INA-31063 [ETC]

3V Fixed Gain. High Isolation amplifier ; 3V固定增益。高隔离放大器\n
INA-31063
型号: INA-31063
厂家: ETC    ETC
描述:

3V Fixed Gain. High Isolation amplifier
3V固定增益。高隔离放大器\n

隔离放大器
文件: 总11页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DC–2.5 GHz 3 V, High Isolation  
Silicon RFIC Amplifier  
Technical Data  
INA-31063  
Features  
Surface Mount SOT-363  
( SC-70) Package  
Description  
• High Reverse Isolation  
-40 dB at 1.9 GHz  
Agilents INA-31063 is a Silicon  
RFIC amplifier that has excellent  
gain and isolation for applications  
to 2.5 GHz. Packaged in an ultra-  
miniature SOT-363 package, it  
requires half the board space of a  
SOT-143 package.  
• Single +3V Supply  
2
• 15 dB |S21| at 1.9 GHz  
• 200 Output Impedance  
• Ultra-Miniature Package  
• Unconditionally Stable  
The INA-31063 uses a unique  
circuit topology that provides  
broadband gain and 50 input  
and 200 output impedance.  
With more than 35 dB of isolation  
to 2.5 GHz makes it an excellent  
candidate for LO buffer  
Pin Connections and  
Package Marking  
Applications  
• LO Buffer and Amplifier for  
Cellular, Cordless, Special  
Mobile Radio, PCS, ISM,  
Wireless LAN, DBS, TVRO,  
and TV Tuner  
GND 2 1  
GND 1 2  
INPUT 3  
6
OUTPUT  
& V  
d
5 GND 1  
applications.  
4 V  
d
The INA-31063 is fabricated using  
TM  
Note: Package marking provides  
orientation and identification.  
HPs 30 GHz f  
ISOSAT  
MAX  
Silicon bipolar process which  
uses nitride self-alignment,  
submicrometer lithography,  
trench isolation, ion implantation,  
and polyimide intermetal dielec-  
tric and scratch protection to  
achieve superior performance,  
uniformity, and reliability.  
Simplified Schematic  
V
d
Output & V  
d
Input  
Gnd1  
Gnd2  
2
Absolute Maximum Ratings  
Thermal Resistance[2]  
:
Absolute  
Symbol  
Parameter  
Device Voltage,  
Units  
Maximum[1]  
θjc = 170°C/W  
V
d
V
6.0  
Notes:  
output to ground  
1. Operation of this device above any one  
of these limits may cause permanent  
damage.  
2. TC = 25°C (TC is defined to be the  
temperature at the package pins where  
contact is made to the circuit board)  
Pin  
Tj  
CW RF Input Power  
Junction Temperature  
Storage Temperature  
dBm  
°C  
+7.0  
150  
TSTG  
°C  
-65 to 150  
INA-31063 Electrical Specifications, TC = 25°C, ZO = 50 ,V = 3 V  
d
Symbol  
Parameters and Test Conditions  
Units Min. Typ. Max. Std.  
Dev.[4]  
|S21|2  
Gain in 50 system  
f = 0.9 GHz dB  
f = 1.9 GHz  
f = 2.4 GHz  
14.0  
13.0[3] 15.1  
15.0  
0.44  
0.25  
NF50  
P1dB  
Noise Figure  
f = 1.9 GHz dB  
6.1  
Output Power at 1 dB Gain Compression  
f = 0.9 GHz dBm  
f = 1.9 GHz  
f = 2.4 GHz  
-1.8  
-2.1  
-3.5  
IP3  
Output Third Order Intercept Point  
f = 0.9 GHz dBm  
f = 1.9 GHz  
f = 2.4 GHz  
9.1  
8.5  
6.8  
VSWRin  
VSWRout  
Ιd  
Input VSWR  
f = 0.1 – 2.4 GHz  
f = 0.1 – 2.4 GHz  
1.35:1  
3.5:1  
11.0 13.5[3] 0.47  
Output VSWR  
Device Current  
mA  
Notes:  
3. Guaranteed specifications are 100% tested in production.  
4. Standard deviation number is based on measurement of a large number of parts from three non-consecutive wafer lots  
during the initial characterization of this product, and is intended to be used as an estimate for distribution of the  
typical specification.  
3
INA-31063 Typical Performance, TC = 25°C, ZO = 50 , Vd = 3 V  
20  
7.5  
4
2.7 V  
3.0 V  
3.3 V  
2.7 V  
3.0 V  
3.3 V  
7
2
0
15  
6.5  
6
-2  
10  
5
5.5  
5
-4  
-6  
-8  
2.7 V  
3.0 V  
3.3 V  
0
4.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 1. Gain vs. Frequency and  
Voltage measured in a 50 system.  
Figure 2. Noise Figure vs. Frequency  
and Voltage.  
Figure 3. Output Power for 1 dB Gain  
Compression vs. Frequency and  
Voltage.  
20  
8
4
-40°C  
-40°C  
+25°C  
+85°C  
+25°C  
+85°C  
2
15  
10  
7
0
-2  
6
5
4
-4  
-6  
-8  
5
-40°C  
+25°C  
+85°C  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 4. Gain vs. Frequency and  
Temperature measured in a 50 Ω  
system.  
Figure 5. Noise Figure vs. Frequency  
and Temperature.  
Figure 6. Output Power for 1 dB Gain  
Compression vs. Frequency and  
Temperature.  
4
3
25  
14  
12  
10  
8
-40°C  
+25°C  
+85°C  
20  
15  
2
10  
5
6
1
-40°C  
+25°C  
+85°C  
VSWR in  
VSWR out  
4
0
0
2
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
V
(V)  
d
Figure 7. Input and Output VSWR vs.  
Frequency.  
Figure 8. Supply Current vs. Voltage  
and Temperature.  
Figure 9. Third Order Intercept  
Point, IP vs. Frequency and  
3
Temperature.  
4
INA-31063 Typical Scattering Parameters[5], TC = 25°C, ZO = 50 ,V = 3.0 V  
d
Freq.  
GHz  
S11  
S21  
Mag  
S12  
Mag  
S22  
K
Mag  
Ang  
dB  
Ang  
dB  
Ang  
Mag  
Ang  
Factor  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
0.14  
0.15  
0.14  
0.15  
0.15  
0.14  
0.14  
0.15  
0.14  
0.14  
0.14  
0.13  
0.13  
0.13  
0.13  
0.12  
0.12  
0.12  
0.12  
0.11  
0.10  
0.08  
0.07  
0.05  
0.04  
0.04  
0.05  
0.06  
0.08  
0.10  
0.13  
0.15  
0.17  
0.19  
0.21  
0.22  
0.24  
0.25  
0.25  
0.26  
0.27  
0.27  
0.28  
0.29  
0.29  
0.30  
0.31  
0.32  
0.33  
0.33  
171  
167  
164  
163  
152  
152  
151  
147  
143  
138  
137  
136  
132  
129  
125  
128  
130  
130  
130  
128  
129  
130  
134  
144  
166  
-176  
-159  
-151  
-149  
-150  
-152  
-153  
-155  
-158  
-160  
-161  
-163  
-165  
-167  
-169  
-172  
-175  
-178  
180  
177  
174  
171  
169  
166  
164  
13.6  
13.7  
13.7  
13.7  
13.8  
13.8  
13.9  
14.0  
14.0  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.6  
14.8  
14.9  
15.1  
15.2  
15.3  
15.3  
15.1  
15.0  
14.8  
14.5  
14.1  
13.7  
13.3  
12.8  
12.3  
11.8  
11.3  
10.7  
10.1  
9.6  
4.81  
4.84  
4.83  
4.86  
4.88  
4.88  
4.93  
4.99  
5.04  
5.06  
5.12  
5.20  
5.26  
5.33  
5.34  
5.36  
5.49  
5.57  
5.69  
5.77  
5.83  
5.79  
5.71  
5.63  
5.50  
5.29  
5.06  
4.84  
4.62  
4.36  
4.11  
3.89  
3.65  
3.42  
3.20  
3.02  
2.84  
2.66  
2.51  
2.37  
2.24  
2.12  
2.01  
1.90  
1.81  
1.72  
1.63  
1.55  
1.48  
1.41  
-5  
-11  
-15  
-20  
-26  
-30  
-35  
-40  
-45  
-51  
-56  
-61  
-67  
-73  
-80  
-85  
-91  
-32.5  
-37.1  
-36.0  
-37.6  
-39.8  
-37.1  
-38.6  
-41.3  
-45.5  
-45.2  
-44.1  
-45.3  
-47.3  
-46.8  
-41.9  
-41.5  
-44.3  
-45.0  
-46.4  
-45.8  
-44.7  
-43.4  
-42.4  
-41.7  
-41.8  
-42.2  
-43.2  
-43.1  
-43.3  
-44.2  
-44.0  
-43.0  
-42.0  
-42.2  
-41.3  
-38.9  
-38.0  
-37.3  
-35.5  
-34.2  
-33.2  
-32.4  
-31.3  
-30.5  
-29.7  
-28.9  
-28.3  
-27.7  
-27.0  
-26.2  
0.024  
0.014  
0.016  
0.013  
0.010  
0.014  
0.012  
0.009  
0.005  
0.005  
0.006  
0.005  
0.004  
0.005  
0.008  
0.008  
0.006  
0.006  
0.005  
0.005  
0.006  
0.007  
0.008  
0.008  
0.008  
0.008  
0.007  
0.007  
0.007  
0.006  
0.006  
0.007  
0.008  
0.008  
0.009  
0.011  
0.013  
0.014  
0.017  
0.019  
0.022  
0.024  
0.027  
0.030  
0.033  
0.036  
0.039  
0.041  
0.045  
0.049  
10  
11  
-3  
-39  
-6  
-18  
-35  
-46  
-35  
-4  
-6  
-16  
20  
40  
58  
30  
27  
31  
53  
61  
74  
0.49  
0.52  
0.51  
0.54  
0.53  
0.51  
0.53  
0.55  
0.56  
0.55  
0.54  
0.55  
0.55  
0.55  
0.53  
0.49  
0.50  
0.50  
0.51  
0.52  
0.53  
0.52  
0.50  
0.49  
0.49  
0.47  
0.44  
0.40  
0.39  
0.36  
0.34  
0.32  
0.30  
0.29  
0.27  
0.25  
0.24  
0.23  
0.21  
0.21  
0.20  
0.20  
0.19  
0.19  
0.19  
0.19  
0.19  
0.19  
0.19  
0.19  
-3  
-4  
-4  
-3  
-5  
-5  
-5  
-8  
3.45  
5.37  
4.79  
5.60  
7.31  
5.38  
6.02  
7.66  
13.54  
13.71  
11.32  
13.20  
16.34  
12.92  
8.32  
-11  
-14  
-17  
-19  
-24  
-28  
-35  
-36  
-37  
-40  
-44  
-48  
-54  
-62  
-68  
-73  
-80  
-87  
-93  
-97  
-100  
-105  
-108  
-109  
-111  
-113  
-115  
-114  
-114  
-115  
-113  
-111  
-109  
-108  
-105  
-103  
-101  
-99  
8.84  
11.23  
11.18  
12.80  
12.59  
10.20  
8.94  
8.22  
8.42  
8.64  
9.24  
11.43  
12.34  
13.10  
16.46  
17.71  
16.22  
15.17  
16.23  
15.49  
13.50  
12.09  
12.00  
10.55  
9.98  
-97  
-104  
-111  
-119  
-127  
-135  
-143  
-152  
-160  
-167  
-174  
178  
172  
165  
159  
153  
147  
142  
137  
132  
128  
124  
120  
116  
112  
109  
105  
102  
98  
78  
79  
76  
74  
76  
77  
85  
86  
96  
105  
115  
118  
125  
139  
143  
144  
151  
155  
153  
153  
154  
154  
154  
153  
152  
151  
151  
151  
150  
9.1  
8.5  
8.0  
7.5  
7.0  
6.5  
6.1  
5.6  
5.1  
4.7  
4.3  
3.8  
3.4  
3.0  
9.10  
8.83  
8.26  
7.82  
7.47  
7.17  
6.94  
6.89  
95  
92  
89  
87  
-98  
-97  
-95  
-93  
6.54  
6.30  
Note:  
5. Reference plane per Figure 19 in Applications Information section.  
5
The V connection to the ampli-  
fier is RF bypassed by placing a  
the circuit board). The circuit  
board material is 0.031-inch thick  
FR4. Plated through holes (vias)  
are used to bring the ground to  
the top side of the circuit where  
needed. The performance of  
INA-31063 is sensitive to ground  
path inductance. The two-stage  
design creates the possibility of a  
feedback loop being formed  
through the ground returns of the  
stages, Gnd 1 and Gnd 2.  
d
INA-31063 Applications  
Information  
capacitor to ground near the V  
d
pin of the amplifier package. The  
power supply connection to the  
RF Output pin is achieved by  
means of a RF choke (inductor).  
The value of the RF choke must  
be large relative to 50 in order  
to prevent loading of the RF  
Output. The supply voltage end of  
the RF choke is bypassed to  
ground with a capacitor. If the  
physical layout permits, this can  
be the same bypass capacitor that  
Introduction  
The INA-31063 is a +3 volt silicon  
RFIC amplifier that is designed  
with a two stage internal network  
to provide a broadband gain and  
50 input and 200 output  
impedance. With a P  
com-  
-l dB  
pressed output power of -3 dBm  
and high isolation of 40 dB, the  
INA-31063 is well suited for LO  
buffer amplifier applications in  
mobile communication systems.  
Gnd 1  
Gnd 2  
is used at the V terminal of the  
d
amplifier. Blocking capacitors are  
normally placed in series with the  
RF Input and the RF Output to  
isolate the DC voltages on these  
pins from circuits adjacent to the  
amplifier. The values for the  
blocking and bypass capacitors  
are selected to provide a reac-  
tance at the lowest frequency of  
operation that is small relative to  
50 . Since the gain of the  
INA-31063 extends down to DC,  
the frequency response of the  
amplifier is limited only by the  
values of the capacitors and  
choke.  
The 200 output impedance of  
the amplifier allows easy connec-  
tions to additional RFICs and  
some filters.  
VIA  
In addition to use in buffer  
applications in the cellular  
market, the INA-31063 will find  
many applications in battery  
operated wireless communication  
systems.  
Figure 12. INA-31063 Potential  
Ground Loop.  
Gnd 1  
Gnd 2  
VIA  
Operating Details  
The INA-31063 is a voltage biased  
device that operates from a  
VIA  
+3 volt power supply with a  
typical current drain of 11 mA.  
All bias regulation circuitry is  
integrated into the RFIC.  
Figure 10 shows a typical imple-  
mentation of the INA-31063. The  
supply voltage for the INA-31063  
must be applied to two terminals,  
Figure 13. INA-31063 Suggested  
Layout.  
RF Layout  
An example for the RF layout for  
the INA-31063 is shown in  
Figure 11.  
At least one ground via should be  
placed adjacent to each ground  
pin to assure good RF grounding.  
Multiple vias are used to reduce  
the inductance of the path to  
ground and should be placed as  
close to the package terminals as  
practical.  
Gnd 1  
50  
Gnd 2  
the V pin and the RF Output pin.  
d
C
out  
50 Ω  
Gnd2  
Gnd1  
RF  
RF Output  
Output  
Gnd1  
and V  
RFC  
Gnd 1  
d
The effects of the potential  
ground loop shown in Figure 12  
may be observed as a peaking” in  
the gain versus frequency  
response, an increase in input  
VSWR, or even as return gain at  
the input of the INA-31063.  
V
d
RF  
Input  
Figure 11. RF Layout  
C
bypass  
C
block  
This example uses a  
microstripline design (solid  
groundplane on the backside of  
Figure 10. Basic Amplifier  
Application.  
6
Figure 14 shows an assembled  
50 amplifier. The +3 volt supply  
blocking capacitors were 100 pF  
and the bypass capacitor was  
1000 pF.  
Frequency RFC  
RFM  
C
SHUNT  
Hz 120 nH 27  
400 M  
nH  
2.7 pF  
1.0 pF  
is fed directly into the V pin of  
d
900 MHz 56 nH 12 nH  
the INA-31063 and into the RF  
Output pin through the RF choke  
(RFC). Capacitor C3 provides RF  
RF  
Output  
1900 MHz 33 nH 4.7 nH None  
2400 MHz 27 nH 1.8 nH None  
RFM  
C
shunt  
C
out  
bypassing for both the V pin and  
d
Figure 16. Suggested Matching  
Elements for Common Frequency  
Bands.  
RFC  
C
the power supply end of the RFC.  
Capacitor C4 is optional and may  
be used to add additional  
V
RF  
Input  
d
bypass  
C
block  
The test results for the INA-31063  
were measured on the 50 input  
and output impedance matched  
amplifier described above.  
bypassing for the V line. A well-  
d
bypassed V line is especially  
d
Figure 15. Impedance Matched  
Output Amplifier Circuit.  
necessary in cascades of ampli-  
fier stages to prevent oscillation  
that may occur as a result of RF  
feedback through the power  
supply lines.  
These values provide excellent  
4
900 MHz  
1900 MHz  
0
amplifier performance at 900 MHz.  
Larger values for the choke and  
capacitors can be used to extend  
the lower end of the bandwidth. A  
convenient method for making RF  
connection to the demonstration  
board is to use a PCB mounting  
type of SMA connector (Johnson  
142-0701881, or equivalent). These  
connectors can be slipped over  
the edge of the PCB and the  
center conductor soldered to the  
input and output lines. The ground  
pins of the connectors can be  
soldered to the ground plane on  
the backside of board.  
900 MHz 50 Matched  
Example  
-4  
-8  
The use of a simple impedance  
matching network will typically  
increase both gain and output  
power by 1.5 dB and 1.5 dBm,  
respectively. The values that were  
chosen for the two tuning ele-  
ments were a 12 nF series induc-  
tor and a 1.0 pF shunt capacitor.  
The RF choke was a 56 nH  
-12  
-16  
-30  
-25  
-20  
-15  
-10  
-5  
0
P
in  
(dBm)  
Figure 17. Measured Input Power vs.  
Output Power on Assembled 50 Ω  
Amplifier at 900 MHz and 1900 MHz.  
(Coilcraft 1008CS-221, TOKO  
LL2012-F or equivalent). The two  
An important specification when  
selecting a LO buffer amplifier is  
reverse isolation under P  
input  
1dB  
conditions. Figure 18 shows the  
measured reverse isolation with  
-10 dBm applied to the input of  
the device.  
INA-3XX63 DEMO BOARD  
-20  
-30  
C1  
Ctune  
3 1  
C2  
Ltune  
RFC  
-40  
-50  
-60  
C3  
C4  
V
0
0.5  
1.0  
1.5  
2.0  
2.5  
d
FREQUENCY (GHz)  
Figure 18. Measured Isolation.  
Figure 14. Assembled Amplifier.  
7
The layout that is shown with a  
nominal SOT-363 package foot-  
print superimposed on the PCB  
pads for reference.  
parameters where measurements  
or mathematical averaging may  
not be practical, such as  
PCB Materials  
Typical choices for PCB material  
for low cost wireless applications  
are FR-4 or G-10 with a thickness  
of 0.025 (0.636 mm) or 0.031 inches  
(0.787 mm). A thickness of 0.062  
inches (1.574 mm) is the maximum  
that is recommended for use with  
this particular device. The use of a  
thicker board material increases  
the inductance of the plated  
S-parameters or Noise Param-  
eters and the performance  
curves, the data represents a  
nominal part taken from the  
center” of the characterization  
distribution. Typical values are  
intended to be used as a basis for  
electrical design.  
0.026  
0.075  
0.035  
through vias used for RF grounding  
and may deteriorate circuit  
performance. Adequate grounding  
is needed not only to obtain  
maximum amplifier performance  
but also to reduce any possibility  
of instability.  
To assist designers in optimizing  
not only the immediate circuit  
using the INA-31063, but to also  
optimize and evaluate trade-offs  
that affect a complete wireless  
system, the standard deviation  
(σ) is provided for three of the  
Electrical Specifications param-  
eters (at 25°C) in addition to the  
mean. The standard deviation is a  
measure of the variability about  
the mean. It will be recalled that a  
normal distribution is completely  
described by the mean and  
0.016  
Figure 20. PCB Pad Layout for  
INA-31063 ( dimensions in inches) .  
Statistical Parameters  
Several categories of parameters  
appear within this data sheet.  
Parameters may be described  
with values that are either  
minimum or maximum,” typi-  
cal,” or “standard deviations.” The  
values for parameters are based  
on comprehensive product  
characterization data, in which  
automated measurements are  
made on a large number of parts  
taken from 3 non-consecutive  
process lots of semiconductor  
wafers. The data derived from  
product characterization tends to  
be normally distributed, e.g., fits  
the standard bell curve.” Param-  
eters considered to be the most  
important to system performance  
are bounded by minimum or  
maximum values. For the  
Phase Reference Planes  
The positions of the reference  
planes used to measure  
S-Parameters for this device are  
shown in Figure 19. As seen in the  
illustration, the reference planes  
are located at the point where the  
package leads contact the test  
circuit.  
standard deviation. Standard  
statistics tables or calculations  
provide the probability of a  
parameter falling between any  
two values, usually symmetrically  
located about the mean. Referring  
to Figure 21 for example, the  
probability of a parameter being  
between ±1σ is 68.3%; between  
±2σ is 95.4%; and between ±3σ is  
99.7%.  
REFERENCE  
PLANES  
TEST CIRCUIT  
Figure 19. Phase Reference Planes.  
SOT-363 PCB Layout  
The INA-31063 is packaged in the  
miniature SOT-363 (SC-70)  
surface mount package. A PCB  
pad layout for the SOT-363  
package is shown in Figure 20  
(dimensions are in inches). This  
layout provides ample allowance  
for package placement by auto-  
mated assembly equipment  
without adding pad parasitics that  
could impair the high frequency  
performance of the INA-31063  
68%  
INA-31063, these parameters are:  
2
Power Gain ( |S21| ), and the  
Device Current (I ). Each of these  
d
95%  
99%  
guaranteed parameters is 100%  
tested. Values for most of the  
parameters in the table of Electri-  
cal Specifications that are de-  
scribed by typical data are the  
mathematical mean (µ), of the  
normal distribution taken from  
the characterization data. For  
-3σ -2σ -1σ Mean +1σ +2σ +3σ  
(µ), typ  
Parameter Value  
Figure 21. Normal Distribution.  
8
to it (held in place with solder  
paste) passes through one or  
more preheat zones. The preheat  
zones increase the temperature of  
the board and components to  
prevent thermal shock and begin  
evaporating solvents from the  
solder paste. The reflow zone  
briefly elevates the temperature  
sufficiently to produce a reflow of  
the solder.  
to achieve a uniform reflow of  
solder.  
SMT Assembly  
Reliable assembly of surface  
mount components is a complex  
process that involves many  
For more information on mount-  
ing considerations for packaged  
microwave semiconductors,  
please refer to Agilent application  
note AN-A006.  
material, process, and equipment  
factors, including: method of  
heating (e.g., IR or vapor phase  
reflow, wave soldering, etc.)  
circuit board material, conductor  
thickness and pattern, type of  
solder alloy, and the thermal  
conductivity and thermal mass of  
components. Components with a  
low mass, such as the SOT-363  
package, will reach solder reflow  
temperatures faster than those  
with a greater mass.  
Electrostatic Sensitivity  
RFICs are electrostatic  
discharge (ESD)  
sensitive devices.  
The rates of change of tempera-  
ture for the ramp-up and cool  
down zones are chosen to be low  
enough to not cause deformation  
of the board or damage to compo-  
nents due to thermal shock.  
Although the  
INA-31063 is robust in design,  
permanent damage may occur to  
these devices if they are sub-  
jected to high-energy electrostatic  
discharges. Electrostatic charges  
as high as several thousand volts  
(which readily accumulate on the  
human body and on test equip-  
ment) can discharge without  
degradation in performance,  
reliability, or failure. Electronic  
devices may be subjected to ESD  
damage in any of the following  
areas:  
The INA-31063 has been qualified  
to the time-temperature profile  
shown in Figure 22. This profile is  
representative of an IR reflow  
type of surface mount assembly  
process. After ramping up from  
room temperature, the circuit  
board with components attached  
These parameters are typical for  
a surface mount assembly  
process for the INA-31063. As a  
general guideline, the circuit  
board and components should  
only be exposed to the minimum  
temperatures and times necessary  
250  
200  
• Storage & handling  
• Inspection & testing  
• Assembly  
TMAX  
• In-circuit use  
150  
The INA-31063 is an ESD Class 1  
device. Therefore, proper ESD  
precautions are recommended  
when handling, inspecting,  
testing, assembling, and using  
these devices to avoid damage.  
Reflow  
Zone  
100  
Preheat  
Zone  
Cool Down  
Zone  
50  
0
For more information on Electro-  
static Discharge and Control refer  
to Agilent application note AN-  
A004R.  
0
60  
120  
180  
240  
300  
TIME (seconds)  
Figure 22. Surface Mount Assembly Profile.  
9
Package Dimensions  
Outline 63 (SOT-363/SC-70)  
1.30 (0.051)  
REF.  
2.20 (0.087)  
2.00 (0.079)  
1.35 (0.053)  
1.15 (0.045)  
0.650 BSC (0.025)  
0.425 (0.017)  
TYP.  
2.20 (0.087)  
1.80 (0.071)  
0.10 (0.004)  
0.00 (0.00)  
0.30 REF.  
1.00 (0.039)  
0.80 (0.031)  
0.20 (0.008)  
0.10 (0.004)  
10°  
0.30 (0.012)  
0.10 (0.004)  
0.25 (0.010)  
0.15 (0.006)  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
INA-31063 Part Number Ordering Information  
Part Number Devices per Container  
Container  
INA-31063-BLK  
INA-31063-TR1  
INA-31063-TR2  
100  
3,000  
tape strip in antistatic bag  
7" reel  
10,000  
13" reel  
10  
Tape Dimensions and Product Orientation  
For Outline 63  
P
P
D
2
P
0
E
F
W
C
31  
31  
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
8° MAX.  
5° MAX.  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
D
2.24 ± 0.10  
2.34 ± 0.10  
1.22 ± 0.10  
4.00 ± 0.10  
1.00 + 0.25  
0.088 ± 0.004  
0.092 ± 0.004  
0.048 ± 0.004  
0.157 ± 0.004  
0.039 + 0.010  
0
0
0
BOTTOM HOLE DIAMETER  
1
0
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
P
E
1.55 ± 0.05  
4.00 ± 0.10  
1.75 ± 0.10  
0.061 ± 0.002  
0.157 ± 0.004  
0.069 ± 0.004  
CARRIER TAPE WIDTH  
THICKNESS  
W
8.00 ± 0.30  
0.315 ± 0.012  
t
0.255 ± 0.013 0.010 ± 0.0005  
5.4 ± 0.10 0.205 ± 0.004  
0.062 ± 0.001 0.0025 ± 0.00004  
1
COVER TAPE  
WIDTH  
C
TAPE THICKNESS  
T
t
DISTANCE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 ± 0.05  
0.138 ± 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 ± 0.05  
0.079 ± 0.002  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 1999 Agilent Technologies  
Obsoletes 5967-5770E  
5968-1238E (11/99)  

相关型号:

INA-31063-BLK

IC-RF BUFFER AMPLIFIER
ETC

INA-32063

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-32063-BLK

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-32063-TR1

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-32063-TR2

3.0 GHz Wideband Silicon RFIC Amplifier
AGILENT

INA-34063

3V Fixed Gain. Medium Power Amplifier
ETC

INA-34063-BLK

Wide Band Low Power Amplifier, 100MHz Min, 3000MHz Max, BIPolar, SOT-363, 6 PIN
AGILENT

INA-34063-TR1

Wide Band Low Power Amplifier, 100MHz Min, 3000MHz Max, BIPolar, SOT-363, 6 PIN
AGILENT

INA-50311

1 GHz Low Noise Silicon MMIC Amplifier
AGILENT

INA-50311-BLK

1 GHz Low Noise Silicon MMIC Amplifier
AGILENT

INA-50311-TR1

1 GHz Low Noise Silicon MMIC Amplifier
AGILENT

INA-51063

2.4 GHz Low Noise Silicon MMIC Amplifier
AGILENT