ICX411AQ [ETC]

Diagonal 8.98mm(Type 1/1.8) Frame Readout CCDImage Sensor with a Square Pixel for Color Cameras ; 对角线8.98毫米(类型1 / 1.8 )帧读取CCDImage传感器采用方形像素的彩色摄像机\n
ICX411AQ
型号: ICX411AQ
厂家: ETC    ETC
描述:

Diagonal 8.98mm(Type 1/1.8) Frame Readout CCDImage Sensor with a Square Pixel for Color Cameras
对角线8.98毫米(类型1 / 1.8 )帧读取CCDImage传感器采用方形像素的彩色摄像机\n

传感器 光电二极管 CD 摄像机
文件: 总32页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICX411AQ  
Diagonal 8.98mm (Type 1/1.8) Frame Readout CCD Image Sensor with a Square Pixel for Color Cameras  
Description  
The ICX411AQ is a diagonal 8.98mm (Type 1/1.8)  
interline CCD solid-state image sensor with a square  
pixel array and 3.98M effective pixels. Frame readout  
allows all pixels' signals to be output independently  
within approximately 1/4.28 second.  
20 pin DIP (Plastic)  
Also, number of vertical pixels decimation allows  
output of 30 frames per second in high frame rate  
readout mode.  
This chip features an electronic shutter with  
variable charge-storage time.  
R, G, B primary color mosaic filters are used as the  
color filters, and at the same time high sensitivity and  
low dark current are achieved through the adoption  
of Super HAD CCD technology.  
This chip is suitable for applications such as  
electronic still cameras, etc.  
1
2
Features  
Supports frame readout  
V
High horizontal and vertical resolution  
Supports high frame rate readout mode: 30 frames/s, 25 frames/s,  
AF1 mode: 60 frames/s, 50 frames/s,  
AF2 mode: 120 frames/s, 100 frames/s  
Square pixel  
12  
16  
H
56  
11  
Horizontal drive frequency: 24MHz  
No voltage adjustments (reset gate and substrate bias are not adjusted.)  
R, G, B primary color mosaic filters on chip  
High sensitivity, low dark current  
Optical black position  
(Top View)  
Continuous variable-speed shutter  
Excellent anti-blooming characteristics  
Exit pupil distance recommended range –20 to –100mm  
20-pin high-precision plastic package  
Device Structure  
Interline CCD image sensor  
Total number of pixels:  
2384 (H) × 1734 (V) approx. 4.13M pixels  
Number of effective pixels: 2312 (H) × 1720 (V) approx. 3.98M pixels  
Number of active pixels:  
Number of recommended recording pixels:  
2308 (H) × 1712 (V) approx. 3.95M pixels diagonal 8.980mm  
2272 (H) × 1704 (V) approx. 3.87M pixels diagonal 8.875mm aspect ratio 4:3  
8.1mm (H) × 6.6mm (V)  
Chip size:  
Unit cell size:  
Optical black:  
3.125µm (H) × 3.125µm (V)  
Horizontal (H) direction: Front 16 pixels, rear 56 pixels  
Vertical (V) direction:  
Horizontal 28  
Front 12 pixels, rear 2 pixels  
Number of dummy bits:  
Substrate material:  
Vertical 1 (even fields only)  
Silicon  
Super HAD CCD is a trademark of Sony Corporation. The Super HAD CCD is a version of Sony's high performance CCD HAD (Hole-  
Accumulation Diode) sensor with sharply improved sensitivity by the incorporation of a new semiconductor technology developed by  
Sony Corporation.  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E01Y32B33  
ICX411AQ  
Block Diagram and Pin Configuration  
(Top View)  
10  
9
8
7
6
5
4
3
2
1
Gb  
R
B
Gr  
B
Gb  
R
B
Gr  
B
Gb  
R
Gb  
R
Gr  
B
Gr  
B
Gb  
R
Gb  
R
Gr  
Gr  
11  
12  
13  
14  
15  
16  
17  
18  
19 20  
Pin Description  
Pin No. Symbol  
Description  
Pin No. Symbol  
Description  
Supply voltage  
Reset gate clock  
1
2
Vφ4  
Vertical register transfer clock  
Vertical register transfer clock  
Vertical register transfer clock  
Vertical register transfer clock  
Vertical register transfer clock  
Vertical register transfer clock  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
φRG  
Hφ2  
Vφ3A  
Vφ3B  
Vφ2  
3
Horizontal register transfer clock  
Horizontal register transfer clock  
GND  
4
Hφ1  
5
Vφ1A  
Vφ1B  
TEST  
TEST  
GND  
VOUT  
GND  
φSUB  
CSUB  
VL  
6
Substrate clock  
1
2
7
Test pin  
Substrate bias  
1
8
Test pin  
Protective transistor bias  
9
GND  
Hφ1  
Horizontal register transfer clock  
Horizontal register transfer clock  
10  
Signal output  
Hφ2  
1
2
Leave this pin open  
DC bias is generated within the CCD, so that this pin should be grounded externally through a capacitance  
of 0.1µF.  
– 2 –  
ICX411AQ  
Absolute Maximum Ratings  
Item  
Ratings  
–40 to +12  
–50 to +15  
–50 to +0.3  
–40 to +0.3  
–25 to  
Unit Remarks  
VDD, VOUT, φRG – φSUB  
Vφ1A, Vφ1B, Vφ3A, Vφ3B φSUB  
Vφ2, Vφ4, VL φSUB  
V
V
V
V
V
V
V
V
V
V
Against φSUB  
Hφ1, Hφ2, GND – φSUB  
CSUB φSUB  
VDD, VOUT, φRG, CSUB – GND  
Vφ1A, Vφ1B, Vφ2, Vφ3A, Vφ3B, Vφ4 – GND  
Hφ1, Hφ2 – GND  
–0.3 to +22  
–10 to +18  
–10 to +6.5  
–0.3 to +28  
–0.3 to +15  
to +15  
Against φGND  
Against φVL  
Vφ1A, Vφ1B, Vφ3A, Vφ3B – VL  
Vφ2, Vφ4, Hφ1, Hφ2, GND – VL  
Voltage difference between vertical clock input pins  
Hφ1 – Hφ2  
1
V
Between input  
clock pins  
–6.5 to +6.5  
–10 to +16  
–30 to +80  
–10 to +60  
–10 to +75  
V
V
Hφ1, Hφ2 – Vφ4  
Storage temperature  
°C  
°C  
°C  
Guaranteed temperature of performance  
Operating temperature  
1
+24V (Max.) when clock width < 10µs, clock duty factor < 0.1%.  
+16V (Max.) is guaranteed for turning on or off power supply.  
– 3 –  
ICX411AQ  
Bias Conditions  
Item  
Symbol  
VDD  
Min.  
Typ.  
Max.  
Unit Remarks  
V
Supply voltage  
Protective transistor bias  
Substrate clock  
Reset gate clock  
1
14.55  
15.0  
15.45  
1
2
2
VL  
φSUB  
φRG  
VL setting is the VVL voltage of the vertical clock waveform, or the same voltage as the VL power supply for  
the V driver should be used.  
2
Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated  
within the CCD.  
DC Characteristics  
Item  
Symbol  
Min.  
3.0  
Typ.  
7.0  
Max.  
10.0  
Unit Remarks  
mA  
Supply current  
IDD  
Clock Voltage Conditions  
Waveform  
Diagram  
Item  
Symbol  
Min.  
Typ.  
Max. Unit  
Remarks  
Readout clock voltage VVT  
14.55 15.0 15.45  
V
V
V
1
2
2
VVH1, VVH2  
–0.05  
–0.2  
0
0
0.05  
0.05  
VVH = (VVH1 + VVH2)/2  
VVH3, VVH4  
VVL1, VVL2,  
VVL3, VVL4  
–8.0  
–7.5  
7.5  
–7.0  
V
2
VVL = (VVL3 + VVL4)/2  
VφV  
6.8  
8.05  
0.1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2
2
2
2
2
2
2
3
3
3
4
4
4
5
Vφ = VVHn – VVLn (n = 1 to 4)  
V
Vertical transfer clock  
voltage  
VVH3 – VVH  
VVH4 – VVH  
VVHH  
–0.25  
–0.25  
0.1  
0.9  
High-level coupling  
High-level coupling  
Low-level coupling  
Low-level coupling  
VVHL  
0.9  
VVLH  
0.9  
VVLL  
0.7  
VφH  
4.75  
–0.05  
0.8  
5.0  
0
5.25  
0.05  
Horizontal transfer  
clock voltage  
VHL  
VCR  
2.5  
3.3  
Cross-point voltage  
VφRG  
3.0  
5.25  
0.4  
Reset gate clock  
voltage  
VRGLH – VRGLL  
VRGL – VRGLm  
Low-level coupling  
Low-level coupling  
0.5  
Substrate clock voltage VφSUB  
21.5  
22.5  
23.5  
– 4 –  
ICX411AQ  
Clock Equivalent Circuit Constants  
Item  
Symbol  
CφV1A, CφV3A  
CφV1B, CφV3B  
CφV2, CφV4  
Min.  
Typ.  
1200  
4700  
3300  
470  
560  
150  
220  
39  
Max.  
Unit Remarks  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Capacitance between vertical transfer  
clock and GND  
CφV1A2, CφV3A4  
CφV1B2, CφV3B4  
CφV23A, CφV41A  
CφV23B, CφV41B  
CφV1A3A  
Capacitance between vertical transfer  
clocks  
CφV1B3B  
220  
56  
CφV1A3B, CφV1B3A  
CφV24  
82  
CφV1A1B, CφV3A3B  
68  
Capacitance between horizontal transfer  
clock and GND  
CφH1, CφH2  
CφHH  
33  
82  
pF  
pF  
pF  
pF  
Capacitance between horizontal transfer  
clocks  
Capacitance between reset gate clock  
and GND  
CφRG  
8
Capacitance between substrate clock  
and GND  
CφSUB  
1000  
62  
R1A, R1B, R2,  
R3A, R3B, R4  
Vertical transfer clock series resistor  
Vertical transfer clock ground resistor  
Horizontal transfer clock series resistor  
RGND  
18  
12  
RφH  
Vφ2  
R2  
CφV24  
CφV1A2  
CφV1A3A  
CφV23A  
CφV23B  
Vφ1A  
Vφ3A  
RφH  
RφH  
R1A  
R3A  
Hφ1  
Hφ2  
CφV1B2  
CφV1A  
CφV1A1B  
CφV1B3A  
CφV1B  
CφV41A  
CφV2  
CφV3A  
CφV3A3B  
Rφ  
H
RφH  
CφHH  
Hφ1  
Hφ2  
CφV1A3B  
CφV3B  
CφH2  
CφH1  
R1B  
CφV4  
CφV41B  
R3B  
CφV3A4  
CφV3B4  
Vφ1B  
Vφ3B  
R
GND  
CφV1B3B  
R4  
Vφ4  
Vertical transfer clock equivalent circuit  
Horizontal transfer clock equivalent circuit  
– 5 –  
ICX411AQ  
Drive Clock Waveform Conditions  
(1) Readout clock waveform  
100%  
90%  
φM  
VVT  
φM  
2
10%  
0%  
0V  
tr  
twh  
tf  
(2) Vertical transfer clock waveform  
Vφ1A, Vφ1B  
Vφ3A, Vφ3B  
V
VHH  
V
VH1  
V
VHH  
V
VH  
V
VH  
VVHH  
V
VHH  
V
VHL  
V
VHL  
V
VHL  
V
VH3  
V
VHL  
V
VL1  
V
VL3  
V
VLH  
V
VLH  
V
VLL  
V
VLL  
V
VL  
V
VL  
Vφ2  
Vφ4  
V
VHH  
V
VHH  
V
VHH  
V
VHH  
V
VH  
V
VH  
V
VHL  
V
VH2  
VHL  
VVHL  
V
VHL  
V
V
VH4  
V
VLH  
VL2VVLH  
V
V
VLL  
V
VLL  
V
VL  
V
VL4  
V
VL  
VVH = (VVH1 + VVH2)/2  
VVL = (VVL3 + VVL4)/2  
VφV = VVHn – VVLn (n = 1 to 4)  
– 6 –  
ICX411AQ  
(3) Horizontal transfer clock waveform  
tr  
twh  
tf  
Hφ2  
90%  
VCR  
VφH  
twl  
VφH  
2
10%  
Hφ1  
VHL  
two  
Cross-point voltage for the Hφ1 rising side of the horizontal transfer clocks Hφ1 and Hφ2 waveforms is VCR.  
The overlap period for twh and twl of horizontal transfer clocks Hφ1 and Hφ2 is two.  
(4) Reset gate clock waveform  
tr  
twh  
tf  
V
RGH  
RG  
twl  
VφRG  
A
V
RGLH  
V
RGL  
V
V
RGLL  
RGLm  
VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from  
Point A in the above diagram until the rising edge of RG.  
In addition, VRGL is the average value of VRGLH and VRGLL.  
VRGL = (VRGLH + VRGLL)/2  
Assuming VRGH is the minimum value during the interval with twh, then:  
VφRG = VRGH – VRGL  
Negative overshoot level during the falling edge of RG is VRGLm.  
(5) Substrate clock waveform  
100%  
90%  
φM  
VφSUB  
φM  
2
10%  
V
SUB  
0%  
tr  
twh  
tf  
– 7 –  
ICX411AQ  
Clock Switching Characteristics (Horizontal drive frequency: 24MHz)  
twh  
twl  
tr  
tf  
Item  
Symbol  
VT  
Unit Remarks  
Min. Typ. Max.Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
During  
Readout clock  
3.10 3.33  
0.5  
0.5  
µs  
readout  
Vφ1A, Vφ1B,  
Vφ2, Vφ3A,  
Vφ3B, Vφ4  
Vertical transfer  
clock  
When using  
CXD3400N  
15  
250 ns  
Hφ1  
Hφ2  
10.5 14.6  
10.5 14.6  
10.5 14.6  
10.5 14.6  
6.4 10.5  
6.4 10.5  
6.4 10.5  
6.4 10.5  
Horizontal  
transfer clock  
ns tf tr – 2ns  
Reset gate clock φRG  
Substrate clock φSUB  
6
8
37  
4
3
ns  
During drain  
charge  
1.6 2.7  
0.5  
0.5 µs  
two  
Min. Typ. Max.  
Item  
Symbol  
Unit Remarks  
ns  
Horizontal transfer clock Hφ1, Hφ2 10.5 14.6  
Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics)  
1.0  
G
B
0.9  
R
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
400  
450  
500  
550  
600  
650  
700  
Wave Length [nm]  
– 8 –  
ICX411AQ  
Image Sensor Characteristics (horizontal drive frequency: 24MHz)  
(Ta = 25°C)  
Measurement  
method  
Item  
Symbol Min.  
Typ.  
Max. Unit  
Remarks  
G Sensitivity  
Sg  
180  
0.35  
0.40  
380  
220  
0.50  
0.55  
285  
0.65  
0.70  
mV  
1
1
1
2
1/30s accumulation  
Rr  
R
B
Sensitivity  
comparison  
Rb  
Vsat  
Saturation signal  
Smear  
mV  
dB  
Ta = 60°C  
1
–90  
–79  
–81.2  
–70.1  
20  
Frame readout mode  
High frame rate readout mode  
Zone 0 and I  
Sm  
3
4
Video signal shading SHg  
%
25  
Zone 0 to II'  
Vdt  
Vdt  
Lcg  
Lcr  
mV  
mV  
%
5
6
7
7
7
8
Dark signal  
Dark signal shading  
Line crawl G  
Line crawl R  
Line crawl B  
Lag  
12  
Ta = 60°C, 4.28 frame/s  
2
6
Ta = 60°C, 4.28 frame/s,  
3.8  
3.8  
3.8  
0.5  
%
Lcb  
Lag  
%
%
1
After closing the mechanical shutter, the smear can be reduced to below the detection limit by performing  
vertical register sweep operation.  
2
Excludes vertical dark signal shading caused by vertical register high-speed transfer.  
Zone Definition of Video Signal Shading  
2312 (H)  
2
2
4
V
10  
H
8
H
8
1720 (V)  
0, I  
4
II, II  
V
10  
Measurement System  
CCD  
[ A]  
CCD  
C.D.S  
AMP  
Gr Gb  
[ B]  
S/H  
S/H  
R
B
[ C]  
Note) Adjust the amplifier gain so that the gain between [ A] and [ B], and between [ A] and [ C] equals 1.  
– 9 –  
ICX411AQ  
Image Sensor Characteristics Measurement Method  
Measurement conditions  
(1) In the following measurements, the device drive conditions are at the typical values of the bias and clock  
voltage conditions, and the frame readout mode is used.  
(2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical  
black level (OB) is used as the reference for the signal output, which is taken as the value of the Gr/Gb  
channel signal output or the R/B channel signal output of the measurement system.  
Color coding of this image sensor & Readout  
The primary color filters of this image sensor are arranged in  
Gb  
R
B
Gr  
B
Gb  
R
B
Gr  
B
B2  
B1  
the layout shown in the figure on the left (Bayer arrangement).  
Gr and Gb denote the G signals on the same line as the R  
signal and the B signal, respectively.  
A2  
A1  
Gb  
R
Gb  
R
For frame readout, the A1 and A2 lines are output as signals in  
the A field, and the B1 and B2 lines in the B field.  
Gr  
Gr  
Horizontal register  
Color Coding Diagram  
– 10 –  
ICX411AQ  
Readout modes  
1. Readout modes list  
Mode name  
Frame rate  
4.28 frame/s  
4.17 frame/s  
30 frame/s  
25 frame/s  
60 frame/s  
50 frame/s  
120 frame/s  
100 frame/s  
Number of effective output lines  
NTSC mode  
PAL mode  
1720 (Odd 860, Even 860)  
Frame readout mode  
1720 (Odd 860, Even 860)  
NTSC mode  
PAL mode  
287  
287  
123  
153  
41  
High frame rate readout  
mode  
NTSC mode  
PAL mode  
AF1 mode  
AF2 mode  
NTSC mode  
PAL mode  
55  
2. Frame readout mode, high frame rate readout mode  
Frame readout mode  
High frame rate readout mode  
1st field  
2nd field  
R
Gb  
R
17  
16  
15  
14  
13  
12  
11  
10  
9
Gr  
B
17  
16  
15  
14  
13  
12  
11  
10  
9
R
Gb  
R
Gr  
B
17  
16  
15  
14  
13  
12  
11  
10  
9
R
Gb  
R
Gr  
B
Gr  
B
Gr  
B
Gr  
B
Gb  
R
Gb  
R
Gb  
R
Gr  
B
Gr  
B
Gr  
B
Gb  
R
Gb  
R
Gb  
R
Gr  
B
Gr  
B
Gr  
B
Gb  
R
Gb  
R
Gb  
R
Gr  
B
Gr  
B
Gr  
B
8
Gb  
R
8
Gb  
R
8
Gb  
R
7
Gr  
B
7
Gr  
B
7
Gr  
B
6
Gb  
R
6
Gb  
R
6
Gb  
R
5
Gr  
B
5
Gr  
B
5
Gr  
B
4
Gb  
R
4
Gb  
R
4
Gb  
R
3
Gr  
B
3
Gr  
B
3
Gr  
B
2
Gb  
R
2
Gb  
R
2
Gb  
R
1
Gr  
1
Gr  
1
Gr  
VOUT  
VOUT  
VOUT  
Note) Blacked out portions in the diagram indicate pixels which are not read out.  
1. Frame readout mode  
In this mode, all pixel signals are divided into two fields and output.  
All pixel signals are read out independently, making this mode suitable for high resolution image capturing.  
2. High frame rate readout mode  
Output is performed at 30 frames per second by reading out 4 pixels for every 12 vertical pixels and adding  
2 pixels in the horizontal CCD.  
The number of output lines is 287 lines.  
This readout mode emphasizes processing speed over vertical resolution.  
– 11 –  
ICX411AQ  
3. AF1 mode, AF2 mode  
The AF modes increase the frame rate by cutting out a portion of the picture through high-speed elimination of  
the top and bottom of the picture in high frame rate readout mode. AF1 allows 1/60s and 1/50s output, and  
AF2 allows 1/120s and 1/100s output, so these modes are effective for raising the auto focus (AF) speed.  
287  
– 12 –  
ICX411AQ  
Definition of standard imaging conditions  
(1) Standard imaging condition I:  
Use a pattern box (luminance: 706cd/m2, color temperature of 3200K halogen source) as a subject.  
(Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR  
cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined  
as the standard sensitivity testing luminous intensity.  
(2) Standard imaging condition II:  
Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles.  
Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted  
to the value indicated in each testing item by the lens diaphragm.  
(3) Standard imaging condition III:  
Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles.  
Use a testing standard lens (exit pupil distance –33mm) with CM500S (t = 1.0mm) as an IR cut filter. The  
luminous intensity is adjusted to the value indicated in each testing item by the lens diagram.  
1. G Sensitivity, sensitivity comparison  
Set to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of  
1/100s, measure the signal outputs (VGR, VGb, VR and VB) at the center of each Gr, Gb, R and B channel  
screen, and substitute the values into the following formulas.  
VG = (VGr + VGb)/2  
100  
Sg = VG ×  
[mV]  
30  
Rr = VR/VG  
Rb = VB/VG  
2. Saturation signal  
Set to the standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with  
the average value of the Gr signal output, 150mV, measure the minimum values of the Gr, Gb, R and B  
signal outputs.  
3. Smear  
Set to the standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the average  
value of the Gr signal output to 150mV. Measure the average values of the Gr signal output, Gb signal  
output, R signal output and B signal output (Gra, Gba, Ra, Ba), and then adjust the luminous intensity to  
500 times the intensity with the average value of the Gr signal output, 150mV.  
After the readout clock is stopped and the charge drain is executed by the electronic shutter at the  
respective H blankings, measure the maximum value (Vsm [mV]) independent of the Gr, Gb, R and B  
signal outputs, and substitute the values into the following formula.  
Gra + Gba + Ra + Ba  
4
1
500  
1
10  
Sm = 20 × log Vsm ÷  
×
×
[dB] (1/10V method conversion value)  
(
)
– 13 –  
ICX411AQ  
4. Video signal shading  
Set to the standard imaging condition III. With the lens diaphragm at F5.6 to F8, adjusting the luminous  
intensity so that the average value of the Gr signal output is 150mV. Then measure the maximum value  
(Grmax [mV]) and minimum value (Grmin [mV]) of the Gr signal output and substitute the values into the  
following formula.  
SHg = (Grmax – Grmin)/150 × 100 [%]  
5. Dark signal  
Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature of 60°C  
and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.  
6. Dark signal shading  
After measuring 5, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark  
signal output and substitute the values into the following formula.  
Vdt = Vdmax – Vdmin [mV]  
7. Line crawl  
Set to the standard imaging condition II. Adjusting the luminous intensity so that the average value of the  
Gr signal output is 150mV, and then insert R, G and B filters and measure the difference between G signal  
lines (Glr, Glg, Glb [mV]) as well as the average value of the G signal output (Gar, Gag, Gab).  
Substitute the values into the following formula.  
Gli  
Gai  
Lci =  
× 100 [%] (i = r, g, b)  
8. Lag  
Adjust the Gr signal output value generated by the strobe light to 150mV. After setting the strobe light so  
that it strobes with the following timing, measure the residual signal amount (Vlag). Substitute the value  
into the following formula.  
Lag = (Vlag/150) × 100 [%]  
VD  
V1A/V1B  
Gr  
150mV  
Vlag  
– 14 –  
ICX411AQ  
–7.5V 15V  
Drive Circuit  
3.3V  
100k  
0.1  
1/35V  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
XSUB  
XV3  
3
0.1  
XSG3B  
XSG3A  
XV1  
4
5
CXD3400N  
6
0.1  
XSG1B  
XSG1A  
XV4  
7
8
9
XV2  
10  
2SC4250  
CCD OUT  
1
2
3
4
5
6
7
8
9 10  
4.7k  
ICX411  
(BOTTOM VIEW)  
VR1 (2.7k)  
3.3/20V  
VSUB Cont.  
0.01  
20 19 18 17 16 15 14 13 12 11  
Hφ2  
Hφ1  
φRG  
0.1  
200k  
0.1  
0.1  
3.3/16V  
VSUB Cont.  
GND  
tf 4ms  
tr 2ms  
φSUB  
VSUB  
Notes) Substrate bias control  
1. The saturation signal level decreases when exposure is performed using the mechanical shutter,  
so control the substrate bias.  
2. A saturation signal level equivalent to that for continuous exposure can be assured by connecting  
a 2.7kgrounding registor to the CCD CSUB pin.  
Drive timing precautions  
1. Blooming occurs in modes (high frame rate readout, etc.) that do not use the mechanical shutter,  
so do not ground the connected 2.7kresistor.  
2. tf is slow, so the internally generated voltage VSUB may not drop to a sufficiently low level if the  
substrate bias control signal is not set to high level 20ms before entering the exposure period  
and the 2.7kresistor connected to the CSUB pin is not grounded.  
3. The blooming signal generated during exposure in mechanical shutter mode is swept by  
providing two fields or more of idle transfer through vertical register high-speed sweep transfer  
from the time the mechanical shutter closes until sensor readout is performed. However, note that  
the VL potential and the φSUB pin DC voltage sag at this time.  
– 15 –  
Drive Timing Chart (Vertical Sequence) High Frame Rate Readout Mode Frame Readout Mode/Electronic Shutter Normal Operation  
Act.  
VD  
V1A  
V1B  
V2  
V3A  
V3B  
V4  
A
B
B
C
D
E
SUB  
TRG  
CLOSE  
OPEN  
OPEN  
VSUB  
Cont.  
CCD  
OUT  
A
A
B
B
C
(ODD)  
C
(EVEN)  
D
E
Note) The B output signals contain a blooming component and should therefore not be used.  
Apply 20 or more electronic shutter pulses at the start of exposure for the recording image.  
If less than 20 pulses are applied, the electronic shutter may occur a discharge error.  
Drive Timing Chart (Vertical Sync)  
NTSC/PAL Frame Readout Mode  
NTSC: 4.28 frame/s, PAL: 4.17 frame/s  
VD  
HD  
NTSC  
PAL  
c
a
c
b
V1A/V1B  
V2  
V3A/V3B  
V4  
SUB  
TRG  
CLOSE  
OPEN  
OPEN  
VSUB  
Cont.  
CCD  
OUT  
Note) The 1044 and 2088H horizontal period in NTSC mode are 938clk, the 1073H, 1074H, 2147H and 2148H horizontal period in PAL mode are 1376clk.  
Drive Timing Chart (Readout)  
"a" Enlarged  
NTSC/PAL Frame Readout Mode  
NTSC: #91  
PAL: #91  
NTSC: #92  
PAL: #92  
H1  
1200 1280  
1314  
196  
V1A/V1B  
162  
264  
V2  
230  
V3A/V3B  
1098  
1202  
128  
298  
V4  
"b" Enlarged  
NTSC: #1134  
PAL: #1164  
NTSC: #1135  
PAL: #1165  
1132  
V1A/V1B  
V2  
V3A/V3B  
V4  
1166  
Drive Timing Chart (High-speed Sweep Operation)  
"c" Enlarged  
NTSC/PAL Frame Readout Mode  
236192clk = 88 lines  
HD  
1
60  
V1A/V1B  
V2  
V3A/V3B  
V4  
34343434343434343434343434343434  
34 34 34 34  
#1736  
#1  
#2  
#3  
#4  
Drive Timing Chart (Horizontal Sync)  
NTSC/PAL Frame Readout Mode  
2
2
CLK  
H1  
H2  
RG  
SHP  
SHD  
1
34  
1
136  
68  
V1A/V1B  
1
102  
1
1
102  
102  
V2  
1
1
170  
V3A/V3B  
1
102  
34  
170  
1
1
1
68  
V4  
1
65  
1
SUB  
121  
1
86  
Drive Timing Chart (Vertical Sync)  
NTSC/PAL High Frame Rate Readout Mode  
NTSC: 30 frame/s, PAL: 25 frame/s  
VD  
HD  
NTSC  
PAL  
d
d
V1A  
V1B  
V2  
V3A  
V3B  
V4  
CCD  
OUT  
Note) The 294H horizontal period in NTSC mode are 1968clk, the 353H in PAL mode is 1152clk.  
Drive Timing Chart (Readout)  
"d" Enlarged  
NTSC/PAL High Frame Rate Readout Mode, AF1 Mode, AF2 Mode  
#1  
#2  
H1  
1382 1462  
1132  
1280  
73  
73  
V1A  
V1B  
V2  
1202  
1348  
99  
1200  
1098  
1314  
V3A  
60  
V3B  
V4  
60  
1166  
1384  
86  
Drive Timing Chart (Horizontal Sync)  
NTSC/PAL High Frame Rate Readout Mode, AF1 Mode, AF2 Mode  
2
2
CLK  
H1  
H2  
RG  
SHP  
SHD  
V1A/V1B  
V2  
V3A/V3B  
V4  
1
65  
1
121  
126  
1
SUB  
Drive Timing Chart (Vertical Sync)  
NTSC/PAL AF1 Mode  
NTSC: 60 frame/s, PAL: 50 frame/s  
VD  
HD  
NTSC  
PAL  
f
d
e
f
d
e
V1A  
V1B  
V2  
V3A  
V3B  
V4  
NTSC  
PAL  
CCD  
OUT  
Note) The 147H horizontal period in NTSC mode are 2346clk, the 177H in PAL mode is 576clk.  
Drive Timing Chart  
"e" Enlarged  
NTSC/PAL AF1 Mode  
27240clk = 10 lines  
HD  
1
60  
V1A/V1B  
V2  
V3A/V3B  
V4  
#1  
#2  
#3  
#4  
#246  
1313131313131313  
Drive Timing Chart  
"f" Enlarged  
NTSC/PAL AF1 Mode, AF2 Mode  
27240clk = 10 lines  
NTSC: 137H  
PAL: 167H  
NTSC: 147H  
PAL: 177H  
NTSC: 1H  
PAL: 1H  
HD  
1
60  
V1A/V1B  
V2  
V3A/V3B  
V4  
#1  
#2  
#3  
#4  
#246  
1313131313131313  
Drive Timing Chart (Vertical Sync)  
NTSC/PAL AF2 Mode  
NTSC: 120 frame/s, PAL: 100 frame/s  
VD  
HD  
NTSC  
PAL  
h
d
g
h
d
g
V1A  
V1B  
V2  
V3A  
V3B  
V4  
NTSC  
PAL  
CCD  
OUT  
Note) The 74H horizontal period in NTSC mode are 1173clk, the 88H and 89H in PAL mode is 1506clk.  
Drive Timing Chart  
"g" Enlarged  
NTSC/PAL AF2 Mode  
38136clk = 14 lines  
HD  
1
60  
V1A/V1B  
V2  
V3A/V3B  
V4  
#1  
#2  
#3  
#4  
#360  
1313131313131313  
Drive Timing Chart  
"h" Enlarged  
NTSC/PAL AF2 Mode  
40860clk = 15 lines  
NTSC: 59H  
PAL: 73H  
NTSC: 73H  
PAL: 87H  
NTSC: 1H  
PAL: 1H  
HD  
1
60  
V1A/V1B  
V2  
V3A/V3B  
V4  
#1  
#2  
#3  
#4  
#381  
1313131313131313  
ICX411AQ  
Notes on Handling  
1) Static charge prevention  
CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following  
protective measures.  
a) Either handle bare handed or use non-chargeable gloves, clothes or material.  
Also use conductive shoes.  
b) When handling directly use an earth band.  
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.  
d) Ionized air is recommended for discharge when handling CCD image sensors.  
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.  
2) Soldering  
a) Make sure the package temperature does not exceed 80°C.  
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a 30W  
soldering iron with a ground wire and solder each pin in less than 2 seconds. For repairs and remount,  
cool sufficiently.  
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering  
tool, use a thermal controller of the zero-cross On/Off type and connect it to ground.  
3) Dust and dirt protection  
Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and  
dirt. Clean glass plates with the following operations as required, and use them.  
a) Perform all assembly operations in a clean room (class 1000 or less).  
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should  
dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized  
air is recommended.)  
c) Clean with a cotton bud and ethyl alcohol if grease stained. Be careful not to scratch the glass.  
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when  
moving to a room with great temperature differences.  
e) When a protective tape is applied before shipping, just before use remove the tape applied for  
electrostatic protection. Do not reuse the tape.  
4) Installing (attaching)  
a) Remain within the following limits when applying a static load to the package. Do not apply any load  
more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to  
limited portions. (This may cause cracks in the package.)  
50N  
50N  
1.2Nm  
b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the  
package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for  
installation, use either an elastic load, such as a spring plate, or an adhesive.  
– 30 –  
ICX411AQ  
c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated  
voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area,  
and indicated values should be transferred to other locations as a precaution.  
d) The notch of the package is used for directional index, and that can not be used for reference of fixing.  
In addition, the cover glass and seal resin may overlap with the notch of the package.  
e) If the leads are bent repeatedly and metal, etc., clash or rub against the package, the dust may be  
generated by the fragments of resin.  
f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyano-  
acrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives.  
(reference)  
5) Others  
a) Do not expose to strong light (sun rays) for long periods, as color filters will be discolored. When high  
luminous objects are imaged with the exposure level controlled by the electronic iris, the luminance of  
the image-plane may become excessive and discoloring of the color filter will possibly be accelerated. In  
such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the  
power-off mode should be properly arranged. For continuous using under cruel condition exceeding the  
normal using condition, consult our company.  
b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or  
usage in such conditions.  
c) Brown stains may be seen on the bottom or side of the package. But this does not affect the CCD  
characteristics.  
d) This package has 2 kinds of internal structure. However, their package outline, optical size, and strength  
are the same.  
A
B
The cross section of lead frame can be seen on the side of the package for structure A.  
– 31 –  
Package Outline  
Unit: mm  
20 pin DIP  
A
6.9  
D
20  
11  
20  
11  
C
1.7  
B
1.7  
V
H
1
10  
1
10  
12.7  
0.8  
13.8 ± 0.1  
'
B
10.0  
2.5  
1. “A” is the center of the effective image area.  
~
2. The two points “B” of the package are the horizontal reference.  
The point “B'” of the package is the vertical reference.  
3. The bottom “C” of the package, and the top of the cover glass “D”  
1.27  
are the height reference.  
0.3  
4. The center of the effective image area relative to “B” and “B'”  
M
is (H, V) = (6.9, 6.0) ± 0.075mm.  
0.3  
5. The rotation angle of the effective image area relative to H and V is ± 1˚.  
PACKAGE STRUCTURE  
6. The height from the bottom “C” to the effective image area is 1.41 ± 0.10mm.  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
Plastic  
The height from the top of the cover glass “D” to the effective image area is 1.49 ± 0.15mm.  
GOLD PLATING  
7. The tilt of the effective image area relative to the bottom “C” is less than 50µm.  
The tilt of the effective image area relative to the top “D” of the cover glass is less than 50µm.  
42 ALLOY  
0.95g  
8. The thickness of the cover glass is 0.5mm, and the refractive index is 1.5.  
PACKAGE MASS  
DRAWING NUMBER  
9. The notches on the bottom of the package are used only for directional index, they must  
not be used for reference of fixing.  
AS-B6-04(E)  

相关型号:

ICX412

Timing Generator and Signal Processor for Frame Readout CCD Image Sensor
SONY

ICX412AQ

Diagonal 8.933mm(Type 1/1.8) Frame Readout CCDImage Sensor with a Square Pixel for Color Cameras
ETC

ICX412AQF

Diagonal 8.933mm (Type 1/1.8) Frame Readout CCD Image Sensor with a Square Pixel for Color Cameras
SONY

ICX413AQ

Diagonal 28.40mm (Type 1.8) Frame Readout CCD Image Sensor with Square Pixel for Color Cameras
SONY

ICX414AL

Diagonal 8mm Progressive Scan CCD Solid-state Image Sensor with Square Pixel for EIA B/W Cameras
SONY

ICX414AQ

Diagonal 8mm (Type 1/2) Progressive Scan CCD Image Sensor with Square Pixel for Color Cameras
SONY

ICX415AL

Diagonal 8mm (Type 1/2) Progressive Scan CCD Solid-state Image Sensor with Square Pixel for CCIR B/W Cameras
SONY

ICX415AQ

Diagonal 8mm (Type 1/2) Progressive Scan CCD Image Sensor with Square Pixel for Color Cameras
SONY

ICX418AKB

Diagonal 8mm (Type 1/2) CCD Image Sensor for NTSC Color Video Cameras
SONY

ICX418AKL

Diagonal 8mm (Type 1/2) CCD Image Sensor for NTSC Color Video Cameras
SONY

ICX418ALB

Diagonal 8mm (Type 1/2) CCD Image Sensor for EIA B/W Video Cameras
SONY

ICX418ALL

Diagonal 8mm (Type 1/2) CCD Image Sensor for EIA B/W Video Cameras
SONY