GLT5640L32-10 [ETC]

CMOS Synchronous DRAM 2M x 32 SDRAM; CMOS同步DRAM 2M ×32 SDRAM
GLT5640L32-10
型号: GLT5640L32-10
厂家: ETC    ETC
描述:

CMOS Synchronous DRAM 2M x 32 SDRAM
CMOS同步DRAM 2M ×32 SDRAM

动态存储器
文件: 总49页 (文件大小:879K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
2M x 32 SDRAM  
512K x 32bit x 4Banks  
Synchronous DRAM  
G-Link Technology Corporation  
G-Link Technology Corporation,TaiwanWeb :  
www.glink.com.tw  
Email : sales@glink.com.tw  
TEL : 886-2-26599658  
GLINK reserves the right to change products or specification without notice.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
1
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
TABLE OF CONTENTS  
Table of Contents  
… 2  
… 3  
… 4  
… 5  
… 5  
… 6  
… 6  
… 6  
… 7  
… 8  
… 9  
… 10  
… 11  
… 12  
… 13  
… 14  
… 14  
Operations  
Bank/Row Activation  
Read Operation  
Write Operation  
Precharge  
… 19  
… 20  
… 26  
… 28  
… 28  
… 29  
… 29  
Device Description & Feature  
Pin Assignment  
Pin Description  
Absolute Maximum Rating  
Capacitance  
Power-Down  
Clock Suspend  
Burst Read/Single Write  
DC Characteristics & Operating Condition  
AC Operating Condition  
DC Characteristics  
Concurrent Auto Precharge  
Read with Auto Precharge  
Write with Auto Precharge  
… 30  
… 30  
… 31  
AC Characteristics-I  
Timing Waveforms  
AC Characteristics-II  
Initialize and Load Mode Register  
Power-Down Mode  
… 32  
… 33  
… 34  
… 35  
… 35  
Device Operating Option Table  
Command Truth Table  
Functional Block Diagram  
Simplified State Diagram  
Function Description  
Clock Suspend Mode  
Auto Refresh Mode  
Self Refresh Mode  
Read Operations  
Single Read without Auto Precharge  
Read Without Auto Precharge  
Read With Auto Precharge  
Alternating Bank Read Accesses  
Read Full-Page Burst  
… 36  
… 37  
… 38  
… 39  
… 40  
… 41  
Initialization  
Register Definition  
Mode Register  
Burst Length  
Burst Type  
CAS Latency  
Operating Mode  
Write Burst Mode  
… 14  
… 14  
… 15  
… 16  
… 16  
… 16  
Read DQM Operation  
Write Operations  
Single Write without Auto Precharge  
Write Without Auto Precharge  
Write With Auto Precharge  
Alternating Bank Write Accesses  
Write Full-Page Burst  
… 42  
… 43  
… 44  
… 45  
… 46  
… 47  
… 48  
… 49  
Commands  
Command Inhibit  
No Operation (NOP)  
Load Mode Register  
Active  
… 17  
… 17  
… 17  
… 17  
… 17  
… 17  
… 17  
… 18  
… 18  
… 18  
… 18  
Write DQM Operation  
Memory Part Numbering  
Package Dimensions  
Read  
Write  
Precharge  
Auto Precharge  
Burst Terminate  
Auto Refresh  
Self Refresh  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
2
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
DESCRIPTION  
The G-Link GLT5640L32 is a high speed 67,108,864bits CMOS Synchronous DRAM organized as 4 banks of 524,288 words x  
32 bits.  
GLT5640L32 is offering fully synchronous operation and is referenced to a positive edge of the clock. All inputs and outputs are  
synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All  
input and output voltage levels are compatible with LVTTL.  
FEATURES  
• JEDEC standard 3.3V power supply.  
• Auto refresh and self refresh.  
• Programmable CAS Latency : 2,3 clocks.  
• All inputs and outputs referenced to the positive edge of  
the system clock.  
• All device pins are compatible with LVTTL interface.  
• 4096 refresh cycle / 64ms.  
• Data mask function by DQM0,1,2 and 3.  
• Internal four banks operation.  
• JEDEC standard 86pin 400mil TSOP-II with 0.5mm of pin  
pitch.  
• Burst Read Single Write operation.  
• Programmable Burst Length and Burst Type.  
- 1, 2, 4, 8 or Full Page for Sequential Burst.  
- 4 or 8 for Interleave Burst.  
• Automatic precharge, includes CONCURRENT Auto  
Precharge Mode and controlled Precharge  
ORDERING INFORMATION  
PART No.  
CLOCK Freq.  
POWER  
ORGANIZATION  
INTERFACE  
LVTTL  
PACKAGE  
GLT5640L32-5  
GLT5640L32 -5.5  
GLT5640L32 -6  
GLT5640L32 -7  
GLT5640L32 -8  
GLT5640L32 -10  
200MHz  
183MHz  
166MHz  
143MHz  
125MHz  
100MHz  
4 Banks  
x 512K bits  
x 32  
86pin  
400mil  
TSOP-II  
Normal Power  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
3
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
PIN ASSIGNMENT (TOP VIEW)  
VDD  
DQ0  
1
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
VSS  
2
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
N.C  
VDDQ  
DQ1  
3
4
DQ2  
5
VSSQ  
DQ3  
6
7
DQ4  
8
VDDQ  
DQ5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
DQ6  
VSSQ  
DQ7  
N.C  
VDD  
VSS  
DQM0  
/WE  
DQM1  
N.C  
/CAS  
/RAS  
/CS  
N.C  
86Pin TSOP (II)  
0.5 mm Pin pitch  
(400mil x 875mil)  
CLK  
CKE  
A9  
N.C  
BA0  
A8  
BA1  
A7  
A10/AP  
A0  
A6  
A5  
A1  
A4  
A2  
A3  
DQM2  
VDD  
DQM3  
VSS  
N.C  
N.C  
DQ16  
VSSQ  
DQ17  
DQ18  
VDDQ  
DQ19  
DQ20  
VSSQ  
DQ21  
DQ22  
VDDQ  
DQ23  
VDD  
DQ31  
VDDQ  
DQ30  
DQ29  
VSSQ  
DQ28  
DQ27  
VDDQ  
DQ26  
DQ25  
VSSQ  
DQ24  
VSS  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
4
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
PIN DESCRIPTIONS  
PIN  
PIN NAME  
DESCRIPTIONS  
The system clock input. All other inputs are registered to the  
SDRAM on the rising edge CLK  
CLK  
CKE  
System Clock  
Controls internal clock signal and when deactivated, the  
SDRAM will be one of the states among power down,  
suspend or self refresh  
Clock Enable  
CS  
Chip select  
Enable or disable all inputs except CLK, CKE and DQM  
Selects bank to be activated during RAS activity  
Selects bank to be read/written during CAS activity  
BA0, BA1  
Bank Address  
Row Address  
Column Address  
Auto-precharge flag  
: RA0~RA10,  
: CA0~CA7,  
: A10  
A0~A10/AP  
Address  
Row Address Strobe,  
Column Address Strobe,  
Write Enable  
RAS, CAS and WE define the operation  
Refer function truth table for details  
RAS, CAS, WE  
DQM0~3  
Controls output buffers in read mode and masks input data in  
write mode  
Data Input / Output Mask  
DQ0~DQ31  
VDD / VSS  
VDDQ / VSSQ  
NC  
Data Input / Output  
Multiplexed data input / output pin  
Power supply for internal circuits and input buffers  
Power supply for output buffers  
No connection  
Power Supply/Ground  
Data Output Power / Ground  
No Connection  
ABSOLUTE MAXIMUM RATING  
PARAMETER  
SYMBOL  
RATING  
UNIT  
Ambient Temperature  
Storage Temperature  
TA  
TSTG  
0~70  
-55~125  
-1.0~4.6  
-1.0~4.6  
50  
°C  
°C  
V
Voltage on Any Pin relative to VSS  
Voltage on VDD relative to VSS  
Short Circuit Output Current  
Power Dissipation  
VIN,VOUT  
VDD, VDDQ  
IOS  
V
mA  
W
PD  
1
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
5
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
CAPACITANCE (TA=25 ,f=1MHz, VDD=3.3V)  
PARAMETER  
PIN  
SYMBOL  
MIN  
MAX  
UNIT  
CLK  
Cl1  
2.5  
4.0  
pF  
Input Capacitance  
A0~A10,BA0, BA1, CKE, CS,  
RAS, CAS, WE, DQM0~3  
Cl2  
2.5  
4.0  
5.0  
6.5  
pF  
pF  
Data Input / Output  
Capacitance  
DQ0~DQ31  
Cl/O  
DC CHARACTERISTICS & OPERATING CONDITION (TA=0 to 70°C)  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
NOTE  
Power Supply Voltage  
VDD, VDDQ  
3.0  
3.3  
3.6  
V
1, 2  
Input High Voltage  
VIH  
2.0  
3.0  
VDDQ+0.3  
V
1, 3  
Input Low Voltage  
VIL  
ILI  
ILO  
VOH  
VOL  
VSSQ-0.3  
-1.0  
0
-
-
-
-
0.8  
1.0  
1.5.  
-
V
1, 4  
5
6
Input Leakage Current  
Output Leakage Current  
Output High Voltage  
Output Law Voltage  
uA  
uA  
V
-1.5  
2.4  
-
IOH = -2.0mA  
IOL = +2.0mA  
0.4  
V
Notice :  
1. All voltages are referenced to VSS =0V  
2. VDD/VDDQ(min) is 3.15V for GLT5640L32-5/5.5/6  
3. VIH(max) is acceptable 5.6V AC pulse width with 3ns of duration with no input clamp diodes  
4. VIL(min) is acceptable –2.0V AC pulse width with 3ns of duration with no input clamp diodes  
5. VIN = 0 to 3.6V, All other pins are not under test = 0  
6. DOUT is disabled, VOUT=0 to 3.6V  
AC OPERATING CONDTION (TA=0 to 70°C, 3.0VVDD3.6V, VSS=0V - Note1)  
PARAMETER  
SYMBOL  
TYP.  
UNIT  
NOTE  
AC Input High / Low Level Voltage  
Input Timing Measurement Reference Level Voltage  
Input Rise / Fall Time  
Output Timing Measurement Reference Level  
Output Load Capacitance for Access Time Measurement  
VIH / VIL  
2.4 / 0.4  
V
V
ns  
V
pF  
-
-
-
-
Vtrip  
1.4  
1 / 1  
1.4  
tR / tF  
Voutref  
CL  
30  
2
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
6
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
DC CHARACTERISTICS (DC Operating Conditions Unless Otherwise Noted)  
SPEED  
UNIT NOTE  
PARAMETER  
SYM.  
TEST CONDITION  
5
-5.5 -6 -7 -8 -10  
BURST Length = 1, One Bank Active  
tRAS tRAS(min), tRP tRP(min)  
IOL = 0 mA  
Operating Current  
IDD1  
230 220 200 1800 170 150  
mA  
1
IDD2P  
CKE VIL(max), tCK = 15ns  
CKE VIL(max), tCK= ∞  
2
2
mA  
mA  
-
-
Precharge Standby Current  
in Power-down Mode  
IDD2PS  
CKE VIH(min), CS VIH(min), tCK= 15ns  
Input signals are changed on time during 2CKLS  
All this pins VDD - 0.2 or 0.2V  
IDD2N  
30  
mA  
-
Precharge Standby Current  
in Non Power-down Mode  
CKE VIH(min), tCK= ∞  
Input signals are stable  
IDD2NS  
20  
mA  
-
IDD3P  
CKE VIL(max), tCK = 15ns  
CKE VIL(max), tCK= ∞  
15  
15  
mA  
mA  
-
-
Active Standby Current in  
Power-down Mode  
IDD3PS  
CKE VIH(min), CS VIH(min), tCK=15ns  
Input signals are changed on time during 2CLKS  
All other pin VDD - 0.2V or 0.2V  
IDD3N  
IDD3NS  
IDD4  
60  
mA  
mA  
mA  
-
-
Active Standby Current in  
Non Power-down Mode  
CKE VIH(min), tCK= ∞  
Input signals are stable  
50  
tCK tCK(min)  
CL=3 440 410 380 340 300 250  
Operating Current  
(Burst Mode)  
1
tRAS tRAS(min), IOL = 0 mA  
All Bank Active  
CL=2  
-
-
-
-
250 200  
Operating Current  
IDD5  
IDD6  
tRRC tRRC(min) All banks active  
CKE 0.2V  
250 240 220 200 190 180  
2
mA  
mA  
2
3
Self Refresh Current  
Notice :  
1. IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open  
2. Min. of tRRC (Refresh RAS cycle time) is shown at AC CHARACTERISTICS II  
3. GLT5640L32-5/5.5/6/7/8/10  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
7
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
AC CHARACTERISTICS - I (AC Operating Conditions Unless Otherwise Noted)  
-5  
-5.5  
-6  
-7  
-8  
-10  
UNIT NOTE  
PARAMETER  
SYM.  
Min Max Min Max Min Max Min Max Min Max Min Max  
5.0  
-
5.5  
-
6.0  
-
7.0  
-
8.0  
10.0  
3.0  
3.0  
-
10.0  
12.0  
3.5  
3.5  
-
CAS Latency = 3  
tCK  
tCK  
1000  
1000  
1000  
1000  
1000  
1000  
System Clock Cycle Time  
-
CAS Latency = 2  
2.0  
2.0  
-
-
2.5  
2.5  
-
-
2.5  
2.5  
-
-
3.0  
3.0  
-
-
-
-
-
-
1
1
Clock High Pulse Width  
Clock Pulse Width  
tCHW  
tCLW  
tAC  
-
-
-
-
4.5  
5.0  
5.5  
5.5  
6.0  
8.0  
-
8.0  
8.0  
-
CAS Latency = 3  
CAS Latency = 2  
Access Time from Clock  
2
-
-
-
-
-
-
-
-
-
-
tAC  
ns  
1.5  
1.5  
1.0  
1.0  
-
-
2.0  
1.5  
1.0  
1.0  
-
-
2.0  
1.5  
1.0  
1.0  
-
-
2.0  
1.75  
1.0  
1.0  
-
-
2.5  
2.0  
1.0  
1.0  
-
2.5  
2.5  
1.0  
1.0  
-
-
Data-out Hold Time  
tOH  
-
-
-
-
-
-
1, 3  
1, 3  
-
Input Signal Setup Time  
Input Signal Hold Time  
tIS  
-
-
-
-
-
-
-
-
-
-
tIH  
-
-
CLK to Data Output in Low Z-Time  
tOLZ  
tOHZ  
tOHZ  
4.5  
-
5.0  
-
5.5  
-
5.5  
-
6.0  
6.0  
6.0  
8.0  
CAS Latency = 3  
CAS Latency = 2  
CLK to Data Output in High  
Z-Time  
-
-
-
-
-
-
-
Notice :  
1. Assume tR/tF (input rise and fall time) is 1ns. If tR & tF is longer than 1ns, transient time compensation should be considered.  
2. If clock rising time is longer than 1ns, (tR/2-0.5) ns should be added to the parameter.  
3. Setup and hold time for Data-Input, Address, CKE and Command pin  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
8
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
AC CHARACTERISTICS - II (AC Operating Conditions Unless Otherwise Noted)  
-5  
-5.5  
-6  
-7  
-8  
-10  
UNIT NOTE  
PARAMETER  
SYM.  
Min Max Min Max Min Max Min Max Min Max Min Max  
55  
55  
15  
55  
55  
60  
60  
18  
70  
70  
20  
70  
70  
20  
70  
70  
20  
Operation  
tRC  
tRRC  
tRCD  
tRAS  
tRP  
-
-
-
-
-
-
-
-
-
-
-
-
RAS Cycle Time  
Auto Refresh  
16.5  
RAS to CAS Delay  
ns  
1
40 100K 38.5 100K 42 100K 49 100K 48 100K 50 100K  
RAS Active Time  
15  
10  
1
1
4
2
0
2
3
-
-
-
16.5  
11  
1
-
-
18  
12  
1
1
4
2
0
2
3
-
-
-
20  
14  
1
1
4
2
0
2
3
-
-
-
20  
16  
1
-
-
20  
20  
1
-
-
RAS Precharge Time  
RAS to RAS Bank Active Delay  
CAS to CAS Delay  
tRRD  
tCCD  
tDPL  
tDAL  
tDQZ  
tDQM  
tMRD  
tPROZ  
tPROZ  
tPDE  
tSRE  
tREF  
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
Data-in to Precharge Command  
Data-in to Active Command  
DQM to Data-out Hi-Z  
DQM to Data-in Mask  
MRS to New Command  
-
4
-
-
-
4
-
4
-
-
-
2
-
-
-
2
-
2
-
-
0
-
-
-
0
-
0
-
CLK  
-
2
-
-
-
2
-
2
-
-
3
-
-
-
3
-
3
-
CAS Latency = 3  
CAS Latency = 2  
2
Precharge to Data-out Hi-Z  
-
-
-
-
-
2
-
2
-
1
1
-
-
1
-
1
1
-
-
1
1
-
-
1
-
1
-
-
3
-
Power Down Exit Time  
Self Refresh Exit Time  
Refresh Time  
-
1
-
-
-
1
-
1
-
64  
-
64  
64  
64  
-
64  
-
64  
ms  
Notice :  
1. The minimum number of clock cycle is determined by dividing the minimum time required with clock cycle time and them  
rounding off to the next higher integer.  
2. In case of row precharge interrupt, auto precharge and read burst stop.  
3. A new command can be given tRC after self refresh exit.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
9
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
DEVICE OPERATING OPTION TABLE  
CAS Latency  
tRCD  
tRAS  
tRC  
tRP  
tAC  
tOH  
GLT5640L32-5  
200MHz  
(5.0ns)  
(5.5ns)  
(6.0ns)  
3 CLKs  
3 CLKs  
3 CLKs  
3CLKs  
3CLKs  
3CLKs  
8CLKs  
7CLKs  
7CLKs  
11CLKs  
10CLKs  
10CLKs  
3CLKs  
3CLKs  
3CLKs  
4.5 ns  
5.0 ns  
5.5 ns  
1.5 ns  
2.0 ns  
2.0 ns  
183MHz  
166MHz  
CAS Latency  
tRCD  
tRAS  
tRC  
tRP  
tAC  
tOH  
GLT5640L32-5.5  
183MHz  
166MHz  
143MHz  
(5.5ns)  
(6.0ns)  
(7.0ns)  
3 CLKs  
3 CLKs  
3 CLKs  
3CLKs  
3CLKs  
3CLKs  
7CLKs  
7CLKs  
7CLKs  
10CLKs  
10CLKs  
10CLKs  
3CLKs  
3CLKs  
3CLKs  
5.0 ns  
5.5 ns  
5.5 ns  
2.0 ns  
2.0 ns  
2.0 ns  
CAS Latency  
tRCD  
tRAS  
tRC  
tRP  
tAC  
tOH  
GLT5640L32-6  
166MHz  
(6.0ns)  
(7.0ns)  
(8.0ns)  
3 CLKs  
3 CLKs  
3 CLKs  
3CLKs  
3CLKs  
3CLKs  
7CLKs  
7CLKs  
6CLKs  
10CLKs  
10CLKs  
9 CLKs  
3CLKs  
3CLKs  
3CLKs  
5.5 ns  
5.5 ns  
6.0 ns  
2.0 ns  
2.0 ns  
2.5 ns  
143MHz  
125MHz  
CAS Latency  
tRCD  
tRAS  
tRC  
tRP  
tAC  
tOH  
GLT5640L32-7  
143MHz  
(7.0ns)  
(8.0ns)  
(10.0ns)  
3 CLKs  
3 CLKs  
2 CLKs  
3CLKs  
3CLKs  
2CLKs  
7CLKs  
6CLKs  
5CLKs  
10CLKs  
9CLKs  
7CLKs  
3CLKs  
3CLKs  
2CLKs  
5.5 ns  
6.0 ns  
6.0 ns  
2.0 ns  
2.5 ns  
2.5 ns  
125MHz  
100MHz  
CAS Latency  
tRCD  
tRAS  
tRC  
tRP  
tAC  
tOH  
GLT5640L32-8  
125MHz  
(8.0ns)  
3 CLKs  
2 CLKs  
2 CLKs  
3CLKs  
2CLKs  
2CLKs  
6CLKs  
5CLKs  
4CLKs  
9CLKs  
7CLKs  
6CLKs  
3CLKs  
2CLKs  
2CLKs  
6.0 ns  
6.0 ns  
6.0 ns  
2.5 ns  
2.5 ns  
2.5 ns  
100MHz  
83MHz  
(10.0ns)  
(12.0ns)  
CAS Latency  
tRCD  
tRAS  
tRC  
tRP  
tAC  
tOH  
GLT5640L32-10  
100MHz  
83MHz  
66MHz  
(10.0ns)  
(12.0ns)  
(15.0ns)  
3 CLKs  
2 CLKs  
2 CLKs  
2CLKs  
2CLKs  
2CLKs  
5CLKs  
5CLKs  
4CLKs  
7CLKs  
7CLKs  
6CLKs  
2CLKs  
2CLKs  
2CLKs  
6.0 ns  
6.0 ns  
6.0 ns  
2.5 ns  
2.5 ns  
2.5 ns  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
10  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
COMMAND TRUTH TABLE  
A10/AP  
COMMAND  
CKEn-1 CKEn CS RAS CAS WE DQM ADDR  
BA NOTE  
Read With Autoprecharge  
No Operation  
H
H
H
H
X
X
X
X
L
L
L
L
L
X
H
L
L
X
H
H
L
X
H
H
X
X
X
X
OP Code  
X
-
-
Bank Active  
Read  
RA  
L
V
V
-
-
L
L
H
H
L
L
H
H
CA  
CA  
X
Read With Autoprecharge  
Write  
Write With Autoprecharge  
Precharge All Banks  
Precharge Selected Bank  
Burst Stop  
H
L
H
H
L
H
H
X
X
X
V
-
-
X
V
X
X
L
L
L
H
H
L
L
H
H
H
H
H
X
L
L
X
H
X
H
X
H
X
V
X
V
X
X
X
X
X
-
-
-
DQM  
Auto Refresh  
Entry  
H
L
L
L
H
L
H
L
H
L
L
L
H
H
X
H
X
H
X
H
X
V
1
Self Refresh  
X
H
X
H
X
H
X
V
X
X
X
Exit  
L
H
L
H
L
X
X
X
1
-
Exit  
Precharge  
Power Down  
Exit  
H
-
Entry  
H
L
H
L
L
X
X
-
-
Clock Suspend  
Exit  
H
X
Notice :  
1. Exiting Self Refresh occurs by asynchronously bring CKE from low to high.  
2. X = Don’t Care, H = Logic High, L = Logic Low, BA = Bank Address, RA = Row Address, CA = Column Address,  
OP Cpde = Operand Code, NOP = No Operation.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
11  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
FUNCTIONAL DIAGRAM  
CLK  
CKE  
CLOCK  
GENERATOR  
BANK D  
BANK C  
ADDRESS  
BANK B  
ROW  
BANK A  
ADDRESS  
BUFFER &  
REFRESH  
COUNTER  
MODE  
REGISTER  
SENSE AMPLIFIER  
COLUMN DECODER  
CS  
RAS  
CAS  
WE  
&
LATCH CIRCUIT  
COLUMN  
ADDRESS  
BUFFER &  
BURST  
COUNTER  
DATA CONTROL CIRCUIT  
DQM  
LATCH CIRCUIT  
INPUT & OUTPUT  
BUFFER  
DQ  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
12  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
SIMPLIFIED STATE DIAGRAM  
SELF  
REFRESH  
MRS  
MODE  
REGISTER  
SET  
CBR  
REF  
IDLE  
REFRESH  
POWER  
DOWN  
CKE  
CKE  
ACTIVE  
POWER  
DOWN  
ROW  
ACTIVE  
READ  
WRITE  
CKE ↓  
CKE ↓  
READ  
WRITE  
READ  
WRITE  
READ  
SUSPEND  
SUSPEND  
WRITE  
CKE  
CKE  
CKE ↓  
CKE ↓  
WRITE A  
WRITE A  
SUSPEND  
READ A  
READ A  
SUSPEND  
CKE  
CKE  
PRECHARGE  
POWER  
ON  
PRE-  
CHARGE  
Automatic Sequence  
Manual Input  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
13  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
FUNCTIONAL DESCRIPTION  
In general, this 64Mb SDRAM (512K x 32 x 4 banks) is a quad-bank DRAM that operates at 3.3V and in-cludes a synchronous interface (all  
signals are regis-tered on the positive edge of the clock signal, CLK). Each of the 16,777,216-bit banks is organized as 2,048 rows by 256  
columns by 32-bits.  
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and con-tinue for a programmed number of  
locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or  
WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0  
and BA1 select the bank, A0-A10 select the row). The address bits (A0-A7) registered coincident with the READ or WRITE command are used  
to select the starting column location for the burst access.  
Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization,  
register defi-nition, command descriptions and device operation.  
Initialization  
SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in  
undefined operation. Once power is applied to VDD and VDDQ (simulta-neously) and the clock is stable (stable clock is defined as a signal  
cycling within timing constraints specified for the clock pin), the SDRAM requires a 100ms delay prior to issuing any command other than a  
COM-MAND INHIBIT or a NOP. Starting at some point during this 100ms period and continuing at least through the end of this period,  
COMMAND INHIBIT or NOP com-mands should be applied.  
Once the 100ms delay has been satisfied with at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE  
command should be applied. All banks must then be precharged, thereby placing the device in the all banks idle state.  
Once in the idle state, two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is ready  
for Mode Register pro-gramming. Because the Mode Register will power up in an unknown state, it should be loaded prior to applying any  
operational command.  
Register Definition  
MODE REGISTER  
The Mode Register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a  
burst type, a CAS latency, an operating mode and a write burst mode, as shown in Figure 1. The Mode Register is programmed via the LOAD  
MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power.  
Mode Register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or inter-leaved), M4-M6 specify the CAS latency,  
M7 and M8 specify the operating mode, M9 specifies the write burst mode, and M10 is reserved for future use.  
The Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent  
operation. Violating either of these requirements will result in unspecified operation.  
Burst Length  
Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in Figure 1. The burst length  
determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4, or 8  
locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-  
page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result. When a READ or WRITE  
command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block,  
meaning that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1-A7 when the burst length is set  
to two; by A2-A7 when the burst length is set to four; and by A3-A7 when the burst length is set to eight. The remaining (least significant)  
address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the page if the boundary is reached.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
14  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
Burst Type  
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected  
via bit M3. The ordering of accesses within a burst is deter-mined by the burst length, the burst type and the starting column address, as shown  
in Table 1.  
BA1  
BA0  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus  
10  
9
8
7
6
5
4
3
2
1
0
Mode Register(Mx)  
0
0
Reserved* WB  
Op Mode  
CAS Latency  
BT  
Burst Length  
M8 M7 M6 - M0 Operating Mode  
M3  
0
Burst Type  
Sequential  
Interleave  
Burst Length  
M2 M1 M0  
0
-
0
-
Defined Standard Operation  
M3 = 0  
1
M3 = 1  
1
-
All Other States Reserved  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
2
M9  
0
Burst Type  
M6 M5 M4  
CAS Latency  
Reserved  
1
4
4
Programmed Burst Length  
Single Location Access  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
2
3
Reserved  
Reserved  
Reserved  
Reserved  
Figure 1.  
Mode Register Definition  
*Should Program M10 = 0,  
to ensure compatibility with future device.  
Order of Access Within a Burst  
Table 1.  
Burst Definition  
Burst  
Starting Column  
Address  
Length  
Type = Sequential Type = Interleaved  
A0  
0
2
4
0>1  
1>0  
0>1  
1>0  
1
A1  
0
A0  
0
Notice :  
0>1>2>3  
1>2>3>0  
2>3>0>1  
3>0>1>2  
0>1>2>3  
1>0>3>2  
2>3>0>1  
3>2>1>0  
0
1
1. For a burst length of two, A1-A7 select the block-of-two burst;  
A0 selects the starting column within the block.  
1
0
1
1
2. For a burst length of four, A2-A7 select the lock-of-four burst;  
A0-A1 select the starting column within the block.  
A2  
0
A1 A0  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0>1>2>3>4>5>6>7 0>1>2>3>4>5>6>7  
1>2>3>4>5>6>7>0 1>0>3>2>5>4>7>6  
2>3>4>5>6>7>0>1 2>3>0>1>6>7>4>5  
3>4>5>6>7>0>1>2 3>2>1>0>7>6>5>4  
4>5>6>7>0>1>2>3 4>5>6>7>0>1>2>3  
5>6>7>0>1>2>3>4 5>4>7>6>1>0>3>2  
6>7>0>1>2>3>4>5 6>7>4>5>2>3>0>1  
7>0>1>2>3>4>5>6 7>6>5>4>3>2>1>0  
0
3. For a burst length of four, A3-A7 select the lock-of-four burst;  
A0-A2 select the starting column within the block.  
0
8
0
4. For a full-page burst, the full row is selected and A0-A7 select  
the starting column  
1
1
1
5. Whenecer a boundart of the block is reached within a given  
sequence above, the following access wraps within the block.  
6. For a burst length of one, A0-A7 select the unique column to  
be accessed, and Mode Register bit M3 is ignored.  
1
Cn, Cn+1. Cn+2,  
Not  
Full page  
(256)  
N = A0 > A7  
(Location 0>256)  
Cn+3, Cn+4…  
Supported  
…Cn-1, Cn...  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
15  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
CAS Latency  
The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data.  
The atency can be set to one, two or three clocks. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be  
available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant  
access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access  
times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the DQs will start driving after T1 and the  
data will be valid by T2, as shown in Figure 2. Table 2 below,  
T0  
T1  
T2  
T0  
T1  
T2  
T3  
CLK  
CLK  
COMMAND  
READ  
tLZ  
NOP  
tOH  
Dout  
COMMAND  
READ  
NOP  
NOP  
tOH  
Dout  
tLZ  
DQ  
DQ  
tAC  
tAC  
CAS Latency=2  
CAS Latency=1  
T0  
T1  
T2  
T3  
T4  
CLK  
ALLOWABLE OPERATING  
FREQUENCY (MHz)  
SPEED  
CAS  
CAS  
CAS  
COMMAND  
READ  
NOP  
NOP  
NOP  
tOH  
Dout  
LATENCY = 1  
LATENCY = 2  
LATENCY =3  
tLZ  
-6.0  
-7.0  
-8.0  
60  
100  
166  
143  
125  
DQ  
50  
40  
100  
100  
tAC  
CAS Latency=3  
DON’T CARE  
UNDEFINED  
Figure 2.  
CAS Latency  
Table 2.  
CAS Latency  
indicates the operating frequencies at which each CAS latency setting can be used. Reserved states should not be used as unknown operation  
or incompatibility with future versions may result.  
Operating Mode  
The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future  
use and/or test modes. The programmed burst length applies to both READ and WRITE bursts. Test modes and reserved states should not be  
used because unknown operation or incompatibility with future versions may result.  
Write Burst Mode  
When M9 = 0, the burst length programmed via M0-M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length  
applies to READ bursts, but write accesses are single-location (nonburst) accesses.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
16  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
COMMANDS  
COMMAND INHIBIT  
The COMMAND INHIBIT function prevents new commands from being executed by the SDRAM, regardless of whether the CLK signal is  
enabled. The SDRAM is effectively deselected. Operations already in progress are not affected.  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to perform a NOP to an SDRAM which is selected (CS# is LOW). This prevents unwanted  
commands from being registered during idle or wait states. Operations already in progress are not affected.  
LOAD MODE REGISTER  
The Mode Register is loaded via inputs A0-A10. See Mode Register heading in the Register Definition sec-tion. The LOAD MODE REGISTER  
command can only be issued when all banks are idle, and a subsequent executable command cannot be issued until t MRD is met.  
ACTIVE  
The ACTIVE command is used to open (or activate) a row in a particular bank for a subsequent access. The value on the BA0 and BA1 inputs  
selects the bank, and the address provided on inputs A0-A10 selects the row. This row remains active (or open) for accesses until a  
PRECHARGE command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank.  
READ  
The READ command is used to initiate a burst read access to an active row. The value on the BA0 and BA1 (B1) inputs selects the bank, and  
the address provided on inputs A0-A7 selects the starting column location. The value on input A10 determines whether or not AUTO  
PRECHARGE is used. If AUTO PRECHARGE is selected, the row being accessed will be precharged at the end of the READ burst; if AUTO  
PRECHARGE iis not selected, the row will remain open for subsequent accesses. Read data appears on the DQs subject to the logic level on  
the DQM inputs two clocks earlier. If a given DQMx signal was registered HIGH, the corresponding DQs will be High-Z two clocks later; if the  
DQMx signal was registered LOW, the corresponding DQs will provide valid data. DQM0 corresponds to DQ0-DQ7, DQM1 corresponds to DQ8-  
DQ15, DQM2 corresponds to DQ16-DQ23 and DQM3 corresponds to DQ24-DQ31.  
WRITE  
The WRITE command is used to initiate a burst write access to an active row. The value on the BA0 and BA1 inputs selects the bank, and the  
address provided on inputs A0-A7 selects the starting column location. The value on input A10 determines whether or not AUTO PRECHARGE  
is used. If AUTO PRECHARGE is selected, the row being accessed will be precharged at the end of the WRITE burst; if AUTO PRECHARGE is  
not selected, the row will remain open for subsequent accesses. Input data appearing on the DQs is written to the memory array subject to the  
DQM input logic level appearing coincident with the data. If a given DQM signal is registered LOW, the corresponding data will be written to  
memory; if the DQM signal is registered HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that  
byte/column location.  
PRECHARGE  
The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available  
for a subsequent row access a specified time ( tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks  
are to be precharged, and in the case where only one bank is to be precharged, inputs BA0 and BA1 select the bank. Otherwise BA0 and BA1  
are treated as “Don’t Care.” Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE  
commands being issued to that bank.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
17  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
AUTO PRECHARGE  
AUTO PRECHARGE is a feature which performs the same individual-bank PRECHARGE function described above, without requiring an  
explicit command. This is accomplished by using A10 to enable AUTO PRECHARGE in conjunction with a specific READ or WRITE command.  
A PRECHARGE of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ  
or WRITE burst, except in the full-page burst mode, where AUTO PRECHARGE does not apply. AUTO PRECHARGE is nonpersistent in that it  
is either enabled or disabled for each individual READ or WRITE com-mand.  
AUTO PRECHARGE ensures that the precharge is initiated at the earliest valid stage within a burst. The user must not issue another  
command to the same bank until the precharge time ( tRP) is completed. This is determined as if an explicit PRECHARGE command was  
issued at the earliest possible time, as described for each burst type in the Operation section of this data sheet.  
BURST TERMINATE  
The BURST TERMINATE command is used to truncate either fixed-length or full-page bursts. The most recently registered READ or WRITE  
command prior to the BURST TERMINATE command will be truncated, as shown in the Operation section of this data sheet.  
AUTO REFRESH  
AUTO REFRESH is used during normal operation of the SDRAM and is analagous to CAS#-BEFORE-RAS# (CBR) REFRESH in conventional  
DRAMs. This command is nonpersistent, so it must be issued each time a refresh is required.  
The addressing is generated by the internal refresh controller. This makes the address bits “Don’t Care” during an AUTO REFRESH command.  
The 64Mb SDRAM requires 4,096 AUTO REFRESH cycles every 64ms ( tREF), regardless of width option. Providing a distributed AUTO  
REFRESH command every 15.625µs will meet the refresh requirement and ensure that each row is refreshed. Alternatively, 4,096 AUTO  
REFRESH commands can be issued in a burst at the minimum cycle rate ( tRC), once every 64ms.  
SELF REFRESH  
The SELF REFRESH command can be used to retain data in the SDRAM, even if the rest of the system is powered down. When in the self  
refresh mode, the SDRAM retains data without external clocking. The SELF REFRESH command is initiated like an AUTO REFRESH command  
except CKE is disabled (LOW). Once the SELF REFRESH command is registered, all the inputs to the SDRAM become “Don’t Care” with the  
exception of CKE, which must remain LOW.  
Once self refresh mode is engaged, the SDRAM provides its own internal clocking, causing it to perform its own AUTO REFRESH cycles. The  
SDRAM must remain in self refresh mode for a minimum period equal to t RAS and may remain in self refresh mode for an indefinite period  
beyond that.  
The procedure for exiting self refresh requires a sequence of commands. First, CLK must be stable (stable clock is defined as a signal cycling  
within timing con-straints specified for the clock pin) prior to CKE going back HIGH. Once CKE is HIGH, the SDRAM must have NOP commands  
issued (a minimum of two clocks) for tXSR because time is required for the completion of any internal refresh in progress.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
18  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
Operation  
BANK/ROW ACTIVATION  
Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that bank must be “opened.” This is  
accomplished via the ACTIVE command, which selects both the bank and the row to be activated. See Figure 4.  
After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification.  
tRCD (MIN) should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the  
ACTIVE command on which a READ or WRITE command can be issued. For example, at RCD specification of 20ns with a 125 MHz clock (8ns  
period) results in 2.5 clocks, rounded to 3. This is reflected in Figure 3, which covers any case where 2 < t RCD (MIN)/tCK  
3. (The same  
procedure is used to convert other specification limits from time units to clock cycles.) A subsequent ACTIVE command to a different row in the  
same bank can only be issued after the previous active row has been “closed” (precharged). The minimum time interval between successive  
ACTIVE commands to the same bank is defined by tRC.  
A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total  
row-access over-head. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD.  
T0  
T1  
T2  
T3  
CLK  
tCK  
tCK  
tCK  
READ or  
WRITE  
COMMAND  
NOP  
NOP  
ACTIVE  
tRCD(MIN)*  
tRCD(MIN) +0.5 tCK  
* tRCD(MIN) = 20ns, tCK = 8ns  
tRCD(MIN) x tCK  
DON’T CARE  
where x = number of clocks to be true.  
Figure 3.  
Example : Meeting tRCD(MIN) When 2 < tRCD(MIN)/tCK 3  
CLK  
CKE  
CS#  
HIGH  
RAS#  
CAS#  
WE#  
ROW  
ADDRESS  
A0 - A10  
BANK  
ADDRESS  
BA0, BA1  
Figure 4.  
Activating a Specific Row in a  
Specific Bank  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
19  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
READ Operation  
READ bursts are initiated with a READ command, as shown in Figure 5. The starting column and bank addresses are pro-vided with the READ  
command, and AUTOPRECHARGE is either enabled or disabled for that burst access. If AUTO PRECHARGE is enabled, the row being  
accessed is precharged at the completion of the burst. For the generic READ commands used in the following illustrations, AUTO PRECHARGE  
is disabled.  
During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ  
command. Each subsequent data-out element will be valid by the next positive clock edge. Figure 6 shows general timing for each possible  
CAS latency setting.  
T0  
T1  
T2  
CLK  
CLK  
CKE  
CS#  
HIGH  
COMMAND  
READ  
tLZ  
NOP  
tOH  
Dout  
DQ  
tAC  
CAS Latency=1  
RAS#  
T0  
T1  
T2  
T3  
CLK  
CAS#  
WE#  
COMMAND  
READ  
NOP  
tLZ  
NOP  
tOH  
Dout  
DQ  
tAC  
COLUMN  
ADDRESS  
CAS Latency=2  
A0 - A7  
T0  
T1  
T2  
T3  
T4  
CLK  
A8, A9  
A10  
COMMAND  
READ  
NOP  
NOP  
tLZ  
NOP  
tOH  
Dout  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
DQ  
tAC  
BANK  
ADDRESS  
CAS Latency=3  
BA0, 1  
DON’T CARE  
UNDEFINED  
DON’T CARE  
Figure 6.  
Figure 5.  
CAS Latency  
READ Command  
Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A full-page burst will continue until  
terminated. (At the end of the page, it will wrap to column 0 and continue.)  
Data from any READ burst may be truncated with a subsequent READ command, and data from a fixed-length READ burst may be immediately  
followed by data from a READ command. In either case, a continu-ous flow of data can be maintained. The first data element from the new burst  
follows either the last element of a completed burst or the last desired data element of a longer burst that is being truncated. The new READ  
command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus  
one.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
20  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
This is shown in Figure 7 for CAS latencies of one, two and three; data element n + 3 is either the last of a burst of four or the last desired of a  
longer burst. This 64Mb SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture.  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
NOP  
NOP  
READ  
NOP  
READ  
NOP  
X = 0 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
Dout,  
n
Dout,  
n+1  
Dout,  
n+2  
Dout,  
n+3  
Dout,  
b
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
COMMAND  
NOP  
NOP  
READ  
NOP  
READ  
NOP  
NOP  
X = 1 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
Dout,  
n
Dout,  
n+1  
Dout,  
n+2  
Dout,  
n+3  
Dout,  
b
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
NOP  
NOP  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
Dout,  
n
Dout,  
n+1  
Dout,  
n+2  
Dout,  
n+3  
Dout,  
b
CAS Latency = 3  
Notice : Each READ command may be to either bank. DQM is LOW  
DON’T CARE  
Figure 7.  
Consecutive READ Bursts  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
21  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
A READ command can be initiated on any clock cycle following a previous READ command. Full-speed random read accesses can be  
performed to the same bank, as shown in Figure 8, or each subsequent READ may be performed to a different bank.  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
READ  
READ  
READ  
READ  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
ADDRESS  
DQ  
Dout  
n
Dout  
a
Dout  
x
Dout  
m
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
READ  
READ  
READ  
READ  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
ADDRESS  
DQ  
Dout  
n
Dout  
a
Dout  
Dout  
x
m
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
COMMAND  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
ADDRESS  
DQ  
Dout  
n
Dout  
Dout  
Dout  
a
x
m
CAS Latency = 3  
Notice : Each READ command may be to either bank. DQM is LOW  
DON’T CARE  
Figure 8.  
Random READ Access  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
22  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
Data from any READ burst may be truncated with a subsequent WRITE command, and data from a fixed-length READ burst may be  
immediately followed by data from a WRITE command (subject to bus turn-around limitations). The WRITE burst may be initiated on the clock  
edge immediately following the last (or last desired) data element from the READ burst, provided that I/O contention can be avoided. In a given  
system design, there may be a possibility that the device driving the input data will go Low-Z before the SDRAM DQs go High-Z. In this case, at  
least a single-cycle delay should occur between the last read data and the WRITE command.  
The DQM input is used to avoid I/O contention, as shown in Figures 9 and 10. The DQM signal must be asserted (HIGH) at least two clocks  
prior to the WRITE command (DQM latency is two clocks for output buff-ers) to suppress data-out from the READ. Once the WRITE command  
is registered, the DQs will go High-Z (or remain High-Z), regardless of the state of the DQM signal; provided the DQM was active on the clock  
just prior to the WRITE command that truncated the READ command. If not, the second WRITE will be an invalid WRITE. For example, if DQM  
was low during T4 in Figure 10, then the WRITEs at T5 and T7 would be valid, while the WRITE at T6 would be invalid.  
The DQM signal must be deasserted prior to the WRITE command (DQM latency is zero clocks for input buffers) to ensure that the written data  
is not masked. Figure 9 shows the case where the clock frequency allows for bus contention to be avoided without adding a NOP cycle, and  
Figure 10 shows the case where the additional NOP is needed.  
T0  
T1  
T2  
T3  
T4  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
CLK  
DQM  
DQM  
COMMAND  
ADDRESS  
COMMAND  
ADDRESS  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
WRITE  
READ  
NOP  
WRITE  
BANK,  
COL n  
BANK,  
COL b  
BANK,  
COL n  
BANK,  
COL b  
tCK  
tHZ  
tHZ  
Dout n  
DQ  
Din b  
DQ  
Dout n  
Din b  
tDS  
tDS  
DON’T CARE  
Notice :  
Notice :  
A CAS latency of three is used for illustration. The READ command  
may be to any bank,and the WRITE command may be to any bank.  
If a burst of one is used, then DQM is not required.  
A CAS latency of three is used for illustration. The READ command may be to any bank,  
and the WRITE command may be to any bank.  
Figure 9.  
Figure 10.  
READ to WRITE  
READ to WRITE With Extra Clock Cycle  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
23  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that AUTO  
PRECHARGE was not acti-vated), and a full-page burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE  
command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency  
minus one. This is shown in Figure 11 for each possible CAS latency; data element n + 3 is either the last of a burst of four or the last desired of  
a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. Note that  
part of the row precharge time is hidden during the access of the last data element(s). In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the optimum time (as described above) provides the same  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
tRP  
COMMAND  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
X = 0 cycles  
BANK a,  
COL n  
BANK  
(a or all)  
BANK a,  
ROW  
ADDRESS  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
tRP  
COMMAND  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
X = 1 cycle  
BANK a,  
COL n  
BANK  
(a or all)  
BANK a,  
ROW  
ADDRESS  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
tRP  
COMMAND  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
X = 2 cycle  
BANK a,  
COL n  
BANK  
(a or all)  
BANK a,  
ROW  
ADDRESS  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
CAS Latency = 3  
Notice : DQM is LOW  
DON’T CARE  
Figure 11.  
READ to PRECHARGE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
24  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
operation that would result from the same fixed-length burst with AUTO PRECHARGE. The disadvantage of the PRECHARGE command is that  
it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE  
command is that it can be used to truncate fixed-length or full-page bursts.  
Full-page READ bursts can be truncated with the BURST TERMINATE command, and fixed-length READ bursts may be truncated with a  
BURST TERMINATE command, provided that AUTO PRECHARGE was not activated. The BURST TERMINATE command should be issued x  
cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in Figure  
12 for each possible CAS latency; data element n + 3 is the last desired data element of a longer burst.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
COMMAND  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 0 cycles  
BANK,  
COL n  
ADDRESS  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
COMMAND  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 1 cycle  
BANK,  
COL n  
ADDRESS  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
BURST  
TERMINATE  
COMMAND  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 2 cycle  
BANK a,  
COL n  
ADDRESS  
DQ  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
CAS Latency = 3  
Notice : DQM is LOW  
DON’T CARE  
Figure 12.  
Terminating a READ Burst  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
25  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
WRITE Operation  
WRITE bursts are initiated with a WRITE command, as shown in Figure 13. The starting column and bank addresses are provided with the  
WRITE command, and AUTO PRECHARGE is either enabled or disabled for that access. If AUTO PRECHARGE is enabled, the row being  
accessed is precharged at the completion of the burst. For the generic WRITE commands used in the following illustrations, AUTO  
PRECHARGE is disabled. During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command.  
Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no  
other commands have been initiated, the DQs will remain High-Z and any additional input data will be ignored (see Figure 14). A full-page burst  
will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)  
Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst may be  
immediately followed by data for a WRITE command. The new WRITE command can be issued on any clock following the previous  
T0  
T1  
T2  
T3  
CLK  
CLK  
CKE  
HIGH  
COMMAND  
WRITE  
NOP  
NOP  
NOP  
CS#  
RAS#  
CAS#  
WE#  
BANK,  
COL n  
ADDRESS  
DQ  
Din  
n
Din  
n+1  
Notice : Burst length = 2. DQM is LOW  
Figure 14.  
WRITE Burst  
COLUMN  
ADDRESS  
A0 - A7  
A8, A9  
A10  
T0  
T1  
T2  
CLK  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
COMMAND  
WRITE  
NOP  
WRITE  
BANK  
ADDRESS  
BA0, 1  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
Figure 13.  
WRITE Command  
Din  
n
Din  
n+1  
Din  
b
Notice : DQM is LOW. Each WRITE command may be to  
any bank  
DON’T CARE  
Figure 15.  
WRITE to WRITE  
WRITE command, and the data provided coincident with the new command applies to the new command. An example is shown in Figure 15.  
Data n + 1 is either the last of a burst of two or the last desired of a longer burst. This 64Mb SDRAM uses a pipelined architecture and therefore  
does not require the 2n rule associated with a prefetch architecture. A WRITE command can be initiated on any clock cycle following a previous  
WRITE command. Full-speed random write accesses within a page can be performed to the same bank, as shown in Figure 16, or each  
subsequent WRITE may be performed to a different bank.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
26  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
Data for any WRITE burst may be truncated with a subsequent READ command, and data for a fixed-length WRITE burst may be immediately  
followed by a READ command. Once the READ command is regis-tered, the data inputs will be ignored, and WRITEs will not be executed. An  
example is shown in Figure 17. Data n + 1 is either the last of a burst of two or the last desired of a longer burst.  
Data for a fixed-length WRITE burst may be fol-lowed by, or truncated with, a PRECHARGE command to the same bank (provided that AUTO  
PRECHARGE was not activated), and a full-page WRITE burst may be truncated with a PRECHARGE command to the same bank. The  
PRECHARGE command should be issued t WR after the clock edge at which the last desired input data element is registered. The “two-clock”  
write-back requires at least one clock plus time, regardless of frequency,  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T0  
T1  
T2  
T3  
CLK  
CLK  
tWR = 1 CLK (tCK = tWR)  
DQM  
COMMAND  
WRITE  
WRITE  
WRITE  
WRITE  
tRP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
PRECHARGE  
WRITE  
NOP  
NOP  
NOP  
ACTIVE  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK a,  
COL n  
BANK  
(a or all)  
BANK a,  
ROW  
ADDRESS  
Din  
n
Din  
a
Din  
x
Din  
m
tWR  
Din  
n
Din  
n+1  
DQ  
Notice : Each WRITE command may be to any bank. DQM is LOW.  
tWR = 2 CLK (when tWR > tCK)  
DQM  
Figure 16.  
Random WRITE Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
tRP  
CLK  
PRECHARGE  
WRITE  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
BANK a,  
COL n  
BANK  
(a or all)  
BANK a,  
ROW  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
tWR  
BANK,  
COL b  
BANK,  
COL n  
Din  
n
Din  
n+1  
ADDRESS  
DQ  
DQ  
Notice : DQM could remain LOW in this example if the WRITE burst is a fixed length of two.  
Din  
n+1  
Dout  
b+1  
Din  
n
Dout  
b
DON’T CARE  
Notice : The WRITE command may be to any bank, and the READ command may  
be to any bank. DQM is LOW. CAS latency = 2 for illustration.  
Figure 17.  
Figure 18.  
WRITE to READ  
WRITE to PRECHARGE  
in auto precharge mode. In addition, when truncating a WRITE burst, the DQM signal must be used to mask input data for the clock edge prior  
to, and the clock edge coincident with, the PRECHARGE command. An example is shown in Figure 18. Data n + 1 is either the last of a burst of  
two or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued  
until tRP is met. The precharge will actually begin coincident with the clock-edge (T2 in Figure 18) on a “one-clock” tWR and sometime between  
the first and second clock on a “two-clock” tWR (between T2 and T3 in Figure 18.) In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the  
same fixed-length burst with AUTO PRECHARGE. The disadvantage of the PRECHARGE command is that it requires that the command and  
address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used  
to truncate fixed-length or full-page bursts.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
27  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
Fixed-length or full-page WRITE bursts can be trun-cated with the BURST TERMINATE command. When truncating a WRITE burst, the input  
data applied coin-cident with the BURST TERMINATE command will be ignored. The last data written (provided that DQM is LOW at that time)  
will be the input data applied one clock previous to the BURST TERMINATE command. This is shown in Figure 19, where data n is the last  
desired data element of a longer burst.  
T0  
T1  
T2  
CLK  
CKE  
CLK  
HIGH  
NEXT  
COMMAND  
BURST  
TERMINATE  
COMMAND  
WRITE  
CS#  
RAS#  
CAS#  
WE#  
BANK,  
COL n  
ADDRESS  
DQ  
(ADDRESS)  
(DATA)  
Din  
n
Notice : DQM is LOW.  
DON’T CARE  
Figure 19.  
Terminating a WRITE Burst  
A0 - A9  
A10  
All Banks  
CLK  
CLE  
Bank Selected  
tCKS  
tCKS  
BANK  
ADDRESS  
BA0, 1  
COMMAND  
NOP  
NOP  
ACTIVE  
tRCD  
Figure 20.  
All banks idle  
PRECHARGE Command  
Input buffers gated off  
tRAS  
tRC  
Enter power-down mode.  
Exit power-down mode.  
DON’T CARE  
Figure 21.  
Power-Down  
PRECHARGE  
The PRECHARGE command (Figure 20) is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will  
be available for a subsequent row access some specified time ( tRP) after the PRECHARGE command is issued. Input A10 determines whether  
one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0 and BA1 select the bank. When all  
banks are to be precharged, inputs BA0 and BA1 are treated as “Don’t Care.” Once a bank has been precharged, it is in the idle state and must  
be activated prior to any READ or WRITE commands being issued to that bank.  
POWER-DOWN  
Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND INHIBIT when no accesses are in progress (see Figure  
21). If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row  
active in either bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding  
CKE, for maximum power savings while in standby. The device may not remain in the power-down state longer than the refresh period (64ms)  
since no refresh operations are performed in this mode. The power-down state is exited by registering a NOP or COMMAND INHIBIT and CKE  
HIGH at the desired clock edge (meeting tCKS).  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
28  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
CLOCK SUSPEND  
The clock suspend mode occurs when a column access/burst is in progress and CKE is registered LOW. In the clock suspend  
mode, the internal clock is deactivated, “freezing” the synchronous logic.  
For each positive clock edge on which CKE is sampled LOW, the next internal positive clock edge is sus-pended. Any  
command or data present on the input pins at the time of a suspended internal clock edge is ignored; any data present on the  
DQ pins remains driven; and burst counters are not incremented, as long as the clock is suspended. (See examples in Figures  
22 and 23.) Clock suspend mode is exited by registering CKE HIGH; the internal clock and related operation will resume on the  
subsequent positive clock edge.  
BURST READ/SINGLE WRITE  
The burst read/single write mode is entered by programming the write burst mode bit (M9) in the Mode Register to a logic 1. In this mode, all  
WRITE commands result in the access of a single column location (burst of one), regardless of the programmed burst length. READ commands  
access columns according to the programmed burst length and sequence, just as in the normal mode of operation (M9 = 0).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
CKE  
CLK  
CKE  
INTERNAL  
CLOCK  
INTERNAL  
CLOCK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
WRITE  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL n  
Dout  
n+1  
Dout  
n+2  
Dout  
n+2  
Dout  
Din  
n+1  
Din  
n+2  
Din  
n
n
Notice : For this example, CAS latency = 2, burst length = 4 or greater, and DQM is LOW.  
Notice : For this example, burst length = 4 greater, and DQM is LOW.  
DON’T CARE  
Figure 22.  
Figure 23.  
Clock Suspend During WRITE Burst  
Clock Suspend During READ Burst  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
29  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
CONCURRENT AUTO PRECHARGE  
An access command to (READ or WRITE) another bank while an access command with AUTOPRECHARGE enabled is executing is not  
allowed by SDRAMs, unless the SDRAM supports CONCURRENT AUTO PRECHARGE. SDRAMs support CONCURRENT AUTO  
PRECHARGE. Four cases where CONCURRENT AUTO PRECHARGE occurs are defined below.  
READ with AUTO PRECHARGE  
1. Interrupted by a READ (with or without AUTO PRECHARGE): A READ to bank m will interrupt a READ on bank n, CAS latency later. The  
PRECHARGE to bank n will begin when the READ to bank m is registered (Figure 24).  
2. Interrupted by a WRITE (with or without AUTO PRECHARGE): A WRITE to bank m will interrupt a READ on bank n when registered. DQM  
should be used two clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the  
WRITE to bank m is registered (Figure 25).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Idle  
COMMAND  
Page Active  
READ with Burst of 4  
Interrupt Burst, Precharge  
tRP - BANK n  
BANK n  
Internal  
States  
tRP-BANK m  
BANK m  
ADDRESS  
DQ  
Page Active  
READ with Burst of 4  
Precharge  
BANK n,  
COL a  
BANK m,  
COL d  
Dout  
a
Dout  
a + 1  
Dout  
d
Dout  
d + 1  
CAS latency=3 (BANK n)  
Notice : DQM is LOW.  
CAS latency=3 (BANK m)  
Figure 24.  
READ With Auto Precharge Interrrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page  
Active  
BANK n  
READ with Burst of 4  
Interrupt Burst, Precharge  
tRP - BANK n  
Idle  
Internal  
States  
tWR-BANK m  
Write-Back  
BANK m  
Page Active  
READ with Burst of 4  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
1
DQM  
Dout  
a
Din  
d
Din  
d+1  
Din  
d+2  
Din  
d+3  
DQ  
CAS latency=3 (BANK n)  
DON’T CARE  
Notice : DQM is HIGH at T2 to prevent Dout-a+1 from contending with Din-d at T4.  
Figure 25.  
READ With Auto Precharge Interrrupted by a WRITE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
30  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
WRITE with AUTO PRECHARGE  
3. Interrupted by a READ (with or without AUTO PRECHARGE): A READ to bank m will interrupt a WRITE on bank n when registered, with the  
data-out appearing CAS latency later. The PRECHARGE to bank n will begin after tWR is met, where tWR begins when the READ to bank  
m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m (Figure 26).  
4. Interrupted by a WRITE (with or without AUTO PRECHARGE): A WRITE to bank m will interrupt a WRITE on bank n when registered. The  
PRECHARGE to bank n will begin after tWR is met, where tWR begins when the WRITE to bank m is registered. The last valid data  
WRITE to bank n will be data registered one clock prior to a WRITE to bank m (Figure 27).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE-AP  
BANK n  
READ-AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
Page Active  
WRITE with Burst of 4  
Internal  
States  
tRP-BANK n  
tWR-BANK n  
tRP-BANK m  
BANK m  
Page Active  
READ with Burst of 4  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
Din  
a
Din  
a+1  
Dout  
d
Dout  
d+1  
CAS latency=3 (BANK m)  
Notice : DQM is LOW.  
Figure 26.  
WRITE With Auto Precharge Interrrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T7  
T6  
CLK  
WRITE-AP  
BANK n  
WRITE-AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Interrupt Burst, Write-Back  
tWR-BANK n  
BANK n  
Page Active  
WRITE with Burst of 4  
Precharge  
Internal  
States  
tRP-BANK n  
tWR-BANK m  
BANK m  
Page Active  
WRITE with Burst of 4  
Write-Back  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
Din  
a
Din  
a+1  
Din  
a+2  
Din  
d
Din  
Din  
Din  
d+1  
d+2  
d+3  
Notice : DQM is LOW.  
DON’T CARE  
Figure 27.  
WRITE With Auto Precharge Interrrupted by a READ  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
31  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
TIMING WAVEFORMS  
INITIALIZE AND LOAD MODE REGISTER  
Notice :  
1
The Mode Register may be loaded prior to the AUTO REFRESH cycles if desired.  
2 Outputs are guaranteed High-Z after command is issued.  
T0  
T1  
T n+1  
tCHW  
T o+1  
T p+1  
T p+2  
T p+3  
tCK  
tCLW  
CLK  
CKE  
tCKS tCKH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
AUTO  
REFRESH  
AUTO  
REFRESH  
LOAD MODE  
REFRESH  
COMMAND  
DQM 0-3  
NOP  
PRECHARGE  
NOP NOP  
NOP NOP  
NOP  
ACTIVE  
tIS  
tIS  
tIH  
A0 - A9  
A10  
CODE  
tIH  
ROW  
ROW  
ALL BANKS  
CODE  
SINGLE BANK  
BA0  
ALL BANKS  
BANK  
High-Z  
DQ  
T = 100us  
(MIN)  
tRP  
tRC  
tRC  
tMRD  
Power-up :  
VDD and  
CLK stable  
Precharge  
all banks  
Program Mode Register 1, 2  
AUTO REFRESH  
AUTO REFRESH  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
32  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
POWER-DOWN MODE  
Notice :  
1
Violating refresh requirements during power-down may result in a loss of data.  
T0  
T1  
T 2  
T n+1  
T n+2  
tCK  
tCLW  
CLK  
CKE  
tCHW  
tIS  
tIS  
tIH  
tIS  
tIH  
COMMAND  
DQM 0-3  
NOP  
NOP  
ACTIVE  
NOP  
PRECHARGE  
A0 - A9  
A10  
ROW  
ROW  
ALL BANKS  
SINGLE BANK  
tIS  
tIH  
BA0  
DQ  
BANK(S)  
BANK  
High-Z  
Two clock cycles  
Input buffers gated off while in  
Power-down mode  
All banks idle  
Precharge all  
active banks  
All banks idle, enter  
power-down mode  
Exit power-down mode  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
33  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
CLOCK SUSPEND MODE  
Notice :  
1
For this example, the burst length = 2, the CAS latency = 3, and AUTO PRECHARGE is disabled.  
A8 and A9 = “ Don’t’ Care.”  
2
T0  
T1  
T 2  
T3  
T4  
T 5  
T 6  
T7  
T 8  
T 9  
tCK  
tCLW  
CLK  
CKE  
tCHW  
tIH  
tCLW  
tIS  
tIS  
tIS  
tIH  
tIH  
COMMAND  
DQM 0-3  
READ  
NOP  
NOP  
NOP  
WRITE  
COLUMN e2  
BANK  
NOP  
NOP  
NOP  
tIS  
tIH  
tIS  
tIH  
COLUMN m2  
A0 - A9  
A10  
tIS  
tIS  
tIH  
tIH  
BA0  
BANK  
tAC  
tAC  
tIH  
tIS  
tOH  
tOHZ  
DQ  
Dout m  
Dout m+1  
Dout e  
Dout e+1  
tOLZ  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
34  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
AUTO REFERSH MODE  
T0  
T1  
T n+1  
tCHW  
T n+1  
T o+1  
tCLW  
CLK  
tCK  
CKE  
tIS  
tIS  
tIH  
tIH  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
DQM 0-3  
NOP  
PRECHARGE  
NOP NOP  
NOP NOP  
ACTIVE  
A0 - A9  
A10  
ROW  
ROW  
ALL BANKS  
SINGLE BANK  
tIS  
tIH  
BA0, BA1  
DQ  
BANK(S)  
BANK  
High-Z  
tRP  
tRC  
tRC  
Precharge all  
active banks  
DON’T CARE  
SELF REFERSH MODE  
T0  
T1  
T2  
T n+1  
T o+1  
T o+2  
tCLW  
CLK  
tCK  
tCHW  
tIS  
tIH  
CKE  
tIS  
tIS  
tIH  
tIS  
tIH  
AUTO  
REFRESH  
AUTO  
REFRESH  
NOP  
PRECHARGE  
NOP  
COMMAND  
DQM 0-3  
A0 - A9  
A10  
ALL BANKS  
SINGLE BANK  
tIS  
tIH  
BANK(S)  
BA0, BA1  
DQ  
High-Z  
tRP  
tSRE  
Precharge all  
active banks  
Exit self refresh mode  
(Restart refresh time base)  
Enter self refresh mode  
CLK stable prior to exiting  
self refresh mode  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
35  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
READ OPERATIONS  
1
SIGNAL READ, WITHOUT AUTO PRECHARGE  
Notice :  
1
For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by “manual” PRECHARGE.  
A8 and A9 = “ Don’t’ Care.”  
2
T0  
T1  
T 2  
T 3  
T 4  
T 5  
tCK  
tCLW  
CLK  
tCHW  
tIS  
tIH  
tIH  
CKE  
tIS  
COMMAND  
ACTIVE  
READ  
PRECHARGE  
NOP  
ACTIVE  
NOP  
tIS  
tIH  
DQM /  
DQML, DQMH  
tIS  
tIH  
ROW  
ROW  
COLUMN m2  
ROW  
ROW  
BANK  
A0 - A9  
tIS  
tIH  
ALL BANKS  
A10  
SINGLE BANK  
DISABLE AUTO PRECHARGE  
BANK  
tIS  
tIH  
BA0,BA1  
DQ  
BANK  
BANK  
tAC  
tOH  
DOUTm  
tRCD  
CAS Latency  
tOLZ  
tRP  
tOHZ  
tRAS  
tRC  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
36  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
READ, WITHOUT AUTO PRECHARGE  
Notice :  
1
For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by “manual” PRECHARGE.  
A8 and A9 = “ Don’t’ Care.”  
2
T0  
T1  
T 2  
T3  
T4  
T 5  
T 6  
T7  
T 8  
tCK  
tCLW  
CLK  
CKE  
tCHW  
tIS  
tIH  
tIH  
tIS  
COMMAND  
DQM 0-3  
ACTIVE  
READ  
NOP  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
tIS  
tIH  
tIS  
tIH  
ROW  
tIH  
COLUMN m2  
A0 - A9  
A10  
ROW  
ROW  
tIS  
tIS  
ALL BANKS  
CODE  
ROW  
tIH  
SINGLE BANK  
DISABLE AUTO PRECHARGE  
BANK  
BA0,BA1  
ROW  
BANK  
BANK  
tAC  
m
tAC  
tOH  
tAC  
tOH  
tAC  
tOH  
DOUT  
DOUT m + 1  
DOUT m + 2  
DOUT m + 3  
tOHZ  
DQ  
tLZ  
tRP  
tRCD  
CAS Latency  
tRAS  
tRC  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
37  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
READ, WITH AUTO PRECHARGE  
Notice :  
1
For this example, the burst length = 4, the CAS latency = 2.  
A8 and A9 = “ Don’t’ Care.”  
2
T0  
T1  
T 2  
T 3  
T 4  
T 5  
T 6  
T 7  
T 8  
tCK  
tCLW  
tCLW  
CLK  
CKE  
tCHW  
tIH  
tIS  
tIS  
tIH  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
READ  
tIH  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
tIS  
tIH  
tIS  
ROW  
tIH  
COLUMNm2  
ROW  
ROW  
BANK  
A0 - A9  
A10  
tIS  
tIS  
ENABLE AUTO PRECHARGE  
ROW  
tIH  
BA0,BA1  
BANK  
BANK  
tAC  
tAC  
tAC  
tAC  
tOH  
tOH  
tOH  
tOH  
DQ  
DOUTm  
DOUT m+1  
DOUT m+2  
DOUT m+3  
tOLZ  
tOHZ  
tRCD  
tRAS  
tRC  
CAS Latency  
tRP  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
38  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
ALTERNATING BANK READ ACCESS  
Notice :  
1
For this example, the burst length = 4, the CAS latency = 2.  
A8 and A9 = “ Don’t’ Care.”  
2
T0  
T1  
T 2  
T 3  
T 4  
T 5  
T 6  
T 7  
T 8  
tCK  
tCLW  
CLK  
CKE  
tCHW  
tIH  
tIS  
tIS  
tIH  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
READ  
tIH  
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
tIS  
tIH  
tIS  
ROW  
tIH  
COLUMNm2  
ROW  
ROW  
COLUMNb2  
ROW  
ROW  
A0 - A9  
A10  
tIS  
tIS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
tIH  
BA0,BA1  
BANK 0  
BANK 0  
BANK 4  
BANK 4  
BANK 0  
tAC  
tAC  
tAC  
tAC  
tAC  
tAC  
tOH  
tOH  
tOH  
tOH  
tOH  
DQ  
DOUT  
m
DOUTm+1  
DOUTm+2  
DOUTm+3  
DOUTb  
tOLZ  
tRCD - BANK 0  
tRAS - BANK 0  
tRC - BANK 0  
tRRD  
CAS Latency - BANK 0  
tRP - BANK 0  
tRCD - BANK 0  
tRCD - BANK 4  
CAS Latency - BANK 4  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
39  
ADVANCED  
GLT5640L32  
CMOS Synchronous DRAM  
G-LINK  
READ, FULL-PAGE BURST  
Notice :  
1
1
For this example CAS latency = 2.  
2
A8 and A9 = “ Don’t’ Care.”  
3
Page left open ; no tRP.  
T0  
T1  
T 2  
T 3  
T 4  
T5  
T6  
T n+1  
Tn+2  
Tn+3  
T n+4  
tCK  
tCLW  
CLK  
CKE  
tCH  
W
tIH  
tIS  
tIH  
tIS  
BURST  
TERM  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tIS  
tIH  
tIS  
tIH  
ROW  
ROW  
ROW  
COLUMNm2  
A0 - A9  
A10  
tIS  
tIS  
tIH  
BA0,BA1  
BANK  
tAC  
tAC  
tAC  
tAC  
tAC  
tOH  
tAC  
tOH  
tOH  
tOH  
tOH  
tOH  
DQ  
DOUT  
m
DOUT m+1  
DOUT m+2  
DOUT m-1  
DOUT  
m
DOUT m+1  
tOLZ  
tOHZ  
tRCD  
CAS Latency  
256 LOCATIONS WITHIN SAME ROW  
Full-page completed  
DON’T CARE  
UNDEFINED  
Full-page burst does not self-terminate  
Can use BURST TERMINATE command.3  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
40  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
READ, DQM OPERATION  
Notice :  
1
For this example CAS latency = 2.  
2
A8 and A9 = “ Don’t’ Care.”  
T0  
T1  
T 2  
T 3  
T 4  
T 5  
T 6  
T 7  
T 8  
tCK  
tCLW  
CLK  
CKE  
tCHW  
tIH  
tIS  
tIS  
tIH  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
READ  
tIH  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tIS  
tIS  
tIH  
ROW  
tIH  
COLUMNm2  
A0 - A9  
A10  
tIS  
tIS  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
BANK  
ROW  
tIH  
BA0,BA1  
BANK  
tAC  
tAC  
tOH  
tAC  
tOH  
tOH  
DQ  
Dout m  
Dout m+2  
Dout m+3  
tOLZ  
tRCD  
CAS Latency  
tOHZ  
tOLZ  
tOHZ  
DON’T CARE  
UNDEFINED  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
41  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
WRITE OPERATIONS  
1
SINGLE WRITE, WITHOUT AUTO PRECHARGE  
Notice :  
1
For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.  
2
3
10ns is required between <DIN m> and the PRECHARGE command, regardless of frequenct, to meet tWR.  
A8 and A9 = “Don’t Care.”  
T0  
T1  
T 2  
T 3  
T4  
T5  
T 6  
tCK  
CLK  
CKE  
tCHW  
tCLW  
tIS  
tIS  
tIH  
tIH  
COMMAND  
ACTIVE  
NOP  
WRITE  
tIS  
NOP  
PRECHARGE  
NOP  
ACTIVE  
tIH  
DQM /  
DQML, DQMH  
tIS  
tIH  
ROW  
COLUMN m3  
ROW  
ROW  
A0 - A9  
tIS  
tIH  
ALL BANKS  
A10  
ROW  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
tIS  
tIH  
BA0,BA1  
BANK(S)  
BANK  
BANK  
tIS  
tIH  
DQ  
Din m  
tRCD  
tWR2  
tRP  
tRAS  
tRC  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
42  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
WRITE, WITHOUT AUTO PRECHARGE  
Notice :  
1
For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.  
Faster frequencies require two clocks (when tWR > tCK).  
A8 and A9 = “Don’t Care.”  
2
3
T0  
T1  
T 2  
T 3  
T 4  
T5  
T6  
T7  
T8  
tCK  
tCLW  
CLK  
CKE  
tCHW  
tIH  
tIS  
tIH  
tIS  
COMMAND  
DQM 0-3  
PRECHARGE  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
tIS  
tIH  
tIS  
tIH  
ROW  
tIH  
COLUMNm3  
ROW  
ROW  
BANK  
A0 - A9  
A10  
tIS  
tIS  
ALL BANKs  
ROW  
tIH  
SINGLE BANK  
ENABLE AUTO PRECHARGE  
BANK  
BA0,BA1  
ROW  
BANK  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
DIN  
m
DIN m+1  
DIN m+2  
DIN m+3  
DQ  
tWR2  
tRP  
tRCD  
tRAS  
tRC  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
43  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
WRITE, WITH AUTO PRECHARGE  
Notice :  
1
For this example, the burst length = 4.  
2
Faster frequencies require two clocks (when tWR > tCK).  
A8 and A9 = “Don’t Care.”  
3
T0  
T1  
T 2  
T 3  
T 4  
T5  
T6  
T7  
T8  
T9  
tCK  
tCLW  
CLK  
CKE  
tCH  
W
tIH  
tIS  
tIH  
tIS  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
WRITE  
tIH  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
tIS  
tIS  
tIH  
ROW  
tIH  
COLUMNm3  
ROW  
ROW  
ROW  
A0 - A9  
A10  
tIS  
tIS  
ENABLE AUTO PRECHARGE  
ROW  
tIH  
BA0,BA1  
ROW  
BANK  
tIS tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
DIN  
m
DIN m+1  
DIN m+2  
DIN m+3  
DQ  
tWR2  
tRP  
tRCD  
tRAS  
tRC  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
44  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
ALTERNATING BANK WRITE ACCESS  
Notice :  
1
For this example, the burst length = 4.  
2
Faster frequencies require two clocks (when tWR > tCK).  
3
A8 and A9 = “Don’t Care.”  
T0  
T1  
T 2  
T 3  
T 4  
T5  
T6  
T7  
T8  
T9  
tCK  
tCLW  
CLK  
CKE  
tCH  
W
tIH  
tIS  
tIH  
tIS  
COMMAND  
DQM 0-3  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
tIS  
tIH  
tIH  
tIS  
tIS  
tIS  
ROW  
tIH  
COLUMN m3  
ROW  
ROW  
BANK 1  
COLUMN b3  
ROW  
ROW  
BANK 0  
A0 - A9  
A10  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
tIH  
BA0,BA1  
BANK 0  
BANK 0  
BANK 1  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
DIN  
m
DIN m+1  
DIN m+2  
DIN m+3  
DIN  
b
DIN b+1  
DIN b+2  
DIN b+3  
DQ  
tWR2 - BANK 0  
tRP - BANK 0  
tRCD - BANK 0  
tRAS - BANK 0  
tRC - BANK 0  
tRRD  
tRCD - BANK 0  
tRCD - BANK 4  
tWR - BANK 4  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
45  
ADVANCED  
GLT5640L32  
CMOS Synchronous DRAM  
G-LINK  
WRITE, FULL-PAGE BURST  
Notice :  
1
1
A8 and A9 = “Don’t Care.”  
2
tWR must be satisfied prior to PRECHARGE command.  
Page left open ; no tRP.  
3
T0  
T1  
T 2  
T 3  
T 4  
T 5  
T n+1  
T n+2  
T n+3  
tCL  
tCKE  
CLK  
CKE  
tCHW  
tIH  
tIS  
tIS  
tIH  
COMMAND  
DQM 0-3  
BURST TERM  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
tIS  
tIH  
tIS  
tIH  
ROW  
tIH  
COLUMNm1  
A0 - A9  
A10  
tIS  
tIS  
ROW  
tIH  
BA0,BA1  
BANK  
BANK  
tIH  
tIH  
tIH  
tIH  
tIH  
tIS  
tIS  
tIS  
tIS  
tIS  
DQ  
Din m  
Din m+1  
Din m+2  
Din m+3  
Din m-1  
tRCD  
Full page burst does  
not self-terminate. Can  
use BURST TERMINATE  
command to stop. 2,3  
256 locations within same row  
Full page completed  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
46  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
1
WRITE, DQM OPERATION  
Notice :  
1
For this example, the burst length = 4.  
A8 and A9 = “Don’t Care.”  
2
T0  
T1  
T 2  
T 3  
T4  
T5  
T 6  
T 7  
tCK  
CLK  
CKE  
tCLW  
tCHW  
tIS  
tIS  
tIH  
tIH  
COMMAND  
DQM 0 - 3  
ACTIVE  
NOP  
WRITE  
tIS  
NOP  
NOP  
NOP  
NOP  
NOP  
tIH  
tIS  
tIH  
ROW  
COLUMN m2  
A0 - A9  
tIS  
tIH  
ENABLE AUTO PRECHARGE  
A10  
ROW  
DISABLE AUTO PRECHARGE  
BANK  
tIS  
tIH  
BA0,BA1  
BANK  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
DQ  
Din m  
Din m+2  
Din m+3  
tRCD  
DON’T CARE  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
47  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
GLT 5 640 L 32  
- 10 TC  
4 : DRAM  
5 : Synchronous  
DRAM  
6 : Standard  
SRAM  
7 : Cache SRAM  
8 : Synchronous  
Burst SRAM  
9 : SGRAM  
PACKAGE  
-SRAM  
064 : 8K  
256 : 256K  
512 : 512K  
100 : 1M  
CONFIG.  
04 : x04  
08 : x08  
16 : x16  
32 : x32  
SPEED  
T : PDIP(300mil)  
TS : TSOP(Type I)  
TC : TSOP(Type ll)  
PL : PLCC  
-SRAM  
12 : 12ns  
15 : 15ns  
20 : 20ns  
70 : 70ns  
-DRAM  
30 : 30ns  
35 : 35ns  
40 : 40ns  
45 : 45ns  
50 : 50ns  
60 : 60ns  
SDRAM :  
FA : 300mil SOP  
FB : 330mil SOP  
FC : 445mil SOP  
J3 : 300mil SOJ  
J4 : 400mil SOJ  
P : PDIP(600mil)  
Q : PQFP  
-DRAM  
10 : 1M(C/EDO)  
11 : 1M(C/FPM)  
12 : 1M(H/EDO)  
13 : 1M(H/FPM)  
20 : 2M(EDO)  
21 : 2M(FPM)  
40 : 4M(EDO)  
41 : 4M(FPM)  
80 : 8M(EDO)  
81 : 8M(FPM)  
160 : 16M(EDO)  
161 : 16M(FPM)  
640 : 64M(EDO)  
641 : 64M(FPM)  
VOLTAGE  
Blank : 5V  
L : 3.3V  
M : 2.5V  
N : 2.1V  
TQ : TQFP  
FG : 48Pin BGA 9x12  
FH : 48Pin BGA 8x10  
FI : 48Pin BGA 6x8  
5
: 5ns/200 MHZ  
5.5 : 5.5ns/182 MHZ  
6
7
: 6ns/166 MHZ  
: 7ns/143 MHZ  
10 : 10ns/100 MHZ  
-SDRAM  
40 : 4M  
160 : 16M  
640 : 64M  
POWER  
Blank : Standard  
L : Low Power  
LL : Low Low Power  
SL : Super Low Power  
Temperature Range  
E : Extended Temperature  
I : Industrial Temperature  
Blank : Commercial Temperature  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
48  
ADVANCED  
GLT5640L32  
G-LINK  
CMOS Synchronous DRAM  
PACKAGE DIMENSIONS  
86 PIN TSOP-II 400mil PLASTIC  
DETAIL - A  
DETAIL - A  
86  
44  
θ
GAGE PLANE  
1
43  
0.5  
(20  
0.1  
4 )  
0.8  
(32  
0.2  
7 )  
Ps. θ ≤ 7  
DETAIL - B  
DETAIL - B  
22.22 / Typ.  
(875)  
0.2  
(8  
0.03  
1 )  
0.10  
0.5 / Typ.  
(20)  
0.61 / Typ.  
(24)  
Notice : Dimension UNIT, Milimeter(mil).  
G- Li nk Technol ogy Cor p.  
G-Link Technology Corp.  
Dec 2003 Rev.0.3  
49  

相关型号:

GLT5640L32-5

CMOS Synchronous DRAM 2M x 32 SDRAM
ETC

GLT5640L32-5.5

CMOS Synchronous DRAM 2M x 32 SDRAM
ETC

GLT5640L32-6

CMOS Synchronous DRAM 2M x 32 SDRAM
ETC

GLT5640L32-7

CMOS Synchronous DRAM 2M x 32 SDRAM
ETC

GLT5640L32-8

CMOS Synchronous DRAM 2M x 32 SDRAM
ETC

GLT625608

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC

GLT625608-10FB

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC

GLT625608-10J3

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC

GLT625608-10TC

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC

GLT625608-10TS

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC

GLT625608-70FB

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC

GLT625608-70J3

32K x 8 SLOW SPEED CMOS STATIC RAM
ETC