
0x26  
N/A Reserved  
TR  
R
Remote Thermal Diode Temperature. Temperature output derived from  
7-0  
remote thermal diode.  
0x27  
TA  
R
Ambient Temperature. Temperature output derived from on-chip thermal  
7-0  
diode.  
0x2B  
0x2C  
0x37  
-
N/A Reserved  
-
N/A Reserved  
TRHI  
R/W Remote Thermal Diode High Temperature Limit. TR  
> TRHI will set  
7-0  
7-0  
7-0  
the RTV and MRTV bits in the Interrupt and Mirrored Interrupt registers.  
0x38  
0x39  
0x3A  
TRLO  
R/W Remote Thermal Diode Low Temperature Limit. TR < TRLO will set  
7-0  
7-0 7-0  
the RTV and MRTV bits in the Interrupt and Mirrored Interrupt registers.  
TAHI  
TALO  
R/W Ambient Temperature High Temperature Limit. TA  
7-0  
> TAHI  
7-0  
will set the  
7-0  
ATV and MATV bits in the Interrupt and Mirrored Interrupt registers.  
R/W Ambient Temperature Low Temperature Limit. TA < TALO  
will set the  
7-0  
7-0 7-0  
ATV and ARTV bits in the Interrupt and Mirrored Interrupt registers.  
0x3E  
0x3F  
MFR  
NUM  
R
R
Manufacturer ID. Value is FC.  
7-0  
Version and Revision. NUM  
= C, the FMS2701 version number. NUM =  
3-0  
7-0  
7-4  
revision number  
0x44 – 0x4A  
0x4D – 0x53  
-
-
N/A Reserved  
N/A Reserved  
7
PRODUCT SPECIFICATION  
FMS2701  
Temperature Processor  
Functional Description  
Remote and ambient thermal diode voltages are processed  
by the Temperature Processor which outputs values of  
remote and ambient temperature alternately. Inputs are  
derived from a remote diode that is connected by two wires  
to the input of the processor; and the ambient diode, which is  
located on-chip. Output is supplied to the Data Processor  
Operation of the FMS2701 is divided into three sections:  
• Temperature Processor  
• Reset Generators  
• Data Processor  
which loads the TA and TR registers with the digitized  
7-0 7-0  
ambient and remote temperatures.  
Current  
Generators  
Remote  
PN  
Junction  
TEMP7-0  
A/D  
Converter  
DSP  
RMT_ERROR  
Mux  
Ambient  
PN  
Junction  
29220  
XDIODE  
Figure 1. Temperature Processor Block Diagram  
Table 2. Temperature/Data Conversion/Format  
A multiplexer selects the thermal diode to be sensed. Voltage  
of the diode is sensed at two currents:10 and 100 µA. During  
the diode sampling interval, the A/D converter digitizes low  
and high current samples. DSP averages and subtracts the  
samples to output an 8-bit temperature that is updated a rate  
greater than 1 Hz. Remote and Ambient diode temperatures  
are outputted alternately on the TEMPR[7:0] bus which is  
connected to the Data Processor.  
Temperature  
Digital Output  
Binary  
Hex  
0x7D  
0x19  
0x01  
0x00  
0xFF  
0xE7  
0xC9  
+125°C  
+25°C  
+1.0°C  
0°C  
0111 1101  
0001 1001  
0000 0001  
0000 0000  
1111 1111  
1110 0111  
1100 1001  
Remote Diode fault sensing is included within the DSP  
block. If the remote diode voltage indicates either a short or  
an open circuit, the RMT_ERROR signal causes the  
RMT_FAULT bit to be set in the Interrupt Status Register.  
-1.0°C  
-25°C  
-55°C  
Temperature data format is 8-bit, two’s complement with the  
LSB equivalent to 1.0°C. Range and conversion between °C  
and equivalent binary and hexadecimal data is exemplified in  
Table 2.  
8
FMS2701  
PRODUCT SPECIFICATION  
In Figure 2, VCC3AUX<2.93V represents the state of the  
VCC3AUX power supply voltage.  
Reset Generators  
There are two reset generators:  
1. Auxiliary Reset  
2. Main Reset  
AUXRST is a bi-directional pin. AUXRST(OUT) signifies  
an outgoing signal. AUXRST(IN) signifies an incoming sig-  
nal. Auxiliary Reset is triggered by either of two events:  
Auxiliary Reset responds to the power supply voltage,  
VCC3AUX applied to the FMS2701. Main Reset responds  
to a separate power supply voltage level, VCC3. Threshold  
level of both reset generators is 2.93 volt. If 1.0 V < VCC3AUX  
< 2.93 both generators output an active L reset level.  
1. VCC3AUX < 2.93 volt. After a VCC3AUX < 2.93  
transition:  
a) AUXRST(OUT) = L, continuing low for 140 msec.  
after VCC3AUX > 2.93 volt.  
b) INTRST = L, while AUXRST(OUT) = L.  
Auxiliary Reset Generator  
The Auxillary Reset Generator responds to either a low value  
of VCC3AUX by outputting an AUXRST = L pulse and an  
internal reset pulse, INTRST; or to an external AUXRST  
input by emitting an internal reset. Internal reset restores  
power-up register values (except DAC which is cleared by  
7-0  
RST) and initiates a Master Reset Cycle.  
2. AUXRST(IN) = L. In response, INTRST = L,  
continuing low until AUXRST(IN) = H  
Internal reset, INTRST tracks AUXRST_OUT. To terminate a  
reset cycle, VCC3AUX must rise above 2.93 volt. During  
power-up, the AUXRST output remains low until the 2.93  
volt threshold is reached.  
140 mS  
VCC3AUX<2.93V  
AUXRST(IN)  
tDAUXRST  
tDVRST  
AUXRST(OUT)  
tDINTRST  
INTRST  
Figure 2. Timing Diagram, Auxiliary Reset  
Main Reset  
Depending upon the source of reset, the Main Reset  
Generator outputs either a 140 or a 180 msec. pulse as shown  
in Figure 3. VCC3 < 2.9 represents the state of the VCC3  
power supply voltage. RST = L clears the D/A Converter  
register.  
tDMR  
MR  
tDVR  
VCC3<2.9  
INTRST  
tDIR  
140 mS  
180 mS  
180 mS  
RST  
Figure 3. Timing Diagram, Main Reset  
9
PRODUCT SPECIFICATION  
FMS2701  
Internal Reset  
Data Processor  
Internal reset, INTRST originates from the Auxiliary Reset  
Generator. When power is supplied to the FMS2701 via  
VCC3AUX, output INTRST = L for 140 msec. after  
VCC3AUX transitions >2.93 volt. INTRST = L instigates  
four events:  
Based upon setup commands via the SMBus, the Data Pro-  
cessor gathers sensor inputs from the Temperature Processor  
and Reset Generators. Temperature inputs are compared  
against values stored in the Trip and Limit registers. Fault  
conditions set flags in the interrupt registers and activate the  
THERM and INT outputs. Temperature and interrupt status  
are passed to the host via the SMBus interface. Host com-  
mands set the FMS2701 configuration, interrupt masking  
and the fan speed.  
1. Configuration, Interrupt and Mask registers are reset to  
default values.  
2. THERM Temperature Trip Point registers: PTA  
,
7-0  
PTR , FTA , FTR are set to default values.  
7-0 7-0 7-0  
3. DAC register is set to 0x00.  
7-0  
4. Temperature Processor and Data Processor are reset.  
Trip & Limit  
Registers  
DAC  
7-0  
D/A  
Converter  
Fan Speed  
Register  
FAN_SPD  
THERM  
RST  
Ambient Error  
Remote Error  
Remote Fault  
TR  
TA  
7-0  
Temperature  
Registers  
Limit  
Corporators  
T
7-0  
Interrupt  
Status  
7-0  
Registers  
Bypass/  
Invert  
Interrupt  
Mask  
GPI  
Registers  
NADD  
Test Logic  
NTEST_IN  
Mask  
Gating  
Configuration  
Registers  
INT  
INTEST_OUT  
ADD/NTEST_OUT  
FAN_OFF  
ADD  
Interface  
Test  
Registers  
Pointer  
Register  
SCA  
SCL  
SMBus  
Interface  
Data Bus  
Compare ID  
and Version  
Registers  
MCLK  
Master  
Oscillator  
Timing  
and Control  
Figure 4. Data Processor Block Diagram  
10  
FMS2701  
PRODUCT SPECIFICATION  
SMBus Interface  
Two signals comprise the bus: clock (SCL) and bi-direc-  
tional data (SDA). When receiving and transmitting data  
through the serial interface, the FMS2701 acts as a slave,  
responding only to commands by the SMBus master.  
FMS2701 register access is via a 2-wire SMBus interface.  
Base address is 0x2C + n, where n is an offset defined by the  
state of the ADD pin: Z, H, L == 0, 1, 2. (see Table 3) State Z  
corresponds to the ADD pin being open circuit.  
Data received or transmitted on the SDA line must be stable  
for the duration of the positive-going SCL pulse. Data on  
SDA may change only when SCL = L. An SDA transition  
while SCL = H is interpreted as a start or stop signal.  
Table 3. Serial Port Slave Addresses  
ADD  
Address  
2C  
Z
H
L
2D  
2E  
SDA  
SCL  
tBUFF  
tSTAH  
tDHO  
tDSU  
tSTASU  
tSTOSU  
tDAL  
tDAH  
24469B  
Figure 5. SMBus: Read/Write Timing  
SDA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ACK  
SCL  
24470B  
Figure 6. SMBus: Typical Byte Transfer  
SDA  
SCL  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
ACK  
Figure 7. SMBus: Slave Address with Read/Write Bit  
11  
PRODUCT SPECIFICATION  
FMS2701  
There are five steps within an SMBus cycle:  
A repeated start signal occurs when the master device driv-  
ing the serial interface generates a start signal without first  
generating a stop signal to terminate the current communica-  
tion. This is used to change the mode of communication  
(read, write) between the slave and master without releasing  
the serial interface lines.  
1. Start signal  
2. Slave address byte  
3. Pointer register address byte  
4. Data byte to read or write  
5. Stop signal  
Serial Interface Read/Write Examples  
When the SMBus interface is inactive (SCL = H and SDA = H)  
communications are initiated by sending a start signal. The  
start signal (Figure 5, left waveform) is a HIGH-to-LOW  
transition on SDA while SCL is HIGH. This signal alerts all  
slaved devices that a data transfer sequence is imminent.  
Examples below show how serial bus cycles can be linked  
together for multiple register read and write access cycles.  
For sequential register accesses, each ACK handshake ini-  
tiates further SCL clock cycles from the master to transfer  
the next data byte.  
After a start signal, the first eight bits of data that are transferred,  
comprise a seven bit slave address followed a single R/W bit  
(Read = H, Write = L). As shown in Figure 6, the R/W bit  
indicates the direction of data transfer: read from; or write to  
the slave device. If the transmitted slave address matches the  
address of the FMS2701 which set by the state of the ADD  
pin, the FMS2701 acknowledges by pulling SDA LOW on  
the 9th SCL pulse (see Figure 7) to send an acknowledge bit,  
ACK. If the addresses do not match, the FMS2701 does not  
acknowledge.  
Write to one control register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte  
4. Data byte to base address  
5. Stop signal  
Read from one control register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte (= base address)  
4. Stop signal  
For each byte of data read or written, the MSB is the first bit  
of the sequence.  
5. Start signal  
6. Slave Address byte (R/W bit = HIGH)  
7. Data byte from base address  
8. Stop signal  
DATA TRANSFER  
If a slave device such as the FMS2701 does not acknowledge  
the master device during a write sequence, SDA remains HIGH  
so that the master can generate a stop signal. During a read  
sequence, if the master device does not acknowledge (ACK = L),  
the FMS2701 interprets this as “end of data.” SDA remains  
HIGH so the master can generate a stop signal.  
Addressable Memory  
Although the FMS2701 will respond to external inputs, con-  
trol of the operation of the FMS2701 is through the internal  
registers. Following power-up, registers are set to default  
values. After a 140 msec. power up reset delay, the FMS2701  
will begin checking sensor inputs to determine if the temper-  
ature in voltages fall within default limits.  
To write data to a specific FMS2701 control register, three  
bytes are sent:  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write to the control register indexed by the pointer.  
These default values may be overridden by changing the val-  
ues stored in the Value RAM. If the PTA and PTR val-  
7-0 7-0  
ues are changed, then the TRIP_LOCK (Temperature Trip  
Point Lock) bit in the Configuration Register must be set to  
enable temperature values to be compared against the pro-  
grammable rather than the fixed trip point values. If the tem-  
perature limit values are changed, then the changes are  
effective immediately. Interrupt masking (register 0x43),  
enabling (INT_EN bit) and clearing (INT_CLR bit) can be  
used to disable interrupts during register setup.  
Data is read from the control registers of the FMS2701 in a  
similar manner, except that two data transfer operations are  
required:  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write the slave address byte with bit R/W = H  
4. Read the control register indexed by the pointer.  
Preceding each slave write, there must be a start cycle. Follow-  
ing the pointer byte there should be a stop cycle. After the last  
read, there must be a stop cycle comprising a LOW-to-HIGH  
transition of SDA while SCL is HIGH. (see Figure 5, right  
waveform)  
There are four control registers and 21 Value RAM locations,  
with functions and bit assignments defined in the Address-  
able Memory section.  
12  
FMS2701  
PRODUCT SPECIFICATION  
D/A Converter  
THERM Processing  
An 8-bit D/A converter supplies a voltage to the FAN_SPD  
pin which, can be used to control the speed of a fan. Input of  
the D/A converter is connected to the DAC register.  
7-0  
THERM is a bi-directional pin with an open drain output.  
When the THERM output is asserted L, the THERM input is  
disabled. Figure 8 depicts the logical flow of the internal and  
external THERM signals, showing the origins and destinations.  
DAC value is loaded from the SMBus. In the event of a  
7-0  
THERM condition, the DAC output remains unchanged  
7-0  
but the D/A converter output is set full scale, equivalent to  
DAC = 0xFF. RST = L clears DAC in the fan speed  
7-0  
7-0  
register.  
INTRSTb  
Interrupt  
Status  
Register  
Mirror  
TEMPVALID  
THERM  
PTR  
XTHERM  
7-0  
Programmable  
Trip Point  
PTA70-  
Registers  
FRY  
7-0  
ITHERM  
THERM  
HOT  
7-0  
FTR  
FTA  
7-0  
7-0  
Fixed Trip  
Point  
Interrupt  
Status  
Comparators  
Other  
Interrupts  
Registers  
Register  
THERM  
Interrupt  
OR-gate  
Mask  
Interrupt  
Mask  
INT  
ITHERM  
Restore  
MSKTHERM  
Gating  
Register  
TRIPLOCK  
TR[7:0]  
TA[7:0]  
Configuration  
Register  
FAN_OFF  
DACFF==THERM  
D/A  
D/A  
FAN_SPD  
RST  
Register  
Converter  
Figure 8. THERM I/O Structure/Detail  
As an input, if THERM = L the following events occur:  
3. If Configuration Register bit, TRIPLOCK = L and Fixed  
Ambient Temperature Automatic Trip Point FTA is  
7-0  
exceeded.  
1. If the mask bit, MSKTHERM = L, output pin, INT = L  
2. Configuration Register bit, FAN_ON = H.  
3. Output pin, FAN_SPD = 2.5 V for maximum fan speed  
but register DAC is unchanged.  
7-0  
4. Interrupt Status Register bit, THERM = H.  
4. If Configuration Register bit, TRIPLOCK = L and Fixed  
Remote Temperature Automatic Trip Point  
FTR is exceeded.  
7-0  
5. Interrupt Status Register Mirror bit, MTHERM = H.  
TRIPLOCK is Temperature Trip Point Lock bit in the  
Configuration Register.  
As an output, ITHERM = H, causes THERM = L; ITHERM  
= L, causes THERM = Z, open drain. ITHERM = H, if any  
of the following conditions occur:  
After a Trip Point has been exceeded, to restore the open  
drain output, THERM = Z, the temperature must fall 5°C  
below the trip point.  
1. If Configuration Register bit, TRIPLOCK = H and  
Programmable Ambient Temperature Automatic Trip  
Point PTA is exceeded.  
7-0  
2. If Configuration Register bit, TRIPLOCK = H and  
Programmable Remote Temperature Automatic Trip  
Point PTR is exceeded.  
7-0  
13  
PRODUCT SPECIFICATION  
FMS2701  
INT Processing  
INT =L, if any bit in the Interrupt Register is active. Other-  
wise INT = Z, open drain. Figure 9 depicts the logical flow  
of the interrupt sources to the INT output.  
INT is a hardware interrupt output. INT operation is con-  
trolled by the Configuration Register bits: INT_EN and  
INT_CLR bits, which enable and clear the open drain INT  
output. Subject to the setting of the Interrupt Mask Register,  
THERM  
XTHERM  
ITHERM  
INT  
Interrupt  
Status  
ATV, RTV  
ITHERM  
Register  
Interrupt  
Interrupt  
OR-gate  
Control  
GPI, THERM,  
RMT_FAULT  
Interrupt  
Status  
Mask  
Gating  
Interrupt  
Sources  
Register  
Interrupt  
Mask  
Interrupt  
Status  
Register  
Register  
Mirror  
INT_EN  
INT  
INT_CLR  
Configuration  
Register  
INT_RST  
SOFT_RST  
Figure 9. INT Output Structure  
With Configuration Register bits INT_EN = 1 and INT_CLR  
= 0, output pin INT = L, if any of the following bits are set in  
the Interrupt Register:  
5. RMT_FAULT: Remote diode is either open or short circuit.  
Output pin INT = Z, clearing the interrupt output, if any of  
the following events occur:  
1. ATV: An ambient temperature limit is violated indicating  
that the on-chip temperature falls outside the boundaries  
1. Interrupt Status Register is read, causing this register to  
be cleared to the default state.  
established by TALO and TAHI  
.
7-0 7-0  
2. GPI: General Purpose Input, GPI is asserted. Polarity  
of the GPI pin is determined by the setting of the  
GPI_INVT bit in the Configuration Register.  
3. RTV: A remote thermal diode temperature limit is vio-  
lated, indicating that the temperature falls outside the  
2. Configuration Register bit INT_CLR = 1, which is the  
default condition following an internal reset.  
3. Configuration Register bit INT_EN = 0, which is the  
default condition following an internal reset.  
boundaries established by TRLO and TRHI  
4. THERM: Temperature exceeds an selected automatic  
.
Status of the INT_CLR and INT_EN bits does not impact the  
contents of the Interrupt Status or the Interrupt Status Mirror  
Registers. Reading the Interrupt Status Registers clears only  
that register. Reading the Interrupt Status Mirror Register,  
clears only that register.  
7-0 7-0  
trip point (PTA , PTR , FTA , or FTR ) causing  
7-0 7-0 7-0 7-0  
output THERM = L or the THERM input = L even if the  
THERM bit in the Interrupt Register is masked.  
14  
FMS2701  
PRODUCT SPECIFICATION  
Note that setting the INT output by exceeding a temperature  
limit is an edge-driven event. Only when the temperature  
actually crosses the limit boundary does INT\ transition LOW.  
An example of interrupts caused by a series of temperature,  
T transitions across temperature limits is shown in Figure 10.  
Temperature limits are fixed for the first series of temperature  
excursions. Then, for the second series, following the THI1  
violation, the THI limit is raised from THI1 to THI2. If THI  
is reprogrammed from a value above T to a value below THI,  
then an interrupt is generated. INT is cleared by reading the  
Interrupt Status Register (ISRread).  
THI2  
THI3  
THI1  
TLO1  
TLO2  
T
ISRread  
INT  
Figure 10. Profile of Temperature Driven Interrupts  
ATV and RTV bits operate in conjunction with the INT  
output and Interrupt status Register as follows:  
that are stored in the Limit Registers. Out of range TA and  
7-0  
TR values set the INT bit in the Interrupt Status Register.  
7-0  
1. When the temperature exceeds a high limit, the corre-  
sponding Interrupt Status Register bit, either ATV or  
RTV is set.  
TR and TA are also compared with the values in Trip  
7-0 7-0  
Point Registers, PTA and PTR if these registers have  
7-0 7-0  
been loaded or FTA and FTR , which contain power up  
7-0 7-0  
2. Reading the Interrupt Status Register clears ATV and RTV.  
3. Once the high limit has been exceeded, a subsequent  
transitions through the high level will not cause an  
interrupt, unless:  
default values. If a trip point is violated, two outputs are  
asserted: THERM = L and FAN_SPD = H.  
Mask Gating  
a) The temperature passes through the low limit.  
b) Or, the high temperature limit is changed.  
4. If the high temperature limit is changed from a level  
above the temperature to a level below, then the relevant  
Interrupt Status Register bit, either ATV or RTV is set.  
5. If the temperature falls below a low limit, the corre-  
sponding Interrupt Status Register bit, either ATV or  
RTV is set.  
Setting the corresponding bit in the Interrupt Mask Register  
can mask any bit in the Interrupt Status Register.  
Timing and Control  
Timing and Control logic generates a master clock and  
orchestrates on-chip timing.  
NAND Gate Test  
6. Once the low limit has been exceeded, a subsequent  
transitions through the low level will not cause an inter-  
rupt, unless:  
a) The temperature passes through the high limit.  
b) Or, the low temperature limit is changed.  
7. If the low temperature limit is changed from a level  
below the ambient/remote temperature to a level above,  
then the ATV/RTV bit is set.  
A selectable NAND tree test is provided for Automated Test  
Equipment (ATE) board level connectivity testing. NAND  
tree test mode is enabled by setting the input pin, FAN_SPD  
NTEST_IN = H, while the AUXRST output transitions L to H,  
causing the output of a D flip-flop to:  
1. Enable the NAND tree output, connecting it to the  
ADD/NTEST_OUT pin.  
2. Disable the D/A converter output to the FAN/SPD  
NTEST_IN.  
GPI—General Purpose Input  
GPI is a General Purpose Input that can be used to trigger an  
interrupt. Configuration Register bit GPI_INVT determines  
the polarity of the GPI input. Interrupt Register bit, GPI = H  
sets output INT = L if Mask Register bit MSK_GPI = L.  
To perform a NAND tree test, NAND tree pins should be  
driven high.  
Each pin is toggled in turn to generate an output pattern with  
values that can be verified against those shown in Table 4.  
Limit and Trip Point Comparators  
Temperature register outputs, TR and TA are compared  
7-0 7-0  
with the limit values TRHI , TRLO , TAHI and TALO  
7-0 7-0 7-0 7-0  
15  
PRODUCT SPECIFICATION  
FMS2701  
NTEST_IN  
NTEST_EN  
INTRST  
GPI  
SCL  
SDA  
MR  
NTEST_OUT  
Figure 11. NAND Tree Test Logic  
To implement the NAND-TREE test on a PWB, no pins  
listed in the tree should be connected directly to power or  
ground. Instead, pins should be biased through a low load  
resistor with a value of 1.0 k to 100 k to allow ATE to drive  
pins high/low.  
Table 4. NAND Tree Truth Table  
GPI  
0
SCL  
SDA  
MR  
0
ADD/NTESTOUT  
0
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
1
1
16  
FMS2701  
PRODUCT SPECIFICATION  
Equivalent Circuits  
VCC3AUX  
VDD  
DIODE+  
DIODE–  
Digital  
Input  
GND  
29233  
GND  
27014B  
Figure 14. Equivalent Remote Diode Interface Circuit  
Figure 12. Equivalent Digital Input Circuit  
VDD  
VDD  
Digital  
Output  
p
n
Digital  
Output  
n
GND  
29232  
Figure 15. Equivalent Open Drain Output Circuit  
GND  
27011B  
Figure 13. Equivalent Digital and D/A Output Circuit  
17  
PRODUCT SPECIFICATION  
FMS2701  
Absolute Maximum Ratings (beyond which the device may be damaged)1  
Parameter  
Min  
Typ  
Max  
Unit  
Power Supply Voltages  
V
V
(Measured to GND)  
(Measured to GND)  
-0.5  
3.3  
3.3  
5.75  
V
V
CC3AUX  
CC3AUX  
Digital Inputs  
3.3 V logic applied voltage (Measured to GND)2  
Forced current3, 4  
-0.3  
-5.0  
V
V
V
+ 0.3  
+ 0.5  
+ 0.5  
V
CC3AUX  
5.0  
mA  
Analog Inputs  
Applied Voltage (Measured to GND)2  
Forced current3, 4  
-0.5  
V
CC3AUX  
10.0  
-10.0  
mA  
Digital Outputs  
3.3 V logic applied voltage (Measured to GND)2  
Forced current3, 4  
-0.5  
V
DD3AUX  
10.0  
1
-10.0  
mA  
Short circuit duration (single output in HIGH state to ground)  
Temperature  
second  
Operating, Ambient  
-40  
-65  
125  
150  
300  
220  
150  
±150  
°C  
°C  
°C  
°C  
°C  
V
Junction  
Lead Soldering (10 seconds)  
Vapor Phase Soldering (1 minute)  
Storage  
Electrostatic Discharge5  
Notes:  
1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only  
if Operating Conditions are not exceeded.  
2. Applied voltage must be current limited to specified range.  
3. Forcing voltage must be limited to specified range.  
4. Current is specified as conventional current flowing into the device.  
5. EIAJ test method.  
Operating Conditions  
Parameter  
Min  
Nom  
Max  
Units  
V
V
Digital Power Supply Voltage  
Ambient Temperature, Still Air  
3.3  
CC3AUX  
TA  
-40  
125  
°C  
18  
FMS2701  
PRODUCT SPECIFICATION  
Electrical Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Power Supply Currents  
I
3.3 volt current  
Operating  
1
2
mA  
mA  
VCC3AUX  
Standby  
0.5  
Digital Inputs/Outputs  
C
C
Input Capacitance  
5
10  
+1  
pF  
pF  
µA  
µA  
µA  
V
I
Output Capacitance  
Input Current, HIGH  
Input Current, LOW  
10  
O
I
I
I
-1  
0.005  
0.005  
200  
IH  
IL  
Input Current, LOW, Master Reset  
Input Voltage  
MR = L  
ILR  
V
2.0  
IH  
IL  
V
Input Voltage  
0.8  
100  
-2  
V
I
I
I
Output Current, HIGH, open drain  
Output Current, HIGH  
Output Current, LOW  
Output Voltage, HIGH  
Output Voltage, LOW  
-0.1  
µA  
mA  
mA  
V
OZH  
OH  
OL  
Other / FAN_OFF  
3 / 6  
V
OH  
V
OL  
I
I
= max.  
= max.  
2.4  
2.1  
OH  
OL  
0.4  
V
SMBus I/O  
V
V
V
Input Voltage, HIGH  
Input Voltage, LOW  
Output Voltage, LOW  
Output Current, HIGH  
Output Voltage, LOW  
V
V
SMIH  
SMIL  
0.8  
0.4  
-100  
4
I
= max.  
V
SMOL  
SMOH  
SMOL  
SMOL  
I
I
-0.1  
µA  
mA  
Diode Inputs  
I
I
Source Current, High  
Source Current, Low  
80  
8
100  
10  
120  
12  
µA  
µA  
DH  
DL  
Analog Output  
V
V
Output Voltage, high  
Output Voltage, low  
Output Current , source  
Output Current , sink  
DAC  
DAC  
= 0xFF  
2.5  
0
V
V
AH  
AL  
7-0  
= 0xOO  
7-0  
I
I
2
mA  
mA  
AH  
AL  
1
Switching Characteristics  
Parameter  
Conditions Min Typ1 Max Unit  
Digital Inputs  
t
t
t
Delay, GPI input to register  
DGPI  
Delay THERM input to register  
Delay, NAND input to NTEST_OUT  
THERM  
NAND  
Reset Generators  
t
t
t
Delay, V  
CC3AUX  
< 2.93 V to AUXRST output  
ns  
DVA  
Pulsewidth, AUXRST after V  
> 2.93 V  
< 2.93 V to RST\ output  
140  
500  
ms  
ns  
WVA  
DVAR  
CC3AUX  
Delay, V  
CC3AUX  
19  
PRODUCT SPECIFICATION  
FMS2701  
Parameter  
Conditions Min Typ1 Max Unit  
t
t
t
t
t
t
Delay, input AUXRST to RST\ output  
ns  
DAR  
WAR  
DR  
Pulsewidth, RST after V  
> 2.93 V or AUXRST ↓  
180  
180  
140  
500  
500  
500  
ms  
ns  
CC3AUX  
Delay, MR to RST = L  
Pulsewidth, MR to RST = H  
Delay, V < 2.93 V to RST output  
ms  
ns  
WR  
DVR  
DVW  
CC3  
Pulsewidth, RST after V  
> 2.93 V  
ms  
CC3  
SMBus Interface  
t
t
t
t
t
t
t
t
SCL Pulse Width, LOW  
SCL Pulse Width, HIGH  
SDA Start Hold Time  
4.7  
4.0  
4.0  
4.0  
4.7  
4.7  
250  
300  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
DAL  
DAH  
STAH  
STASU  
STOSU  
BUFF  
DSU  
SCL to SDA Setup Time (Stop)  
SCL to SDA Setup Time (Start)  
SDA Stop Hold Time Setup  
SDA to SCL Data Setup Time  
SDA to SCL Data Hold Time  
DHO  
Notes:  
1. is a H to L transition.  
2. is a L to H transition.  
System Performance Characteristics  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
Temperature Channel  
Remote Accuracy  
-40°C T +125°C  
±5  
±3  
±5  
±3  
°C  
°C  
°C  
°C  
A
+60°C T +100°C  
A
Ambient Accuracy  
0°C T +85°C  
A
20°C T +50°C  
A
A/D Converter  
E
E
Error, Total Unadjusted  
Differential Linearity Error  
Power Supply Sensitivity  
Total Monitoring Cycle Time  
±1  
±1  
±1  
1.0  
%
TUADC  
LDADC  
LSB  
%/V  
Sec.  
PSS  
t
Remote and Ambient samples  
1.4  
C
D/A Converter Output  
E
E
V
Error, Total Unadjusted  
Differential Linearity Error  
Threshold Voltage  
-3  
-1  
+3  
+1  
%
LSB  
V
TUDAC  
LDDAC  
RES  
2.93  
Notes:  
1. Values shown in Typ column are typical for V  
= 3.3V and T = 25°C.  
A
cc3AUX5  
20  
FMS2701  
PRODUCT SPECIFICATION  
Input pin MR and bi-directional pins AUXRST and THERM,  
Application Information  
should be biased to V  
CC3AUX  
through a pull-up resistor to  
Since the FMS2701 is intended to be embedded on a Pen-  
tium motherboard, external connections cannot be specifi-  
cally defined. Although in Figure 16, only the schematic  
symbol and power supply connections are shown, there are  
several guidelines that should be adopted.  
prevent spurious triggering.  
If unused, GPI shold be connected to ground through a pull-  
down resistor, unless the bit: GPI_INV = H, in which case GPI  
should be connected to V  
CC3AUX  
through a pull-up resistor.  
Power is supplied to the V  
CC3AUX  
pin which should be de-  
The FAN_SPD/INTESTOUT pin should be biased to ground  
through a pull-down resistor to ensure that the NAND Test is  
not inadvertently enabled.  
coupled to ground through a local 0.1 µF chip capacitor. To  
minimize the effects of noise, locate the FMS2701 over a  
ground plane.  
SMBus pins SCL SDA require pull-up resistors along the bus  
which are not necessarily local to the FMS2701. ADD must  
be set H, L or open to match the FMS2701 address to the  
assigned SMBus address.  
Cleanly route the DIODE± analog traces as a pair over the  
ground plane. Segregate DIODE± traces from digital traces  
and areas of noise. Sensitivity to noise is approiximately  
1°C/200µV.  
V
must be maintained at 3.3 volts to avoid tripping the  
CC3  
Main Reset Generator. If V  
is not used, connect it to  
CC3  
V
.
CC3AUX  
VCC3AUX  
JP1  
C1  
0.1  
R1  
10K 10K  
R2  
R3  
10K  
U1  
R4  
R5  
10K  
10K  
2
6
1
FAN_OFFb  
MRb  
VCC3  
MR  
VCC3  
FAN_OFF  
3
7
AUXRSTb  
RSTb  
AUXRST  
RST  
9
10  
CATHODE  
ANODE  
REMOTE_DIODE–  
REMOTE_DIODE+  
8
FAN_SDP  
FAN_SPD  
12  
GPI  
GPI  
11  
14  
THERM  
INT  
THERMb  
INTb  
13  
15  
16  
ADD  
SCL  
SDA  
SCL  
SDA  
10K  
JP2  
FMS2701  
Figure 16. FMS2701 Reference Schematic  
21  
PRODUCT SPECIFICATION  
FMS2701  
Pin Assignments  
16-lead QSOP Package  
Inches  
Millimeters  
Symbol  
Notes  
Min.  
Max.  
Min.  
Max.  
A
.061  
.004  
.008  
.007  
.189  
.150  
.068  
.010  
.012  
.010  
.196  
.157  
1.55  
0.10  
0.20  
0.18  
4.80  
3.81  
1.73  
0.25  
0.30  
0.25  
4.98  
3.99  
A1  
B
C
D
E
e
.025 BSC  
0.63 BSC  
H
K
.230  
.244  
5.84  
6.19  
L
φ
.016  
0°  
.035  
8°  
0.41  
0°  
0.89  
8°  
16  
9
C
L
E
H
1
8
φ
D
K
A
e
B
A1  
22  
FMS2701  
PRODUCT SPECIFICATION  
Notes  
23  
PRODUCT SPECIFICATION  
FMS2701  
Ordering Information  
Product Number  
Temperature Range  
-40°C to 125°C  
Screening  
Package  
Package Marking  
FMS2701QSC  
Commercial  
16 Lead QSOP  
2701QS  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
7/8/99 0.0m 003  
Stock#DS30002701  
1998 Fairchild Semiconductor Corporation  

相关型号:

FMMT560AL99Z

Small Signal Bipolar Transistor, 2A I(C), 60V V(BR)CEO, 1-Element, NPN, Silicon, SUPERSOT-3
FAIRCHILD

FMMT560D87Z

Small Signal Bipolar Transistor, 2A I(C), 60V V(BR)CEO, 1-Element, NPN, Silicon, SUPERSOT-3
FAIRCHILD

FMMT560L99Z

Small Signal Bipolar Transistor, 2A I(C), 60V V(BR)CEO, 1-Element, NPN, Silicon, SUPERSOT-3
FAIRCHILD

FMMT560QTA

Small Signal Bipolar Transistor, 0.15A I(C), PNP
DIODES

FMMT560QTC

Small Signal Bipolar Transistor, 0.15A I(C), PNP
DIODES

FMMT560TA

PNP SILICON PLANAR HIGH VOLTAGE TRANSISTOR
DIODES

FMMT560TC

Small Signal Bipolar Transistor, 0.15A I(C), 500V V(BR)CEO, 1-Element, PNP, Silicon,
DIODES

FMMT589

PNP SILICON PLANAR MEDIUM POWER HIGH PERFORMANCE TRANSISTOR
ZETEX

FMMT589

Power High Performance Transistor
KEXIN

FMMT589

SOT23 PNP SILICON PLANAR MEDIUM
DIODES

FMMT589

Low equivalent on-resistance
TYSEMI