KXTF9 [ETC]

kionix :动感传感器 加速度传感器 三维角度传感器 柴先生13924663851; Kionix公司:动感传感器加速度传感器三维角度传感器>柴先生13924663851
KXTF9
型号: KXTF9
厂家: ETC    ETC
描述:

kionix :动感传感器 加速度传感器 三维角度传感器 柴先生13924663851
Kionix公司:动感传感器加速度传感器三维角度传感器>柴先生13924663851

传感器
文件: 总41页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Product Description  
The KXTF9 is a tri-axis +/-2g, +/-4g or +/-8g silicon  
micromachined accelerometer with integrated orientation,  
tap/double tap, and activity detecting algorithms. The sense  
element is fabricated using Kionix’s proprietary plasma  
micromachining process technology. Acceleration sensing is  
based on the principle of a differential capacitance arising from  
acceleration-induced motion of the sense element, which  
further utilizes common mode cancellation to decrease errors  
from process variation, temperature, and environmental stress.  
The sense element is hermetically sealed at the wafer level by  
bonding a second silicon lid wafer to the device using a glass  
frit. A separate ASIC device packaged with the sense element  
provides  
signal  
conditioning,  
and  
intelligent  
user-  
programmable application algorithms. The accelerometer is  
delivered in a 3 x 3 x 0.9 mm LGA plastic package operating  
from a 1.8 – 3.6V DC supply. I2C interface is used to  
communicate to the chip to configure and check updates to the orientation, Directional TapTM  
detection and activity monitoring algorithms.  
Functional Diagram  
X
Sensor  
Y
Sensor  
Charge  
Amp  
A/D  
Z
Sensor  
5
Vdd  
I 2C  
Digital Engine  
Digital  
Filter  
1
4
IO Vdd  
GND  
9
10  
7
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 1 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Product Specifications  
Table 1. Mechanical  
(specifications are for operation at 1.8V and T = 25C unless stated otherwise)  
Parameters  
Operating Temperature Range  
Zero-g Offset  
Units  
ºC  
Min  
-40  
Typical  
Max  
85  
-
-
mg  
-125  
+125  
0.7 (xy)  
0.4 (z)  
1024  
Zero-g Offset Variation from RT over Temp.  
mg/ºC  
GSEL1=0, GSEL=0 ( 2g)  
988  
494  
1060  
530  
Sensitivity (12-bit)1  
counts/g  
GSEL1=0, GSEL0=1 ( 4g)  
512  
GSEL1=1, GSEL0=0 ( 8g)  
GSEL1=0, GSEL=0 ( 2g)  
247  
61  
256  
64  
265  
67  
Sensitivity (8-bit)1  
counts/g  
GSEL1=0, GSEL0=1 ( 4g)  
30  
32  
34  
GSEL1=1, GSEL0=0 ( 8g)  
15  
16  
17  
0.01 (xy)  
0.03 (z)  
0.3  
Sensitivity Variation from RT over Temp.  
%/ºC  
%
Offset Ratiometric Error (Vdd = 1.8V 5%)  
Sensitivity Ratiometric Error (Vdd = 1.8V 5%)  
0.4 (xy)  
0.2 (z)  
0.9 (x)  
0.8 (y)  
0.7 (z)  
3500 (xy)  
1800 (z)  
1
%
Self Test Output change on Activation  
Mechanical Resonance (-3dB)2  
g
Hz  
Non-Linearity  
% of FS  
%
Cross Axis Sensitivity  
2
Notes:  
1. Resolution and acceleration ranges are user selectable via I2C.  
2. Resonance as defined by the dampened mechanical sensor.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 2 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Table 2. Electrical  
(specifications are for operation at 1.8V and T = 25C unless stated otherwise)  
Parameters  
Supply Voltage (Vdd) Operating  
I/O Pads Supply Voltage (VIO)  
Units  
Min  
Typical  
Max  
V
V
1.8  
1.7  
1.8  
3.6  
Vdd  
All On (Res = 1)  
470  
-
570  
230  
670  
Current Consumption  
µ
A
All On (RES = 0)  
Standby  
-
0.1  
-
Output Low Voltage1  
Output High Voltage  
Input Low Voltage  
V
-
0.3 * Vio  
V
V
V
0.9 * Vio  
-
-
-
-
0.2 * Vio  
-
Input High Voltage  
Input Pull-down Current  
0.8 * Vio  
-
0
µ
A
RES = 0  
0.050  
160  
80  
40  
20  
10  
5
RES = 1, ODR = 12.5Hz  
RES = 1, ODR = 25 Hz  
RES = 1, ODR = 50Hz  
RES = 1, ODR = 100Hz  
RES = 1, ODR = 200Hz  
RES = 1, ODR = 400Hz  
RES = 1, ODR = 800Hz  
Start Up Time2  
ms  
2.5  
20  
Power Up Time3  
ms  
KHz  
Hz  
I2C Communication Rate  
Output Data Rate (ODR)4  
400  
800  
12.5  
50  
RES = 0  
RES = 1  
KHz  
Hz  
1.59  
Bandwidth (-3dB)5  
Notes:  
ODR/2  
1. Assuming I2C communication and minimum 1.5Kohm pull-up resistor on SCL and  
SDA pins.  
2. Start up time is from PC1 set to valid outputs.  
3. Power up time is from Vdd valid to device boot completion.  
4. User selectable through I2C.  
5. User selectable and dependant on ODR and RES.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 3 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Table 3. Environmental  
Parameters  
Supply Voltage (Vdd) Absolute Limits  
Operating Temperature Range  
Storage Temperature Range  
Units  
V
Min  
-0.3  
-40  
Typical  
Max  
6.0  
-
-
-
ºC  
85  
ºC  
-55  
150  
5000 for 0.5ms  
10000 for 0.2ms  
Mech. Shock (powered and unpowered)  
g
-
-
-
-
ESD  
HBM  
V
2000  
Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling  
can cause permanent damage to the device.  
This product conforms to Directive 2002/95/EC of the European Parliament and of the  
Council of the European Union (RoHS). Specifically, this product does not contain lead,  
mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), or  
polybrominated diphenyl ethers (PBDE) above the maximum concentration values  
(MCV) by weight in any of its homogenous materials. Homogenous materials are "of  
uniform composition throughout."  
This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this  
HF product contain a maximum total halogen content of 1500 ppm with less than 900-ppm  
bromine and less than 900-ppm chlorine.  
Soldering  
Soldering recommendations are available upon request or from www.kionix.com.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 4 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Application Schematic  
Table 4. KXTF9 Pin Descriptions  
Pin  
1
Name  
IO Vdd  
DNC  
DNC  
GND  
Vdd  
Description  
The power supply input for the digital communication bus. Decouple this pin to ground with a 0.1uF ceramic capacitor.  
2
Reserved – Do Not Connect  
3
Reserved – Do Not Connect  
4
Ground  
5
The power supply input. Decouple this pin to ground with a 1uF ceramic capacitor.  
6
DNC  
INT  
Reserved – Do Not Connect  
Physical Interrupt  
7
8
DNC  
SCL  
Reserved – Do Not Connect  
I2C Serial Clock  
9
10  
SDA  
I2C Serial Data  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 5 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Test Specifications  
!
Special Characteristics:  
These characteristics have been identified as being critical to the customer. Every part is tested to  
verify its conformance to specification prior to shipment.  
Table 5. Test Specifications  
Parameter  
Zero-g Offset @ RT  
Sensitivity @ RT  
Specification  
0 +/- 128 counts  
1024 +/- 36 counts/g  
Test Conditions  
25C, Vdd = 1.8 V  
25C, Vdd = 1.8 V  
Current Consumption -- Operating 470 <= Idd <= 670 uA 25C, Vdd = 1.8 V  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 6 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Package Dimensions and Orientation  
3 x 3 x 0.9 mm LGA  
All dimensions and tolerances conform to ASME Y14.5M-1994  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 7 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Orientation  
+Y  
Pin 1  
+X  
+Z  
When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=0, GSEL0=0 ( 2g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution (bits)  
X (counts)  
12  
0
8
0
12 8  
1024 64  
12  
0
8
0
12 8  
3072 192  
12  
8
0
0
12  
8
0
0
0
0
0
0
1024 64  
0
0
0
0
3072 192  
0
0
0
0
Y (counts)  
0
Z (counts)  
0
0
0
1024 64 3072 192  
0
+
0
+
0
0
0
-
-
0
0
+
0
0
-
X-Polarity  
Y-Polarity  
Z-Polarity  
0
0
0
(1g)  
Earth’s Surface  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 8 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=0, GSEL0=1 ( 4g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution (bits)  
X (counts)  
12  
0
8
0
12  
8
12  
0
8
0
12  
8
12  
8
0
0
12  
8
512 32  
3584 224  
0
0
0
0
0
0
512 32  
0
0
0
0
3584 224  
0
0
0
0
Y (counts)  
0
Z (counts)  
0
0
0
512 32 3584 224  
0
+
0
+
0
0
0
-
-
0
0
+
0
0
-
X-Polarity  
Y-Polarity  
Z-Polarity  
0
0
0
(1g)  
Earth’s Surface  
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):  
GSEL1=1, GSEL0=0 ( 8g)  
Position  
1
2
3
4
5
6
Top  
Bottom  
Diagram  
Bottom  
Top  
Resolution (bits)  
X (counts)  
12  
0
8
0
12 8  
256 16  
12  
0
8
0
12 8  
3840 240  
12  
8
0
0
12  
8
0
0
0
0
0
0
256 16  
0
0
0
0
3840 240  
0
0
0
0
Y (counts)  
0
Z (counts)  
0
0
0
256 16 3840 240  
0
+
0
+
0
0
0
-
-
0
0
+
0
0
-
X-Polarity  
Y-Polarity  
Z-Polarity  
0
0
0
(1g)  
Earth’s Surface  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 9 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
KXTF9 Digital Interface  
The Kionix KXTF9 digital accelerometer has the ability to communicate on the I2C digital serial interface  
bus. This flexibility allows for easy system integration by eliminating analog-to-digital converter  
requirements and by providing direct communication with system micro-controllers.  
The serial interface terms and descriptions as indicated in Table 6 below will be observed throughout this  
document.  
Term  
Transmitter  
Receiver  
Master  
Description  
The device that transmits data to the bus.  
The device that receives data from the bus.  
The device that initiates a transfer, generates clock signals, and terminates a transfer.  
The device addressed by the Master.  
Slave  
Table 6. Serial Interface Terminologies  
I2C Serial Interface  
As previously mentioned, the KXTF9 has the ability to communicate on an I2C bus. I2C is primarily used for  
synchronous serial communication between a Master device and one or more Slave devices. The Master,  
typically a micro controller, provides the serial clock signal and addresses Slave devices on the bus. The  
KXTF9 always operates as a Slave device during standard Master-Slave I2C operation.  
I2C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL  
is a serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master  
into a wait condition. SDA is a bi-directional line used to transmit and receive data to and from the  
interface. Data is transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of  
bytes transmitted per transfer is unlimited. The I2C bus is considered free when both lines are high.  
I2C Operation  
Transactions on the I2C bus begin after the Master transmits a start condition (S), which is defined as a  
high-to-low transition on the data line while the SCL line is held high. The bus is considered busy after this  
condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in  
the seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be  
receiving data ‘1’ from the Slave or transmitting data ‘0’ to the Slave. When a Slave Address is sent, each  
device on the bus compares the seven MSBs with its internally stored address. If they match, the device  
considers itself addressed by the Master. The Slave Address associated with the KXTF9 is 0001111.  
It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter  
must release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it  
remains stable low during the high period of the ACK clock pulse. A receiver that has been addressed,  
whether it is Master or Slave, is obliged to generate an ACK after each byte of data has been received. To  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091222-00  
www.kionix.com - info@kionix.com  
Page 10 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
conclude a transaction, the Master must transmit a stop condition (P) by transitioning the SDA line from low  
to high while SCL is high. The I2C bus is now free.  
Writing to a KXTF9 8-bit Register  
Upon power up, the Master must write to the KXTF9’s control registers to set its operational mode.  
Therefore, when writing to a control register on the I2C bus, as shown Sequence 1 on the following page,  
the following protocol must be observed: After a start condition, SAD+W transmission, and the KXTF9  
ACK has been returned, an 8-bit Register Address (RA) command is transmitted by the Master. This  
command is telling the KXTF9 to which 8-bit register the Master will be writing the data. Since this is I2C  
mode, the MSB of the RA command should always be zero (0). The KXTF9 acknowledges the RA and the  
Master transmits the data to be stored in the 8-bit register. The KXTF9 acknowledges that it has received  
the data and the Master transmits a stop condition (P) to end the data transfer. The data sent to the  
KXTF9 is now stored in the appropriate register. The KXTF9 automatically increments the received RA  
commands and, therefore, multiple bytes of data can be written to sequential registers after each Slave  
ACK as shown in Sequence 2 on the following page.  
Reading from a KXTF9 8-bit Register  
When reading data from a KXTF9 8-bit register on the I2C bus, as shown in Sequence 3 on the next page,  
the following protocol must be observed: The Master first transmits a start condition (S) and the  
appropriate Slave Address (SAD) with the LSB set at ‘0’ to write. The KXTF9 acknowledges and the  
Master transmits the 8-bit RA of the register it wants to read. The KXTF9 again acknowledges, and the  
Master transmits a repeated start condition (Sr). After the repeated start condition, the Master addresses  
the KXTF9 with a ‘1’ in the LSB (SAD+R) to read from the previously selected register. The Slave then  
acknowledges and transmits the data from the requested register. The Master does not acknowledge  
(NACK) it received the transmitted data, but transmits a stop condition to end the data transfer. Note that  
the KXTF9 automatically increments through its sequential registers, allowing data to be read from multiple  
registers following a single SAD+R command as shown below in Sequence 4 on the following page.  
If a receiver cannot transmit or receive another complete byte of data until it has performed some other  
function, it can hold SCL low to force the transmitter into a wait state. Data transfer only continues when  
the receiver is ready for another byte and releases SCL.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091222-00  
www.kionix.com - info@kionix.com  
Page 11 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Data Transfer Sequences  
The following information clearly illustrates the variety of data transfers that can occur on the I2C bus and  
how the Master and Slave interact during these transfers. Table 7 defines the I2C terms used during the  
data transfers.  
Term  
S
Definition  
Start Condition  
Sr  
Repeated Start Condition  
Slave Address  
SAD  
W
Write Bit  
R
Read Bit  
ACK  
NACK  
RA  
Acknowledge  
Not Acknowledge  
Register Address  
Transmitted/Received Data  
Stop Condition  
Data  
P
Table 7. I2C Terms  
Sequence 1. The Master is writing one byte to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Sequence 2. The Master is writing multiple bytes to the Slave.  
Master  
Slave  
S
SAD + W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
Sequence 3. The Master is receiving one byte of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
NACK  
P
ACK  
ACK  
ACK DATA  
Sequence 4. The Master is receiving multiple bytes of data from the Slave.  
Master  
Slave  
S
SAD + W  
RA  
Sr SAD + R  
ACK  
NACK  
P
ACK  
ACK  
ACK DATA  
DATA  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 12 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
KXTF9 Embedded Registers  
The KXTF9 has 39 embedded 8-bit registers that are accessible by the user. This section contains the  
addresses for all embedded registers and also describes bit functions of each register. Table 8 below  
provides a listing of the accessible 8-bit registers and their addresses.  
Type  
I2C Read/Write Address  
Register Name  
XOUT_HPF_L  
XOUT_HPF_H  
YOUT_HPF_L  
YOUT_HPF_H  
ZOUT_HPF_L  
ZOUT_HPF_H  
XOUT_L  
Read/Write  
Hex  
Binary  
R
R
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0001 0100  
0001 0101  
0000 0110  
0000 0111  
0000 1000  
0000 1001  
0001 1010  
0001 1011  
0000 1100  
0000 1101  
0000 1110  
0000 1111  
0001 0000  
0001 0001  
0001 0010  
0001 0011  
0001 0100  
0001 0101  
0001 0110  
0001 0111  
0001 1000  
0001 1001  
0001 1010  
0001 1011  
0001 1100  
0001 1101  
0001 1110  
0001 1111  
R
R
R
R
R
XOUT_H  
R
YOUT_L  
R
YOUT_H  
R
ZOUT_L  
R
ZOUT_H  
R
DCST_RESP  
Not Used  
R
-
Not Used  
-
WHO_AM_I  
R
TILT_POS_CUR  
TILT_POS_PRE  
Kionix Reserved  
Kionix Reserved  
Kionix Reserved  
INT_SRC_REG1  
INT_SRC_REG2  
Not Used  
R
R
-
-
-
R
R
-
STATUS_REG  
Not Used  
R
-
INT_REL  
R
CTRL_REG1*  
CTRL_REG2*  
CTRL_REG3*  
INT_CTRL_REG1*  
INT_CTRL_REG2*  
R/W  
R/W  
R/W  
R/W  
R/W  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 13 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
INT_CTRL_REG3*  
DATA_CTRL_REG*  
Not Used  
R/W  
R/W  
-
0x20  
0x21  
0010 0000  
0010 0001  
-
0x22 – 0x27  
0x28  
TILT_TIMER*  
R/W  
R/W  
-
0010 1000  
0010 1001  
0010 1010  
0010 1011  
0010 1100  
0010 1101  
0010 1110  
0010 1111  
0011 0000  
0011 0001  
-
WUF_TIMER*  
Not Used  
0x29  
0x2A  
TDT_TIMER*  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0x2B  
TDT_H_THRESH*  
TDT_L_THRESH*  
TDT_TAP_TIMER*  
TDT_TOTAL_TIMER*  
TDT_LATENCY_TIMER*  
TDT_WINDOW_TIMER*  
Reserved  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32 – 0x39  
0x3A  
SELF_TEST  
R/W  
-
0011 1010  
-
Reserved  
0x3B – 0x59  
0x5A  
WUF_THRESH*  
Reserved  
R/W  
-
0101 1010  
0101 1011  
0101 1100  
-
0x5B  
TILT_ANGLE*  
Reserved  
R/W  
-
0x5C  
0x5D – 0x5E  
0x5F  
HYST_SET*  
R/W  
0101 1111  
* Note: When changing the contents of these registers, the PC1 bit in CTRL_REG1 must  
first be set to “0”.  
Table 8. KXTF9 Register Map  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 14 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
KXTF9 Register Descriptions  
Accelerometer Outputs  
These registers contain up to 12-bits of valid acceleration data for each axis depending on the  
setting of the RES bit in CTRL_REG1, where the acceleration outputs are represented in 12-bit  
valid data when RES = ‘1’ and 8-bit valid data when RES = ‘0’. The data is updated every user-  
defined ODR period, is protected from overwrite during each read, and can be converted from  
digital counts to acceleration (g) per Figure 9 below.  
12-bit Data  
0111 1111 1111  
0111 1111 1110  
Range = +/-2g Range = +/-4g Range = +/-8g  
+1.999g  
+1.998g  
+3.998g  
+3.996g  
+7.996g  
+7.992g  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
+0.001g  
0.000g  
-0.001g  
+0.002g  
0.000g  
-0.002g  
+0.004g  
0.000g  
-0.004g  
1000 0000 0001  
1000 0000 0000  
-1.999g  
-2.000g  
-3.998g  
-4.000g  
-7.996g  
-8.000g  
8-bit Data  
0111 1111  
0111 1110  
Range = +/-2g Range = +/-4g Range = +/-8g  
+1.984g  
+1.968g  
+3.968g  
+3.936g  
+7.936g  
+7.872g  
0000 0001  
+0.016g  
0.000g  
-0.016g  
+0.032g  
0.000g  
-0.032g  
+0.064g  
0.000g  
-0.064g  
0000 0000  
1111 1111  
1000 0001  
-1.984g  
-2.000g  
-3.968g  
-4.000g  
-7.936g  
-8.000g  
1000 0000  
Figure 9. Acceleration (g) Calculation  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 15 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
XOUT_HPF_L  
X-axis high-pass filtered accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
XOUTD3 XOUTD2 XOUTD1 XOUTD0  
Bit7 Bit6 Bit5 Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x00h  
XOUT_HPF_H  
X-axis high-pass filtered accelerometer output most significant byte  
R
R
R
R
R
R
R
R
XOUTD11 XOUTD10 XOUTD9 XOUTD8 XOUTD7 XOUTD6 XOUTD5 XOUTD4  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x01h  
YOUT_HPF_L  
Y-axis high-pass filtered accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
YOUTD3 YOUTD2 YOUTD1 YOUTD0  
Bit7 Bit6 Bit5 Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x02h  
YOUT_HPF_H  
Y-axis high-pass filtered accelerometer output most significant byte  
R
R
R
R
R
R
R
R
YOUTD11 YOUTD10 YOUTD9 YOUTD8 YOUTD7 YOUTD6 YOUTD5 YOUTD4  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x03h  
ZOUT_HPF_L  
Z-axis high-pass filtered accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
ZOUTD3 ZOUTD2 ZOUTD1 ZOUTD0  
Bit7 Bit6 Bit5 Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x04h  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 16 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
ZOUT_HPF_H  
Z-axis high-pass filtered accelerometer output most significant byte  
R
R
R
R
R
R
R
R
ZOUTD11 ZOUTD10 ZOUTD9 ZOUTD8 ZOUTD7 ZOUTD6 ZOUTD5 ZOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x05h  
XOUT_L  
X-axis accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
XOUTD3 XOUTD2 XOUTD1 XOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x06h  
XOUT_H  
X-axis accelerometer output most significant byte  
R
R
R
R
R
R
R
R
XOUTD11 XOUTD10 XOUTD9 XOUTD8 XOUTD7 XOUTD6 XOUTD5 XOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x07h  
YOUT_L  
Y-axis accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
YOUTD3 YOUTD2 YOUTD1 YOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x08h  
YOUT_H  
Y-axis accelerometer output most significant byte  
R
R
R
R
R
R
R
R
YOUTD11 YOUTD10 YOUTD9 YOUTD8 YOUTD7 YOUTD6 YOUTD5 YOUTD4  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x09h  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 17 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
ZOUT_L  
Z-axis accelerometer output least significant byte  
R
R
R
R
R
X
R
X
R
X
R
X
ZOUTD3 ZOUTD2 ZOUTD1 ZOUTD0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x0Ah  
ZOUT_H  
Z-axis accelerometer output most significant byte  
R
R
R
R
R
R
R
R
ZOUTD11 ZOUTD10 ZOUTD9 ZOUTD8 ZOUTD7 ZOUTD6 ZOUTD5 ZOUTD4  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x0Bh  
DCST_RESP  
This register can be used to verify proper integrated circuit functionality. It always has a byte value  
of 0x55h unless the DCST bit in CTRL_REG3 is set. At that point this value is set to 0xAAh. The  
byte value is returned to 0x55h after reading this register.  
R
R
R
R
R
R
R
R
DCSTR7 DCSTR6 DCSTR5 DCSTR4 DCSTR3 DCSTR2 DCSTR1 DCSTR0  
Reset Value  
01010101  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x0Ch  
WHO_AM_I  
This register can be used for supplier recognition, as it can be factory written to a known byte value.  
The default value is 0x01h.  
R
R
R
R
R
R
R
R
WIA7  
Bit7  
WIA6  
Bit6  
WIA5  
Bit5  
WIA4  
Bit4  
WIA3  
Bit3  
WIA2  
Bit2  
WIA1  
Bit1  
WIA0  
Bit0  
Reset Value  
00000001  
I2C Address: 0x0Fh  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 18 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Tilt Position Registers  
These two registers report previous and current position data that is updated at the user-defined  
ODR frequency and is protected during register read. Table 9 describes the reported position for  
each bit value.  
TILT_POS_CUR  
Current tilt position register  
R
0
R
0
R
R
RI  
R
R
R
R
Reset Value  
00100000  
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
I2C Address: 0x10h  
TILT_POS_PRE  
Previous tilt position register  
R
0
R
0
R
R
RI  
R
R
R
R
Reset Value  
00100000  
LE  
DO  
Bit3  
UP  
Bit2  
FD  
Bit1  
FU  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
I2C Address: 0x11h  
Bit  
LE  
RI  
Description  
Left State (X-)  
Right State (X+)  
Down State (Y-)  
Up State (Y+)  
DO  
UP  
FD  
FU  
Face-Down State (Z-)  
Face-Up State (Z+)  
Table 9. KXTF9 Tilt Position  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 19 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Interrupt Source Registers  
These two registers report function state changes. This data is updated when a new state change  
or event occurs and each applications result is latched until the interrupt release register is read.  
The motion interrupt bit WUFS can be configured to report data in an unlatched manner via the  
interrupt control registers.  
INT_SRC_REG1  
This register reports which axis and direction detected a single or double tap event, per  
Table 10.  
R
0
R
0
R
R
R
R
R
R
TLE  
Bit5  
TRI  
Bit4  
TDO  
Bit3  
TUP  
Bit2  
TFD  
Bit1  
TFU  
Bit0  
Bit7  
Bit6  
I2C Address: 0x15h  
Bit  
Description  
TLE  
TRI  
X Negative (X-) Reported  
X Positive (X+) Reported  
Y Negative (Y-) Reported  
Y Positive (Y+) Reported  
Z Negative (Z-) Reported  
Z Positive (Z+) Reported  
TDO  
TUP  
TFD  
TFU  
Table 10. KXTF9 Directional TapTM Reporting  
INT_SRC_REG2  
This register reports which function caused an interrupt. Reading from the interrupt release  
register will clear the entire contents of this register.  
R
0
R
0
R
0
R
R
R
R
R
DRDY  
Bit4  
TDTS1  
Bit3  
TDTS0  
Bit2  
WUFS  
Bit1  
TPS  
Bit0  
Bit7  
Bit6  
Bit5  
I2C Address: 0x16h  
DRDY indicates that new acceleration data is available. This bit is cleared when  
acceleration data is read or the interrupt release register is read.  
DRDY = 0 – new acceleration data not available  
DRDY = 1 – new acceleration data available  
TDTS1, TDTS0 indicates whether a single or double-tap event was detected per  
Table 11.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 20 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
TDTS1 TDTS0  
Event  
No Tap  
0
0
1
1
0
1
0
1
Single Tap  
Double Tap  
DNE  
Table 11. Directional TapTM Event Description  
TPS reflects the status of the tilt position function.  
TPS = 0 – tilt position state has not changed  
TPS = 1 – tilt position state has changed  
STATUS_REG  
This register reports the status of the interrupt.  
R
0
R
0
R
0
R
R
0
R
0
R
0
R
0
INT  
Bit4  
Bit7  
Bit6  
Bit5  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x18h  
INT reports the combined interrupt information of all enabled functions. This bit is  
released to 0 when the interrupt source latch register (1Ah) is read.  
INT = 0 – no interrupt event  
INT = 1 – interrupt event has occurred  
INT_REL  
Latched interrupt source information (INT_SRC_REG1 and INT_SRC_REG2), the status register,  
and the physical interrupt pin (7) are cleared when reading this register.  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x1Ah  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 21 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
CTRL_REG1  
Read/write control register that controls the main feature set.  
R/W  
PC1  
Bit7  
R/W  
RES  
Bit6  
R/W  
DRDYE  
Bit5  
R/W  
GSEL1  
Bit4  
R/W  
GSEL0  
Bit3  
R/W  
TDTE  
Bit2  
R/W  
WUFE  
Bit1  
R/W  
TPE  
Bit0  
Reset Value  
00000000  
I2C Address: 0x1Bh  
PC1 controls the operating mode of the KXTF9.  
PC1 = 0 - stand-by mode  
PC1 = 1 – operating mode  
RES determines the performance mode of the KXTF9. Note that to change the value of  
this bit, the PC1 bit must first be set to “0”.  
RES = 0 – low current, 8-bit valid  
RES = 1- high current, 12-bit valid  
DRDYE enables the reporting of the availability of new acceleration data on the interrupt.  
Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
DRDYE = 0 – availability of new acceleration data not reflected on interrupt pin (7)  
DRDYE = 1- availability of new acceleration data reflected on interrupt pin (7)  
GSEL1, GSEL0 selects the acceleration range of the accelerometer outputs per Table 12.  
Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
GSEL1 GSEL0  
Range  
+/-2g  
+/-4g  
+/-8g  
NA  
0
0
1
1
0
1
0
1
Table 12. Selected Acceleration Range  
TDTE enables the Directional TapTM function that will detect single and double tap events.  
Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
TDTE = 0 – disable  
TDTE = 1- enable  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 22 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
WUFE enables the Wake Up (motion detect) function that will detect a general motion  
event. Note that to change the value of this bit, the PC1 bit must first be set to “0”.  
WUFE = 0 – disable  
WUFE = 1- enable  
TPE enables the Tilt Position function that will detect changes in device orientation. Note  
that to change the value of this bit, the PC1 bit must first be set to “0”.  
TPE = 0 – disable  
TPE = 1- enable  
CTRL_REG2  
Read/write control register that controls tilt position state enabling. Per Table 13, if a state’s bit is  
set to one (1), a transition into the corresponding orientation state will generate an interrupt. If it is  
set to zero (0), a transition into the corresponding orientation state will not generate an interrupt.  
Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set  
to “0”.  
R/W  
0
R/W  
0
R/W  
LEM  
Bit5  
R/W  
RIM  
Bit4  
R/W  
DOM  
Bit3  
R/W  
UPM  
Bit2  
R/W  
FDM  
Bit1  
R/W  
FUM  
Bit0  
Reset Value  
00111111  
Bit7  
Bit6  
I2C Address: 0x1Ch  
Bit  
Description  
Left State  
Right State  
LEM  
RIM  
DOM  
UPM  
FDM  
FUM  
Down State  
Up State  
Face-Down State  
Face-Up State  
Table 13. Tilt Position State Enabling  
CTRL_REG3  
Read/write control register that provides more feature set control. Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
SRST  
Bit7  
R/W  
OTPA  
Bit6  
R/W  
OTPB  
Bit5  
R/W  
DCST  
Bit4  
R/W  
OTDTA  
Bit3  
R/W  
OTDTB  
Bit2  
R/W  
OWUFA OWUFB  
Bit1 Bit0  
I2C Address: 0x1Dh  
R/W  
Reset Value  
01001101  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 23 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
SRST initiates software reset, which performs the RAM reboot routine. This bit will remain  
1 until the RAM reboot routine is finished.  
SRST = 0 – no action  
SRST = 1 – start RAM reboot routine  
OTPA, OTPB sets the output data rate for the Tilt Position function per Table 14. The  
default Tilt Position ODR is 12.5Hz.  
OTPA OTPB Output Data Rate  
0
0
1
1
0
1
0
1
1.6Hz  
6.3Hz  
12.5Hz  
50Hz  
Table 14. Tilt Position Function Output Data Rate  
DCST initiates the digital communication self-test function.  
DCST = 0 – no action  
DCST = 1 – sets ST_RESP register to 0xAAh and when ST_RESP is read, sets  
this bit to 0 and sets ST_RESP to 0x55h  
OTDTA, OTDTB sets the output data rate for the Directional TapTM function per Table 15.  
The default Directional TapTM ODR is 400Hz.  
OTDTA OTDTB Output Data Rate  
0
0
1
1
0
1
0
1
50Hz  
100Hz  
200Hz  
400Hz  
Table 15. Directional TapTM Function Output Data Rate  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 24 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
OWUFA, OWUFB sets the output data rate for the general motion detection function and  
the high-pass filtered outputs per Table 16. The default Motion Wake Up ODR is  
50Hz.  
OWUFA OWUFB Output Data Rate  
0
0
1
1
0
1
0
1
25Hz  
50Hz  
100Hz  
200Hz  
Table 16. Motion Wake Up Function Output Data Rate  
INT_CTRL_REG1  
This register controls the settings for the physical interrupt pin (7). Note that to properly change the  
value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
0
R/W  
0
R/W  
IEN  
Bit5  
R/W  
IEA  
Bit4  
R/W  
IEL  
R/W  
IEU  
Bit2  
R/W  
0
R/W  
0
Reset Value  
00010000  
Bit7  
Bit6  
Bit3  
Bit1  
Bit0  
I2C Address: 0x1Eh  
IEN enables/disables the physical interrupt pin (7)  
IEN = 0 – physical interrupt pin (7) is disabled  
IEN = 1 – physical interrupt pin (7) is enabled  
IEA sets the polarity of the physical interrupt pin (7)  
IEA = 0 – polarity of the physical interrupt pin (7) is active low  
IEA = 1 – polarity of the physical interrupt pin (7) is active high  
IEL sets the response of the physical interrupt pin (7)  
IEL = 0 – the physical interrupt pin (7) latches until it is cleared by reading INT_REL  
IEL = 1 – the physical interrupt pin (7) will transmit one pulse with a period of 0.05ms  
IEU sets an alternate unlatched response for the physical interrupt pin (7) when the motion  
interrupt feature (WUF) only is enabled.  
IEU = 0 – the physical interrupt pin (7) latches or pulses per the IEL bit until it is  
cleared by reading INT_REL  
IEU = 1 – the physical interrupt pin (7) will follow an unlatched response if the motion  
interrupt feature is enabled  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 25 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
INT_CTRL_REG2  
This register controls motion detection axis enabling. Per Table 17, if an axis’ bit is set to one (1),  
a motion on that axis will generate an interrupt. If it is set to zero (0), a motion on that axis will not  
generate an interrupt. Note that to properly change the value of this register, the PC1 bit in  
CTRL_REG1 must first be set to “0”.  
R/W  
XBW  
Bit7  
R/W  
YBW  
Bit6  
R/W  
ZBW  
Bit5  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Reset Value  
11100000  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x1Fh  
Bit  
Description  
X-Axis Motion  
Y-Axis Motion  
Z-Axis Motion  
XBW  
YBW  
ZBW  
Table 17. Motion Detection Axis Enabling  
INT_CTRL_REG3  
This register controls the tap detection direction axis enabling. Per Table 18, if a direction’s bit is  
set to one (1), a single or double tap in that direction will generate an interrupt. If it is set to zero  
(0), a single or double tap in that direction will not generate an interrupt. Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
0
R/W  
0
R/W  
TLEM  
Bit5  
R/W  
TRIM  
Bit4  
R/W  
TDOM  
Bit3  
R/W  
TUPM  
Bit2  
R/W  
TFDM  
Bit1  
R/W  
TFUM  
Bit0  
Reset Value  
00111111  
Bit7  
Bit6  
I2C Address: 0x20h  
Bit  
Description  
X Negative (X-)  
X Positive (X+)  
Y Negative (Y-)  
Y Positive (Y+)  
Z Negative (Z-)  
Z Positive (Z+)  
TLEM  
TRIM  
TDOM  
TUPM  
TFDM  
TFUM  
Table 18. Directional TapTM Axis Mask  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 26 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
DATA_CTRL_REG  
Read/write control register that configures the acceleration outputs. Note that to properly change  
the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
0
R/W  
0
R/W  
HPFROA HPROB  
Bit5 Bit4  
R/W  
R/W  
0
R/W  
OSAA  
Bit2  
R/W  
OSAB  
Bit1  
R/W  
OSAC  
Bit0  
Reset Value  
00000010  
Bit7  
Bit6  
Bit3  
I2C Address: 0x21h  
HPFROA, HPFROB sets the roll-off frequency for the first-order high-pass filter in  
conjunction with the output data rate (OWUFA, OWUFB) that is chosen for the HPF  
acceleration outputs that are used in the Motion Wake Up (WUF) application per Table 19.  
Note that this roll-off frequency is also applied to the X, Y and Z high-pass filtered outputs.  
High-Pass Filter Configuration  
HPFROA HPFROB Beta HPF Roll-Off (Hz)  
0
0
1
1
0
1
0
1
7/8  
ODR / 50  
ODR / 100  
ODR / 200  
ODR / 400  
15/16  
31/32  
63/64  
Table 19. High-Pass Filter Roll-Off Frequency  
OSAA, OSAB, OSAC sets the output data rate (ODR) for the low-pass filtered  
acceleration outputs per Table 20.  
OSAA OSAB OSAC Output Data Rate  
LPF Roll-Off  
6.25Hz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
12.5Hz  
25Hz  
12.5Hz  
50Hz  
25Hz  
100Hz  
50Hz  
200Hz  
100Hz  
400Hz  
200Hz  
800Hz  
400Hz  
Does Not Exist  
Does Not Exist  
Table 20. LPF Acceleration Output Data Rate (ODR)  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 27 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
TILT_TIMER  
This register is the initial count register for the tilt position state timer (0 to 255 counts). Every count  
is calculated as 1/ODR delay period, where the ODR is user-defined per Table 14. A new state must  
be valid as many measurement periods before the change is accepted. Note that to properly change  
the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TSC7  
Bit7  
R/W  
TSC6  
Bit6  
R/W  
TSC5  
Bit5  
R/W  
TSC4  
Bit4  
R/W  
TSC3  
Bit3  
R/W  
TSC2  
Bit2  
R/W  
TSC1  
Bit1  
R/W  
TSC0  
Bit0  
Reset Value  
00000000  
I2C Address: 0x28h  
WUF_TIMER  
This register is the initial count register for the motion detection timer (0 to 255 counts). Every  
count is calculated as 1/ODR delay period, where the ODR is user-defined per Table 16. A new  
state must be valid as many measurement periods before the change is accepted. Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
WUFC7 WUFC6 WUFC5 WUFC4 WUFC3 WUFC2 WUFC1 WUFC0  
Bit2  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit1  
Bit0  
I2C Address: 0x29h  
TDT_TIMER  
This register contains counter information for the detection of a double tap event. Every count is  
calculated as 1/ODR delay period, where the ODR is user-defined per Table 15. TDT_TIMER  
represents the minimum time separation between the first tap and the second tap in a double tap  
event. The Kionix recommended default value is 0.3 seconds (0x78h). Note that to properly change  
the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TDTC7  
Bit7  
R/W  
TDTC6  
Bit6  
R/W  
TDTC5  
Bit5  
R/W  
TDTC4  
Bit4  
R/W  
TDTC3  
Bit3  
R/W  
TDTC2  
Bit2  
R/W  
TDTC1  
Bit1  
R/W  
TDTC0  
Bit0  
Reset Value  
01111000  
I2C Address: 0x2Bh  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 28 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
TDT_H_THRESH  
This register represents the 9-bit jerk high threshold to determine if a tap is detected. The  
Performance Index (PI) is the jerk signal that is expected to be less than this threshold, but greater  
than the TDT_L_THRESH threshold during single and double tap events. Note that to properly  
change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”. The Kionix  
recommended default value is 182 (0xB6h) and the Performance Index is calculated as:  
X’ = X(current) – X(previous)  
Y’ = Y(current) – Y(previous)  
Z’ = Z(current) – Z(previous)  
PI = |X’| + |Y’| + |Z’|  
Equation 1. Performance Index  
R/W  
TTH8  
Bit7  
R/W  
TTH7  
Bit6  
R/W  
TTH6  
Bit5  
R/W  
TTH5  
Bit4  
R/W  
TTH4  
Bit3  
R/W  
TTH3  
Bit2  
R/W  
TTH2  
Bit1  
R/W  
TTH1  
Bit0  
Reset Value  
10110110  
I2C Address: 0x2Ch  
TDT_L_THRESH  
This register represents the 7-bit jerk low threshold to determine if a tap is detected. The  
Performance Index (PI) is the jerk signal that is expected to be greater than this threshold and less  
than the TDT_H_THRESH threshold during single and double tap events. This register also  
contains the LSB of the TDT_H_THRESH threshold. The Kionix recommended default value is 26  
(0x1Ah). Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must  
first be set to “0”.  
R/W  
TTH0  
Bit7  
R/W  
TTL6  
Bit6  
R/W  
TTL5  
Bit5  
R/W  
TTL4  
Bit4  
R/W  
TTL3  
Bit3  
R/W  
TTL2  
Bit2  
R/W  
TTL1  
Bit1  
R/W  
TTL0  
Bit0  
Reset Value  
00011010  
I2C Address: 0x2Dh  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 29 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
TDT_TAP_TIMER  
This register contains counter information for the detection of any tap event. Every count is  
calculated as 1/ODR delay period, where the ODR is user-defined per Table 17. In order to ensure  
that only tap events are detected, these time limits are used. A tap event must be above the  
performance index threshold (TDT_THRESH) for at least the low limit (FTDL0 – FTDL2) and no  
more than the high limit (FTDH0 – FTDH4). The Kionix recommended default value for the high  
limit is 0.05 seconds and for the low limit is 0.005 seconds (0xA2h). Note that to properly change  
the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
FTDH4  
Bit7  
R/W  
FTDH3  
Bit6  
R/W  
FTDH2  
Bit5  
R/W  
FTDH1  
Bit4  
R/W  
FTDH0  
Bit3  
R/W  
FTDL2  
Bit2  
R/W  
FTDL1  
Bit1  
R/W  
FTDL0  
Bit0  
Reset Value  
10100010  
I2C Address: 0x2Eh  
TDT_TOTAL_TIMER  
This register contains counter information for the detection of a double tap event. Every count is  
calculated as 1/ODR delay period, where the ODR is user-defined per Table 17. In order to ensure  
that only tap events are detected, this time limit is used. This register sets the total amount of time  
that the two taps in a double tap event can be above the PI threshold (TDT_L_THRESH). The  
Kionix recommended default value for TDT_TOTAL_TIMER is 0.09 seconds (0x24h). Note that to  
properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
STD7  
Bit7  
R/W  
STD6  
Bit6  
R/W  
STD5  
Bit5  
R/W  
STD4  
Bit4  
R/W  
STD3  
Bit3  
R/W  
STD2  
Bit2  
R/W  
STD1  
Bit1  
R/W  
STD0  
Bit0  
Reset Value  
00100100  
I2C Address: 0x2Fh  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 30 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
TDT_LATENCY_TIMER  
This register contains counter information for the detection of a tap event. Every count is calculated  
as 1/ODR delay period, where the ODR is user-defined per Table 17. In order to ensure that only  
tap events are detected, this time limit is used. This register sets the total amount of time that the  
tap algorithm will count samples that are above the PI threshold (TDT_L_THRESH) during a  
potential tap event. It is used during both single and double tap events. However, reporting of  
single taps on the physical interrupt pin (7) will occur at the end of the TDT_WINDOW_TIMER. The  
Kionix recommended default value for TDT_LATENCY_TIMER is 0.1 seconds (0x28h). Note that  
to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TLT7  
Bit7  
R/W  
TLT6  
Bit6  
R/W  
TLT5  
Bit5  
R/W  
TLT4  
Bit4  
R/W  
TLT3  
Bit3  
R/W  
TLT2  
Bit2  
R/W  
TLT1  
Bit1  
R/W  
TLT0  
Bit0  
Reset Value  
00101000  
I2C Address: 0x30h  
TDT_WINDOW_TIMER  
This register contains counter information for the detection of single and double taps. Every count  
is calculated as 1/ODR delay period, where the ODR is user-defined per Table 17. It defines the  
time window for the entire tap event, single or double, to occur. Reporting of single taps on the  
physical interrupt pin (7) will occur at the end of this tap window. The Kionix recommended default  
value for TDT_WINDOW_TIMER is 0.4 seconds (0xA0h). Note that to properly change the value of  
this register, the PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TWS7  
Bit7  
R/W  
TWS6  
Bit6  
R/W  
TWS5  
Bit5  
R/W  
TWS4  
Bit4  
R/W  
TWS3  
Bit3  
R/W  
TWS2  
Bit2  
R/W  
TWS1  
Bit1  
R/W  
TWS0  
Bit0  
Reset Value  
10100000  
I2C Address: 0x31h  
SELF_TEST  
When 0xCA is written to this register, the MEMS self-test function is enabled. Electrostatic-  
actuation of the accelerometer, results in a DC shift of the X, Y and Z axis outputs. Writing 0x00 to  
this register will return the accelerometer to normal operation.  
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
I2C Address: 0x3Ah  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 31 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
WUF_THRESH  
This register sets the acceleration threshold, WUF Threshold that is used to detect a general motion  
input. The KXTF9 will ship from the factory with WUF_THRESH set to a change in acceleration of  
0.5g. Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first  
be set to “0”.  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
R/W  
Reset Value  
00001000  
WUFTH7 WUFTH6 WUFTH5 WUFTH4 WUFTH3 WUFTH2 WUFTH1 WUFTH0  
Bit7  
Bit1  
Bit0  
I2C Address: 0x5Ah  
TILT_ANGLE  
This register sets the tilt angle that is used to detect the transition from Face-up/Face-down states  
to Screen Rotation states. The KXTF9 ships from the factory with tilt angle set to a low threshold of  
26°from horizontal. A different default tilt angle can be requested from the factory. Note that the  
minimum suggested tilt angle is 10°. Note that to properly change the value of this register, the  
PC1 bit in CTRL_REG1 must first be set to “0”.  
R/W  
TA7  
Bit7  
R/W  
TA6  
Bit6  
R/W  
TA5  
Bit5  
R/W  
TA4  
Bit4  
R/W  
TA3  
Bit3  
R/W  
TA2  
Bit2  
R/W  
TA1  
Bit1  
R/W  
TA0  
Bit0  
Reset Value  
00001100  
I2C Address: 0x5Ch  
HYST_SET  
This register sets the Hysteresis that is placed in between the Screen Rotation states. The KXTF9  
ships from the factory with HYST_SET set to +/-15°of hysteresis. A different default hysteresis can  
be requested from the factory. Note that when writing a new value to this register the current  
values of RES0, RES1, RES2 and RES3 must be preserved. These values are set at the factory  
and must not change. Note that to properly change the value of this register, the PC1 bit in  
CTRL_REG1 must first be set to “0”.  
R/W  
RES2  
Bit7  
R/W  
RES1  
Bit6  
R/W  
RES0  
Bit5  
R/W  
HYST4 HYST3 HYST2 HYST1 HYST0  
Bit4 Bit3 Bit2 Bit1 Bit0  
I2C Address: 0x5Fh  
R/W  
R/W  
R/W  
R/W  
Reset Value  
---10100  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 32 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
KXTF9 Embedded Applications  
Orientation Detection Feature  
The orientation detection feature of the KXTF9 will report changes in face up, face down, +/- vertical and  
+/- horizontal orientation. This intelligent embedded algorithm considers very important factors that provide  
accurate orientation detection from low cost tri-axis accelerometers. Factors such as: hysteresis, device  
orientation angle and delay time are described below as these techniques are utilized inside the KXTF9.  
Hysteresis  
A 45° tilt angle threshold seems like a good choice because it is halfway between 0° and 90°.  
However, a problem arises when the user holds the device near 45°. Slight vibrations, noise and  
inherent sensor error will cause the acceleration to go above and below the threshold rapidly and  
randomly, so the screen will quickly flip back and forth between the 0° and the 90° orientations.  
This problem is avoided in the KXTF9 by choosing a 30°threshold angle. With a 30°threshold, the  
screen will not rotate from 0°to 90°until the device is tilted to 60°(30°from 90°). To rotate back to  
0°, the user must tilt back to 30°, thus avoiding the screen flipping problem. This example  
essentially applies +/- 15°of hysteresis in between the four screen rotation states. Table 21 shows  
the acceleration limits implemented for φ T =30°.  
Orientation X Acceleration (g) Y Acceleration (g)  
0°/360°  
90°  
180°  
270°  
-0.5 < ax < 0.5  
ax > 0.866  
-0.5 < ax < 0.5  
ax < -0.866  
ay > 0.866  
-0.5 < ay < 0.5  
ay < -0.866  
-0.5 < ay < 0.5  
Table 21. Acceleration at the four orientations with +/- 15°of hysteresis  
The KXTF9 allows the user to change the amount of hysteresis in between the four screen rotation  
states. By simply writing to the HYST_SET register, the user can adjust the amount of hysteresis  
up to +/- 45°. The plot in Figure 1 shows the typical amount of hysteresis applied for a given digital  
count value of HYST_SET.  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 33 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
HYST_SET vs Hysteresis  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Hysteresis  
0
0
5
10  
15  
20  
25  
30  
HYST_SET Value (Counts)  
Figure 1. HYST_SET vs Hysteresis  
Device Orientation Angle (aka Tilt Angle)  
To ensure that horizontal and vertical device orientation changes are detected, even when it isn’t in  
the ideal vertical orientation – where the angle θ in Figure 2 is 90°, the KXTF9 considers device  
orientation angle in its algorithm.  
Angle  
θ
Figure 2. Device Orientation Angle  
As the angle in Figure 2 is decreased, the maximum gravitational acceleration on the X-axis or Y-  
axis will also decrease. Therefore, when the angle becomes small enough, the user will not be able  
to make the screen orientation change. When the device orientation angle approaches 0°(device  
is flat on a desk or table), ax = ay = 0g, az = +1g, and there is no way to determine which way the  
screen should be oriented, the internal algorithm determines that the device is in either the face-up  
or face-down orientation, depending on the sign of the z-axis. The KXTF9 will only change the  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 34 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
screen orientation when the orientation angle is above the factory-defaulted/user-defined threshold  
set in the TILT_ANGLE register. Equation 2 can be used to determine what value to write to the  
TILT_ANGLE register to set the device orientation angle.  
TILT_ANGLE (counts) = sin θ * (32 (counts/g))  
Equation 2. Tilt Angle Threshold  
Tilt Timer  
The 8-bit register, TILT_TIMER can be used to qualify changes in orientation. The KXTF9 does this  
by incrementing a counter with a size that is specified by the value in TILT_TIMER for each set of  
acceleration samples to verify that a change to a new orientation state is maintained. A user  
defined output data rate (ODR) determines the time period for each sample. Equation 3 shows how  
to calculate the TILT_TIMER register value for a desired delay time.  
TILT_TIMER (counts) = Delay Time (sec) x ODR (Hz)  
Equation 3. Tilt Position Delay Time  
Motion Interrupt Feature Description  
The Motion interrupt feature of the KXTF9 reports qualified changes in the high-pass filtered acceleration  
based on the Wake Up (WUF) threshold. If the high-pass filtered acceleration on any axis is greater than  
the user-defined wake up threshold (WUF_THRESH), the device has transitioned from an inactive state to  
an active state. When configured in the unlatched mode, the KXTF9 will report when the motion event  
finished and the device has returned to an inactive state. Equation 4 shows how to calculate the  
WUF_THRESH register value for a desired wake up threshold.  
WUF_THRESH (counts) = Wake Up Threshold (g) x 16 (counts/g)  
Equation 4. Wake Up Threshold  
A WUF (WUF_TIMER) 8-bit raw unsigned value represents a counter that permits the user to qualify each  
active/inactive state change. Note that each WUF Timer count qualifies 1 (one) user-defined ODR period  
(OWUF). Equation 5 shows how to calculate the WUF_TIMER register value for a desired wake up delay  
time.  
WUF_TIMER (counts) = Wake Up Delay Time (sec) x OWUF (Hz)  
Equation 5. Wake Up Delay Time  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091222-00  
www.kionix.com - info@kionix.com  
Page 35 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Figure 3 below shows the latched response of the motion detection algorithm with WUF Timer = 10 counts.  
Typical Motion Interrupt Example  
HPF Acceleration  
WUF Threshold  
0g  
10  
WUF Timer  
Ex: Delay Counter = 10  
Motion  
Inactive  
Figure 3. Latched Motion Interrupt Response  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091222-00  
www.kionix.com - info@kionix.com  
Page 36 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Figure 4 below shows the unlatched response of the motion detection algorithm with WUF Timer = 10  
counts.  
Typical Motion Interrupt Example  
HPF Acceleration  
WUF Threshold  
0g  
10  
WUF Timer  
Ex: Delay Counter = 10  
Motion  
Inactive  
Figure 4. Unlatched Motion Interrupt Response  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091222-00  
www.kionix.com - info@kionix.com  
Page 37 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Directional Tap Detection Feature Description  
The Directional Tap Detection feature of the KXTF9 recognizes single and double tap inputs and reports  
the acceleration axis and direction that each tap occurred. Eight performance parameters, as well as a  
user-selectable ODR are used to configure the KXTF9 for a desired tap detection response.  
Performance Index  
The Directional TapTM detection algorithm uses low and high thresholds to help determine when a  
tap event has occurred. A tap event is detected when the previously described jerk summation  
exceeds the low threshold (TDT_L_THRESH) for more than the tap detection low limit, but less  
than the tap detection high limit as contained in TDT_TAP_TIMER. Samples that exceed the high  
limit (TDT_H_THRESH) will be ignored. Figure 5 shows an example of a single tap event meeting  
the performance index criteria.  
Calculated Performance Index  
PI  
180  
: Sampled Data  
160  
140  
120  
100  
80  
60  
40  
TDT_L_THRESH  
20  
0
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
3.2  
3.21  
time(sec)  
Figure 5. Jerk Summation vs Threshold  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 38 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Single Tap Detection  
The latency timer (TDT_LATENCY_TIMER) sets the time period that a tap event will only be  
characterized as a single tap. A second tap has to occur outside of the latency timer. If a second  
tap occurs inside the latency time, it will be ignored as it occurred too quickly. The single tap will be  
reported at the end of the TDT_WINDOW_TIMER. Figure 6 shows a single tap event meeting the  
PI, latency and window requirements.  
Calculated Performance Index  
160  
PI  
140  
TDT_WINDOW_TIMER  
120  
100  
TDT_LATENCY_TIMER  
80  
60  
40  
TDT_L_THRESH  
20  
0
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
time(sec)  
Figure 6. Single Directional TapTM Timing  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 39 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Double Tap Detection  
An event can be characterized as a double tap only if the second tap crosses the performance  
index (TDT_L_THRESH) outside the TDT_TIMER. This means that the TDT_TIMER determines  
the minimum time separation that must exist between the two taps of a double tap event. Similar to  
the single tap, the second tap event must exceed the performance index for the time limit contained  
in TDT_TAP_TIMER.  
The double tap will be reported at the end of the second  
TDT_LATENCY_TIMER. Figure 7 shows a double tap event meeting the PI, latency and window  
requirements.  
Calculated Performance Index  
PI  
TDT_WINDOW_TIMER  
200  
150  
TDT_TIMER  
100  
TDT_LATENCY_TIMER  
TDT_LATENCY_TIMER  
50  
TDT_L_THRESH  
0
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
time(sec)  
Figure 7. Double Directional TapTM Timing  
36 Thornwood Dr. – Ithaca, NY 14850  
tel: 607-257-1080 – fax:607-257-1146  
www.kionix.com - info@kionix.com  
© 2009 Kionix – All Rights Reserved  
091222-00  
Page 40 of 41  
PART NUMBER:  
2g Tri-axis Digital Accelerometer  
Specifications  
KXTF9-4100  
Rev. 1  
Dec-2009  
Revision History  
REVISION DESCRIPTION DATE  
Initial Release  
1
18-Dec-2009  
"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or  
otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not  
assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior  
notice. This publication supersedes and replaces all information previously supplied.  
36 Thornwood Dr. – Ithaca, NY 14850  
© 2009 Kionix – All Rights Reserved  
tel: 607-257-1080 – fax:607-257-1146  
091222-00  
www.kionix.com - info@kionix.com  
Page 41 of 41  

相关型号:

KXTF9-1026

Analog Circuit,
ROHM

KXTH5-4325

2.75g Tri-axis Analog Accelerometer Specifications
ETC

KXTI9-1001

2g/4g/8g Tri-axis Digital Accelerometer Specifications
ETC

KXTIA-1006

Analog Circuit,
ROHM

KXTIK-1004

2g/4g/8g Tri-axis Digital Accelerometer Specifications
ETC

KXTJ2

Ultra-small Package - 2x2x0.9mm LGA
ETC

KXTJ2-1009

Ultra-small Package - 2x2x0.9mm LGA
ETC

KXU03N25

VDS (V) = 250V RDS(ON) 2 (VGS = 10V) Drain-Source Voltage VDSS 250 V
TYSEMI

KXU05N25

VDS (V) = 250V RDS(ON) 1 (VGS = 10V) Drain-Source Voltage VDSS 250 V
TYSEMI

KXW

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS
RUBYCON

KXXAC1

Plastic SMD Package
MMD

KXXAC3

Plastic SMD Package
MMD