HX6656KSRC [ETC]

32K x 8 ROM-SOI; 32K ×8 ROM - SOI
HX6656KSRC
型号: HX6656KSRC
厂家: ETC    ETC
描述:

32K x 8 ROM-SOI
32K ×8 ROM - SOI

内存集成电路 OTP只读存储器
文件: 总12页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Military & Space Products  
32K x 8 ROM—SOI  
HX6656  
FEATURES  
RADIATION  
OTHER  
Fabricated with RICMOSIV Silicon on Insulator  
(SOI) 0.75 µm Process (Leff = 0.6 µm)  
• Read Cycle Times  
< 17 ns (Typical)  
25 ns (-55 to 125°C)  
Total Dose Hardness through 1x106 rad(SiO2)  
• Typical Operating Power <15 mW/MHz  
• Asynchronous Operation  
Dynamic and Static Transient Upset  
Hardness through 1x109 rad(Si)/s  
Dose Rate Survivability through 1x1011 rad(Si)/s  
Neutron Hardness through 1x1014 cm-2  
SEU Immune  
• CMOS or TTL Compatible I/O  
• Single 5 V 10% Power Supply  
• Packaging Options  
- 28-Lead Flat Pack (0.500 in. x 0.720 in.)  
- 28-Lead DIP, MIL-STD-1835, CDIP2-T28  
- 36-Lead Flat Pack (0.630 in. x 0.650 in.)  
Latchup Free  
GENERAL DESCRIPTION  
The 32K x 8 Radiation Hardened ROM is a high perform-  
ance 32,768 word x 8-bit read only memory with industry-  
standard functionality. It is fabricated with Honeywell’s  
radiation hardened technology, and is designed for use in  
systems operating in radiation environments. The ROM  
operates over the full military temperature range and re-  
quires only a single 5 V 10% power supply. The ROM is  
available with either TTL or CMOS compatible I/O. Power  
consumption is typically less than 15 mW/MHz in operation,  
and less than 5 mW when de-selected. The ROM operation  
is fully asynchronous, with an associated typical access  
time of 14 ns.  
Honeywell’s enhanced SOI RICMOSIV (Radiation Insen-  
sitive CMOS) technology is radiation hardened through the  
use of advanced and proprietary design, layout, and pro-  
cess hardening techniques. The RICMOSIV process is a  
5-volt, SIMOX CMOS technology with a 150 Å gate oxide  
and a minimum drawn feature size of 0.75 µm (0.6 µm  
effective gate length—Leff). Additional features include  
tungsten via plugs, Honeywell’s proprietary SHARP pla-  
narization process, and a lightly doped drain (LDD) struc-  
ture for improved short channel reliability.  
HX6656  
FUNCTIONAL DIAGRAM  
32,768 x 8  
Memory  
Array  
A:0-8,12-13  
Row  
Decoder  
11  
CE  
Q:0-7  
Column Decoder  
Data Output  
NCS  
8
1 = enab led  
Signal  
CS • CE • OE  
(0 = high Z)  
Signal  
NOE  
#
All controls must be  
enab led for a signal to  
pass. (#: number of  
buffers, default = 1)  
A:9-11,14  
4
SIGNAL DEFINITIONS  
A: 0-14  
Q: 0-7  
NCS  
Address input pins which select a particular eight-bit word within the memory array.  
Data Output Pins.  
Negative chip select, when at a low level allows normal read operation. When at a high level NCS forces the  
ROM to a precharge condition, holds the data output drivers in a high impedance state and disables all input  
buffers except CE. If this signal is not used it must be connected to VSS.  
NOE  
CE*  
Negative output enable, when at a high level holds the data output drivers in a high impedance state. When  
at a low level, the data output driver state is defined by NCS and CE. If this signal is not used it must be  
connected to VSS.  
Chip enable, when at a high level allows normal operation. When at a low level CE forces the ROM to a  
precharge condition, holds the data output drivers in a high impedance state and disables all the input buffers  
except the NCS input buffer. If this signal is not used it must be connected to VDD.  
TRUTH TABLE  
NCS  
CE*  
NOE  
MODE  
Q
Notes:  
L
H
X
H
X
L
L
Read  
Data Out  
High Z  
X: VI=VIH or VIL  
XX  
XX  
Deselected  
Disabled  
XX: VSSVIVDD  
NOE=H: High Z output state maintained  
for NCS=X, CE=X  
High Z  
*Not Available in 28-lead DIP or 28-Lead Flat Pack  
2
HX6656  
RADIATION CHARACTERISTICS  
Total Ionizing Radiation Dose  
The ROM will meet any functional or electrical specifica-  
tion after exposure to a radiation pulse of 50 ns duration  
up to 1x1011 rad(Si)/s, when applied under recommended  
operating conditions.  
The ROM will meet all stated functional and electrical  
specifications over the entire operating temperature range  
afterthespecifiedtotalionizingradiationdose. Allelectrical  
and timing performance parameters will remain within  
specifications after rebound at VDD = 5.5 V and T =125°C  
extrapolatedtotenyearsofoperation. Totaldosehardness  
isassuredbywaferleveltestingofprocessmonitortransis-  
tors and ROM product using 10 keV X-ray and Co60  
radiation sources. Transistor gate threshold shift correla-  
tions have been made between 10 keV X-rays applied at a  
dose rate of 1x105 rad(SiO2)/min at T = 25°C and gamma  
rays (Cobalt 60 source) to ensure that wafer level X-ray  
testing is consistent with standard military radiation test  
environments.  
Neutron Radiation  
The ROM will meet any functional or timing specification  
after a total neutron fluence of up to 1x1014 cm-2 applied  
underrecommendedoperatingorstorageconditions.This  
assumes an equivalent neutron energy of 1 MeV.  
Single Event Phenomena  
All storage elements within the ROM are immune to single  
event upsets. No access time or other performance deg-  
radation will occur for LET 190 MeV/cm/mg2.  
Transient Pulse Ionizing Radiation  
The ROM is capable of reading and retaining stored data  
during and after exposure to a transient ionizing radiation  
pulse of 1 µs duration up to 1x109 rad(Si)/s, when applied  
under recommended operating conditions. To ensure va-  
lidity of all specified performance parameters before, dur-  
ing, and after radiation (timing degradation during tran-  
sient pulse radiation (timing degradation during transient  
pulse radiation is 10%), it is suggested that stiffening  
capacitance be placed on or near the package VDD and  
VSS, with a maximum inductance between the package  
(chip) and stiffening capacitance of 0.7 nH per part. If  
there are no operate-through requirements, typical circuit  
board mounted de-coupling capacitors are recommended.  
Latchup  
TheROMwillnotlatchupduetoanyoftheaboveradiation  
exposure conditions when applied under recommended  
operating conditions. Fabrication with the SIMOX sub-  
strate material provides oxide isolation between adjacent  
PMOSandNMOStransistorsandeliminatesanypotential  
SCR latchup structures. Sufficient transistor body tie con-  
nections to the p- and n-channel substrates are made to  
ensure no source/drain snapback occurs.  
RADIATION HARDNESS RATINGS (1)  
Limits (2)  
Units  
Test Conditions  
Parameter  
Total Dose  
1x106  
1x109  
1x1011  
1x1014  
rad(SiO2)  
rad(Si)/s  
rad(Si)/s  
N/cm2  
TA=25°C  
Pulse width 1 µs  
Transient Dose Rate Upset (3)  
Transient Dose Rate Survivability (3)  
Neutron Fluence  
Pulse width 50 ns, X-ray,  
VDD=6.0 V, TA=25°C  
1 MeV equivalent energy,  
Unbiased, TA=25°C  
(1) Device will not latch up due to any of the specified radiation exposure conditions.  
(2) Operating conditions (unless otherwise specified): VDD=4.5 V to 5.5 V, TA=-55°C to 125°C.  
(3) Not guaranteed with 28–Lead DIP.  
3
HX6656  
ABSOLUTE MAXIMUM RATINGS (1)  
Rating  
Units  
Symbol  
VDD  
Parameter  
Min  
-0.5  
-0.5  
-65  
Max  
Positive Supply Voltage (2)  
7.0  
V
V
VPIN  
Voltage on Any Pin (2)  
VDD+0.5  
150  
TSTORE  
TSOLDER  
PD  
Storage Temperature (Zero Bias)  
Soldering Temperature • Time  
Total Package Power Dissipation (3)  
DC or Average Output Current  
ESD Input Protection Voltage (4)  
°C  
°C•s  
W
270•5  
2.5  
IOUT  
25  
mA  
V
VPROT  
2000  
28 FP/36 FP  
28 DIP  
2
°C/W  
°C  
Thermal Resistance (Jct-to-Case)  
Junction Temperature  
ΘJC  
10  
TJ  
175  
(1) Stresses in excess of those listed above may result in permanent damage. These are stress ratings only, and operation at these levels is not  
implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.  
(2) Voltage referenced to VSS.  
(3) ROM power dissipation (IDDSB + IDDOP) plus ROM output driver power dissipation due to external loading must not exceed this specification.  
(4) Class 2 electrostatic discharge (ESD) input protection. Tested per MIL-STD-883, Method 3015 by DESC certified lab.  
RECOMMENDED OPERATING CONDITIONS  
Description  
Units  
Parameter  
Symbol  
Typ  
5.0  
25  
Max  
5.5  
Min  
4.5  
VDD  
TA  
Supply Voltage (referenced to VSS)  
Ambient Temperature  
V
°C  
V
-55  
125  
VPIN  
Voltage on Any Pin (referenced to VSS)  
-0.3  
VDD+0.3  
CAPACITANCE (1)  
Worst Case  
Typical  
(1)  
Test Conditions  
Units  
Symbol  
Parameter  
Min  
Max  
7
CI  
Input Capacitance  
pF  
pF  
VI=VDD or VSS, f=1 MHz  
VIO=VDD or VSS, f=1 MHz  
CO  
Output Capacitance  
9
(1) This parameter is tested during initial design characterization only.  
4
HX6656  
DC ELECTRICAL CHARACTERISTICS  
Worst Case (2)  
Typical  
(1)  
Symbol  
Parameter  
Units  
Test Conditions  
Min  
Max  
VIH=VDD IO=0  
VIL=VSS Inputs Stable  
IDDSB1  
Static Supply Current  
1.5  
mA  
mA  
mA  
µA  
NCS=VDD, IO=0,  
f=40 MHz  
IDDSBMF Standby Supply Current - Deselected  
1.5  
4.0  
+1  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS  
IDDOPR  
II  
Dynamic Supply Current, Selected  
Input Leakage Current  
VSSVIVDD  
-1  
-1  
VSSVIOVDD  
IOZ  
Output Leakage Current  
Low-Level Input Voltage  
+1  
µA  
Output=high Z  
VIL  
CMOS  
TTL  
0.3xVDD  
V
V
0.8  
VDD = 4.5V  
VDD = 5.5V  
CMOS  
TTL  
0.7xVDD  
V
V
VIH  
High-Level Input Voltage  
Low-Level Output Voltage  
High-Level Output Voltage  
2.2  
0.4  
0.05  
V
V
VDD = 4.5V, IOL = 10 mA  
VOL  
VOH  
VDD = 4.5V, IOL = 200 µA  
4.2  
VDD-0.05  
V
V
VDD = 4.5V, IOH = -5 mA  
VDD = 4.5V, IOH = -200 µA  
(1) Typical operating conditions: VDD= 5.0 V,TA=25°C, pre-radiation.  
(2) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55°C to +125°C, post total dose at 25°C.  
(3) All inputs switching. DC average current.  
2.9 V  
Valid high  
output  
+
-
Vref1  
Vref2  
249  
+
-
Valid low  
output  
DUT  
output  
C >50 pF*  
L
*C = 5 pF for TWLQZ, TSHQZ, TELQZ, and TGHQZ  
L
Tester Equivalent Load Circuit  
5
HX6656  
READ CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
Symbol  
Parameter  
Typical  
(2)  
-55 to 125°C  
Units  
Min  
Max  
TAVAVR Address Read Cycle Time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TAVQV  
TAXQX  
TSLQV  
TSLQX  
TSHQZ  
TEHQV  
TEHQX  
TELQZ  
TGLQV  
TGLQX  
TGHQZ  
Address Access Time  
25  
Address Change to Output Invalid Time  
Chip Select Access Time  
3
5
25  
Chip Select Output Enable Time  
Chip Select Output Disable Time  
Chip Enable Access Time (4)  
Chip Enable Output Enable Time (4)  
Chip Enable Output Disable Time (4)  
Output Enable Access Time  
10  
25  
5
0
10  
9
Output Enable Output Enable Time  
Output Enable Output Disable Time  
9
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V (CMOS), VIL/VIH=0V/3V (TTL), input rise and fall times <1 ns/V, input and  
output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading CL >50 pF, or equivalent  
capacitive output loading CL=5 pF for TSHQZ, TELQZ TGHQZ. For CL >50 pF, derate access times by 0.02 ns/pF (typical).  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C, pre-radiation.  
(3) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55°C to +125°C, post total dose at 25°C.  
(4) Chip Enable (CE) pin not available on 28-lead FP or DIP.  
T
AVAVR  
ADDRESS  
NCS  
T
AVQV  
TAXQX  
T
SLQV  
T
SLQX  
TSHQZ  
HIGH  
IMPEDANCE  
DATA OUT  
DATA VALID  
T
EHQX  
EHQV  
T
TELQZ  
CE  
T
GLQX  
GLQV  
T
TGHQZ  
NOE  
6
HX6656  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Read Cycle  
The ROM is asynchronous in operation, allowing the read  
cycletobecontrolledbyaddress,chipselect(NCS),orchip  
enable (CE) (refer to Read Cycle timing diagram). To  
perform a valid read operation, both chip select and output  
enable (NOE) must be low and chip enable must be high.  
The output drivers can be controlled independently by the  
NOEsignal.Consecutivereadcyclescanbeexecutedwith  
NCS held continuously low, and with CE held continuously  
high, and toggling the addresses.  
For an address activated read cycle, NCS and CE must be  
valid prior to or coincident with the activating address edge  
transition(s). Any amount of toggling or skew between  
address edge transitions is permissible; however, data  
outputs will become valid TAVQV time following the latest  
occurring address edge transition. The minimum address  
activated read cycle time is TAVAV. When the ROM is  
operated at the minimum address activated read cycle  
time, the data outputs will remain valid on the I/O until  
TAXQX time following the next sequential address transi-  
tion.  
To control a read cycle with NCS, all addresses and CE  
must be valid prior to or coincident with the enabling NCS  
edge transition. Address or CE edge transitions can occur  
later than the specified setup times to NCS, however, the  
valid data access time will be delayed. Any address edge  
transition, which occurs during the time when NCS is low,  
will initiate a new read access, and data outputs will not  
becomevaliduntilTAVQVtimefollowingtheaddressedge  
transition. Data outputs will enter a high impedance state  
TSHQZ time following a disabling NCS edge transition.  
To control a read cycle with CE, all addresses and NCS  
must be valid prior to or coincident with the enabling CE  
edge transition. Address or NCS edge transitions can  
occur later than the specified setup times to CE; however,  
the valid data access time will be delayed. Any address  
edge transition which occurs during the time when CE is  
high will initiate a new read access, and data outputs will  
not become valid until TAVQV time following the address  
edge transition. Data outputs will enter a high impedance  
state TELQZ time following a disabling CE edge transition.  
7
HX6656  
TESTER AC TIMING CHARACTERISTICS  
TTL I/O Configuration  
CMOS I/O Configuration  
3 V  
0 V  
VDD-0.5 V  
Input  
Levels*  
1.5 V  
VDD/2  
0.5 V  
1.5 V  
VDD/2  
Output  
Sense  
Levels  
VDD-0.4V  
0.4 V  
VDD-0.4V  
High Z  
High Z  
0.4 V  
3.4 V  
2.4 V  
3.4 V  
2.4 V  
High Z  
High Z  
High Z = 2.9V  
High Z = 2.9V  
* Input rise and fall times <1 ns/V  
QUALITY AND RADIATION HARDNESS  
ASSURANCE  
Honeywellmaintainsahighlevelofproductintegritythrough  
process control, utilizing statistical process control, a com-  
plete “Total Quality Assurance System,” a computer data  
base process performance tracking system, and a radia-  
tion-hardness assurance strategy.  
need to create detailed specifications and offer benefits of  
improved quality and cost savings through standardization.  
RELIABILITY  
The radiation hardness assurance strategy starts with a  
technology that is resistant to the effects of radiation.  
Radiationhardnessisassuredoneverywaferbyirradiating  
test structures as well as product die, and then monitoring  
key parameters which are sensitive to ionizing radiation.  
Conventional MIL-STD-883C TM 5005 Group E testing,  
which includes total dose exposure with Cobalt 60, may  
alsobeperformedasrequired. ThisTotalQualityapproach  
ensures our customers of a reliable product by engineering  
in reliability, starting with process development and con-  
tinuing through product qualification and screening.  
Honeywell understands the stringent reliability require-  
ments for space and defense systems and has extensive  
experience in reliability testing on programs of this nature.  
This experience is derived from comprehensive testing of  
VLSI processes. Reliability attributes of the RICMOSTM  
process were characterized by testing specially designed  
irradiated and non-irradiated test structures from which  
specificfailuremechanismswereevaluated.Thesespecific  
mechanisms included, but were not limited to, hot carriers,  
electromigration and time dependent dielectric breakdown.  
This data was then used to make changes to the design  
models and process to ensure more reliable products.  
SCREENING LEVELS  
In addition, the reliability of the RICMOSTM process and  
product in a military environment was monitored by testing  
irradiated and non-irradiated circuits in accelerated dy-  
namic life test conditions. Packages are qualified for prod-  
uct use after undergoing Groups B & D testing as outlined  
in MIL-STD-883, TM 5005, Class S. The product is qualified  
by following a screening and testing flow to meet the  
customer’s requirements. Quality conformance testing is  
performed as an option on all production lots to ensure the  
ongoing reliability of the product.  
Honeywell offers several levels of device screening to meet  
your system needs. “Engineering Devices” are available  
with limited performance and screening for breadboarding  
and/or evaluation testing. Hi-Rel Level B and S devices  
undergo additional screening per the requirements of MIL-  
STD-883. As a QML supplier, Honeywell also offers QML  
Class Q and V devices per MIL-PRF-38535 and are avail-  
able per the applicable Standard Military Drawing (SMD).  
QML devices offer ease of procurement by eliminating the  
8
HX6656  
PACKAGING  
Ceramic chip capacitors can be mounted to the package to  
maximize supply noise decoupling and increase board  
packing density. These capacitors attach directly to the  
internal package power and ground planes. This design  
minimizes resistance and inductance of the bond wire and  
package. All NC (no connect) pins should be connected  
to VSS to prevent charge build up in the radiation  
environment.  
The 32K x 8 ROM is offered in a custom 36-lead flat pack  
(FP), 28-Lead FP, or standard 28-lead DIP. Each package  
is constructed of multilayer ceramic (Al2O3) and features  
internal power and ground planes. The 36-lead FP also  
features a non-conductive ceramic tie bar on the lead  
frame. The tie bar allows electrical testing of the device,  
while preserving the lead integrity during shipping and  
handling, up to the point of lead forming and insertion.  
28-LEAD FP PINOUT  
36-LEAD FP PINOUT  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
NWE  
A13  
A8  
VSS  
VDD  
A14  
A12  
A7  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
VSS  
VDD  
NWE  
CE  
2
2
3
3
4
4
5
A13  
A8  
A6  
6
5
A9  
A5  
7
A9  
6
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A4  
8
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VDD  
VSS  
Top  
View  
A3  
9
Top  
View  
7
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
8
A1  
A0  
9
DQ0  
DQ1  
DQ2  
NC  
A0  
10  
11  
12  
13  
14  
DQ0  
DQ1  
DQ2  
VSS  
VDD  
VSS  
36-LEAD FLAT PACK  
E
22018131-001  
1
b
(width)  
Top  
View  
e
(pitch)  
H
L
L
Non-  
Conductive  
Tie-Bar  
Ceramic  
Body  
Kovar  
Lid [3]  
A
J
0.004  
C
M
S
N
I
X
Optional  
Capacitors  
VDD  
All dimensions are in inches [1]  
VSS  
VSS  
VDD  
A
b
C
D
E
e
F
G
H
I
0.095 ± 0.014  
0.008 ± 0.002  
0.005 to 0.0075  
0.650 ± 0.010  
0.630 ± 0.007  
0.025 ± 0.002 [2]  
0.425 ± 0.005 [2]  
0.525 ± 0.005  
0.135 ± 0.005  
0.030 ± 0.005  
0.080 typ.  
M
N
O
P
R
S
T
U
V
W
X
Y
0.008 ± 0.003  
0.050 ± 0.010  
0.090 ref  
0.015 ref  
0.075 ref  
0.113 ± 0.010  
0.050 ref  
0.030 ref  
0.080 ref  
0.005 ref  
Y
J
L
0.450 ref  
0.400 ref  
0.285 ± 0.015  
1
1
[1] Parts delivered with leads unformed  
[2] At tie bar  
[3] Lid tied to VSS  
O
V
W
T
P
U
R
9
HX6656  
28-LEAD FLAT PACK (22017842-001)  
E
Index  
All dimensions in inches  
1
1
A
b
C
D
e
0.105 0.015  
0.017 0.002  
0.003 to 0.006  
0.720 0.008  
0.050 0.005 [1]  
0.500 0.007  
b
(width)  
TOP  
VIEW  
E
BOTTOM  
VIEW  
e
E2 0.380 0.008  
E3 0.060 ref  
F
G
L
Q
S
(pitch)  
0.650 0.005 [2]  
0.035 0.004  
0.295 min [3]  
0.026 to 0.045  
0.045 0.010  
0.130 ref  
S
U
L
U
W
X
W
A
Capacitor  
Pads  
0.050 ref  
X
0.075 ref  
Y
Y
0.010 ref  
[1] BSC – Basic lead spacing between centers  
[2] Where lead is brazed to package  
[3] Parts delivered with leads unformed  
[4] Lid connected to VSS  
Kovar  
Lid [4]  
Ceramic  
Body  
Lead  
Alloy 42 [3]  
C
Q
G
E3  
E2  
28-LEAD DIP (22017785-001)  
For 28-Lead DIP description, see MIL-STD-1835, Type CDIP2-T28, Config. C, Dimensions D-10  
10  
HX6656  
STATIC BURN-IN DIAGRAM*  
DYNAMIC BURN-IN DIAGRAM*  
VDD  
VDD  
VDD  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
VDD  
NC  
A13  
A8  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
VDD  
NC  
A13  
A8  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
F16  
F7  
F6  
F5  
F4  
F3  
F2  
F8  
F13  
F14  
F1  
F1  
F1  
R
R
R
R
R
R
R
R
R
R
R
R
R
F0  
3
3
F15  
F12  
F11  
F10  
F17  
F9  
F17  
F1  
F1  
4
4
5
5
A9  
A9  
6
6
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
7
7
8
8
9
9
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
A0  
A0  
DQ0  
DQ1  
DQ2  
VSS  
DQ0  
DQ1  
DQ2  
VSS  
F1  
F1  
F1  
VSS  
VSS  
VDD = 6.5V, R 10 K, VIH = VDD, VIL = VSS  
Ambient Temperature 125 °C, F0 100 KHz Sq Wave  
Frequency of F1 = F0/2, F2 = F0/4, F3 = F0/8, etc.  
VDD = 5.5V, R 10 KΩ  
Ambient Temperature 125 °C  
*36-lead Flat Pack burn-in diagrams have similar connections and are available on request.  
ROM CODE  
The ROM code can be provided to Honeywell via FTP, E-Mail or a variety of magnetic storage media, including  
3.5 inch floppy disc, 4m digital tape and others.  
The ROM Code data file should contain the following format:  
<address> [/] <data> [;] [Comment]  
Where items enclosed in ‘[‘and’]’ are optional.  
The address and data must be hex numbers in the form, MSB...LSB. The “/” and the “;” are optional and any  
characters after the “#” are comments. For example the following input file, all of the lines are valid:  
000 d4  
001 / 32  
002 1d  
003 / 72;  
4/5e; # all of these lines are in valid format  
11  
HX6656  
ORDERING INFORMATION (1)  
6656  
H
H
X
N
S
C
SCREEN LEVEL  
V=QML Class V  
Q=QML Class Q  
S=Level S  
PART NUMBER  
INPUT  
BUFFER TYPE  
C=CMOS Level  
T=TTL Level  
PROCESS  
PACKAGE DESIGNATION  
N=28-Lead FP  
B=Level B  
E=Engr Device (2)  
TOTAL DOSE  
HARDNESS  
X=SOI  
R=28-Lead DIP  
X=36-Lead FP  
K=Known Good Die  
- = Bare die (No Package)  
R=1x105 rad(SiO2)  
F=3x105 rad(SiO2)  
H=1x106 rad(SiO2)  
SOURCE  
H=HONEYWELL  
N=No Level Guaranteed  
(1) Orders may be faxed to 612-954-2051. Please contact our Customer Logistics Department at 612-954-2888 for further information.  
(2) Engineering Device description: Parameters are tested from -55 to 125°C, 24 hr burn-in, no radiation guaranteed.  
Contact Factory with other needs.  
To lea r n m or e a bou t Hon eyw ell Solid Sta te Electr on ics Cen ter ,  
visit ou r w eb site a t h ttp ://w w w .ssec.h on eyw ell.com  
Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability  
arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Helping You Control Your World  
900154  
2/96  

相关型号:

HX6656KSRT

32K x 8 ROM-SOI
ETC

HX6656KVFC

32K x 8 ROM-SOI
ETC

HX6656KVFT

32K x 8 ROM-SOI
ETC

HX6656KVHC

32K x 8 ROM-SOI
ETC

HX6656KVHT

32K x 8 ROM-SOI
ETC

HX6656KVNC

32K x 8 ROM-SOI
ETC

HX6656KVNT

32K x 8 ROM-SOI
ETC

HX6656KVRC

32K x 8 ROM-SOI
ETC

HX6656KVRT

32K x 8 ROM-SOI
ETC

HX6656NBFC

32K x 8 ROM-SOI
ETC

HX6656NBFT

32K x 8 ROM-SOI
ETC

HX6656NBHC

32K x 8 ROM-SOI
ETC