IDT700620J [ETC]

IC-SM-DUAL PORT SRAM ; IC- SM双端口SRAM\n
IDT700620J
型号: IDT700620J
厂家: ETC    ETC
描述:

IC-SM-DUAL PORT SRAM
IC- SM双端口SRAM\n

静态存储器
文件: 总20页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7006S/L  
16K x 8 DUAL-PORT  
STATIC RAM  
one device  
Features  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
Busy and Interrupt Flags  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Devices are capable of withstanding greater than 2001V  
electrostatic discharge  
Battery backup operation—2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 68-pin PGA, quad flatpack, PLCC, and a 64-pin  
TQFP  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Military:20/25/35/55/70ns(max.)  
– Industrial: 55ns (max.)  
– Commercial:15/17/20/25/35/55ns(max.)  
Low-power operation  
– IDT7006S  
Active: 750mW (typ.)  
Standby: 5mW (typ.)  
– IDT7006L  
Active: 700mW (typ.)  
Standby: 1mW (typ.)  
IDT7006 easily expands data bus width to 16 bits or more  
using the Master/Slave select when cascading more than  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
FunctionalBlockDiagram  
OER  
OEL  
CER  
CEL  
R/WL  
R/WR  
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
I/O  
Control  
Control  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
A13L  
A13R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
A0R  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CEL  
OEL  
CER  
OER  
R/WR  
R/WL  
SEMR  
INTR  
SEML  
INTL  
M/S  
(2)  
(2)  
2739 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
SEPTEMBER 1999  
1
DSC-2739/11  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
a very low standby power mode.  
The IDT7006 is a high-speed 16K x 8 Dual-Port Static RAM. The  
IDT7006isdesignedtobeusedasastand-alone128K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypicalpower  
consumptionof500µWfroma2Vbattery.  
TheIDT7006ispackagedinaceramic68-pinPGA, an68-pinquad  
flatpack,aPLCC,anda64-pinthinquadflatpack,TQFP.Militarygrade  
productismanufacturedincompliancewiththelatestrevisionofMIL-PRF-  
38535 QML, Class B, making it ideally suited to military temperature  
applicationsdemandingthehighestlevelofperformanceandreliability.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
PinConfigurations(1,2,3)  
INDEX  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
VCC  
GND  
I/O0R  
I/O1R  
I/O2R  
VCC  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59  
58  
57  
56  
55  
IDT7006J or F  
J68-1(4)  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
L
INT  
F68-1(4)  
BUSYL  
GND  
M/S  
BUSYR  
INT  
A0R  
A1R  
A2R  
A3R  
A4R  
68 Pin PLCC / Flatpack  
Top View(5)  
.
R
I/O3R  
I/O4R  
I/O5R  
I/O6R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2739 drw 02  
INDEX  
A4L  
1
2
3
48  
I/O2L  
A3L  
47  
46  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
VCC  
A2L  
4
5
6
A1L  
45  
44  
43  
A0L  
INTL  
BUSY  
GND  
M/S  
7006PF  
PN-64(4)  
L
7
8
9
42  
41  
40  
39  
38  
37  
64 Pin TQFP  
Top View(5)  
GND  
I/O0R  
I/O1R  
I/O2R  
VCC  
BUSYR  
INTR  
A0R  
10  
11  
12  
.
13  
14  
15  
16  
A1R  
36  
35  
34  
NOTES:  
I/O3R  
A2R  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
4R  
I/O  
A3R  
I/O5R  
A4R  
33  
3. J68-1 package body is approximately .95 in x .95 in. x .17 in.  
F68-1 package body is approximately .97 in x .97 in x .08 in.  
PN64-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking  
2739 drw 03  
2
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3)(con't.)  
51  
50  
48  
A
46  
A
44  
42  
40  
38  
36  
11  
10  
09  
08  
07  
4L  
2L  
1L  
0L  
BUSYL M/S  
INTR A1R  
3R  
A
A
5L  
A
53  
A
52  
49  
47  
A
45  
INTL  
43  
GND  
41  
BUSYR  
39  
A
37  
35  
34  
4R  
A
7L  
9L  
3L  
0R  
2R  
A
5R  
6R  
8R  
A
A
6L  
A
55  
54  
32  
33  
7R  
A
A
A
8L  
A
57  
A
56  
A
30  
31  
A
9R  
A
11L  
10L  
12L  
13L  
59  
V
58  
A
28  
29  
11R  
A
IDT7006G  
G68-1(4)  
10R  
A
CC  
61  
60  
A
26  
GND  
27  
06  
05  
04  
03  
02  
01  
12R  
A
N/C  
68-Pin PGA  
Top View(5)  
63  
62  
24  
N/C  
25  
A
SEML  
13R  
CEL  
65  
OEL  
64  
22  
SEMR  
23  
CER  
L
R/W  
67  
66  
20  
OER  
21  
WR  
R/  
0L  
I/O  
68  
I/O  
N/C  
1
3
5
7
9
11  
13  
V
15  
18  
I/O  
19  
.
7R  
CC  
GND  
GND  
N/C  
1L  
4L  
5L  
7L  
I/O  
I/O  
2L  
1R  
2R  
4R  
I/O  
I/O  
I/O  
2
4
I/O  
6
8
10  
I/O  
12  
I/O  
14  
I/O  
16  
I/O  
17  
I/O  
0R  
3R  
5R  
J
6R  
CC  
V
6L  
3L  
I/O  
I/O  
A
B
C
D
E
F
G
H
K
L
INDEX  
2739 drw 04  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.18 in x 1.18 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CEL  
CER  
WL  
WR  
R/  
R/  
Read/Write Enable  
Output Enable  
Address  
OEL  
OER  
A0L - A13L  
A0R - A13R  
0L  
7L  
0R  
7R  
I/O - I/O  
I/O - I/O  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
SEML  
INTL  
SEMR  
INTR  
BUSYR  
S
BUSYL  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
2739 tbl 01  
6.42  
3
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/  
W
I/O0-7  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselected: Power-Down  
Write to Memory  
L
H
X
X
H
L
L
H
Read Memory  
X
H
X
Outputs Disabled  
2739 tbl 02  
NOTE:  
1. A0L – A13L is not equal to A0R – A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
R/W  
I/O0-7  
Mode  
CE  
H
OE  
L
SEM  
H
L
L
L
DATAOUT Read in Semaphore Flag Data Out  
H
X
DATAIN  
Write I/Oo into Semaphore Flag  
Not Allowed  
____  
L
X
X
2739 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O7. These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
Military  
Unit  
& Industrial  
Symbol  
Parameter  
Min.  
4.5  
Typ.  
Max. Unit  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
Supply Voltage  
5.0  
5.5  
0
V
V
V
GND  
VIH  
Ground  
0
0
Temperature  
Under Bias  
-55 to +125  
-55 to +125  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
TBIAS  
TSTG  
IOUT  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
-0.5(1)  
V
____  
VIL  
Storage  
Temperature  
2739 tbl 06  
NOTES:  
DC Output  
Current  
mA  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
2739 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sec-tions of this specification is not implied. Exposure  
to absolute maxi-mum rating conditions for extended periods may affect  
reliability.  
MaximumOperatingTemperature  
andSupply Voltage(1,2)  
Ambient  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
40OC to +85OC  
GND  
Vcc  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM < Vcc + 10%.  
Military  
0V  
5.0V 10%  
+
Capacitance(1) (TA = +25°C, f = 1.0mhz)  
Commercial  
Industrial  
0V  
5.0V + 10%  
0V  
5.0V 10%  
+
Symbol  
Parameter  
Conditions(2)  
Max.  
Unit  
2739 tbl 07  
NOTES:  
CIN  
Input Capacitance  
VIN = 3dV  
9
pF  
1. This is the parameter TA.  
Output  
Capacitance  
V
OUT = 3dV  
10  
pF  
2. Industrial temperature: for specific speeds, packages and powers contact your  
sales office.  
COUT  
2739 tbl 05  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested (TQFP Package Only).  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
4
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the 0perating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7006S  
7006L  
Symbol  
|ILI|  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
VCC = 5.5V, VIN = 0V to VCC  
5
5
___  
___  
___  
___  
|ILO|  
IH  
OUT  
CC  
10  
CE = V , V = 0V to V  
VOL  
IOL = 4mA  
0.4  
0.4  
___  
___  
VOH  
Output High Voltage  
IOH = -4mA  
2.4  
2.4  
V
2739 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
Data Retention Characteristics Over All Temperature Ranges  
(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)  
(1)  
Symbol  
VDR  
ICCDR  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
___  
___  
VCC for Data Retention  
Data Retention Current  
VCC = 2  
2.0  
V
___  
µA  
CE > VHC  
Mil. & Ind.  
Com'l.  
100  
4000  
___  
VIN > VHC or < VLC  
100  
1500  
(3)  
___  
___  
tCDR  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
SEM > VHC  
0
ns  
(3)  
(2)  
___  
___  
tR  
tRC  
ns  
2739 tbl 09  
NOTES:  
1. TA = +25°C, VCC = 2V, and are not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by characterization, but is not production tested.  
Data Retention Waveform  
DATA RETENTION MODE  
V
CC  
4.5V  
4.5V  
V
>
DR 2V  
t
CDR  
t
R
V
DR  
CE  
V
IH  
V
IH  
2739 drw 05  
6.42  
5
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7006X15  
7006X17  
Com'l Only  
7006X20  
Com'l &  
Military  
7006X25  
Com'l &  
Military  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
CC  
I
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
170  
160  
310  
260  
170  
160  
310  
260  
160  
150  
290  
240  
155  
145  
265  
220  
mA  
IL  
CE = V , Outputs Open  
IH  
SEM = V  
(3)  
MAX  
f = f  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
160  
150  
370  
320  
155  
145  
340  
280  
SB1  
I
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
10  
60  
50  
20  
10  
60  
50  
20  
10  
60  
50  
16  
10  
60  
50  
mA  
mA  
L
R
IH  
CE = CE = V  
R
L
IH  
SEM = SEM = V  
(3)  
MAX  
f = f  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
10  
90  
70  
16  
10  
80  
65  
(5)  
SB2  
I
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
95  
190  
160  
105  
95  
190  
160  
95  
85  
180  
150  
90  
80  
170  
140  
"A"  
IL  
"B"  
IH  
CE = V and CE = V  
Active Port Outputs Open,  
(3)  
MAX  
f=f  
____  
____  
____  
____  
____  
____  
____  
____  
R
L
IH  
MIL &  
IND  
S
L
95  
85  
240  
210  
90  
80  
215  
180  
SEM = SEM = V  
SB3  
L
I
Full Standby Current (Both Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
CC  
Ports - All CMOS Level  
Inputs)  
CE > V - 0.2V  
IN  
IN  
CC  
V
V
> V - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
< 0.2V, f = 0  
R
L
CC  
SEM = SEM > V - 0.2V  
SB4  
I
Full Standby Current  
(One Port - All  
CMOS Level Inputs)  
"A"  
COM'L  
S
L
100  
90  
170  
140  
100  
90  
170  
140  
90  
80  
155  
130  
85  
75  
145  
120  
CE < 0.2V and  
(5)  
CE"B"  
CC  
> V - 0.2V  
R
L
CC  
SEM = SEM > V - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
80  
225  
200  
85  
75  
200  
170  
IN  
CC  
IN  
V
> V - 0.2V or V < 0.2V  
Active Port Outputs Open  
(3)  
MAX  
f = f  
2739 tbl 10  
7006X35  
Com'l &  
Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
____  
____  
____  
____  
CC  
I
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
L
150  
140  
250  
210  
150  
140  
250  
210  
mA  
IL  
CE = V , Outputs Open  
IH  
SEM = V  
(3)  
MAX  
f = f  
MIL &  
IND  
S
L
150  
140  
300  
250  
150  
140  
300  
250  
140  
130  
300  
250  
____  
____  
____  
____  
SB1  
I
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
10  
60  
50  
13  
10  
60  
50  
mA  
mA  
mA  
mA  
L
R
IH  
CE = CE = V  
R
L
IH  
SEM = SEM = V  
f = f  
(3)  
MAX  
MIL &  
IND  
S
L
13  
10  
80  
65  
13  
10  
80  
65  
10  
8
80  
65  
____  
____  
____  
____  
(5)  
SB2  
I
Standby Current  
(One Port - TTL  
Level Inputs)  
"A"  
IL  
"B"  
IH  
COM'L  
S
L
85  
75  
155  
130  
85  
75  
155  
130  
CE = V and CE = V  
Active Port Outputs Open,  
(3)  
MAX  
f=f  
85  
75  
R
L
IH  
MIL &  
IND  
S
L
190  
160  
85  
75  
190  
160  
80  
70  
190  
160  
SEM = SEM = V  
____  
____  
____  
____  
SB3  
L
I
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
CC  
CE > V - 0.2V  
IN  
IN  
CC  
V
V
> V - 0.2V or  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
< 0.2V, f = 0  
R
L
CC  
SEM = SEM > V - 0.2V  
____  
____  
____  
____  
SB4  
I
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
"A"  
COM'L  
S
L
80  
70  
135  
110  
80  
70  
135  
110  
CE < 0.2V and  
(5)  
"B"  
CC  
CE > V - 0.2V  
R
L
CC  
SEM = SEM > V - 0.2V  
IN  
CC  
IN  
MIL &  
IND  
S
L
80  
70  
175  
150  
80  
70  
175  
150  
75  
65  
175  
150  
V
> V - 0.2V or V < 0.2V  
Active Port Outputs Open  
f = f  
(3)  
MAX  
2739 tbl 11  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICC DC =120ma (typ)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input levels  
of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B"is the opposite from port "A".  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
1250  
1250Ω  
DATAOUT  
BUSY  
INT  
Input Rise/Fall Times  
DATAOUT  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
5pF*  
775Ω  
30pF  
775Ω  
1.5V  
,
Figures 1 and 2  
2739 drw 06  
2739 tbl 12  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(5pF for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
AC Electrical Oharacteristics Over the  
OperatingtemperatureandSupplyVoltageRange(4,5)  
7006X15  
Com'l Only  
7006X17  
Com'l Only  
7006X20 7006X25  
Com'l & Military Com'l & Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
tRC  
tAA  
Read Cycle Time  
Address Access Time  
15  
17  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
15  
15  
17  
17  
20  
20  
25  
25  
Chip Enable Access Time(3)  
____  
____  
____  
____  
ACE  
t
____  
____  
____  
____  
tAOE  
tOH  
Output Enable Access Time  
10  
10  
12  
13  
____  
____  
____  
____  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
tLZ  
3
3
3
3
Output High-Z Time(1,2)  
10  
10  
12  
15  
____  
____  
____  
____  
tHZ  
Chip Enable to Power Up Time(2,5)  
Chip Disable to Power Down Time (2,5)  
Semaphore Flag Update Pulse (OE or SEM  
Semaphore Address Access Time  
0
0
0
0
____  
____  
____  
____  
tPU  
____  
____  
____  
____  
tPD  
15  
17  
20  
25  
____  
____  
____  
____  
tSOP  
tSAA  
)
10  
10  
10  
10  
____  
____  
____  
____  
15  
17  
20  
25  
2739 tbl 13a  
7006X35  
Com'l &  
Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
tAA  
Read Cycle Time  
35  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
Address Access Time  
35  
35  
55  
55  
70  
70  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
tACE  
tAOE  
tOH  
tLZ  
____  
____  
____  
20  
30  
35  
____  
____  
____  
3
3
3
____  
____  
____  
3
3
3
Output High-Z Time(1,2)  
15  
25  
30  
____  
____  
____  
tHZ  
Chip Enable to Power Up Time(2,5)  
0
0
0
____  
____  
____  
tPU  
Chip Disable to Power Down Time (2,5)  
Semaphore Flag Update Pulse (OE or SEM  
Semaphore Address Access Time  
35  
50  
50  
____  
____  
____  
PD  
t
____  
____  
____  
tSOP  
tSAA  
)
15  
15  
15  
____  
____  
____  
35  
55  
70  
2739 tbl 13b  
NOTES:  
1. Transition is measured ±500mV from Low or High-impedance voltage with load (Figures 1 and 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
5. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
7
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
W
R/  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
tBDD  
2739 drw 07  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
t
PU  
t
PD  
ICC  
I
SB  
,
2739 drw 08  
8
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5,6)  
7006X15  
7006X17  
Com'l Only  
7006X20  
Com'l &  
Military  
7006X25  
Com'l &  
Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
17  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
tWR  
tDW  
tHZ  
12  
0
12  
0
15  
0
20  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
15  
15  
____  
____  
____  
____  
10  
10  
12  
15  
____  
____  
____  
____  
tDH  
0
0
0
0
(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
____  
____  
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
ns  
2739 tbl 14a  
7006X35  
Com'l & Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
WRITE CYCLE  
tWC  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
70  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEW  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
AW  
t
tAS  
tWP  
tWR  
tDW  
tHZ  
25  
0
40  
0
50  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
30  
40  
____  
____  
____  
15  
25  
30  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
25  
30  
____  
____  
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
ns  
2739 tbl 14b  
NOTES:  
1. Transition is measured ±500mV from Low or High-impedance voltage with load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested but not tested.  
3. To access RAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
9
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
(3)  
(6)  
(2)  
tWR  
tAS  
tWP  
R/W  
DATAOUT  
DATAIN  
(7)  
tOW  
tWZ  
(4)  
(4)  
tDW  
tDH  
2739 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
(3)  
(6)  
(2)  
tWR  
tAS  
tEW  
R/  
W
tDW  
tDH  
DATAIN  
2739 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W low transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured by ±500mV from steady state with the Output Test  
Load (Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed  
on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified  
tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore CE = VIH and SEM = VIL. tEW must be met for either condition.  
10  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tACE  
tAW  
tWR  
tEW  
SEM  
tDW  
tSOP  
DATAOUT  
VALID  
DATA0  
DATAIN VALID  
tWP tDH  
tAS  
R/  
W
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
2739 drw 11  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) “A”  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
“B”  
R/W"B"  
SEM"B"  
2739 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, Semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.  
2. All timing is the same for left and right ports. Port “A” may be either left or right port. Port “B” is the opposite from port “A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
6.42  
11  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7006X15  
Com'l Only  
7006X17  
Com'l Only  
7006X20  
Com'l &  
Military  
7006X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/  
tBAA  
S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
15  
15  
15  
17  
17  
17  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
17  
17  
17  
____  
____  
____  
____  
5
5
5
5
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
18  
18  
30  
30  
(5)  
____  
____  
____  
____  
Write Hold After BUSY  
12  
13  
15  
17  
BUSY TIMING (M/  
tWB  
S=VIL)  
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
0
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
13  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
tWDD  
tDDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay (1)  
30  
25  
30  
25  
45  
35  
50  
35  
ns  
ns  
2739 tbl 15a  
7006X35 Com'l  
& Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
20  
20  
20  
45  
40  
40  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
BUSY  
Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
20  
35  
35  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
35  
40  
45  
(5)  
____  
____  
____  
Write Hold After BUSY  
25  
25  
25  
BUSY TIMING (M/S=VIL)  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
WB  
t
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
25  
25  
25  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
60  
45  
80  
65  
95  
80  
ns  
____  
____  
____  
____  
____  
____  
tWDD  
tDDD  
ns  
2739 tbl 15b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited with port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention with port "A".  
6. 'X' is part numbers indicates power rating (S or L).  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
12  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,5)(M/S =VIH)(4)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/  
W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
2739 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S = VIL(slave) then BUSY is input (BUSY"A" = VIH) and BUSY"B" = "don't care", for this example.  
5. All timing is the same for left and right port. Port "A' may be either left or right port. Port "B" is the port opposite from Port "A".  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/  
W"B"  
2739 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. BUSY is asserted on Port "B", blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' Version.  
6.42  
13  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
t
BDC  
BUSY"B"  
2739 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1)(M/S = VIH)  
ADDRESS "N"  
ADDR"A"  
ADDR"B"  
BUSY"B"  
(2)  
APS  
t
MATCHING ADDRESS "N"  
t
BAA  
t
BDA  
2739 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
7006X15  
Com'l Only  
7006X17  
Com'l Only  
7006X20  
Com'l &  
Military  
7006X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
0
ns  
ns  
ns  
____  
____  
____  
____  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
____  
____  
____  
____  
15  
15  
15  
15  
20  
20  
20  
20  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
2739 tbl 16a  
7006X35  
Com'l &  
Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
____  
____  
____  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
25  
25  
40  
40  
50  
50  
____  
____  
____  
Interrupt Reset Time  
ns  
2739 tbl 16b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. Industrial temperature: for other speeds, packages and powers contact your sales office.  
14  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(4)  
(3)  
tWR  
tAS  
CE"A"  
R/  
W"A"  
(3)  
tINS  
INT"B"  
2739 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
2739 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
TruthTables  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
R/WL  
A13L-A0L  
3FFF  
X
R/WR  
A13R-A0R  
X
Function  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INT  
R
L
X
X
X
X
X
L
L(2)  
H(3)  
X
Set Right INT Flag  
R
X
X
X
L
L
3FFF  
3FFE  
X
Reset Right INT Flag  
R
X
X
X
L(3)  
H(2)  
L
X
Set Left INT Flag  
L
L
L
3FFE  
X
X
X
X
Reset Left INT Flag  
L
2739 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
6.42  
15  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY Arbitration  
Inputs  
Outputs  
AOL-A13L  
AOR-A13R  
(1 )  
(1 )  
Function  
Normal  
Normal  
Normal  
CEL  
X
CER  
X
BUSYL  
BUSYR  
NO MATCH  
MATCH  
H
H
H
H
H
X
X
H
MATCH  
H
H
L
L
MATCH  
(2)  
(2)  
Write Inhibit(3 )  
2739 tbl 18  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7006 are  
push pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be low simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving low regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D7 Left  
D0 - D7 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2739 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7006.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's. These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7006providestwoportswithseparatecontrol,addressand Theleftportclearstheinterruptbyreadingaddresslocation3FFEaccess  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation when CER = OER = VIL, R/W is a "don't care". Likewise, the right port  
inmemory.TheIDT7006hasanautomaticpowerdownfeaturecontrolled interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
by CE. The CE controls on-chip power down circuitry that permits the 3FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
respectiveporttogointoastandbymodewhennotselected(CEHIGH). thememorylocation3FFF. Themessage(8bits)at3FFEor3FFFisuser-  
Whenaportisenabled,accesstotheentirememoryarrayispermitted. defined,sinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocations3FFEand3FFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 3FFE  
(HEX) where a write is defined as CE = R/W = VIL per the Truth Table.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
16  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
SLAVE  
Dual Port  
RAM  
MASTER  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (R)  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (R)  
BUSY (R)  
BUSY (L)  
2739 drw 19  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7006 RAMs.  
a master/slave array, both address and chip enable must be valid long  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMis“busy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSY indication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
SEMAPHORES  
TheIDT7006isanextremelyfastDual-Port16Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnoway slowstheaccesstimeof therightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT7006containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7006shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
TheBUSYoutputsontheIDT7006RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7006RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7006RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=VIH),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = VIL) as shown in  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
Softwarehandshaking betweenprocessorsoffersthemaximum in  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7006doesnotuseitssemaphoreflagstocontrol  
6.42  
17  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal cause either signal (SEM or OE) to go inactive or the output will never  
flexibilityinsystemarchitecture.  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin to guarantee that no system level contention will occur. A processor  
either processor. This can prove to be a major advantage in very high- requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
speedsystems.  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflag itwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
called“TokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thispro-cessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
The eight semaphore flags reside within the IDT7006 in a separate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W)asthey wouldbeusedinaccessing astandardStatic RAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0–A2. Whenaccessingthesemaphores, none  
oftheotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging resourcemarkersfortheIDT7006’sDual-PortRAM.Saythe16Kx8RAM  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside. wastobedividedintotwo8Kx8blockswhichweretobededicatedatany  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust onetimetoservicingeithertheleftorrightport.Semaphore0couldbeused  
18  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
toindicatethesidewhichwouldcontrolthelowersectionofmemory,and evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
Semaphore1couldbedefinedasthe indicatorfortheuppersectionof given a common meaning as was shown in the example above.  
memory.  
Semaphores are a useful form of arbitration in systems like disk  
Totakearesource, inthisexamplethelower8K ofDual-PortRAM, interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
the processor on the left port could write and then read a zero in to atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
back rather than a one), the left processor would assume control of the was“off-limits”totheCPU,boththeCPUandtheI/Odevicescouldaccess  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
the resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
Semaphoresarealsousefulinapplicationswherenomemory“WAIT”  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby been performed, both processors can access their assigned RAM  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining segmentsatfullspeed.  
control,itwouldlockouttheleftside.  
Anotherapplicationisintheareaofcomplexdatastructures. Inthis  
Once the left side was finished with its task, it would write a one to case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
Semaphore 0 and may then try to gain access to Semaphore 1. If mayberesponsibleforbuildingandupdatingadatastructure.Theother  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then processorreadsanincompletedatastructure,amajorerrorconditionmay  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
8K blocks of Dual-Port RAM with each other.  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
The blocks do not have to be any particular size and can even be is completed, the data structure block is released. This allows the  
variable, depending upon the complexity of the software using the interpretingprocessortocomebackandreadthecompletedatastructure,  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- therebyguaranteeingaconsistentdatastructure.  
Port RAM or other shared resources into eight parts. Semaphores can  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D
0
D
0
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
2739 drw 20  
Figure 4. IDT7006 Semaphore Logic  
6.42  
19  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
B
Commercial (0 C to +70 C)  
°
°
(1)  
Industrial (-40 C to +85 C)  
°
°
Military (-55 C to +125 C)  
°
°
Compliant to MIL-PRF-38535 QML  
PF  
G
J
64-pin TQFP (PN64-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
68-pin Flatpack (F68-1)  
F
15  
17  
20  
25  
35  
55  
70  
Commercial Only  
Commercial Only  
Commercial & Military  
Commercial & Military  
Commercial & Military  
Commercial, Industrial, & Military  
Military Only  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
7006  
128K (16K x 8) Dual-Port RAM  
2739 drw 21  
NOTE:  
1. Industrial temperature range is available on selected TQFP packages in standard power.  
For other speeds, packages and powers contact your sales office.  
DatasheetDocumentHistory  
1/4/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
6/3/99:  
9/14/99:  
Page 15 Changed 3FFF to 3FFE in Truth Table III  
CORPORATE HEADQUARTERS  
2975 StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6166  
fax: 408-492-8674  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
20  

相关型号:

IDT7006L

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15F

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15FB

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15FG

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQFP68, 0.970 X 0.970 INCH, 0.080 INCH HEIGHT, GREEN, FP-68
IDT

IDT7006L15G

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15GB

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15J

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15J8

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.170 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT7006L15JB

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15JG

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, PLCC-68
IDT

IDT7006L15PF

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

IDT7006L15PFB

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT