IQS6624-300DNR [ETC]

Hall effect angle sensor:On-chip Hall plates;
IQS6624-300DNR
型号: IQS6624-300DNR
厂家: ETC    ETC
描述:

Hall effect angle sensor:On-chip Hall plates

文件: 总62页 (文件大小:2806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IQ Switch®  
ProxFusionSeries  
IQS624 Datasheet  
Combination sensor including: Hall-effect rotation sensing, along with dual-channel  
capactive proximity/touch sensing, or single-channel inductive sensing.  
The IQS624 ProxFusionIC is a multifunctional capacitive and Hall-effect sensor designed for  
applications where any or all of the technologies may be required. The two Hall-effect sensors  
calculate the angle of a magnet rotating parallel with the sensor. The sensor is fully I2C compatible  
and on-chip calculations enable the IC to stream the current angle of the magnet without extra  
calculations.  
Features  
Inductive sensing  
Hall effect angle sensor:  
o Only external sense  
coil required (PCB  
trace)  
o On-chip Hall plates  
o 360° Output  
o 1° Resolution, calculated on chip  
o Relative rotation angle.  
o Detect movement and the direction of  
Multiple integrated UI  
o Proximity / Touch  
o Proximity wake-up  
o Event mode  
DFN10  
movement.  
o Raw data: can be used to calculate  
Representations  
only, not actual  
markings  
o QRD (Quick release detection)  
o Wake Hall sensing on proximity  
Minimal external components  
Standard I2C interface  
Optional RDY indication for event mode  
operation  
degrees on external processor.  
o Operational range 10mT 100mT  
o No external components required  
Partial auto calibration:  
o Continuous auto-calibration,  
compensation for wear or small  
displacements of the sensor or magnet.  
o Flexible gain control  
o Automatic Tuning Implementation (ATI)  
Performance enhancement (10 bit).  
Low power consumption:  
240uA (100Hz response, Hall),  
55uA (100Hz response, capacitive),  
65uA (20Hz response, Hall)  
15uA (20Hz response, capacitive)  
5uA (5Hz response, capacitive)  
Capacitive sensing  
o Full  
auto-tuning  
with  
adjustable  
sensitivity  
Supply Voltage: 1.8V to 3.6V*  
o 2pF to 200pF external capacitive load  
*5V solution available on demand.  
capability  
Applications  
Anemometer  
Dial or Selector knob  
Mouse wheel  
Measuring wheel  
Digital angle gauge  
Speedometer for bicycle  
Available Packages  
TA  
DFN(3x3)-10  
IQS624-xyy  
-40°C to 85°C  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 1 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Contents  
LIST OF ABBREVIATIONS............................................................................................................................................. 5  
1
INTRODUCTION.................................................................................................................................................. 6  
1.1  
1.2  
PROXFUSION...................................................................................................................................................... 6  
PACKAGING AND PIN-OUT ....................................................................................................................................... 6  
FIGURE 1.1  
TABLE 1.1  
PIN OUT OF IQS624 DFN(3X3)-10 PACKAGE.................................................................................................... 6  
IQS624 PIN-OUT.......................................................................................................................................... 6  
1.3  
REFERENCE SCHEMATIC ........................................................................................................................................... 6  
FIGURE 1.2 IQS624 REFERENCE SCHEMATIC....................................................................................................................... 6  
SENSOR CHANNEL COMBINATIONS ............................................................................................................................. 7  
TABLE 1.2 SENSOR - CHANNEL ALLOCATION....................................................................................................................... 7  
1.4  
2
CAPACITIVE SENSING ......................................................................................................................................... 8  
2.1  
2.2  
TABLE 2.1  
2.3 HARDWARE CONFIGURATION.................................................................................................................................... 9  
TABLE 2.2 CAPACITIVE HARDWARE DESCRIPTION ................................................................................................................ 9  
2.4 REGISTER CONFIGURATION....................................................................................................................................... 9  
2.4.1 Registers to configure for the Capacitive sensing: ........................................................................................ 9  
INTRODUCTION...................................................................................................................................................... 8  
CHANNEL SPECIFICATIONS ........................................................................................................................................ 8  
CAPACITIVE SENSING - CHANNEL ALLOCATION...................................................................................................... 8  
TABLE 2.3  
CAPACITIVE SENSING SETTINGS REGISTERS .......................................................................................................... 9  
2.4.2 Registers to configure for the Small User interaction UI:............................................................................ 10  
TABLE 2.4  
SMALL USER INTERACTION UI SETTINGS REGISTERS ............................................................................................ 10  
2.4.3 Example code:............................................................................................................................................. 10  
2.5  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 11  
3
4
5
INDUCTIVE SENSING..........................................................................................................................................12  
3.1  
INTRODUCTION TO INDUCTIVE SENSING..................................................................................................................... 12  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 12  
Mutual inductive sensor channel allocation.................................................................................... 12  
HARDWARE CONFIGURATION.................................................................................................................................. 12  
Mutual inductive hardware description ............................................................................................. 12  
REGISTER CONFIGURATION..................................................................................................................................... 13  
3.2  
3.3  
3.4  
Table 3.1  
Table 3.2  
TABLE 3.3  
INDUCTIVE SENSING SETTINGS REGISTERS.......................................................................................................... 13  
3.4.2 Example code:............................................................................................................................................. 13  
HALL-EFFECT SENSING.......................................................................................................................................14  
4.1  
4.2  
TABLE 4.1  
INTRODUCTION TO HALL-EFFECT SENSING ................................................................................................................. 14  
CHANNEL SPECIFICATIONS ...................................................................................................................................... 14  
HALL-EFFECT SENSOR CHANNEL ALLOCATION .................................................................................................. 14  
4.3  
4.4  
HARDWARE CONFIGURATION.................................................................................................................................. 15  
REGISTER CONFIGURATION..................................................................................................................................... 15  
TABLE 4.2  
HALL SENSING SETTINGS REGISTERS ................................................................................................................. 15  
4.4.2 Example code:............................................................................................................................................. 16  
4.5  
SENSOR DATA OUTPUT AND FLAGS........................................................................................................................... 16  
DEVICE CLOCK, POWER MANAGEMENT AND MODE OPERATION......................................................................17  
5.1  
5.2  
DEVICE MAIN OSCILLATOR...................................................................................................................................... 17  
DEVICE MODES .................................................................................................................................................... 17  
5.2.1 Normal mode .............................................................................................................................................. 17  
5.2.2 Low power mode......................................................................................................................................... 17  
5.2.3 Ultra-low power mode................................................................................................................................ 17  
5.2.4 Halt mode ................................................................................................................................................... 18  
5.2.5 Mode time................................................................................................................................................... 18  
5.3  
STREAMING AND EVENT MODE:............................................................................................................................... 18  
5.3.1 Streaming mode.......................................................................................................................................... 18  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 2 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
5.3.2 Event mode ................................................................................................................................................. 18  
5.4  
REPORT RATES ..................................................................................................................................................... 18  
5.4.1 Calculation of each mode’s report rate....................................................................................................... 18  
5.5  
SYSTEM RESET ..................................................................................................................................................... 18  
6
7
COMMUNICATION ............................................................................................................................................19  
6.1  
I2C MODULE SPECIFICATION.................................................................................................................................... 19  
DEVICE ADDRESS AND SUB-ADDRESSES ..................................................................................................................... 19  
ADDITIONAL OTP OPTIONS .................................................................................................................................... 19  
RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM................................................................................ 20  
6.2  
6.3  
6.4  
FIGURE 6.1  
MASTER COMMAND STRUCTURE AND RUNTIME EVENT HANDLING FLOW DIAGRAM................................................... 20  
IQS624 MEMORY MAP ......................................................................................................................................21  
TABLE 7.1  
7.2  
: IQS624 REGISTER MAP .............................................................................................................................. 21  
MEMORY REGISTERS DESCRIPTION .......................................................................................................................... 23  
7.2.1 Device Information...................................................................................................................................... 23  
7.2.2 Device Specific Data.................................................................................................................................... 24  
7.2.3 Count Data.................................................................................................................................................. 26  
7.2.4 Touch / Proximity sensor settings ............................................................................................................... 27  
7.2.5 Touch / Proximity UI settings ...................................................................................................................... 30  
7.2.6 Small User interaction detection................................................................................................................. 31  
7.2.7 HALL Sensor Settings................................................................................................................................... 32  
7.2.8 HALL Wheel Output..................................................................................................................................... 35  
7.2.9 Device and Power Mode Settings................................................................................................................ 37  
8
ELECTRICAL CHARACTERISTICS ..........................................................................................................................41  
8.1  
TABLE 8.1  
8.2  
TABLE 8.2  
8.3 CURRENT CONSUMPTIONS ..................................................................................................................................... 42  
8.3.1 IC subsystems.............................................................................................................................................. 42  
ABSOLUTE MAXIMUM SPECIFICATIONS..................................................................................................................... 41  
ABSOLUTE MAXIMUM SPECIFICATION .............................................................................................................. 41  
POWER ON-RESET/BROWN OUT ............................................................................................................................. 41  
POWER ON-RESET AND BROWN OUT DETECTION SPECIFICATIONS .......................................................................... 41  
TABLE 8.3  
TABLE 8.4  
IC SUBSYSTEM CURRENT CONSUMPTION........................................................................................................... 42  
IC SUBSYSTEM TYPICAL TIMING....................................................................................................................... 42  
8.3.2 Capacitive sensing alone............................................................................................................................. 42  
TABLE 8.5  
CAPACITIVE SENSING CURRENT CONSUMPTION .................................................................................................. 42  
8.3.3 Hall-effect sensing alone............................................................................................................................. 43  
TABLE 8.6  
HALL-EFFECT CURRENT CONSUMPTION ............................................................................................................ 43  
8.3.4 Halt mode ................................................................................................................................................... 43  
TABLE 8.7  
8.4  
8.5  
HALT MODE CURRENT CONSUMPTION.............................................................................................................. 43  
CAPACITIVE LOADING LIMITS................................................................................................................................... 43  
HALL-EFFECT MEASUREMENT LIMITS ........................................................................................................................ 43  
9
PACKAGE INFORMATION ..................................................................................................................................44  
9.1 DFN10 PACKAGE AND FOOTPRINT SPECIFICATIONS..................................................................................................... 44  
TABLE 9.1  
TABLE 9.2  
TABLE 9.3  
FIGURE 9.1  
FIGURE 9.2  
FIGURE 9.3  
DFN-10 PACKAGE DIMENSIONS (BOTTOM)...................................................................................................... 44  
DFN-10 PACKAGE DIMENSIONS (SIDE)............................................................................................................ 44  
DFN-10 LANDING DIMENSIONS ..................................................................................................................... 44  
DFN-10 PACKAGE DIMENSIONS (BOTTOM). NOTE THAT THE SADDLE NEED TO BE CONNECTED TO GND ON THE PCB..... 44  
DFN-10 PACKAGE DIMENSIONS (SIDE)............................................................................................................ 44  
DFN-10 LANDING DIMENSION....................................................................................................................... 44  
9.2  
DEVICE MARKING AND ORDERING INFORMATION ........................................................................................................ 45  
9.2.1 Device marking: .......................................................................................................................................... 45  
9.2.2 Ordering Information:................................................................................................................................. 45  
9.3  
9.4  
TAPE AND REEL SPECIFICATION ................................................................................................................................ 46  
MSL LEVEL ......................................................................................................................................................... 47  
10 DATASHEET REVISIONS .....................................................................................................................................48  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 3 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
10.1  
10.2  
REVISION HISTORY ................................................................................................................................................ 48  
ERRATA.............................................................................................................................................................. 48  
11 CONTACT INFORMATION ..................................................................................................................................49  
12 APPENDICES ......................................................................................................................................................50  
12.1  
APPENDIX A: MAGNET ORIENTATION AND CALIBRATION .............................................................................................. 50  
HALL ATI......................................................................................................................................................................... 61  
HALL REFERENCE VALUE:..................................................................................................................................................... 61  
ATI PARAMETERS:............................................................................................................................................................. 61  
Coarse and Fine multipliers:..................................................................................................................................... 61  
ATI-Compensation:................................................................................................................................................... 61  
RECOMMENDED PARAMETERS: ............................................................................................................................................ 62  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 4 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
List of abbreviations  
PXS ProxSense®  
ATI Automatic Tuning Implementation  
LTA Long term average  
Thr Threshold  
UI User interface  
AC Alternating current  
DSP Digital signal processing  
RX Receiving electrode  
TX Transmitting electrode  
CS Sampling capacitor  
C Capacitive  
NP Normal power  
LP Low power  
ULP Ultra low power  
SUID Small user interaction detection  
QRD Quick release detection  
ACK I2C Acknowledge condition  
NACK I2C Not Acknowledge condition  
FG Floating gate  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 5 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
1 Introduction  
1.1 ProxFusion  
The ProxFusionsensor series provide all the proven ProxSense® engine capabilities with  
additional sensors types. A combined sensor solution is available within a single platform.  
1.2 Packaging and Pin-Out  
SDA  
RDY  
VSS  
NC  
IQS624  
VDDH
SCL  
RX1  
VREG  
LTX  
RX0  
Figure 1.1 Pin out of IQS624 DFN(3X3)-10 package.  
Table 1.1  
IQS624 Pin-out  
IQS624 Pin-out  
Pin  
1
Name  
SDA  
Type  
Digital Input / Output  
Digital Output  
Function  
I2C: SDA Output  
I2C: RDY Output  
2
RDY  
3
VDDHI  
Supply Input  
Supply Voltage Input  
Internal Regulator Pin (Connect 1µF bypass  
capacitor)  
4
VREG  
Regulator Output  
5
6
7
8
9
LTX  
RX0  
RX1  
SCL  
NC  
Analogue  
Transmit Electrode 1  
Sense Electrode 0  
Analogue  
Analogue  
Sense Electrode 1/ Transmit Electrode 0  
I2C: SCL Output  
Digital Input / Output  
Not connect  
Supply Input  
Not connect  
10 VSS  
Ground Reference  
1.3 Reference schematic  
Figure 1.2  
IQS624 reference schematic  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 6 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
1.4 Sensor channel combinations  
The table below summarizes the IQS624’s sensor and channel associations.  
Table 1.2  
Sensor - channel allocation  
Sensor type  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
Discreet Self  
Capacitive  
o
o
Small User  
interaction  
detection UI  
Main  
Movement  
Hall effect rotary  
UI  
1st plate  
1st plate  
2nd plate  
Positive  
2nd plate  
Negative  
Positive Negative  
Mutual inductive  
o
o
Key:  
o Optional implementation  
Fixed use for UI  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 7 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
2 Capacitive sensing  
2.1 Introduction  
Building on the previous successes from the ProxSense® range of capacitive sensors, the same  
fundamental sensor engine has been implemented in the ProxFusionseries.  
The capacitive sensing capabilities of the IQS624 include:  
Maximum of 2 capacitive channels to be individually configured.  
o Prox and touch adjustable thresholds  
o Individual sensitivity setups  
o Alternative ATI modes  
Small user interaction detection user interface:  
o Movement sensing to distinguish between stationary in-contact objects and human  
interference  
o Quick release feature  
Discreet button UI:  
o Fully configurable 2 level threshold setup traditional prox & touch activation levels.  
o Customizable filter halt time  
2.2 Channel specifications  
The IQS624 provides a maximum of 2 channels available to be configured for capacitive sensing.  
Each channel can be setup separately per the channel’s associated settings registers.  
There are two distinct capacitive user interfaces available to be used.  
a) Discreet proximity/touch UI (always enabled)  
b) Small user interaction UI  
When the Small User interaction UI is activated (ProxSense / Capacitive Sensing Settngs4: bit7):  
Channel 0 is used as the main capacitive sensing channel.  
Channel 1 is used for capacitive movement detection. This is used to implement the quick  
release detection.  
Table 2.1  
Capacitive sensing - channel allocation  
Sensor type  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
Discreet Self  
Capacitive  
o
o
Small user  
interaction  
detection  
Main  
Movement  
Key:  
Optional implementation  
o Optional implementation  
Fixed use for UI  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 8 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
2.3 Hardware configuration  
In the table below are multiple options of configuring sensing (Rx).  
Table 2.2  
Capacitive hardware description  
Self-capacitive configuration  
1 button  
IQS624  
LTX  
RX0  
2
buttons  
IQS624  
LTX  
RX0  
2.4 Register configuration  
2.4.1 Registers to configure for the Capacitive sensing:  
Table 2.3  
Name  
Capacitive sensing settings registers  
Address  
Description  
Recommended setting  
ProxSense / Capacitive Sensor  
mode  
and Sensor mode should be set  
Sensing Setting 0  
configuration of each to capacitive mode  
channel.  
0x40, 0x41  
An appropriate RX should be  
chosen and no TX  
ProxSense / Capacitive Global settings for the None  
Sensing Setting 1 ProxSense sensors  
0x42  
ProxSense / Capacitive ATI  
settings  
for ATI target should be more  
than ATI base to achieve an  
ATI  
0x43, 0x44 Sensing Setting 2  
ProxSense sensors  
ProxSense / Capacitive Additional  
Global SUID should be enabled for  
0x45  
Sensing Setting 3  
Proximity threshold  
Touch threshold  
settings for ProxSense SUID UI  
sensors  
Proximity Threshold for Preferably more than touch  
0x50, 0x52  
0x51, 0x53  
UI  
threshold  
Touch Threshold for UI  
None  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 9 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
2.4.2 Registers to configure for the Small User interaction UI:  
Table 2.4  
Small User interaction UI settings registers  
Name Description  
Address  
0x60  
Small user interaction detection Setting 0 Filter settings  
0x61  
Small user interaction detection Setting 1 Timeout and threshold settings  
0x62  
Release Threshold  
Release Threshold  
Small user interaction detection Proximity Proximity Threshold  
threshold  
0x63  
Small user interaction detection Touch Touch Threshold  
threshold  
0x64  
0x65  
Halt timer  
SUID Halt timer  
2.4.3 Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 10 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
2.5 Sensor data output and flags  
The following registers should be monitored by the master to detect capacitive sensor output and  
SUID activations.  
a) The UI Flags register (0x11) will show the IQS624’s main events. Bit0&1 is dedicated to  
the ProxSense activations, bit0 indicates a proximity event and bit1 indicates a touch event.  
Bit2 is provided to indicate if the Small User interaction detection UI is activated.  
UI Flags(0x11)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Small User  
PXS  
PXS  
interaction Touch proximity  
detection out out  
b) The Proximity/Touch UI Flags (0x12) and Small User interaction detection UI Flags  
(0x13) provide more detail regarding the outputs. A proximity and touch output bit for each  
channel 0 and 1 is provided in the PRX UI Flags register.  
c) The Small User interaction detection UI Flags (0x13) register will show detail regarding  
the state of the small user interaction output as well as Quick release toggles, movement  
activations and the state of the filter (halted or not).  
Proximity/Touch UI Flags (0x12)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Chan 1 Chan 0  
Chan 1  
Chan 0  
Touch  
out  
touch  
out  
proximity proximity  
out  
out  
Small User interaction detection UI Flags (0x13)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Proximity  
Quick Movement  
release  
Filter  
halt  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 11 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
3 Inductive sensing  
3.1 Introduction to inductive sensing  
The IQS624 provides inductive sensing capabilities to detect the presence of metal/metal-type  
objects.  
3.2 Channel specifications  
The IQS624 requires 3 sensing lines for mutual inductive sensing.  
There’s only one distinct inductance user interfaces available.  
a) Discreet proximity/touch UI (always enabled)  
Table 3.1  
CH0  
Mutual inductive sensor channel allocation  
Mode  
CH1  
CH2  
CH3  
CH4  
CH5  
Mutual  
inductive  
o
o
Key:  
o - Optional implementation  
- Fixed use for UI  
3.3 Hardware configuration  
Rudimentary hardware configurations (to be completed).  
Table 3.2  
Mutual inductive hardware description  
Mutual inductive  
VSS  
IQS624  
Mutual  
inductance  
RX0  
LTX  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 12 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
3.4 Register configuration  
Table 3.3  
Inductive sensing settings registers.  
Address  
Name  
Description  
Recommended setting  
ProxSense / Capacitive Sensor  
mode  
and Sensor mode should be set to  
Sensing Setting 0  
configuration of each Inductive mode  
channel.  
0x40, 0x41  
Deactivate one channel  
Enable both RX for the  
activated channel  
ProxSense / Capacitive Global settings for the CS divider should be enabled  
Sensing Setting 1 ProxSense sensors  
0x42  
ProxSense / Capacitive ATI  
Sensing Setting 2 ProxSense sensors  
settings  
for ATI target should be more than  
ATI base to achieve an ATI  
0x43, 0x44  
ProxSense / Capacitive Additional  
Global None  
settings for ProxSense  
sensors  
0x45  
Sensing Setting 3  
Proximity threshold  
Touch threshold  
Proximity Threshold for Less than touch threshold  
UI  
0x46, 0x47  
0x48, 0x49  
Touch Threshold for UI None  
3.4.2 Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 13 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
4 Hall-effect sensing  
4.1 Introduction to Hall-effect sensing  
The IQS624 has two internal Hall-effect sensing plates (on die). No external sensing hardware is  
required for Hall-effect sensing.  
The Hall-effect measurement is essentially a current measurement of the induced current  
through the Hall-effect-sensor plates produced by the magnetic field passing perpendicular  
through each plate.  
Advanced digital signal processing is performed to provide sensible output data.  
Hall output is linearized by inverting signals.  
Calculates absolute position in degrees.  
Auto calibration attempts to linearize degrees output on the fly  
Differential Hall-Effect sensing:  
o Removes common mode disturbances  
4.2 Channel specifications  
Channels 2 to 5 are dedicated to Hall-effect sensing. Channel 2 & 4 performs the positive  
direction measurements and channel 3 & 5 will handle all measurements in the negative  
direction. Differential data can be obtained from these four channels. This differential data is  
used as input data to calculate the output angle of the Hall-effect rotation UI. Channel 2 & 3 is  
used for the one plate and channel 4 & 5 for the second.  
Table 4.1  
CH0  
Hall-effect sensor channel allocation  
Mode  
CH1  
CH2  
CH3  
CH4  
CH5  
Hall rotary  
UI  
1st plate  
Positive  
1st plate  
Negative  
2nd plate  
Positive  
2nd plate  
Negative  
Key:  
o - Optional implementation  
- Fixed use for UI  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 14 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
4.3 Hardware configuration  
Rudimentary hardware configurations. For more detail and alternative placement options, refer  
to appendix A.  
Diametrically polarized magnet (rotational purposes)  
Hall  
Rotation  
UI  
S
N
IQS624  
X-Y  
S
N
4.4 Register configuration  
Table 4.2  
Hall sensing settings registers  
Description Recommended setting  
Address  
70H  
Name  
Hall Rotation UI Hall wheel UI settings  
Settings  
Hall UI should be enabled for  
degree output  
Hall  
settings  
sensor Auto  
ATI  
and  
charge Auto ATI should be enabled for  
temperature drift compensation  
71H  
72H, 73H  
78H  
frequency settings  
Hall ATI Settings Hall channels ATI settings  
ATI Target should be more than  
base  
Hall ratio Settings Invert Direction setting for None  
Hall UI  
Sin(phase)  
constant  
Sin phase calibration value  
Calculate this value using the GUI  
or the calculations in the appendix  
A
79H  
7AH  
Cos(phase)  
constant  
Cos phase calibration value  
Calculate this value using the GUI  
or the calculations in the appendix  
A
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 15 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
4.4.2 Example code:  
Example code for an Arduino Uno can be downloaded at:  
www.azoteq.com//images/stories/software/IQS62x_Demo.zip  
4.5 Sensor data output and flags  
a) The Hall UI Flags (0x14). Bit7 is dedicated to indicating a movement of the magnet.  
Bit6 indicates the direction of the movement.  
Hall UI Flags (0x14)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Wheel  
movement direction  
Movement  
Count Difference  
sign sign  
b) The Degree Output (0x81-0x80). A 16-bit value for the degrees can be read from  
these registers. (0-360 degrees)  
Degree Output (0x81-0x80)  
Bit Number 15 14 13 12 11 10  
Data Access  
9
8
7
6
5
4
3
2
1
0
Read/Write  
Name  
Degrees High Byte  
Degrees Low Byte  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 16 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
5 Device clock, power management and mode operation  
5.1 Device main oscillator  
The IQS624 has a 16MHz main oscillator (default enabled) to clock all system functionality.  
An option exists to reduce the main oscillator to 8MHz. This will result in charge transfers to be  
slower by half of the default implementations.  
To set this option this:  
o As a software setting Set the System_Settings: bit4 = 1, via an I2C command.  
o As a permanent setting Set the OTP option in FG Bank 0: bit2 = 1, using Azoteq  
USBProg program.  
5.2 Device modes  
The IQS624 supports the following modes of operation;  
Normal mode (Fixed report rate)  
Low Power mode (Reduced report rate, no UI execution)  
Ultra-Low Power mode (Only channel 0 is sensed for a prox)  
Halt Mode (Suspended/disabled)  
Note: Auto modes must be disabled to enter or exit halt mode.  
The device will automatically switch between the different operating modes by default.  
However, this Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit  
(Power mode Settings 0xD2: bit5) to confine device operation to a specific power mode. The  
POWER_MODE bits (Power mode Settings 0xD2: bit4-3) can then be used to specify the  
desired mode of operation.  
5.2.1 Normal mode  
Normal mode is the fully active sensing mode to function at a fixed report rate specified in the  
Normal Mode report rate (0xD3) register. This 8-bit value is adjustable from 0ms 255ms in  
intervals of 1ms.  
Note: The device’s low power oscillator has an accuracy as specified in section 9.  
5.2.2 Low power mode  
Low power mode is a reduced sensing mode where all channels are sensed but no UI code  
are executed. The sample rate can be specified in the Low Power Mode report rate (0xD4)  
register. The 8-bit value is adjustable from 0ms 255ms in intervals of 1ms. Reduced report  
rates also reduce the current consumed by the sensor.  
Note: The device’s low power oscillator has an accuracy as specified in section 9.  
5.2.3 Ultra-low power mode  
Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed and no  
other channels or UI code are executed. Set the EN_ULP_MDE bit (Power mode Settings:  
bit6) to enable use of the ultra-low power mode. The sample rate can be specified in the Low  
Power Mode report rate (0xD5) register. The 8-bit value is adjustable from 0ms 4sec in  
intervals of 16ms.  
Wake up will occur on proximity detection on channel 0.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 17 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
5.2.4 Halt mode  
Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The  
device requires an I2C command from a master to explicitly change the power mode out of the  
halt state before any sensor functionality can continue.  
5.2.5 Mode time  
The mode time is specified in the Auto Mode Timer (0xD6) register. The 8-bit value is  
adjustable from 0ms 2 min in intervals of 500ms.  
5.3 Streaming and event mode:  
Streaming mode is the default. Event mode is enabled by setting bit 5 in register 0xD0.  
5.3.1 Streaming mode  
The ready is triggered every cycle and per the report rate.  
5.3.2 Event mode  
The ready is triggered only when an event has occurred.  
The events which trigger the ready:  
Hall wheel movement (If the hall UI is enabled)  
Touch or proximity events on channel 0 or 1  
Note: Both these events have built in hysteresis which filters out very slow changes  
5.4 Report rates  
5.4.1 Calculation of each mode’s report rate  
Normal Power Segment rate  
To be completed.  
Auto modes change rates  
To be completed.  
Streaming/event mode rates  
To be completed.  
5.5 System reset  
The IQS624 device monitor’s system resets and events.  
a) Every device power-on and reset event will set the Show Reset bit (System Flags 0x10:  
bit7) and the master should explicitly clear this bit by setting the ACK_RESET (bit6) in  
System Settings 0.  
b) The system events will also be indicated with the Global Events register’s SYS bit  
(Global Events 0x11: bit4) if any system event occur such as a reset. This event will  
continuously trigger until the reset has been acknowledged.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 18 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
6 Communication  
6.1 I2C module specification  
The device supports a standard two wire I2C interface with the addition of an RDY (ready interrupt)  
line. The communications interface of the IQS624 supports the following:  
Streaming data as well as event mode.  
The master may address the device at any time. If the IQS624 is not in a communication  
window, the device returns an ACK after which clock stretching is induced until a  
communication window is entered. Additional communication checks are included in the  
main loop in order to reduce the average clock stretching time.  
The provided interrupt line (RDY) is open-drain active low implementation and indicates a  
communication window.  
6.2 Device address and sub-addresses  
The default device address is 0x44.  
Alternative sub-address options are available to be defined in the OTP Bank0 (bit3; 0; bit1; bit0)  
a) Default address:  
b) Sub-address:  
c) Sub-address:  
d) Sub-address:  
e) Sub-address:  
f) Sub-address:  
g) Sub-address:  
h) Sub-address:  
0x44  
0x45  
0x46  
0x47  
0x4C  
0x4D  
0x4E  
0x4F  
6.3 Additional OTP options  
All one-time-programmable device options are located in FG bank 0.  
Floating Gate Bank0  
Bit Number  
Name  
7
-
6
5
-
4
3
2
1
0
Comms  
ATI  
Rdy active  
high  
Sub address 8MHz  
2
Sub address 0-1  
Bit definitions:  
Bit 0,1,3: I2C sub-address  
o I2C address = 0x44 OR (0, 0, 0, 0, I2C_SUB_ADR_3, 0, I2C_SUB_ADR_1,  
I2C_SUB_ADR_0 )  
Bit 2: Main Clock frequency selection  
o 0: Run FOSC at 16MHz  
o 1: Run FOSC at 8MHz  
Bit 4: Rdy active high  
o 0: Rdy active low enabled  
o 1: Rdy active high enabled  
Bit 6: Comms mode during ATI  
o 0: No streaming events are generated during ATI  
o 1: Comms continue as setup regardless of ATI state.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 19 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
6.4 Recommended communication and runtime flow diagram  
The following is a basic master program flow diagram to communicate and handle the device.  
It addresses possible device events such as output events, ATI and system events (resets).  
.
Figure 6.1  
Master command structure and runtime event handling flow diagram  
It is recommended that the master verifies the status of the System_Flags0 bits to identify events  
and resets. Detecting either one of these should prompt the master to the next steps of handling  
the IQS624.  
Streaming mode communication is used for detail sensor evaluation during prototyping and/or  
development phases.  
Event mode communication is recommended for runtime use of the IQS624. Streaming mode  
communication is used for detail sensor evaluation during prototyping/development.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 20 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
7 IQS624 Memory map  
Table 7.1  
: IQS624 Register map  
Register Address  
00H  
Group  
Register Name  
Product Number  
01H  
Device Information  
Hardware Number  
02H  
Software Number  
10H  
Sys_flags0  
11H  
UI Flags  
12H  
Device Specific Data  
Touch/Prox Flags  
13H  
SUID UI Flags  
14H  
HALL UI Flags  
20H  
CH0 CS High  
21H  
CH0 CS Low  
22H  
CH1 CS High  
23H  
CH1 CS Low  
24H  
CH2 CS High  
25H  
CH2 CS Low  
26H  
CH3 CS High  
27H  
CH3 CS Low  
Count Data  
28H  
CH4 CS High  
29H  
CH4 CS Low  
2AH  
2BH  
30H  
CH5 CS high  
CH5 CS low  
CH0 LTA high  
31H  
CH0 LTA low  
32H  
CH1 LTA high  
33H  
CH1 LTA low  
40H  
Ch0 ProxSense / Capacitive Sensing Settings 0  
CH1 ProxSense / Capacitive Sensing Settings 0  
CH0&1 ProxSense / Capacitive Sensing Setting 1  
Ch0 ProxSense / Capacitive Sensing Settings 2  
CH1 ProxSense / Capacitive Sensing Settings 2  
CH0/1 ProxSense / Capacitive Sensing Setting 3  
Ch0 Compensation  
Ch1 Compensation  
Ch0 Multipliers  
41H  
42H  
43H  
44H  
Touch / Proximity  
sensor settings  
45H  
46H  
47H  
48H  
49H  
Ch1 Multipliers  
50H  
Ch0 Proximity threshold  
Ch0 Touch threshold  
Ch1 Proximity threshold  
Ch1 Touch threshold  
UI Halt timer  
51H  
Touch / Proximity  
UI settings  
52H  
53H  
54H  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 21 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Register Address  
60H  
Register Name  
Small user interaction detection Setting 0  
Small user interaction detection Setting 1  
Release Threshold  
61H  
62H  
Small User  
interaction detection  
63H  
Small user interaction detection Proximity threshold  
Small user interaction detection Touch threshold  
Halt timer  
64H  
65H  
70H  
Hall Rotation UI Settings  
71H  
Hall sensor settings  
72H  
CH2&3 Hall ATI Settings  
73H  
CH4&5 Hall ATI Settings  
74H  
CH2&3 Compensation  
HALL Sensor  
Settings  
75H  
CH4&5 Compensation  
76H  
CH2&3 Multipliers  
77H  
CH4&5 Multipliers  
78H  
Hall ratio Settings  
79H  
Sin(phase) constant  
7AH  
80H  
Cos(phase) constant  
Degree Output (Low byte)  
Degree Output (High byte)  
Ratio Output (Low byte)  
81H  
82H  
83H  
Ratio Output (High byte)  
84H  
Numerator of Ratio (Low byte)  
Numerator of Ratio (High byte)  
Denominator of Ratio (Low byte)  
Denominator of Ratio (High byte)  
Rotation Correction factor (Low byte)  
Rotation Correction factor (High byte)  
Max Numerator of Ratio (Low byte)  
Max Numerator of Ratio (High byte)  
Max Denominator of Ratio (Low byte)  
Max Denominator of Ratio (High byte)  
Relative rotation angle  
85H  
86H  
87H  
HALL Wheel  
Output  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
Movement counter/timer  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
General system settings  
Active channels  
Power mode settings  
Device and Power mode  
Settings  
Normal mode report rate  
Low power mode report rate  
Ultra-low power mode report rate  
Mode time  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 22 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
7.2 Memory Registers Description  
7.2.1 Device Information  
Product Number (0x00)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
2
2
1
1
1
0
0
0
Read  
Device Product Number  
Bit definitions:  
Bit 0-7: Device Product Number = D’67’  
Software Number (0x01)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
Read  
Device Software Number  
Bit definitions:  
Bit 0-7: Device Software Number = D02’  
Hardware Number (0x02)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
Read  
Device Hardware Number  
Bit definitions:  
Bit 0-7: Device Hardware Number = D’162’ for 5V solution, D’130’ for 3.3V solution  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 23 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
7.2.2 Device Specific Data  
System flags (0x10)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Show  
Reset  
Ready  
active  
high  
Current  
power  
mode  
ATI  
Busy  
Event  
NP  
Segment  
Active  
Bit definitions:  
Bit 7: Reset Indicator:  
o 0: No reset event  
o 1: A device reset has occurred and needs to be acknowledged  
Bit 6: Ready Active High  
o 0: Ready active Low set (Default)  
o 1: Ready active High set  
Bit 4-3:Current power mode indicator:  
o 00: Normal power mode  
o 01: Low power mode  
o 10: Ultra-Low power mode  
o 11: Halt power mode  
Bit 2: ATI Busy Indicator:  
o 0: No channels are in ATI  
o 1: One or more channels are in ATI  
Bit 1: Global Event Indicator:  
o 0: No new event to service  
o 1: An event has occurred and should be serviced  
Bit 0: Normal Power segment indicator:  
o 0: Not performing a normal power update  
o 1: Busy performing a normal power update  
UI Flags(0x11)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Small  
User  
PXS  
PXS  
Touch proximity  
interaction  
detection  
out  
out  
Bit definitions:  
Bit 2: Small User interaction indicator:  
o 0: No event to report  
o 1: A Movement event has occurred and should be handled  
Bit 1: ProxSense / Capacitive Sensing Touch indicator:  
o 0: No event to report  
o 1: A touch event has occurred and should be handled  
Bit 0: ProxSense / Capacitive Sensing proximity indicator:  
o 0: No event to report  
o 1: A proximity event has occurred and should be handled  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 24 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Proximity/Touch UI Flags (0x12)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Chan 1 Chan 0  
Chan 1  
Chan 0  
Touch  
out  
touch  
out  
proximity proximity  
out out  
Bit definitions:  
Bit 5: Channel 1 touch indicator:  
o 0: Channel 1 delta below touch threshold  
o 1: Channel 1 delta above touch threshold  
Bit 4: Channel 0 touch indicator:  
o 0: Channel 0 delta below touch threshold  
o 1: Channel 0 delta above touch threshold  
Bit 1: Channel 1 Proximity indicator:  
o 0: Channel 1 delta below proximity threshold  
o 1: Channel 1 delta above proximity threshold  
Bit 0: Channel 0 Proximity indicator:  
o 0: Channel 0 delta below proximity threshold  
o 1: Channel 0 delta above proximity threshold  
Small User interaction detection UI Flags (0x13)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Proximity  
Quick Movement  
release  
Filter  
halt  
Bit definitions:  
Bit 4: Proximity indicator:  
o 0: Delta below proximity threshold  
o 1: Delta above proximity threshold  
Bit 2: Quick release indicator:  
o 0: No quick release detected  
o 1: Quick release detected  
Bit 1: Movement indicator:  
o 0: No movement detected  
o 1: Movement detected  
Bit 0: Filter halt indicator:  
o 0: Delta below filter halt level  
o 1: Delta above filter halt level  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 25 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Hall UI Flags (0x14)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Wheel  
movement  
Movement  
direction  
Count Difference  
sign  
sign  
Bit definitions:  
Bit7: Wheel movement indicator:  
o 0: No wheel movement detected  
o 1: Wheel movement detected  
Bit6: Movement direction indicator:  
o 0: If movement is detected it is in negative direction  
o 1: If movement is detected it is in positive direction  
Bit1: Count sign:  
o 0: Indicates that the movement counts are positive  
o 1: Indicates that the movement counts are negative  
Bit0: Difference sign:  
o 0: Indicates that the angle delta is positive  
o 1: Indicates that the angle delta is negative  
Hall Ratio Flags (0x15)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Move  
Max  
Max  
counter Denominator Numerator  
full  
set  
set  
Bit definitions:  
Bit 2: Move counter full indicator:  
o 0: Movement counter is not full  
o 1: Movement counter is full  
Bit 1: Max Denominator set indicator:  
o 0: Max denominator has not changed  
o 1: Max denominator has changed  
Bit 0: Max Numerator set indicator:  
o 0: Max Numerator has not changed  
o 1: Max Numerator has changed  
7.2.3 Count Data  
Count CS values (0x20/0x21-0x2A/0x2B)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read  
Name  
Count High Byte  
Count Low Byte  
Bit definitions:  
Bit 15-0: Counts  
o AC filter or raw value  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 26 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
LTA values (0x30/0x31-0x32/0x33)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read  
Name  
LTA High Byte  
LTA Low Byte  
Bit definitions:  
Bit 15-0: LTA Values  
o LTA filter value  
7.2.4 Touch / Proximity sensor settings  
Proximity/touch Mode settings (0x40-0x41)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Sensor mode  
TX select  
RX select  
Bit definitions:  
Bit 7-4:Sensor mode select:  
o 0000: Self capacitive mode  
o 1001: Mutual Inductance mode  
Bit 3-2:TX-select:  
o 00: TX 0 and TX 1 is disabled  
o 01: TX 0 is enabled  
o 10: TX 1 is enabled  
o 11: TX 0 and TX 1 is enabled  
Bit 1-0:RX select:  
o 00: RX 0 and RX 1 is disabled  
o 01: RX 0 is enabled  
o 10: RX 1 is enabled  
o 11: RX 0 and RX 1 is enabled  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 27 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Proximity/touch settings (0x42)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
CS PXS  
Charge Freq  
Proj bias pxs  
Auto ATI Mode  
Bit definitions:  
Bit 6: ProxSense / Capacitive Sensing Capacitor size select:  
o 0: ProxSense storage capacitor size is 15 pF  
o 1: ProxSense storage capacitor size is 60 pF  
Bit 5-4: Charge Frequency select:  
o 00: 1/2  
o 01: 1/4  
o 10: 1/8  
o 11: 1/16  
Bit 3-2:Projected bias:  
o 00: 2.5 µA  
o 01: 5 µA  
o 10: 10 µA  
o 11: 20 µA  
Bit 1-0:Auto ATI Mode select:  
o 00: ATI Disabled  
o 01: Partial ATI (Multipliers are fixed)  
o 10: Semi Partial ATI (Coarse multipliers are fixed)  
o 11: Full ATI  
ATI settings(0x43-0x44)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
ATI Target  
ATI Base  
Different addresses:  
0x43: Channel 0 ATI settings  
0x44: Channel 1 ATI settings  
Bit definitions:  
Bit 7-6:ATI Base value select:  
o 00: 75  
o 01: 100  
o 10: 150  
o 11: 200  
Bit 5-0:ATI Target:  
o ATI Target is 6-bit value x 32  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 28 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
CH0/1 ProxSense / Capacitive Sensing Setting 3 (0x45)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
ACF  
Disable  
SUID  
Enable  
CS Div  
Two  
sided  
PXS  
LTA Beta  
ACF Beta  
Bit definitions:  
Bit 7: Small user interactions detection UI Enable:  
o 0: Small user interactions detection UI is disabled  
o 1: Small user interactions detection UI is enabled  
Bit 6: CS divider  
o 0: CS divider disabled  
o 1: CS divider enabled  
Bit 5: Two sided ProxSense / Capacitive Sensing  
o 0: Bidirectional detection disabled  
o 1: Bidirectional detection enabled  
Bit 4: ACF Disable  
o 0: AC Filter Enabled  
o 1: AC Filter Disabled  
Bit 3-2:LTA Beta 0  
o 00: 7  
o 01: 8  
o 10: 9  
o 11: 10  
Bit 1-0:ACF Beta 1  
o 00: 1  
o 01: 2  
o 10: 3  
o 11: 4  
Compensation Ch0,1 (0x46,0x47)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Compensation (7-0)  
Bit definitions:  
Bit 7-0:0-255: Lower 8 bits of the Compensation Value  
Different addresses:  
0x46: Channel 0 Lower 8 bits of the Compensation Value  
0x47: Channel 1 Lower 8 bits of the Compensation Value  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 29 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Multipliers values Ch0,1(0x48/0x49)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Compensation (9-8) Coarse multiplier  
Fine multiplier  
Bit definitions:  
Bit 7-6:Compensation upper two bits  
o 0-3: Upper 2-bits of the Compensation value.  
Bit 5-4:Coarse multiplier Selection:  
o 0-3: Coarse multiplier selection  
Bit 3-0:Fine Multiplier Selection:  
o 0-15: Fine Multiplier selection  
7.2.5 Touch / Proximity UI settings  
Proximity/touch threshold Ch0,1(0x50-0x53)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Threshold  
[50H-53H] Proximity and touch thresholds, bit7-0:  
If a difference between the LTA and counts value would exceed this threshold the  
appropriate event would be flagged. (either Touch or Proximity Event)  
Different addresses:  
0x50 Ch0 Proximity Threshold Value  
0x51 Ch0 Touch Threshold Value  
0x52 Ch1 Proximity Threshold Value  
0x53 Ch1 Touch Threshold Value  
ProxSense / Capacitive Sensing halt period (0x54)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
ProxSense / Capacitive Sensing halt period  
Bit definitions:  
Bit 7-0: Halt time in 0.5 second ticks  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 30 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
7.2.6 Small User interaction detection  
Small User interaction detection settings 0(0x60)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Quick release detection beta  
Movement detection beta  
Bit definitions:  
Bit 6-4:Quick release detection  
o 0-7: Quick release filter beta value  
Bit 3-0:Movement detection Beta  
o 0-15: Movement filter beta value  
Small User interaction detection settings 1(0x61)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
LTA Halt Prox timeout  
Movement detection threshold  
Bit definitions:  
Bit 7-4:LTA Halt Prox timeout  
o 0-15: LTA Halt timeout in no Prox in 500 ms ticks  
Bit 3-0:Movement detection threshold  
o 0-15: Movement Threshold Value  
Proximity/touch threshold (0x62,0x63-0x64)  
Bit Number  
Data Access  
7
6
5
4
3
2
1
0
Read/Write  
Name  
Threshold  
[62H] Release threshold, bit7-0:  
In SUID mode. If a difference between the LTA and counts value would exceed this  
threshold the appropriate event would be flagged. (either Quick release, Touch or  
Proximity Event)  
[63H-64H] Proximity and touch thresholds, bit7-0:  
If a difference between the LTA and counts value would exceed this threshold the  
appropriate event would be flagged. (either Touch or Proximity Event)  
Different addresses:  
0x63:  
0x64:  
SUID Proximity threshold  
SUID Touch threshold  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 31 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Small User interaction detection Halt timer period (0x65)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
SUID Halt timer period  
Bit definitions:  
Bit 7-0:LTA Halt Prox timeout after QRD  
o LTA Halt timeout after a Quick release event with no movement in 500 ms ticks  
7.2.7 HALL Sensor Settings  
Hall Wheel UI Settings 0 (0x70)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Hall Wheel  
UI disable  
Auto  
calibration  
Wheel  
wakeup  
Bit definitions:  
Bit 7: Hall Wheel UI disable  
o 0: Hall wheel UI is enabled  
o 1: Hall wheel UI is disabled  
Bit 2: Auto calibration  
o 0: Auto calibration disabled  
o 1: Auto calibration enabled  
Bit 0: Wheel wakeup select  
o 0: Wheel wakeup mode disabled  
o 1: Wheel wakeup mode enabled  
Hall sensor settings (0x71)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Charge Freq  
Auto ATI mode  
Hall  
Bit definitions:  
Bit 5-4:Charge Frequency: The rate at which our measurement circuit samples  
o 00: 1/2  
o 01: 1/4  
o 10: 1/8  
o 11: 1/16  
Bit 1-0:Auto ATI Mode  
o 00: ATI disabled: ATI is completely disabled  
o 01: Partial ATI: Only adjusts compensation  
o 10: Semi-Partial ATI: Only adjusts compensation and the fine multiplier.  
o 11: Full-ATI: Compensation and both coarse and fine multipliers is adjusted  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 32 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
ATI settings(0x72-0x73)  
7
6
5
4
3
2
1
0
Bit Number  
Data Access  
Name  
Read/Write  
ATI Target  
ATI Base  
Different addresses:  
0x72: Channel 2 & 3 ATI settings  
0x73: Channel 4 & 5 ATI settings  
Bit definitions:  
Bit 7-6:ATI Base value select:  
o 00: 75  
o 01: 100  
o 10: 150  
o 11: 200  
Bit 5-0:ATI Target:  
o ATI Target is 6-bit value x 32  
Compensation Ch2/3,4/5 (0x74,0x75)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Compensation (7-0)  
Bit definitions:  
Bit 7-0: 0-255: Lower 8 bits of the compensation value  
Different addresses:  
0x74: Channel 2/3 Lower 8 bits of the compensation Value  
0x75: Channel 4/5 Lower 8 bits of the compensation Value  
Hall Multipliers Ch2/3,4/5 (0x76-0x77)  
Bit Number  
7
6
5
4
3
2
1
0
Data Access  
Name  
Read/Write  
Compensation 9-8  
Coarse Multiplier  
Fine Multiplier  
Different addresses:  
0x76 Channel 2/3 Multipliers selection  
0x77 Channel 4/5 Multipliers selection  
Bit definitions:  
Bit 7-6:Compensation 9-8:  
o 0-3: Upper 2-bits of the compensation value  
Bit 5-4:Coarse multiplier selection  
o 0-3: Coarse multiplier selection  
Bit 3-0:Fine multiplier selection  
o 0-15: Fine multiplier selection  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 33 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Hall ratio settings (0x78)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read  
Read/Write  
Direction  
invert / Cos Negative  
negative  
Read  
Octant  
flag  
Y
Ratio  
Denominator Numerator  
negative  
negative  
negative  
Bit definitions:  
Bit 6-5:Quadrature output for octant changes (per 45 degrees)  
o 0-3: Quadrature output  
Bit 3: Invert direction of degrees  
o 0 Invert not active  
o 1 Invert active  
Bit 2: Ratio negative  
o 0 Ratio is positive  
o 1 Ratio is negative  
Bit 1: Denominator negative  
o 0 Denominator is positive  
o 1 Denominator is negative  
Bit 0: Numerator negative  
o 0 Numerator is positive  
o 1 Numerator is negative  
Sin constant (0x79)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Sin constant  
Bit definitions:  
Bit 7-0:Sin constant:  
o Sin (phase difference) x 255  
Cos constant (0x7A)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Cos constant  
Bit definitions:  
Bit 7-0:Cos constant:  
o Cos (phase difference) x 255  
Phase difference:  
Phase difference measured between the signals obtained from the two Hall sensor  
plates. This can be calculated with a simple calibration.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 34 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
7.2.8 HALL Wheel Output  
Degree Output (0x81-0x80)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Degrees High Byte  
Degrees Low Byte  
Bit definitions:  
0-360: Absolute degree position of magnet  
Ratio Output (0x83-0x82)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Degrees High Byte  
Degrees Low Byte  
Bit definitions:  
16-bit value: Ratio used to calculate degrees  
Numerator (0x85-0x84)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Numerator High Byte  
Numerator Low Byte  
Bit definitions:  
16-bit value: Numerator used to calculate ratio  
Denominator (0x87-0x86)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Denominator High Byte  
Denominator Low Byte  
Bit definitions:  
16-bit value: Denominator used to calculate ratio  
Rotation Correction factor (0x89-0x88)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Rotation Correction Factor High Byte  
Rotation Correction Factor Low Byte  
Bit definitions:  
16-bit value: Used for auto calibration  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 35 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Max Numerator (0x8B-0x8A)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Max Numerator High Byte  
Max Numerator Low Byte  
Bit definitions:  
16-bit value: Used during auto calibration  
Max Denominator (0x8D-0x8C)  
Bit Number 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Data Access  
Read/Write  
Name  
Max Denominator High Byte  
Max Denominator Low Byte  
Bit definitions:  
16-bit value: Used during auto calibration  
Relative Rotation Angle (0x8E)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Relative degrees  
Bit definitions:  
0-180: Delta in degrees from previous cycle  
Movement counter/timer (0x8F)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Movement Timer  
Movement Counter  
Bit definitions:  
Bit 7-4:Movement Timer  
o 0-15: Timer used to detect movement  
Bit 3-0:Movement Counter  
o 0-15: Counter used to detect movement  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 36 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
7.2.9 Device and Power Mode Settings  
General system settings (0xD0)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
8Mhz Comms  
in ATI  
Soft  
reset  
Ack  
reset  
Event  
mode  
Small  
ATI  
Redo  
ATI all  
Do  
reseed  
band  
Bit definitions:  
Bit 7: Soft Reset (Set only, will clear when done)  
o 1 Causes the device to perform a WDT reset  
Bit 6: Acknowledge reset (Set only, will clear when done)  
o 1 Acknowledge that a reset has occurred. This event will trigger until  
acknowledged  
Bit 5: Communication mode selct:  
o 0 Streaming communication mode enabled  
o 1 Event communication mode enabled  
Bit 4: Main clock frequency selction  
o 0 Run FOSC at 16Mhz  
o 1 Run FOSC at 8 Mhz  
Bit 3: Communication during ATI select:  
o 0 No communication during ATI  
o 1 Communications continue regardless of ATI state  
Bit 2: ATI band selection  
o 0 Re ATI when outside 1/8 of ATI target  
o 1 Re-ATI when outside 1/16 of ATI target  
Bit 1: Redo ATI on all channels (Set only, will clear when done)  
o 1 Start the ATI process  
Bit 0: Reseed All Long term filters (Set only, will clear when done)  
o 1 Start the Reseed process  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 37 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Active channels mask (0xD1)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
CH4 CH3  
CH5  
CH2  
CH1  
CH0  
Bit definitions:  
Bit 5: CH5 (note: Ch2, Ch3, Ch4 and Ch5 must all be enabled for Hall effect rotation  
UI to be functional)  
o 0: Channel is enabled  
o 1: Channel is disabled  
Bit 4: CH4 (note: Ch2, Ch3, Ch4 and Ch5 must all be enabled for Hall effect rotation  
UI to be functional)  
o 0: Channel is enabled  
o 1: Channel is disabled  
Bit 3: CH3 (note: Ch2, Ch3, Ch4 and Ch5 must all be enabled for Hall effect rotation  
UI to be functional)  
o 0: Channel is enabled  
o 1: Channel is disabled  
Bit 2: CH2 (note: Ch2, Ch3, Ch4 and Ch5 must all be enabled for Hall effect rotation  
UI to be functional)  
o 0: Channel is enabled  
o 1: Channel is disabled  
Bit 1: CH1 (note: Ch0 and Ch1 must both be enabled for Small user interaction  
detection UI to be functional)  
o 0: Channel is enabled  
o 1: Channel is disabled  
Bit 0: CH0 (note: Ch0 and Ch1 must both be enabled for Small user interaction  
detection UI to be functional)  
o 0: Channel is enabled  
o 1: Channel is disabled  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 38 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Power mode settings (0xD2)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Enable Disable  
Power mode  
Np segment rate  
ULP  
Auto  
Mode  
Modes  
Bit definitions:  
Bit 6: Enable Ultra-Low Power Mode  
o 0: ULP is disabled during auto-mode switching  
o 1: ULP is enabled during auto-mode switching  
Bit 5: Disable auto mode switching  
o 0: Auto mode switching is enabled  
o 1: Auto mode switching is disabled  
Bit 4-3:Manually select Power Mode (note: bit 5 must be set)  
o 00: Normal Power mode. The device runs at the normal power rate, all enabled  
channels and UIs will execute.  
o 01: Low Power mode. The device runs at the low power rate, all enabled  
channels and UIs will execute.  
o 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is  
run as wake-up channel. The other channels execute at the NP-segment rate.  
o 11: Halt Mode. No conversions are performed; the device must be removed from  
this mode using an I2C command.  
Bit 2-0:Normal Power Segment update rate  
o 000: ½ ULP rate  
o 001: ¼ ULP rate  
o 010: 1/8 ULP rate  
o 011: 1/16 ULP rate  
o 100: 1/32 ULP rate  
o 101: 1/64 ULP rate  
o 110: 1/128 ULP rate  
o 111: 1/256 ULP rate  
Normal/Low/Ultra-Low power mode report rate (0xD3,0xD4)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Normal/Low power mode report rate  
Different addresses:  
0xD3: Normal mode report rate in ms (note: LPOSC timer has +- 4 ms accuracy)  
0xD4: Low-power mode report rate in ms (note: LPOSC timer has +- 4 ms accuracy)  
0xD5: Ultra-low power mode report rate in 16 ms ticks  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 39 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Auto Mode time (0xD6)  
Bit Number  
Data Access  
Name  
7
6
5
4
3
2
1
0
Read/Write  
Mode time  
Bit definitions:  
Bit 7-0: Auto modes switching time in 500 ms ticks  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 40 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
8 Electrical characteristics  
8.1 Absolute Maximum Specifications  
The following absolute maximum parameters are specified for the device:  
Exceeding these maximum specifications may cause damage to the device.  
Table 8.1  
Absolute maximum specification  
IQS624-3yy  
Parameter  
IQS624-5yy  
Operating temperature  
-40°C to 85°C  
Supply voltage range (VDDHI GND)  
Maximum pin voltage  
1.78V - 3.6V  
2.4V - 5.5V  
VDDHI + 0.5V (may not exceed VDDHI max)  
Maximum continuous current (for specific Pins)  
Minimum pin voltage  
10mA  
GND - 0.5V  
Minimum power-on slope  
100V/s  
ESD protection  
±4kV (Human body model)  
8.2 Power On-reset/Brown out  
Table 8.2  
Power on-reset and brown out detection specifications  
Description  
Power On Reset  
Brown Out Detect VDDHI Slope ≥ 100V/s @25°C BOD  
Conditions  
Parameter  
MIN  
MAX  
UNIT  
VDDHI Slope ≥ 100V/s @25°C POR  
1.15  
1.2  
1.6  
1.6  
V
V
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 41 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
8.3 Current consumptions  
8.3.1 IC subsystems  
Table 8.3  
IC subsystem current consumption  
Description  
TYPICAL MAX UNIT  
Core active  
Core sleep  
339  
0.63  
1.5  
377 µA  
1
2
µA  
Hall sensor active  
mA  
Table 8.4  
IC subsystem typical timing  
Description  
Normal  
Core active  
Core sleep  
Hall sensor active  
Total  
Unit  
5
5
5
0.5  
0.5  
0
10  
48  
ms  
ms  
Low  
43  
Ultra-low  
1.75  
128  
129.75 ms  
8.3.2 Capacitive sensing alone  
Table 8.5 Capacitive sensing current consumption  
Solution Power mode Conditions Report rate TYPICAL UNIT  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
5V  
NP mode  
NP mode  
LP mode  
LP mode  
ULP mode  
ULP mode  
NP mode  
NP mode  
LP mode  
LP mode  
ULP mode  
ULP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 5.5V  
10 ms  
10 ms  
48 ms  
48 ms  
128 ms  
128 ms  
10 ms  
10 ms  
48 ms  
48 ms  
128 ms  
128 ms  
43.5  
44.4  
13.3  
13.8  
3.9  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
4.5  
51.3  
52.3  
14.5  
15.5  
3.9  
5V  
5V  
5V  
5V  
5V  
5.1  
-These measurements where done on the default setup of the IC  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 42 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
8.3.3 Hall-effect sensing alone  
Table 8.6  
Hall-effect current consumption  
Solution Power mode Conditions Report rate TYPICAL UNIT  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
5V  
NP mode  
NP mode  
LP mode  
LP mode  
ULP mode  
ULP mode  
NP mode  
NP mode  
LP mode  
LP mode  
ULP mode  
ULP mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 1.8V  
VDD = 3.3V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 5.5V  
10 ms  
10 ms  
48 ms  
48 ms  
128 ms  
128 ms  
10 ms  
10 ms  
48 ms  
48 ms  
128 ms  
128 ms  
215.2  
212.6  
58.3  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
55.1  
N/A (1)  
N/A (1)  
240.0  
239.3  
64.1  
5V  
5V  
5V  
64.8  
5V  
N/A (1)  
N/A (1)  
5V  
-These measurements where done on the default setup of the IC  
(1) It is not advised to use the IQS624 in ULP without capacitive sensing. This is due to the Hall-effect sensor  
being disabled in ULP.  
8.3.4 Halt mode  
Table 8.7  
Halt mode current consumption  
Solution  
Power mode  
Conditions  
TYPICAL  
UNIT  
3.3V  
3.3V  
5V  
Halt mode  
Halt mode  
Halt mode  
Halt mode  
VDD = 1.8V  
VDD = 3.3V  
VDD = 2.5V  
VDD = 5.5V  
1.6  
1.9  
1.1  
2.2  
µA  
µA  
µA  
µA  
5V  
8.4 Capacitive loading limits  
To be completed.  
8.5 Hall-effect measurement limits  
To be completed.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 43 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
9 Package information  
9.1 DFN10 package and footprint specifications  
Table 9.1  
DFN-10 Package  
Figure 9.1 DFN-10 Package  
dimensions (bottom). Note that the  
saddle need to be connected to GND  
on the PCB.  
dimensions (bottom)  
Dimension  
[mm]  
3 ±0.1  
0.5  
0.25  
n/a  
A
B
C
D
F
3 ±0.1  
0.4  
L
P
Q
2.4  
1.65  
Figure 9.2 DFN-10 Package  
dimensions (side)  
Table 9.2  
DFN-10 Package  
dimensions (side)  
Dimension [mm]  
G
H
I
0.05  
0.65  
0.7-0.8  
Table 9.3  
DFN-10 Landing  
dimensions  
Dimension  
[mm]  
2.4  
1.65  
0.8  
0.5  
0.3  
A
B
C
D
E
F
3.2  
Figure 9.3 DFN-10 Landing dimension  
A
B
D
C
P
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 44 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
9.2 Device marking and ordering information  
9.2.1 Device marking:  
IQS624-xyy z t P WWYY  
A
B C  
D
E
A. Device name: IQS624-xyy  
x Version  
3: 3V version  
5: 5V version(1)  
yy Config(2)  
00: 44H sub-address  
01: 45H sub-address  
B. IC revision number: z  
C. Temperature range: t  
i: industrial, 40° to 85°C  
D. For internal use  
E. Date code: WWYY  
F. Pin 1: Dot  
Notes:  
(1) 5V version is not in mass production, only available on special request.  
(2) Other sub-addresses available on special request, see section 6.2.  
9.2.2 Ordering Information:  
IQS624-xyyppb  
x –  
Version  
3 or 5  
yy Config  
00 or 01  
pp Package type  
DN (DFN(3x3)-10)  
b Bulk packaging  
R (3k per reel, MOQ=1 Reel)  
Example:  
IQS624-300DNR  
3
00  
- refers to 3V version  
- config is default (44H sub-address)  
DN - DFN(3x3)-10 package  
- packaged in Reels of 3k (has to be ordered in multiples of 3k)  
R
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 45 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
9.3 Tape and reel specification  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 46 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
9.4 MSL Level  
Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some  
semiconductors. The MSL is an electronic standard for the time period in which a moisture  
sensitive device can be exposed to ambient room conditions (approximately 30°C/85%RH see  
J-STD033C for more info) before reflow occur.  
Package  
Level (duration)  
MSL 2 (1 year @ < 30/60% RH)  
DFN(3x3)-10  
Reflow profile peak temperature < 260 °C for < 30 seconds  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 47 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
10 Datasheet revisions  
10.1Revision history  
V0.1 Preliminary structure  
V1.03a Preliminary datasheet  
V1.04a Corrected the following:  
Updated 0x43-0x44 registers: ATI base is [7:6] and not [7:5]  
Added 0x72 and 0x73 registers: ATI settings for CH 2-5  
Added Streaming and event mode chapters  
Added 5V and 3.3V solution  
V1.05a - Corrected the following:  
Changed ESD rating  
Added calibration and magnet orientation appendix  
Added induction to summary page  
Updated schematic  
Updated disclaimer  
Updated software and hardware number  
V1.10 Changed from preliminary to production datasheet  
Added:  
Hall ATI Explanation  
Current measurements for power modes  
Register Configuration  
Updated:  
Calibration calculations  
Current consumption on overview  
Appendices  
Pinout update, pin 9 - NC  
V1.11 Updated datasheet  
Added:  
Device markings, order information  
Relative/ absolution summary to appendix  
Updated:  
Supply voltage range  
Reference schematic  
Updated MSL data  
V1.12 Minor updates  
Updated:  
Titel  
Images  
10.2Errata  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 48 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
11 Contact Information  
USA  
Asia  
South Africa  
Physical  
Address  
Rm2125, Glittery City  
Shennan Rd  
Futian District  
Shenzhen, 518033  
China  
109 Main Street  
Paarl  
7646  
6507 Jester Blvd  
Bldg 5, suite 510G  
Austin  
TX 78750  
USA  
South Africa  
Postal  
Address  
Rm2125, Glittery City  
Shennan Rd  
Futian District  
Shenzhen, 518033  
China  
PO Box 3534  
Paarl  
7620  
6507 Jester Blvd  
Bldg 5, suite 510G  
Austin  
TX 78750  
USA  
South Africa  
Tel  
+1 512 538 1995  
+1 512 672 8442  
info@azoteq.com  
+86 755 8303 5294  
ext 808  
+27 21 863 0033  
+27 21 863 1512  
info@azoteq.com  
Fax  
Email  
info@azoteq.com  
Please visit www.azoteq.com for a list of distributors and worldwide representation.  
The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US  
7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; EP  
2,351,220; EP 2,559,164; EP 2,656,189; HK 1,156,120; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA  
2015/023634  
IQ Switch®, SwipeSwitch™, ProxSense®, LightSense™, AirButtonTM, ProxFusion™, Crystal Driver™ and the  
logo are trademarks of Azoteq.  
The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant  
the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an “as is” basis only, without any representations or warranties, express  
or implied, of any kind, including representations about the suitability of these products or information for any purpose. Values in the datasheet is subject to change without notice, please ensure  
to always use the latest version of this document. Application specific operating conditions should be taken into account during design and verified before mass production. Azoteq disclaims all  
warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title  
and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by,  
without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The  
applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification,  
nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in  
life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the  
abovementioned limitations or exclusions does not apply, it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in contract, tort (including without limitation,  
negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications,  
enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or  
services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com  
www.azoteq.com/ip  
info@azoteq.com  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 49 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
12 Appendices  
12.1Appendix A: Magnet orientation and calibration  
The IQS624 is able to calculate the angle of a magnet using two Hall sensors which are  
located in two corners of the die within the package. The two Hall sensors gather data of the  
magnet field strength in the z-axis. The difference between the two Hall sensors’ data can be  
used to calculate a phase. This phase difference can then be transformed to degrees.  
Key considerations for the IQS624:  
There must be a phase difference of 1º-179° between the two Hall sensors.  
It’s impossible to calculate the angle if the phase difference is 0° or 180°.  
20mT peak N/S on each Hall sensor  
A minimum of 20mT peak to peak signal is needed on the plates to ensure optimal on-  
chip angle calculation.  
Ideal design considerations:  
Stable phase difference This helps with the linearity of the maths.  
Big phase difference The maths involved has better results with bigger phase difference.  
Distance between the sensors and the magnet should be the same for both this insures  
that the magnet fields observed on both sensors are relatively the same.  
Figure 1 - A layout of the IQS624 die in a DFN10 package.  
Note the Hall sensors at two of the corners.  
Please note: The rectangles which represent the hall sensors in these diagrams are only approximations of where the hall sensors can  
be found and is not to scale.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 50 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Figure 2 - Technical Drawing showing DIE placement within the package.  
The Hall-Plates are shown as the two green pads in the corners of the DIE.  
Package axis and hall-plate axis are also shown.  
Absolute or relative applications  
There are two general applications for a Hall sensor, absolute and relative.  
An absolute application requires the physical absolute angle of the magnet as an input. It is only  
possible to obtain the physical angle from a dipole magnet.  
A relative application requires the difference between two positions of the magnet as an input.  
This makes it possible to use either a dipole or multipole magnet. The relative application can  
also be referred to as an incremental application.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 51 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Preferred magnet orientation  
The preferred or ideal magnet placement would be if the magnet was centred over the die with the  
axis of the magnet centred between the two Hall sensors.  
Figure 3 - A magnet placed ideally over the DFN10 package. Note that the magnet field  
strength is measured in the z-axis.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 52 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Evaluation kit magnet orientation  
There are two orientations which are used for the evaluation kits, one of which has the magnet  
axis perpendicular with the IQS624 and the other has the magnet axis parallel with the  
IQS624.  
Parallel magnet solution  
A diametric polarised magnet parallel with the IQS624.  
Figure 4 - A diagram showing the Hall sensors relative to the magnet.  
Please note: The rectangles which represent the hall sensors in these diagrams are only approximations of where the hall sensors can  
be found and is not to scale.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 53 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Perpendicular magnet solution  
A multipole diametric polarised magnet perpendicular but off-centre with the IQS624. This is a  
typical orientation for a relative application.  
Figure 5 - A diagram showing the Hall sensors relative to the multipole magnet.  
Please note: The rectangles which represent the hall sensors in these diagrams are only approximations of where the hall sensors can  
be found and is not to scale.  
Preferred magnet orientation comments  
Both solutions promote the ideal conditions. However, the EV kit with the magnet parallel with the  
IC could be more Ideal as shown previously. This design was chosen to display the ease of  
placement our product offers with the built-in corrections and linearization algorithms.  
Small movements of the magnet have less impact on the phase difference.  
The distance between the magnet and the two sensors are relatively equivalent.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 54 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Alternative orientation  
Off-centred perpendicular diametrical magnet  
Here are two possible solutions. Note that both are off-centred. This is to ensure that a phase  
difference between the two signals are detected.  
Figure 3 - A slightly off centred  
Figure 4 - A diametrical barrel magnet  
diametrical ring magnet  
next to the IC. The distance between  
the sensor and the magnet is greater  
in this solution, thus a stronger  
magnet is suggested.  
Please note: The rectangles which represent the hall sensors in these diagrams are only approximations of where the hall sensors can  
be found and is not to scale.  
Even though these solutions will work we do not encourage their use. We designed this product  
with the idea to promote easy usage and fewer physical restrictions to the usage. These solutions  
require more critical design on the physical layout and rigidness in the final project.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 55 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Calibration of the IQS624  
How to calculate the calibration constants using the IQS624 GUI  
Step 1: Open the IQS624 GUI, connect the device and start.  
If the IQS624 device is connected the GUI should look like the previous figure.  
Step 2: Align the Hall sensor channels and start the calibration  
A. The four Hall channels.  
B. The channels should be lined up or as lined up as possible. This step can be skipped but it  
has been observed that better results has been obtained by adding this step.  
C. The calibration button. If this button is clicked, the calibration process will start.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 56 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Step 3a: Calibrating the device  
A. This banner indicates that the calibration progress has started.  
B. Like this text instructs, the user must rotate the wheel on the IQS624 device 360 degrees.  
It is encouraged that the wheel must be rotated at a constant and low speed.  
Step 3b: Calibration failure  
A. If this banner pop’s up while rotating the wheel an error was received while calibrating the  
device.  
B. This text also informs an error has occurred.  
If an error occurs step 2-3a should be repeated.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 57 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Step 3c: Calibration complete and successful  
A. This text confirms that the calibration is completed and successful and that the constants  
have been written to the device.  
Step 4: Obtaining the calibration constants  
A. The settings button to open the settings window.  
B. The Hall settings tab which contains all the settings for the Hall UI  
C. This button updates the settings window from the connected device. Its recommended that  
this button should be clicked before the values are used from this window.  
D. The calibration constants. The sin phase and cos phase are the two constants which are  
written to the device. The phase (its displayed in degrees) can also be used to obtain both  
of these constants.  
If this calibration is done on a product the constants obtained from the calibration can be used  
for projects with the same physical layout and magnet. This means that only one calibration is  
needed per product.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 58 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
How to calculate the calibration constants using the raw data  
There are two Hall Plates that make up the sensor, separated by a fixed distanced in the IC  
package, as described previously. These plates, designated Plate 1 & Plate 2, each have two  
associated data channels that sense the North-South magnetic field coincident on the plates.  
For Plate 1: CH2 is the non-inverted channel, and CH3 is the inverted channel.  
For Plate 2: CH4 is the non-inverted channel, and CH5 is the inverted channel.  
E.g. on Plate 1, if CH2 increases in value in the presence of an increasing North field, then CH3  
decreases in value in the presence of an increasing North field.  
The phase delta observed between the plates can be calculated from either the non-inverted, or  
the inverted channel pairs.  
To calculate the phase delta:  
Symbols  
Non-inverted channel of Plate n: 푤ℎ푒푟푒 푃 = 퐶퐻2, 푎ꢀ푑 2 = 퐶퐻4  
1
′  
Inverted channel of Plate n: = 퐶퐻3, 푎ꢀ푑 2= 퐶퐻5  
1
|
Max value of the channel  
푛 푚ꢁ푥  
|
Min value of the channel  
푛 푚푖푛  
∆  
Phase observed between the plates  
Calculations  
To calculate the phase, for at least one full rotation of the magnet, capturing all four channels:  
First normalize the data for each channel, to obtain.  
|
ꢂꢃ  
− ꢂꢃ  
ꢄ ꢅꢆꢇ  
ꢂꢃ  
(
)
( )  
푁 퐶퐻푛  
=
|
|
ꢄ ꢅꢈꢄ  
ꢂꢃ  
− ꢂꢃ  
ꢄ ꢅꢆꢇ  
|
ꢂꢃ  
ꢄ ꢅꢈꢄ  
The data will now range between 0 1.  
{
}
{
}
(
)
For the non-inverted pair: 2, 1 = 퐶퐻4, 퐶퐻2 sample both channels where 푁 퐶퐻4 ≈ 0.ꢊ.  
With these values, the phase delta can be calculated:  
−1(| (  
푁 퐶퐻4 ꢌ 푁 퐶퐻2 ∙ ꢍ  
)
(
)|  
)
( )  
= 푠ꢋꢀ  
{
}
{
}
Likewise, the phase delta can be calculated from the inverted pair: 2 , 1 = 퐶퐻5, 퐶퐻3  
(
)
sample both channels where 푁 퐶퐻5 ≈ 0.ꢊ.  
−1(| (  
) ( )| )  
푁 퐶퐻5 ꢌ 푁 퐶퐻3 ∙ ꢍ  
( )  
= 푠ꢋꢀ  
And, while the phase angles are theoretically equal, due to misalignments, ≈ 휃.  
To increase accuracy of the observed phase, the two calculated phases can be averaged,  
leading the final Observed phase as:  
−1(| (  
)
(
)|  
)
−1(| (  
)
푁 퐶퐻5 ꢌ 푁 퐶퐻3 ∙ ꢍ  
)
(
)|  
푠ꢋꢀ  
푁 퐶퐻4 ꢌ 푁 퐶퐻2 ∙ ꢍ + 푠ꢋꢀ  
( )  
=  
{
}
(
)
{
}
NB: Remember that 퐶퐻4, 퐶퐻2 are evaluated at 푁 퐶퐻4 ≈ 0.ꢊ. While separately, 퐶퐻5, 퐶퐻3  
(
)
are evaluated at 푁 퐶퐻5 ≈ 0.ꢊ. Even when used together in Equation (4).  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 59 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
The IQS624 uses this phase delta as a constant to calculate the angle. The phase delta is  
saved on the IC after it has been converted to (푠ꢋꢀ(휃) ∙ ꢍꢊ6) and (푐표푠(휃) ∙ ꢍꢊ6). This is done  
to lessen computations and memory usage on the chip.  
This means that if the phase were to change, the constants would need to be recalculated. If  
the application of this IC ensures nothing or little movement, the master device would only  
need to write the values each time the IC resets and would not need to re-calculate it. Making  
it possible to calculate the phase delta once before production and using that value for the  
application.  
An example of well aligned channels, the phase offset visible between the inverted and non-  
inverted channel pairs of the two plates:  
Experimentally, jog the XYZ alignment of the magnet relative to the IC and perform at least  
one full rotation of the magnet, assess the peaks of the channels; repeat this until all channels  
have approximately the same amplitude.  
To change the sensitivity of the ProxEngine to Magnetic Field Strength, the ATI parameters on  
the IC can be adjusted as described in the following section.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 60 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Hall ATI  
Azoteq’s ProxFusion™ Hall technology has ATI Functionality; which ensures stable sensor  
sensitivity. The ATI functionality is similar to the ATI functionality found in ProxSense® technology.  
The difference is that the Hall ATI requires two channels for a single plate.  
Using two channels ensures that the ATI can still be used in the presence of the magnet. The two  
channels are the inverse of each other, this means that the one channel will sense North and the  
other South. The two channels being inverted allows the capability of calculating a reference value  
which will always be the same regardless of the presence of a magnet.  
Hall reference value:  
The equation used to calculate the reference value, per plate:  
푅푒푓 =  
ꢍ ∙ ꢐ1  
+
1ꢓ  
ATI parameters:  
The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two  
parameters per plate (ATI base and ATI target). The ATI process is used to ensure that the  
sensor’s sensitivity is not severely affected by external influences (Temperature, voltage supply  
change, etc.).  
Coarse and Fine multipliers:  
In the ATI process the compensation is set to 0 and the coarse and fine multipliers are adjusted  
such that the counts of the reference value (푅푒푓) are roughly the same as the ATI Base value.  
This means that if the base value is increased, the coarse and fine multipliers should also increase  
and vice versa.  
ATI-Compensation:  
After the coarse and fine multipliers are adjusted, the compensation is adjusted till the reference  
value (푅푒푓) reaches the ATI target. A higher target means more compensation and therefore more  
sensitivity on the sensor.  
The ATI-Compensation adjusts chip sensitivity; and, must not be confused with the On-chip  
Compensation described below. On-chip Compensation corrects minor displacements or magnetic  
non-linearities. This compensation ensures that both channels of each plate which represent  
North and South individually have the same swing. On-chip compensation is performed in the UI  
and is not observable on the raw channel data.  
The ATI process ensures that long term temperature changes, or bulk magnetic interference (e.g.  
the accidental placement of another magnet too close to the setup), do not affect the sensor’s  
ability to detect the rotating magnet.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 61 of 62  
January 2017  
IQ Switch®  
ProxFusionSeries  
Recommended parameters:  
There are recommended parameters to ensure optimal use. Optimally the settings would be set up  
to have a max swing of 1000 from peak to peak and a reference value below 1000 counts.  
The recommended parameters are:  
ATI Base: 100 or 150  
ATI Target: 500 1000  
It is not assured that these settings will always set up the channels in the optimal region but it is  
recommended to rather adjust the magnet’s position a little as this also influences the signal  
received. If the magnet is too close to the IC the swing will be too large, and thus it is  
recommended to increase the distance between the IC and the Magnet.  
Copyright © Azoteq 2016  
All rights reserved  
IQS624 Datasheet v1.12  
Page 62 of 62  
January 2017  

相关型号:

IQS6624-301DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQS6624-500DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQS6624-501DNR

Hall effect angle sensor:On-chip Hall plates
ETC

IQT20A1000B

Consumer IC
ETC

IQT20A10B

Consumer IC
ETC

IQT20A30

Consumer IC
ETC

IQT20A60

Consumer IC
ETC

IQT20A70

Consumer IC
ETC

IQT20A900

Consumer IC
ETC

IQTCQO-250

Temperature Compensated Crystal Oscillators
ETC

IQTCQO-250CP

Temperature Compensated Crystal Oscillators
ETC

IQTCQO-250GP

Temperature Compensated Crystal Oscillators
ETC