HX6136FSRT [ETC]

x36 Synchronous FIFO ; X36同步FIFO\n
HX6136FSRT
型号: HX6136FSRT
厂家: ETC    ETC
描述:

x36 Synchronous FIFO
X36同步FIFO\n

先进先出芯片
文件: 总16页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Aerospace Electronics  
FIFO—SOI  
HX6409  
HX6218  
HX6136  
FEATURES  
• 1K x 36, 2K x 18, 4K x 9 Organizations  
OTHER  
• Fabricated with RICMOSIV Silicon on Insulator  
• Read/Write Cycle Times  
(SOI) 0.8 µm Process (Leff = 0.65µm)  
<35 ns (-55° to 125°C)  
• Expandable in Width  
RADIATION  
• Supports Free-Running 50% Duty Cycle Clock  
• Empty, Full, Half Full, 1/4 Full, 3/4 Full, Error Flags  
• Parity Generation/Checking  
• Total Dose Hardness through 1x106 rad(SiO2)  
• Neutron Hardness through 1x1014 cm-2  
• Dynamic and Static Transient Upset Hardness  
through 1x109 rad(Si)/s  
• Fully Asynchronous with Simultaneous  
Read and Write Operation  
• Dose Rate Survivability through 1x1011 rad(Si)/s  
• Soft Error Rate of <1x10-10 upsets/bit-day  
• No Latchup  
• Output Enable (OE)  
• CMOS or TTL Compatible I/O  
• Single 5 V ± 10% Power Supply  
• Various Flat Pack Options  
GENERAL DESCRIPTION  
The HX6409, HX6218, and HX6136 are high speed, low-  
power, first-in first-out memories with clocked read and  
write interfaces. The HX6409 is a 4096 word by 9 bit  
memory array, the HX6218 is a 2048 word by 18 bit  
memory array, and the HX6136 is a 1024 word by 36 bit  
memory array. The FIFOs support width expansion while  
depthexpansionrequiresexternallogiccontrolusingstate  
machinetechniques.Featuresincludeprogrammablepar-  
ity control, an empty/full flag, a quarter/three quarter full  
flag, a half full flag and an error flag.  
The output port is controlled in a similar manner by a free-  
running read clock (CKR) and a read enable pin (  
). In  
ENR  
addition, the three FIFOs have an output enable pin (  
and a master reset pin (  
MR  
)
OE  
). The read (CKR) and write  
(CKW) clocks may be tied together for single-clock  
operation or the two clocks may be run independently for  
asynchronous read/write applications. Clock frequencies  
up to 30 MHz are achievable in the three configurations.  
Honeywell’s enhanced SOI RICMOS™ IV (Radiation In-  
sensitive CMOS) technology is radiation hardened through  
the use of advanced and proprietary design, layout and  
process hardening techniques. The FIFO is fabricated with  
Honeywell’s radiation hardened technology, and is de-  
signed for use in systems operating in radiation environ-  
ments. The SOI RICMOS™ IV process is a 5-volt, SIMOX  
CMOS technology with a 150 Å gate oxide and a minimum  
drawn feature size of 0.8 µm, (0.65 µm effective gate  
array—Leff). Additional features include tungsten via plugs,  
Honeywell’s proprietary SHARP planarization process,  
andalightlydopeddrain(LDD)structureforimprovedshort  
channel reliability.  
These FIFOs provide solutions for a wide variety of data  
buffering needs, including high-speed data acquisition,  
multiprocessor interfaces, and communications buffer-  
ing. These FIFOs have separate input and output ports  
that are controlled by separate clock and enable sig-  
nals. The input port is controlled by a free running clock  
(CKW) and a write enable pin  
. When  
is  
ENW  
ENW  
asserted, data is written into the FIFO on the rising edge  
of the CKW signal. While is held active, data is  
ENW  
continually written into the FIFO on each CKW cycle.  
Solid State Electronics Center • 12001 State Highway 55, Plymouth, MN 55441 • (800) 323-8295 • http://www.ssec.honeywell.com  
HX6409/HX6218/HX6136  
LOGIC BLOCK DIAGRAM  
D: 0 - 8  
D: 0 - 17  
D: 0 - 35  
Input  
Register  
CKW  
ENW  
Parity  
Program  
Register  
Parity  
Write Control  
HF  
E/F  
QF/TQF  
EF_Fault  
Flag Logic  
Memory  
Array  
4096 x 9  
2048 x 18  
1024 x 36  
Read Pointer  
Write Pointer  
Reset Logic  
MR  
Tri-State  
Output Register  
Read Control  
OE  
CKR  
ENR  
Q: 0 - 8  
Q: 0 - 17  
Q: 0 - 35  
FLAG DECODE TABLE  
Word Count  
EF_Fault E/ F  
QF/TQF HF  
State  
4K x 9  
2K x 18  
0
1K x 36  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
0
1
1
1
1
0
0
0
0
Empty Fault (Enabled Read when Empty)  
Empty  
0
0
0
0
Less than or Equal to 1/4 Full  
Less than or Equal to 1/2 Full  
Greater that 1/2 Full  
1 to 1024  
1025 to 2048  
2049 to 3071  
3072 to 4095  
4096  
1 to 512  
513 to 1024  
1025 to1535  
1536 to 2047  
2048  
1 to 256  
257 to 512  
513 to 767  
768 to 1023  
1024  
Greater than or Equal to 3/4 Full  
Full  
Full Fault (Enabled Write when Full)  
4096  
2048  
1024  
2
HX6409/HX6218/HX6136  
SIGNAL DEFINITIONS  
Signal Name I/O  
Description  
D: 0 - 35  
I
Data Inputs: Data Inputs are written into the FIFO on the rising edge of CKW when ENW  
is active and the FIFO is not full.  
Q: 0 - 35  
O
Data Outputs: Data Outputs are read out of the FIFO memory and updated on the rising  
ENR  
edge of CKR when  
high impedance state if  
is active and the FIFO is not Empty. The Data Outputs are in a  
is not active.  
OE  
ENW  
I
I
Enable Write: An active low signal that enables the write of the Data Inputs on the CKW  
rising edge (if FIFO is not full).  
Enable Read: An active low signal that enables the read and update of the Data Outputs  
on the CKR rising edge (if FIFO is not empty).  
ENR  
CKW  
CKR  
HF  
I
Write Clock: The rising edge clocks data into the FIFO when  
is low (active). On the  
ENW  
rising edge, this signal also updates the Half Full, 3/4 Full, Full, and Full Fault Flags.  
ENR  
is low (active). On  
I
Read Clock: The rising edge clocks data out of the FIFO when  
the rising edge, this signal also updates the 1/4 Full, Empty, and Empty Fault Flags.  
O
O
O
Half Full Flag: Updated on the rising edge of CKW and indicating that the FIFO is greater  
than half full.  
E/ F  
Empty or Full Flag: Empty is updated on the rising edge of CKR, and Full is updated on  
the rising edge of CKW.  
QF/TQF  
1/4 Full or 3/4 Full Flag: 1/4 Full is updated on the rising edge of CKR, and 3/4 Full is  
updated on the rising edge of CKW. 1/4 Full signifies 256 or less words in the 1K x 36  
FIFO and 3/4 Full signifies 256 words or less until a full condition.  
EF_Fault  
O
Empty or Full Fault Flag: empty Fault is updated on the rising edge of CKR, and Full  
Fault is updated on the rising edge of CKW. Empty Fault signifies a read to an already  
empty FIFO, and Full Fault signifies a write to an already full FIFO. Once a fault condition  
is detected, the Fault Flag remains latched until the empty or full condition is removed.  
I
I
Master Reset: Active low signal which, when active, resets device to empty condition.  
MR  
OE  
Output Enable: Active low signal which, when active, enables low impedance Data  
Outputs, Q: 0 - 35.  
PROGRAMMABLE PARITY OPTIONS  
D2  
D1  
X
O
O
I
D0 Conditions  
O
I
X
O
I
Parity Disabled  
Generate Even Parity, Q8, Q17, Q26, Q35  
I
Generate Odd Parity, Q8, Q17, Q26, Q35  
I
O
I
Check for Even Parity, Error on Q8, Q17, Q26, Q35, Error is a Low Signal  
Check for Odd Parity, Error on Q8, Q17, Q26, Q35, Error is a Low Signal  
I
I
3
HX6409/HX6218/HX6136  
RADIATION CHARACTERISTICS  
Total Ionizing Radiation Dose  
All FIFO configurations will meet all stated functional and  
electrical specifications over the entire operating tempera-  
ture range after the specified total ionizing radiation dose.  
All electrical and timing performance parameters will re-  
main within specifications after rebound at VDD = 5.5 V  
and T = 125°C extrapolated to ten years of operation. Total  
dose hardness is assured by wafer level testing of process  
monitor transistors and product using 10 KeV X-ray and  
radiation sources. Transistor gate threshold shift correla-  
tions have been made between 10 KeV X-rays applied at  
a dose rate of 1x105 rad(SiO2)/min at T = 25°C and gamma  
rays (Cobalt 60 source) to ensure that wafer level X-ray  
testing is consistent with standard military radiation test  
environments.  
Each FIFO will meet any functional or electrical specifica-  
tion after exposure to a radiation pulse of 50 ns duration  
up to 1x1011 rad(Si)/s, when applied under recommended  
operating conditions. Note the current conducted during  
the pulse by the inputs, outputs and power supply may  
significantly exceed the normal operating levels. The appli-  
cation design must accommodate these effects.  
Neutron Radiation  
Each FIFO configuration will meet any functional or timing  
specificationafteratotalneutronfluenceofupto1x1014 cm-  
2 applied under recommended operating or storage condi-  
tions.Thisassumesanequivalentneutronenergyof1MeV.  
Transient Pulse Ionizing Radiation  
Soft Error Rate  
Each FIFO configuration is capable of writing, reading  
and retaining stored data during and after exposure to a  
transient ionizing radiation pulse of <50 ns duration up to  
1x109 rad(Si)/s, when applied under recommended oper-  
ating conditions. To ensure validity of all specified perfor-  
mance parameters before, during, and after radiation  
(timing degradation during transient pulse radiation (tim-  
ing degradation during transient pulse radiation is 10%),  
it is suggested that stiffening capacitance be placed near  
the package VDD and VSS, with a maximum inductance  
between the package (chip) and stiffening capacitor of  
0.7 nH per part. If there are no operate-through or valid  
stored data requirements, typical circuit board mounted  
de-coupling capacitors are recommended.  
This FIFO configuration has a soft error rate (SER) perfor-  
mance of <1x10-10 upsets/bit-day, under recommended  
operating conditions. This hardness level is defined by the  
Adams 90% worst case cosmic ray environment.  
Latchup  
This FIFO configuration will not latch up due to any of the  
above radiation exposure conditions when applied under  
recommended operating conditions. Fabrication with the  
SIMOX substrate with its oxide isolation ensure latchup  
immunity.  
RADIATION-HARDNESS RATINGS (1)  
Parameter  
Total Dose  
Units  
Limits (2)  
Test Conditions  
1x106  
1x109  
1x1011  
<1x10-10  
1x1014  
rad(SiO2)  
TA=25°C  
Pulse width 50 ns  
Transient Dose Rate Upset  
Transient Dose Rate Survivability  
Soft Error Rate  
rad(Si)/s  
Pulse width 50 ns, X-ray,  
VDD=6.0 V, TA=25°C  
rad(Si)/s  
TA=125°C, Adams 90%  
worst case environment  
1 MeV equivalent energy,  
Unbiased, TA=25°C  
upsets/bit-day  
Neutron Fluence  
N/cm2  
(1) Device will not latch up due to any of the specified radiation exposure conditions.  
(2) Operating conditions (unless otherwise specified): VDD=4.5 V to 5.5 V, TA=-55°C to 125°C.  
4
HX6409/HX6218/HX6136  
ABSOLUTE MAXIMUM RATINGS (1)  
Rating  
Max  
7.0  
Symbol  
Min  
Units  
Parameter  
VDD  
Supply Voltage Range (2)  
-0.5  
V
VPIN  
Voltage on Any Pin (2)  
-0.5  
-65  
VDD+0.5  
150  
V
°C  
TSTORE  
TSOLDER  
PD  
Storage Temperature (Zero Bias)  
Soldering Temperature (5 Seconds)  
Maximum Power Dissipation (3)  
DC or Average Output Current  
ESD Input Protection Voltage (4)  
Thermal Resistance (Jct-to-Case)  
Junction Temperature  
270  
°C  
2.5  
W
IOUT  
25  
mA  
V
VPROT  
ΘJC  
2000  
5
°C/W  
°C  
TJ  
175  
(1) Stresses in excess of those listed above may result in permanent damage. These are stress ratings only, and operation at these levels is not  
implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.  
(2) Voltage referenced to VSS.  
(3) FIFO power dissipation (IDDSB + IDDOP) plus FIFO output driver power dissipation due to external loading must not exceed this specification.  
(4) Class 2 electrostatic discharge (ESD) input protection. Tested per MIL-STD-883, Method 3015 by DESC certified lab.  
RECOMMENDED OPERATING CONDITIONS  
Description  
Parameter  
Units  
Symbol  
Min  
4.5  
Typ  
5.0  
25  
Max  
5.5  
VDD  
TA  
Supply Voltage (referenced to VSS)  
Ambient Temperature  
V
°C  
V
-55  
125  
VPIN  
Voltage on Any Pin (referenced to VSS)  
-0.3  
VDD+0.3  
CAPACITANCE (1)  
Worst Case  
Min Max  
Typical  
(1)  
Test Conditions  
Units  
Symbol  
Parameter  
CI  
Input Capacitance  
Output Capacitance  
7
9
pF  
pF  
VI=VDD or VSS, f=1 MHz  
VIO=VDD or VSS, f=1 MHz  
CO  
(1) This parameter is tested during initial design characterization only.  
DATA RETENTION CHARACTERISTICS  
Worst Case (2)  
Symbol  
Parameter  
Typical  
(1)  
Units  
Test Conditions  
Min  
Max  
NCS=VDR  
VDR  
IDR  
Data Retention Voltage  
Data Retention Current  
2.5  
V
VI=VDR or VSS  
NCS=VDD=VDR  
VI=VDR or VSS  
500  
µA  
(1) Typical operating conditions: TA= 25°C, pre-radiation.  
(2) Worst case operating conditions: TC= -55°C to +125°C, post total dose at 25°C.  
5
HX6409/HX6218/HX6136  
DC ELECTRICAL CHARACTERISTICS  
Worst Case (1)  
Symbol  
Test Parameters  
Min  
0.7xVDD  
2.2  
Max  
Units  
Conditions  
VIH  
Input High Voltage  
CMOS  
TTL  
V
VDD=5.5V  
VIL  
Input Low Voltage  
CMOS  
TTL  
0.3xVDD  
0.8  
V
V
VDD=4.5V  
VOH1  
VOH2  
VOL  
II  
High Output Voltage  
High Output Voltage  
Low Output Voltage  
Input Leakage Current  
3.5  
VDD-0.4  
VDD=4.5V  
IOH=-4.0ma  
V
VDD=4.5V  
IOH=-100µa  
0.4  
V
VDD=4.5V  
IOL=4.0ma  
-1.0  
+1.0  
µA  
VDD=5.5V  
VIN=0V or VDD  
TC=-55°C TO +125°C  
IOZL  
IOZH  
Output OFF, High Z Current  
-10.0  
+10.0  
µA  
OE>VIH  
,
VSS<VO<VDD  
VIN=0V or VDD  
CLK(s)=1 MHz  
VIN=0V or VDD  
CLK(s)=1 MHz  
VIN=0V or VDD  
CLK(s)=40MHz  
VIN=0V or VDD  
CLK(s)=40MHz  
IDDSB  
IDDOP  
IDDSB  
IDDOP  
Standby Power Supply Current (2)  
Operating Power Supply Current (2)  
Standby Power Supply Current (2)  
Operating Power Supply Current (2)  
1
7
mA  
mA  
mA  
mA  
40  
280  
(1) Worst case operating conditions: VDD =4.5 V to 5.5 V, TC=-55°C to +125°C, post total dose at 25°C.  
(2) Standby current for the device includes the Read Clock (CKR) and Write Clock (CKW) only. Both the Read Enable (  
) and Write Enable  
ENR  
(
) are disabled (  
,
=Vdd). For operating currents,  
and are enabled (=0.0 V) and data inputs are switching at one  
ENW  
ENW  
ENW  
ENR  
ENR  
half the clock speed between 0.0 V and VDD.  
2.9 V  
Valid high  
output  
+
-
Vref1  
Vref2  
249  
+
-
Valid low  
output  
DUT  
output  
Tester Equivalent Load Circuit  
6
HX6409/HX6218/HX6136  
AC TIMING CHARACTERISTICS (1)  
Worst Cast (2)  
—55•C to 125°C  
Symbol  
TCKW  
TCKR  
TCKH  
TCKH  
TCKL  
TA  
Test Parameter  
Min  
24  
34  
24  
14  
10  
2
Max  
30  
10  
10  
17  
17  
17  
30  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Clock Cycle  
Read Clock Cycle  
Clock High Read  
Clock High Write  
Clock Low  
Data Access Time  
TOH  
Previous Output Data Hold After Rd High  
Previous Flag Hold After Rd/Wr High  
Data Set-UP  
TFH  
2
TSD  
9
THD  
Data Hold  
4
TSEN  
THEN  
TOE  
Enable Set-UP  
8
Enable Hold  
2
OE Low to Output Data Valid  
OE Low to Output Data in Low Z  
OE High to Output Data in High Z  
Flag Delay  
1
TOLZ  
TOHZ  
TFD  
0
TSKEW1  
TSKEW2  
TPMR  
TSCMR  
TOHMR  
TMRR  
TMRF  
TAMR  
TSMRP  
THMRP  
TFTP  
Opposite Clock after Clock (3)  
Opposite Clock before Clock (4)  
Master Reset Pulse Width (Low)  
Last Valid Clock Low Set-up to Master Reset Low  
Data Hold from Master Reset Low  
Master Reset Recovery  
25  
25  
0
2
8
Master Reset High to Flags Valid  
Master Reset High to Data Outputs Low  
Parity Program Mode—MR Low Set-up  
Parity Program Mode—MR Low Hold  
Parity Program Mode—Write HIGH to Read HIGH  
Parity Program Mode—Data Access Time  
Parity Program Mode—Data Hold Time from MR HIGH  
34  
24  
34  
4
TAP  
TOHP  
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V (CMOS), VIL/VIH=0V/3V (TTL), input rise and fall times <1 ns/V, input and  
output timing reference levels shown in the Tester AC Timing characteristics Table, capacitive output loading CL=50 pF. For CL >50 pF,  
derate access times by 0.02 ns/pF (typical).  
(2) Worst case operating conditions: VDD=4.5V to 5.5V, TC= -55°C to +125°C, post total dose at 25°C.  
(3) For flag updates, tskew1 is the minimum time an opposite clock can occur after a clock and still not be included in the current clock cycle.  
At less that tskew1, inclusion of the opposite clock is arbitrary.  
(4) For flag updates, tskew2 is the minimum time an opposite clock can occur before a clock and still be included in the current clock cycle. At  
less than tskew2, inclusion of the opposite clock is arbitrary.  
(5) Timing parameters are defined in Figures 1 through 6.  
7
HX6409/HX6218/HX6136  
AC TIMING WAVEFORMS  
Tckw  
Tckh  
Tckl  
CKW  
Data  
Enabled WR  
Thd  
Disabled WR  
Then  
Tsd  
Tsen  
Tsen  
Then  
ENW  
Flags  
Tfh  
Tfh  
Tfd  
Tfd  
Figure 1. Write Timing  
Tckw  
Tckh  
Tckl  
CKR  
Data  
Enabled RD  
Ta  
Disabled RD  
Toh  
Tsen  
Then  
Tsen  
Then  
ENR  
Flags  
Tfh  
Tfh  
Tfd  
Tfd  
Figure 2. Read Timing  
8
HX6409/HX6218/HX6136  
Tpmr  
MR  
Tscmr  
Tscmr  
Tmrr  
First  
Write  
CKW  
ENW  
CKR  
Tmrr  
ENR  
Data  
Tphmr  
Tamr  
All Data  
Outputs Low  
Valid Data  
Tmrf  
HF  
Tmrf  
Other  
Flags  
Figure 3. Master Reset Timing  
NOTE: If ENW is held high during Master Reset, the parity is disabled.  
Latent Cycle  
Enable  
Read  
Enable  
Read  
Flag  
Update  
CKR  
ENR  
CKW  
Tskew2  
Tskew2  
Tskew1  
Enable  
Write  
ENW  
HF  
high  
Tfd  
Tfd  
Tfd  
Flags  
Figure 4. Read Flag Update Timing  
NOTE: When an empty condition occors, the empty flag is set. The performance of another read requires at  
least one write, on read clock to reset the empty flag and then an enabled read clock.  
9
HX6409/HX6218/HX6136  
Latent Cycle  
Flag  
Update  
Enable  
Enable  
Write  
CKW  
Write  
Tskew2  
Tskew2  
ENW  
Tskew1  
Enable  
Read  
CKR  
ENR  
Tfd  
Tfd  
Tfd  
Flags  
Figure 5. Write Flag Update Timing  
NOTE: When a full condition occurs, the full flag is set. The performance of another write requires at least one  
read, one write clock to reset the full flag and then one enabled write clock.  
Read M+1  
CKR  
Low  
ENR  
OE  
Toe  
Tohz  
Valid Data Word M  
Valid Data Word M+1  
Data  
Tolz  
Figure 6. Output Enable Timing  
Tsmrp  
Thmrp  
MR  
Tckh  
Tscmr  
Parity  
Write  
Tmrr  
First Write  
CKW  
ENW  
Tftp  
Tnd  
Tsd  
Parity  
Word  
Data In Last Word  
Word  
Thmrp  
Tscmr  
Tsmrp  
Parity  
Read  
CKR  
Tckh  
ENR  
Tamr  
Tohmr  
Tap  
Tohp  
Parity  
Word  
Data Out  
Valid Data  
Figure 7. Parity Programming Mode  
10  
HX6409/HX6218/HX6136  
TESTER AC TIMING CHARACTERISTICS  
TTL I/O Configuration  
CMOS I/O Configuration  
3 V  
0 V  
VDD-0.5 V  
Input  
Levels*  
1.5 V  
VDD/2  
0.5 V  
1.5 V  
VDD/2  
Output  
Sense  
Levels  
VDD-0.4V  
0.4 V  
VDD-0.4V  
High Z  
High Z  
0.4 V  
3.4 V  
2.4 V  
3.4 V  
High Z  
High Z  
2.4 V  
High Z = 2.9V  
High Z = 2.9V  
* Input rise and fall times <1 ns/V  
and are available per the applicable Standard Microcir-  
cuits Drawing (SMD). QML devices offer ease of procure-  
ment by eliminating the need to create detailed specifica-  
tions and offer benefits of improved quality and cost  
savings through standardization.  
QUALITY AND RADIATION HARDNESS  
ASSURANCE  
Honeywellmaintainsahighlevelofproductintegritythrough  
process control, utilizing statistical process control, a com-  
plete “Total Quality Assurance System,” a computer data  
baseprocessperformancetrackingsystemandaradiation  
hardness assurance strategy.  
RELIABILITY  
Honeywellunderstandsthestringentreliabilityrequirements  
for space and defense systems and has extensive experi-  
ence in reliability testing on programs of this nature. This  
experience is derived from comprehensive testing of VLSI  
processes. Reliability attributes of the RICMOSTM process  
were characterized by testing specially designed irradiated  
and non-irradiated test structures from which specific failure  
mechanisms were evaluated. These specific mechanisms  
included, but were not limited to, hot carriers, electromigra-  
tionandtimedependentdielectricbreakdown.Thisdatawas  
then used to make changes to the design models and  
process to ensure more reliable products.  
The radiation hardness assurance strategy starts with a  
technology that is resistant to the effects of radiation.  
Radiation hardness is assured on every wafer by irradiat-  
ing test structures as well as SRAM product, and then  
monitoring key parameters which are sensitive to ionizing  
radiation. Conventional MIL-STD-883 TM 5005 Group E  
testing, which includes total dose exposure with Cobalt 60,  
may also be performed as required. This Total Quality  
approach ensures our customers of a reliable product by  
engineering in reliability, starting with process develop-  
ment and continuing through product qualification and  
screening.  
In addition, the reliability of the RICMOS™ process and  
product in a military environment was monitored by testing  
irradiated and non-irradiated circuits in accelerated dy-  
namic life test conditions. Packages are qualified for prod-  
uct use after undergoing Group B & D testing as outlined  
in MIL-STD-883, TM 5005, Class S. The product is quali-  
fied by following a screening and testing flow to meet the  
customer’s requirements. Quality conformance testing is  
performed as an option on all production lots to ensure the  
ongoing reliability of the product.  
SCREENING LEVELS  
Honeywell offers several levels of device screening to  
meet your system needs. “Engineering Devices” are avail-  
able with limited performance and screening for bread-  
boarding and/or evaluation testing. Hi-Rel Level B and S  
devices undergo additional screening per the require-  
mentsofMIL-STD-883.AsaQMLsupplier,Honeywellalso  
offers QML Class Q and V devices per MIL-PRF-38535  
11  
HX6409/HX6218/HX6136  
Pin List for HX6409  
Pin  
1
Signal  
VSS  
Q0  
Pin  
7
Signal  
Q5  
Pin  
13  
Signal  
QT/TQF  
HF  
Pin  
19  
20  
21  
22  
23  
24  
Signal  
ENR  
CKW  
ENW  
MR  
Pin  
25  
26  
27  
28  
29  
30  
Signal  
D6  
Pin  
31  
Signal  
D0  
2
8
Q6  
14  
15  
16  
17  
D5  
32  
VDD  
3
Q1  
9
Q7  
EF  
D4  
4
Q2  
10  
11  
Q8  
VSS  
D3  
5
Q3  
OE  
VDD  
CKR  
D8  
D2  
6
Q4  
12 EF_FAULT 18  
D7  
D1  
Pin List for HX6218  
Pin  
1
Signal  
CKR  
ENR  
CKW  
ENW  
MR  
Pin  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Signal  
D17  
D16  
D15  
D14  
VDD  
VSS  
D13  
D12  
D11  
D10  
D9  
Pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Signal  
VSS  
D8  
Pin  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Signal  
Q1  
Pin  
Signal  
Q11  
Q12  
Q13  
VDD  
VSS  
Q14  
Q15  
Q16  
Q17  
VDD  
VDD  
VDD  
Pin  
Signal  
VSS  
VDD  
OE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
2
Q2  
3
D7  
Q3  
4
D6  
Q4  
64 EF_FAULT  
5
D5  
Q5  
65  
66  
67  
68  
QF/TQF  
HF  
6
VDD  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
D4  
Q6  
7
D3  
Q7  
E?F  
8
D2  
Q8  
VDD  
9
D1  
VSS  
VDD  
Q9  
10  
11  
12  
D0  
VDD  
Q0  
VDD  
Q10  
12  
HX6409/HX6218/HX6136  
Pin List for HX6236  
Pin  
1
Signal  
VSS  
NC  
Pin  
23  
24  
25  
26  
27  
28  
Signal  
CKW  
NC  
Pin  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Signal  
NC  
Pin  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
Signal  
VSS  
NC  
D8  
Pin  
89  
Signal  
Q2  
Pin  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
Signal  
Q19  
Q20  
NC  
2
D25  
NC  
90  
NC  
3
NC  
ENW  
NC  
91  
Q3  
4
NC  
D24  
VSS  
VDD  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
92  
NC  
Q21  
VDD  
VSS  
Q22  
Q23  
Q24  
Q25  
Q26  
Q27  
Q28  
NC  
5
OE  
MR  
D6  
93  
Q4  
6
NC  
NNC  
NC  
NC  
D5  
94  
Q5  
7
EF_FAULT 29  
95  
Q6  
8
QF/TQF  
HF  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
NC  
D4  
96  
Q7  
9
NC  
D3  
97  
Q8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
NC  
NC  
D2  
98  
NC  
EF  
VSS  
VDD  
D35  
D34  
D33  
D32  
D31  
D30  
D29  
D28  
D27  
D26  
99  
VSS  
VDD  
Q9  
NC  
NC  
D1  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
NC  
NC  
NC  
D0  
Q10  
Q11  
Q12  
Q13  
Q14  
Q15  
Q16  
Q17  
Q18  
NC  
Q29  
Q30  
Q31  
Q32  
Q33  
Q34  
Q35  
VDD  
VSS  
VDD  
NC  
VSS  
VDD  
NC  
Q0  
CKR  
NC  
NC  
Q1  
ENR  
NC  
VDD  
NC  
13  
HX6409/HX6218/HX6136  
PACKAGING  
featurenon-conductiveceramictiebars. Thetiebarsallows  
electrical testing of the device, while preserving the lead  
integrityduringshippingandhandling,uptothepointoflead  
forming and insertion.  
TheFIFOisofferedina32-lead, 68-leadanda132-leadflat  
pack, depending on the configuration. These packages are  
constructed of multilayer ceramic (Al2O3) and features  
internal power and ground planes. The flat packs also  
PACKAGE DRAWING FOR 6409 (22018533-001)  
Optional capacitors  
in cutout  
All dimensions in inches  
VDD VSS VDD  
A
b
C
D
e
0.135 ± 0.015  
0.017 ± 0.002  
0.004 to 0.009  
0.820 ± 0.008  
0.050 ± 0.005 [1]  
0.600 ± 0.008  
E
1
1
22018533-001  
Z
b
(width)  
E
E2 0.500 ± 0.008  
E3 0.040 ref  
TOP  
VIEW  
BOTTOM  
VIEW  
D
F
F
L
0.750 ± 0.005 [2]  
0.295 min [3]  
0.026 to 0.045  
0.035 ± 0.010  
0.080 ref  
e
(pitch)  
Q
S
U
V
W
X
Y
Z
S
U
0.380 ref  
L
Y
X
W
0.050 ref  
0.075 ref  
Kovar  
Lid [4]  
Cutout  
Area  
Ceramic  
Body  
0.010 ref  
Lead  
Alloy 42  
A
Q
C
0.135 ref  
[1] BSC - Basic lead spacing between centers  
[2] Where lead is brazed to package  
[3] Parts delivered with leads unformed  
[4] Lid connected to VSS  
V
E2  
E3  
14  
HX6409/HX6218/HX6136  
PACKAGE DRAWING FOR 6218 (22019075-001)  
D/E  
F
A1  
A
(4 Places)  
All dimensions in inches  
60  
44  
A
0.092 ± 0.010  
0.080 ± 0.008  
0.018 ± 0.002  
0.010 ± 0.002  
A1  
b
61  
43  
c
D/E 0.950 ± 0.015  
e
0.050 ± 0.005 (1)  
0.800 ± 0.008 (1)  
68 ref.  
F
N
68  
Terminal 1 ID Area  
1
(1) BSC – Basic lead spacing between centers  
e
9
27  
10  
26  
b
c
(N Places)  
PACKAGE DRAWING FOR 6136 (22018696-001)  
HD/HE  
D/E  
A
e1  
4 Places  
A1  
99  
67  
Dimensions in inches  
min  
max  
100  
66  
0.109  
0.063  
0.047  
0.009  
0.008  
0.958  
A
0.091  
0.057  
0.036  
0.005  
0.004  
0.942  
L
A1  
A2  
b
4 Places  
c
D/E  
e
0.025 BSC  
.800 BSC  
e1  
e
HD/HE 2.485  
2.505  
Ref.  
L
N
0.575  
132  
132  
34  
Non-Conductive  
Tie Bar: 4 Places  
1
33  
Index Corner &  
Terminal No. 1 ID Area  
b
c
N Places  
A2  
15  
HX6409/HX6218/HX6136  
ORDERING INFORMATION (1)  
6409  
H
X
D
S
H
C
SCREEN LEVEL  
S=Level S  
B=Level B  
E=Engr Device (2)  
PART NUMBER  
6409 = 4K x 9  
6218 = 2K x 18  
6136 = 1K x 36  
INPUT  
BUFFER TYPE  
C=CMOS Level  
T=TTL Level  
PROCESS  
X=SOI  
TOTAL DOSE  
HARDNESS  
PACKAGE DESIGNATION  
D=68-Lead CQFP  
SOURCE  
H=HONEYWELL  
R=1x105 rad(SiO2)  
F=3x105 rad(SiO2)  
H=1x106 rad(SiO2)  
N=No Level Guaranteed  
F=132-Lead CQFP  
T=32-Lead CQFP  
(1) Orders may be faxed to 612-954-2051. Please contact our Customer Service Department at 612-954-2888 for further information.  
(2) Engineering Device description: Parameters are tested from -55 to 125°C, 24 hr burn-in, no radiation guaranteed.  
Contact Factory with other needs.  
To learn more about Honeywell Solid State Electronics Center,  
visit our web site at http://www.ssec.honeywell.com  
Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability  
arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
900157, Rev. D  
2/99  

相关型号:

HX6136FVFC

x36 Synchronous FIFO
ETC

HX6136FVFT

x36 Synchronous FIFO
ETC

HX6136FVHC

x36 Synchronous FIFO
ETC

HX6136FVHT

x36 Synchronous FIFO
ETC

HX6136FVNC

x36 Synchronous FIFO
ETC

HX6136FVNT

x36 Synchronous FIFO
ETC

HX6136FVRC

FIFO, 1KX36, 30ns, Synchronous, CMOS, CQFP132, CERAMIC, QFP-132
HONEYWELL

HX6136FVRT

x36 Synchronous FIFO
ETC

HX6136TBFC

FIFO, 1KX36, 30ns, Synchronous, CMOS, CDFP32, CERAMIC, QFP-32
HONEYWELL

HX6136TBFT

FIFO, 1KX36, 30ns, Synchronous, CMOS, CDFP32, CERAMIC, QFP-32
HONEYWELL

HX6136TEFC

FIFO, 1KX36, 30ns, Synchronous, CMOS, CDFP32, CERAMIC, DFP-32
HONEYWELL

HX6136TEFT

FIFO, 1KX36, 30ns, Synchronous, CMOS, CDFP32, CERAMIC, DFP-32
HONEYWELL