KX224-1053 [ETC]

± 8g / 16g / 32g Tri-axis Digital Accelerometer Specifications;
KX224-1053
型号: KX224-1053
厂家: ETC    ETC
描述:

± 8g / 16g / 32g Tri-axis Digital Accelerometer Specifications

文件: 总84页 (文件大小:2164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Product Description  
The KX224-1053 is a tri-axis ±8g, ±16g or ±32g silicon micromachined  
accelerometer with integrated 2048-byte buffer, orientation,  
Directional-TapTM/Double-TapTM, activity detecting, and Free fall  
algorithms. The sense element is fabricated using Kionix’s proprietary  
plasma micromachining process technology. Acceleration sensing is  
based on the principle of a differential capacitance arising from  
acceleration-induced motion of the sense element, which further  
utilizes common mode cancellation to decrease errors from process  
variation, temperature, and environmental stress. The sense element  
is hermetically sealed at the wafer level by bonding a second silicon lid  
wafer to the device using a glass frit. A separate ASIC device packaged with the sense element provides  
signal conditioning, and intelligent user-programmable application algorithms. The accelerometer is  
delivered in a 3 x 3 x 0.9 mm LGA plastic package operating from a 1.71V 3.6V DC supply. Voltage  
regulators are used to maintain constant internal operating voltages over the range of input supply  
voltages. This results in stable operating characteristics over the range of input supply voltages. I2C or  
SPI digital protocol is used to communicate with the chip to configure and check for updates to the  
orientation, Directional-TapTM/Double-TapTM detection, Free fall detection, and activity monitoring  
algorithms.  
Features  
3 x 3 x 0.9 mm LGA  
User-selectable g Range up to ±32g  
User-selectable Output Data Rate up to 25600Hz  
User-selectable Low Power or High Resolution modes  
Digital High-Pass Filter Outputs  
Extra-large embedded 2048 byte FIFO/FILO buffer  
Low Power Consumption with FlexSet™ Performance Optimization  
Internal voltage regulator  
Enhanced integrated Free fall, Directional-TapTM/Double-TapTM, and Device-orientation Algorithms  
User-configurable wake-up function  
Digital I2C up to 3.4MHz and Digital SPI up to 10MHz  
Lead-free Solderability  
Excellent Temperature Performance  
High Shock Survivability  
Factory Programmed Offset and Sensitivity  
Self-test Function  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 1 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Table of Contents  
PRODUCT DESCRIPTION....................................................................................................................................................................1  
FEATURES .........................................................................................................................................................................................1  
TABLE OF CONTENTS.........................................................................................................................................................................2  
FUNCTIONAL DIAGRAM ....................................................................................................................................................................5  
PRODUCT SPECIFICATIONS................................................................................................................................................................6  
MECHANICAL ............................................................................................................................................................................................ 6  
ELECTRICAL............................................................................................................................................................................................... 7  
Start Up Time Profile ........................................................................................................................................................................ 8  
Current Profile .................................................................................................................................................................................. 8  
Power-On Procedure......................................................................................................................................................................... 9  
ENVIRONMENTAL..................................................................................................................................................................................... 10  
TERMINOLOGY ........................................................................................................................................................................................ 11  
g...................................................................................................................................................................................................... 11  
Sensitivity........................................................................................................................................................................................ 11  
Zero-g offset ................................................................................................................................................................................... 11  
Self-test........................................................................................................................................................................................... 11  
FUNCTIONALITY....................................................................................................................................................................................... 12  
Sense element................................................................................................................................................................................. 12  
ASIC interface ................................................................................................................................................................................. 12  
Factory calibration.......................................................................................................................................................................... 12  
APPLICATION SCHEMATIC AND PIN DESCRIPTION ........................................................................................................................................... 13  
Application Schematic .................................................................................................................................................................... 13  
Pin Description................................................................................................................................................................................ 13  
PACKAGE DIMENSIONS AND ORIENTATION ................................................................................................................................................... 14  
Dimensions ..................................................................................................................................................................................... 14  
Orientation ..................................................................................................................................................................................... 15  
DIGITAL INTERFACE.........................................................................................................................................................................17  
I2C SERIAL INTERFACE............................................................................................................................................................................... 17  
I2C Operation .................................................................................................................................................................................. 18  
Writing to an 8-bit Register............................................................................................................................................................ 19  
Reading from an 8-bit Register....................................................................................................................................................... 20  
Data Transfer Sequences................................................................................................................................................................ 21  
HS-mode ......................................................................................................................................................................................... 22  
I2C Timing Diagram......................................................................................................................................................................... 23  
SPI COMMUNICATIONS............................................................................................................................................................................. 24  
4-Wire SPI Interface........................................................................................................................................................................ 24  
4-Wire SPI Timing Diagram ............................................................................................................................................................ 25  
4-Wire Read and Write Registers ................................................................................................................................................... 26  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 2 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
3-Wire SPI Interface........................................................................................................................................................................ 27  
3-Wire SPI Timing Diagram ............................................................................................................................................................ 28  
3-Wire Read and Write Registers ................................................................................................................................................... 29  
EMBEDDED REGISTERS....................................................................................................................................................................30  
ACCELEROMETER OUTPUTS........................................................................................................................................................................ 31  
XHP_L.................................................................................................................................................................................................. 32  
XHP_H ................................................................................................................................................................................................. 32  
YHP_L .................................................................................................................................................................................................. 32  
YHP_H ................................................................................................................................................................................................. 32  
ZHP_L .................................................................................................................................................................................................. 33  
ZHP_H ................................................................................................................................................................................................. 33  
XOUT_L ............................................................................................................................................................................................... 33  
XOUT_H............................................................................................................................................................................................... 33  
YOUT_L ............................................................................................................................................................................................... 34  
YOUT_H............................................................................................................................................................................................... 34  
ZOUT_L................................................................................................................................................................................................ 34  
ZOUT_H............................................................................................................................................................................................... 34  
COTR ................................................................................................................................................................................................... 35  
WHO_AM_I......................................................................................................................................................................................... 35  
TSCP .................................................................................................................................................................................................... 36  
TSPP .................................................................................................................................................................................................... 36  
INS1..................................................................................................................................................................................................... 37  
INS2..................................................................................................................................................................................................... 37  
INS3..................................................................................................................................................................................................... 39  
STATUS_REG ....................................................................................................................................................................................... 39  
INT_REL............................................................................................................................................................................................... 40  
CNTL1.................................................................................................................................................................................................. 40  
CNTL2.................................................................................................................................................................................................. 42  
CNTL3.................................................................................................................................................................................................. 43  
ODCNTL............................................................................................................................................................................................... 45  
INC1 .................................................................................................................................................................................................... 47  
INC2 .................................................................................................................................................................................................... 48  
INC3 .................................................................................................................................................................................................... 48  
INC4 .................................................................................................................................................................................................... 49  
INC5 .................................................................................................................................................................................................... 49  
INC6 .................................................................................................................................................................................................... 50  
TILT_TIMER ......................................................................................................................................................................................... 51  
WUFC .................................................................................................................................................................................................. 51  
TDTRC.................................................................................................................................................................................................. 52  
TDTC.................................................................................................................................................................................................... 52  
TTH...................................................................................................................................................................................................... 53  
TTL....................................................................................................................................................................................................... 53  
FTD...................................................................................................................................................................................................... 54  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 3 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
STD...................................................................................................................................................................................................... 54  
TLT....................................................................................................................................................................................................... 55  
TWS..................................................................................................................................................................................................... 55  
FFTH .................................................................................................................................................................................................... 56  
FFC ...................................................................................................................................................................................................... 56  
FFCNTL ................................................................................................................................................................................................ 56  
ATH ..................................................................................................................................................................................................... 57  
TILT_ANGLE_LL ................................................................................................................................................................................... 58  
TILT_ANGLE_HL................................................................................................................................................................................... 58  
HYST_SET ............................................................................................................................................................................................ 59  
LP_CNTL .............................................................................................................................................................................................. 59  
BUF_CNTL1 ......................................................................................................................................................................................... 60  
BUF_CNTL2 ......................................................................................................................................................................................... 61  
BUF_STATUS_1 ................................................................................................................................................................................... 62  
BUF_STATUS_2 ................................................................................................................................................................................... 62  
BUF_CLEAR ......................................................................................................................................................................................... 63  
BUF_READ........................................................................................................................................................................................... 63  
SELF_TEST ........................................................................................................................................................................................... 63  
EMBEDDED APPLICATIONS .............................................................................................................................................................64  
ORIENTATION DETECTION FEATURE............................................................................................................................................................. 64  
Hysteresis........................................................................................................................................................................................ 64  
Device Orientation Angle (aka Tilt Angle)....................................................................................................................................... 65  
Tilt Timer......................................................................................................................................................................................... 66  
MOTION INTERRUPT FEATURE DESCRIPTION ................................................................................................................................................. 67  
DIRECTIONAL-TAP DETECTION FEATURE DESCRIPTION .................................................................................................................................... 69  
Performance Index.......................................................................................................................................................................... 69  
Single Tap Detection....................................................................................................................................................................... 70  
Double-Tap Detection..................................................................................................................................................................... 71  
FREE FALL DETECT.................................................................................................................................................................................... 72  
SAMPLE BUFFER FEATURE DESCRIPTION....................................................................................................................................................... 74  
FIFO Mode ...................................................................................................................................................................................... 74  
Stream Mode.................................................................................................................................................................................. 74  
Trigger Mode .................................................................................................................................................................................. 75  
FILO Mode ...................................................................................................................................................................................... 75  
Buffer Operation............................................................................................................................................................................. 75  
REVISION HISTORY..........................................................................................................................................................................81  
APPENDIX .......................................................................................................................................................................................82  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 4 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Functional Diagram  
X
Accel  
Y
Accel  
ADC  
Amplifier  
Z
Accel  
Digital  
Power  
IO_VDD  
VDD GND  
nCS SDO/ADDR SDI/SDA SCLK/SCL  
INT1 INT2  
TRIG  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 5 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Product Specifications  
Mechanical  
(specifications are for operation at 2.5V and T = 25C unless stated otherwise)  
Parameters  
Operating Temperature Range  
Units  
°C  
Min  
Typical  
-
Max  
+85  
-40  
Zero-g Offset  
mg  
±75  
0.5  
±175  
Zero-g Offset Variation from RT over Temp.  
mg/°C  
GSEL1=0, GSEL0=0 (±8g)  
3768  
1884  
942  
15  
4096  
2048  
1024  
16  
4424  
2212  
1106  
17  
Sensitivity1  
GSEL1=0, GSEL0=1 (±16g)  
GSEL1=1, GSEL0=0 (±32g)  
GSEL1=0, GSEL0=0 (±8g)  
GSEL1=0, GSEL0=1 (±16g)  
GSEL1=1, GSEL0=0 (±32g)  
counts/g  
counts/g  
Sensitivity  
7
8
9
(Buffer 8-bit mode)1,2  
3
4
5
Sensitivity Variation from RT over Temp.  
Positive Self Test Output change on Activation4  
%/°C  
g
0.01  
0.5  
8000 (xy)  
5100 (z)  
Signal Bandwidth (-3dB)  
Hz  
Non-Linearity  
% of FS  
%
0.6  
2
Cross Axis Sensitivity  
RMS  
mg  
3.3  
630  
Noise3,5  
Density  
µg/Hz  
Table 1: Mechanical Specifications  
Notes:  
1. Resolution and acceleration ranges are user selectable via I2C or SPI  
2. Sensitivity is proportional to BRES in BUF_CNTL2  
3. Noise varies with Output Data Rate (ODR), and the Average Filter Control settings and can  
be tested using Kionix FlexSetTM Performance Optimization Tool found at  
http://www.kionix.com/flexset  
4. Requires changing of STPOL bit in INC1 register to 1 prior to performing self-test  
5. Measured with ODR=50Hz, IIR_BYPASS=0, LPRO=1 (filter corner frequency set to ODR/2)  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 6 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Electrical  
(specifications are for operation at 2.5V and T = 25C unless stated otherwise)  
Parameters  
Units  
Min  
1.71  
1.7  
Typical  
Max  
3.6  
Supply Voltage (VDD) Operating  
I/O Pads Supply Voltage (IO_VDD)  
V
V
2.5  
3.6  
High Resolution Mode (RES = 1)  
145  
Current Consumption Low Power Mode1 (RES = 0)  
10  
A  
Standby  
0.9  
Output Low Voltage (IO_VDD < 2V)2  
Output Low Voltage (IO_VDD 2V)2  
Output High Voltage  
V
V
-
-
-
-
-
-
0.2 * IO_VDD  
-
0.4  
V
0.8 * IO_VDD  
-
Input Low Voltage  
V
-
0.2 * IO_VDD  
Input High Voltage  
Start Up Time3  
Power Up Time4  
I2C Communication Rate  
I2C Slave Address (7-bit)  
SPI Communication Rate  
Output Data Rate (ODR)5  
V
0.8 * IO_VDD  
2
-
ms  
ms  
MHz  
1300  
50  
20  
3.4  
0x1E / 0x1F  
MHz  
Hz  
10  
0.781  
50  
25600  
ODR/9 or  
ODR/2  
Bandwidth (-3dB)6  
Hz  
Table 2: Electrical Specifications  
Notes:  
1. Current varies with Output Data Rate (ODR) as shown in Figure 2, types and number of  
enabled digital engines, and the Average Filter Control settings that can be tested using  
Kionix FlexSetTM Performance Optimization Tool found at http://www.kionix.com/flexset.  
2. For I2C communication, this assumes a minimum 1.5kpull-up resistor on SCL and  
SDA pins.  
3. Start up time is from PC1 set to valid outputs. Time varies with Output Data Rate (ODR)  
and power mode setting. See Figure 1 for details.  
4. Power up time is from VDD valid to device boot completion.  
5. User selectable through I2C or SPI.  
6. User selectable and dependent on ODR. See ODCNTL register description for details.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 7 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Start Up Time Profile  
Figure 1: Start up Time as a function of the Output Data Rate (ODR) and Power Mode Settings  
Current Profile  
Representative Current Profile (µA)  
Representative Current (µA)  
16x Averaging Filter (default)  
ODR (Hz) High Res  
Low Power  
0.9  
Standby  
0.781  
1.563  
3.125  
6.25  
12.5  
25  
0.9  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
1.8  
2.0  
2.2  
3.0  
5
7
1000.0  
100.0  
10.0  
145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145  
145 145 145 145 145 145 145  
50  
13  
43  
100  
21  
21  
13  
200  
43  
400  
800  
145  
145  
145  
145  
145  
145  
145  
7
RES = 0 (Low Power Mode)  
RES = 1 when ODR ≥ 400Hz  
5
1600  
3200  
6400  
12800  
25600  
3.0  
RES = 1 (High Resolution Mode)  
2.2  
2.0  
1.8  
1.0  
Accelerometer ODR (Hz)  
Figure 2: Current as a function of the Output Data Rate (ODR) and Power Mode Settings  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 8 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Power-On Procedure  
Proper functioning of power-on reset (POR) is dependent on the specific VDD, VDDLOW, TVDD (rise time),  
and TVDD_OFF profile of individual applications. It is recommended to minimize VDDLOW, and TVDD, and  
maximize TVDD_OFF. It is also advised that the VDD ramp up time TVDD be monotonic. Note that the outputs  
will not be stable until VDD has reached its final value.  
To assure proper POR, the application should be evaluated over the customer specified range of  
VDD, VDDLOW, TVDD, TVDD_OFF and temperature as POR performance can vary depending on these  
parameters.  
Please refer to Technical Note TN004 Power-On Procedure for more information.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 9 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Environmental  
Parameters  
Units  
V
Min  
-0.5  
-40  
Typical  
Max  
3.60  
Supply Voltage (VDD) Absolute Limits  
Operating Temperature Range  
Storage Temperature Range  
-
-
-
°C  
85  
°C  
-55  
150  
5000 for 0.5ms  
10000 for 0.2ms  
2000  
Mech. Shock (powered and unpowered)  
g
-
-
-
ESD  
HBM  
V
-
Table 3: Environmental Specifications  
Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling can  
cause permanent damage to the device.  
These products conform to RoHS Directive 2011/65/EU of the European Parliament and of  
the Council of the European Union that was issued June 8, 2011. Specifically, these products  
do not contain any non-exempted amounts of lead, mercury, cadmium, hexavalent chromium,  
polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE) above the  
maximum concentration values (MCV) by weight in any of its homogenous materials.  
Homogenous materials are “of uniform composition throughout”. The MCV for lead, mercury, hexavalent  
chromium, PBB, and PBDE is 0.10%. The MCV for cadmium is 0.010%.  
Applicable Exemption: 7C-I - Electrical and electronic components containing lead in a glass or ceramic  
other than dielectric ceramic in capacitors (piezoelectronic devices) or in a glass or ceramic matrix  
compound.  
These products are also in conformance with REACH Regulation No 1907/2006 of the  
European Parliament and of the Council that was issued Dec. 30, 2011. They do not contain  
any Substances of Very High Concern (SVHC-174) as identified by the European Chemicals  
Agency as of 12 July 2017.  
This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this product  
HF  
contain a maximum total halogen content of 1500 ppm with less than 900-ppm bromine and  
less than 900-ppm chlorine.  
Soldering  
Soldering recommendations are available upon request or from www.kionix.com.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 10 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Terminology  
g
A unit of acceleration equal to the acceleration of gravity at the earth's surface. One thousandth of a g  
(0.0098 m/s2) is referred to as 1 milli-g (1 mg).  
m
1g 9.8  
2
s
Sensitivity  
The sensitivity of an accelerometer is the change in output per unit of input acceleration at nominal VDD  
and temperature. The term is essentially the gain of the sensor expressed in counts per g (counts/g) or  
LSB’s per g (LSB/g). Occasionally, sensitivity is expressed as a resolution, i.e. milli-g per LSB (mg/LSB)  
or milli-g per count (mg/count). Sensitivity for a given axis is determined by measurements of the formula:  
Output@1g Output@1g  
Sensitivity   
2g  
The sensitivity tolerance describes the range of sensitivities that can be expected from a large population  
of sensors at room temperature and over life. When the temperature deviates from room temperature  
(25°C), the sensitivity will vary by the amount shown in Table 1.  
Zero-g offset  
Zero-g offset or 0-g offset describes the actual output of the accelerometer when no acceleration is  
applied. Ideally, the output would always be in the middle of the dynamic range of the sensor (content of  
the XOUT, YOUT, ZOUT registers = 0x00, expressed as a 2’s complement number). However, because  
of mismatches in the sensor, calibration errors, and mechanical stress, the output can deviate from 0x00.  
This deviation from the ideal value is called 0-g offset. The zero-g offset tolerance describes the range  
of 0-g offsets of a population of sensors over the operating temperature range.  
Self-test  
Self-test allows a functional test of the sensor without applying a physical acceleration to it. When  
activated, an electrostatic force is applied to the sensor, simulating an input acceleration. The sensor  
outputs respond accordingly. If the output signals change within the amplitude specified in Table 1 then  
the sensor is working properly and the parameters of the interface chip are within the defined  
specifications.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 11 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Functionality  
Sense element  
The sense element is fabricated using Kionix’s proprietary plasma micromachining process technology.  
This process technology allows Kionix to create mechanical silicon structures which are essentially mass-  
spring systems that move in the direction of the applied acceleration. Acceleration sensing is based on  
the principle of a differential capacitance arising from the acceleration-induced motion. Capacitive plates  
on the moving mass move relative to fixed capacitive plates anchored to the substrate. The sense  
element is hermetically sealed at the wafer level by bonding a second silicon lid wafer to the device using  
a glass frit.  
ASIC interface  
A separate ASIC device packaged with the sense element provides all the signal conditioning and  
communication with the sensor. The complete measurement chain is composed by a low-noise  
capacitance to voltage amplifier which converts the differential capacitance of the MEMS sensor into an  
analog voltage that is sent through an analog-to-digital converter. The acceleration data may be  
accessed through the I2C digital communications provided by the ASIC. In addition, the ASIC contains  
all the logic to allow the user to choose data rates, g-ranges, filter settings, and interrupt logic. Plus, there  
are two programmable state machines which allow the user to create unique embedded functions based  
on changes in acceleration.  
Factory calibration  
Kionix trims the offset and sensitivity of each accelerometer by adjusting gain (sensitivity) and 0-g offset  
trim codes stored in non-volatile memory (OTP). Additionally, all functional register default values are  
also programmed into the nonvolatile memory. Every time the device is turned on or a software reset  
command is issued, the trimming parameters and default register values are downloaded into the volatile  
registers to be used during active operation. This allows the device to function without further calibration.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 12 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Application Schematic and Pin Description  
Application Schematic  
Pin Description  
Pin  
Name  
Description  
The power supply input for the digital communication bus. Optionally decouple this pin to ground with a 0.1uF ceramic  
capacitor.  
1
IO_VDD  
2
3
4
5
6
NC  
NC  
Not Internally Connected - Can be connected to VDD, IO_VDD, GND or leave floating.  
Not Internally Connected - Can be connected to VDD, IO_VDD, GND or leave floating.  
SCLK/SCL  
GND  
SPI and I2C Serial Clock  
Ground  
SDI/SDA  
SPI Data input / I2C Serial Data  
Serial Data Out pin during 4 wire SPI communication and part of the device address during I2C communication. Do not leave  
floating.  
7
8
SDO/ADDR  
nCS  
Chip Select (active LOW) for SPI communication. Connect to IO_VDD for I2C communication. Do not leave floating.  
Physical Interrupt 2 (Push-Pull). The pin is in High-Z state during POR and driven LOW following POR. Leave floating if not  
used.  
9
INT2  
10  
11  
NC  
Not Internally Connected - Can be connected to VDD, IO_VDD, GND or leave floating.  
Physical Interrupt 1 (Push-Pull). The pin is in High-Z state during POR and driven LOW following POR. Leave floating if not  
used.  
INT1  
12  
13  
14  
15  
16  
GND  
TRIG  
VDD  
NC  
Ground  
Trigger pin for FIFO buffer control. Connect to GND when not using external trigger option  
The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.  
Not Internally Connected - Can be connected to VDD, IO_VDD, GND or leave floating.  
Not Internally Connected - Can be connected to VDD, IO_VDD, GND or leave floating.  
NC  
Table 4: Pin Description  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 13 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Package Dimensions and Orientation  
Dimensions  
3 x 3 x 0.9 mm LGA  
All dimensions and tolerances conform to ASME Y14.5M-1994  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 14 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Orientation  
When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=0, GSEL0=0 (±8g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution  
(bits)  
X (counts)  
16  
8
16  
8
16  
0
8
16  
8
16  
8
16  
8
0
-4096  
0
0
-16  
0
-4096  
-16  
0
0
+16  
0
+4096  
+16  
0
0
0
0
0
0
0
0
0
Y (counts)  
Z (counts)  
0
0
+4096  
0
0
0
0
0
+4096  
+16  
-4096  
-16  
0
-
-
0
+
0
0
X-Polarity  
Y-Polarity  
Z-Polarity  
0
0
+
0
0
0
0
+
0
-
0
(1g)  
Earth’s Surface  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 15 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=0, GSEL0=1 (±16g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution  
(bits)  
16  
8
16  
8
16  
0
8
16  
8
16  
8
16  
8
X (counts)  
Y (counts)  
Z (counts)  
0
-2048  
0
0
-8  
0
-2048  
-8  
0
0
+8  
0
+2048  
+8  
0
0
0
0
0
0
0
0
0
0
0
+2048  
0
0
0
0
0
+2048  
+8  
-2048  
-8  
0
-
-
0
+
0
0
X-Polarity  
Y-Polarity  
Z-Polarity  
0
0
+
0
0
0
0
+
0
-
0
(1g)  
Earth’s Surface  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=1, GSEL0=0 (±32g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution  
(bits)  
X (counts)  
16  
8
16  
8
16  
0
8
16  
8
16  
8
16  
8
0
-1024  
0
0
-4  
0
-1024  
-4  
0
0
+4  
0
+1024  
+4  
0
0
0
0
0
0
0
0
0
Y (counts)  
Z (counts)  
0
0
+1024  
0
0
0
0
0
+1024  
+4  
-1024  
-4  
0
-
-
0
+
0
0
X-Polarity  
Y-Polarity  
Z-Polarity  
0
0
+
0
0
0
0
+
0
-
0
(1g)  
Earth’s Surface  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 16 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Digital Interface  
The Kionix KX224 digital accelerometer can communicate via the I2C and SPI digital serial interface protocols.  
This allows for easy system integration by eliminating analog-to-digital converter requirements and by providing  
direct communication with system micro-controllers.  
The serial interface terms and descriptions as indicated in Table 5 below will be observed throughout this  
document.  
Term  
Transmitter  
Receiver  
Master  
Description  
The device that transmits data to the bus.  
The device that receives data from the bus.  
The device that initiates a transfer, generates clock signals, and terminates a transfer.  
The device addressed by the Master.  
Slave  
Table 5: Serial Interface Terminologies  
I2C Serial Interface  
As previously mentioned, the KX224 accelerometer can communicate on an I2C bus. I2C is primarily used for  
synchronous serial communication between a Master device and one or more Slave devices. The Master,  
typically a micro controller, provides the serial clock signal and addresses Slave devices on the bus. The KX224  
always operates as a Slave device during standard Master-Slave I2C operation.  
I2C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL is a  
serial clock that is provided by the Master, but can be held LOW by any Slave device, putting the Master into a  
wait condition. SDA is a bi-directional line used to transmit and receive data to and from the interface. Data is  
transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of bytes transmitted per  
transfer is unlimited. The I2C bus is considered free when both lines are HIGH.  
The I2C interface is compliant with high-speed mode, fast mode, and standard mode I2C protocols.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 17 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
I2C Operation  
Transactions on the I2C bus begin after the Master transmits a start condition (S), which is defined as a HIGH-  
to-LOW transition on the data line while the SCL line is held HIGH. The bus is considered busy after this  
condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in the  
seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be receiving  
data ‘1’ from the Slave or transmitting data ‘0’ to the Slave. When a Slave Address is sent, each device on the  
bus compares the seven MSBs with its internally stored address. If they match, the device considers itself  
addressed by the Master. The KX224 Slave Address is comprised of a user programmable part, a factory  
programmable part, and a fixed part, which allows for connection of multiple accelerometers to the same I2C  
bus. The Slave Address associated with the KX224 is 00111YX, where the user programmable bit X, is  
determined by the assignment of ADDR pin to GND or IO_VDD. Also, the factory programmable bit Y is set at  
the factory. For KX224-1053, the factory programmable bit Y is fixed to 1 (contact your Kionix sales  
representative for list of available devices). Table 6 lists possible I2C addresses for KX224-1053. It is possible  
to have up to four accelerometers on a shared I2C bus as shown in Figure 3 (i.e. two KX224-1053 accelerometers  
and two additional accelerometers with the factory programmable bit Y set to 0).  
Y
X
Address  
Pad  
GND  
GND  
IO_VDD  
IO_VDD  
7-bit  
Address  
0x1E  
0x1E  
0x1F  
Description  
Address <7> <6> <5> <4> <3> <2>  
<1> <0>  
I2C Wr  
I2C Rd  
I2C Wr  
I2C Rd  
0x3C  
0x3D  
0x3E  
0x3F  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0x1F  
Table 6: I2C Slave Addresses for KX224-1053  
It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter must  
release the SDA line during this ACK pulse. The receiver then pulls the data line LOW so that it remains stable  
LOW during the HIGH period of the ACK clock pulse. A receiver that has been addressed, whether it is Master  
or Slave, is obliged to generate an ACK after each byte of data has been received. To conclude a transaction,  
the Master must transmit a stop condition (P) by transitioning the SDA line from LOW to HIGH while SCL is  
HIGH. The I2C bus is now free. Note that if the accelerometer is accessed through I2C protocol before the startup  
is finished a NACK signal is sent.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 18 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
I2C Device  
Part Number  
KX224-1053  
KX224-1053  
*KXMMM  
ADDR Pin  
GND  
Slave Address  
0x1E  
Bit Y (Bit 1 in 7-bit address)  
1
2
3
4
Factory Set to 1  
Factory Set to 1  
Factory Set to 0  
Factory Set to 0  
IO_VDD  
GND  
0x1F  
0x1C  
*KXMMM  
IO_VDD  
0x1D  
* KXMMM contact Kionix sales representative for list of compatible devices  
Figure 3: Multiple KX224 Accelerometers on a Shared I2C Bus  
Writing to an 8-bit Register  
Upon power up, the Master must write to the KX224’s control registers to set its operational mode. Therefore,  
when writing to a control register on the I2C bus, as shown Sequence 1, the following protocol must be observed:  
After a start condition, SAD+W transmission, and the KX224 ACK has been returned, an 8-bit Register Address  
(RA) command is transmitted by the Master. This command is telling the KX224 to which 8-bit register the Master  
will be writing the data. Since this is I2C mode, the MSB of the RA command should always be zero (0). The  
KX224 acknowledges the RA and the Master transmits the data to be stored in the 8-bit register. The KX224  
acknowledges that it has received the data and the Master transmits a stop condition (P) to end the data transfer.  
The data sent to the KX224 is now stored in the appropriate register. The KX224 automatically increments the  
received RA commands and, therefore, multiple bytes of data can be written to sequential registers after each  
Slave ACK as shown in Sequence 2.  
**Note** If a STOP condition is sent on the least significant bit of write data or the following master acknowledge  
cycle, the last write operation is not guaranteed and it may alter the content of the affected registers.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 19 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Reading from an 8-bit Register  
When reading data from a KX224 8-bit register on the I2C bus, as shown in Sequence 3, the following protocol  
must be observed: The Master first transmits a start condition (S) and the appropriate Slave Address (SAD) with  
the LSB set at ‘0’ to write. The KX224 acknowledges and the Master transmits the 8-bit RA of the register it  
wants to read. The KX224 again acknowledges, and the Master transmits a repeated start condition (Sr). After  
the repeated start condition, the Master addresses the KX224 with a ‘1’ in the LSB (SAD+R) to read from the  
previously selected register. The Slave then acknowledges and transmits the data from the requested register.  
The Master does not acknowledge (NACK) it received the transmitted data, but transmits a stop condition to end  
the data transfer. Note that the KX224 automatically increments through its sequential registers, allowing data  
to be read from multiple registers following a single SAD+R command as shown below in Sequence 4. Reading  
data from a buffer read register is a special case because if register address (RA) is set to buffer read register  
(BUF_READ) in Sequence 4, the register auto-increment feature is automatically disabled. Instead, the Read  
Pointer will increment to the next data in the buffer, thus allowing reading multiple bytes of data from the buffer  
using a single SAD+R command.  
**Note** Accelerometer’s output data should be read in a single transaction using the auto-increment feature to  
prevent output data from being updated prior to intended completion of the read transaction.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 20 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Data Transfer Sequences  
The following information illustrates the variety of data transfers that can occur on the I2C bus and how the  
Master and Slave interact during these transfers. Table 7 defines the I2C terms used during the data transfers.  
Term  
S
Definition  
Start Condition  
Sr  
SAD  
W
Repeated Start Condition  
Slave Address  
Write Bit  
R
Read Bit  
ACK  
NACK  
RA  
Data  
P
Acknowledge  
Not Acknowledge  
Register Address  
Transmitted/Received Data  
Stop Condition  
Table 7: I2C Terms  
Sequence 1: The Master is writing one byte to the Slave  
Master  
Slave  
S
SAD + W  
RA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Sequence 2: The Master is writing multiple bytes to the Slave  
Master  
Slave  
S
SAD + W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
Sequence 3: The Master is receiving one byte of data from the Slave  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
NACK  
P
ACK  
ACK  
ACK DATA  
Sequence 4: The Master is receiving multiple bytes of data from the Slave  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
ACK  
NACK  
P
ACK  
ACK  
ACK DATA  
DATA  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 21 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
HS-mode  
To enter the 3.4MHz high speed mode of communication, the device must receive the following sequence of  
conditions from the master: a Start condition followed by a Master code (00001XXX) and a Master Non-  
acknowledge. Once recognized, the device switches to HS-mode communication. Read/write data transfers  
then proceed as described in the sequences above. Devices return to the FS-mode after a STOP occurrence  
on the bus.  
Sequence 5: HS-mode data transfer of the Master writing multiple bytes to the Slave  
Speed  
Master  
Slave  
FS-mode  
M-code NACK Sr SAD + W  
ACK  
n bytes + ack.  
Sequence 6: HS-mode data transfer of the Master receiving multiple bytes of data from the Slave  
HS-mode  
RA  
FS-mode  
S
DATA  
P
ACK  
ACK  
Speed  
Master  
Slave  
FS-mode  
M-code NACK Sr SAD + W  
HS-mode  
S
RA  
ACK  
ACK  
P
Speed  
Master Sr SAD + R  
Slave  
HS-mode  
FS-mode  
NACK  
ACK DATA ACK DATA  
(n-1) bytes + ack.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 22 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
I2C Timing Diagram  
Number  
Description  
MIN  
MAX Units  
50  
100  
100  
100  
50  
t0  
SDA LOW to SCL LOW transition (Start event)  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
t1  
SDA LOW to first SCL rising edge  
-
t2  
SCL pulse width: HIGH  
-
t3  
SCL pulse width: LOW  
-
t4  
SCL HIGH before SDA falling edge (Start Repeated)  
SCL pulse width: HIGH during a S/Sr/P event  
SCL HIGH before SDA rising edge (Stop)  
SDA pulse width: HIGH  
-
100  
50  
t5  
-
t6  
-
25  
t7  
-
50  
t8  
SDA valid to SCL rising edge  
-
-
50  
t9  
SCL rising edge to SDA invalid  
100  
t10  
t11  
Note  
SCL falling edge to SDA valid (when slave is transmitting)  
SCL falling edge to SDA invalid (when slave is transmitting)  
Recommended I2C CLK  
-
0
-
-
2.5  
Table 8: I2C Timing (Fast Mode)  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 23 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
SPI Communications  
4-Wire SPI Interface  
The KX224 also utilizes an integrated 4-Wire Serial Peripheral Interface (SPI) for digital communication. The  
SPI interface is primarily used for synchronous serial communication between one Master device and one or  
more Slave devices. The Master, typically a micro controller, provides the SPI clock signal (SCLK) and  
determines the state of Chip Select (nCS). The KX224 always operates as a Slave device during standard  
Master-Slave SPI operation.  
4-wire SPI is a synchronous serial interface that uses two control and two data lines. With respect to the Master,  
the Serial Clock output (SCLK), the Data Output (SDI or MOSI) and the Data Input (SDO or MISO) are shared  
among the Slave devices. The Master generates an independent Chip Select (nCS) for each Slave device that  
goes LOW at the start of transmission and goes back HIGH at the end. The Slave Data Output (SDO) line,  
remains in a high-impedance (hi-z) state when the device is not selected, so it does not interfere with any active  
devices. This allows multiple Slave devices to share a master SPI port as shown in Figure 4 below.  
Figure 4: 4-wire SPI Connections  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 24 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
4-Wire SPI Timing Diagram  
t3  
t1  
t2  
t4  
nCS  
CLK  
SDI  
bit 7  
bit 6  
bit 1  
bit 0  
bit 7  
bit 7  
bit 6  
bit 6  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
t5  
t7  
t6  
Number  
Description  
CLK pulse width: HIGH  
CLK pulse width: LOW  
nCS LOW to first CLK rising edge  
nCS LOW after the final CLK rising edge  
SDI valid to CLK rising edge  
CLK rising edge to SDI invalid  
CLK falling edge to SDO valid  
MIN MAX  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
40  
40  
20  
30  
10  
10  
35  
Table 9: 4-Wire SPI Timing  
Notes  
1. t7 is only present during reads.  
2. Timings are for VDD of 1.8V to 3.6V with 1kpull-up resistor and maximum 20pF load  
capacitor on SDO.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 25 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
4-Wire Read and Write Registers  
The registers embedded in the KX224 accelerometer have 8-bit addresses. Upon power up, the Master must  
write to the accelerometer’s control registers to set its operational mode. On the falling edge of nCS, a 2-byte  
command is written to the appropriate control register. The first byte initiates the write to the appropriate register,  
and is followed by the user-defined, data byte. The MSB (Most Significant Bit) of the register address byte will  
indicate “0” when writing to the register and “1” when reading from the register. This operation occurs over 16  
clock cycles. All commands are sent MSB first. The host must return nCS HIGH for at least one clock cycle  
before the next data request. However, when data is being read from a buffer read register (BUF_READ), the  
nCS signal can remain LOW until the buffer is read. Figure 5 below shows the timing diagram for carrying out  
an 8-bit register write operation.  
Write Address  
First 8 bits  
Second 8 bits  
Last 8 bits  
CLK  
SDI  
SDO  
CS  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5  
D2 D1 D0  
A7 A6 A5 A4 A3 A2 A1 A0  
HI-Z  
HI-Z  
Figure 5: Timing Diagram for 8-Bit Register Write Operation  
In order to read an 8-bit register, an 8-bit register address must be written to the accelerometer to initiate the  
read. The MSB of this register address byte will indicate “0” when writing to the register and “1” when reading  
from the register. Upon receiving the address, the accelerometer returns the 8-bit data stored in the addressed  
register. This operation also occurs over 16 clock cycles. All returned data is sent MSB first, and the host must  
return nCS HIGH for at least one clock cycle before the next data request. Figure 6 shows the timing diagram  
for an 8-bit register read operation.  
Read Address  
First 8 bits  
Second 8 bits  
Last 8 bits  
CLK  
SDI  
SDO  
CS  
A7 A6 A5 A4 A3 A2 A1 A0  
HI-Z  
HI-Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5  
D3 D2 D1 D0  
Figure 6: Timing Diagram for 8-Bit Register Read Operation  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 26 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
3-Wire SPI Interface  
The KX224 also utilizes an integrated 3-Wire Serial Peripheral Interface (SPI) for digital communication. 3-wire  
SPI is a synchronous serial interface that uses two control lines and one data line. With respect to the Master,  
the Serial Clock output (SCLK), the Data Output/Input (SDI) are shared among the Slave devices. The Master  
generates an independent Chip Select (nCS) for each Slave device that goes LOW at the start of transmission  
and goes back HIGH at the end. This allows multiple Slave devices to share a master SPI port as shown in  
Figure 7 below.  
Figure 7: 3-wire SPI Connections  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 27 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
3-Wire SPI Timing Diagram  
t3  
t1  
t2  
t4  
nCS  
CLK  
SDI  
bit 7  
bit 6  
bit 1  
bit 0  
bit 7  
bit 1  
bit 0  
t5  
t7  
t8  
t6  
Number  
Description  
MIN  
MAX Units  
40  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CLK pulse width: HIGH  
CLK pulse width: LOW  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
20  
20  
10  
10  
-
-
nCS LOW to first CLK rising edge  
nCS LOW after the final CLK falling edge  
SDI valid to CLK rising edge  
-
-
-
CLK rising edge to SDI input invalid  
-
CLK extra clock cycle rising edge to SDI output becomes valid  
CLK falling edge to SDI output becomes valid  
Table 10: 3-Wire SPI Timing  
-
-
35  
Notes  
1. t7 and t8 are only present during reads.  
2. Timings are for VDD of 1.8V to 3.6V with 1kpull-up resistor and maximum  
20pF load capacitor on SDI.  
3. The SDO/ADDR pin is configured in a high-impedance input-state, and must be  
externally tied to GND or IO_VDD  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 28 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
3-Wire Read and Write Registers  
The registers embedded in the KX224 accelerometer have 8-bit addresses. Upon power up, the Master must  
write to the accelerometer’s control registers to set its operational mode. On the falling edge of nCS, a 2-byte  
command is written to the appropriate control register. The first byte initiates the write to the appropriate register,  
and is followed by the user-defined, data byte. The MSB (Most Significant Bit) of the register address byte will  
indicate “0” when writing to the register and “1” when reading from the register. A read operation occurs over 17  
clock cycles and a write operation occurs over 16 clock cycles. All commands are sent MSB first. The host must  
return nCS HIGH for at least one clock cycle before the next data request. However, when data is being read  
from a buffer read register (BUF_READ), the nCS signal can remain LOW until the buffer is read. Figure 8 below  
shows the timing diagram for carrying out an 8-bit register write operation.  
SCLK  
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
(MSB)  
(MSB)  
CS  
Figure 8: Timing Diagram for 8-Bit Register Write Operation  
In order to read an 8-bit register, an 8-bit register address must be written to the accelerometer to initiate the  
read. The MSB of this register address byte will indicate “0” when writing to the register and “1” when reading  
from the register. Upon receiving the address, the accelerometer returns the 8-bit data stored in the addressed  
register. For 3-wire read operations, one extra clock cycle between the address byte and the data output byte is  
required. Therefore, this operation occurs over 17 clock cycles. All returned data is sent MSB first, and the host  
must return nCS HIGH for at least one clock cycle before the next data request. Figure 9 shows the timing  
diagram for an 8-bit register read operation.  
SCLK  
HI-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
A7 A6 A5 A4 A3 A2 A1 A0  
(MSB)  
SDI  
(MSB)  
CS  
Figure 9: Timing Diagram for 8-Bit Register Read Operation  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 29 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Embedded Registers  
The KX224 has 57 embedded 8-bit registers that are accessible by the user. This section contains the addresses  
for all embedded registers and describes bit functions of each register. Table 11 below provides a listing of the  
accessible 8-bit registers and their addresses.  
Address Register Name  
R/W  
R
R
R
R
R
R
R
R
R
R
R
R
Address  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x60  
Register Name  
INC6*  
TILT_TIMER*  
WUFC*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
XHPL  
XHPH  
YHPL  
YHPH  
ZHPL  
ZHPH  
XOUTL  
XOUTH  
YOUTL  
YOUTH  
ZOUTL  
ZOUTH  
COTR  
TDTRC*  
TDTC*  
TTH*  
TTL*  
FTD*  
STD*  
TLT*  
TWS*  
FFTH*  
FFC*  
FFCNTL*  
Kionix Reserved  
ATH*  
R
Kionix Reserved  
Kionix Reserved  
WHO_AM_I  
TSCP  
R
R
R
R
R
R
R
R/W  
Kionix Reserved  
TILT_ANGLE_LL*  
TILT_ANGLE_HL*  
HYST_SET*  
LP_CNTL*  
Kionix Reserved  
Kionix Reserved  
Kionix Reserved  
Kionix Reserved  
BUF_CNTL1*  
BUF_CNTL2*  
BUF_STATUS_1  
BUF_STATUS_2  
BUF_CLEAR  
BUF_READ  
SELF_TEST  
TSPP  
INS1  
INS2  
INS3  
R/W  
R/W  
R/W  
R/W  
STAT  
Kionix Reserved  
INT_REL  
CNTL1*  
CNTL2*  
CNTL3*  
ODCNTL*  
INC1*  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
W
INC2*  
INC3*  
INC4*  
INC5*  
R
W
* Note:  
When changing the contents of these registers, the PC1 bit in CNTL1 register must first be set to “0”.  
Reserved registers should not be written.  
Table 11: Register Map  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 30 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Register Descriptions  
Accelerometer Outputs  
These registers contain up to 16-bits of valid acceleration data for each axis. However, the user may  
choose to read only the 8 MSB thus reading an effective 8-bit resolution. When BRES = 0 in BUF_CNTL2  
register, the 8 MSB is the only data recorded in the buffer. The data is updated every user-defined ODR  
period, is protected from overwrite during each read, and can be converted from digital counts to  
acceleration (g) per Table 12 below. The register acceleration output binary data is represented in 2’s  
complement format. For example, if N = 16 bits, then the Counts range is from -32768 to 32767, and if  
N = 8 bits, then the Counts range is from -128 to 127.  
16-bit  
Register Data  
(2’s complement)  
Equivalent  
Counts in  
decimal  
Range = ±8g  
+7.99976g  
+7.99951g  
Range = ±16g  
+15.99951g  
+15.99902g  
Range = ±32g  
+31.99902g  
+31.99805g  
0111 1111 1111 1111  
0111 1111 1111 1110  
32767  
32766  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1
+0.00024g  
0.00000g  
-0.00024g  
+0.00049g  
0.00000g  
-0.00049g  
+0.00098g  
0.00000g  
-0.00098g  
0
-1  
1000 0000 0000 0001  
1000 0000 0000 0000  
-32767  
-32768  
-7.99976g  
-8.00000g  
-15.99951g  
-16.00000g  
-31.99902g  
-32.00000g  
8-bit  
Register Data  
(2’s complement)  
Equivalent  
Counts in  
decimal  
Range = ±8g  
+7.93750g  
+7.87500g  
Range = ±16g  
+15.87500g  
+15.75000g  
Range = ±32g  
+31.75000g  
+31.50000g  
127  
126  
0111 1111  
0111 1110  
0000 0001  
1
+0.06250g  
0.0000g  
+0.12500g  
0.0000g  
+0.25000g  
0.0000g  
0
0000 0000  
1111 1111  
-1  
-0.06250g  
-0.12500g  
-0.25000g  
1000 0001  
-127  
-128  
-7.93750g  
-8.00000g  
-15.87500g  
-16.00000g  
-31.75000g  
-32.00000g  
1000 0000  
Table 12: Acceleration (g) Calculation  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 31 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
XHP_L  
X-axis high-pass filter accelerometer output least significant byte. Data is updated at the ODR frequency  
determined by OWUF in CNTL3 register. Data is only available when wake-up engine is enabled (WUFE  
= 1 in CNTL1 register)  
R
R
R
R
R
R
R
R
XHPD7  
Bit7  
XHPD6  
Bit6  
XHPD5  
Bit5  
XHPD4  
Bit4  
XHPD3  
Bit3  
XHPD2  
Bit2  
XHPD1  
Bit1  
XHPD0  
Bit0  
Address: 0x00  
XHP_H  
X-axis high-pass filter accelerometer output most significant byte. Data is updated at the ODR frequency  
determined by OWUF in CNTL3 register. Data is only available when wake-up engine is enabled (WUFE  
= 1 in CNTL1 register)  
R
R
R
R
R
R
R
R
XHPD15 XHPD14 XHPD13 XHPD12 XHPD11 XHPD10  
XHPD9  
Bit1  
XHPD8  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Address: 0x01  
YHP_L  
Y-axis high-pass filter accelerometer output least significant byte. Data is updated at the ODR frequency  
determined by OWUF in CNTL3 register. Data is only available when wake-up engine is enabled (WUFE  
= 1 in CNTL1 register)  
R
R
R
R
R
R
R
R
YHPD7  
Bit7  
YHPD6  
Bit6  
YHPD5  
Bit5  
YHPD4  
Bit4  
YHPD3  
Bit3  
YHPD2  
Bit2  
YHPD1  
Bit1  
YHPD0  
Bit0  
Address: 0x02  
YHP_H  
Y-axis high-pass filter accelerometer output most significant byte. Data is updated at the ODR frequency  
determined by OWUF in CNTL3 register. Data is only available when wake-up engine is enabled (WUFE  
= 1 in CNTL1 register)  
R
R
R
R
R
R
R
R
YHPD15 YHPD14 YHPD13 YHPD12 YHPD11 YHPD10  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2  
YHPD9  
Bit1  
YHPD8  
Bit0  
Address: 0x03  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 32 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
ZHP_L  
Z-axis high-pass filter accelerometer output least significant byte. Data is updated at the ODR frequency  
determined by OWUF in CNTL3 register. Data is only available when wake-up engine is enabled (WUFE  
= 1 in CNTL1 register)  
R
R
R
R
R
R
R
R
ZHPD7  
Bit7  
ZHPD6  
Bit6  
ZHPD5  
Bit5  
ZHPD4  
Bit4  
ZHPD3  
Bit3  
ZHPD2  
Bit2  
ZHPD1  
Bit1  
ZHPD0  
Bit0  
Address: 0x04  
ZHP_H  
Z-axis high-pass filter accelerometer output most significant byte. Data is updated at the ODR frequency  
determined by OWUF in CNTL3 register. Data is only available when wake-up engine is enabled (WUFE  
= 1 in CNTL1 register)  
R
R
R
R
R
R
R
R
ZHPD15 ZHPD14 ZHPD13 ZHPD12 ZHPD11 ZHPD10  
ZHPD9  
Bit1  
ZHPD8  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Address: 0x05  
XOUT_L  
X-axis accelerometer output least significant byte. Data is updated at the ODR frequency determined by  
OSA bits in ODCNTL register.  
R
R
R
R
R
R
R
R
XOUTD7 XOUTD6 XOUTD5 XOUTD4 XOUTD3 XOUTD2 XOUTD1 XOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x06  
XOUT_H  
X-axis accelerometer output most significant byte. Data is updated at the ODR frequency determined  
by OSA bits in ODCNTL register.  
R
R
R
R
R
R
R
R
XOUTD15 XOUTD14 XOUTD13 XOUTD12 XOUTD11 XOUTD10 XOUTD9 XOUTD8  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
Address: 0x07  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 33 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
YOUT_L  
Y-axis accelerometer output least significant byte. Data is updated at the ODR frequency determined  
by OSA bits in ODCNTL register.  
R
R
R
R
R
R
R
R
YOUTD7 YOUTD6 YOUTD5 YOUTD4 YOUTD3 YOUTD2 YOUTD1 YOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x08  
YOUT_H  
Y-axis accelerometer output most significant byte. Data is updated at the ODR frequency determined  
by OSA bits in ODCNTL register.  
R
R
R
R
R
R
R
R
YOUTD15 YOUTD14 YOUTD13 YOUTD12 YOUTD11 YOUTD10 YOUTD9 YOUTD8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x09  
ZOUT_L  
Z-axis accelerometer output least significant byte. Data is updated at the ODR frequency determined  
by OSA bits in ODCNTL register.  
R
R
R
R
R
R
R
R
ZOUTD7 ZOUTD6 ZOUTD5 ZOUTD4 ZOUTD3 ZOUTD2 ZOUTD1 ZOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x0A  
ZOUT_H  
Z-axis accelerometer output most significant byte. Data is updated at the ODR frequency determined  
by OSA bits in ODCNTL register.  
R
R
R
R
R
R
R
R
ZOUTD15 ZOUTD14 ZOUTD13 ZOUTD12 ZOUTD11 ZOUTD10 ZOUTD9 ZOUTD8  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
Address: 0x0B  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 34 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
COTR  
The Command Test Response (COTR) register is used to verify proper integrated circuit functionality.  
The value of this register will change from a default value of 0x55 to 0xAA when COTC bit in CNTL2  
register is set. After reading 0xAA from this register, the byte value returns to the default value of 0x55  
and COTC bit in CNTL2 register is cleared.  
R
R
R
R
R
R
R
R
DCSTR7 DCSTR6 DCSTR5 DCSTR4 DCSTR3 DCSTR2 DCSTR1 DCSTR0  
Reset Value  
01010101  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x0C  
WHO_AM_I  
This register is used for supplier recognition, as it is factory written to a known byte value. The default  
value is 0x2B.  
R
R
R
R
R
R
R
R
WIA7  
Bit7  
WIA6  
Bit6  
WIA5  
Bit5  
WIA4  
Bit4  
WIA3  
Bit3  
WIA2  
Bit2  
WIA1  
Bit1  
WIA0  
Bit0  
Reset Value  
00101011  
Address: 0x0F  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 35 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Tilt Position Registers  
These two registers report previous and current position data that is updated at the user-defined ODR  
frequency OTP<1:0> in CNTL3 register. Data protected during register read. Table 13 describes the  
reported position for each bit value.  
TSCP  
The Tilt Status Current Position (TSCP) register reports the current tilt position.  
R
0
R
0
R
R
RI  
R
R
R
R
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Reset Value  
00100000  
Bit7  
Bit6  
Bit5  
Bit4  
Address: 0x10  
TSPP  
The Tilt Status Previous Position (TSPP) register reports previous tilt position.  
R
0
R
0
R
R
RI  
R
R
R
R
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Reset Value  
00100000  
Bit7  
Bit6  
Bit5  
Bit4  
Address: 0x11  
Bit  
LE  
RI  
DO  
UP  
FD  
FU  
Description  
Left State (X-)  
Right State (X+)  
Down State (Y-)  
Up State (Y+)  
Face-Down State (Z-)  
Face-Up State (Z+)  
Table 13: Tilt Position  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 36 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Interrupt Source Registers  
These three registers report interrupt state changes. This data is updated when a new interrupt event  
occurs and each application’s result is latched until the interrupt release register is read.  
INS1  
The Interrupt Source 1 (INS1) register indicates the triggering axis when a Tap/Double-TapTM interrupt  
occurs. Data is updated at the ODR settings determined by OTDT<2:0> bits in CNTL3 register.  
R
0
R
0
R
R
R
R
R
R
TLE  
Bit5  
TRI  
Bit4  
TDO  
Bit3  
TUP  
Bit2  
TFD  
Bit1  
TFU  
Bit0  
Bit7  
Bit6  
Address: 0x12  
Bit  
TLE  
TRI  
TDO  
TUP  
TFD  
TFU  
Description  
X Negative (X-) Reported  
X Positive (X+) Reported  
Y Negative (Y-) Reported  
Y Positive (Y+) Reported  
Z Negative (Z-) Reported  
Z Positive (Z+) Reported  
Table 14: Directional-TapTM Reporting  
INS2  
The Interrupt Source 2 (INS2) register reports which function caused an interrupt.  
R
R
R
R
R
R
R
R
FFS  
Bit7  
BFI  
Bit6  
WMI  
Bit5  
DRDY  
Bit4  
TDTS1  
Bit3  
TDTS0  
Bit2  
WUFS  
Bit1  
TPS  
Bit0  
Address: 0x13  
FFS Free fall. This bit is cleared when the interrupt latch release register (INT_REL) is read.  
FFS = 0 No Free fall  
FFS = 1 Free fall has activated the interrupt  
BFI Buffer Full Interrupt. Automatically cleared when at least one sample is read from the  
buffer or following the write to BUF_CLEAR register.  
BFI = 0 Buffer is not full  
BFI = 1 Buffer is full  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 37 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
WMI The Watermark Interrupt bit is set to 1 when FIFO has filled up to the value stored in the  
SMP_TH <9:0> bits. This bit is automatically cleared when FIFO is read and the  
SMP_LEV<10:0> returns to a value below the value stored in the SMP_TH <9:0> bits, or  
following the write to BUF_CLEAR register.  
WMI = 0 Buffer watermark has not been exceeded  
WMI = 1 Buffer watermark has been exceeded  
DRDY The Data Ready bit indicates that new acceleration data (0x06 to 0x0B) is available.  
This bit is cleared when acceleration data is read or the interrupt release register  
INT_REL is read.  
DRDY = 0 new acceleration data not available  
DRDY = 1 new acceleration data available  
TDTS1, TDTS0 The Tap/Double-TapTM Status bits indicate whether a tap event has occurred  
and what kind. The status bits are cleared when interrupt release register INT_REL is  
read.  
TDTS1 TDTS0  
Event  
No Tap  
Single Tap  
Double-Tap  
undefined  
0
0
1
1
0
1
0
1
WUFS The Wake-Up Function Status bit is cleared when the interrupt release register  
INT_REL is read.  
WUFS = 0 No motion  
WUFS = 1 Motion has activated the interrupt  
TPS The Tilt Position Status bit is cleared when the interrupt release register INT_REL is  
read.  
TPS = 0 Position has not changed  
TPS = 1 Position has changed  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 38 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
INS3  
The Interrupt Source 3 (INS3) register reports the axis and direction of detected motion.  
R
0
R
0
R
R
R
R
R
R
XNWU  
Bit5  
XPWU  
Bit4  
YNWU  
Bit3  
YPWU  
Bit2  
ZNWU  
Bit1  
ZPWU  
Bit0  
Bit7  
Bit6  
Address: 0x14  
Bit  
Description  
XNWU  
XPWU  
YNWU  
YPWU  
ZNWU  
ZPWU  
X Negative (X-) Reported  
X Positive (X+) Reported  
Y Negative (Y-) Reported  
Y Positive (Y+) Reported  
Z Negative (Z-) Reported  
Z Positive (Z+) Reported  
Table 15: Motion Detection Reporting  
STATUS_REG  
The Status Register reports the status of whether the interrupt is present.  
R
0
R
0
R
0
R
R
0
R
0
R
0
R
0
INT  
Bit4  
Bit7  
Bit6  
Bit5  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x15  
INT The INT bit reports the combined (OR) interrupt information of all features. If BFI and  
WMI bits in INS2 register are 0, the INT bit is set to 0 when INT_REL register is read. If  
WMI or BFI bit in INS2 register is 1, INT bit remains at 1 until these bits are cleared by  
FIFO/FILO buffer read.  
INT = 0 no interrupt event  
INT = 1 interrupt event has occurred  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 39 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
INT_REL  
Interrupt Release (INT_REL) register: Latched interrupt source information reported in INS1, INS2, and  
INS3 registers is cleared and physical interrupt latched pin is changed to its inactive state when this  
register is read. However, WMI and BFI bits in INS2 register are not cleared by this command.  
Furthermore, INT bit in STATUS_REG will not be cleared by reading this register if WMI or BFI bits in  
INS2 register are set to 1. Read value is dummy.  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x17  
CNTL1  
The Control 1 (CNTL1) register controls the main feature set of the accelerometer.  
R/W  
PC1  
Bit7  
R/W  
RES  
Bit6  
R/W  
DRDYE  
Bit5  
R/W  
GSEL1  
Bit4  
R/W  
GSEL0  
Bit3  
R/W  
TDTE  
Bit2  
R/W  
WUFE  
Bit1  
R/W  
TPE  
Bit0  
Reset Value  
00000000  
Address: 0x18  
PC1 The PC1 bit controls the operating mode of the KX224. Note, when configuration  
changes need to be made, please allow 2/ODR (sec) delay time after setting PC1=0  
(i.e. transitioning from operating mode to standby mode)  
PC1 = 0 Standby mode  
PC1 = 1 operating mode (Low Power or High Resolution)  
RES The RES bit determines the performance mode of the KX224. The noise varies with  
ODR, RES and different LP_CNTL settings possibly reducing the effective resolution.  
Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
RES = 0 Low Power mode (higher noise, lower current, 16-bit output data)  
RES = 1 High Resolution mode (lower noise, higher current, 16-bit output data)  
DRDYE The Data Ready Enable bit enables the reporting of the availability of new  
acceleration data as an interrupt. Note that to change the value of this bit, the PC1 bit  
must first be set to “0”.  
DRDYE = 0 availability of new acceleration data is not reflected as an interrupt  
DRDYE = 1 availability of new acceleration data is reflected as an interrupt  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 40 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
GSEL1, GSEL0 The G-Select bits allow to select the acceleration range of the accelerometer  
outputs per Table 16. Note that to change the value of this bit, the PC1 bit must first be  
set to “0”.  
GSEL1 GSEL0  
Range  
±8g  
±16g  
0
0
1
0
1
0
±32g  
Table 16: Selected Acceleration Range  
TDTE The Tap/Double-TapTM Enable bit enables the Directional-TapTM function that will detect  
single and double tap events. Note that to change the value of this bit, the PC1 bit must  
first be set to “0”.  
TDTE = 0 Tap/Double-TapTM disabled  
TDTE = 1 Tap/Double-TapTM enabled  
WUFE The Wake-up Function Enable bit enables the Wake-Up (motion detect) function. Note  
that to change the value of this bit, the PC1 bit must first be set to “0”.  
WUFE = 0 Wake-Up function disabled  
WUFE = 1 Wake-Up function enabled  
TPE The Tilt Position Enable bit enables the Tilt Position function that will detect changes in  
device orientation. Note that to change the value of this bit, the PC1 bit must first be set  
to “0”.  
TPE = 0 Tilt Position function disabled  
TPE = 1 Tilt Position function enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 41 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
CNTL2  
The Control 2 (CNTL2) register provides additional feature set control. Note that to properly change the  
value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
SRST  
Bit7  
R/W  
COTC  
Bit6  
R/W  
LEM  
Bit5  
R/W  
RIM  
Bit4  
R/W  
DOM  
Bit3  
R/W  
UPM  
Bit2  
R/W  
FDM  
Bit1  
R/W  
FUM  
Bit0  
Reset Value  
00111111  
Address: 0x19  
SRST The Software Reset bit initiates software reset, which performs the RAM reboot routine.  
This bit will remain 1 until the RAM reboot routine is finished. Please refer to Technical  
Note TN004 Power-On Procedure for more information on software reset.  
SRST = 0 no action  
SRST = 1 start RAM reboot routine  
COTC The Command Test Control bit is used to verify proper ASIC functionality.  
COTC = 0 no action  
COTC = 1 sets COTR register to 0xAA. When COTR register is then read, sets  
COTC bit to 0 and sets COTR register to 0x55.  
LEM, RIM, DOM, UPM, FDM, FUM these bits control the tilt axis mask. Per Table 17, if a  
direction’s bit is set to one (1), tilt in that direction will generate an interrupt. If it is set to  
zero (0), tilt in that direction will not generate an interrupt.  
Bit  
Description  
LEM  
RIM  
DOM  
UPM  
FDM  
FUM  
Left state enable (X-)  
Right state enable (X+)  
Down state enable (Y-)  
Up state enable (Y+)  
Face-Down state enable (Z-)  
Face-Up state enable (Z+)  
Table 17: Tilt Direction Axis Mask  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 42 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
CNTL3  
The Control 3 (CNTL3) register sets the output data rates for Tilt, Directional-TapTM, and the Motion  
Wake-Up digital engines. The output data rate set in this register and the averaging filter control settings  
set in LP_CNTL register, will influence overall performance of the digital engines and the power  
consumption of the accelerometer. Note that to properly change the value of this register, the PC1 bit in  
CNTL1 register must first be set to “0”.  
R/W  
OTP1  
Bit7  
R/W  
OTP0  
Bit6  
R/W  
OTDT2  
Bit5  
R/W  
OTDT1  
Bit4  
R/W  
OTDT0  
Bit3  
R/W  
OWUF2  
Bit2  
R/W  
OWUF1 OWUF0  
Bit1 Bit0  
Address: 0x1A  
R/W  
Reset Value  
10011000  
OTP1, OTP0 The ODR Tilt bits set the output data rate for the Tilt Position function per Table  
18. The default Tilt Position ODR is 12.5Hz.  
OTP1  
OTP0 Output Data Rate  
0
0
1
1
0
1
0
1
1.563Hz  
6.25Hz  
12.5Hz  
50Hz  
Table 18: Tilt Position Function Output Data Rate  
OTDT2, OTDT1, OTDT0 The ODR Tap/Double-TapTM bits set the output data rate for the  
Directional-TapTM function per Table 19. The default Directional-TapTM ODR is 400Hz.  
OTDT2 OTDT1 OTDT0 Output Data Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
50Hz  
100Hz  
200Hz  
400Hz  
12.5Hz  
25Hz  
800Hz  
1600Hz  
Table 19: Directional-TapTM Function Output Data Rate  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 43 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
OWUF2, OWUF1, OWUF0 The ODR Wake-Up Function bits set the output data rate for the  
general motion detection function and the high-pass filtered outputs per Table 20. The  
default Motion Wake-Up ODR is 0.781Hz.  
OWUF2 OWUF1 OWUF0 Output Data Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.781Hz  
1.563Hz  
3.125Hz  
6.250Hz  
12.5Hz  
25Hz  
50Hz  
100Hz  
Table 20: Motion Wake-Up Function Output Data Rate  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 44 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
ODCNTL  
The ODR Control (ODCNTL) register is responsible for configuring Output Data Rate (ODR) and low-  
pass filter settings. Note that to properly change the value of this register, the PC1 bit in CNTL1 register  
must first be set to “0”.  
R/W  
IIR_BYPASS LPRO RESERVED RESERVED OSA3  
Bit7 Bit6 Bit5 Bit4 Bit3  
R/W  
R/W  
R/W  
R/W  
R/W  
OSA2  
Bit2  
R/W  
OSA1  
Bit1  
R/W  
OSA0  
Bit0  
Reset Value  
00000010  
Address: 0x1B  
IIR_BYPASS filter bypass mode  
IIR_BYPASS = 0 filtering applied (default)  
IIR_BYPASS = 1 filter bypassed. This setting may reduce the resolution of the output  
data.  
LPRO low-pass filter roll off control  
LPRO = 0 filter corner frequency set to ODR/9 (default)  
LPRO = 1 filter corner frequency set to ODR/2  
Figure 10: Low-Pass Filter Design and Control Circuitry  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 45 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
OSA3, OSA2, OSA1, OSA0 The OSA <3:0> bits set the acceleration output data rate  
(ODR). The default ODR is 50Hz.  
OSA3 OSA2 OSA1 OSA0  
Output Data Rate  
12.5Hz*  
25Hz*  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
50Hz*  
100Hz*  
200Hz*  
400Hz**  
800Hz  
1600Hz  
0.781Hz*  
1.563Hz*  
3.125Hz*  
6.25Hz*  
3200Hz  
6400Hz  
12800Hz  
25600Hz  
Table 21: Accelerometer Output Data Rates (ODR)  
* Low Power mode available, all other data rates will default to High Resolution mode  
** 400Hz High Resolution mode only (will not output in Low Power mode)  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 46 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
INC1  
The Interrupt Control 1 (INC1) register controls the settings for the physical interrupt pin INT1, the Self-  
test function, and 3-wire SPI interface. Note that to properly change the value of this register, the PC1  
bit in CNTL1 register must first be set to “0”.  
R/W  
R/W  
R/W  
IEN1  
Bit5  
R/W  
IEA1  
Bit4  
R/W  
IEL1  
Bit3  
R/W  
Reserved STPOL  
Bit2 Bit1  
R/W  
R/W  
SPI3E  
Bit0  
PWSEL11 PWSEL10  
Bit7 Bit6  
Reset Value  
00010000  
Address: 0x1C  
PWSEL1<1:0> Pulse interrupt 1 width configuration  
00 = 50 µsec (10 µsec if OSA > 1600Hz)  
01 = 1 * OSA period  
10 = 2 * OSA periods  
11 = 4 * OSA periods  
When PWSEL1 > 0, interrupt source auto-clearing (ACLR1=1) should be set to keep  
consistency between the internal status and the physical interrupt.  
IEN1 enables/disables the physical interrupt pin INT1  
IEN1 = 0 physical interrupt pin is disabled  
IEN1 = 1 physical interrupt pin is enabled  
IEA1 sets the polarity of the physical interrupt pin INT1  
IEA1 = 0 polarity of the physical interrupt pin is active LOW  
IEA1 = 1 polarity of the physical interrupt pin is active HIGH  
IEL1 sets the response of the physical interrupt pin INT1  
IEL1 = 0 the physical interrupt pin latches until it is cleared by reading INT_REL.  
(excludes buffer full interrupt (BFI) and watermark interrupt (WMI)).  
IEL1 = 1 the physical interrupt pin will transmit one pulse configurable by PWSEL1  
STPOL sets the polarity of Self-test  
STPOL = 0 Negative  
STPOL = 1 Positive  
SPI3E sets the 3-wire SPI interface (set to 0 when I2C communication is used)  
SPI3E = 0 disabled  
SPI3E = 1 enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 47 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
INC2  
The Interrupt Control 2 (INC2) register controls which axis and direction of detected motion can cause  
an interrupt. Note that to properly change the value of this register, the PC1 bit in CNTL1 register must  
first be set to “0”.  
R/W  
0
R/W  
AOI  
Bit6  
R/W  
XNWUE XPWUE YNWUE YPWUE ZNWUE ZPWUE  
Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
Address: 0x1D  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00111111  
Bit7  
AOI AND-OR configuration on motion detection  
0 OR combination between selected directions  
1 AND combination between selected axes  
Ex. If all directions are enabled,  
Active state in OR configuration = (XN || XP || YN || YP || ZN || ZP)  
Active state in AND configuration = (XN || XP) && (YN || YP) && (ZN || ZP)  
XNWU x negative (x-): 0 = disabled, 1 = enabled  
XPWU x positive (x+): 0 = disabled, 1 = enabled  
YNWU y negative (y-): 0 = disabled, 1 = enabled  
YPWU y positive (y+): 0 = disabled, 1 = enabled  
ZNWU z negative (z-): 0 = disabled, 1 = enabled  
ZPWU z positive (z+): 0 = disabled, 1 = enabled  
INC3  
The Interrupt Control 3 (INC3) register controls which axis and direction of Tap/Double-TapTM can cause  
an interrupt. Note that to properly change the value of this register, the PC1 bit in CNTL1 register must  
first be set to “0”.  
R/W  
0
R/W  
0
R/W  
TLEM  
Bit5  
R/W  
TRIM  
Bit4  
R/W  
TDOM  
Bit3  
R/W  
TUPM  
Bit2  
R/W  
TFDM  
Bit1  
R/W  
TFUM  
Bit0  
Reset Value  
00111111  
Bit7  
Bit6  
Address: 0x1E  
TLEM Tilt left state mask: 0 = disabled, 1 = enabled  
TRIM Tilt right state mask: 0 = disabled, 1 = enabled  
TDOM Tilt down state mask: 0 = disabled, 1 = enabled  
TUPM Tilt up state mask: 0 = disabled, 1 = enabled  
TFDM Tilt face-down state mask: 0 = disabled, 1 = enabled  
TFUM Tilt face-up state mask: 0 = disabled, 1 = enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 48 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
INC4  
The Interrupt Control 4 (INC4) register controls routing of an interrupt reporting to physical interrupt pin  
INT1. Note that to properly change the value of this register, the PC1 bit in CNTL1 register must first be  
set to “0”.  
R/W  
FFI1  
Bit7  
R/W  
BFI1  
Bit6  
R/W  
WMI1  
Bit5  
R/W  
DRDYI1 Reserved  
Bit4 Bit3  
R/W  
R/W  
TDTI1  
Bit2  
R/W  
WUFI1  
Bit1  
R/W  
TPI1  
Bit0  
Reset Value  
00000000  
Address: 0x1F  
FFI1 Free fall interrupt reported on physical interrupt INT1  
BFI1 Buffer full interrupt reported on physical interrupt pin INT1  
WMI1 Watermark interrupt reported on physical interrupt pin INT1  
DRDYI1 Data ready interrupt reported on physical interrupt pin INT1  
TDTI1 Tap/Double-TapTM interrupt reported on physical interrupt pin INT1  
WUFI1 Wake-Up (motion detect) interrupt reported on physical interrupt pin INT1  
TPI1 Tilt position interrupt reported on physical interrupt pin INT1  
INC5  
The Interrupt Control 5 (INC5) register controls the settings for the physical interrupt pin INT2. Note that  
to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
R/W  
R/W  
IEN2  
Bit5  
R/W  
IEA2  
Bit4  
R/W  
IEL2  
Bit3  
R/W  
Reserved ACLR2  
Bit2 Bit1  
R/W  
R/W  
ACLR1  
Bit0  
PWSEL21 PWSEL20  
Bit7 Bit6  
Reset Value  
00010000  
Address: 0x20  
PWSEL2<1:0> Pulse interrupt 2 width configuration  
00 = 50µsec (10µsec if OSA > 1600Hz)  
01 = 1 * OSA period  
10 = 2 * OSA periods  
11 = 4 * OSA periods  
When PWSEL2 > 0, Interrupt source auto-clearing (ACLR2=1) is strongly recommended  
to keep consistency between the internal status and the physical interrupt.  
IEN2 enables/disables the physical interrupt pin INT2  
IEN2 = 0 physical interrupt pin is disabled  
IEN2 = 1 physical interrupt pin is enabled  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 49 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
IEA2 sets the polarity of the physical interrupt pin INT2  
IEA2 = 0 polarity of the physical interrupt pin is active LOW  
IEA2 = 1 polarity of the physical interrupt pin is active HIGH  
IEL2 sets the response of the physical interrupt pin INT2  
IEL2 = 0 the physical interrupt pin latches until it is cleared by reading INT_REL.  
(excludes buffer full interrupt (BFI) and watermark interrupt (WMI)).  
IEL2 = 1 the physical interrupt pin will transmit one pulse configurable by PWSEL2  
ACLR2 Latched interrupt source information(INS1-INS3) is cleared and physical interrupt-1  
latched pin is changed to its inactive state at pulse interrupt-2 trailing edge. Note:  
WMI and BFI are not auto-cleared by a pulse interrupt trailing edge.  
ACLR2 = 0 disable  
ACLR2 = 1 enable  
ACLR1 Latched interrupt source information(INS1-INS3) is cleared and physical interrupt-2  
latched pin is changed to its inactive state at pulse interrupt-1 trailing edge. Note:  
WMI and BFI are not auto-cleared by a pulse interrupt trailing edge.  
ACLR1 = 0 disable  
ACLR1 = 1 enable  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
INC6  
The Interrupt Control 6 (INC6) register controls routing of interrupt reporting to physical interrupt pin INT2.  
Note that to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to  
“0”.  
R/W  
FFI2  
Bit7  
R/W  
BFI2  
Bit6  
R/W  
WMI2  
Bit5  
R/W  
DRDYI2 Reserved  
Bit4 Bit3  
R/W  
R/W  
TDTI2  
Bit2  
R/W  
WUFI2  
Bit1  
R/W  
TPI2  
Bit0  
Reset Value  
00000000  
Address: 0x21  
FFI2 Free fall interrupt reported on physical interrupt INT2  
BFI2 Buffer full interrupt reported on physical interrupt pin INT2  
WMI2 Watermark interrupt reported on physical interrupt pin INT2  
DRDYI2 Data ready interrupt reported on physical interrupt pin INT2  
TDTI2 Tap/Double-TapTM interrupt reported on physical interrupt pin INT2  
WUFI2 Wake-Up (motion detect) interrupt reported on physical interrupt pin INT2  
TPI2 Tilt position interrupt reported on physical interrupt pin INT2  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 50 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
TILT_TIMER  
This register is the initial count register for the tilt position state timer (0 to 255 counts). Every count is  
calculated as 1/ODR delay period, where the ODR is user-defined per Table 18. Note that to properly  
change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
TSC7  
Bit7  
R/W  
TSC6  
Bit6  
R/W  
TSC5  
Bit5  
R/W  
TSC4  
Bit4  
R/W  
TSC3  
Bit3  
R/W  
TSC2  
Bit2  
R/W  
TSC1  
Bit1  
R/W  
TSC0  
Bit0  
Reset Value  
00000000  
Address: 0x22  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
WUFC  
The Wake-Up Function Counter (WUFC) is the initial count register for the motion detection timer (0 to  
255 counts). Every count is calculated as 1/ODR delay period, where the ODR is user-defined per Table  
20. Note that to properly change the value of this register, the PC1 bit in CNTL1 register must first be set  
to “0”.  
R/W  
WUFC7  
Bit7  
R/W  
WUFC6  
Bit6  
R/W  
WUFC5 WUFC4 WUFC3  
Bit5 Bit4 Bit3  
R/W  
R/W  
R/W  
WUFC2  
Bit2  
R/W  
WUFC1  
Bit1  
R/W  
WUFC0  
Bit0  
Reset Value  
00000000  
Address: 0x23  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 51 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
TDTRC  
The Tap/Double-TapTM Report Control (TDTRC) register is responsible for enabling/disabling reporting  
of Tap/Double-TapTM events. Note that to properly change the value of this register, the PC1 bit in CNTL1  
register must first be set to “0”.  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
DTRE  
Bit1  
R/W  
STRE  
Bit0  
Reset Value  
00000011  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Address: 0x24  
DTRE enables/disables the double tap interrupt  
DTRE = 0 do not update/trigger interrupts on Double-TapTM events  
DTRE = 1 update interrupts on Double-TapTM events  
STRE enables/disables single tap interrupt  
STRE = 0 do not update/trigger interrupts on single tap events  
STRE = 1 update interrupts on single tap events  
TDTC  
The Tap/Double-TapTM Counter (TDTC) register contains counter information for the detection of a  
double tap event. When the Directional-TapTM ODR is 400Hz or less, every count is calculated as 1/ODR  
delay period. When the Directional-TapTM ODR is 800Hz, every count is calculated as 2/ODR delay  
period. When the Directional-TapTM ODR is 1600Hz, every count is calculated as 4/ODR delay period.  
The Directional-TapTM ODR is user-defined per Table 19. The TDTC counts starts at the beginning of  
the first tap and it represents the minimum time separation between the first tap and the second tap in a  
double tap event. More specifically, the second tap event must end outside of the TDTC. The Kionix  
recommended default value is 0.3 seconds (0x78). Note that to properly change the value of this register,  
the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
TDTC7  
Bit7  
R/W  
TDTC6  
Bit6  
R/W  
TDTC5  
Bit5  
R/W  
TDTC4  
Bit4  
R/W  
TDTC3  
Bit3  
R/W  
TDTC2  
Bit2  
R/W  
TDTC1  
Bit1  
R/W  
TDTC0  
Bit0  
Reset Value  
01111000  
Address: 0x25  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 52 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
TTH  
The Tap Threshold High (TTH) register represents the 8-bit jerk high threshold to determine if a tap is  
detected. The value is compared against the upper 8 bits of the 16g output value (independent of the  
actual g-range setting of the device). Though this is an 8-bit register, the register value is internally  
multiplied by two to set the high threshold. This multiplication results in a range of 0 to 510 with a  
resolution of two counts. The Performance Index (PI) is the jerk signal that is expected to be less than  
this threshold, but greater than the TTL threshold during single and double tap events. Equation 1 shows  
how to calculate the Performance Index. See AN090 Getting Started for recommended settings (LINK).  
Note that to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to  
“0”  
X’ = X (current) X (previous)  
Y’ = Y (current) Y (previous)  
Z’ = Z (current) Z (previous)  
PI = |X’| + |Y’| + |Z’|  
Equation 1: Performance Index  
R/W  
TTH7  
Bit7  
R/W  
TTH6  
Bit6  
R/W  
TTH5  
Bit5  
R/W  
TTH4  
Bit4  
R/W  
TTH3  
Bit3  
R/W  
TTH2  
Bit2  
R/W  
TTH1  
Bit1  
R/W  
TTH0  
Bit0  
Reset Value  
11001011  
Address: 0x26  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
TTL  
The Tap Threshold Low (TTL) register represents the 8-bit (0-255) jerk low threshold to determine if a  
tap is detected. The value is compared against the upper 8 bits of the 16g output value (independent of  
the actual g-range setting of the device). The Performance Index (PI) is the jerk signal that is expected  
to be greater than this threshold and less than the TTH threshold during single and double tap events.  
See AN090 Getting Started for recommended settings (LINK). Note that to properly change the value of  
this register, the PC1 bit in CNTL1 register must first be set to “0”  
R/W  
R/W  
TTL6  
Bit6  
R/W  
TTL5  
Bit5  
R/W  
TTL4  
Bit4  
R/W  
TTL3  
Bit3  
R/W  
TTL2  
Bit2  
R/W  
TTL1  
Bit1  
R/W  
TTL0  
Bit0  
TTL7  
Bit7  
Reset Value  
00011010  
Address: 0x27  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 53 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
FTD  
This register contains counter information for the detection of any tap event. When the Directional-TapTM  
ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional-TapTM  
ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional-TapTM ODR is  
1600Hz, every count is calculated as 4/ODR delay period. The Directional-TapTM ODR is user-defined  
per Table 19. To ensure that only tap events are detected, these time limits are used. A tap event must  
be above the performance index threshold for at least the low limit (FTDL0 FTDL2) and no more than  
the high limit (FTDH0 FTDH4). The Kionix recommended default value for the high limit is 0.05 seconds  
and for the low limit is 0.005 seconds (0xA2). Note that to properly change the value of this register, the  
PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
FTDH4  
Bit7  
R/W  
FTDH3  
Bit6  
R/W  
FTDH2  
Bit5  
R/W  
FTDH1  
Bit4  
R/W  
FTDH0  
Bit3  
R/W  
FTDL2  
Bit2  
R/W  
FTDL1  
Bit1  
R/W  
FTDL0  
Bit0  
Reset Value  
10100010  
Address: 0x28  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
STD  
This register contains counter information for the detection of a double tap event. When the Directional-  
TapTM ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional-  
TapTM ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional-TapTM ODR  
is 1600Hz, every count is calculated as 4/ODR delay period. The Directional-TapTM ODR is user-defined  
per Table 19. To ensure that only tap events are detected, this time limit is used. This register sets the  
total amount of time that the two taps in a double tap event can be above the PI threshold (TTL). The  
Kionix recommended default value for STD is 0.09 seconds (0x24). Note that to properly change the  
value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
STD7  
Bit7  
R/W  
STD6  
Bit6  
R/W  
STD5  
Bit5  
R/W  
STD4  
Bit4  
R/W  
STD3  
Bit3  
R/W  
STD2  
Bit2  
R/W  
STD1  
Bit1  
R/W  
STD0  
Bit0  
Reset Value  
00100100  
Address: 0x29  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 54 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
TLT  
This register contains counter information for the detection of a tap event. When the Directional-TapTM  
ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the Directional-TapTM  
ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional-TapTM ODR is  
1600Hz, every count is calculated as 4/ODR delay period. The Directional-TapTM ODR is user-defined  
per Table 19. To ensure that only tap events are detected, this time limit is used. This register sets the  
total amount of time that the tap algorithm will count samples that are above the PI threshold (TTL) during  
a potential tap event. It is used during both single and double tap events. However, reporting of single  
taps on the physical interrupt pin INT1 or INT2 will occur at the end of the TWS. The Kionix recommended  
default value for TLT is 0.1 seconds (0x28). Note that to properly change the value of this register, the  
PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
R/W  
TLT6  
Bit6  
R/W  
TLT5  
Bit5  
R/W  
TLT4  
Bit4  
R/W  
TLT3  
Bit3  
R/W  
TLT2  
Bit2  
R/W  
TLT1  
Bit1  
R/W  
TLT0  
Bit0  
TLT7  
Bit7  
Reset Value  
00101000  
Address: 0x2A  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
TWS  
This register contains counter information for the detection of single and double taps. When the  
Directional-TapTM ODR is 400Hz or less, every count is calculated as 1/ODR delay period. When the  
Directional-TapTM ODR is 800Hz, every count is calculated as 2/ODR delay period. When the Directional-  
TapTM ODR is 1600Hz, every count is calculated as 4/ODR delay period. The Directional-TapTM ODR is  
user-defined per Table 19. It defines the time window for the entire tap event, single or double, to occur.  
Reporting of single taps on the physical interrupt pin INT1 or INT2 will occur at the end of this tap window.  
The Kionix recommended default value for TWS is 0.4 seconds (0xA0). Note that to properly change the  
value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
TWS7  
Bit7  
R/W  
TWS6  
Bit6  
R/W  
TWS5  
Bit5  
R/W  
TWS4  
Bit4  
R/W  
TWS3  
Bit3  
R/W  
TWS2  
Bit2  
R/W  
TWS1  
Bit1  
R/W  
TWS0  
Bit0  
Reset Value  
10100000  
Address: 0x2B  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 55 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
FFTH  
The Free Fall Threshold (FFTH) register contains the threshold of the Free fall detection. This value is  
compared to the top 8 bits of the accelerometer 32g output value (independent of the actual g-range setting  
of the device). See AN090 Getting Started for recommended settings (LINK). Note that to properly change  
the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
FFTH7  
Bit7  
R/W  
FFTH6  
Bit6  
R/W  
FFTH5  
Bit5  
R/W  
FFTH4  
Bit4  
R/W  
FFTH3  
Bit3  
R/W  
FFTH2  
Bit2  
R/W  
FFTH1  
Bit1  
R/W  
FFTH0  
Bit0  
Reset Value  
00000000  
Address: 0x2C  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
FFC  
The Free Fall Counter (FFC) register contains the counter setting of the Free fall detection. Every count is  
calculated as 1/ODR delay period where ODR is a Free fall ODR set by OFFI<2:0> bits in FFCNTL register.  
Note that to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to  
“0”.  
R/W  
FFC7  
Bit7  
R/W  
FFC6  
Bit6  
R/W  
FFC5  
Bit5  
R/W  
FFC4  
Bit4  
R/W  
FFC3  
Bit3  
R/W  
FFC2  
Bit2  
R/W  
FFC1  
Bit1  
R/W  
FFC0  
Bit0  
Reset Value  
00000000  
Address: 0x2D  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
FFCNTL  
The Free Fall Control (FFCNTL) register contains the control setting of the Free fall detection. Note that  
to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
FFIE  
Bit7  
R/W  
ULMODE  
Bit6  
R/W  
R/W  
R/W  
DCRM  
Bit3  
R/W  
OFFI2  
Bit2  
R/W  
OFFI1  
Bit1  
R/W  
OFFI0  
Bit0  
0
0
Reset Value  
00000000  
Bit5  
Bit4  
Address: 0x2E  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 56 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
FFIE Free fall engine enable  
FFIE = 0 Free fall engine disabled  
FFIE = 1 Free fall engine enabled  
ULMODE Free fall interrupt latch/un-latch control  
ULMODE = 0 latched  
ULMODE = 1 unlatched  
DCRM Debounce methodology control  
DCRM = 0 count up/down  
DCRM = 1 count up/reset  
OFFI<2:0> Output Data Rate at which the Free fall engine performs its function.  
The default Free fall ODR is 12.5Hz.  
OFFI  
000  
001  
010  
011  
100  
101  
110  
111  
Output Data Rate (Hz)  
12.5  
25  
50  
100  
200  
400  
800  
1600  
Table 22: Free Fall Detection Output Data Rate  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
ATH  
The Activity Threshold (ATH) register sets the threshold for wake-up (motion detect) interrupt is set. This  
value is compared to the top 8 bits of the accelerometer 32±75g output value (independent of the actual  
g-range setting of the device). The KX224 will ship from the factory with this value set to correspond to  
a change in acceleration of 0.5g. See AN090 Getting Started for recommended settings (LINK). Note  
that to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
ATH7  
Bit7  
R/W  
ATH6  
Bit6  
R/W  
ATH5  
Bit5  
R/W  
ATH4  
Bit4  
R/W  
ATH3  
Bit3  
R/W  
ATH2  
Bit2  
R/W  
ATH1  
Bit1  
R/W  
ATH0  
Bit0  
Reset Value  
00000010  
Address: 0x30  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 57 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
TILT_ANGLE_LL  
Tilt Angle Low Limit: This register sets the low-level threshold for tilt angle detection. The low-level  
threshold value is compared against the upper 8 bits of the 16g output value (independent of the actual  
g-range setting of the device). Note that the minimum suggested tilt angle is 10°. See AN090 Getting  
Started for recommended settings (LINK). Note that to properly change the value of this register, the  
PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
TA7  
Bit7  
R/W  
TA6  
Bit6  
R/W  
TA5  
Bit5  
R/W  
TA4  
Bit4  
R/W  
TA3  
Bit3  
R/W  
TA2  
Bit2  
R/W  
TA1  
Bit1  
R/W  
TA0  
Bit0  
Reset Value  
00001100  
Address: 0x32  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
TILT_ANGLE_HL  
Tilt Angle High Limit: This register sets the high-level threshold for tilt angle detection. The high-level  
threshold is used by an internal algorithm to eliminate dynamic g-variations caused by the device  
movement. Instead, only static g-variation (gravity) caused by the actual tilt changes are used. The high-  
level threshold value is compared against the upper 8 bits of the 16g output value (independent of the  
actual g-range setting of the device). See AN090 Getting Started for recommended settings (LINK). Note  
that to properly change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
HL7  
Bit7  
R/W  
HL6  
Bit6  
R/W  
HL5  
Bit5  
R/W  
HL4  
Bit4  
R/W  
HL3  
Bit3  
R/W  
HL2  
Bit2  
R/W  
HL1  
Bit1  
R/W  
HL0  
Bit0  
Reset Value  
00101010  
Address: 0x33  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 58 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
HYST_SET  
This register sets the Hysteresis that is placed in between the Screen Rotation states. The KX224 ships  
from the factory with HYST_SET set to ±15° of hysteresis. Note that when writing a new value to this  
register the current values of RES0 and RES1 must be preserved. These values are set at the factory  
and must not change. Note that to properly change the value of this register, the PC1 bit in CNTL1  
register must first be set to “0”.  
R/W  
Reserved Reserved HYST5  
Bit7 Bit6 Bit5  
R/W  
R/W  
R/W  
HYST4  
Bit4  
R/W  
HYST3  
Bit3  
R/W  
HYST2  
Bit2  
R/W  
HYST1  
Bit1  
R/W  
HYST0  
Bit0  
Reset Value  
00010100  
Address: 0x34  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
LP_CNTL  
The Averaging Filter Control setting can be used in the optimization of current and noise performance of  
the accelerometer and can be tested using Kionix FlexSetTM Performance Optimization Tool. More  
specifically, this setting determines the number of internal acceleration samples to be averaged in Low  
Power mode. Also, it determines the number of internal acceleration samples to be averaged for digital  
engines operation (Directional-TapTM, Tilt, Wake-Up, Free fall) both in High Resolution and Low Power  
modes. Note that to properly change the value of this register, the PC1 bit in CNTL1 register must first  
be set to “0”.  
R/W  
Reserved  
Bit7  
R/W  
AVC2  
Bit6  
R/W  
AVC1  
Bit5  
R/W  
AVC0  
Bit4  
R/W  
R/W  
R/W  
R/W  
Reset Value  
01001011  
Reserved Reserved Reserved Reserved  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x35  
AVC<2:0> Averaging Filter Control. The default setting is 16 samples and was found to  
work for most case.  
000 = No Averaging  
001 = 2 Samples Averaged  
010 = 4 Samples Averaged  
011 = 8 Samples Averaged  
100 = 16 Samples Averaged (default)  
101 = 32 Samples Averaged  
110 = 64 Samples Averaged  
111 = 128 Samples Averaged  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 59 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from using  
SPI interface only. To prevent this, complete the serial communication transacting before the next ODR  
update (synchronous with Data Ready).  
BUF_CNTL1  
The Buffer Control 1 (BUF_CNTL1) register controls the buffer sample threshold. Note that to properly  
change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
SMP_TH7 SMP_TH6 SMP_TH5 SMP_TH4 SMP_TH3 SMP_TH2 SMP_TH1 SMP_TH0  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
Address: 0x3A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SMP_TH [9:0] Sample Threshold determines the number of samples that will trigger a  
watermark interrupt or will be saved prior to a trigger event. When BUF_RES=1, the  
maximum number of samples is 340; when BUF_RES=0, the maximum number of  
samples is 681.  
Buffer Model  
Sample Function  
Bypass  
None  
Specifies how many buffer samples are needed  
to trigger a watermark interrupt.  
Specifies how many buffer samples are needed  
to trigger a watermark interrupt.  
Specifies how many buffer samples before the  
trigger event are retained in the buffer.  
Specifies how many buffer samples are needed  
to trigger a watermark interrupt.  
FIFO  
Stream  
Trigger  
FILO  
Table 23: Sample Threshold Operation by Buffer Mode  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 60 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
BUF_CNTL2  
The Buffer Control 2 (BUF_CNTL2) register controls sample buffer operation. Note that to properly  
change the value of this register, the PC1 bit in CNTL1 register must first be set to “0”.  
R/W  
BUFE  
Bit7  
R/W  
BRES  
Bit6  
R/W  
BFIE  
Bit5  
R/W  
0
R/W  
SMP_TH9 SMP_TH8 BUF_M1 BUF_M0  
Bit3 Bit2 Bit1 Bit0  
Address: 0x3B  
R/W  
R/W  
R/W  
Reset Value  
00000000  
Bit4  
BUFE controls activation of the sample buffer.  
BUFE = 0 sample buffer inactive  
BUFE = 1 sample buffer active  
Note: Disabling the sample buffer (BUFE = 0) will clear the buffer. The buffer will also be  
cleared (1) following write to BUF_CLEAR register and/or (2) after setting PC1 bit in  
CNTL1 register to 0 (standby mode).  
BRES determines the resolution of the acceleration data samples collected by the sample  
buffer.  
BRES = 0 8-bit samples are accumulated in the buffer  
BRES = 1 16-bit samples are accumulated in the buffer  
BFIE buffer full interrupt enable bit  
BFIE = 0 buffer full interrupt disabled  
BFIE = 1 buffer full interrupt updated in INS2  
BUF_M1, BUF_M0 selects the operating mode of the sample buffer per Table 24.  
BUF_M1 BUF_M0  
Mode  
Description  
The buffer collects 681 sets of 8-bit low resolution values or 340 sets of 16-bit  
high resolution values and then stops collecting data, collecting new data only  
when the buffer is not full.  
The buffer holds the last 681 sets of 8-bit low resolution values or 340 sets of  
16-bit high resolution values. Once the buffer is full, the oldest data is discarded  
to make room for newer data.  
When a trigger event occurs, the buffer holds the last data set of SMP_TH[9:0]  
samples before the trigger event and then continues to collect data until full. New  
data is collected only when the buffer is not full.  
0
0
1
0
1
0
FIFO  
Stream  
Trigger  
The buffer holds the last 681 sets of 8-bit low resolution values or 340 sets of  
16-bit high resolution values. Once the buffer is full, the oldest data is discarded  
to make room for newer data. Reading from the buffer in this mode will return  
the most recent data first.  
1
1
FILO  
Table 24: Selected Buffer Mode  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 61 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Note: New data is blocked from being written to the sample buffer when this register is read from / written  
to using SPI interface only. To prevent this, complete the serial communication transacting before the  
next ODR update (synchronous with Data Ready).  
BUF_STATUS_1  
Buffer Status 1: This register reports the status of the sample buffer.  
R
R
R
R
R
R
R
R
SMP_LEV7 SMP_LEV6SMP_LEV5SMP_LEV4 SMP_LEV3SMP_LEV2SMP_LEV1 SMP_LEV0  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
Address: 0x3C  
SMP_LEV [10:0] Sample Level: reports the number of data bytes that have been stored in the  
sample buffer. When BRES=1, this count will increase by 6 for each 3-axis sample in  
the buffer. When BRES=0, the count will increase by 3 for each 3-axis sample. If this  
register reads 0, no data has been stored in the buffer.  
Note: New data is blocked from being written to the sample buffer when this register is read using I2C/SPI  
interface. To prevent this, complete the serial communication transacting before the next ODR update  
(synchronous with Data Ready) or perform a burst read from 0x3B to 0x3C.  
BUF_STATUS_2  
Buffer Status 2: This register reports the status of the sample buffer trigger function.  
R
R
0
R
0
R
0
R
0
R
R
R
BUF_TRIG  
Bit7  
SMP_LEV10 SMP_LEV9 SMP_LEV8  
Bit2 Bit1 Bit0  
Address: 0x3D  
Bit6  
Bit5  
Bit4  
Bit3  
BUF_TRIG reports the status of the buffer’s trigger function if this mode has been selected.  
When using trigger mode, a buffer read should only be performed after a trigger event.  
This bit is cleared after writing to BUF_CLEAR register. This will prevent Buffer Full  
interrupt from firing while TRIG pin remains de-asserted.  
Note: New data is blocked from being written to the sample buffer when this register is read from using  
I2C/SPI interface. To prevent this, complete the serial communication transacting before the next ODR  
update (synchronous with Data Ready) or perform a burst read from 0x3B to 0x3D.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 62 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
BUF_CLEAR  
Buffer Clear: When any data is written to this register, the entire sample buffer is cleared. This causes  
the sample level bits SMP_LEV [10:0] to be cleared in BUF_STATUS_1 and BUF_STATUS_2 registers.  
In addition, if the sample buffer is set to Trigger mode, the BUF_TRIG bit in BUF_STATUS_2 is cleared  
too. Finally, the BFI and WMI bits in INS2 will be cleared and physical interrupt latched pin will be changed  
to its inactive state.  
W
X
W
X
W
X
W
X
W
X
W
X
W
X
W
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x3E  
BUF_READ  
Buffer Read: Buffer output register  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x3F  
Note: New data is not being written to the buffer during the buffer read operation. Thus, care must be  
taken when reading from the buffer. If data loss is not desired, the buffer read operation should be  
completed within ODR clock cycle.  
SELF_TEST  
Self-Test: When 0xCA value is written to this register, the MEMS self-test function is enabled.  
Electrostatic-actuation of the accelerometer, results in a DC shift of the X, Y and Z axis outputs. Writing  
0x00 to this register will return the accelerometer to normal operation.  
**Note, this is a write-only register. Read back value from this register will always be 0x00.  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address: 0x60  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 63 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Embedded Applications  
Orientation Detection Feature  
The orientation detection feature of the KX224 will report changes in face up, face down, ± vertical and ±  
horizontal orientation. This intelligent embedded algorithm considers very important factors that provide accurate  
orientation detection from low cost tri-axis accelerometers. Factors such as: hysteresis, device orientation angle,  
and delay time are described below as these techniques are utilized inside the KX224.  
Hysteresis  
A 45° tilt angle threshold seems like a good choice because it is halfway between 0° and 90°. However,  
a problem arises when the user holds the device near 45°. Slight vibrations, noise and inherent sensor  
error will cause the acceleration to go above and below the threshold rapidly and randomly, so the screen  
will quickly flip back and forth between the 0° and the 90° orientations. This problem is avoided in the  
KX224 by choosing a 30° threshold angle. With a 30° threshold, the screen will not rotate from 0° to 90°  
until the device is tilted to 60° (30° from 90°). To rotate back to 0°, the user must tilt back to 30°, thus  
avoiding the screen flipping problem. This example essentially applies ± 15° of hysteresis in between the  
four screen rotation states. Table 25 shows the acceleration limits implemented for T =30°.  
Orientation X Acceleration (g) Y Acceleration (g)  
0°/360°  
90°  
180°  
270°  
-0.5 < ax < 0.5  
ax > 0.866  
-0.5 < ax < 0.5  
ax < -0.866  
ay > 0.866  
-0.5 < ay < 0.5  
ay < -0.866  
-0.5 < ay < 0.5  
Table 25: Acceleration at the four orientations with ± 15° of hysteresis  
The KX224 allows the user to change the amount of hysteresis in between the four screen rotation states.  
By simply writing to the HYST_SET register, the user can adjust the amount of hysteresis up to ± 45°.  
The plot in Figure 11 shows the typical amount of hysteresis applied for a given digital count value of  
HYST_SET.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 64 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
HYST_SET vs Hysteresis  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Hysteresis  
0
0
5
10  
15  
20  
25  
30  
HYST_SET Value (Counts)  
Figure 11: HYST_SET vs Hysteresis  
Device Orientation Angle (aka Tilt Angle)  
To ensure that horizontal and vertical device orientation changes are detected, even when it isn’t in the  
ideal vertical orientation – where the angle θ in Figure 12 is 90°, the KX224 considers device orientation  
angle in its algorithm.  
Figure 12: Device Orientation Angle  
As the angle in Figure 12 is decreased, the maximum gravitational acceleration on the X-axis or Y-axis  
will also decrease. Therefore, when the angle becomes small enough, the user will not be able to make  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 65 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
the screen orientation change. When the device orientation angle approaches 0° (device is flat on a desk  
or table), ax = ay = 0g, az = +1g, and there is no way to determine which way the screen should be  
oriented, the internal algorithm determines that the device is in either the face-up or face-down  
orientation, depending on the sign of the z-axis. The KX224 will only change the screen orientation when  
the orientation angle is above the factory-defaulted/user-defined threshold set in the TILT_ANGLE_LL  
register. Equation 2 can be used to determine what value to write to the TILT_ANGLE_LL register to set  
the device orientation angle. The value for TILT_ANGLE_HL is preset at the factory but can be adjusted  
in special cases (e.g. to reduce the effect of transient g-variation such as when device is being moved  
rather than just being rotated).  
TILT_ANGLE_LL (counts) = sin θ * (8 (counts/g))  
Equation 2: Tilt Angle Threshold  
Tilt Timer  
The 8-bit register, TILT_TIMER can be used to qualify changes in orientation. The KX224 does this by  
incrementing a counter with a size that is specified by the value in TILT_TIMER for each set of  
acceleration samples to verify that a change to a new orientation state is maintained. A user defined Tilt  
Position output data rate (ODR) as set by OTP<1:0> bits in CNTL3 register, determines the time period  
for each sample. Equation 3 shows how to calculate the TILT_TIMER register value for a desired delay  
time.  
TILT_TIMER (counts) = Delay Time (sec) x Tilt Position ODR (Hz)  
Equation 3: Tilt Position Delay Time  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 66 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Motion Interrupt Feature Description  
The Motion interrupt feature of the KX224 reports qualified changes in the high-pass filtered acceleration based  
on the wake-up Activity Threshold (ATH). If the high-pass filtered acceleration on any axis is greater than the  
user-defined wake-up activity threshold (ATH), the device has transitioned from an inactive state to an active  
state. Equation 4 shows how to calculate the ATH register value for a desired wake-up threshold. The wake-up  
engine function is independent of the user selected g-range and resolution.  
ATH (counts) = Wake-Up Threshold (g) x 4 (counts/g)  
Equation 4: Wake-Up Threshold  
An 8-bit raw unsigned value represents a counter that permits the user to qualify each active/inactive state  
change. Note that each Wake-Up Function Counter (WUFC) count value qualifies 1 (one) user-defined Wake-  
up Function ODR period as set by OWUF<2:0> bits in CNTL3 register. Equation 5 shows how to calculate the  
WUFC register value for a desired wake-up delay time.  
WUFC (counts) = Wake-Up Delay Time (sec) x Wake-up Function ODR (Hz)  
Equation 5: Wake-Up Delay Time  
The latched motion interrupt response algorithm works as following: while the part is in inactive state, the  
algorithm evaluates differential measurement between each new acceleration data point with the preceding one  
and evaluates it against the Activity Threshold (ATH). When the differential measurement is greater than ATH,  
the wake-up function counter (WUFC) starts the count. Differential measurements are now calculated based on  
the difference between the current acceleration and the acceleration when the counter started. The part will  
report that motion has occurred at the end of the count assuming each differential measurement has remained  
above the threshold. If at any moment during the count the differential measurement falls below the threshold,  
the counter will stop the count and the part will remain in inactive state.  
To illustrate how the algorithm works, consider the Figure 13 below that shows the latched response of the  
motion detection algorithm with the Wake-up Function Counter (WUFC) set to 10 counts. Note how the  
difference between the acceleration sample marked in red and the one marked in green resulted in a differential  
measurement represented with orange bar being above the Activity Threshold (ATH). At this point, the Wake-  
up Function Counter (WUFC) begins to count number of counts stored in WUFC register and the wake-up  
algorithm will evaluate the difference between each new acceleration measurement and the measurement  
marked in green that will remain a reference measurement for the duration of the counter count. At the end of  
the count, assuming all differential measurements were larger than Activity Threshold (ATH), as is the case in  
the example showed in Figure 13 a motion event will be reported.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 67 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Figure 13: Latched Motion Interrupt Response  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 68 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Directional-Tap Detection Feature Description  
The Directional-TapTM Detection feature of the KX224 recognizes single and double tap inputs and reports the  
acceleration axis and direction that each tap occurred. Eight performance parameters, as well as a user-  
selectable ODR are used to configure the KX224 for a desired tap detection response.  
Performance Index  
The Directional-TapTM detection algorithm uses low and high thresholds to help determine when a tap event has  
occurred. A tap event is detected when the previously described jerk summation exceeds the low threshold  
(TTL) for more than the tap detection low limit, but less than the tap detection high limit as contained in FTD.  
Samples that exceed the high limit (TTH) will be ignored. Figure 14 shows an example of a single tap event  
meeting the performance index criteria.  
Calculated Performance Index  
PI  
180  
: Sampled Data  
160  
140  
120  
100  
80  
60  
40  
TTL  
20  
0
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
3.2  
3.21  
time(sec)  
Figure 14: Jerk Summation vs Threshold  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 69 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Single Tap Detection  
The latency timer (TLT) sets the time period that a tap event will only be characterized as a single tap. A  
second tap must occur outside of the latency timer. If a second tap occurs inside the latency time, it will  
be ignored as it occurred too quickly. The single tap will be reported at the end of the TWS. Figure 15  
shows a single tap event meeting the PI, latency and window requirements.  
Calculated Performance Index  
160  
PI  
140  
TWS  
120  
100  
TLT  
80  
60  
40  
TTL  
20  
0
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
time(sec)  
Figure 15: Single Directional-TapTM Timing  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 70 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Double-Tap Detection  
An event can be characterized as a double tap if the second tap crosses the performance index (TTL)  
inside the TWS period and ends outside the TDTC. This means that the TDTC determines the minimum  
time separation that must exist between the two taps of a double tap event. Similar to the single tap, the  
first tap event must exceed the performance index for the time limit contained in FTD. Also, the duration  
when the first and second events combined exceed the performance index should not exceed STD. The  
double tap will be reported at the end of the second TLT. Figure 16 shows a double tap event meeting  
the PI, latency and window requirements.  
Figure 16: Double-TapTM Timing  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 71 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Free fall Detect  
The KX224 features a Free fall interrupt that sends a flag through the INT1 or the INT2 output pins when the  
accelerometer senses a Free fall event. The interrupt event is also reflected on the INT (bit 4) of the  
STATUS_REG and FFS (bit 7) of the INS2 registers. A Free fall event is evident when all three accelerometer  
axes simultaneously fall below a certain acceleration threshold for a set amount of time. The KX224 gives the  
user the option to define the acceleration threshold value through the FFTH 8-bit register where 256 counts  
cover the g range of the accelerometer. This value is compared to the top 8 bits of the accelerometer 32g output  
value (independent of the actual g-range setting of the device). Equation 6 shows how to calculate the FFTH  
register value for a desired Free fall threshold. The threshold of 0.5g is a good starting point.  
FFTH (counts) = Free fall Threshold (g) x 4 (counts/g)  
Equation 6: Free fall Threshold  
Through the Free Fall Counter (FFC), the user can set the amount of time all three accelerometer axes must  
simultaneously remain below the FFTH acceleration threshold before the Free fall interrupt flag is sent through  
the INT1 or the INT2 output pins. This delay/debounce time is defined by the available 0 to 255 counts, which  
represent accelerometer samples taken at the Free fall ODR defined by OFFI<2:0> bits in the FFCNTL register.  
Every count is calculated as 1/ODR delay period. Equation 7 shows how to calculate the FFC register value for  
a desired Free fall delay. The delay of 0.32 sec is a good starting point.  
FFC (counts) = Free fall delay (sec) x Free fall ODR (Hz)  
Equation 7: Free fall Threshold  
When the Free fall interrupt is enabled the part must not be in a physical state that would trigger the Free fall  
interrupt or the delay will not be correct for the present Free fall.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 72 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Typical Freefall Interrupt Example (nonLatching)  
255  
216  
Pos. Motion limit  
148  
Pos. Freefall limit  
128  
0g  
108  
Neg. Freefall limit  
40  
Neg. Motion limit  
0
Freefall debounce timer 10  
Set to 10 counts.  
FF/MOT Interrupt  
Figure 17: Typical Free Fall Interrupt Example (FFCNTL ULMODE = 1)  
Typical Freefall Interrupt Example (Latching)  
255  
216  
Pos. Motion limit  
148  
Pos. Freefall limit  
128  
0g  
108  
Neg. Freefall limit  
40  
Neg. Motion limit  
0
Freefall debounce timer 10  
Set to 10 counts.  
FF/MOT Interrupt  
Figure 18: Typical Free Fall Interrupt Example (FFCNTL ULMODE = 0)  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 73 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Sample Buffer Feature Description  
The sample buffer feature of the KX224 accumulates and outputs acceleration data based on how it is  
configured. There are 4 buffer modes available, and samples can be accumulated at either low (8-bit) or high  
(16-bit) resolution. Acceleration data is collected at the ODR specified by OSA[3:0] in the ODCNTL register.  
Each buffer mode accumulates data, reports data, and interacts with status indicators in a slightly different way.  
FIFO Mode  
Data Accumulation  
Sample collection stops when the buffer is full.  
Data Reporting  
Data is reported with the oldest byte of the oldest sample first (X_L or X based on  
resolution).  
Status Indicators  
A watermark interrupt occurs when the number of samples in the buffer reaches  
the Sample Threshold. The watermark interrupt stays active until the buffer  
contains less than this number of samples. This can be accomplished through  
clearing the buffer or explicitly reading greater than SMPX samples (calculated  
with Equation 8).  
BUF_RES=0:  
SMPX = SMP_LEV[10:0] /3 SMP_TH[9:0]  
BUF_RES=1:  
SMPX = SMP_LEV[10:0] /6 SMP_TH[9:0]  
Equation 8: Samples Above Sample Threshold  
Stream Mode  
Data Accumulation  
Sample collection continues when the buffer is full; older data is discarded to make  
room for newer data.  
Data Reporting  
Data is reported with the oldest sample first (uses FIFO read pointer).  
Status Indicators  
A watermark interrupt occurs when the number of samples in the buffer reaches  
the Sample Threshold. The watermark interrupt stays active until the buffer  
contains less than this number of samples. This can be accomplished through  
clearing the buffer or explicitly reading greater than SMPX samples (calculated  
with Equation 8).  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 74 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Trigger Mode  
Data Accumulation  
When a physical interrupt is caused by one of the digital engines or when a logic  
high signal occurs on the TRIG pin, the trigger event is asserted and SMP_TH[9:0]  
samples prior to the event are retained. Sample collection continues until the buffer  
is full.  
Data Reporting  
Data is reported with the oldest sample first (uses FIFO read pointer).  
Status Indicators  
When a physical interrupt occurs and there are at least SMP_TH[9:0] samples in  
the buffer, BUF_TRIG in BUF_STATUS_2 is asserted.  
FILO Mode  
Data Accumulation  
Sample collection continues when the buffer is full; older data is discarded to make  
room for newer data.  
Data Reporting  
Data is reported with the newest byte of the newest sample first (Z_H or Z based  
on resolution).  
Status Indicators  
A watermark interrupt occurs when the number of samples in the buffer reaches  
the Sample Threshold. The watermark interrupt stays active until the buffer  
contains less than this number of samples. This can be accomplished through  
clearing the buffer or explicitly reading greater than SMPX samples (calculated  
with Equation 8).  
Buffer Operation  
The following diagrams illustrate the operation of the buffer conceptually. Actual physical  
implementation has been abstracted to offer a simplified explanation of how the different buffer  
modes operate. Figure 19 represents a high-resolution 3-axis sample within the buffer. Figure 20  
Figure 28 represent a 10-sample version of the buffer (for simplicity), with Sample Threshold  
set to 8.  
Regardless of the selected mode, the buffer fills sequentially, one byte at a time. Figure 19 shows  
one 6-byte data sample. Note the location of the FILO read pointer versus that of the FIFO read  
pointer.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 75 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Index  
Byte  
X_L  
X_H  
Y_L  
Y_H  
Z_L  
Z_H  
0
1
2
3
4
5
6
-- FIFO read pointer  
-- FILO read pointer  
buffer write pointer --  
Figure 19: One Buffer Sample  
Regardless of the selected mode, the buffer fills sequentially, one sample at a time. Note in Figure  
20 the location of the FILO read pointer versus that of the FIFO read pointer. The buffer write  
pointer shows where the next sample will be written to the buffer.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
FIFO read pointer  
FILO read pointer  
buffer write pointer →  
Sample Threshold  
Figure 20: Buffer Filling  
36 Thornwood Dr. Ithaca, NY 14850  
© 2017 Kionix All Rights Reserved  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
756-10411-1712221306-0.37  
Page 76 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
The buffer continues to fill sequentially until the Sample Threshold is reached. Note in Figure 21  
the location of the FILO read pointer versus that of the FIFO read pointer.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
FIFO read pointer  
FILO read pointer  
Sample Threshold  
buffer write pointer →  
Figure 21: Buffer Approaching Sample Threshold  
In FIFO, Stream, and FILO modes, a watermark interrupt is issued when the number of samples  
in the buffer reaches the Sample Threshold. In trigger mode, this is the point where the oldest  
data in the buffer is discarded to make room for newer data.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
FIFO read pointer  
Sample Threshold/FILO read pointer  
buffer write pointer →  
Figure 22: Buffer at Sample Threshold  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 77 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
In trigger mode, data is accumulated in the buffer sequentially until the Sample Threshold is  
reached. Once the Sample Threshold is reached, the oldest samples are discarded when new  
samples are collected. Note in Figure 23 how Data0 was thrown out to make room for Data8.  
Index  
Sample  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
0
1
2
3
4
5
6
7
8
9
Trigger read pointer  
Trigger write pointer →  
Sample Threshold  
Figure 23: Additional Data Prior to Trigger Event  
After a trigger event occurs, the buffer no longer discards the oldest samples, and instead begins  
accumulating samples sequentially until full. The buffer then stops collecting samples, as seen in  
Figure 24. This results in the buffer holding SMP_TH[9:0] samples prior to the trigger event, and  
SMPX samples after the trigger event.  
Index Sample  
0
Data1  
Trigger read pointer  
1
2
3
4
5
Data2  
Data3  
Data4  
Data5  
Data6  
6
7
Data7  
Data8  
Sample Threshold  
8
9
Data9  
Data10  
Figure 24: Additional Data after Trigger Event  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 78 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
In FIFO, Stream, FILO, and Trigger (after a trigger event has occurred) modes, the buffer  
continues filling sequentially after the Sample Threshold is reached. Sample accumulation after  
the buffer is full depends on the selected operation mode. FIFO and Trigger modes stop  
accumulating samples when the buffer is full, and Stream and FILO modes begin discarding the  
oldest data when new samples are accumulated.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
FIFO read pointer  
Sample Threshold  
FILO read pointer  
Figure 25: Buffer Full  
After the buffer has been filled in FILO or Stream mode, the oldest samples are discarded when  
new samples are collected. Note in Figure 26 how Data0 was thrown out to make room for  
Data10.  
Index Sample  
0
Data1  
FIFO read pointer  
1
2
3
4
5
Data2  
Data3  
Data4  
Data5  
Data6  
6
Data7  
7
8
9
Data8  
Data9  
Data10  
Sample Threshold  
FILO read pointer  
Figure 26: Buffer Full – Additional Sample Accumulation in Stream or FILO Mode  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 79 of 82  
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
In FIFO, Stream, or Trigger mode, reading one sample from the buffer will remove the oldest  
sample and effectively shift the entire buffer contents up, as seen in Figure 27.  
Index Sample  
0
1
2
3
4
5
6
7
8
9
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
FIFO read pointer  
Sample Threshold  
FILO read pointer  
buffer write pointer →  
Figure 27: FIFO Read from Full Buffer  
In FILO mode, reading one sample from the buffer will remove the newest sample and leave  
the older samples untouched, as seen in Figure 28.  
Index Sample  
0
Data0  
FIFO read pointer  
1
2
3
4
5
Data1  
Data2  
Data3  
Data4  
Data5  
6
7
8
9
Data6  
Data7  
Data8  
Sample Threshold  
FILO read pointer  
buffer write pointer →  
Figure 28: FILO Read from Full Buffer  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 80 of 82  
 
 
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Revision History  
Revision  
Description  
Date  
1.0  
2.0  
Initial Release  
26-Sep-2016  
Updated Bandwidth (-3dB) setting in Electrical Speicifications table and 22-Dec-2017  
corresponding note under the table.  
Updated Mechanical Resonant frequency in Mechanical Spec.  
Updated Noise in Mechanical Spec table.  
Updated Functional Diagram.  
Updated 3-Wire Read and Write Registers section.  
Revised RoHS/REACH compliance section.  
Updated Start Up Time and Current Profile figures.  
Updated IO_VDD max parameter.  
Revised Package Outline Drawing.  
Revised Sample Buffer, Motion Interrupt, Free fall Detect, Device Orientation  
engine descriptions.  
Updated SPI3E, PC1, RES, IIR_BYPASS, SMP_TH, BUFE, BFI, WMI, IEL1,  
IEL2, TDTS, SRST, BUF_TRIG bit descriptions.  
Revised INT1, INT2 pin descriptions.  
Revised CNTL3, LP_CNTL, SELF-TEST, INT_REL, FFC, FFCNTL,  
BUF_READ, BUF_CLEAR register descriptions.  
"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or otherwise under  
any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for  
its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior notice. This publication supersedes  
and replaces all information previously supplied.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 81 of 82  
PART NUMBER:  
± 8g / 16g / 32g Tri-axis Digital  
Accelerometer Specifications  
KX224-1053  
Rev. 2.0  
22-Dec-2017  
Appendix  
The following Notice is included to guide the use of Kionix products in its application and manufacturing  
processes. Kionix, Inc., is a ROHM Group company. For purposes of this Notice, the name “ROHM” would also  
imply Kionix, Inc.  
36 Thornwood Dr. Ithaca, NY 14850  
tel: 607-257-1080 fax: 607-257-1146  
www.kionix.com - info@kionix.com  
© 2017 Kionix All Rights Reserved  
756-10411-1712221306-0.37  
Page 82 of 82  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

KX224-1053-SR

± 8g / 16g / 32g Tri-axis Digital Accelerometer Specifications
ETC

KX24-100R-6ST-H1

Board Connector, 100 Contact(s), 2 Row(s), Female, Straight, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-100R-LT-H1

Board Connector, 100 Contact(s), 2 Row(s), Female, Right Angle, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-120R-6ST-H1

Board Connector, 120 Contact(s), 2 Row(s), Female, Straight, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-120R-LT-H1

Board Connector, 120 Contact(s), 2 Row(s), Female, Right Angle, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-140R-6ST-H1

Board Connector, 140 Contact(s), 2 Row(s), Female, Straight, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-140R-LT-H1

Board Connector, 140 Contact(s), 2 Row(s), Female, Right Angle, 0.031 inch Pitch, Solder Terminal, Locking, Black Insulator, Receptacle, ROHS COMPLIANT
JAE

KX24-140R-LT1-H1

Board Connector, 140 Contact(s), 2 Row(s), Female, Right Angle, 0.031 inch Pitch, Solder Terminal, Locking, Black Insulator,
JAE

KX24-180R-6ST-H1

Board Connector, 180 Contact(s), 2 Row(s), Female, Straight, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-180R-LT-H1

Board Connector, 180 Contact(s), 2 Row(s), Female, Right Angle, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX24-80R-6ST-H1

Board Connector, 80 Contact(s), 2 Row(s), Female, Straight, Solder Terminal, Receptacle, ROHS COMPLIANT
JAE

KX25-080P-LT1-H1

Board Connector
JAE