IL610A-3ETR13 [ETC]

Passive Input Digital Isolators; 被动输入数字隔离器
IL610A-3ETR13
型号: IL610A-3ETR13
厂家: ETC    ETC
描述:

Passive Input Digital Isolators
被动输入数字隔离器

文件: 总14页 (文件大小:841K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IL610 IL611 IL612  
IL613 IL614  
Passive Input Digital Isolators  
Functional Diagram  
Features  
40 Mbps Data Rate  
Very Wide Input Voltage Range  
Open Drain or CMOS Outputs  
Failsafe Output (Logic high output for zero coil current )  
Output Enable  
3.3 V or 5 V Power Supply  
2500 VRMS Isolation (1 Minute)  
Low Power Dissipation  
-40°C to 85°C Temperature Range  
20 kV/µs Typical Common Mode Rejection  
UL1577 & IEC61010 Approval (pending)  
Available in MSOP, SOIC, and PDIP Packages  
and as Bare Die  
Applications  
CAN Bus/ Device Net  
General Purpose Opto Replacement  
Wired-OR Alarms  
SPI interface  
I2C  
RS 485, RS422, RS232  
Digital Fieldbus  
Size critical multi-channel applications  
Description  
The IL600 series are isolated signal couplers with CMOS or  
open drain transistor outputs which can be used to replace  
opto-couplers in many standard isolation functions. The  
devices are manufactured with NVE’s patented IsoLoop®  
GMR sensor technology giving exceptionally small size and  
low power dissipation.  
A single resistor is used to set maximum input current for  
input voltages above 0.5 V. The devices are available in  
SOIC, PDIP and MSOP packages and as bare die.  
Isoloop® is a registered trademark of NVE Corporation.  
*U.S. Patent number 5,831,426; 6,300,617 and others.  
ISB-DS-001-IL612-A, January 20, 2005  
NVE Corp., 11409 Valley View Road, Eden Prairie, MN 55344-3617, U.S.A.  
Telephone: 952-829-9217, Fax 952-829-9189, www.isoloop.com  
© 2005 NVE Corporation  
IL610 IL611 IL612  
IL613 IL614  
Absolute Maximum Ratings(1)  
Parameters  
Symbol  
TS  
Min.  
-55  
Typ.  
Max.  
150  
125  
7
Units  
°C  
Test Conditions  
Storage Temperature  
Ambient Operating Temperature  
Supply Voltage  
TA  
-55  
°C  
VDD  
IIN  
-0.5  
-25  
-0.5  
-10  
V
Input Current  
25  
mA  
V
Output Voltage  
VO  
VCC+0.5  
10  
Maximum Output Current  
ESD  
IO  
mA  
kV  
2
HBM  
Recommended Operating Conditions  
Parameters  
Symbol  
Min.  
-40  
3.0  
0
Typ.  
Max.  
85  
Units  
°C  
Test Conditions  
Ambient Operating Temperature  
Supply Voltage  
TA  
VDD  
IIN  
5.5  
10  
V
Input Current  
Output Current  
Open Drain Reverse Voltage  
Open Drain Voltage  
mA  
mA  
V
IOUT  
VSD  
VDS  
IOD  
-4  
4
-0.5  
6.5  
4
50  
400  
V
Open Drain Load Current  
Input Signal Rise and Fall Times  
Common Mode Input Voltage  
mA  
ms  
tIR, tIF  
VCM  
VAC RMS  
Insulation Specifications  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Creepage Distance (external)  
MSOP  
3.010  
4.026  
8.077  
7.077  
mm  
mm  
0.15’’ SOIC  
0.30’’ SOIC  
mm  
0.30’’ PDIP  
mm  
Internal Isolation Distance  
Leakage Current  
Barrier Impedance  
9
µm  
0.2  
240 VRMS, 60 Hz  
µARMS  
|| pF  
>1014||7  
Safety & Approvals  
IEC61010-1  
Approval Pending  
TUV Certificate Numbers:  
Classification  
Pollution  
Material  
Max. Working  
Voltage  
Model  
Package  
Degree  
Group  
III  
IL610-1, IL610A-1, IL611-1, IL611A-1  
MSOP  
PDIP  
II  
II  
II  
100 VRMS  
300 VRMS  
300 VRMS  
IL610-2, IL610A-2, IL611-2, IL611A-2, IL612-2, IL612A-2  
IL613, IL614  
III  
III  
SOIC (0.3")  
SOIC (0.15")  
IL610-3, IL610A-3, IL611-3, IL611A-3, IL612-3, IL612A-3  
IL613-3, IL614-3  
II  
III  
150 VRMS  
UL 1577  
Approval Pending  
Component Recognition program. File #:  
Rated 2500VRMS for 1 minute (SOIC, PDIP), 1000VRMS for 1 minute (MSOP)  
Electrostatic Discharge Sensitivity  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated  
circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance  
degradation to complete failure.  
2
IL610 IL611 IL612  
IL613 IL614  
IL610 and IL610A Pin Connections  
1
2
3
4
5
6
7
NC  
No internal connection  
IN+ Coil connection  
IN-  
NC  
Coil connection  
No internal connection  
GND Ground return for VDD  
OUT Data out  
VOE Output enable. Internally held low with  
100 k  
8
VDD Supply Voltage  
IL610  
IL610A  
IL611 and IL611A Pin Connections  
1
2
3
4
5
6
7
8
IN1+ Channel 1 coil connection  
IN1- Channel 1 coil connection  
IN2+ Channel 2 coil connection  
IN2-  
Channel 2 coil connection  
GND Ground return for VDD  
OUT2 Data out channel 2  
OUT1 Data out channel 1  
VDD  
Supply Voltage  
IL611  
IL611A  
IL612 and IL612A Pin Connections  
1
2
3
4
5
6
7
8
IN1  
Data in, channel 1  
VDD 1 Supply Voltage 1  
OUT2 Data out, channel 2  
GND1 Ground return for VDD1  
GND2 Ground return for VDD2  
IN2  
Data in, channel 2  
VDD 2 Supply Voltage 2  
OUT1 Data out, channel 1  
IL612  
IL612A  
IL613 Pin Connections  
1
2
3
4
5
6
7
8
9
IN1+ Channel 1 coil connection  
*
Internally connected to pin 8  
Channel 1 coil connection  
IN1-  
IN2+ Channel 2 coil connection  
IN2-  
Channel 2 coil connection  
IN3+ Channel 3 coil connection  
IN3-  
*
Channel 3 coil connection  
Internally connected to pin 2  
GND Ground return for VDD (Internally  
connected to pin 15)  
10  
11  
12  
OUT3 Data out channel 3  
NC  
VDD  
No connection  
Supply Voltage. Pin 12 and pin 16 must be  
connected externally  
13  
14  
15  
OUT2 Data out channel 2  
OUT1 Data out channel 1  
GND Ground return for VDD (Internally  
connected to pin 9)  
IL613  
*
Pins 2 and 8 internally connected  
** Pins 9 and 15 internally connected  
16  
VDD  
Supply Voltage. Pin 12 and pin 16 must be  
connected externally  
3
IL610 IL611 IL612  
IL613 IL614  
IL614 Pin Connections  
1
VDD1 Supply Voltage 1  
GND1 Ground return for VDD1 (Internally  
connected to pin 8)  
2
3
4
OUT1 Data out channel 1  
RE  
Channel 1 data output enable. Internally  
held low with 100 kΩ  
5
6
IN2  
Vcoil  
Data in channel 2  
Supply connection for channel 2 and  
channel 3 coils  
Data in channel 3  
7
8
IN3  
GND1 Ground return for VDD1 (Internally  
connected to pin 2)  
9
GND2 Ground return for VDD2 (Internally  
connected to pin 15)  
10  
11  
12  
13  
14  
15  
OUT3 Data out channel 3  
NC  
No connection  
IL614  
VDD2 Supply Voltage 2  
OUT2 Data out channel 2  
*
Pins 2 and 8 internally connected  
** Pins 9 and 15 internally connected  
IN1+  
Coil connection  
GND2 Ground return for VDD2 (Internally  
connected to pin 9)  
16  
IN1-  
Coil connection  
4
IL610 IL611 IL612  
IL613 IL614  
Electrical Specifications  
Electrical Specifications are Tmin to Tmax unless otherwise stated.  
Parameters  
Symbol  
ZCOIL  
Min.  
Typ.  
55||9  
0.16  
Max.  
67||10  
0.165  
2
Units  
||nH  
/°C  
mA  
mA  
µA  
Test Conditions  
Coil Input Impedance  
47||8  
TAMB = 25°C  
Temperature Coeff of Coil Resistance  
Input Threshold for Logic High  
Input Threshold for Logic Low  
Quiescent Current  
TC RCOIL  
I INH  
I INL  
10  
IL610, IDD1  
IL610, IDD2  
IL611, IDD1  
IL611, IDD2  
IL612, IDD1  
IL612, IDD2  
IL613, IDD1  
IL613, IDD2  
IL614, IDD1  
IL614, IDD2  
0
3
0
6
3
3
0
9
3
6
0
2
0
4
2
2
0
6
2
4
VDD= 5 V, IIN=0  
2
mA  
µA  
4
2
2
mA  
mA  
mA  
µA  
6
2
4
mA  
mA  
mA  
µA  
Quiescent Current  
IL610, IDD1  
IL610, IDD2  
IL611, IDD1  
IL611, IDD2  
IL612, IDD1  
IL612, IDD2  
IL613, IDD1  
IL613, IDD2  
IL614, IDD1  
IL614, IDD2  
VDD= 3.3 V, IIN=0  
1.3  
mA  
µA  
2.6  
1.3  
1.3  
mA  
mA  
mA  
µA  
4
mA  
mA  
mA  
V
1.3  
2.6  
Logic High Output Voltage(4)  
Logic Low Output Voltage  
Logic Output Current  
VOH  
VOL  
IO  
VDD-0.1  
VDD  
VDD  
IO = -20 µA  
IO = -4 mA  
IO = 20 µA  
IO = 4 mA  
VDD-0.5  
0
0.5  
7
0.1  
0.8  
V
4
mA  
Switching Specifications CMOS Outputs  
Data Rate  
40  
25  
Mbps  
ns  
ns  
50% Duty Cycle  
50% Points, Vo  
CL = 15 pF,  
Minimum Pulse Width  
Propagation Delay Input to Output  
(High to Low)  
PW  
tPHL  
20  
20  
25  
25  
ICOIL = 10 mA  
CL = 15 pF,  
Propagation Delay Input to Output  
(Low to High)  
Average Propagation Delay Drift  
tPLH  
ns  
I
COIL = 10 mA  
50  
7
ps/°C  
(2)  
Pulse Width Distortion |tPHL-tPLH  
Propagation Delay Skew (3)  
Output Rise Time (10-90%)  
Output Fall Time (10-90%)  
|
PWD  
10  
20  
4
ns  
ns  
CL = 15 pF  
CL = 15 pF  
CL = 15 pF  
CL = 15 pF  
VT = 300 Vpeak  
tPSK  
10  
2
tR  
tF  
ns  
2
4
ns  
Common Mode Transient Immunity  
|CMH|,|CML|  
15  
20  
kV/µs  
Switching Specifications Open Drain Outputs  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
50% Duty Cycle,  
Rpullup = 1 kΩ  
50% Duty Cycle,  
Rpullup = 1 kΩ  
Data Rate  
10  
Mbps  
Minimum Pulse Width  
PW  
tPHL  
100  
ns  
ns  
Propagation Delay Input to Output  
(High to Low)  
20  
50  
20  
25  
75  
CL = 2 k||15 pF  
Propagation Delay Input to Output  
(Low to High)  
tPLH  
ns  
CL = 2 k||15 pF  
VT = 300 Vpeak  
Common Mode Transient Immunity  
|CMH|,|CML|  
15  
kV/µs  
5
IL610 IL611 IL612  
IL613 IL614  
Notes:  
1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions.  
It does not guarantee performance.  
2. PWD is defined as |tPHL - tPLH|. %PWD is equal to the PWD divided by the pulse width.  
3.  
tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at 25°C.  
4. The term VDD refers to the supply voltage on the output side of the isolated channel.  
6
IL610 IL611 IL612  
IL613 IL614  
should be noted that we are concerned only with the  
magnitude of the voltage across the coil. The absolute values  
of Vin High and Vin Low are arbitrary.  
Operation  
The IL600 series are current mode devices. Changes in  
current flow into the input coil result in logic state changes  
at the output. One of the great advantages of the passive coil  
input is that both single ended and differential inputs can be  
handled without the need for reverse bias protection. The  
internal GMR sensor switches the output to logic low if  
current flows from (In-) to (In+). Only a single resistor is  
required to limit the input coil to the recommended 10 mA.  
This allows large input voltages to be used since there is no  
semiconductor structure on the input.  
The absolute maximum current through the coil of the IL600  
series is 25 mA DC. However, it is important to limit input  
current to levels well below this in all applications. The  
worst case logic threshold current is 10 mA. While typical  
threshold currents are substantially less than this, NVE  
recommends designing a 10 mA logic threshold current in  
each application. In all cases, the current must flow from In-  
to In+ in the coil to switch the output low. This is true  
regardless of true or inverted data configurations. Output  
logic high is the zero input current state.  
Figure 2. Series Resistor Calculation Equivalent Circuit.  
Example 1. In this case, Tnom = 25ºC, Vin High is 24 V, Vin  
Low is 1.8 V, and Icoil minimum is specified as 10 mA. Total  
loop resistance is  
(Vin High - Vin Low) 22.2  
(R1+ Rcoil) =  
=
Ω = 2220 Ω  
Icoil  
0.01  
Therefore,  
Figure 1 shows the response of the IL600 series. The GMR  
bridge structure is designed such that the output of the  
isolator is logic high when no field signal is present. The  
output will switch to the low state with 10 mA of coil  
current and the output will switch back to the high state  
when the input current falls below 2 mA. This allows glitch-  
free interface with low slew rate signals.  
R1= (2220 55) = 2145 Ω  
Example 2. At a maximum operating temperature of 85°C,  
Tmax = 85ºC, Tnom = 25ºC, Vin High = 5 V, Vin Low = 0 V,  
and nominal Rcoil = 55 . At Tmax = 85ºC  
Rcoil = 55 + (Tmax Tmin)× TCRcoil  
= 55 + (85 - 25)× 0.165 = 55 + 9.9 = 65 Ω  
Therefore, the recommended series resistor is  
(VinHigh - VinLow)  
R1=  
- Rcoil  
Icoil  
5 - 0  
0.01  
=
65 = 435Ω  
Allowance should also be made for the temperature  
coefficient of the current limiting resistor to ensure that Icoil  
is 10 mA at maximum operating temperature.  
Power Supplies  
Figure 1. IL600 Series Transfer Function  
It is recommended that 47 nF ceramic capacitors be used to  
decouple the power supplies. The capacitors must be placed  
as close as possible to VDD for proper operation.  
To calculate the value of the protection resistor (R1)  
required, use Ohm’s law as shown in the examples below. It  
7
IL610 IL611 IL612  
IL613 IL614  
Application Diagrams  
CAN Bus  
RS232  
8
IL610 IL611 IL612  
IL613 IL614  
I2C  
Single Phase Power Control  
9
IL610 IL611 IL612  
IL613 IL614  
Inverting and Non-Inverting Circuits  
Differential to Single Ended Conversion  
10  
IL610 IL611 IL612  
IL613 IL614  
Package drawings, dimensions and specifications  
8-pin MSOP Package  
8-pin SOIC Package  
8-pin PDIP Package  
11  
IL610 IL611 IL612  
IL613 IL614  
0.15" 16-pin SOIC  
0.30" 16-pin SOIC  
12  
IL610 IL611 IL612  
IL613 IL614  
Ordering information and valid part numbers.  
13  
IL610 IL611 IL612  
IL613 IL614  
About NVE  
An ISO 9001 Certified Company  
NVE Corporation is a high technology components manufacturer having the unique capability to combine leading edge Giant  
Magnetoresistive (GMR) materials with integrated circuits to make high performance electronic components. Products include  
Magnetic Field Sensors, Magnetic Field Gradient Sensors (Gradiometer), Digital Magnetic Field Sensors, Digital Signal Isolators  
and Isolated Bus Transceivers.  
NVE is a leader in GMR research and in 1994 introduced the world’s first products using GMR material, a line of GMR magnetic  
field sensors that can be used for position, magnetic media, wheel speed and current sensing.  
NVE is located in Eden Prairie, Minnesota, a suburb of Minneapolis. Please visit our Web site at www.nve.com or call 952-829-  
9217 for information on products, sales or distribution.  
NVE Corporation  
11409 Valley View Road  
Eden Prairie, MN 55344-3617 USA  
Telephone: (952) 829-9217  
Fax: (952) 829-9189  
Internet: www.nve.com  
e-mail: isoinfo@nve.com  
The information provided by NVE Corporation is believed to be accurate. However, no responsibility is assumed by NVE  
Corporation for its use, nor for any infringement of patents, nor rights or licenses granted to third parties, which may result from  
its use. No license is granted by implication, or otherwise, under any patent or patent rights of NVE Corporation. NVE  
Corporation does not authorize, nor warrant, any NVE Corporation product for use in life support devices or systems or other  
critical applications. The use of NVE Corporation’s products in such applications is understood to be entirely at the customer’s  
own risk.  
Specifications shown are subject to change without notice.  
ISB-DS-001-IL600-A  
January 28, 2005  
14  

相关型号:

IL610A-3ETR7

Passive Input Digital Isolators
ETC

IL610A-3TR13

Passive Input Digital Isolators
ETC

IL610A-3TR7

Passive Input Digital Isolators
ETC

IL610A-5

Passive Input Digital Isolators
ETC

IL610A-5E

Passive Input Digital Isolators
ETC

IL610A-5ETR13

Passive Input Digital Isolators
ETC

IL610A-5ETR7

Passive Input Digital Isolators
ETC

IL610A-5TR13

Passive Input Digital Isolators
ETC

IL610A-5TR7

Passive Input Digital Isolators
ETC

IL611

Passive Input Digital Isolators
ETC

IL611-1

Passive Input Digital Isolators
ETC

IL611-1E

Passive Input Digital Isolators
ETC