KAC-1310 [ETC]

1280 (H) x 1024 (V) SXGA CMOS Image Sensor; 1280 (H )× 1024 ( V) SXGA CMOS图像传感器
KAC-1310
型号: KAC-1310
厂家: ETC    ETC
描述:

1280 (H) x 1024 (V) SXGA CMOS Image Sensor
1280 (H )× 1024 ( V) SXGA CMOS图像传感器

传感器 图像传感器 CD
文件: 总76页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMAGE SENSOR SOLUTIONS  
D E V I C E  
P E R F O R M A N C E  
S P E C I F I C A T I O N  
KODAK KAC-1310  
Image Sensor  
1280 (H) x 1024 (V)  
SXGA CMOS Image Sensor  
November 7, 2002  
Revision 4  
K A C - 1 3 1 0 R e v .  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
TABLE OF CONTENTS  
TABLE OF FIGURES........................................... 3  
TIMING ............................................................... 31  
START OF ROW READOUT (SOF)...................... 31  
HORIZONTAL DATA SYNC (VCLK) ..................... 31  
DATA VALID (HCLK)......................................... 31  
STROBE SIGNAL ............................................... 33  
Example Timing Summary:........................ 35  
LIST OF TABLES................................................. 3  
SUMMARY SPECIFICATION .............................. 5  
PIN DEFINITIONS................................................ 6  
RECOMMENDED HARDWARE FOR KAC-1310  
SENSOR EVALUATION: ........................................ 7  
I2C-COMPATIBLE SERIAL INTERFACE.......... 36  
KAC-1310 I2C BUS PROTOCOL........................ 37  
START SIGNAL................................................ 37  
SLAVE ADDRESS TRANSMISSION ....................... 37  
ACKNOWLEDGMENT.......................................... 37  
DATA TRANSFER .............................................. 37  
STOP SIGNAL ................................................... 37  
REPEATED START SIGNAL............................... 38  
I2C BUS CLOCKING AND SYNCHRONIZATION....... 38  
REGISTER WRITE ............................................. 38  
REGISTER READ............................................... 38  
DEVICE DESCRIPTION....................................... 8  
PIXEL ARCHITECTURE....................................... 10  
COLOR FILTERS AND LENSLETS......................... 11  
FRAME CAPTURE MODES.................................. 11  
CONTINUOUS FRAME ROLLING SHUTTER CAPTURE  
MODE (CFRS) ................................................. 11  
CFRS VIDEO ENCODED DATA STREAM............. 12  
SINGLE FRAME ROLLING SHUTTER CAPTURE MODE  
(SFRS) ........................................................... 12  
WINDOW OF INTEREST (WOI) CONTROL............ 12  
SUB-SAMPLING CONTROL (RESOLUTION) .......... 12  
VIRTUAL FRAME (VF)........................................ 13  
REGISTER LIST REFERENCE......................... 41  
CINFTREGSRIANTTIOEGNRTAIMTIEON...T..I.M...E................................................................... 1133  
SFRS INTEGRATION TIME................................. 14  
FRAME RATE.................................................... 14  
CFRS FRAME RATE ......................................... 14  
SFRS FRAME RATE ......................................... 15  
ANALOG SIGNAL PROCESSING CHAIN..... 16  
(ASP).............................................................. 16  
FRAME RATE CLAMP (FRC).............................. 16  
COLUMN DIGITAL OFFSET VOLTAGE ADJUST  
DETAILED REGISTER BLOCK ASSIGNMENTS  
............................................................................ 44  
COLOR GAIN REGISTERS 00H Æ 03H.................. 44  
REFERENCE VOLTAGE ADJUST REGISTERS (0AH,  
0BH)................................................................. 46  
POWER CONFIGURATION REGISTERS (0CH) ....... 47  
RESET CONTROL REGISTER (0EH)..................... 48  
EXPOSURE GAIN A REGISTER (10H) .................. 49  
TRISTATE CONTROL REGISTER (12H)................. 49  
COLUMN DOVA DC REGISTER (20H) ................ 51  
EXPOSURE GAINB (21H) ................................... 52  
PGA GAIN MODE (22H)..................................... 53  
ADC DOVA (23H)............................................ 54  
CAPTURE MODE CONTROL (40H)....................... 55  
SUB-SAMPLE CONTROL (41H)............................ 56  
TRIGGER AND STROBE CONTROL REGISTER  
(42H)................................................................ 57  
PROGRAMMABLE WINDOW OF INTEREST (WOI)  
(45H-4CH)......................................................... 58  
INTEGRATION TIME CONTROL (4EH Æ 4FH) ........ 61  
PROGRAMMABLE VIRTUAL FRAME (50H Æ 53H) .. 62  
SOF AND VCLK DELAY REGISTERS (54H AND 55H)  
........................................................................ 64  
SOF & VCLK WIDTH REGISTER (56H) .............. 65  
READOUT DIRECTION REGISTER (57H)............... 66  
INTERNAL TIMING CONTROL REGISTERS (5FH AND  
60H)................................................................. 67  
CLAMP CONTROL AND HCLK DELAY REGISTER  
(64H)................................................................ 68  
ENCODED SYNC REGISTER (65H)...................... 69  
MOD64 COLUMN OFFSET CORRECTION REGISTER  
(80H-BFH)......................................................... 70  
(CDOVA) ........................................................ 16  
PROGRAMMABLE GAIN AMPLIFIER (PGA) .......... 17  
GARINaMwOGDaEiSn..M...o..d..e..:................................................................................. 1177  
Lin1 Gain Mode:......................................... 17  
Lin2 Gain Mode:......................................... 17  
WHITE BALANCE CONTROL PGA (WB GAIN)..... 19  
EXPOSURE GAIN PGA (EXP GAIN A/B) ............. 20  
GLOBAL DIGITAL OFFSET VOLTAGE ADJUST  
(GDOVA)........................................................ 20  
ANALOG TO DIGITAL CONVERTER (ADC) ........... 20  
PERFORMANCE................................................ 21  
TEST CONDITIONS ............................................ 21  
IMAGING PERFORMANCE................................... 21  
QUANTUM EFFICIENCY...................................... 23  
DYNAMIC RANGE .............................................. 25  
TEMPORAL NOISE............................................. 25  
OPERATION ...................................................... 28  
INITIALIZATION (STANDBY MODE)....................... 28  
STANDBY MODE ............................................... 28  
OUTPUT TRISTATE............................................ 28  
READOUT ORDER ............................................. 28  
READOUT SPEED.............................................. 29  
INTERNAL BIAS CURRENT CONTROL .................. 30  
STORAGE AND HANDLING............................. 71  
MECHANICAL DRAWINGS .............................. 73  
2
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
QUALITY ASSURANCE AND RELIABILITY.... 75  
Table 3 continued. Electro-Optical Characteristics  
............................................................................ 22  
Table 4: Absolute Maximum Ratings.................. 26  
Table 5: Recommended Operating Conditions .. 26  
Table 6: DC Electrical Characteristics................ 27  
Table 7: Power Dissipation................................. 27  
Table 8: Pixel Data Bus and Sync Timing  
ORDERING INFORMATION.............................. 76  
AVAILABLE PART CONFIGURATIONS................... 76  
TABLE OF FIGURES  
Figure 1. Pinout Diagram...................................... 6  
Figure 2: KAC-1310 Pin Connection Schematic .. 7  
Figure 3: KAC-1310 Block Diagram ..................... 8  
Figure 4: Optional Bayer RGB Pattern CFA....... 11  
Figure 5: Optional Bayer CMY Pattern CFA....... 11  
Figure 6: Increase of sensitivity due to microlenses  
............................................................................ 11  
Figure 7: WOI Definition ..................................... 12  
Figure 8: Virtual Frame Definition....................... 13  
Figure 9: RGB Bayer ½ x ½ Sub-sample Example.  
Sub-sample Control Register(41h) = xxx10101b. 13  
Figure 10: Conceptual block diagram of CDS.... 16  
Figure 11: FRC Conceptual Block Diagram ....... 16  
Figure 12: PGA Gain Modes .............................. 18  
Figure 13: Color Gain Register Selection........... 19  
Figure 14: KAC-1310 Typical Monochrome  
Specification ....................................................... 32  
Table 9: I2C-compatible Serial Interface Timing  
Specification ....................................................... 40  
Table 10. I2C Address Range Assignments....... 41  
Table 11: I2C Address Assignments (0h- 3Fh) .... 42  
Table 12: I2C Address Assignments (40h - FFh). 43  
Table 13: PGA Color 1 Gain Register (00h)........ 44  
Table 14: PGA Color 2 Gain Register (01h)........ 45  
Table 15: PGA Color 3 Gain Register (02h)........ 45  
Table 16: PGA Color 4 Gain Register (03h)........ 45  
Table 17: Negative Voltage Reference Register  
(0Ah).................................................................... 46  
Table 18: Positive Voltage Reference Register  
(0Bh).................................................................... 46  
Table 19: Power Configuration Register (0Ch)... 47  
Table 20: Reset Control Register (0Eh).............. 48  
Table 21: A Exposure Gain A Register (10h)...... 49  
Table 22: Tristate Control Register (12h)............ 50  
Table 23: Column DOVA DC Offset (20h) .......... 51  
Table 24: Exposure Gain B (21h)........................ 52  
Table 25: PGA Gain Mode (22h)......................... 53  
Table 26: ADC DOVA Register (23h).................. 54  
Table 27: Capture Mode Register (40h).............. 55  
Table 28: Sub-Sample Control Register (41h).... 56  
Table 29: TRIGGER and STROBE Control  
Spectral Response ............................................. 23  
Figure 15: KAC-1310 Typical Bayer RGB Spectral  
Response............................................................ 23  
Figure 16: KAC-1310 Typical Bayer CMY Spectral  
Response............................................................ 24  
Figure 17: Dynamic Range with respect to Mclk  
Frequency........................................................... 25  
Figure 18: Temporal Noise Dependence on  
External Resistor ................................................ 25  
Figure 19: Power Consumption Dependence on  
External Resistor ................................................ 30  
Figure 20: CFRS Default Frame Sync Waveforms  
............................................................................ 31  
Figure 21: CFRS Default Row Sync Waveforms 32  
Figure 22: Single Frame Capture Mode (SFRS) 32  
Figure 23: Pixel Data Bus Timing Diagram ........ 33  
Figure 24: STROBE Output Waveforms ............ 34  
Figure 25: I2C Bus WRITE Cycle........................ 36  
Figure 26: I2C Bus READ Cycle ......................... 39  
Figure 27: I2C Bus Timing................................... 40  
Figure 28: Recommended Reflow Soldering  
Register (42h)...................................................... 57  
Table 30: WOI Row Pointer MSB Register (45h) 58  
Table 31: WOI Row Pointer LSB Register (46h). 58  
Table 32: WOI Column Pointer MSB Register (49h)  
............................................................................ 59  
Table 33: WOI Column Pointer LSB Register (4Ah)  
............................................................................ 59  
Table 34: WOI Row Depth MSB Register (47h) . 59  
Table 35: WOI Row Depth LSB Register (48h) .. 60  
Table 36: WOI Column Width MSB Register (4Bh)  
............................................................................ 60  
Table 37: WOI Column Width LSB Register (4Ch)  
............................................................................ 60  
Table 38: Integration Time MSB Register (4Eh). 61  
Table 39: Integration Time LSB Register (4Fh) .. 61  
Table 40: Virtual Frame Row Depth MSB (50h) . 62  
Table 41: Virtual Frame Row Depth LSB (51h) .. 62  
Table 42: Virtual Frame Column Width MSB (52h)  
............................................................................ 63  
Table 43: Virtual Frame Column Width LSB (53h)  
............................................................................ 63  
Table 44: SOF Delay Register (54h)................... 64  
Table 45: VCLK Delay Register (55h)................. 64  
Table 46: SOF & VCLK Width Register (56h)..... 65  
System Thermal Profile ...................................... 72  
Figure 29: 48-Pin Terminal Ceramic Leadless Chip  
Carrier (Bottom View)......................................... 73  
Figure 30: CLCC-IB package vertical  
Dimensioning...................................................... 74  
LIST OF TABLES  
Table 1: KAC-1310 Pin Definitions....................... 6  
Table 2. Video Encoded Signal Definitions ........ 12  
Table 3. Electro-Optical Characteristics............. 21  
3
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Table 47: Readout Direction Register (57h)........ 66  
Table 48: Internal Timing Control Register (5Fh) 67  
Table 49: Internal Timing Control Register (60h) 67  
Table 50: Clamp Control and HCLK Delay  
Register (64h)...................................................... 68  
Table 51: Encoded Sync Register (65h) ............. 69  
Table 52: Mod64 Column Offset Correction  
Register (80h-BFh)............................................... 70  
Table 53: 48 Ceramic LCC – Matrix Format....... 74  
4
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
SUMMARY SPECIFICATION  
KODAK KAC-1310 SXGA CMOS  
IMAGE SENSOR 1280 (H) x 1024 (V)  
Parameter  
Value  
Total Number of Pixels  
1296 (H) x 1046 (V)  
Number of Effective  
Pixels  
1288 (H) x 1032 (V)  
Number of Active Pixels  
Pixel Size  
1280 (H) x 1024 (V)  
6.0 µm (H) x 6.0 µm (V)  
7.68 mm (H) x 6.14mm (V)  
(~1/2”)  
Imager Size  
Chip Size  
14.22 mm (H) x 14.22 mm (V)  
40% mono / 64% color  
5:4  
Optical Fill-Factor  
Aspect Ratio  
Features  
SUMMARY SPECIFICATION  
½” Color SXGA Advanced CMOS Image Sensor  
1280 x 1024 active imaging pixels - progressive  
scan  
Saturation Signal  
Quantum Efficiency  
Responsivity  
40,000 electrons  
46% peak CMY  
1.2 V/Lux-sec peak CMY  
70 e- rms  
Monochrome or Bayer (RGB or CMY) Color Filters  
6.0µm pitch square pixels with microlenses  
Kodak patented pinned photodiode architecture;  
high blue QE, low dark current, lag free  
High sensitivity, quantum efficiency, and charge  
conversion efficiency  
Total Dark Noise  
Dark Current  
True Correlated Double Sampling for low read  
noise  
6250 e-/pixel/sec  
Low fixed pattern noise and wide dynamic range  
Antiblooming control and Continuous variable  
speed rolling electronic shutter  
Dark Current Doubling  
Temperature  
9
oC  
Single 3.3V power supply; Single master clock  
Digitally programmable via I2C-compatible interface  
Dynamic Range  
>54dB  
200x  
Pixel addressability to support ‘Window of Interest’  
Blooming Suppression  
windowing, resolution, and sub-sampling  
External sync signal for use with strobe flash  
On-chip 20x programmable gain for white balance  
and exposure gain  
10-bit, pipelined algorithmic RSD ADC  
15 fps full SXGA at 20MHz Master Clock Rate  
48 pin CLCC package  
Dark reference pixels with automatic Frame Rate  
Dark Clamp  
Encoded Sync data stream  
Column offset correction circuitry  
5
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
PIN DEFINITIONS  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
0.205" (5.21mm)  
Legend:  
P = VDD  
G = VSS  
I = Input  
Optical  
Center  
O = Output  
D = Digital  
A = Analog  
Column  
0
Die Center  
1
Die Placement  
position tolerance  
±100um (±4mil)  
2
3
4
5
Row 0  
0.002" (52um)  
(0,0)  
0.280" (7.11mm)  
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
7
8
9
Figure 1. Pinout Diagram  
Pin  
Pin  
Pin  
Pin  
No.  
Pin  
Pin  
Description  
Power Value  
Description  
Power Value  
No. Name  
Type  
Name  
Type  
1
2
3
4
5
6
7
8
9
INIT  
VDD  
Sensor Initialize  
Digital Power  
I
D
25 VDD_PIX  
Pixel Array Power  
Analog Ground  
Digital Ground  
Digital Power  
P
G
G
P
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
3.3 V  
0 V  
P
G
G
P
O
O
O
O
I
D
D
A
A
A
A
3.3 V  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
VSSA  
VSS  
VSS  
Digital Ground  
0 V  
0 V  
0 V  
VSSA  
VDDA  
CFRCA  
CFRCB  
TST_VRO  
TST_VSO  
Analog Ground  
VDD  
3.3 V  
3.3k Ω  
3.3k Ω  
Analog Power  
3.3 V  
0.1µF  
0.1µF  
SCLK  
SDATA  
PIX0  
PIX1  
PIX2  
PIX3  
PIX4  
VDD  
I2C Serial Clock Line  
I2C Serial Data Line  
Output Bit 0=110 Weight  
Output Bit 1=210 Weight  
Output Bit 2=410 Weight  
Output Bit 3=810 Weight  
Output Bit 4=1610 Weight  
Digital Power  
I/O  
I/O  
O
O
O
O
O
P
Frame Rate Clamp Capacitor A  
Frame Rate Clamp Capacitor B  
Analog Test Reference Output  
Analog Test Signal Output  
Analog Test Reference Input  
Analog Test Signal Input  
Analog Ground  
10 TST_VRI  
11 TST_VSI  
12 VSSA  
13 VDDA  
14 CVREFM  
15 CVREFP  
16 CVAGA  
17 VAGRET  
18 CVAGB  
19 EXTRESA  
20 EXTRESB  
I
G
P
O
O
O
O
O
I
A
A
A
A
A
A
A
A
A
0 V  
3.3 V  
0 V  
Analog Power  
3.3 V  
0.1µF  
0.1µF  
0.1µF  
VSS  
Digital Ground  
G
O
O
O
O
O
I
ADC Bottom Bias Ref Capacitor  
ADC Top Bias Ref Capacitor  
Common Mode Capacitor Input  
Return for VAG external caps  
Common Mode Reference Capacitor  
External Bias Resistor  
PIX5  
PIX6  
PIX7  
PIX8  
PIX9  
MCLK  
VCLK  
HCLK  
Output Bit 5=3210 Weight  
Output Bit 6=6410 Weight  
Output Bit 7=12810 Weight  
Output Bit 8=25610 Weight  
Output Bit 9=51210 Weight  
Master Clock = Pixel Rate  
Line Sync  
0.1µF  
39k Ω  
39k Ω  
External Bias Resistor  
I
O
O
I
21  
NC  
Pixel Sync  
22 VSSA  
23 VDDA  
24 TST_INJ  
Analog Ground  
Analog Power  
G
P
I
A
A
0 V  
46 TRIGGER  
47 STROBE External Sync for Strobe Flash  
48 SOF Start of Frame Sync  
Sensor Trigger Signal  
3.3 V  
3.3 V  
O
O
Pixel Row 1046./1047 Inj Bbias In  
Table 1: KAC-1310 Pin Definitions  
6
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
ANALOG Ferrite  
VDD  
Ferrite  
DIGITAL  
VDD  
0.1uF 0.01uF 0.001uF  
0.001uF 0.01uF 0.1uF  
GND  
GND  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
INIT  
SOF  
STROBE  
TRIGGER  
HCLK  
VCLK  
MCLK  
PIX9  
VDD  
3
VSS  
4
VSSA  
5
VDDA  
0.1 uF  
6
CFRCA  
CFRCB  
TST_VRO  
TST_VSO  
TST_VRI  
TST_VSI  
VSSA  
0.1 uF  
7
8
PIX8  
9
PIX7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PIX6  
PIX5  
VSS  
VDDA  
VDD  
0.1 uF  
0.1 uF  
CVREFM  
CVREFP  
PIX4  
PIX3  
CVAGA  
VAGRET  
CVAGB  
EXTRESA  
EXTRESB  
TST_BGV  
VSSA  
PIX2  
0.1 uF  
PIX1  
0.1 uF  
PIX0  
SDATA  
SCLK  
VDD  
39K ohm  
VSS  
VSSA  
VDD_PIX  
VDDA  
TST_INJ  
GND  
GND  
Figure 2: KAC-1310 Pin Connection Schematic  
Recommended Hardware for KAC-1310 Sensor Evaluation:  
1. Kodak Evaluation Board and cable (for parts list and pricing contact our Sales Office @  
http://www.kodak.com/go/imagers)  
2. National Instruments Framegrabber PCI-1422 LVDS (http://www.ni.com)  
3. Calibre I2C Adapter PCI93 LV (http://www.calibreuk.com)  
4. Windows NT, 98 or 2000 Operating System.  
7
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
DEVICE DESCRIPTION  
TEST TEST TEST TEST TEST TEST  
8
9
10 11 21 24  
1296  
2Dark + 4Isolation  
SOF 48  
VCLK  
44  
HCLK 45  
47  
STROBE  
SXGA ACI Image Sensor Array  
TRIGGER 46  
INIT  
MCLK 43  
1
PIX0  
PIX1  
PIX2  
PIX3  
PIX4  
PIX5  
PIX6  
PIX7  
PIX8  
PIX9  
1280  
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
12Dark + 4Isolation  
1
0
0
1
Column  
Sequencer  
& Drivers  
Column Decode, Sensing, CDS, and Muxing  
-3.10 8.76 dB  
-6.38 17.49 dB  
Exposure  
PGA A&B  
0.48 →  
WB  
PGA  
10 Bit  
RSD  
Pipelined  
ADC  
CFRCA  
CFRCB  
Frame  
Rate  
Clamp  
6
7
Global  
Dova  
1.5x  
3.5dB  
Column  
DOVA  
2.0x  
6dB  
0.70 →  
2.74x  
7.49x  
6
CVREFM  
14  
Mux and  
Bandgap  
6
6
6
Color Sequencer  
CVREFP 15  
I2C Serial  
Reference  
and Bias  
30 SDATA  
6
6
6
6
EXTRESA  
Interface and  
19  
SCLK  
Generation  
29  
Register Decode  
EXTRESB  
20  
16 17 18  
3
4
12 22 26 27 37  
36 28  
2
5
13 23 25  
Figure 3: KAC-1310 Block Diagram  
The KAC-1310 is a solid state CMOS Active  
CMOS Imager (ACITM) that integrates the  
functionality of complete analog image acquisition,  
digitizer, and digital signal processing system on a  
single chip. The image sensor comprises a SXGA  
format pixel array with 1280x1024 active  
elements. The image size is fully programmable  
to user-defined windows of interest. The pixels  
are on a 6.0µm pitch. High sensitivity and low  
sensor is available in a Monochrome version  
without microlenses, or Bayer (RGB or CMY)  
patterned Color Filter Arrays (CFAs) with standard  
microlenses to further enhance sensitivity.  
Integrated timing and programming controls allow  
video or still image capture progressive scan  
modes. Frame rates are programmable while  
keeping the Master Clock frequency constant.  
User programmable row and column start/stop  
allow windowing down to a 1x1 pixel window for  
noise are  
a
characteristic of the pinned  
photodiode2 architecture utilized in the pixels. The  
8
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
digital zoom of a panable viewport. Subsampling  
immunity, signal to noise ratio, and system  
dynamic range. The sensor uses an industry  
standard two-line I2C-compatible serial interface. It  
operates with a single 3.3V power supply with no  
additional biases and requires only a single Master  
Clock for operation up to 20 MHz. It is housed in a  
48 pin ceramic LCC package.  
provides reduced resolution while maintaining  
constant field of view.  
The analog video output of the pixel array is  
processed by an on-chip analog signal pipeline.  
Correlated Double Sampling (CDS) eliminates the  
pixel reset temporal and pattern noise. The Frame  
Rate Clamp (FRC) enables real time optical black  
The KAC-1310 is designed taking into  
consideration interfacing requirements to standard  
video encoders. In addition to the 10 bit Bayer  
(RGB or CMY) encoded data stream, the sensor  
outputs the valid frame, line, and pixel sync  
level calibration and offset correction.  
The  
of  
programmable  
analog  
gain  
consists  
exposure/global gain to map the signal swing to  
the ADC input range, and white balance gain to  
perform color balance in the analog domain. The  
ASP signal chain consists of (1) Column op-amp  
(1.5x fixed gain); (2) Column DOVA(1.5x fixed  
gain); (3) White Balance PGA (0.70 Æ 2.74x); (4)  
Global PGA (0.48 Æ 7.50x); and (5) Global DOVA  
(2.0x fixed gain). These Digitally Programmable  
Amplifiers (DPGAs) allow real time color gain  
correction for Auto White Balance (AWB) as well  
as exposure gain adjustment. Offset calibration  
can be done on a per column basis and globally.  
This per-column offset correction can be applied  
by using stored values in the on chip registers. A  
10-bit Redundant Signed Digit (RSD) ADC  
converts the analog data to a 10-bit digital word  
signals needed for encoding.  
The sensor  
interfaces with a variety of commercially available  
video image processors to allow encoding into  
various standard video formats. In addition, the 3  
sync signals can be integrated into the video data  
stream eliminating the need of the 3 sync outputs  
The KAC-1310 is an elegant and extremely  
flexible single chip solution that simplifies a system  
designer’s tasks of image sensing, processing,  
digital conversion, and digital signal processing to  
a high performance, low cost, low power IC. It  
supports a wide range of low-power, portable,  
consumer digital imaging applications.  
stream.  
The fully differential analog signal  
processing pipeline serves to improve noise  
9
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Pixel Architecture  
The KAC-1310 sensor comprises a 1280x1024  
In addition to the imaging pixels, there are  
additional pixels called dark and isolation pixels at  
the periphery of the imaging section (see Figure  
3). The dark pixels are covered by a light blocking  
shield rendering the pixels underneath insensitive  
to photons. These pixels provide the sensor  
means to measure the dark level offset which is  
used downstream in the signal processing chain to  
perform auto black level calibration. The isolation  
pixels are provided at the array’s periphery to  
eliminate inexact measurements due to light piping  
into the dark pixels adjacent to active pixels and  
for extra pixels needed for color interpolation  
algorithms. Electronic shuttering, also known as  
electronic exposure timing in photographic terms,  
is a standard feature. The pixel integration time  
can be widely varied from a small fraction of a  
given frame readout time to the entire frame time.  
active pixel array and supports progressive  
readout. The basic operation of the pixel relies on  
the photoelectric effect where, due to its physical  
properties, silicon is able to detect photons of light.  
The photons generate electron-hole pairs in direct  
proportion to the intensity and wavelength of the  
incident illumination.  
The application of an  
appropriate bias allows the user to collect the  
electrons and meter the charge in the form of a  
useful parameter such as voltage.  
The pixel architecture is based on a “four  
transistor” (4T) Advanced CMOS ImagerTM1 pixel  
which requires all pixels in a row to have common  
Reset, Transfer, and Row Select controls. In  
addition all pixels have common supply (VDD) and  
ground (VSS) connections. This optimized cell  
architecture provides enhancements such as  
noise reduction, fill factor maximization, and anti-  
blooming. The use of pinned photodiodes2 and  
proprietary transfer gate devices in the photo-  
elements enables enhanced sensitivity in the  
entire visual spectral range and a low lag  
operation. The nominal photo-responses of the  
KAC-1310 are shown in Figure 14 (monochrome  
sensor without microlenses), Figure 15 (Bayer  
RGB sensor with microlenses) and Figure 16  
(Bayer CMY sensor with microlenses).  
1 Advanced CMOS Imager (ACI) is a Kodak trademark  
2 Patents held jointly by Kodak and Motorola  
10  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Color Filters and Lenslets  
The KAC-1310 family is offered with the option of  
lenslet arrays can improve the fill factor (aperture  
ratio) of the sensor by approximately 1.6x  
depending on the F-number of the lens used in the  
camera system. Microlenses yield the greatest  
benefits when the main lens has a high F-number  
or a highly telecentric design. The fill factor of the  
pixels without microlenses is ~40%.  
monolithic polymer color filter arrays (CFA’s). The  
combination of an extremely planarized process  
and proprietary color filter technology results in  
CFA’s with superior spectral and transmission  
properties. It is available in Bayer RGB (Figure 4)  
or CMY (Figure 5) patterns. The complimentary  
Bayer CMY array provides a 50% increase in  
sensitivity over primary RGB pattern and are often  
the best choice for low light applications. This is  
due to the higher quantum efficiency (QE) and  
Incident Light  
Microlenses  
larger wavelength spread per color.  
If the  
application is utilizing a color correction matrix,  
then this matrix will automatically convert the CMY  
to RGB. Other wise a simple matrix must be  
applied to affect the conversion from CMY to RGB  
space
Active Photodiode Area  
col  
0
1
2
G1  
B
3
row  
Figure 6: Increase of sensitivity due to microlenses  
G1  
R
R
Frame Capture Modes  
B
G2  
R
G2  
R
There are two frame capture modes:  
1) Continuous Frame Rolling Shutter (CFRS)  
2) Single Frame Rolling Shutter (SFRS)  
G1  
B
G1  
B
G2  
G2  
The sensor can be put into either one of these  
modes by writing either “1” or “0” to cms bit (bit 6)  
of Capture Mode Control Register (40h) (Table 47  
on page 66).The KAC-1310 uses a progressive  
readout mode. Progressive scanning refers to  
non-interlaced or sequential row-by-row scanning  
of the entire sensor in a single pass. The image  
readout happens at one instant of time.  
Figure 4: Optional Bayer RGB Pattern CFA  
col  
0
1
Y1  
M
2
C
3
Y1  
M
row  
C
Continuous Frame Rolling Shutter  
Capture Mode (CFRS)  
Y2  
C
Y2  
C
The default mode of image capture is the  
Continuous Frame Rolling Shutter Capture Mode  
(CFRS). In this mode the TRIGGER input pin is  
ignored. This mode is most suitable for full motion  
video capture and will yield SXGA sized Frame  
Rates up to 15 FPS at 20 MHz MCLK and VGA  
frames at >30 FPS. In this mode the image  
integration and row readout take place in parallel.  
While a row of pixels is being readout, another row  
or rows are being integrated. Since the integration  
time (Tint) must be equal for all rows, the start of  
integration for rows is staggered.  
Y1  
M
Y1  
M
Y2  
Y2  
Figure 5: Optional Bayer CMY Pattern CFA  
Applications requiring higher sensitivity can benefit  
from the microlens arrays shown in Figure 6. The  
11  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
CFRS Video Encoded Data Stream  
The Encoded Sync Control Register (65h ) (Table  
51 on page 69) allows the user to select how the  
output pixel data stream in CFRS mode is  
encoded/formatted. In default mode, internally  
generated signals SOF, VCLK, HCLK etc. drive  
the integration and readout of the pixel data  
frames, but only the valid pixel data is readout of  
the sensor. When a “1” is written to bit 5, it causes  
the output pixel data to be encoded with four (4)  
10-bit pixel codes at the beginning of each line for  
SOF, VCLK and End Of Frame (EOF) signals.  
Operation in this mode will allow a camera system  
to capture streaming video and re-construct the  
frame afterwards when the SOF, VCLK, and  
HCLK signals are no longer available. The Video  
Encoded Signal Definitions, (Table 2), defines the  
four (4) 10-bit pixel code data that represents the  
SOF, VCLK, and EOF signals.  
that can be found in register 42h, Table 29 on page  
53.  
The TRIGGER signal can be generated internally  
by the sensor or be driven via Pin #46 of the  
sensor. To set whether the signal is generated  
internally or externally, along with other setting of  
this signal, refer to TRIGGER and STROBE  
Control register (42h), Table 29 on page 53.  
Window of Interest (WOI) Control  
The pixel data to be read out of the device is  
defined as a ‘Window of Interest’ (WOI). The  
window of interest can be defined anywhere on  
the pixel array at any size. The user provides the  
upper-left pixel location and the size in both rows  
and columns to define the WOI. The WOI is  
defined using the WOI Pointer, WOI Depth, and  
WOI Width registers, (Table 30 on page 58  
through Table 37 on page 60). Please refer to  
Figure 7 for a pictorial representation of the WOI  
within the active pixel array. Any pixels not  
included in the WOI will be skipped over and never  
readout (note: the minimum valid values are 2 for  
the WOI row pointer (wrp), and 0 for the WOI  
column pointer (wcp)). The first pixel readout will  
always be the first pixel of the WOI.  
Signal  
Description  
Data  
SOF  
Start of Row  
readout (i.e.  
Readout of Row  
1)  
[3FF][3FF][3FF][3FF]  
Note: 3FFh = 1023d  
000h = 0d  
VCLK  
EOF  
Start of Row  
readout of  
Rows 2+  
[3FF][3FF][000][000]  
Readout of last [000][000][000][000]  
Row complete  
0
1295  
0
Table 2. Video Encoded Signal Definitions  
ACTIVE PIXEL ARRAY  
WOI Pointer (wcp,wrp)  
Single Frame Rolling Shutter capture  
mode (SFRS)  
Window of Interest (WOI)  
In this mode of capture, the start of integration is  
triggered by the TRIGGER signal. Similar to the  
CFRS capture mode, readout of each row follows  
the integration of that row. The imager can be  
placed in SFRS capture mode using register 40h  
(see Table 27 on page 55). In this mode the  
imager will remain idle until the TRIGGER pin is  
pulled high. The imager then begins integration  
followed by image readout. If the TRIGGER input  
is still high when the SFRS Frame is finished  
reading out, then a second Frame is started.  
Detailed timing can be found in Figure 24 on page  
34. There are additional controls for SFRS mode  
WOI Column Depth (wcd)  
1047  
Figure 7: WOI Definition  
Sub-Sampling Control (Resolution)  
The WOI can be sub-sampled in either  
monochrome or color pixel space in both the  
horizontal and vertical direction independently.  
12  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
The resolution of each axis can be set to four  
Virtual Frame (VF)  
1
different sampling rates: full, ½, ¼, or /8. Sub-  
Changing the WOI does not change the Frame  
Rate of the imager. This is done by varying the  
size of a Virtual Frame surrounding the WOI.  
Refer to Figure 8 for a pictorial description of the  
Virtual Frame and its relationship to the WOI.  
sampling the imager by ¼ in both horizontal and  
1
vertical directions results in only /16 of the pixels  
being readout.  
The frame readout rate can  
therefore be increased by 16x. The user controls  
the sub-sampling via the Sub-Sample Control  
Register (41h), Table 28 on page 56. An example  
of RGB Bayer space sub-sampling is shown in  
Figure 9. If the imager is set as a color imager  
then the sub-sampling is done by reading out two  
cols/rows and then skipping two. This prevents the  
sub-sampling from breaking up a color kernel. If  
the imager is set to Monochrome mode the sub-  
sampling will skip every other col/row performing a  
more uniform reduction is resolution. Activating  
Sub-Sampling alone will not increase the Frame  
Rate. The Frame Rate is controlled by the Virtual  
Frame (see “Virtual Frame (VF)”). For example, if  
The VF is a method for defining the horizontal and  
vertical blanking (over clocking) in Frame  
Readout. As the WOI is adjusted, the total Frame  
Size is set by the VF. To maintain constant Frame  
Rate, the KAC-1310 adjusts the number of  
blanking pixels to account for changes in the WOI.  
The VF can be set to any size. If the VF is greater  
than the WOI then the readout is padded with  
blanking pixels (invalid dark pixels). The WOI and  
the VF may both be larger than the actual imager  
size. In this case the WOI is also padded with  
blanking pixels (invalid dark pixels). Figure 8  
illustrates a WOI smaller than the VF. If the WOI is  
set larger than the VF, then the WOI will be  
clipped by the VF and the Frame Rate will still be  
equal to the VF size.  
1
1
Sub-Sampling is first turned on to /8 x /8 mode,  
1
the WOI will shrink by /64. To keep the Frame  
Rate constant, the KAC-1310 fills in the rest of the  
rows and columns with blanking pixels. The Virtual  
Frame can now be reduced by 1/8 x 1/8 to take  
advantage of the Sub-Sampled WOI. The Frame  
Rate will now have increased by 64x with no  
compromise to the field of view (in CFRS mode).  
0
vcw[13:0]  
0
WOI Pointer (wcp,wrp)  
G
B
G
B
G
B
G
B
G
B
G
B
R
G
R
G
R
G
R
G
R
G
R
G
G
B
G
B
G
B
G
B
G
B
G
B
R
G
R
G
R
G
R
G
R
G
R
G
G
B
G
B
G
B
G
B
G
B
G
B
R
G
R
G
R
G
R
G
R
G
R
G
G
B
G
B
G
B
G
B
G
B
G
B
R
G
R
G
R
G
R
G
R
G
R
G
G
B
G
B
G
B
G
B
G
B
G
B
R
G
R
G
R
G
R
G
R
G
R
G
G
B
G
B
G
B
G
B
G
B
G
B
R
G
R
G
R
G
R
G
R
G
R
G
Window of Interest (WOI)  
WOI Column Depth (wcd)  
Blanking Rows  
Virtual Frame  
vrd[13:0]  
Figure 8: Virtual Frame Definition  
Integration Time  
Figure 9: RGB Bayer ½ x ½ Sub-sample Example.  
Sub-sample Control Register(41h) = xxx10101b  
CFRS Integration Time  
The Integration Time in CFRS is defined and  
quantized by the time to read out a single row.  
Once a Virtual Frame has been defined, the time  
to read out one row can be calculated. Any integer  
multiple of the Row Time (Trow) can be selected.  
The number of Row Times desired for integration  
time is programmed into the Integration Time  
13  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Registers. The Integration Time is defined by a  
where cintd is the number of virtual frame row  
times desired for integration time.  
combination of the width of the VF and the  
Integration Time Registers (4Eh and 4Fh), (Table  
38 and Table 39 on page 61); and can be  
expressed as:  
Note: In CFRS operation, the integration time is  
limited (clipped) by the readout time (which is also  
the Frame Time). In SFRS mode, the Frame Time  
is expanded to include any programmed  
integration time. Thus in SFRS operation there is  
no boundary to the integration time.  
Integration Time (Tint) = (cintd + 1) * Trow  
where cintd is the number of virtual frame row  
times desired for integration time. Therefore, the  
integration time can be adjusted in steps of VF row  
times.  
Frame Rate  
The Frame Rate can be defined as the time  
required to readout an entire frame of data plus  
the required blanking time. There is a different  
relationship between the Frame Rate and Virtual  
Frame for CFRS and SFRS mode operation.  
Row Time (Trow) = (vcwd+shAd+shBd+19) * MCLKperiod  
If the integration time is programmed to be larger  
than the VF then it will be truncated to the number  
of rows in the VF. The VF must be increased  
before the Integration Time can be increased  
further.  
CFRS Frame Rate  
In CFRS, the Frame Rate of the imager is  
controlled by varying the size of the Virtual Frame  
surrounding the WOI, and is independent of  
Integration Time. Refer to Figure 8 for a pictorial  
description of the Virtual Frame (VF) and its  
relationship to the WOI. In CFRS operation, the  
Frame Rate (FR) (Frame Rate = 1/Frame Time) is  
defined by the VF size and clock speed (MCLK).  
The Frame Time (FT) and can be expressed as:  
NOTE: The upd bit of Reg 4Eh is used to indicate  
a change to cint[13:0]. Since multiple I2C writes  
may be needed to complete desired frame to  
frame integration time changes, the upd bit signals  
that all desired programming has been completed,  
and to apply these changes to the next frame  
captured. This prevents undesirable changes in  
integration time that may result from I2C writes that  
span the “End of Frame” boundary. This upd bit  
has to be toggled from its previous state in order  
for the new value of cint[13:0] to be  
accepted/updated by the sensor and take effect.  
i.e. If its previous state is “0”, when writing a new  
cint value, first write cint[7:0] to register 4Fh, then  
write both cint [13:8] and “1” to the upd bit to  
register 4Eh. The upd bit should be sent as close  
to the Start of Frame as possible to ensure a  
smooth transition from the old integration time to  
the new.  
FT =(vrdd +1) * Trow  
where vrdd defines the number of rows in the  
virtual frame. The user controls vrdd via the Virtual  
Frame Row Depth registers (Table 40 and Table  
41 on page 62).  
If the VF width (vcwd) is <1296, then the timing  
block holds the two Frame Rate Clamp (FRC)  
rows to a length of 1296 even while all of the other  
rows are shorter. This is to ensure enough time for  
the clamping circuit. If the FRC is turned off (see  
Clamp Control and HCLK Delay Register (64h), it  
is recommended that the CFRCA and CFRCB  
pins be tied to ground directly (i.e. no 0.1 µF  
capacitor).  
SFRS Integration Time  
Just as with operation in CFRS mode, the  
integration time is defined by a number of Row  
Times. As before:  
NOTE: The WOI and Integration Time will be  
clipped by the VF.  
Row Time (T ) = (vcwd+shAd+shBd+19) * MCLKperiod  
row  
where vcwd defines the number of columns in the  
virtual frame. The user controls vcwd via the  
Virtual Frame Column Width registers (Table 42  
and Table 43 on page 63).  
Integration Time (Tint) = (cintd + 1) * Trow  
14  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
SFRS Frame Rate  
There are two main differences when running in  
Rather than have the user change the VF depth  
(vrd), the imager uses the WOI depth (wrd).  
SFRS mode versus CFRS mode. The first is that  
the Frame Rate is no longer the readout rate. In  
SFRS mode there is no overlap of the Integration  
and the readout. Therefore, at the top of each  
Frame, Integration must first occur then readout.  
The Frame Rate is now Integration plus readout.  
Therefore, the Frame Rate equations are:  
Frame Time (Tframe) =  
Integration Time (Tint)+ Readout Time (Trd)  
Where:  
The second major difference is the length of  
readout. In CFRS mode, the only reason for  
making the VF length larger than the WOI length  
(vrd > wrd) is to add vertical blanking rows to  
control the time between frames. In SFRS mode,  
the time between frames is controlled by the  
TRIGGER input pin, and therefore vertical  
blanking serves no purpose.  
Integration Time (Tint) = (cintd + 1) * Trow  
Readout Time (Trd) = Trow * (wrdd+1)  
Row Time (Trow) = (vcwd+shAd+shBd+19) * MCLKperiod  
Frame Rate = 1/Frame Time  
15  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
ANALOG SIGNAL PROCESSING CHAIN  
(ASP)  
The KAC-1310’s analog signal processing (ASP)  
chain incorporates Correlated Double Sampling  
(CDS), Frame Rate Clamp (FRC), two Digitally  
Programmable Gain Amplifiers (DPGA), Offset  
Correction (DOVA), and a 10-bit Analog to Digital  
Converter (ADC). See Figure 3 for a block  
diagram of the ASP chain.  
Cap FRCA  
0.1µF  
CFRCA  
VCM  
FRCLMP  
FRCLMP  
+
1x  
1x  
BUF  
Previous  
Stage  
-
+
V+  
V-  
VCM  
Diff  
-
+
BUF  
-
Correlated Double Sampling (CDS)  
FRCLMP  
FRCLMP  
VCM  
The uncertainty associated with the reset action of  
a capacitive node results in a reset noise which is  
proportional to kTC; ‘C’ being the capacitance of  
the node, ‘T’ the temperature, and ‘k’ the  
Cap FRCB  
CFRCB  
0.1µF  
Boltzmann constant.  
A
common way of  
eliminating this noise source in all image sensors  
is to use Correlated Double Sampling. The output  
signal is sampled twice, once for its reset  
(reference) level and once for the actual video  
signal. These values are sampled and held while  
a difference amplifier subtracts the reference level  
from the signal output. Double sampling of the  
signal eliminates correlated noise sources.  
Figure 11: FRC Conceptual Block Diagram  
processed and held to establish pixel reference  
level at the CFRCA and CFRCB pins. During this  
period, the FRC’s differential outputs (V+ and V- on  
the Diff Amp) shown in Figure 11 are clamped to  
Vcm. Together, these actions help to eliminate the  
dark level offset, simultaneously establishing the  
desired zero code at the ADC output. The user  
can disable the FRC via the Clamp Control and  
HCLK Delay Register (64h), (Table 50 on page 68)  
which allows the ASP chain to drift in offset. If the  
FRC is disabled, it is recommended that the  
CFRCA and CFRCB pins be grounded. Care  
should be exercised in choosing the capacitors for  
the CFRCA and CFRCB pins to reflect different  
Frame Rates. For small WOI or fast Frame Rates,  
a smaller capacitor may be used.  
S&H Reset  
V+  
+
Diff  
OpAmp  
Pixel  
Output  
V-  
-
S&H Signal  
Figure 10: Conceptual block diagram of CDS  
Column Digital Offset Voltage Adjust  
(CDOVA)  
Frame Rate Clamp (FRC)  
The FRC (Figure 11) is designed to provide a  
feed-forward dark level compensation. In the  
automatic FRC mode, the optical black level  
reference is reestablished each time that the  
image sensor begins a new frame. The KAC-1310  
uses optical black (dark) pixels to establish this  
reference.  
A programmable per-column offset adjustment is  
available on the KAC-1310.  
There are 64  
registers that can be programmed with an offset  
that is added to each 64th column (Mod64 Column  
Offset Registers; Table 52 on page 70). Each  
register is 6 bits, (5 bits plus 1 sign bit), providing  
±32 register values. This set of 64 values is then  
repeatedly applied to each bank of 64 columns in  
the sensor via the column DOVA stage of the ASP  
chain.  
The dark pixel sample period is automatically  
controlled internally and it is set to skip the first 3  
dark rows and then sample the next 2 dark rows.  
When “dark clamping” is active, each dark pixel is  
In addition to the per-column offset, there is a  
global column offset that can be added to every  
column. This is used to remove any variation of  
the dark level with respect to varying gain. The  
16  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
DC offset is loaded as a 6-bit value into the  
Programmable Gain Amplifier (PGA)  
Gain Modes  
Column DOVA DC Offset Register, (Table 23 on  
page 51). The Column DOVA stage has only six  
bits of total range. The value in Register 20h and  
80h-BFh are added together prior to application to  
the column. If the sum is greater than ±31, it will  
be truncated to ±31.  
Three different gain modes are available when the  
sensor is performing White Balance and Exposure  
gain. The gain mode is set using Register 22h  
described in Table 25, page 53. The three gain  
modes are:  
Raw Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.02175 * Regd  
1.3475 + 0.04350 * (Regd - 31)  
0 <Regd <31  
32 <Regd <63  
(0.0695x Æ1.36925x)  
(1.3910x Æ2.7395x)  
Lin1 Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.04350 * Regd  
0 <Regd <47  
0 <Regd <63  
(0.695x Æ2.7395x)  
(0.483x Æ7.488x)  
Lin2 Gain Mode (Exposure gain stage only)  
Gain 0.483 + 0.11119 * (Reg 10h)d  
Raw Gain Mode:  
The three gain stages are each designed as two-  
piece linear gain stages where the gain increment  
doubles for the second half of the programmable  
range. The gain increment is 0.02175 for the first  
32 programmable steps, and precisely twice that  
(0.04350) for the last 32 programmable steps.  
step of the lower register is skipped, providing 16  
uniform gain steps of 0.04350. As a result, the  
entire gain stage now appears to be a linear gain  
stage with 48 uniform steps of 0.04350.  
Lin2 Gain Mode:  
This mode is only available for the exposure gain  
Lin1 Gain Mode:  
mode.  
In this mode, both gain stages are  
Some applications do not need the finer gain  
increment provided by the Raw Gain Mode in the  
first 32 register values. In Lin1 mode, every other  
automatically coordinated to affect a single gain  
stage. The gain step size of Lin2 Mode is almost,  
but not completely uniform. Any one step may  
deviate from the mean step size of 0.11119 by a  
small amount. This is due to the fact that Lin2  
Mode actually varies two gain stages with fixed  
step sizes to make one equivalent gain step.  
17  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Gain of DPGA for Raw, Lin1, and Lin2 modes  
8
7
6
5
Lin2  
4
3
2
Lin1  
Raw Mode  
(upper range)  
1
0
Raw Mode  
(lower range)  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
DPGA Register Value (Decimal)  
Figure 12: PGA Gain Modes  
18  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
White Balance Control PGA (WB Gain)  
[For the purposes of illustration, the following  
discussion assumes a Bayer RGB color pattern;  
with the appropriate correlation (as shown in  
Figure 13), the CMY Bayer pattern may be  
substituted throughout.]  
consideration before changes occur. In most  
applications, users will be able to assign  
predefined settings such as daylight, fluorescent,  
tungsten, and halogen to cover a wide gamut of  
illumination conditions.  
The sensor produces three primary color outputs,  
Red, Green, and Blue. These are monochrome  
signals that represent luminance values in each of  
the primary colors. When added in equal amounts  
they mix to make neutral color. White balancing is  
a technique where the gain coefficients of the  
Green1, Red, Blue, and Green2 pixels comprising  
the Bayer RGB pattern are set so as to equalize  
their outputs for neutral gray color scenes. Since  
the sensitivity of the two green pixels in the Bayer  
pattern may not be equal, an individual color gain  
register is provided for each component of the  
Bayer pattern.  
Both DPGA designs use switched capacitors to  
minimize accumulated offset and improve  
measurement accuracy and dynamic range. The  
white balance gain registers are 6-bits and can be  
programmed to allow gain of 0.695x to 2.74x in  
varying steps depending on which gain mode is  
selected (RAW or LIN mode).  
The WB Gain Stage (PGA WB) is a two-segment  
piecewise Linear gain stage. In Raw Mode this  
stage produces smaller gain steps for the first half  
of its gain range, and larger gain steps for second  
half of its gain range. This allows fine adjustment  
for color ratios as well as a large gain swing.  
If the piecewise linear mode is difficult to manage  
and the fine steps are not required, this gain stage  
can be placed into Lin1 Mode. In this mode every  
other gain step is skipped for the first 1/3 of the  
gain range. This produces the same gain range  
but with uniform gain steps throughout the range.  
Once all color gain registers are loaded with the  
desired gain coefficients, white balance is  
achieved in real time and in analog space. The  
appropriate values are selected and applied to the  
pixel output via a high speed path, the delay of  
which is much shorter than the pixel clock rate.  
Real time updates can be performed to any of the  
gain registers. However, latency associated with  
the I2C interface should be taken into  
6
C / G1 (0)  
DPGA  
6
Y1 / R (1)  
Y2 / B (2)  
M / G2 (3)  
6
0.7x-2.7x  
6
6
G1(0)  
B(2)  
R(1)  
C(0)  
Y1(1)  
M(3)  
G2(3)  
Y2(2)  
Figure 13: Color Gain Register Selection  
19  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Exposure Gain PGA (Exp Gain A/B)  
The Exposure (Global) Gain consists of two Gain  
stages (A and B) in series. Each of these gain  
stages has a Raw and Lin1 mode as described in  
the previous WB Gain section. Thus all colors can  
be amplified by the value in Exp GainA (reg 10h)  
and then again by Exp GainB (reg 21h) to  
compensate for varying exposure of the scene.  
The easiest way to implement this is to program  
Exp GainB at unity and then adjust Exp GainA  
until it is at its maximum of 2.7395x. Then  
increase the Exp GainB until the final exposure  
gain is reached. The gains of the two Exp Gain  
stages are controlled by Registers 10h and 21h,  
(Table 21 and Table 24 on pages 49 and 52). The  
Exp Gain Mode is defined in Register 22h, (Table  
25 on page 53).  
algorithmic technique is used to yield an ADC with  
superior characteristics for imaging applications.  
Integral Noise Linearity (INL) and Differential  
Noise Linearity (DNL) performance is specified at  
±1.0 and ±0.5, respectively, with no missing  
codes. The input dynamic range of the ADC is  
programmed via  
a
Programmable Voltage  
The positive reference  
Reference Generator.  
voltage (VREFP) and negative reference voltages  
(VREFM) can be programmed from 2.5V to 1.25V  
and 0V to 1.25V respectively in steps of 5mV via  
the Reference Voltage Registers (Table 17 and  
Table 18 on page 46). This feature is used  
independently or in conjunction with the PGAs to  
maximize the system dynamic range based on  
incident illumination. The default input range for  
the ADC is 1.86V for VREFP and 0.59V for  
VREFM hence allowing a 10-bit digitization of a  
1.3V peak-to-peak signal.  
The dual gain-stage implementation of the Exp  
Gain may cause difficulty in some auto-exposure  
routines; this can be avoided by setting the Exp  
Gain to Lin2 Mode. In Lin2 Mode, Reg 10h is used  
to set both gain stages in an attempt to give  
uniform gain steps across the entire 7.5x range of  
the two Exp Gain stages. Only one register is  
used to simplify user programming, and thus the  
gain step size is increased to ~0.11119 to allow  
the full range to be accessed by a single 6-bit  
register. Note that the gain step size is almost but  
not completely uniform. Any one step may deviate  
from the mean step size of 0.11119 by a small  
amount.  
mV  
10dn  
2(V + V ) 2(1.86 0.59)  
mV  
=
=
= 2.48 10dn  
1024  
1024  
If the 20x gain provided by the PGAs is not  
sufficient, the ADC references can be used to  
apply additional gain to the ASP. To increase the  
gain the ADC references need to be moved closer  
to Vcm (1.25V). This should be used only after the  
PGAs have been used to their fullest since moving  
the ADC references too far will degrade the ADC  
performance. The effective gain of the ADC block  
will be:  
Global Digital Offset Voltage Adjust  
(GDOVA)  
A programmable global offset adjustment is  
available on the KAC-1310. A user defined offset  
value is loaded via a 6-bit signed magnitude  
programming code via the ADC DOVA Register,  
(Table 26 on page 54).  
2.48  
Gain =  
+
2(V V  
)
1024  
Ex. If Reg 0Ah=Reg 0BhBAh then the ADC Gain =  
Offset correction allows fine-tuning of the signal to  
remove any additional residual error, which may  
have accumulated in the analog signal path. This  
function is performed directly before analog to  
digital conversion and allows the user to set the  
‘black’ level in the ADC range.  
2.  
2.48  
Gain =  
=1.98  
2(1.570.93)  
1024  
Analog to Digital Converter (ADC)  
The user should connect 0.1 µF capacitors to  
CVREFP (pin 15) and CVREFM (pin 14) (see  
Figure 2) to accurately hold the biases.  
The ADC is a fully differential, low power circuit. A  
pipe-lined, Redundant Signed Digit (RSD)  
20  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
PERFORMANCE  
Test Conditions  
Temperature  
25°C  
Operating Frequency  
10 MHz MCLK  
Light Source  
White Light LED  
Operation  
Nominal Voltages and Default Timing  
70 ms  
Integration Time  
Bright Field Condition  
70% Saturation  
Imaging Performance  
Parameter  
Symbol  
Nsat  
Typ  
40,000  
34  
Unit  
Notes  
Saturation Signal  
electrons  
QE  
Peak Quantum Efficiency  
Monochrome no µLens @ 550nm  
%
%
1
Red w/µLens @ 650nm  
Green w/µLens @ 540nm  
Blue w/µLens @ 460nm  
Cyan w/µLens @ 530nm  
Magenta w/µLens @ 650nm  
Yellow w/µLens @ 590nm  
Global  
38  
37  
1
1
1
1
1
1
%
20  
%
46  
%
45  
%
46  
%
PRNU  
S
Photoresponse Non-uniformity  
Responsivity  
4
% rms  
Local  
1.5  
% rms  
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Monochrome no µLens  
1.11  
59,800  
0.5  
V/lux-sec  
e-/lux-sec  
V/lux-sec  
e-/lux-sec  
V/lux-sec  
e-/lux-sec  
V/lux-sec  
e-/lux-sec  
V/lux-sec  
e-/lux-sec  
V/lux-sec  
e-/lux-sec  
V/lux-sec  
e-/lux-sec  
Red w/µLens  
Green w/µLens  
Blue w/µLens  
27,100  
0.6  
32,200  
0.32  
17,500  
1.04  
55,800  
0.81  
43,600  
1.2  
Cyan w/µLens  
Magenta w/µLens  
Yellow w/µLens  
64,700  
Table 3. Electro-Optical Characteristics  
Notes:  
1. Refers to nominal spectral response values as provided in Figures 3, 4, and 5. QE range is +/- 20%  
2. For a 100 x 100 pixel region under uniform illumination with output signal equal to 70% of saturation signal.  
3. Measurements assume a 3200K source with Hoya CM500 filter. All values referenced at the floating diffusion  
node.  
To calculate values at the sensor outputs, on-chip gain stages should be linearly applied to the given values.  
21  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Symbol  
Parameter  
Typ  
Unit  
fA/pixel  
%
Notes  
Id  
Photodiode Dark Current  
1 / 4  
4
Lag  
Xab  
ne- total  
DR  
Pixel Charge Transfer Inefficiency  
Blooming Margin - shuttered light  
Total System (equivalent) Noise Floor  
System Dynamic Range  
Resolution  
<1  
5
6
7
200x  
X Vsat  
e- rms  
dB  
70  
54  
9, 12, 13  
10  
bits  
fmax  
Maximum MCLK  
Nominal MCLK  
20  
10  
MHz  
MHz  
Degrees  
Degrees  
mm  
8
9
11  
11  
fnom  
φ
A - X  
Acceptance Angle in Horizontal direction  
Acceptance Angle in Vertical direction  
Image Array Size  
15  
27  
φ
A - Y  
7.7 x 6.1 (~1/2")  
6.0 x 6.0  
0 - 15  
Pixel Size  
µm  
Frame Rate  
FPS  
Fill Factor  
40 / 64  
%
10  
Table 3 continued. Electro-Optical Characteristics  
Notes:  
4. Measured at sensor temperatures of 25 oC / 40 oC  
5. Transfer inefficiency of photosite.  
6. Xab represents the increase above the saturation-irradiance level (Vsat) that the device can be exposed to before  
blooming of the pixel will occur.  
7. Includes amplifier noise, dark pattern noise and dark current shot noise at 10 MHz data rates.  
8. All performance specs are not guanteed at this speed.  
9. All Imager specs are held between 1 MHz and 10 MHz  
10. Monochrome sensor without microlens / color sensor with microlens  
11. Angle at which Responsivity is reduced by 3dB.  
12. DR is defined as the standard deviation of temporal noise divided by the mean signal at saturation.  
13. Saturation signal is defined as the maximum sensor output achieved while maintaining < 2% response non-  
linearity.  
22  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Quantum Efficiency  
40  
35  
30  
25  
20  
15  
10  
5
0
350  
450  
550  
650  
750  
850  
950  
1050  
Wavelength (nm)  
Figure 14: KAC-1310 Typical Monochrome Spectral Response  
40  
35  
30  
25  
20  
15  
10  
5
BLUE  
GREEN  
RED  
0
350  
450  
550  
650  
750  
850  
950  
1050  
Wavelength (nm)  
Figure 15: KAC-1310 Typical Bayer RGB Spectral Response  
23  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
MAGENTA  
CYAN  
YELLOW  
0
350  
450  
550  
650  
750  
850  
950  
1050  
Wavelength (nm)  
Figure 16: KAC-1310 Typical Bayer CMY Spectral Response  
24  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Dynamic Range  
10.0  
60  
57  
54  
51  
48  
45  
42  
39  
36  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
0
5
10  
15  
20  
Freq (MHz)  
Figure 17: Dynamic Range with respect to Mclk Frequency  
Temporal Noise  
7
6
5
4
3
2
1
0
10  
20  
30  
40  
50  
60  
External Resistance (kOhms)  
Figure 18: Temporal Noise Dependence on External Resistor  
25  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Symbol  
Parameter  
Value  
-0.5 to 3.8  
-0.5 to (VDD + 0.5)  
-0.5 to (VDD + 0.5)  
±50  
Unit  
V
VDD DC Supply Voltage  
Vin DC Input Voltage  
Vout DC Output Voltage  
V
V
IIO DC Current Drain per Pin, Any Single Input or Output  
IDD DC Current Drain, VDD and VSS Pins  
TSTG Storage Temperature Range  
mA  
mA  
°C  
°C  
±100  
-65 to +150  
300  
TL Lead Temperature (10 second soldering)  
Notes:  
- Voltages referenced to VSS  
- Maximum Ratings are those values beyond which damage to the device may occur.  
- VSS = AVSS = DVSS = VSSO (DVSS = VSS of Digital circuit, AVSS = VSS of Analog Circuit)  
-
VDD = AVDD = DVDD = VDDO (DVDD = VDD of Digital circuit, AVDD = VDD of Analog Circuit)  
Table 4: Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
3.0  
Max  
Unit  
VDD  
TA  
DC Supply Voltage, VDD = 3.3V (Nominal)  
Commercial Operating Temperature  
Junction Temperature  
3.6  
40  
55  
V
0
0
°C  
°C  
TJ  
Notes:  
All parameters are characterized for DC conditions after thermal equilibrium has been established.  
Unused inputs must always be tied to an appropriate logic level, e.g. either VSS or VDD  
For proper operation it is recommended that Vin and Vout be constrained to the range VSS<(Vin or Vout)<  
VDD  
Table 5: Recommended Operating Conditions  
26  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Symbol  
Characteristic  
Condition  
TA = 0 °C to 40 °C  
Min Max  
Unit  
VIH  
VIL  
Iin  
Input High Voltage  
2.0  
VDD + 0.3  
V
V
Input Low Voltage  
-0.3  
0.8  
5
Input Leakage Current, No Pull-up Resistor  
Output High Current  
Vin = VDD or VSS  
-5  
µA  
mA  
mA  
V
IOH  
IOL  
VDD = Min, VOH Min = 0.8*VDD  
VDD = Min, VOL Max = 0.4V  
VDD =Min, IOH = -100mA  
VDD = Min, IOL = 100mA  
-3  
3
Output Low Current  
VOH  
VOL  
IOZ  
IDD  
Output High Voltage  
VDD - 0.2  
Output Low Voltage  
0.2  
10  
15  
V
3-State Output Leakage Current  
Maximum Standby Supply Current  
Output = High Impedance, Vout = VDD or VSS  
IOUT = 0mA, Vin = VDD or VSS  
-10  
0
µA  
mA  
VDD = 3.3V + 0.3V; VDD referenced to VSS; Ta = 0 C to 40 C  
Table 6: DC Electrical Characteristics  
Symbol  
Parameter  
Condition  
Typ  
250  
Unit  
PDYN  
PSTDBY  
PAVG  
Dynamic Power  
Standby Power  
Average Power  
13.5 MHz MCLK Clock frequency  
STDBY Pin Logic High  
mW  
mW  
mW  
25  
13.5 MHz Operation (using STDBY)  
200  
VDD = 3.0V, VDD referenced to VSS, 25 °C  
Table 7: Power Dissipation  
27  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
OPERATION  
The KAC-1310 includes initialization, standby  
sensor can also be put in the stand by mode via  
the sby bit (“0”) on the Power Configuration  
Register (OCh) (Table 19, page 47). The registers  
retain their programmed values and are not reset  
to default when the power configuration register is  
used to enter/exit standby mode.  
modes, and external reference voltage outputs to  
afford the user additional application flexibility.  
Initialization (Standby Mode)  
The INIT input (pin 42) controls hardware re-  
initialization of the KAC-1310. This serves to  
assure controlled chip and system startup. The  
chip enters standby mode when INIT is asserted  
via a logic high input. This state must be held a  
minimum of 1 ms. The chip remains in low-power  
mode while in the INIT state.  
The user may also reduce power consumption by  
placing the KAC-1310’s outputs in the tri-state  
mode. This action may be accomplished by setting  
the dbt bit on the Power Configuration Register  
(0Ch). In addition, further power savings can be  
obtained by increasing the external resistance  
value (see section 4.6).  
When INIT is removed (logic low), the chip begins  
initialization. An additional 1 ms “wait period”  
should be allowed after INIT goes low. This  
ensures that the start-up routines within the KAC-  
1310 have run to completion, and that all holding  
and bypass capacitors, etc. have achieved their  
Output Tristate  
The Tristate Control Register (12h), (Table 22 on  
page 50) is used to set the chip outputs into  
tristate. This functionality is useful if these outputs  
are on a buss that is being shared by other  
devices. When the tsctl bit is reset (ie “0”) the  
SOF, VCLK, HCLK, and STROBE output pins are  
placed in tristate mode. The 10 ADC output pins  
can be tristated by resetting the tspix bit (“0”).  
required steady-state values.  
Start-up tasks  
include resetting registers to their default values,  
resetting all internal counters and latches, and  
initializing the analog signal processing chain.  
Standby Mode  
The standby mode option is implemented to allow  
the user to reduce system power consumption  
during periods that do not require operation of the  
KAC-1310. This feature allows the user to extend  
battery life in low power applications.  
Readout Order  
Register 57h (Table 47 on page 66) allows the  
user to change the direction of readout of the  
columns or rows.  
This can be used to  
compensate for and orientation of the imager in  
the optical system. The rrc when enabled causes  
the column data to be readout in the reverse  
direction as compared to the normal readout  
direction. The rrr when enabled causes the row  
data to be readout in the reverse direction as  
compared to the normal readout direction. The  
normal readout direction of the imager is shown in  
Figure 2 on page 7 (ie. bottom-to-top; left-to-right).  
By utilizing this mode, the user may reduce  
dynamic power consumption from 400mW (full  
power, full speed), to <50 mW in the standby  
mode (note that dynamic power consumption is  
also reduced in slower conversion speed  
applications).  
The standby mode is activated by applying an  
active high signal to the INIT pin (#42). The  
28  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Readout Speed  
The imager will hold all specifications from 1 MHz  
degradation in sensor performance will occur  
when operating in excess of 20 MHz. When  
operating at speeds greater than 10 MHz, it is  
possible that horizontal banding might occur. This  
is due to one of the sample and hold stages not  
settling. If this condition is observed, it can be  
rectified by widening the SHA and SHB pulses in  
registers 5Fh (page 67) and 60h (page 67).  
to 10 MHz. The nominal maximum speed is 10  
MHz (10FPS). The imager will work well beyond  
this nominal maximum speed. As the speed  
increases beyond 10 MHz, the power consumption  
increases slightly, temporal noise rises linearly  
resulting in a decrease in dynamic range (see  
Figure 17), and ADC INL degrades. Severe  
Note: this will change the Trow equation given on page 34.  
Further image improvements can also be obtained by increasing the power of the chip with the external  
resistor (see “Internal Bias Current Control”).  
Note: When increasing the SHA and SHB pulses, the SOF Delay ( Register 54h) will need to be increased  
as well in order to place the syncs back in the same position relative to the first WOI valid pixel.  
29  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Internal Bias Current Control  
The ASP chain has internally generated bias  
currents that result in an operating power  
consumption of nearly 400mW. By attaching a  
resistor between pin 19, EX-TRESA; and pin 20,  
EXTRESB; the user can reduce the power  
the power savings that can be achieved with an  
external resistor at nominal clock rate (10 MHz).  
An external resistance (Rext) of 39 kis  
recommended for optimal sensor performance.  
Additional power savings can be achieved at lower  
clock rates.  
consumption of the device.  
This feature is  
enabled by writing a 1b to bit res of the Power  
Configuration Register (0Ch). Figure 19 depicts  
600  
Internal Resistor  
500  
400  
300  
200  
100  
0
10  
15  
20  
25  
30  
External Resistance(kOhms)  
Figure 19: Power Consumption Dependence on External Resistor  
35  
40  
45  
50  
55  
60  
30  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
TIMING  
The waveforms depicted on the following pages  
Horizontal Data Sync (VCLK)  
show the output data stream for the KAC-1310  
under various operating conditions. The individual  
SOF, VCLK, and HCLK pulse positions and widths  
can be moved and inverted using registers 40h  
(Table 27, page 55), 54h (Table 44, page 63), 55h  
(Table 45, page 64), 56h (Table 46, page 65), and  
64h (Table 50, page 68).  
This signal triggers the readout of the sequential  
rows of the frame. This signal is an output and can  
be read via Pin #44 of the sensor. The VCLK  
signal delay in relation to SOF, as well as its  
length can be set via the VCLK Delay Register  
(Table 45, page 64), and the SOF&VCLK Signal  
Length Control Register, (Table 46, page 65).  
Start of Row Readout (SOF)  
Data Valid (HCLK)  
This signal triggers the start of the first row  
readout of the frame. This signal is an output and  
can be read via Pin #48 of the sensor. The SOF  
signal delay as well as its length can be set via the  
SOF Delay Register (Table 44, page 64), and the  
SOF & VCLK Signal Length Control Register,  
(Table 46, page 65).  
This signal triggers a single active pixel data has  
been readout (example Column 2 of Row 5 data  
has been read out). This signal is an output and  
can be read via Pin #45 of the sensor. The HCLK  
signal delay can be set via the HCLK Delay  
Register (Table 50, page 68).  
Frame Time = 1064 row times  
Row Time = 1338 MCLKs  
WOI = 1280 Columns x 1024 Rows  
starting at row 16, column 8  
SOF  
VCLK  
HCLK  
Figure 20: CFRS Default Frame Sync Waveforms  
31  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
MCLK  
SOF  
Row Time = vcwd + 39  
VCLK  
HCLK  
row 16  
row 17  
Pixel Array Values  
ADC[9:0]  
Valid Pixel Data  
Figure 21: CFRS Default Row Sync Waveforms  
TRIGGER  
T = (cintd + 1)*Row Time  
SOF  
VCLK  
HCLK  
Standard Frame  
Timing (Figure 18)  
Figure 22: Single Frame Capture Mode (SFRS)  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
fmax  
thtrig  
tsutrig  
tdsof  
MCLK maximum frequency  
TRIGGER hold time w.r.t. MCLK  
1
3.5  
3.0  
8
10  
-
20  
9
MHz  
ns  
TRIGGER setup time w.r.t. MCLK  
MCLK to SOF delay time  
-
8.5  
21.5  
22  
ns  
13  
13.5  
13  
5
ns  
tdvclk  
tdrhclk  
tdfhclk  
tdadc  
tdblank  
MCLK to VCLK delay time  
8.5  
7.5  
3
ns  
Rising edge of MCLK to rising edge of HCLK delay time  
Falling edge of MCLK to falling edge of HCLK delay time  
MCLK to ADC[9:0] delay time  
22  
ns  
10.5  
21.5  
21.5  
ns  
8
13  
13  
ns  
MCLK to BLANK delay time  
8
ns  
Table 8: Pixel Data Bus and Sync Timing Specification  
32  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
MCLK  
thtrig  
tsutrig  
TRIGGER  
tdsof  
SOF  
tdvclk  
VCLK  
tdrhclk  
tdfhclk  
HCLK  
tdadc  
ADC[9:0]  
Figure 23: Pixel Data Bus Timing Diagram  
Strobe Signal  
The Strobe signal is an output pin on the KAC-  
1310 sensor. It can be activated by writing a “1” to  
vsg (bit 5) of the Trigger and Strobe Control  
Register (Table 29, page 57) while operating in  
SFRS mode. When activated, the Strobe signal  
goes high when all rows are integrating  
before the last row begins to integrate. The start of  
the strobe signal can also be set by the user. In  
default mode, when the strobe is activated, the  
signal fires two row periods before the first row  
begins to readout and lasts for a length of one  
Trow. A timing diagram for the Strobe signal is  
shown below in Figure 24.  
simultaneously and ends on row period (Trow  
)
33  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Tframe  
TRIGGER  
1st row of  
integration  
Tint  
Tint  
Tint  
2nd row of  
integration  
3rd row of  
integration  
last row of  
integration  
Tint  
SOF  
VCLK  
STROBE  
Trow  
Tstrobe 2  
Trow  
Tstrobe 1  
Trow  
Figure 24: STROBE Output Waveforms  
To ensure that the Strobe signal fires, the  
integration time must be large enough to ensure  
that all rows are integrating simultaneously for at  
least 2 row periods (Trow) where  
4) Sample & hold time (shAd) = 10  
5) Sample & hold time (shBd) = 10  
6) MCLK = 10 MHz  
Variables  
Row Time (Trow) = (vcwd+shAd+shBd+19)* MCLKperiod  
Integration Time (cintdmin) is the main variable used  
to control the time of the Strobe signals.  
To accomplish this , one must ensure that the  
integration time (cintd) is more than 2 row periods  
(Trow) larger than the active Window of Interest  
Row depth (wrdd). Therefore, minimum integration  
time:  
Tintmin = (cintdmin+1)* Trow  
Calculations  
Trow= (vcwd + 10+10+19) * MCLKperiod  
= (1290 + 39) * 1e-7  
= 132.9µs  
Tintmin = (cintdmin+1)* Trow  
where cintdmin = wrdd + 3.  
Tstrobe1 = Trow  
Tintmin = (cintdmin+ 1) * Trow  
= (wrdd + 3 +1) * Trow = (1023 + 4) * 132.9µs  
= 136.48 ms  
Tstrobe2 = Tintmin – (wrdd+1)*Trow  
An example of Strobe related calculations is  
Tstrobe2 = Tintmin – (wrdd+1)*Trow  
= 136.48 ms – [(1023+1)* 132.9µs]  
= 390.4 µs  
provided  
below:  
Assumptions  
1) Active Window of Interest = 1280 X 1024  
ie. (wcwd) = 1279, (wrdd) = 1023  
TFrame = Tint + Trd  
= [(wrdd) +( cintd)+2] * Trow  
= (1023 + 1026 + 2) * 132.9µs  
= 272.6 ms  
2) Virtual Column Width (vcwd) = 1290  
3) Virtual Row Depth (vrdd)=1034  
34  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Example Timing Summary:  
Signal  
Trow  
Value  
132.9 µs  
136.48 ms  
132.9 µs  
390.4 µs  
272.6 ms  
Tintmin  
Tstrobe1  
Tstrobe2  
TFrame  
35  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
I2C-COMPATIBLE SERIAL INTERFACE  
The I2C is an industry standard which is also  
compatible with the Motorola bus (called M-Bus)  
that is available on many microprocessor  
products. The I2C contains a serial two-wire half-  
duplex interface that features bi-directional  
operation, master or slave modes, and multi-  
master environment support. The clock frequency  
on the system is governed by the slowest device  
on the board. The SDATA and SCLK are the bi-  
directional data and clock pins, respectively.  
These pins are open drain and will require a pull-  
up resistor to VDD of 1.5 ΚΩ to 10ΚΩ (see Table  
1).  
the Program Control Register for verification or  
test considerations. The KAC-1310 is a slave only  
device that supports a maximum clock rate  
(SCLK) of 1/24th MCLK while reading or writing  
only one register address per I2C start/stop cycle.  
The following sections will be limited to the  
methods for writing and reading data into the KAC-  
1310 register.  
For a complete reference to I2C, see “The I2C Bus  
from Theory to Practice” by Dominique Paret and  
Carll-Fenger, published by John Wiley & Sons,  
ISBN 0471962686 or refer to Philip Standard  
online at:  
The I2C is used to write the required user system  
data into the Program Control Registers in the  
KAC-1310. The I2C bus can also read the data in  
http://www.us2.semiconductors.philips.com/i2c/.  
MSB  
1
LSB  
7
MSB  
1
LSB  
8
2
3
4
5
6
8
9
2
3
4
5
6
7
9
SCLK  
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
0
1
1
0
0
1
1
KAC-1310 I2C Bus Address  
KAC-1310 Register Address  
Ack Bit  
from  
Start Signal  
Ack Bit  
from  
Write  
KAC-1310  
KAC-1310  
MSB  
1
LSB  
8
5
9
2
3
4
6
7
SCLK  
D7  
D6 D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
Data to write KAC-1310 Register  
Ack Bit Stop  
from  
Signal  
KAC-1310  
Figure 25: I2C Bus WRITE Cycle  
36  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
KAC-1310 I2C Bus Protocol  
The KAC-1310 uses the I2C bus to write or read  
slaves in the system may have the same address.  
The KAC-1310 is configured to be a slave only.  
one register byte per start/stop I2C cycle as shown  
in Figure 25 and Figure 26. These figures will be  
used to describe the various parts of the I2C  
protocol communications as it applies to the KAC-  
Data Transfer  
Once successful slave addressing is achieved,  
data transfer can proceed between the master and  
the selected slave in a direction specified by the  
R/W bit sent by the calling master. Note that for  
the first byte after a start signal (in Figure 25 and  
Figure 26), the R/W bit is always a “0” designating  
a write transfer. This is required since the next  
data transfer will contain the register address to be  
read or written. All transfers that come after a  
calling address cycle are referred to as data  
transfers, even if they carry sub-address  
information for the slave device. Each data byte is  
8 bits long. Data may be changed only while  
SCLK is low and must be held stable while SCLK  
is high as shown in Figure 25. There is one clock  
pulse on SCLK for each data bit, the MSB being  
transferred first.  
1310.  
KAC-1310 I2C bus communication is  
basically composed of following parts: START  
signal, KAC-1310 slave address (0110011b)  
transmission followed by  
a
R/W bit, an  
acknowledgment signal from the slave, 8-bit data  
transfer followed by another acknowledgment  
signal, STOP signal, Repeated START signal, and  
clock synchronization.  
START Signal  
When the bus is free, i.e. no master device is  
engaging the bus (both SCLK and SDATA lines  
are at logical “1”),  
a
master may initiate  
communication by sending a START signal. As  
shown in Figure 25 on page 36, a START signal is  
defined as a high-to-low transition of SDATA while  
SCLK is high. This signal denotes the beginning of  
a new data transfer and wakes up all the slaves on  
the bus.  
Each data byte has to be followed by an  
acknowledge bit, which is signaled from the  
receiving device by pulling the SDATA low at the  
ninth clock. So one complete data byte transfer  
needs nine clock pulses. If the slave receiver  
does not acknowledge the master, the SDATA line  
must be left high by the slave. The master can  
then generate a stop signal to abort the data  
transfer or a start signal (repeated start) to  
commence a new calling. If the master receiver  
does not acknowledge the slave transmitter after a  
byte transmission, it means 'end of data' to the  
slave, so the slave releases the SDATA line for  
the master to generate STOP or START signal.  
Slave Address Transmission  
The first byte of a data transfer, immediately after  
the START signal, is the slave address transmitted  
by the master. This is a 7-bit calling address  
followed by a R/W bit. The 7-bit address for the  
KAC-1310, starting with the MSB (AD7), is  
0110011b. The transmitted calling address on the  
SDATA line may only be changed while SCLK is  
low as shown in Figure 25. The data on the  
SDATA line is valid on the High to Low signal  
transition on the SCLK line. The R/W bit following  
the 7-bits tells the slave the desired direction of  
data transfer: 1 = Read transfer, the slave  
transitions to a slave transmitter and sends the  
data to the master; 0 = Write transfer, the master  
transmits data to the slave.  
Stop Signal  
The master can terminate the communication by  
generating a STOP signal to free the bus.  
However, the master may generate a START  
signal followed by a calling command without  
generating a STOP signal first. This is called a  
Repeated START. A STOP signal is defined as a  
low-to-high transition of SDATA while SCLK is at  
logical “1” (see Figure 25). The master can  
generate a STOP even if the slave has generated  
an acknowledge bit at which point the slave must  
release the bus.  
Acknowledgment  
Only the slave with a calling address that matches  
the one transmitted by the master will respond by  
sending back an acknowledge bit. This is done by  
pulling the SDATA line low at the 9th clock (see  
Figure 26 on page 39). If an acknowledgement is  
not received, many I2C master devices will  
assume that the slave device is not functioning.  
No two  
37  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
KAC-1310 slave sends acknowledgment by  
forcing the SDATA Low during the 9th clock, if  
the Calling Address was received  
Master transmits the KAC-1310 Register  
Address  
Repeated START Signal  
A Repeated START signal is a START signal  
generated without first generating a STOP signal  
to terminate the communication. This is used by  
the master to communicate with another slave or  
KAC-1310 slave sends acknowledgment by  
forcing the SDATA Low during the 9th clock  
after receiving the Register Address  
Master transmits the data to be written into the  
register at the previously received Register  
Address  
with the same slave in  
a
different mode  
(transmit/receive mode) without releasing the bus.  
As shown in Figure 26, page 39, a Repeated  
START signal is being used during the read cycle  
and to redirect the data transfer from a write cycle  
(master transmits the register address to the  
slave) to a read cycle (slave transmits the data  
from the designated register to the slave).  
KAC-1310 slave sends acknowledgment by  
forcing the SDATA Low during the 9th clock  
after receiving the data to be written into the  
Register Address  
I2C Bus Clocking and synchronization  
The Master transmits STOP to end the write  
cycle  
Open drain outputs are used on the SCLK outputs  
of all master and slave devices so that the clock  
can be synchronized and stretched using wire-  
AND logic. This means that the slowest device  
will keep the bus from going faster than it is  
capable of receiving or transmitting data.  
Register Read  
Reading the KAC-1310 registers is accomplished  
with the following I2C transactions (see Figure 26,  
page 39):  
Master transmits a START  
After the master has driven SCLK from High to  
Low, all the slaves drive SCLK Low for the  
required period that is needed by each slave  
device and then releases the SCLK bus. If the  
slave SCLK Low period is greater than the master  
SCLK Low period, the resulting SCLK bus signal  
Low period is stretched. Therefore, synchronized  
clocking occurs since the SCLK is held low by the  
device with the longest Low period. Also, this  
method can be used by the slaves to slow down  
the bit rate of a transfer. The master controls the  
length of time that the SCLK line is in the High  
state. The data on the SDATA line is valid when  
the master switches the SCLK line from a High to  
a Low. Slave devices may hold the SCLK low  
after completion of one byte transfer (9 bits). In  
such case, it halts the bus clock and forces the  
master clock into wait states until the slave  
releases the SCLK line.  
Master transmits the KAC-1310 Slave Calling  
Address with “WRITE” indicated (BYTE=66h,  
102d, 01100110b)  
KAC-1310 slave sends acknowledgment by  
forcing the SDATA Low during the 9th clock, if  
the Calling Address was received  
Master transmits the KAC-1310 Register  
Address  
KAC-1310 slave sends acknowledgment by  
forcing the SDATA Low during the 9th clock  
after receiving the Register Address  
Master transmits a Repeated START  
Master transmits the KAC-1310 Slave Calling  
Address with “READ” indicated (BYTE = 67h,  
103d, 01100111b)  
KAC-1310 slave sends acknowledgment by  
forcing the SDATA Low during the 9th clock, if  
the Calling Address was received  
At this point, the KAC-1310 transitions from a  
“Slave-Receiver” to a “Slave-Transmitter”  
KAC-1310 sends the SCLK and the Register  
Data contained in the Register Address that  
was previously received from the master;  
KAC-1310 transitions to slave-receiver  
Master does not send an acknowledgment  
(NAK)  
Register Write  
Writing the KAC-1310 registers is accomplished  
with the following I2C transactions (see Figure 25  
page 36):  
Master transmits a START  
Master transmits STOP to end the read cycle  
Master transmits the KAC-1310 Slave Calling  
Address with “WRITE” indicated (BYTE=66h,  
102d, 01100110b)  
38  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCLK  
LSB  
LSB  
MSB  
MSB  
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XX  
SDATA  
0
1
1
0
0
1
1
KAC-1310 I2C Bus Address  
KAC-1310 Register Address  
Ack Bit  
from  
Repeated  
Start  
Start Signal  
Write Ack Bit  
from  
KAC-1310  
Signal  
KAC-1310  
At this point the KAC-1310  
5
8
9
1
2
3
4
6
7
SCLK  
transitions from a "SLAVE-receiver"  
to a "SLAVE-transmitter  
MSB  
LSB  
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
SDATA  
0
1
1
0
0
1
1
KAC-1310 I2C Bus Address  
Read Ack Bit  
from  
KAC-1310  
The KAC-1310 transitions from a  
"SLAVE-transmitter" to a "SLAVE-receiver"  
after the register data is sent  
5
8
9
1
2
3
4
6
7
SCLK  
MSB  
LSB  
D7  
D6 D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
Data to write KAC-1310 Register  
No Ack Bit from MASTER terminates the transfer  
Stop  
Signal from MASTER  
Single Byte Transfer to Master  
Figure 26: I2C Bus READ Cycle  
39  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Symbol  
Characteristic  
Min  
Max  
Unit  
fmax  
M1  
M2  
SCLK maximum frequency  
Start condition SCLK hold time  
50  
4
1/24 MCLK  
KHz1  
3
-
-
TMCLK  
TMCLK  
SCLK low period  
8
SCLK/SDATA rise time [from VIL = (0.2)*VDD to VIH  
=
M3  
M4  
M5  
M6  
M7  
M8  
M9  
CI  
(0.8)*VDD  
]
-
4
-
0.3  
-
µs2  
3
SDATA hold time  
TMCLK  
µs2  
SCLK/SDATA fall time (from Vh = 2.4V to VI = 0.5V)  
SCLK high period  
0.3  
-
4
4
4
4
-
TMCLK  
3
SDATA setup time  
-
TMCLK  
TMCLK  
TMCLK  
pF  
Start / Repeated Start condition SCLK setup time  
Stop condition SCLK setup time  
Capacitive for each I/O pin  
-
-
10  
200  
10  
Cbus  
Rp  
Capacitive bus load for SCLK and SDATA  
Pull-up Resistor on SCLK and SDATA  
-
pF  
k4  
1.5  
Table 9: I2C-compatible Serial Interface Timing Specification  
Notes:  
1. SCLK frequency maximum limit is 1/24 MCLK frequency.  
2. The capaitive load is 200pF  
3. The unit TMCLK is the period of the input master clock; the frequency of MCLK is assumed 10.0 MHz.4A pull-up  
resistor to VDD is required on each of the SCLK and SDATA lines; for a maximum bus capacitive load of 200pF,  
the minimum value of Rp should be selected in order to meet specifications. I2C is a proprietary Philips interface  
bus.  
M2  
M5  
M3  
M6  
VIH  
VIL  
SCLK  
M1  
M9  
M4  
M7  
M8  
M8  
SDATA  
Figure 27: I2C Bus Timing  
40  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
REGISTER LIST REFERENCE  
Note: In each table where a suffix code is used; h = hex, b = binary, and d = decimal.  
The I2C addressing is broken up into groups and assigned to a specific digital block. The designated  
block is responsible for driving the internal control bus, when the assigned range of addresses is present  
on the internal address bus. The grouping designation and assigned range are listed in Table 10. Each  
block contains registers that are loaded and read by the digital and analog blocks to provide configuration  
control via the I2C serial interface.  
Address Range  
00h – 2Fh  
Block Name  
Analog Register Interface  
Sensor Interface  
40h – 7Fh  
80h - BFh  
Column Offset Coefficients  
Table 10. I2C Address Range Assignments  
Table 11 and Table 12 contain all the I2C address assignments. The table includes a column indicating  
whether the register values are shadowed with respect to the sensor interface. If the register is  
shadowed, the sensor interface will only be updated upon frame boundaries, thereby eliminating intra-  
frame artifacts resulting from register changes.  
41  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Hex  
Ref  
Address  
Register Function  
Default  
Table  
Shadowed?  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
DPGA Color 1 Gain Register (Green1 or Cyan)  
DPGA Color 2 Gain Register (Red or Yellow1)  
DPGA Color 3 Gain Register (Blue or Yellow2)  
DPGA Color 4 Gain Register (Green2 or Magenta)  
Unused  
0Eh  
0Eh  
0Eh  
0Eh  
Table 13, pg 44  
Table 14, pg 45  
Table 15, pg 45  
Table 16, pg 45  
Yes  
Yes  
Yes  
Yes  
Factory Use Only  
Factory Use Only  
Factory Use Only  
Factory Use Only  
Factory Use Only  
Negative ADC Reference Register  
Positive ADC Reference Register  
Power Configuration Register  
Factory Use Only  
76h  
80h  
00h  
Table 17, pg 46  
Table 18, pg 46  
Table 19, pg 47  
No  
No  
No  
Reset Control Register  
00h  
50h  
0Eh  
Table 20, pg 48  
Table 21, pg 49  
Table 22, pg 50  
No  
No  
Device Identification (read only)  
PGA Exposure (Global) Gain A Register  
Unused  
Yes  
Tristate Control Register  
Factory Use Only  
03h  
Unused  
14h Æ 1Fh  
20h  
Column DOVA DC Register  
PGA Exposure Global Gain B Register  
PGA Gain Mode Register  
ADC DOVA Register  
00h  
0Eh  
00h  
00h  
Table 23, pg 51  
Table 24, pg 52  
Table 25, pg 53  
Table 26, pg 54  
No  
Yes  
No  
21h  
22h  
23h  
No  
Unused  
24h Æ 3Fh  
Table 11: I2C Address Assignments (0h- 3Fh)  
42  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Hex  
Ref  
Address  
Register Function  
Default  
Table  
Shadowed?  
40h  
41h  
42h  
Capture Mode Register  
2Ah  
10h  
02h  
Table 27, pg 55  
Table 28, pg 56  
Table 29, pg 57  
Yes  
Yes  
Yes  
Sub-Sample Control Register  
TRIGGER and Strobe Control Register  
Unused  
43h Æ 44h  
45h  
WOI Row Pointer MSB Register  
WOI Row Pointer LSB Register  
WOI Row Depth MSB Register  
WOI Row Depth LSB Register  
WOI Column Pointer MSB Register  
WOI Column Pointer LSB Register  
WOI Column Width MSB Register  
WOI Column Width LSB Register  
Unused  
00h  
10h  
03h  
FFh  
00h  
08h  
04h  
FFh  
Table 30, pg 58  
Table 31, pg 58  
Table 34, pg 59  
Table 35, pg 60  
Table 32, pg 59  
Table 33, pg 59  
Table 36, pg 60  
Table 37, pg 60  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
Integration Time MSB Register  
Integration Time LSB Register  
Virtual Frame Row Depth MSB Register  
Virtual Frame Row Depth LSB Register  
Virtual Frame Column Width MSB Register  
Virtual Frame Column Width LSB Register  
SOF Delay Register  
04h  
FFh  
04h  
27h  
05h  
13h  
4Ch  
02h  
0Eh  
04h  
Table 38, pg 61  
Table 39, pg 61  
Table 40, pg 62  
Table 41, pg 63  
Table 42, pg 63  
Table 43, pg 63  
Table 44, pg 64  
Table 45, pg 64  
Table 46, pg 65  
Table 47, pg 66  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
VCLK Delay Register  
SOF & VLCK Width Register  
Readout Direction Control Register  
Unused  
58h Æ 5Eh  
5Fh  
Internal Timing Control Register (SHA)  
Internal Timing Control Register (SHB)  
Factory Use Only  
0Ah  
0Ah  
Table 48, pg 67  
Table 49, pg 67  
Yes  
Yes  
60h  
61h Æ 63h  
64h  
Clamp Control and HCLK Delay Register  
Encoded Sync Register  
Unused  
5Ch  
00h  
Table 50, pg 68  
Table 51, pg 69  
Yes  
65h  
66h  
Factory Use Only  
67h Æ 68h  
69h Æ 7Fh  
80h Æ BFh  
C0h Æ FFh  
Unused  
Mod64 Col Offset Registers  
Unused  
00h  
Table 52, pg 70  
Table 12: I2C Address Assignments (40h - FFh)  
43  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
DETAILED REGISTER BLOCK ASSIGNMENTS  
This section describes in further detail the  
functional operation of the various KAC-1310  
programmable registers.  
register is programmable given the gain function  
defined in the table. The user programs these  
registers to account for changing light conditions  
to assure a white balanced output. The default  
value in each register provides for a unity gain for  
the default Raw Mode. In addition, the default  
CFA pattern color is listed in the title of each  
register.  
Color Gain Registers 00h Æ 03h  
The four Color Gain Registers, Color Tile  
Configuration Register, and four Color Tile Row  
definitions define how white balance is achieved  
on the device. Six-bit gain codes can be selected  
for four separate colors: Table 13, Table 14, Table  
15, and Table 16. Gain for each individual color  
The Gain Mode is set by Register 22h, Table 25 on  
page 53.  
Raw Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.02175 * Regd  
1.3475 + 0.04350 * (Regd - 31)  
0 < Regd < 31  
32 < Regd < 63  
(0.0695x Æ1.36925x)  
(1.3910x Æ 2.7395x)  
Lin1 Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.04350 * Regd  
0 < Regd < 47  
0 < Regd < 63  
(0.695x Æ 2.7395x)  
(0.483x Æ 7.488x)  
Lin2 Gain Mode (Exposure gain stage only)  
Gain 0.483 + 0.11119 * (Reg 10h)d  
Address  
00h  
Default  
0Eh  
PGA Color 1 Gain Code  
Green1 or Cyan  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
cg1[0]  
cg1[5]  
cg1[4]  
cg1[3]  
cg1[2]  
cg1[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxb  
5 - 0  
Gain  
See Gain Equation  
001110b  
Default Gain in Raw mode = 1.0  
Default Gain in Lin1 Mode = 1.3  
Table 13: PGA Color 1 Gain Register (00h)  
44  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Address  
01h  
Default  
0Eh  
PGA Color 2 Gain Code  
Red or Yellow1  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
cg2[0]  
cg2[5]  
cg2[4]  
cg2[3]  
cg2[2]  
cg2[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxb  
5 - 0  
Gain  
See Gain Equation  
001110b  
Default Gain in Raw mode = 1.0  
Default Gain in Lin1 Mode = 1.3  
Table 14: PGA Color 2 Gain Register (01h)  
Address  
02h  
Default  
0Eh  
PGA Color 3 Gain Code  
Blue or Yellow2  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
cg3[0]  
cg3[5]  
cg3[4]  
cg3[3]  
cg3[2]  
cg3[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxb  
5 - 0  
Gain  
See Gain Equation  
001110b  
Default Gain in Raw mode = 1.0  
Default Gain in Lin1 Mode = 1.3  
Table 15: PGA Color 3 Gain Register (02h)  
Address  
03h  
Default  
0Eh  
PGA Color 4 Gain Code  
Green2 or Magenta  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
cg4[0]  
cg4[5]  
cg4[4]  
cg4[3]  
cg4[2]  
cg4[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxb  
5 - 0  
Gain  
See Gain Equation  
001110b  
Default Gain in Raw mode = 1.0  
Default Gain in Lin1 Mode = 1.3  
Table 16: PGA Color 4 Gain Register (03h)  
45  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Reference Voltage Adjust Registers (0Ah, 0Bh)  
The analog register block allows programming the  
input voltage range of the analog to digital  
converter to match the saturation voltage of the  
pixel array (this effectively sets the mV/dn  
increased power consumption and increased  
image artifacts. The following equation defines  
the mV/DN at the input to the ADC:  
If the 20x gain provided by the PGAs is not  
sufficient, the ADC references can be used to  
conversion ratio).  
The voltage reference  
generator can be programmed via two registers;  
“positive” ADC reference voltage (prv) (2.5V to  
1.25V) in Table 18, and “negative” ADC reference  
voltage (nrv) (0 to 1.25V) in Table 17, in 5mV  
steps. The default settings for prv produce a  
1.86V positive reference. The default settings for  
nrv produce a 0.59V negative reference. These  
two references define the ADC analog input range.  
When adjusting these values, the user should  
keep the voltage range centered at 1.25V. These  
ADC references can be adjusted to mV/DN of the  
ADC. This effectively acts as another gain stage  
just before the ADC. Excessive adjustment of  
these values from their default can result in  
+
mV 2(V V ) 2(1.860.59)  
mV  
=
=
= 2.48  
10dn  
10dn  
1024  
1024  
apply additional gain to the ASP. To increase the  
gain the ADC references need to be moved closer  
to Vcm (1.25V). This should be used only after  
the PGAs have been used to their fullest since  
moving the ADC references too far will degrade  
the ADC performance. The effective gain of the  
ADC block will be:  
2.48  
Gain =  
+
2(V V  
)
1024  
Address  
0Ah  
Default  
76h  
"Negative" ADC Reference Voltage  
7 (msb)  
nrv[7]  
6
5
4
3
2
1
0 (lsb)  
nrv[0]  
nrv[6]  
nrv[5]  
nrv[4]  
nrv[3]  
nrv[2]  
nrv[1]  
Bit  
Function Description  
Reset  
State  
Number  
Table 17: Negative Voltage Reference Register (0Ah)  
Address  
0Bh  
Default  
80h  
"Positive" ADC Reference Voltage  
7 (msb)  
prv[7]  
6
5
4
3
2
1
0 (lsb)  
prv[0]  
prv[6]  
prv[5]  
prv[4]  
prv[3]  
prv[2]  
prv[1]  
Bit  
Function Description  
Reset  
State  
Number  
7 - 0  
Reference  
Voltage = 2.5 - (5mV * prcd)  
10000000b  
(1.86V)  
Table 18: Positive Voltage Reference Register (0Bh)  
46  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Power Configuration Registers (0Ch)  
The Power Configuration Register controls the  
internal analog functionality that directly affects  
power consumption of the device. A pair of  
external precision resistor pins are available on  
the KAC-1310 that may be used to more  
accurately regulate the internal current sources.  
This serves to minimize variations in power  
consumption that are caused by variations in  
internal resistor values as well as offer a method  
to reduce the power consumption of the device.  
The default for this control uses the internally  
provided resistor which is nominally 12.5k. This  
feature is enabled by setting the res bit of the  
Power Configuration Register and placing a  
resistor between the EXTRESA and EXTRESB  
pins. Figure 19 on page 30 depicts the power  
savings that can be achieved with an external  
resistor at the nominal clock rate of 10 MHz.  
Power is further reduced at lower clock rates.  
Figure 18 shows how the noise of the system is  
affected by the EXTRES. It is recommended that  
the External Resistor be kept at 39kat nominal  
speed. The optimal EXTRES value will change  
based on system needs and chip frequency.  
The KAC-1310 is put into a standby mode via the  
I2C interface by setting the sby bit of the Power  
Configuration Register. While the imager is in this  
mode the power consumption is reduced  
considerably (see Table 19). Also, the I2C  
continues to work and any number of registers can  
be programmed. Upon leaving standby state the  
imager will remember all register settings and  
apply them to the first imager captured.  
Address  
0Ch  
Default  
00h  
Power Configuration  
7 (msb)  
x
6
x
5
x
4
3
2
1
0 (lsb)  
sby  
fuo  
res  
fuo  
fuo  
Bit  
Number  
7 - 5  
4
Function Description  
Reset  
State  
xxxb  
0b  
Unused Unused  
FUO  
Factory Use  
Only  
3
Int/Ext  
0b = Internal Resistor  
0b  
Resistor 1b = External Resistor  
2 - 1  
0
FUO  
Factory Use  
Only  
00b  
0b  
Software 0b = Soft Standby Inactive  
Standby 1b = Soft Standby Active  
Table 19: Power Configuration Register (0Ch)  
47  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Reset Control Register (0Eh)  
1310 to the default state via the serial control  
interface. All user programmable registers will  
revert to default values. For each of these reset  
bits a value of 0 must be sent to register 0Eh after  
use to take the imager back out of reset mode.  
Typically only the first two bits are needed. Bit 1  
(ssr) resets all state machines and internal  
registers, but leaves the programmable registers  
intact. Bit 0 (sit) resets all registers, internal and  
user programmable to default values.  
Setting the asr, ssr, par, and sir bits of this  
register will reset all the non-user programmable  
registers to known reset state. All  
a
programmable registers will retain their values.  
This is useful in situations when control of the  
KAC-1310 has been lost due to system interrupts  
and the device needs only be restarted using the  
earlier user programmed values. Setting the sit  
bit allows the user to completely reset the KAC-  
Address  
0Eh  
Default  
00h  
Reset Control  
7 (msb)  
x
6
x
5
x
4
3
2
1
0 (lsb)  
sit  
asr  
par  
sir  
ssr  
Bit  
Number  
7 - 5  
4
Function Description  
Reset  
State  
xxxb  
0b  
Unused Unused  
ASP(A2D) 0b = Normal Mode  
Reset  
1b = Reset registers in the ASP and ADC (state  
machine reset)  
3
2
Post ADC 0b = Normal Mode  
Reset  
0b  
0b  
1b = Reset non-programmable POST ADC internal registers to init state  
Sensor 0b = Normal Mode  
Interface  
1b = Reset non-programmable Sensor Interface registers (state machines) to init  
Reset  
state  
1
0
State  
0b = Normal Mode  
0b  
0b  
Reset  
1b = Reset all non-programmable registers to default  
state  
Soft  
0b = Normal Mode  
Reset  
1b = Reset all registers to default state (all programmed regs>default)  
Table 20: Reset Control Register (0Eh)  
48  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Exposure Gain A Register (10h)  
The PGA Exposure (Global) Gain Register allows  
the user to set one of the global gains via a 6-bit  
register. This is applied universally to all the pixel  
outputs. This enables the user to account for  
varying light conditions. The gain range depends  
on the Exposure Gain Mode setting (Register 22h,  
Table 25 on page 53). In Raw or Lin1 mode both  
Exposure Gain A (10h) and Exposure Gain B (21h)  
are programmed as successive gains stages. If  
Lin2 Mode is selected then Register 10h is used to  
program both Exposure gain stages as if they  
were one linear gain stage. Further discussion of  
the Gain stages can be found the Programmable  
Gain Amplifier section on page 17, and in the  
Global Digital Offset Adjustment section on page  
20. If register 10h is increased to its maximum and  
still more gain is needed, Exposure Gain B can  
then be increased, via Register 21h, Table 24 on  
page 52.  
The gain equations of each gain mode are:  
Raw Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.02175 * Regd  
1.3475 + 0.04350 * (Regd - 31)  
0 < Regd < 31  
(0.0695x Æ1.36925x)  
32 < Regd < 63 (1.3910x Æ 2.7395x)  
Lin1 Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.04350 * Regd  
0 < Regd < 47  
0 < Regd < 63  
(0.695x Æ 2.7395x)  
(0.483x Æ 7.488x)  
Lin2 Gain Mode (Exposure gain stage only)  
Gain 0.483 + 0.11119 * (Reg 10h)d  
NOTE: the gain step size of Lin2 Mode is almost, but not completely uniform. Any one step may deviate  
from the mean step size of 0.11119 by a small amount. This is due to the fact that Lin2 Mode actually  
varies two gain stages with fixed step sizes to make one equivalent gain step.  
Address  
10h  
Default  
0Eh  
Global Gain A  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
gg1[0]  
gg1[5]  
gg1[4]  
gg1[3]  
gg1[2]  
gg1[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxb  
5 - 0  
Gain  
Gain equation depends on Gain Mode: Raw, Lin1, or Lin2 (Default is  
unity gain for Raw mode)  
001110b  
Table 21: A Exposure Gain A Register (10h)  
Tristate Control Register (12h)  
The Tristate Control Register is used to set the  
chip outputs into tristate. This functionality is  
useful if these outputs are on a bus that is being  
shared by other devices. When the tsctl bit is  
reset (ie “0”) the SOF, VCLK, HCLK, and STROBE  
output pins are placed in tristate mode. The 10  
ADC output pins can be tristated by resetting the  
tspix bit (“0”).  
49  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Address  
12h  
Default  
03h  
Tristate Control  
7 (msb)  
FUO  
6
5
4
3
2
1
0 (lsb)  
tspix  
FUO  
FUO  
FUO  
FUO  
FUO  
tsctl  
Bit  
Number  
7 - 2  
1
Function  
Description  
Reset  
State  
000000b  
1b  
FUO  
Factory Use Only  
Sync Tristate 0b = HCLK, SOF, VCLK, and Strobe sync pins tristated  
1b = Sync pins driven  
0
ADC Tristate 0b = ADC outputs pins tristated  
1b = ADC output pins driven  
1b  
Table 22: Tristate Control Register (12h)  
50  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Column DOVA DC Register (20h)  
Offset adjustments for the KAC-1310 are done in  
separate sections of the ASP to facilitate FPN  
removal and final image black level set. The  
primary purpose of the Column DOVA DC  
Register is to compensate for pre-gain offset. If  
this register is set to zero the user may find that  
the dark level of some chips may move with  
different programmed gain values. In addition the  
white balance gain stage can result in different  
effective dark levels for different colors. These  
effects MAY cause distortion with certain post  
image signal processing. In these cases the  
Column DOVA DC Register can be programmed  
such that the dark pixel level is independent of  
programmed gain values. The simplest method  
for setting this register is to place the imager in the  
dark and record the mean value for the dark  
pixels. Then increase the global gain register  
(10h) to the maximum gain to be used in the  
application. Adjust register 20h until the dark level  
has returned to the level previously recorded with  
unity gain. This process can be repeated again for  
greater accuracy since the dark level at unity gain  
will now have shifted slightly.  
For many  
applications, this register can be left in its default  
state of 00h. If during the calibration of this register  
the value of any pixels are observed to be clipping  
at zero counts, it is then necessary to temporarily  
increase the ADC DOVA (reg 23h) to avoid  
clipping. Register 20h should not be used to adjust  
the code value of the dark level for the ADC, this  
should always be done with the ADC DOVA (reg  
23h)  
The Column DOVA stage is also used to correct  
for patterned column noise. This is done pre-gain.  
The column pattern correction offsets are defined  
in Reg 80hÆ BFh, see Table 52 on page 70. The  
Column DOVA stage has only six bits of  
programmability. Registers 20h is added to the  
value in 80hÆ BFh for that column. The final sum  
is clipped to ±32d.  
Address  
20h  
Default  
00h  
Column DOVA DC  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
cdd[0]  
cdd[5]  
cdd[4]  
cdd[3]  
cdd[2]  
cdd[1]  
Bit  
Number  
7 - 6  
5
Function Description  
Reset  
State  
xxb  
Unused Unused  
Sign  
0b = Positive Offset  
1b = Negative Offset  
0b  
4 - 0  
Column Offset = 2.6 * cddd (64 steps @ 2.6  
00000b  
mV/step)  
DC Offset  
Table 23: Column DOVA DC Offset (20h)  
51  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Exposure GainB (21h)  
The PGA Exposure (Global) Gain Register allows  
are programmed as successive gains stages. If  
Lin2 Mode is selected then Register 10h is used to  
program both Exposure gain stages as if they  
were one linear gain stage. Further discussion of  
the Gain stages can be found in “Programmable  
Gain Amplifier” on page 17, and “Global Digital  
Offset Adjust” on page 20. The gain equations of  
each gain mode are:  
the user to set one of the global gains via a 6 bit  
register. This is applied universally to all the pixel  
outputs. This enables the user to account for  
varying light conditions. The gain range depends  
on the Exposure Gain Mode setting (Register 22h,  
Table 25 on page 53). In Raw or Lin1 mode both  
Exposure Gain A(10h) and Exposure Gain B(21h)  
Raw Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.02175 * Regd  
1.3475 + 0.04350 * (Regd - 31)  
0 < Regd < 31  
(0.0695x Æ1.36925x)  
32 < Regd < 63 (1.3910x Æ 2.7395x)  
Lin1 Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.04350 * Regd  
0 < Regd < 47  
(0.695x Æ 2.7395x)  
Lin2 Gain Mode  
This register is not used in this mode. See  
Exposure Gain A, Table 21 on page 45 for  
programming this mode.  
Address  
21h  
Default  
Exposure Gain B  
0Eh  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
gg2[0]  
gg2[5]  
gg2[4]  
gg2[3]  
gg2[2]  
gg2[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxb  
5 - 0  
Gain  
Gain equation depends on Gain Mode: Raw, Lin1, or Lin2 (Default is  
unity gain for Raw mode)  
001110b  
Table 24: Exposure Gain B (21h)  
52  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
PGA Gain Mode (22h)  
There exist three different gain modes that are  
gain modes are illustrated in Figure 12 on page  
18. The three gain modes are:  
available when the sensor is performing White  
Balance and Exposure gain. Plots of the three  
Raw Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.02175 * Regd  
1.3475 + 0.04350 * (Regd - 31)  
0 < Regd < 31  
(0.0695x Æ1.36925x)  
32 < Regd < 63 (1.3910x Æ 2.7395x)  
0 < Regd < 47 (0.695x Æ 2.7395x)  
0 < Regd < 63 (0.483x Æ 7.488x)  
Lin1 Gain Mode (WB and Exposure)  
Gain 0.6950 + 0.04350 * Regd  
Lin2 Gain Mode (Exposure gain stage only)  
Gain 0.483 + 0.11119 * (Reg 10h)d  
NOTE: the gain step size of Lin2 Mode is almost, but not completely uniform. Any one step may deviate from the  
mean step size of 0.11119 by a small amount. This is due to the fact that Lin2 Mode actually varies two gain stages  
with fixed step sizes to make one equivalent gain step.  
The wbm bit sets the gain mode for the WB gain (Register 0h-3h, pages 44 and 45).  
The egm bits set the gain mode for the Exposure Gains Registers (10h page 49 and 21h page 52.)  
Address  
22h  
Default  
00h  
PGA Gain Mode  
7 (msb)  
6
x
5
x
4
x
3
x
2
1
0 (lsb)  
x
wbm  
egm[1]  
egm[0]  
Bit  
Reset  
State  
Function Description  
Unused Unused  
Number  
7 - 3  
xxxxxb  
WB Gain 0b = Raw Gain Mode  
2
0b  
Mode  
1b = Lin1 Gain Mode  
00b = Raw Gain Mode  
01b = Lin1 Gain Mode  
1xb = Lin2 Gain Mode  
Exposure  
1 - 0  
00b  
Gain Mode  
Table 25: PGA Gain Mode (22h)  
53  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
ADC DOVA (23h)  
The Global DOVA Register performs a final offset  
offset range of ±124 dn. As an example, to  
program an offset of +92 dn, the value of 010111b  
(23d, 17h) should be loaded. This offset is used to  
place the dark level within the ADC range.  
adjustment in analog space just prior to the ADC.  
The 6-bit register uses its MSB to indicate positive  
or negative offset. Each register value changes  
the offset by 4 LSB code levels hence giving an  
Address  
23h  
Default  
00h  
ADC DOVA  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
gd[0]  
gd[5]  
gd[4]  
gd[3]  
gd[2]  
gd[1]  
Bit  
Number  
7 - 6  
5
Function Description  
Reset  
State  
xxb  
Unused Unused  
Sign  
0b = Positive Offset  
1b = Negative Offset  
0b  
4 - 0  
Column Offset (mV) = 12 * gdd (64  
00000b  
steps @ 12 mV/step)  
DC Offset  
Table 26: ADC DOVA Register (23h)  
54  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Capture Mode Control (40h)  
The Capture Mode Control Register defines how  
When the hm bit is set, the HCLK sync is high  
whenever valid WOI pixel data is being clocked  
out and low during the other blanking intervals.  
The HCLK does NOT toggle at the MCLK rate  
when the hm bit is set. When hm is set the HCLK  
will go high once at the beginning of the valid pixel  
data and remain high until the last WOI pixel has  
been clocked out. When the hm bit is set the he  
bit is ignored. The sp bit is used to define whether  
SOF is active high or low. SOF is active high by  
default. The ve bit is used to determine whether  
VCLK is output at the beginning of the virtual  
frame rows or only for the WOI rows. The ve bit  
defaults to VCLK on WOI rows only. The vp bit is  
used to define whether VCLK is active high(the  
default) or active low. The he bit is used to  
determine whether HCLK is output continuously  
(needed for some frame grabbers) or only for  
pixels within the WOI (default). The hp bit is used  
to define whether HCLK is active high (default) or  
low.  
the data is captured and how the data is to be  
provided at the output. Setting the cms bit will  
stop the current CFRS output data stream at the  
end of the current frame and place the imager in  
Single Frame Capture Mode (SFRS). While the  
cms bit is set (SFRS), the output of frames can be  
paused with the TRIGGER input pin. When the  
TRIGGER pin is low (VSS) the output of frames is  
suspended. When the TRIGGER pin is high (VDD)  
frames are continuous. The default for cms is 0  
(CFRS). In CFRS the frames are continuously  
output and the TRIGGER pin is ignored. The  
Frame Rate is slightly reduced when the cms is  
set (SFRS) because care is taken in the startup  
such that the first frame output is valid. This  
causes a slight delay at the start of each frame.  
See Figure 22 on page 32 for a timing diagram for  
SFRS mode. With the cms low(=0), the Frame  
Rate is faster, but the first frame will be invalid  
(wrong integration time).  
Address  
40h  
Default  
2Ah  
Capture Mode Control  
7 (msb)  
FUO  
6
cms  
5
sp  
4
ve  
3
vp  
2
he  
1
hp  
0 (lsb)  
hm  
Bit  
Number  
7
Function Description  
Reset  
State  
0b  
FUO  
Factory Use Only  
6
5
RSCM  
Mode  
0b = Continuous Frame Rolling Shutter (CFRS)  
1b = Single Frame Rolling Shutter (SFRS)  
0b = SOF sync active low  
0b  
1b  
SOF  
Phase  
1b = SOF sync active high  
4
3
2
1
VCLK  
Enable  
VCLK  
Phase  
HCLK  
Enable  
HCLK  
Phase  
0b = VCLK Sync on WOI rows only  
1b = VCLK Sync on WOI and Virtual Rows  
0b = Active low  
0b  
1b  
0b  
1b  
1b = Active high  
0b = Pixel sync on WOI pixels only  
1b = Continuous pixel sync  
0b = Active low  
1b = Active high  
0
HCLK  
Mode  
0b = Toggles - Toggles at MCLK rates defined by (he) bit  
1b = Continuous - Pixel Valid Envelope  
0b  
Table 27: Capture Mode Register (40h)  
55  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Sub-sample Control (41h)  
The sub-sample Control Register is used to define  
Bit cm can be cleared for monochrome imagers.  
This allows the imager to skip single columns and  
rows improving uniformity of sub-sampled MTF. In  
color mode sub-sampling is done in column and  
row pairs to conserve color integrity. The degree  
of sub-sample is defined by rf [1:0] for the rows,  
while the column sub-sample is independently  
defined by cf [1:0]. Row binning (even/odd row  
summing) is activated with the bn bit.  
what pixels of the WOI are read and the method  
they are output. See “Sub-Sampling Control  
(Resolution)” on page 12 for details on the readout  
modes. Sub-sampled frames readout faster than  
the full frame image. Any pixel not selected in the  
sub-sample mode is ignored, thereby not slowing  
the Frame Rate.  
Address  
41h  
Default  
10h  
Capture Mode Control  
7 (msb)  
x
6
5
4
3
2
1
0 (lsb)  
cf[0]  
FUO  
bn  
cm  
rf[1]  
rf[0]  
cf[1]  
Bit  
Function Description  
Reset  
State  
xb  
Number  
7
6
Unused Unused  
FUO  
Factory Use  
Only  
0b  
5
4
Binning 0b = Full WOI readout  
1b = Even/Odd Row Summing  
0b  
1b  
Color  
Mode  
0b = Monochrome Pattern Sampling (kernel=1)  
1b = Bayer Pattern Sampling (kernel=2)  
3 - 2  
Row Sub- 00b = Full WOI readout  
Sampling  
00b  
01b = Read one kernel, skip one (1/2 sampled)  
Mode  
10b = Read one kernel, skip three (1/4 sampled)  
11b = Read one kernel, skip seven (1/8 sampled)  
00b = Full WOI readout  
1 - 0  
Column  
00b  
Sub-Sampling 01b = Read one kernel, skip one (1/2 sampled)  
Mode  
10b = Read one kernel, skip three (1/4 sampled)  
11b = Read one kernel, skip seven (1/8 sampled)  
Table 28: Sub-Sample Control Register (41h)  
56  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
TRIGGER and STROBE Control Register (42h)  
The saw bit allows the user to select how long the  
STROBE signal is going to be on. If the bit is set  
to 1, the STROBE output will go high when all  
lines are concurrently integrating and will go low  
when the integration time has completed and  
readout has begun. It is during this period while  
STROBE is high that a mechanical shutter must  
open and close and/or flash must fire and quench  
if these devices are being used with the imager. If  
the shutter or flash operate at any other time  
image artifacts can result. Note the integration  
time must be greater than a frame readout time for  
this output to be useful. The sae bit when enabled  
will enable the STROBE signal to be generated  
automatically by the sensor. This will only work in  
Single Frame Rolling Shutter (SFRS) mode.  
The se bit, when enabled, will allow for an external  
signal to drive the trigger signal via the TRIGGER  
pin on the chip. Enabling the sa bit forces the  
trigger signal high until this bit is disabled. This  
causes continuous frame processing in SFRS  
mode. The sr bit, when enabled, causes the  
TRIGGER signal to go high for exactly one clock  
cycle, and then returns to a low. It remains low  
until the sr bit is enabled again. This is used to  
trigger a single frame capture via I2C rather than  
the TRIGGER pin.  
Address  
42h  
TRIGGER and STROBE Control  
Default  
02h  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
sr  
sso  
saw  
sae  
se  
sa  
Bit  
Function Description  
Reset  
State  
xxb  
Number  
7 - 6  
Unused Unused  
5
4
Factory Use Only  
Strobe Width 0b = 1 line time  
1b = Pulse width is high while all rows are simultaneously integrating  
0b  
0b  
3
2
1
STROBE 0b = STROBE pin Disabled  
Enable  
0b  
0b  
1b  
1b = STROBE pin Enabled  
TRIGGER 0b = External TRIGGER input pin Disabled (ignored)  
Enable  
1b = External TRIGGER input pin Enabled  
TRIGGER 0b = No effect  
Always On  
1b = TRIGGER input is internally held HIGH, TRIGGER input pin is  
ignored  
0
Software 0b = No effect  
0b  
TRIGGER  
1b = Triggers a single frame capture via I2C  
Table 29: TRIGGER and STROBE Control Register (42h)  
57  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Programmable Window of Interest (WOI) (45h-4Ch)  
The WOI is defined by a set of registers that  
indicate the upper-left starting point for the window  
and another set of registers that define the size of  
the window. Refer to Figure 7 on page 12 for a  
pictorial representation of the WOI within the  
WOI Row Depth, wrd[9:0] and the WOI Column  
Depth, wcw[10:0] indicate the size of the WOI.  
The user must be careful to create a WOI that is  
completely confined within the Virtual Frame.  
There is no logic in the sensor interface to prevent  
the user from defining a WOI that addresses  
nonexistent pixels.  
active pixel array.  
The WOI Row Pointer,  
wrp[8:0], and the WOI Column Pointer, wcp[9:0],  
mark the upper-left starting point for the WOI. The  
Address  
45h  
Default  
00h  
WOI Row Pointer MSB  
7 (msb)  
x
6
x
5
x
4
x
3
x
2
1
0 (lsb)  
wrp[8]  
wrp[10]  
wrp[9]  
Bit  
Number  
7 - 3  
Function Description  
Reset  
State  
xxxxxb  
000b  
Unused Unused  
2 - 0  
WOI Row In conjunction with the WOI Row Pointer LSB Register, forms the  
Pointer  
11-bit WOI Row Pointer wrp[10:0]  
Table 30: WOI Row Pointer MSB Register (45h)  
Address  
46h  
Default  
10h  
WOI Row Pointer LSB  
7 (msb)  
wrp[7]  
6
5
4
3
2
1
0 (lsb)  
wrp[0]  
wrp[6]  
wrp[5]  
wrp[4]  
wrp[3]  
wrp[2]  
wrp[1]  
Bit  
Function Description  
Reset  
State  
Number  
7 - 0  
WOI Row In conjunction with the WOI Row Pointer MSB Register, forms the 11 00010000b  
Pointer  
bit WOI Row Pointer wrp[10:0]  
(16d)  
Table 31: WOI Row Pointer LSB Register (46h)  
58  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Address  
49h  
Default  
00h  
WOI Column Pointer MSB  
7 (msb)  
x
6
x
5
x
4
x
3
x
2
1
0 (lsb)  
wcp[8]  
wcp[10]  
wcp[9]  
Bit  
Number  
7 - 3  
Function Description  
Reset  
State  
xxxxxb  
000b  
Unused Unused  
2 - 0  
WOI Column In conjunction with the WOI Column Pointer LSB Register,  
Pointer  
forms the 11-bit WOI Column Pointer wcp[10:0]  
Table 32: WOI Column Pointer MSB Register (49h)  
Address  
4Ah  
Default  
08h  
WOI Column Pointer LSB  
7 (msb)  
wcp[7]  
6
5
4
3
2
1
0 (lsb)  
wcp[0]  
wcp[6]  
wcp[5]  
wcp[4]  
wcp[3]  
wcp[2]  
wcp[1]  
Bit  
Function Description  
Reset  
State  
Number  
7 - 0  
WOI Column In conjunction with the WOI Column Pointer MSB Register,  
00001000b  
(8d)  
Pointer  
forms the 11-bit WOI Column Pointer wcp[10:0]  
Table 33: WOI Column Pointer LSB Register (4Ah)  
WOI Row Depth MSB  
Address  
47h  
Default  
03h  
7 (msb)  
x
6
x
5
x
4
x
3
x
2
1
0 (lsb)  
wrd[8]  
wrd[10]  
wrd[9]  
Bit  
Number  
7 - 3  
Function Description  
Reset  
State  
xxxxxb  
011b  
Unused Unused  
2 - 0  
WOI Row In conjunction with the WOI Row Depth LSB Register, forms the  
Depth  
11-bit WOI Row Depth wrd[10:0]  
Table 34: WOI Row Depth MSB Register (47h)  
59  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Address  
48h  
Default  
FFh  
WOI Row Depth LSB  
7 (msb)  
wrd[7]  
6
5
4
3
2
1
0 (lsb)  
wrd[0]  
wrd[6]  
wrd[5]  
wrd[4]  
wrd[3]  
wrd[2]  
wrd[1]  
Bit  
Function Description  
Reset  
State  
Number  
7 - 0  
WOI Row In conjunction with the WOI Row Depth MSB Register, forms  
11111111b  
1024 Rows  
Depth  
the 11-bit WOI Row Depth wrd[10:0]  
Desired = wrdd+1  
Table 35: WOI Row Depth LSB Register (48h)  
Address  
4Bh  
Default  
WOI Column Width MSB  
04h  
7 (msb)  
x
6
x
5
x
4
x
3
x
2
1
0 (lsb)  
wcw[10]  
wcw[9]  
wcw[8]  
Bit  
Number  
7 - 3  
Function Description  
Reset  
State  
Unused Unused  
xxxxxxb  
100b  
2 - 0  
WOI Column In conjunction with the WOI Column Width LSB Register, forms  
Width  
the 11-bit WOI Column Width wcw[10:0]  
Table 36: WOI Column Width MSB Register (4Bh)  
Address  
4Ch  
Default  
WOI Column Width LSB  
FFh  
7 (msb)  
wcw[7]  
6
5
4
3
2
1
0 (lsb)  
wcw[6]  
wcw[5]  
wcw[4]  
wcw[3]  
wcw[2]  
wcw[1]  
wcw[0]  
Bit  
Function Description  
Reset  
State  
Number  
7 - 0  
WOI Column In conjunction with the WOI Column Width MSB Register, forms the  
11111111  
b
Width  
11-bit WOI Column Width wcw[10:0]  
wcwd +1  
Desired =  
1280Columns  
Table 37: WOI Column Width LSB Register (4Ch)  
60  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Integration Time Control (4Eh Æ 4Fh)  
The integration Time registers control the  
integration time for the pixel array. Integration  
time is measured in Virtual Row times. Refer to  
Figure 8 on page 13 for a pictorial description of  
the Virtual Frame and its relationship to the WOI  
Frame. A Virtual Frame is the mechanism by  
which the user controls the integration time and  
frame time for the output data stream. By adding  
additional rows or columns as ‘blanking’ to the  
WOI to form the Virtual Frame, the user can  
control the amount of blanking in both horizontal  
and vertical space.  
NOTE: The upd bit of Reg 4Eh is used to indicate a change to cint[13:0]. Since multiple I2C writes may be needed to  
complete desired frame to frame integration time changes, the upd bit signals that all desired programming has been  
completed, and to apply these changes to the next frame captured. This prevents undesirable changes in integration  
time that may result from I2C writes that span the “End of Frame” boundary. This upd bit has to be toggled from its  
previous state in order for the new value of cint[13:0] to be accepted/updated by the sensor and take effect.  
i.e. If its previous state is “0”, when writing a new cint value, first write cint[7:0] to register 4Fh, then write both cint  
[13:8] and “1” to the upd bit to register 4Eh.  
Integration Time = (cintd + 1) * (vcwd + shAd +shBd +19) * MCLKperiod  
where vcwd is defined in registers 52h and 53h, Table 35 and Table 36 on page 60.  
(NOTE ABOVE LEFT IN SINGLE COLUMN FORMAT FOR CONSISTENCY WITH OTHER “NOTES”)  
Address  
Default  
Integration Time MSB  
4Eh  
04h  
7 (msb)  
x
6
5
4
3
2
1
0 (lsb)  
cint[8]  
upd  
cint[13]  
cint[12]  
cint[11]  
cint[10]  
cint[97]  
Bit  
Reset  
State  
Function Description  
Unused Unused  
Number  
7
xb  
This bit must be toggled from its previous state to apply cint  
to the integration time counter.  
6
Update  
0b  
Integration In conjuction with the Integration Time LSB Register, forms  
5 - 0  
000100b  
Time  
the 14-bit Integration Time cint[13:0].  
Table 38: Integration Time MSB Register (4Eh)  
Address  
4Fh  
Default  
FFh  
Integration Time LSB  
7 (msb)  
cint[7]  
6
5
4
3
2
1
0 (lsb)  
cint[0]  
cint[6]  
cint[5]  
cint[4]  
cint[3]  
cint[2]  
cint[1]  
Bit  
Reset  
State  
Function Description  
Number  
In conjuction with the Integration Time MSB Register, forms  
the 14-bit Integration Time cint[13:0].  
Integration  
Time  
11111111b  
1280 Rows  
7 - 0  
Integration Time = (cintd +1) * Trow  
Table 39: Integration Time LSB Register (4Fh)  
61  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Programmable Virtual Frame (50h Æ 53h)  
A Virtual Frame is the mechanism by which the  
user controls the integration time and frame time  
for the output data stream. By adding additional  
rows or columns as ‘blanking’ to the WOI to form  
the Virtual Frame, the user can control the amount  
of blanking in both horizontal and vertical space.  
Both the Virtual Frame Row Depth, vrd[13:0], and  
the Virtual Frame Column Width, vcw[13:0], have  
a range of 0d to 16384d. The Virtual Frame  
defines the maximum integration time. If the  
integration register is programmed with more rows  
than are in the Virtual Frame then the integration  
time will be clipped to the number of rows in the  
virtual frame.  
The user should be careful to create a Virtual  
Frame that is larger than the WOI. There is no  
logic in the sensor interface to prevent the user  
from defining a Virtual Frame smaller than the  
WOI. Therefore, pixel data may be lost. The  
Virtual Frame must be at least 1 row and 118  
columns larger than the WOI.  
Address  
Default  
05h  
Virtual Frame Column Width MSB  
52h  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
vcw[8]  
vcw[13] vcw[12]  
vcw[11] vcw[10] vcw[9]  
Bit  
Reset  
State  
Function  
Unused  
Description  
Unused  
Number  
7 - 6  
5 - 0  
xxb  
In conjunction with the Virtual Frame Column Width  
Virtual Column  
Width  
LSB Register, forms the 14-bit Virtual Frame Column 000101b  
Width vcw[13:0].  
Table 40: Virtual Frame Row Depth MSB (50h)  
Address  
53h  
Default  
13h  
Virtual Frame Column Width LSB  
7 (msb)  
vcw[7]  
6
5
4
3
2
1
0 (lsb)  
vcw[0]  
vcw[6]  
vcw[5]  
vcw[4]  
vcw[3]  
vcw[2]  
vcw[1]  
Bit  
Reset  
State  
Function  
Description  
Number  
In conjunction with the Virtual Frame Column Width  
MSB Register, forms the 14-bit Virtual Frame  
Column Width vcw[13:0]. WOI is always top-left  
justified in Virtual Frame.  
00010011b  
1300  
Virtual Column  
Width  
7 - 0  
Columns  
vcwd minimim = wcwd +11  
Table 41: Virtual Frame Row Depth LSB (51h)  
62  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Address  
52h  
Default  
05h  
Virtual Frame Column Width MSB  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
vcw[8]  
vcw[13] vcw[12]  
vcw[11] vcw[10] vcw[9]  
Bit  
Reset  
State  
Function  
Unused  
Description  
Unused  
Number  
7 - 6  
xxb  
In conjunction with the Virtual Frame Column Width  
LSB Register, forms the 14-bit Virtual Frame  
Column Width vcw[13:0].  
Virtual Column  
Width  
5 - 0  
000101b  
Table 42: Virtual Frame Column Width MSB (52h)  
Address  
53h  
Default  
13h  
Virtual Frame Column Width LSB  
7 (msb)  
vcw[7]  
6
5
4
3
2
1
0 (lsb)  
vcw[0]  
vcw[6]  
vcw[5]  
vcw[4]  
vcw[3]  
vcw[2]  
vcw[1]  
Bit  
Reset  
State  
Function  
Description  
Number  
In conjunction with the Virtual Frame Column  
Width MSB Register, forms the 14-bit Virtual  
Frame Column Width vcw[13:0]. WOI is always  
top-left justified in Virtual Frame.  
00010011b  
1300  
Virtual Column  
Width  
7 - 0  
Columns  
vcwd minimim = wcwd +11  
Table 43: Virtual Frame Column Width LSB (53h)  
63  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
SOF and VCLK Delay Registers (54h and 55h)  
This adjust can be used to vary the sync positions  
(rising and falling edges) relative to valid pixel  
data. In this way an acquisition system that uses  
the sync pulses for display can be shifted to add or  
avoid image borders. Adjusting the position or  
length of the SOF or VCLK sync does NOT alter  
the Frame Rate, the sync signal is simply shifted  
and overlaps the valid line and pixel data. Moving  
the rising edge of the SOF will also move the  
rising edge of the VCLK. This is so that the VCLK  
sync does not occur before the SOF pulse. The  
delay adjust is in  
½ cycles, it takes two  
programmed counts to delay the rising edge by  
one image pixel. These delays are measured  
from the change of the row address, which is not  
directly observable except to set the delay to 0.  
Address  
54h  
Default  
4Ch  
SOF Delay  
7 (msb)  
sofd[7]  
6
5
4
3
2
1
0 (lsb)  
sofd[0]  
sofd[6]  
sofd[5]  
sofd[4]  
sofd[3]  
sofd[2]  
sofd[1]  
Bit  
Function  
Description  
Reset  
State  
Number  
7 - 0  
SOF Delay Delay = sofdd * 0.5 MCLK's  
01001100b  
Table 44: SOF Delay Register (54h)  
Address  
55h  
Default  
02h  
VCLK Delay  
7 (msb)  
vckd[7]  
6
5
4
3
2
1
0 (lsb)  
vckd[6]  
vckd[5]  
vckd[4]  
vckd[3]  
vckd[2]  
vckd[1]  
vckd[0]  
Bit  
Function  
Description  
Reset  
State  
Number  
7 - 0  
VCLK Delay Delay = vckdd * 0.5 MCLK's  
Table 45: VCLK Delay Register (55h)  
00000010b  
64  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
SOF & VCLK Width Register (56h)  
The SOF & VCLK register moves the falling edge  
of the sync pulses. The widths can be adjusted for  
maximum compatibility with the frame capture  
device. The sofw bit adjusts the width of the SOF  
sync and vckw adjusts the width of the VCLK  
pulse.  
Address  
56h  
Default  
0Eh  
SOF & VCLK Width  
7 (msb)  
x
6
x
5
x
4
x
3
2
1
0 (lsb)  
sofw[1]  
sofw[0]  
vckw[1]  
Vckw(0)  
Bit  
Number  
7 - 4  
Function Description  
Reset  
State  
Unused Unused  
xxxxb  
3 - 2  
SOF Contro 00b = 1 MCLK Wide  
01b = 8 MCLKs Wide  
11b  
10b = 64 MCLKs Wide  
11b = Full Row Wide  
1 - 0  
VCLK 00b = 1 MCLK Wide  
Control  
01b = 8 MCLKs Wide  
10b  
10b = 64 MCLKs Wide  
11b = Full Row Wide  
Table 46: SOF & VCLK Width Register (56h)  
65  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Readout Direction Register (57h)  
This register allows the user to change the  
direction of readout of the columns or rows. This  
can be used to compensate for and orientation of  
the imager in the optical system. The rrc when  
enabled causes the column data to be readout in  
the reverse direction as compared to the normal  
readout direction. The rrr when enabled causes  
the row data to be readout in the reverse direction  
as compared to the normal readout direction. The  
normal readout direction of the imager is shown in  
Figure 2 on page 7.  
Address  
57h  
Default  
04h  
Readout Direction  
7 (msb)  
x
6
x
5
x
4
x
3
2
1
0 (lsb)  
rrc  
FUO  
FUO  
rrr  
Bit  
Number  
7 - 4  
3 - 2  
1
Function  
Description  
Reset  
State  
xxxxb  
01b  
Unused  
FUO  
Unused  
Factory Use Only  
Reverse  
0b = Normal Readout (Bottom to Top)  
0b  
Readout Row 1b = Rows Readout in reverse order (Top to Bottom)  
Reverse 0b = Normal Readout (Left to Right)  
0
0b  
Readout Col 1b = Cols readout in reverse order (Right to Left)  
Table 47: Readout Direction Register (57h)  
66  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Internal Timing Control Registers (5Fh and 60h)  
These registers are used to define the size of  
internal timing pulse widths shA (sample & hold  
sample) and shB (sample & hold reset). In default,  
both are 10 MCLKs wide. A maximum of 64  
MCLKs can be programmed for the shA delay and  
another 64 MCLKs for the shB delay. Writing 00h  
to either register will provide the maximum timing  
delay of 64 MCLKs.  
Address  
5Fh  
Default  
0Ah  
Internal Timing Control  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
shA[0]  
shA[5]  
shA[4]  
shA[3]  
shA[2]  
shA[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused Unused  
xxxxb  
5 - 0  
shA  
shA[5:0]=000000b=64 MCLKs Wide  
shs[5:0]=000001b=1d MCLKs Wide  
001010b  
shA[5:0]=000001b=1d MCLKs Wide  
shA[5:0]=000010b=2d MCLKs Wide  
shA[5:0]=000011b=3d MCLKs Wide  
|
|
shA[5:0]=111111b=63d MCLKs Wide  
Table 48: Internal Timing Control Register (5Fh)  
Address  
60h  
Default  
0Ah  
Internal Timing Control  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
shB[0]  
shB[5]  
shB[4]  
shB[3]  
shB[2]  
shB[1]  
Bit  
Number  
7 - 6  
Function Description  
Reset  
State  
Unused  
shB  
Unused  
xxxxb  
5 - 0  
shB[5:0]=000000b=64 MCLKs Wide  
shs[5:0]=000001b=1d MCLKs Wide  
001010b  
shB[5:0]=000001b=1d MCLKs Wide  
shB[5:0]=000010b=2d MCLKs Wide  
shB[5:0]=000011b=3d MCLKs Wide  
|
Table 49: Internal Timing Control Register (60h)  
67  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Clamp Control and HCLK Delay Register (64h)  
This register is used to delay the position of the  
first HCLK, which corresponds to the first valid  
pixel in each row. The delay is only useful when  
the HCLK is not continuous. This delay can be  
used to compensate for any latency in the user’s  
capture device. In addition, this register also  
allows one to disable the Frame Clamp if desired  
for specific applications (see “Frame Rate Clamp  
(FRC)”on page 16).  
Address  
64h  
Default  
5Ch  
Clamp Control and HCLK Delay  
7 (msb)  
x
6
5
4
3
2
1
0 (lsb)  
fce[6]  
FUO  
FUO  
FUO  
hckd[2]  
hckd[1]  
hckd[0]  
Bit  
Function  
Description  
Reset  
State  
xb  
Number  
7
6
Unused  
Unused  
Frame Clamp 0b = Clamp Disabled  
1b  
Enable  
1b = Clamp Enabled  
5 - 3  
2 - 0  
FUO  
FUO  
011b  
100b  
HCLK Delay Syncs rising edge of HCLK to valid data from ADC  
Delay = ((hckd[d]-4) x 0.5) - 16 MCLKs  
Table 50: Clamp Control and HCLK Delay Register (64h)  
68  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Encoded Sync Register (65h)  
It is possible to capture the image data without the  
SOF, VCLK, or HCLK syncs. Once the encoded  
Syncs are enabled, 4 10bit words are placed into  
the data stream adding 4 pixel times per row. The  
inserted codes tells the user when the row starts  
and what type of row it is. Figure 24 on page 34  
illustrates the encoded syncs in a data stream.  
The vcb bit allows the user to force all the  
Blanking data coming out of the ADC to be 0. The  
vcg bit allows the user to enable/disable encoded  
sync data in the output stream (see Table 2 on  
page 12). The vcc bit allows the user to clip the  
output active pixel data to lie between 1 and 1022  
to avoid confusion with the encoded sync data in  
the output stream.  
Address  
65h  
Default  
00h  
Encoded Sync Control  
7 (msb)  
x
6
5
4
3
2
1
0 (lsb)  
FUO  
vcb  
vsg  
vcc  
FUO  
FUO  
FUO  
Bit  
Function Description  
Reset  
State  
xb  
Number  
7
6
Unused Unused  
Blanking 0b = Dark Pixels Used for Blanking  
1b = H-Blanking and V-Blanking are forced to Dout=0  
Encoded Sync 0b = Normal Readout  
0b  
5
4
0b  
0b  
Enable  
1b = Enable Encoded Syncs in Data Stream  
Data Clipping 0b = Normal Readout  
1b = Pixel Data of 0 and 1023 will be clipped to 1 and  
1022  
3 - 0  
FUO  
Factory Use  
Only  
0000b  
Table 51: Encoded Sync Register (65h)  
69  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
Mod64 Column Offset Correction Register (80h-BFh)  
The Mod64 Column Offset registers are used to  
reduce/eliminate collimated fixed pattern noise  
to Column 1, 65, 129..., Register BFh Column  
offset will be applied to Column 63, 127, 191...etc.  
(FPN).  
There are 64 registers that can be  
programmed with individual offset values. They  
will be applied to all the columns on a single image  
frame on a Modular 64 basis. i.e. Register 80h  
Column offset will be applied to Column 0 , 64,  
128..., Register 81h Column offset will be applied  
The Column DOVA stage has only six bits of  
programmability. Registers 20h is added to the  
value in 80hÆBFh for that column. The final sum  
is truncated to ±32d.  
Address  
80-BFh  
Default  
00h  
Mod64 Column Offset Correction  
7 (msb)  
x
6
x
5
4
3
2
1
0 (lsb)  
mdd[5]  
mdd[4]  
mdd[3]  
mdd[2]  
mdd[1]  
mdd[0]  
Bit  
Number  
7 - 6  
5
Function Description  
Reset  
State  
xxb  
Unused Unused  
Sign  
0b = Positive Offset  
1b = Negative Offset  
0b  
4 - 0  
Column Offset = 2.6 * mddd (64 step @  
00000b  
2.6mV/step)  
Offset  
Table 52: Mod64 Column Offset Correction Register (80h-BFh)  
70  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
STORAGE AND HANDLING  
Storage Conditions  
Description  
Temperature  
Minimum  
Maximum  
Units  
Conditions  
Notes  
-55  
+70  
@10%+/5%RH  
1,2  
°C  
@49+/-2°C  
Humidity  
----  
95+/-5  
%RH  
1,2  
Temp.  
Notes:  
1. The tolerance on all relative humidity values is provided due to limitations in measurement instrument  
accuracy.  
2. The image sensor shall meet the specifications of this document after storage for 15 days at the specified  
conditions.  
Caution: This device contains limited protection against Electrostatic Discharge (ESD)  
Devices should be handled in accordance with strict ESD protection procedures for Class 2 devices (JESD22 Human  
Body Model) or Class B (Machine Model). Refer to Application Note MTD/PS-0224, “Electrostatic Discharge  
Control”  
Caution: Improper cleaning of the cover glass may damage these devices.  
Refer to Application Note MTD/PS-0237, “Cover Glass Cleaning for Image Sensors”  
71  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
REFLOW SOLDERING RECOMMENDATIONS  
When using a reflow soldering system, the thermal profile shown in Figure 28 below is the maximum  
thermal stress conditions recommended. If the temperature and/or time of the soldering process exceeds  
that of the recommended profile, there is a possibility of damaging the sensor due to thermal stress.  
225oC  
Peak Temperature  
< 3o/sec  
215oC  
20 - 30 sec max  
60 to 100 sec  
Pre-heat  
150oC +/- 10oC  
< 3o/sec  
Time  
Figure 28: Recommended Reflow Soldering System Thermal Profile  
72  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
MECHANICAL DRAWINGS  
47X  
H
A
B
B
48X  
A B C  
D
4X R  
C
M
0 . 0 0 6  
0 . 0 1 0 M A B M C M  
48  
1
C
F
44X G  
E
48X R1  
REF  
A
Dimension Minimum (inches)  
Nominal (inches)  
Maximum (inches)  
A
B
0.555  
0.525  
---  
0.56  
0.54  
0.572  
0.545  
0.094  
0.024  
0.067  
0.095  
C
D
E
---  
0.016  
0.055  
0.075  
0.02  
0.061  
0.085  
0.04 BSC  
0.04  
F
G
H
J
0.033  
0.555  
0.525  
0.047  
0.572  
0.545  
0.56  
K
0.54  
R
R1  
0.008 REF  
0.028 REF  
Figure 29: 48-Pin Terminal Ceramic Leadless Chip Carrier (Bottom View)  
73  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
48 Ceramic LCC - Matrix Format  
Metric (mm)  
English (mils)  
Nominal  
Dimension  
Description  
Min  
0.5  
Nominal  
Max  
Min.  
Max  
A
B
C
D
E
F
Glass (Thickness)  
0.55  
0.6  
19.69  
39.00  
27.76  
15.00  
0.50  
21.65  
44.00  
28.54  
17.00  
1.00  
23.62  
49.00  
29.33  
19.00  
2.00  
Cavity (Depth)  
0.9906  
0.705  
1.1176  
0.725  
1.2446  
0.745  
Die - Si (Thickness)  
Bottom Layer (Thickness)  
Die Attach - bondline (Thickness)  
Glass Attach - bondline (Thickness)  
Imager to Lid - outer surface (d)  
Imager to Lid - inner surface (d)  
Imager to seating plane - of pkg  
0.381  
0.4318  
0.0254  
0.0254  
0.9426  
0.3926  
1.1822  
2.1248  
1.5494  
0.4826  
0.0508  
0.0508  
1.1777  
0.5777  
1.2784  
2.378  
0.0127  
0.00635  
0.70115  
0.20115  
1.0987  
1.87795  
1.397  
0.25  
1.00  
2.00  
G
H
J
27.60  
7.92  
37.11  
15.46  
46.54  
83.65  
61.00  
46.37  
22.74  
50.33  
93.62  
67.00  
43.26  
73.93  
55.00  
A+B+F+DPkg (Th - total)  
B+D  
Base (Th)  
1.7018  
Reference Notes:  
1 mil = 25.4µm  
1 mm = 39.37 mil  
Table 53: 48 Ceramic LCC – Matrix Format  
A
F - Lid Seal thickness  
G
H
B
J
D
C - Die  
E - Die Attach thickness  
Figure 30: CLCC-IB package vertical Dimensioning  
74  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
QUALITY ASSURANCE AND RELIABILITY  
Quality Strategy: All image sensors will conform  
to the specifications stated in this document. This  
will be accomplished through a combination of  
statistical process control and inspection at key  
points of the production process. Typical  
specification limits are not guaranteed but  
Immovable particles and scratches that are within  
the imager pixel area and the corresponding cover  
glass region directly above the pixel sites are also  
not allowed. The cover glass is highly susceptible  
to particles and other contamination. Touching the  
cover glass must be avoided. See ISS Application  
Note MTD/PS-0237, Cover Glass Cleaning, for  
further information.  
provided as  
a
design target. For further  
information refer to ISS Application Note MTD/PS-  
0292, Quality and Reliability.  
ESD Precautions: Devices are shipped in static-  
safe containers and should only be handled at  
static-safe workstations. See ISS Application Note  
MTD/PS-0224, Electrostatic Discharge Control for  
handling recommendations.  
Replacement: All devices are warranted against  
failure in accordance with the terms of Terms of  
Sale. This does not include failure due to  
mechanical and electrical causes defined as the  
liability of the customer below.  
Reliability: Information concerning the quality  
assurance and reliability testing procedures and  
results are available from the Image Sensor  
Solutions and can be supplied upon request. For  
further information refer to ISS Application Note  
MTD/PS-0292, Quality and Reliability.  
Liability of the Supplier: A reject is defined as an  
image sensor that does not meet all of the  
specifications in this document upon receipt by the  
customer.  
Liability of the Customer: Damage from  
mechanical (scratches or breakage), electrostatic  
discharge (ESD) damage, or other electrical  
misuse of the device beyond the stated absolute  
maximum ratings, which occurred after receipt of  
the sensor by the customer, shall be the  
responsibility of the customer.  
Test Data Retention: Image sensors shall have  
an identifying number traceable to a test data file.  
Test data shall be kept for a period of 2 years after  
date of delivery.  
Mechanical: The device assembly drawing is  
provided as a reference. The device will conform  
to the published package tolerances.  
Cleanliness: Devices are shipped free of mobile  
contamination inside the package cavity.  
75  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  
IMAGE SENSOR SOLUTIONS  
IMAGE SENSOR SOLUTIONS  
ORDERING INFORMATION  
Available Part Configurations  
Type  
Description  
Glass Configuration  
Sealed  
KAC-1310  
KAC-1310  
RGB with microlens  
CMY with microlens  
Sealed  
Please contact Image Sensor Solutions for available part numbers.  
Address all inquiries and purchase orders to:  
Image Sensor Solutions  
Eastman Kodak Company  
Rochester, New York 14650-2010  
Phone: (585) 722-4385  
Fax: (585) 477-4947  
E-mail: imagers@kodak.com  
Kodak reserves the right to change any information contained herein without notice. All information  
furnished by Kodak is believed to be accurate.  
WARNING: LIFE SUPPORT APPLICATIONS POLICY  
Kodak image sensors are not authorized for and should not be used within Life Support Systems without  
the specific written consent of the Eastman Kodak Company. Product warranty is limited to replacement  
of defective components and does not cover injury or property or other consequential damages.  
Revision Changes  
No.  
Date  
Description of Revision  
4
11/6/02  
Updated to new format.  
Page 71: Revised ESD statements.  
Page 75: Updated Cover Glass Cleaning Application Note document reference number.  
76  
K A C - 1 3 1 0 R e v  
4
w w w . k o d a k . c o m / g o / i m a g e r s  
5 8 5 - 7 2 2 - 4 3 8 5  
E m a i l : i m a g e r s @ k o d a k . c o m  

相关型号:

KAC-15

High Speed Fuses
COOPER

KAC-150

High Speed Fuses
COOPER

KAC-17-1/2

Electric Fuse, 17.5A, 600VAC, 200000A (IR), Inline/holder
COOPER

KAC-17.5

High Speed Fuses
COOPER

KAC-175

High Speed Fuses
COOPER

KAC-2

High Speed Fuses
COOPER

KAC-20

High Speed Fuses
COOPER

KAC-200

High Speed Fuses
COOPER

KAC-225

High Speed Fuses
COOPER

KAC-25

High Speed Fuses
COOPER

KAC-250

High Speed Fuses
COOPER

KAC-3

High Speed Fuses
COOPER