LM3S612-IQC25-A1T [ETC]

Microcontroller; 微控制器
LM3S612-IQC25-A1T
型号: LM3S612-IQC25-A1T
厂家: ETC    ETC
描述:

Microcontroller
微控制器

微控制器
文件: 总419页 (文件大小:2730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LM3S612 Microcontroller  
DATA SHEET  
DS-LM3S612-04  
Copyright © 2007 Luminary Micro, Inc.  
Legal Disclaimers and Trademark Information  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,  
LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO’S PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT  
OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO’S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL,  
LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.  
Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro  
sales office or your distributor to obtain the latest specifications before placing your product order.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to  
them.  
Copyright © 2007 Luminary Micro, Inc. All rights reserved. Stellaris is a registered trademark and the Luminary Micro logo is a trademark of  
Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks, and Cortex is a  
trademark of ARM Limited. Other names and brands may be claimed as the property of others.  
Luminary Micro, Inc.  
108 Wild Basin, Suite 350  
Austin, TX 78746  
Main: +1-512-279-8800  
Fax: +1-512-279-8879  
http://www.luminarymicro.com  
2
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table of Contents  
Legal Disclaimers and Trademark Information.............................................................................. 2  
Revision History ............................................................................................................................. 18  
About This Document..................................................................................................................... 20  
Audience........................................................................................................................................................... 20  
About This Manual............................................................................................................................................ 20  
Related Documents .......................................................................................................................................... 20  
Documentation Conventions............................................................................................................................. 20  
1.  
Architectural Overview....................................................................................................... 23  
Product Features ................................................................................................................................. 23  
Target Applications .............................................................................................................................. 27  
High-Level Block Diagram ................................................................................................................... 28  
Functional Overview ............................................................................................................................ 29  
1.1  
1.2  
1.3  
1.4  
1.4.1 ARM Cortex™-M3 ............................................................................................................................... 29  
1.4.2 Motor Control Peripherals.................................................................................................................... 29  
1.4.3 Analog Peripherals .............................................................................................................................. 30  
1.4.4 Serial Communications Peripherals..................................................................................................... 30  
1.4.5 System Peripherals.............................................................................................................................. 31  
1.4.6 Memory Peripherals............................................................................................................................. 32  
1.4.7 Additional Features.............................................................................................................................. 32  
1.4.8 Hardware Details ................................................................................................................................. 33  
1.5  
System Block Diagram ........................................................................................................................ 34  
2.  
2.1  
2.2  
ARM Cortex-M3 Processor Core........................................................................................ 35  
Block Diagram ..................................................................................................................................... 36  
Functional Description ......................................................................................................................... 36  
2.2.1 Serial Wire and JTAG Debug .............................................................................................................. 36  
2.2.2 Embedded Trace Macrocell (ETM)...................................................................................................... 37  
2.2.3 Trace Port Interface Unit (TPIU) .......................................................................................................... 37  
2.2.4 ROM Table .......................................................................................................................................... 37  
2.2.5 Memory Protection Unit (MPU)............................................................................................................ 37  
2.2.6 Nested Vectored Interrupt Controller (NVIC) ....................................................................................... 37  
3.  
4.  
Memory Map ........................................................................................................................ 43  
Interrupts ............................................................................................................................. 45  
5.  
5.1  
5.2  
JTAG Interface .................................................................................................................... 48  
Block Diagram ..................................................................................................................................... 49  
Functional Description ......................................................................................................................... 49  
5.2.1 JTAG Interface Pins............................................................................................................................. 50  
5.2.2 JTAG TAP Controller........................................................................................................................... 51  
5.2.3 Shift Registers ..................................................................................................................................... 52  
5.2.4 Operational Considerations ................................................................................................................. 52  
5.3  
Initialization and Configuration............................................................................................................. 53  
5.4  
Register Descriptions........................................................................................................................... 54  
5.4.1 Instruction Register (IR)....................................................................................................................... 54  
5.4.2 Data Registers..................................................................................................................................... 56  
6.  
System Control.................................................................................................................... 58  
6.1  
Functional Description ......................................................................................................................... 58  
6.1.1 Device Identification............................................................................................................................. 58  
April 27, 2007  
3
Preliminary  
Table of Contents  
6.1.2 Reset Control....................................................................................................................................... 58  
6.1.3 Power Control...................................................................................................................................... 61  
6.1.4 Clock Control ....................................................................................................................................... 61  
6.1.5 System Control .................................................................................................................................... 63  
6.2  
6.3  
6.4  
Initialization and Configuration............................................................................................................. 64  
Register Map ....................................................................................................................................... 64  
Register Descriptions........................................................................................................................... 65  
7.  
7.1  
7.2  
Internal Memory ................................................................................................................ 100  
Block Diagram ................................................................................................................................... 100  
Functional Description ....................................................................................................................... 100  
7.2.1 SRAM Memory .................................................................................................................................. 100  
7.2.2 Flash Memory.................................................................................................................................... 101  
7.3  
Initialization and Configuration........................................................................................................... 103  
7.3.1 Changing Flash Protection Bits ......................................................................................................... 103  
7.3.2 Flash Programming ........................................................................................................................... 104  
7.4  
Register Map ..................................................................................................................................... 104  
7.5  
Register Descriptions......................................................................................................................... 105  
8.  
8.1  
8.2  
General-Purpose Input/Outputs (GPIOs) ........................................................................ 117  
Block Diagram ................................................................................................................................... 118  
Functional Description ....................................................................................................................... 119  
8.2.1 Data Register Operation .................................................................................................................... 119  
8.2.2 Data Direction .................................................................................................................................... 120  
8.2.3 Interrupt Operation............................................................................................................................. 120  
8.2.4 Mode Control ..................................................................................................................................... 121  
8.2.5 Pad Configuration.............................................................................................................................. 121  
8.2.6 Identification....................................................................................................................................... 121  
8.3  
8.4  
8.5  
Initialization and Configuration........................................................................................................... 121  
Register Map ..................................................................................................................................... 123  
Register Descriptions......................................................................................................................... 124  
9.  
9.1  
9.2  
General-Purpose Timers .................................................................................................. 155  
Block Diagram ................................................................................................................................... 156  
Functional Description ....................................................................................................................... 156  
9.2.1 GPTM Reset Conditions .................................................................................................................... 156  
9.2.2 32-Bit Timer Operating Modes........................................................................................................... 156  
9.2.3 16-Bit Timer Operating Modes........................................................................................................... 158  
9.3  
Initialization and Configuration........................................................................................................... 162  
9.3.1 32-Bit One-Shot/Periodic Timer Mode............................................................................................... 162  
9.3.2 32-Bit Real-Time Clock (RTC) Mode ................................................................................................. 163  
9.3.3 16-Bit One-Shot/Periodic Timer Mode............................................................................................... 163  
9.3.4 16-Bit Input Edge Count Mode .......................................................................................................... 163  
9.3.5 16-Bit Input Edge Timing Mode ......................................................................................................... 164  
9.3.6 16-Bit PWM Mode.............................................................................................................................. 164  
9.4  
Register Map ..................................................................................................................................... 165  
9.5  
Register Descriptions......................................................................................................................... 166  
10.  
Watchdog Timer................................................................................................................ 187  
Block Diagram ................................................................................................................................... 187  
Functional Description ....................................................................................................................... 188  
Initialization and Configuration........................................................................................................... 188  
10.1  
10.2  
10.3  
4
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
10.4  
10.5  
Register Map ..................................................................................................................................... 188  
Register Descriptions......................................................................................................................... 189  
11.  
11.1  
11.2  
Analog-to-Digital Converter (ADC).................................................................................. 210  
Block Diagram ................................................................................................................................... 211  
Functional Description ....................................................................................................................... 211  
11.2.1 Sample Sequencers .......................................................................................................................... 211  
11.2.2 Module Control .................................................................................................................................. 212  
11.2.3 Hardware Sample Averaging Circuit.................................................................................................. 213  
11.2.4 Analog-to-Digital Converter ............................................................................................................... 213  
11.2.5 Test Modes........................................................................................................................................ 213  
11.2.6 Internal Temperature Sensor............................................................................................................. 213  
11.3  
Initialization and Configuration........................................................................................................... 213  
11.3.1 Module Initialization ........................................................................................................................... 214  
11.3.2 Sample Sequencer Configuration...................................................................................................... 214  
11.4  
Register Map ..................................................................................................................................... 214  
11.5  
Register Descriptions......................................................................................................................... 215  
12.  
12.1  
12.2  
Universal Asynchronous Receivers/Transmitters (UARTs).......................................... 240  
Block Diagram ................................................................................................................................... 241  
Functional Description ....................................................................................................................... 241  
12.2.1 Transmit/Receive Logic ..................................................................................................................... 241  
12.2.2 Baud-Rate Generation....................................................................................................................... 242  
12.2.3 Data Transmission............................................................................................................................. 243  
12.2.4 FIFO Operation.................................................................................................................................. 243  
12.2.5 Interrupts............................................................................................................................................ 243  
12.2.6 Loopback Operation .......................................................................................................................... 244  
12.3  
12.4  
12.5  
Initialization and Configuration........................................................................................................... 244  
Register Map ..................................................................................................................................... 245  
Register Descriptions......................................................................................................................... 246  
13.  
13.1  
13.2  
Synchronous Serial Interface (SSI) ................................................................................. 276  
Block Diagram ................................................................................................................................... 276  
Functional Description ....................................................................................................................... 277  
13.2.1 Bit Rate Generation ........................................................................................................................... 277  
13.2.2 FIFO Operation.................................................................................................................................. 277  
13.2.3 Interrupts............................................................................................................................................ 277  
13.2.4 Frame Formats .................................................................................................................................. 278  
13.3  
13.4  
13.5  
Initialization and Configuration........................................................................................................... 285  
Register Map ..................................................................................................................................... 286  
Register Descriptions......................................................................................................................... 287  
14.  
Inter-Integrated Circuit (I2C) Interface ............................................................................ 311  
14.1  
Block Diagram ................................................................................................................................... 311  
14.2  
Functional Description ....................................................................................................................... 311  
2
14.2.1 I C Bus Functional Overview............................................................................................................. 312  
14.2.2 Available Speed Modes ..................................................................................................................... 321  
14.3  
14.4  
14.5  
14.6  
Initialization and Configuration........................................................................................................... 322  
Register Map ..................................................................................................................................... 323  
Register Descriptions (I2C Master).................................................................................................... 323  
Register Descriptions (I2C Slave)...................................................................................................... 337  
April 27, 2007  
5
Preliminary  
Table of Contents  
15.  
Analog Comparator........................................................................................................... 345  
15.1  
Block Diagram ................................................................................................................................... 345  
15.2  
Functional Description ....................................................................................................................... 345  
15.2.1 Internal Reference Programming....................................................................................................... 346  
15.3  
15.4  
15.5  
Initialization and Configuration........................................................................................................... 347  
Register Map ..................................................................................................................................... 348  
Register Descriptions......................................................................................................................... 348  
16.  
16.1  
16.2  
Pulse Width Modulator (PWM)......................................................................................... 356  
Block Diagram ................................................................................................................................... 356  
Functional Description ....................................................................................................................... 356  
16.2.1 PWM Timer........................................................................................................................................ 356  
16.2.2 PWM Comparators ............................................................................................................................ 357  
16.2.3 PWM Signal Generator...................................................................................................................... 358  
16.2.4 Dead-Band Generator ....................................................................................................................... 359  
16.2.5 Interrupt/ADC-Trigger Selector .......................................................................................................... 359  
16.2.6 Synchronization Methods .................................................................................................................. 359  
16.2.7 Fault Conditions................................................................................................................................. 359  
16.2.8 Output Control Block.......................................................................................................................... 360  
16.3  
16.4  
16.5  
Initialization and Configuration........................................................................................................... 360  
Register Map ..................................................................................................................................... 361  
Register Descriptions......................................................................................................................... 362  
17.  
18.  
19.  
Pin Diagram ....................................................................................................................... 387  
Signal Tables..................................................................................................................... 388  
Operating Characteristics ................................................................................................ 397  
20.  
Electrical Characteristics ................................................................................................. 398  
20.1  
DC Characteristics............................................................................................................................. 398  
20.1.1 Maximum Ratings .............................................................................................................................. 398  
20.1.2 Recommended DC Operating Conditions ......................................................................................... 398  
20.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics.................................................................. 399  
20.1.4 Power Specifications ......................................................................................................................... 400  
20.1.5 Flash Memory Characteristics ........................................................................................................... 401  
20.2  
AC Characteristics............................................................................................................................. 401  
20.2.1 Load Conditions................................................................................................................................. 401  
20.2.2 Clocks................................................................................................................................................ 401  
20.2.3 Temperature Sensor.......................................................................................................................... 402  
20.2.4 Analog-to-Digital Converter ............................................................................................................... 402  
20.2.5 Analog Comparator............................................................................................................................ 403  
2
20.2.6 I C...................................................................................................................................................... 404  
20.2.7 Synchronous Serial Interface (SSI) ................................................................................................... 405  
20.2.8 JTAG and Boundary Scan ................................................................................................................. 407  
20.2.9 General-Purpose I/O.......................................................................................................................... 409  
20.2.10 Reset ................................................................................................................................................. 409  
21.  
Package Information......................................................................................................... 412  
Appendix A. Serial Flash Loader ............................................................................................... 413  
22.1  
Interfaces........................................................................................................................................... 413  
22.1.1 UART ................................................................................................................................................. 413  
22.1.2 SSI..................................................................................................................................................... 413  
22.2  
Packet Handling................................................................................................................................. 413  
6
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
22.2.1 Packet Format ................................................................................................................................... 414  
22.2.2 Sending Packets................................................................................................................................ 414  
22.2.3 Receiving Packets ............................................................................................................................. 414  
22.3  
Commands ........................................................................................................................................ 414  
22.3.1 COMMAND_PING (0x20).................................................................................................................. 415  
22.3.2 COMMAND_GET_STATUS (0x23) ................................................................................................... 415  
22.3.3 COMMAND_DOWNLOAD (0x21)...................................................................................................... 415  
22.3.4 COMMAND_SEND_DATA (0x24) ..................................................................................................... 415  
22.3.5 COMMAND_RUN (0x22)................................................................................................................... 416  
22.3.6 COMMAND_RESET (0x25)............................................................................................................... 416  
Ordering and Contact Information .............................................................................................. 418  
Ordering Information....................................................................................................................................... 418  
Development Kit ............................................................................................................................................. 418  
Company Information ..................................................................................................................................... 418  
Support Information ........................................................................................................................................ 419  
April 27, 2007  
7
Preliminary  
List of Figures  
List of Figures  
Figure 1-1.  
Figure 1-2.  
Figure 2-1.  
Figure 2-2.  
Figure 5-1.  
Figure 5-2.  
Figure 5-3.  
Figure 5-4.  
Figure 5-5.  
Figure 6-1.  
Figure 6-2.  
Figure 7-1.  
Figure 8-1.  
Figure 8-2.  
Figure 8-3.  
Figure 8-4.  
Figure 9-1.  
Figure 9-2.  
Figure 9-3.  
Figure 9-4.  
Stellaris® High-Level Block Diagram ........................................................................................ 28  
LM3S612 Controller System-Level Block Diagram ................................................................... 34  
CPU Block Diagram .................................................................................................................. 36  
TPIU Block Diagram.................................................................................................................. 37  
JTAG Module Block Diagram .................................................................................................... 49  
Test Access Port State Machine ............................................................................................... 52  
IDCODE Register Format.......................................................................................................... 56  
BYPASS Register Format ......................................................................................................... 56  
Boundary Scan Register Format ............................................................................................... 57  
External Circuitry to Extend Reset............................................................................................. 59  
Main Clock Tree ........................................................................................................................ 62  
Flash Block Diagram ............................................................................................................... 100  
GPIO Module Block Diagram .................................................................................................. 118  
GPIO Port Block Diagram........................................................................................................ 119  
GPIODATA Write Example...................................................................................................... 120  
GPIODATA Read Example ..................................................................................................... 120  
GPTM Module Block Diagram................................................................................................. 156  
16-Bit Input Edge Count Mode Example .................................................................................160  
16-Bit Input Edge Time Mode Example................................................................................... 161  
16-Bit PWM Mode Example .................................................................................................... 162  
Figure 10-1. WDT Module Block Diagram ................................................................................................... 187  
Figure 11-1. ADC Module Block Diagram.................................................................................................... 211  
Figure 11-2. Internal Temperature Sensor Characteristic............................................................................ 213  
Figure 12-1. UART Module Block Diagram.................................................................................................. 241  
Figure 12-2. UART Character Frame........................................................................................................... 242  
Figure 13-1. SSI Module Block Diagram...................................................................................................... 276  
Figure 13-2. TI Synchronous Serial Frame Format (Single Transfer).......................................................... 278  
Figure 13-3. TI Synchronous Serial Frame Format (Continuous Transfer) ................................................. 279  
Figure 13-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 .......................................... 280  
Figure 13-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0.................................. 280  
Figure 13-6. Freescale SPI Frame Format with SPO=0 and SPH=1........................................................... 281  
Figure 13-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0............................... 281  
Figure 13-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0....................... 282  
Figure 13-9. Freescale SPI Frame Format with SPO=1 and SPH=1........................................................... 282  
Figure 13-10. MICROWIRE Frame Format (Single Frame)........................................................................... 283  
Figure 13-11. MICROWIRE Frame Format (Continuous Transfer) ............................................................... 284  
Figure 13-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements............................ 285  
2
Figure 14-1. I C Block Diagram................................................................................................................... 311  
2
Figure 14-2. I C Bus Configuration.............................................................................................................. 312  
2
Figure 14-3. Data Validity During Bit Transfer on the I C Bus..................................................................... 312  
Figure 14-4. START and STOP Conditions................................................................................................. 312  
Figure 14-5. Complete Data Transfer with a 7-Bit Address .........................................................................313  
Figure 14-6. R/S Bit in First Byte ................................................................................................................. 314  
Figure 14-7. Master Single SEND................................................................................................................ 315  
Figure 14-8. Master Single RECEIVE.......................................................................................................... 316  
Figure 14-9. Master Burst SEND (sending n bytes)..................................................................................... 317  
8
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 14-10. Master Burst RECEIVE (receiving m bytes)............................................................................ 318  
Figure 14-11. Master Burst RECEIVE after Burst SEND............................................................................... 319  
Figure 14-12. Master Burst SEND after Burst RECEIVE............................................................................... 320  
Figure 14-13. Slave Command Sequence..................................................................................................... 321  
Figure 15-1. Analog Comparator Module Block Diagram ............................................................................ 345  
Figure 15-2. Structure of Comparator Unit................................................................................................... 346  
Figure 15-3. Comparator Internal Reference Structure ............................................................................... 347  
Figure 16-1. PWM Module Block Diagram................................................................................................... 356  
Figure 16-2. PWM Count-Down Mode......................................................................................................... 357  
Figure 16-3. PWM Count-Up/Down Mode ................................................................................................... 358  
Figure 16-4. PWM Generation Example In Count-Up/Down Mode ............................................................. 358  
Figure 16-5. PWM Dead-Band Generator ................................................................................................... 359  
Figure 17-1. Pin Connection Diagram ........................................................................................................ 387  
Figure 20-1. Load Conditions....................................................................................................................... 401  
2
Figure 20-2. I C Timing................................................................................................................................ 404  
Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement................ 405  
Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer................................. 406  
Figure 20-5. SSI Timing for SPI Frame Format (FRF=00), with SPH=1...................................................... 406  
Figure 20-6. JTAG Test Clock Input Timing................................................................................................. 408  
Figure 20-7. JTAG Test Access Port (TAP) Timing..................................................................................... 408  
Figure 20-8. JTAG TRST Timing ................................................................................................................. 408  
Figure 20-9. External Reset Timing (RST)................................................................................................... 410  
Figure 20-10. Power-On Reset Timing .......................................................................................................... 410  
Figure 20-11. Brown-Out Reset Timing ......................................................................................................... 410  
Figure 20-12. Software Reset Timing ............................................................................................................ 410  
Figure 20-13. Watchdog Reset Timing .......................................................................................................... 411  
Figure 20-14. LDO Reset Timing................................................................................................................... 411  
Figure 21-1. 48-Pin LQFP Package............................................................................................................. 412  
April 27, 2007  
9
Preliminary  
List of Tables  
List of Tables  
Table 0-1.  
Table 3-1.  
Table 4-1.  
Table 4-2.  
Table 5-1.  
Table 5-2.  
Table 6-1.  
Table 6-2.  
Table 6-3.  
Table 6-4.  
Table 7-1.  
Table 7-2.  
Table 8-1.  
Table 8-2.  
Table 8-3.  
Table 9-1.  
Table 9-2.  
Documentation Conventions ..................................................................................................... 20  
Memory Map.............................................................................................................................. 43  
Exception Types........................................................................................................................ 45  
Interrupts ................................................................................................................................... 46  
JTAG Port Pins Reset State...................................................................................................... 50  
JTAG Instruction Register Commands...................................................................................... 54  
System Control Register Map.................................................................................................... 64  
VADJ to VOUT .......................................................................................................................... 77  
PLL Mode Control...................................................................................................................... 89  
Default Crystal Field Values and PLL Programming ................................................................. 90  
Flash Protection Policy Combinations..................................................................................... 102  
Flash Register Map ................................................................................................................. 105  
GPIO Pad Configuration Examples ........................................................................................ 122  
GPIO Interrupt Configuration Example ................................................................................... 122  
GPIO Register Map ................................................................................................................. 123  
16-Bit Timer with Prescaler Configurations ............................................................................. 159  
GPTM Register Map................................................................................................................ 165  
Table 10-1. WDT Register Map.................................................................................................................. 188  
Table 11-1. Samples and FIFO Depth of Sequencers................................................................................ 211  
Table 11-2. ADC Register Map................................................................................................................... 214  
Table 12-1. UART Register Map ................................................................................................................ 245  
Table 13-1. SSI Register Map .................................................................................................................... 286  
2
Table 14-1. Examples of I C Master Timer Period versus Speed Mode.................................................... 322  
2
Table 14-2. I C Register Map..................................................................................................................... 323  
Table 14-3. Write Field Decoding for I2CMCS[3:0] Field ........................................................................... 327  
Table 15-1. Comparator 0 Operating Modes.............................................................................................. 346  
Table 15-2. Internal Reference Voltage and ACREFCTL Field Values...................................................... 347  
Table 15-3. Analog Comparator Register Map........................................................................................... 348  
Table 16-1. PWM Register Map ................................................................................................................. 361  
Table 16-2. PWM Generator Action Encodings.......................................................................................... 382  
Table 18-1. Signals by Pin Number............................................................................................................ 388  
Table 18-2. Signals by Signal Name .......................................................................................................... 391  
Table 18-3. Signals by Function, Except for GPIO..................................................................................... 393  
Table 18-4. GPIO Pins and Alternate Functions......................................................................................... 395  
Table 19-1. Temperature Characteristics ................................................................................................... 397  
Table 19-2. Thermal Characteristics........................................................................................................... 397  
Table 20-1. Maximum Ratings.................................................................................................................... 398  
Table 20-2. Recommended DC Operating Conditions ............................................................................... 398  
Table 20-3. LDO Regulator Characteristics................................................................................................ 399  
Table 20-4. Power Specifications ............................................................................................................... 400  
Table 20-5. Flash Memory Characteristics................................................................................................. 401  
Table 20-6. Phase Locked Loop (PLL) Characteristics .............................................................................. 401  
Table 20-7. Clock Characteristics............................................................................................................... 402  
Table 20-8. Temperature Sensor Characteristics....................................................................................... 402  
Table 20-9. ADC Characteristics ................................................................................................................ 402  
Table 20-10. Analog Comparator Characteristics......................................................................................... 403  
Table 20-11. Analog Comparator Voltage Reference Characteristics.......................................................... 403  
2
Table 20-12. I C Characteristics................................................................................................................... 404  
10  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 20-13. SSI Characteristics.................................................................................................................. 405  
Table 20-14. JTAG Characteristics............................................................................................................... 407  
Table 20-15. GPIO Characteristics............................................................................................................... 409  
Table 20-16. Reset Characteristics .............................................................................................................. 409  
April 27, 2007  
11  
Preliminary  
List of Registers  
List of Registers  
ARM Cortex-M3 Processor Core ................................................................................................... 35  
Register 1:  
Register 2:  
Register 3:  
SysTick Control and Status Register......................................................................................... 40  
SysTick Reload Value Register................................................................................................. 41  
SysTick Current Value Register ................................................................................................ 42  
System Control ............................................................................................................................... 58  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Device Identification 0 (DID0), offset 0x000 .............................................................................. 66  
Device Identification 1 (DID1), offset 0x004 .............................................................................. 67  
Device Capabilities 0 (DC0), offset 0x008................................................................................. 69  
Device Capabilities 1 (DC1), offset 0x010................................................................................. 70  
Device Capabilities 2 (DC2), offset 0x014................................................................................. 72  
Device Capabilities 3 (DC3), offset 0x018................................................................................. 73  
Device Capabilities 4 (DC4), offset 0x01C ................................................................................ 75  
Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030 ........................................ 76  
LDO Power Control (LDOPCTL), offset 0x034.......................................................................... 77  
Register 10: Software Reset Control 0 (SRCR0), offset 0x040 ..................................................................... 78  
Register 11: Software Reset Control 1 (SRCR1), offset 0x044 ..................................................................... 79  
Register 12: Software Reset Control 2 (SRCR2), offset 0x048 ..................................................................... 80  
Register 13: Raw Interrupt Status (RIS), offset 0x050................................................................................... 81  
Register 14: Interrupt Mask Control (IMC), offset 0x054 ............................................................................... 82  
Register 15: Masked Interrupt Status and Clear (MISC), offset 0x058.......................................................... 84  
Register 16: Reset Cause (RESC), offset 0x05C .......................................................................................... 85  
Register 17: Run-Mode Clock Configuration (RCC), offset 0x060................................................................. 86  
Register 18: XTAL to PLL Translation (PLLCFG), offset 0x064 .................................................................... 91  
Register 19: Run-Mode Clock Gating Control 0 (RCGC0), offset 0x100....................................................... 92  
Register 20: Sleep-Mode Clock Gating Control 0 (SCGC0), offset 0x110..................................................... 92  
Register 21: Deep-Sleep-Mode Clock Gating Control 0 (DCGC0), offset 0x120........................................... 92  
Register 22: Run-Mode Clock Gating Control 1 (RCGC1), offset 0x104....................................................... 94  
Register 23: Sleep-Mode Clock Gating Control 1 (SCGC1), offset 0x114..................................................... 94  
Register 24: Deep-Sleep-Mode Clock Gating Control 1 (DCGC1), offset 0x124........................................... 94  
Register 25: Run-Mode Clock Gating Control 2 (RCGC2), offset 0x108....................................................... 96  
Register 26: Sleep-Mode Clock Gating Control 2 (SCGC2), offset 0x118..................................................... 96  
Register 27: Deep-Sleep-Mode Clock Gating Control 2 (DCGC2), offset 0x128........................................... 96  
Register 28: Deep-Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 .............................................. 97  
Register 29: Clock Verification Clear (CLKVCLR), offset 0x150....................................................................98  
Register 30: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160....................................... 99  
Internal Memory............................................................................................................................ 100  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Flash Memory Protection Read Enable (FMPRE), offset 0x130 ............................................. 106  
Flash Memory Protection Program Enable (FMPPE), offset 0x134 ........................................ 107  
USec Reload (USECRL), offset 0x140.................................................................................... 108  
Flash Memory Address (FMA), offset 0x000........................................................................... 109  
Flash Memory Data (FMD), offset 0x004 ................................................................................ 111  
Flash Memory Control (FMC), offset 0x008 ............................................................................ 112  
Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C................................................. 114  
Flash Controller Interrupt Mask (FCIM), offset 0x010 ............................................................. 115  
Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014......................... 116  
12  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
General-Purpose Input/Outputs (GPIOs).................................................................................... 117  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
GPIO Data (GPIODATA), offset 0x000 ...................................................................................125  
GPIO Direction (GPIODIR), offset 0x400 ................................................................................ 126  
GPIO Interrupt Sense (GPIOIS), offset 0x404......................................................................... 127  
GPIO Interrupt Both Edges (GPIOIBE), offset 0x408.............................................................. 128  
GPIO Interrupt Event (GPIOIEV), offset 0x40C....................................................................... 129  
GPIO Interrupt Mask (GPIOIM), offset 0x410.......................................................................... 130  
GPIO Raw Interrupt Status (GPIORIS), offset 0x414.............................................................. 131  
GPIO Masked Interrupt Status (GPIOMIS), offset 0x418........................................................ 132  
GPIO Interrupt Clear (GPIOICR), offset 0x41C....................................................................... 133  
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420................................................. 134  
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500.............................................................. 135  
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504.............................................................. 136  
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508.............................................................. 137  
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C............................................................... 138  
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510 ...................................................................... 139  
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514.................................................................. 140  
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518...................................................... 141  
Register 18: GPIO Digital Input Enable (GPIODEN), offset 0x51C ............................................................. 142  
Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 ........................................... 143  
Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 ........................................... 144  
Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 ........................................... 145  
Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC........................................... 146  
Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 ........................................... 147  
Register 24: GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4 ............................................ 148  
Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 ........................................... 149  
Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC........................................... 150  
Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .............................................. 151  
Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .............................................. 152  
Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .............................................. 153  
Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC.............................................. 154  
General-Purpose Timers.............................................................................................................. 155  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
GPTM Configuration (GPTMCFG), offset 0x000..................................................................... 167  
GPTM TimerA Mode (GPTMTAMR), offset 0x004.................................................................. 168  
GPTM TimerB Mode (GPTMTBMR), offset 0x008.................................................................. 169  
GPTM Control (GPTMCTL), offset 0x00C............................................................................... 170  
GPTM Interrupt Mask (GPTMIMR), offset 0x018 .................................................................... 172  
GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C .......................................................... 174  
GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 ..................................................... 175  
GPTM Interrupt Clear (GPTMICR), offset 0x024..................................................................... 176  
GPTM TimerA Interval Load (GPTMTAILR), offset 0x028 ...................................................... 177  
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C...................................................... 178  
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030 ....................................................... 179  
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034 ....................................................... 180  
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038.............................................................. 181  
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C............................................................. 182  
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040................................................ 183  
April 27, 2007  
13  
Preliminary  
List of Registers  
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044................................................ 184  
Register 17: GPTM TimerA (GPTMTAR), offset 0x048............................................................................... 185  
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C .............................................................................. 186  
Watchdog Timer............................................................................................................................ 187  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Watchdog Load (WDTLOAD), offset 0x000 ............................................................................ 190  
Watchdog Value (WDTVALUE), offset 0x004 ......................................................................... 191  
Watchdog Control (WDTCTL), offset 0x008............................................................................ 192  
Watchdog Interrupt Clear (WDTICR), offset 0x00C ................................................................ 193  
Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 ....................................................... 194  
Watchdog Masked Interrupt Status (WDTMIS), offset 0x014.................................................. 195  
Watchdog Lock (WDTLOCK), offset 0xC00 ............................................................................ 196  
Watchdog Test (WDTTEST), offset 0x418.............................................................................. 197  
Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0..................................... 198  
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4..................................... 199  
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8..................................... 200  
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC .................................... 201  
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0..................................... 202  
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4..................................... 203  
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8..................................... 204  
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC .................................... 205  
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0........................................ 206  
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4........................................ 207  
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8........................................ 208  
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC ...................................... 209  
Analog-to-Digital Converter (ADC).............................................................................................. 210  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
ADC Active Sample Sequencer (ADCACTSS), offset 0x000.................................................. 216  
ADC Raw Interrupt Status (ADCRIS), offset 0x004................................................................. 217  
ADC Interrupt Mask (ADCIM), offset 0x008 ............................................................................ 218  
ADC Interrupt Status and Clear (ADCISC), offset 0x00C........................................................ 219  
ADC Overflow Status (ADCOSTAT), offset 0x010.................................................................. 220  
ADC Event Multiplexer Select (ADCEMUX), offset 0x014 ...................................................... 221  
ADC Underflow Status (ADCUSTAT), offset 0x018 ................................................................ 222  
ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020.................................................. 223  
ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028..................................... 224  
Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030...................................................... 225  
Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040.................. 226  
Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044............................................. 228  
Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048.................................... 230  
Register 14: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C................................ 231  
Register 15: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060.................. 232  
Register 16: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064............................................. 233  
Register 17: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068.................................... 233  
Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C................................ 233  
Register 19: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080.................. 234  
Register 20: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084............................................. 235  
Register 21: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088.................................... 235  
Register 22: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C................................ 235  
14  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 23: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0 ................. 236  
Register 24: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4 ............................................ 237  
Register 25: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8 ................................... 237  
Register 26: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC ............................... 237  
Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100 ............................................................ 238  
Universal Asynchronous Receivers/Transmitters (UARTs) ..................................................... 240  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
UART Data (UARTDR), offset 0x000 ...................................................................................... 247  
UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 .............................. 249  
UART Flag (UARTFR), offset 0x018 ....................................................................................... 251  
UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024................................................. 253  
UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 ........................................... 254  
UART Line Control (UARTLCRH), offset 0x02C ..................................................................... 255  
UART Control (UARTCTL), offset 0x030................................................................................. 257  
UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ................................................ 258  
UART Interrupt Mask (UARTIM), offset 0x038........................................................................ 259  
Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C............................................................ 261  
Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040 ...................................................... 262  
Register 12: UART Interrupt Clear (UARTICR), offset 0x044...................................................................... 263  
Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0.......................................... 264  
Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4.......................................... 265  
Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8.......................................... 266  
Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC......................................... 267  
Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0.......................................... 268  
Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4.......................................... 269  
Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8.......................................... 270  
Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC ......................................... 271  
Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0............................................. 272  
Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4............................................. 273  
Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8............................................. 274  
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC............................................ 275  
Synchronous Serial Interface (SSI)............................................................................................. 276  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
SSI Control 0 (SSICR0), offset 0x000 ..................................................................................... 288  
SSI Control 1 (SSICR1), offset 0x004 ..................................................................................... 290  
SSI Data (SSIDR), offset 0x008 .............................................................................................. 292  
SSI Status (SSISR), offset 0x00C ........................................................................................... 293  
SSI Clock Prescale (SSICPSR), offset 0x010......................................................................... 294  
SSI Interrupt Mask (SSIIM), offset 0x014................................................................................ 295  
SSI Raw Interrupt Status (SSIRIS), offset 0x018 .................................................................... 296  
SSI Masked Interrupt Status (SSIMIS), offset 0x01C.............................................................. 297  
SSI Interrupt Clear (SSIICR), offset 0x020.............................................................................. 298  
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0.................................................. 299  
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4.................................................. 300  
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8.................................................. 301  
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC................................................. 302  
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0.................................................. 303  
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4.................................................. 304  
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8.................................................. 305  
April 27, 2007  
15  
Preliminary  
List of Registers  
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC ................................................. 306  
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0..................................................... 307  
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4..................................................... 308  
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8..................................................... 309  
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC.................................................... 310  
Inter-Integrated Circuit (I2C) Interface ........................................................................................ 311  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
I2C Master Slave Address (I2CMSA), offset 0x000 ................................................................ 324  
I2C Master Control/Status (I2CMCS), offset 0x004................................................................. 325  
I2C Master Data (I2CMDR), offset 0x008................................................................................ 330  
2
I C Master Timer Period (I2CMTPR), offset 0x00C ................................................................ 331  
2
I C Master Interrupt Mask (I2CMIMR), offset 0x010 ............................................................... 332  
2
I C Master Raw Interrupt Status (I2CMRIS), offset 0x014...................................................... 333  
2
I C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ................................................ 334  
2
I C Master Interrupt Clear (I2CMICR), offset 0x01C............................................................... 335  
2
I C Master Configuration (I2CMCR), offset 0x020 .................................................................. 336  
2
Register 10: I C Slave Own Address (I2CSOAR), offset 0x000.................................................................. 337  
Register 11: I C Slave Control/Status (I2CSCSR), offset 0x004................................................................. 338  
Register 12: I C Slave Data (I2CSDR), offset 0x008................................................................................... 340  
Register 13: I C Slave Interrupt Mask (I2CSIMR), offset 0x00C ................................................................. 341  
Register 14: I C Slave Raw Interrupt Status (I2CSRIS), offset 0x010......................................................... 342  
Register 15: I C Slave Masked Interrupt Status (I2CSMIS), offset 0x014................................................... 343  
Register 16: I C Slave Interrupt Clear (I2CSICR), offset 0x018 .................................................................. 344  
2
2
2
2
2
2
Analog Comparator ...................................................................................................................... 345  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00........................................ 349  
Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04.............................................. 350  
Analog Comparator Interrupt Enable (ACINTEN), offset 0x08................................................ 351  
Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10............................ 352  
Analog Comparator Status 0 (ACSTAT0), offset 0x20............................................................ 353  
Analog Comparator Control 0 (ACCTL0), offset 0x24............................................................. 354  
Pulse Width Modulator (PWM)..................................................................................................... 356  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
PWM Master Control (PWMCTL), offset 0x000....................................................................... 363  
PWM Time Base Sync (PWMSYNC), offset 0x004................................................................. 364  
PWM Output Enable (PWMENABLE), offset 0x008................................................................ 365  
PWM Output Inversion (PWMINVERT), offset 0x00C............................................................. 366  
PWM Output Fault (PWMFAULT), offset 0x010...................................................................... 367  
PWM Interrupt Enable (PWMINTEN), offset 0x014................................................................. 368  
PWM Raw Interrupt Status (PWMRIS), offset 0x018 .............................................................. 369  
PWM Interrupt Status and Clear (PWMISC), offset 0x01C ..................................................... 370  
PWM Status (PWMSTATUS), offset 0x020............................................................................. 371  
Register 10: PWM0 Control (PWM0CTL), offset 0x040............................................................................... 372  
Register 11: PWM0 Interrupt/Trigger Enable (PWM0INTEN), offset 0x044 ................................................ 373  
Register 12: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 .......................................................... 375  
Register 13: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C ................................................. 376  
Register 14: PWM0 Load (PWM0LOAD), offset 0x050 ............................................................................... 377  
Register 15: PWM0 Counter (PWM0COUNT), offset 0x054 ....................................................................... 378  
Register 16: PWM0 Compare A (PWM0CMPA), offset 0x058 .................................................................... 379  
16  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 17: PWM0 Compare B (PWM0CMPB), offset 0x05C.................................................................... 380  
Register 18: PWM0 Generator A Control (PWM0GENA), offset 0x060....................................................... 381  
Register 19: PWM0 Generator B Control (PWM0GENB), offset 0x064....................................................... 383  
Register 20: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 ...................................................... 384  
Register 21: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C.................................. 385  
Register 22: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070.................................. 386  
April 27, 2007  
17  
Preliminary  
Revision History  
Revision History  
This table provides a summary of the document revisions.  
Date  
Revision  
Description  
July 2006  
00  
Initial public release of LM3S328, LM3S601, LM3S610, LM3S611, LM3S612,  
LM3S613, LM3S615, LM3S628, LM3S801, LM3S811, LM3S812, LM3S815, and  
LM3S828 data sheets.  
September 2006  
01  
Second release of LM3S612 data sheet. Includes the following changes:  
• Added information on hardware averaging to the ADC chapter.  
• Updated the clocking examples in the I2C chapter.  
• Added “5-V-tolerant” description for GPIOs to feature list, GPIO chapter, and  
Electrical chapter.  
• Added maximum values for 20 MHz and 25 MHz parts to Table 9-1, “16-Bit  
Timer with Prescaler Configurations” in the Timers chapter.  
• Made the following changes in the System Control chapter:  
- Updated field descriptions in the Run-Mode Clock Configuration  
(RCC) register and the Device Identification 1 (DID1) register.  
- Updated the internal oscillator clock speed.  
- Added the Deep-Sleep Clock Configuration (DSLPCFG) register.  
- Added bus fault information to the clock gating registers.  
October 2006  
02  
Third release of LM3S612 data sheet. Includes the following changes:  
• Added Serial Flash Loader usage information.  
18  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Date  
Revision  
Description  
April 2007  
03  
Fourth release of LM3S612 data sheet. Third release of LM3S328, LM3S601,  
LM3S610, LM3S611, LM3S613, LM3S615, LM3S628, LM3S801, LM3S811,  
LM3S812, LM3S815, and LM3S828 data sheets. Includes the following changes:  
In the System Control chapter:  
• Changed three bits in the RCGC0/SCGC0/DCGC0 registers to reserved (SWO,  
SWD, and JTAG).  
• Changed instances of PLLCTL to PLLCFG.  
• Changed the reset value to 0 for the ADC and MAXADCSPD bits in the  
RCGC0/SCGC0/DCGC0 registers.  
• Clarified description of MAXADCSPD bit in RCGC0 register.  
• Updated the Main Clock Tree figure for the ADC.  
In the Internal Memory chapter:  
• Changed the reset value to 0x18 for the USEC bit in the USECRL register.  
• Fixed issue with bit access in register diagrams for FMA register.  
In the ADC chapter:  
• Changed instance of ADCAMUX to ADCSSMUXin the ADC chapter.  
• Updated the ADC block diagram to show hardware averaging circuit.  
• Corrected the offset for ADCSSCTL3 in the register map and register  
description. It should be offset 0xA4, not 0x64.  
In the SSI chapter:  
• Changed the wording for the SSIClk transmit clock.  
In the Analog Comparator chapter:  
• Clarified the wording in the Initialization section.  
• Fixed conditional text issue in ACCTL0 register.  
In the I2C chapter:  
• Added the PREQ bit in the I2CSCSR register.  
• Fixed typo in the Master Single Send flow chart.  
In the Operating Characteristics chapter:  
• Added information to Maximum Junction Temperature.  
In the Electrical Characteristics chapter:  
• Added information to the Power Specifications.  
• Changed note in the ADC Clocking Characteristics table .  
• Fixed conditional text issue in the ADC Characteristics table.  
In the Package Information chapter:  
• Fixed typo in 48-pin package drawing.  
April 2007  
04  
Fifth release of LM3S612 data sheet. Fourth release of LM3S328, LM3S601,  
LM3S610, LM3S611, LM3S613, LM3S615, LM3S628, LM3S801, LM3S811,  
LM3S812, LM3S815, and LM3S828 data sheets. Includes the following changes:  
• In the Internal Memory chapter, added information on code protection.  
• In the ARM Cortex-M3 Processor Core, Architecture Overview, and  
General-Purpose Timers chapters, added information for the System Timer  
(SysTick).  
• In the I2C chapter, added description for FBR bit. Changed instances of PREQ  
in accompanying figure to FBR.  
• In the Timers chapter, added note to the 16-Bit Input Edge Time Mode  
section.In the Analog Comparator chapter, changed IN0-IN2 bit types from RO  
to R/W1C in the ACMIS register.  
April 27, 2007  
19  
Preliminary  
About This Document  
About This Document  
This data sheet provides reference information for the LM3S612 microcontroller, describing the  
functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3  
core.  
Audience  
This manual is intended for system software developers, hardware designers, and application  
developers.  
About This Manual  
This document is organized into sections that correspond to each major feature.  
Related Documents  
The following documents are referenced by the data sheet, and available on the documentation  
CD or from the Luminary Micro web site at www.luminarymicro.com:  
„
„
„
ARM® Cortex™-M3 Technical Reference Manual  
CoreSight™ Design Kit Technical Reference Manual  
ARM® v7-M Architecture Application Level Reference Manual  
The following related documents are also referenced:  
IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture  
„
This documentation list was current as of publication date. Please check the Luminary Micro web  
site for additional documentation, including application notes and white papers.  
Documentation Conventions  
This document uses the conventions shown in Table 0-1.  
Table 0-1. Documentation Conventions  
Notation  
Meaning  
General Register Notation  
REGISTER  
APB registers are indicated in uppercase bold. For example,  
PBORCTL is the Power-On and Brown-Out Reset Control register. If  
a register name contains a lowercase n, it represents more than one  
register. For example, SRCRn represents any (or all) of the three  
Software Reset Control registers: SRCR0, SRCR1, and SRCR2.  
bit  
A single bit in a register.  
bit field  
offset 0xnnn  
Two or more consecutive and related bits.  
A hexadecimal increment to a register’s address, relative to that  
module’s base address as specified in Table 3-1, "Memory Map," on  
page 43.  
20  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 0-1. Documentation Conventions  
Notation  
Meaning  
Register N  
Registers are numbered consecutively throughout the document to  
aid in referencing them. The register number has no meaning to  
software.  
reserved  
Register bits marked reserved are reserved for future use. Reserved  
bits return an indeterminate value, and should never be changed.  
Only write a reserved bit with its current value.  
yy:xx  
The range of register bits inclusive from xx to yy. For example, 31:15  
means bits 15 through 31 in that register.  
This value in the register bit diagram indicates whether software  
running on the controller can change the value of the bit field.  
Register Bit/Field Types  
RO  
Software can read this field. Always write the chip reset value.  
Software can read or write this field.  
R/W  
R/W1C  
Software can read or write this field. A write of a 0 to a W1C bit does  
not affect the bit value in the register. A write of a 1 clears the value  
of the bit in the register; the remaining bits remain unchanged.  
This register type is primarily used for clearing interrupt status bits  
where the read operation provides the interrupt status and the write  
of the read value clears only the interrupts being reported at the time  
the register was read.  
W1C  
Software can write this field. A write of a 0 to a W1C bit does not  
affect the bit value in the register. A write of a 1 clears the value of  
the bit in the register; the remaining bits remain unchanged. A read  
of the register returns no meaningful data.  
This register is typically used to clear the corresponding bit in an  
interrupt register.  
WO  
Only a write by software is valid; a read of the register returns no  
meaningful data.  
This value in the register bit diagram shows the bit/field value after  
any reset, unless noted.  
Register Bit/Field Reset Value  
0
1
Bit cleared to 0 on chip reset.  
Bit set to 1 on chip reset.  
Nondeterministic.  
Pin/Signal Notation  
[ ]  
Pin alternate function; a pin defaults to the signal without the  
brackets.  
pin  
Refers to the physical connection on the package.  
Refers to the electrical signal encoding of a pin.  
signal  
April 27, 2007  
21  
Preliminary  
About This Document  
Table 0-1. Documentation Conventions  
Notation  
Meaning  
assert a signal  
Change the value of the signal from the logically False state to the  
logically True state. For active High signals, the asserted signal  
value is 1 (High); for active Low signals, the asserted signal value is  
0 (Low). The active polarity (High or Low) is defined by the signal  
name (see SIGNALand SIGNALbelow).  
deassert a signal  
Change the value of the signal from the logically True state to the  
logically False state.  
SIGNAL  
Signal names are in uppercase and in the Courier font. An overbar  
on a signal name indicates that it is active Low. To assert SIGNALis  
to drive it Low; to deassert SIGNALis to drive it High.  
SIGNAL  
Signal names are in uppercase and in the Courier font. An active  
High signal has no overbar. To assert SIGNALis to drive it High; to  
deassert SIGNALis to drive it Low.  
Numbers  
X
An uppercase X indicates any of several values is allowed, where X  
can be any legal pattern. For example, a binary value of 0X00 can be  
either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.  
0x  
Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is  
the hexadecimal number FF. Binary numbers are indicated with a b  
suffix, for example, 1011b. Decimal numbers are written without a  
prefix or suffix.  
22  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
1
Architectural Overview  
The Luminary Micro Stellaris® family of microcontrollers—the first ARM® Cortex™-M3 based  
controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller  
applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to  
legacy 8- and 16-bit devices, all in a package with a small footprint.  
The LM3S612 controller in the Stellaris family offers the advantages of ARM’s widely available  
development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user  
community. Additionally, the controller uses ARM’s Thumb®-compatible Thumb-2 instruction set to  
reduce memory requirements and, thereby, cost.  
Luminary Micro offers a complete solution to get to market quickly, with a customer development  
board, white papers and application notes, and a strong support, sales, and distributor network.  
1.1  
Product Features  
The LM3S612 microcontroller includes the following product features:  
„
32-Bit RISC Performance  
32-bit ARM® Cortex™-M3 v7M architecture optimized for small-footprint embedded  
applications  
System timer (SysTick) provides a simple, 24-bit clear-on-write, decrementing,  
wrap-on-zero counter with a flexible control mechanism  
Thumb®-compatible Thumb-2-only instruction set processor core for high code density  
50-MHz operation  
Hardware-division and single-cycle-multiplication  
Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt  
handling  
25 interrupts with eight priority levels  
Memory protection unit (MPU) provides a privileged mode for protected operating system  
functionality  
Unaligned data access, enabling data to be efficiently packed into memory  
Atomic bit manipulation (bit-banding) delivers maximum memory utilization and  
streamlined peripheral control  
„
Internal Memory  
32-KB single-cycle flash  
User-managed flash block protection on a 2-KB block basis  
User-managed flash data programming  
User-defined and managed flash-protection block  
8-KB single-cycle SRAM  
„
General-Purpose Timers  
Three timers, each of which can be configured: as a single 32-bit timer, as two 16-bit  
timers, or to initiate an ADC event  
32-bit Timer modes:  
Programmable one-shot timer  
April 27, 2007  
23  
Preliminary  
Architectural Overview  
Programmable periodic timer  
Real-Time Clock when using an external 32.768-KHz clock as the input  
User-enabled stalling in periodic and one-shot mode when the controller asserts the  
CPU Halt flag during debug  
ADC event trigger  
16-bit Timer modes:  
General-purpose timer function with an 8-bit prescaler  
Programmable one-shot timer  
Programmable periodic timer  
User-enabled stalling when the controller asserts CPU Halt flag during debug  
ADC event trigger  
16-bit Input Capture modes:  
Input edge count capture  
Input edge time capture  
16-bit PWM mode:  
Simple PWM mode with software-programmable output inversion of the PWM signal  
„
ARM FiRM-compliant Watchdog Timer  
32-bit down counter with a programmable load register  
Separate watchdog clock with an enable  
Programmable interrupt generation logic with interrupt masking  
Lock register protection from runaway software  
Reset generation logic with an enable/disable  
User-enabled stalling when the controller asserts the CPU Halt flag during debug  
Synchronous Serial Interface (SSI)  
„
Master or slave operation  
Programmable clock bit rate and prescale  
Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep  
Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments  
synchronous serial interfaces  
Programmable data frame size from 4 to 16 bits  
Internal loopback test mode for diagnostic/debug testing  
UART  
„
Two fully programmable 16C550-type UARTs  
Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt  
service loading  
Programmable baud-rate generator with fractional divider  
Programmable FIFO length, including 1-byte deep operation providing conventional  
double-buffered interface  
24  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Standard asynchronous communication bits for start, stop, and parity  
False-start-bit detection  
Line-break generation and detection  
„
ADC  
Single- and differential-input configurations  
Two 10-bit channels (inputs) when used as single-ended inputs  
Sample rate of 500 thousand samples/second  
Flexible, configurable analog-to-digital conversion  
Four programmable sample conversion sequences from one to eight entries long, with  
corresponding conversion result FIFOs  
Each sequence triggered by software or internal event (timers, analog comparators, PWM  
or GPIO)  
„
„
Analog Comparator  
Configurable for output to: drive an output pin, generate an interrupt, or initiate an ADC  
sample sequence  
Compare external pin input to external pin input or to internal programmable voltage  
reference  
2
I C  
Master and slave receive and transmit operation with transmission speed up to 100 Kbps in  
Standard mode and 400 Kbps in Fast mode  
Interrupt generation  
Master with arbitration and clock synchronization, multimaster support, and 7-bit  
addressing mode  
„
PWM  
Three PWM generator blocks, each with one 16-bit counter, two comparators, a PWM  
generator, and a dead-band generator  
One 16-bit counter  
Runs in Down or Up/Down mode  
Output frequency controlled by a 16-bit load value  
Load value updates can be synchronized  
Produces output signals at zero and load value  
Two comparators  
Comparator value updates can be synchronized  
Produces output signals on match  
PWM generator  
Output PWM signal is constructed based on actions taken as a result of the counter  
and comparator output signals  
Produces two independent PWM signals  
Dead-band generator  
April 27, 2007  
25  
Preliminary  
Architectural Overview  
Produces two PWM signals with programmable dead-band delays suitable for driving  
a half-H bridge  
Can be bypassed, leaving input PWM signals unmodified  
Flexible output control block with PWM output enable of each PWM signal  
PWM output enable of each PWM signal  
Optional output inversion of each PWM signal (polarity control)  
Optional fault handling for each PWM signal  
Synchronization of timers in the PWM generator blocks  
Synchronization of timer/comparator updates across the PWM generator blocks  
Interrupt status summary of the PWM generator blocks  
Can initiate an ADC sample sequence  
„
GPIOs  
7 to 34 GPIOs, depending on configuration  
5-V-tolerant input/outputs  
Programmable interrupt generation as either edge-triggered or level-sensitive  
Bit masking in both read and write operations through address lines  
Can initiate an ADC sample sequence  
Programmable control for GPIO pad configuration:  
Weak pull-up or pull-down resistors  
2-mA, 4-mA, and 8-mA pad drive  
Slew rate control for the 8-mA drive  
Open drain enables  
Digital input enables  
„
Power  
On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable  
from 2.25 V to 2.75 V  
Low-power options on controller: Sleep and Deep-sleep modes  
Low-power options for peripherals: software controls shutdown of individual peripherals  
User-enabled LDO unregulated voltage detection and automatic reset  
3.3-V supply brownout detection and reporting via interrupt or reset  
On-chip temperature sensor  
„
Flexible Reset Sources  
Power-on reset (POR)  
Reset pin assertion  
Brown-out (BOR) detector alerts to system power drops  
Software reset  
Watchdog timer reset  
Internal low drop-out (LDO) regulator output goes unregulated  
26  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
„
Additional Features  
Six reset sources  
Programmable clock source control  
Clock gating to individual peripherals for power savings  
IEEE 1149.1-1990 compliant Test Access Port (TAP) controller  
Debug access via JTAG and Serial Wire interfaces  
Full JTAG boundary scan  
„
Industrial-range 48-pin RoHS-compliant LQFP package  
1.2  
Target Applications  
„
„
„
„
Factory automation and control  
Industrial control power devices  
Building and home automation  
DC and stepper motors  
April 27, 2007  
27  
Preliminary  
Architectural Overview  
1.3  
High-Level Block Diagram  
Figure 1-1. Stellaris® High-Level Block Diagram  
ARM Cortex-M3  
DCode bus  
(including Nested  
Vectored Interrupt  
Controller (NVIC))  
Flash  
Memory  
Peripherals  
ICode bus  
LMI JTAG  
Test Access Port  
(TAP)  
System  
Control  
& Clocks  
APB Bridge  
SRAM  
Controller  
General-Purpose  
Timers  
General-Purpose  
Input/Outputs  
(GPIOs)  
System  
Peripherals  
Watchdog  
Timer  
Universal  
Asynchronous  
Receivers/  
Transmitters  
(UARTs)  
Synchronous  
Serial  
Serial  
Communications  
Peripherals  
Interface  
(SSI)  
Inter  
Integrated  
Circuit  
(I2C)  
Analog-to-  
Digital  
Analog  
Peripherals  
Converter  
(ADC)  
Analog  
Comparator  
Temperature  
Sensor  
Pulse  
Width  
Motor  
Control  
Peripherals  
Modulator  
(PWM)  
LM3S612  
28  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
1.4  
Functional Overview  
The following sections provide an overview of the features of the LM3S612 microcontroller. The  
chapter number in parenthesis indicates where that feature is discussed in detail. Ordering and  
support information can be found in “Ordering and Contact Information” on page 418.  
1.4.1  
ARM Cortex™-M3  
1.4.1.1  
Processor Core (Section 2 on page 35)  
All members of the Stellaris product family, including the LM3S612 microcontroller, are designed  
around an ARM Cortex™-M3 processor core. The ARM Cortex-M3 processor provides the core  
for a high-performance, low-cost platform that meets the needs of minimal memory  
implementation, reduced pin count, and low power consumption, while delivering outstanding  
computational performance and exceptional system response to interrupts.  
Section 2, “ARM Cortex-M3 Processor Core,” on page 35 provides an overview of the ARM core;  
the core is detailed in the ARM® Cortex™-M3 Technical Reference Manual.  
1.4.1.2  
Nested Vectored Interrupt Controller (NVIC)  
The LM3S612 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the  
ARM Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions  
are handled in Handler Mode. The processor state is automatically stored to the stack on an  
exception, and automatically restored from the stack at the end of the Interrupt Service Routine  
(ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.  
The processor supports tail-chaining, which enables back-to-back interrupts to be performed  
without the overhead of state saving and restoration. Software can set eight priority levels on 7  
exceptions (system handlers) and 25 interrupts.  
Section 4, “Interrupts,” on page 45 provides an overview of the NVIC controller and the interrupt  
map. Exceptions and interrupts are detailed in the ARM® Cortex™-M3 Technical Reference  
Manual.  
1.4.2  
Motor Control Peripherals  
To enhance motor control, the LM3S612 controller features Pulse Width Modulation (PWM)  
outputs.  
1.4.2.1  
PWM  
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.  
High-resolution counters are used to generate a square wave, and the duty cycle of the square  
wave is modulated to encode an analog signal. Typical applications include switching power  
supplies and motor control.  
On the LM3S612, PWM motion control functionality can be achieved through dedicated, flexible  
motion control hardware (the PWM pins) or through the motion control features of the  
general-purpose timers (using the CCP pins).  
PWM Pins (Section 16 on page 356)  
The LM3S612 PWM module consists of one PWM generator block and a control block. Each PWM  
generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM  
signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block  
determines the polarity of the PWM signals, and which signals are passed through to the pins.  
Each PWM generator block produces two PWM signals that can either be independent signals or  
a single pair of complementary signals with dead-band delays inserted. The output of the PWM  
generation blocks are managed by the output control block before being passed to the device pins.  
April 27, 2007  
29  
Preliminary  
Architectural Overview  
CCP Pins (“16-Bit PWM Mode” on page 164)  
The General-Purpose Timer Module’s CCP (Capture Compare PWM) pins are software  
programmable to support a simple PWM mode with a software-programmable output inversion of  
the PWM signal.  
1.4.3  
Analog Peripherals  
To handle analog signals, the LM3S612 controller offers an Analog-to-Digital Converter (ADC) and  
an analog comparator.  
1.4.3.1  
ADC (Section 11 on page 210)  
An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a  
discrete digital number.  
The Stellaris ADC module features 10-bit conversion resolution and supports two input channels,  
plus an internal temperature sensor. Four buffered sample sequences allow rapid sampling of up  
to eight analog input sources without controller intervention. Each sample sequence provides  
flexible programming with fully configurable input source, trigger events, interrupt generation, and  
sequence priority.  
1.4.3.2  
Analog Comparator (Section 15 on page 345)  
An analog comparator is a peripheral that compares two analog voltages, and provides a logical  
output that signals the comparison result.  
The LM3S612 controller provides one independent integrated analog comparators that can be  
configured to drive an output or generate an interrupt or ADC event.  
A comparator can compare a test voltage against any one of these voltages:  
„
„
„
An individual external reference voltage  
A single external reference voltage  
A shared internal reference voltage  
The comparator can provide its output to a device pin, acting as a replacement for an analog  
comparator on the board, or it can be used to signal the application via interrupts or triggers to the  
ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering  
logic is separate. This means, for example, that an interrupt can be generated on a rising edge and  
the ADC triggered on a falling edge.  
1.4.4  
Serial Communications Peripherals  
The LM3S612 controller supports both asynchronous and synchronous serial communications  
2
with two fully programmable 16C550-type UARTs, SSI and I C serial communications.  
1.4.4.1  
UART (Section 12 on page 240)  
A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C  
serial communications, containing a transmitter (parallel-to-serial converter) and a receiver  
(serial-to-parallel converter), each clocked separately.  
The LM3S612 controller includes two fully programmable 16C550-type UARTs that support data  
transfer speeds up to 460.8 Kbps. (Although similar in functionality to a 16C550 UART, it is not  
register compatible.)  
Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading.  
The UART can generate individually masked interrupts from the RX, TX, modem status, and error  
conditions. The module provides a single combined interrupt when any of the interrupts are  
asserted and are unmasked.  
30  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
1.4.4.2  
SSI (Section 13 on page 276)  
Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.  
The Stellaris SSI module provides the functionality for synchronous serial communications with  
peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI  
synchronous serial interface frame formats. The size of the data frame is also configurable, and  
can be set between 4 and 16 bits, inclusive.  
The SSI module performs serial-to-parallel conversion on data received from a peripheral device,  
and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths  
are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.  
The SSI module can be configured as either a master or slave device. As a slave device, the SSI  
module can also be configured to disable its output, which allows a master device to be coupled  
with multiple slave devices.  
The SSI module also includes a programmable bit rate clock divider and prescaler to generate the  
output serial clock derived from the SSI module’s input clock. Bit rates are generated based on the  
input clock and the maximum bit rate is determined by the connected peripheral.  
2
1.4.4.3  
I C (Section 14 on page 311)  
2
The Inter-Integrated Circuit (I C) bus provides bi-directional data transfer through a two-wire  
design (a serial data line SDA and a serial clock line SCL).  
2
2
The I C bus interfaces to external I C devices such as serial memory (RAMs and ROMs),  
2
networking devices, LCDs, tone generators, and so on. The I C bus may also be used for system  
testing and diagnostic purposes in product development and manufacture.  
2
2
The Stellaris I C module provides the ability to communicate to other IC devices over an I C bus.  
2
The I C bus supports devices that can both transmit and receive (write and read) data.  
2
2
Devices on the I C bus can be designated as either a master or a slave. The I C module supports  
both sending and receiving data as either a master or a slave, and also supports the simultaneous  
2
operation as both a master and a slave. The four I C modes are: Master Transmit, Master  
Receive, Slave Transmit, and Slave Receive.  
2
The Stellaris I C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).  
2
2
Both the I C master and slave can generate interrupts. The I C master generates interrupts when  
2
a transmit or receive operation completes (or aborts due to an error). The I C slave generates  
interrupts when data has been sent or requested by a master.  
1.4.5  
System Peripherals  
1.4.5.1  
Programmable GPIOs (Section 8 on page 117)  
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.  
The Stellaris GPIO module is composed of five physical GPIO blocks, each corresponding to an  
individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP  
for Real-Time Microcontrollers specification) and supports 7 to 34 programmable input/output pins.  
The number of GPIOs available depends on the peripherals being used (see Table 18-4 on  
page 395 for the signals available to each GPIO pin).  
The GPIO module features programmable interrupt generation as either edge-triggered or  
level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in  
both read and write operations through address lines.  
1.4.5.2  
Three Programmable Timers (Section 9 on page 155)  
Programmable timers can be used to count or time external events that drive the Timer input pins.  
April 27, 2007  
31  
Preliminary  
Architectural Overview  
The Stellaris General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM  
block provides two 16-bit timer/counters that can be configured to operate independently as timers  
or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock  
(RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.  
When configured in 32-bit mode, a timer can run as a one-shot timer, periodic timer, or Real-Time  
Clock (RTC). When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can  
extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event  
capture or Pulse Width Modulation (PWM) generation.  
1.4.5.3  
Watchdog Timer (Section 10 on page 187)  
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is  
reached. The watchdog timer is used to regain control when a system has failed due to a software  
error or to the failure of an external device to respond in the expected way.  
The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load  
register, interrupt generation logic, and a locking register.  
The Watchdog Timer can be configured to generate an interrupt to the controller on its first  
time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has  
been configured, the lock register can be written to prevent the timer configuration from being  
inadvertently altered.  
1.4.6  
Memory Peripherals  
The Stellaris controllers offer both SRAM and Flash memory.  
1.4.6.1  
SRAM (Section 7.2.1 on page 100)  
The LM3S612 static random access memory (SRAM) controller supports 8 KB SRAM. The  
internal SRAM of the Stellaris devices is located at address 0x2000.0000 of the device memory  
map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has  
introduced bit-banding technology in the new Cortex-M3 processor. With a bit-band-enabled  
processor, certain regions in the memory map (SRAM and peripheral space) can use address  
aliases to access individual bits in a single, atomic operation.  
1.4.6.2  
Flash (Section 7.2.2 on page 101)  
The LM3S612 Flash controller supports 32 KB of flash memory. The flash is organized as a set of  
1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the  
block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually  
protected. The blocks can be marked as read-only or execute-only, providing different levels of  
code protection. Read-only blocks cannot be erased or programmed, protecting the contents of  
those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can  
only be read by the controller instruction fetch mechanism, protecting the contents of those blocks  
from being read by either the controller or by a debugger.  
1.4.7  
Additional Features  
1.4.7.1  
Memory Map (Section 3 on page 43)  
A memory map lists the location of instructions and data in memory. The memory map for the  
LM3S612 controller can be found on page 43. Register addresses are given as a hexadecimal  
increment, relative to the module’s base address as shown in the memory map.  
The ARM® Cortex™-M3 Technical Reference Manual provides further information on the memory  
map.  
32  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
1.4.7.2  
JTAG TAP Controller (Section 5 on page 48)  
The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the  
Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG  
data registers can be used to test the interconnects of assembled printed circuit boards, obtain  
manufacturing information on the components, and observe and/or control the inputs and outputs  
of the controller during normal operation. The JTAG port provides a high degree of testability and  
chip-level access at a low cost.  
The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is  
transmitted serially into the controller on TDIand out of the controller on TDO. The interpretation of  
this data is dependent on the current state of the TAP controller. For detailed information on the  
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test  
Access Port and Boundary-Scan Architecture.  
The LMI JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is  
implemented by multiplexing the TDOoutputs from both JTAG controllers. ARM JTAG instructions  
select the ARM TDOoutput while LMI JTAG instructions select the LMI TDOoutputs. The  
multiplexer is controlled by the LMI JTAG controller, which has comprehensive programming for  
the ARM, LMI, and unimplemented JTAG instructions.  
1.4.7.3  
System Control and Clocks (Section 6 on page 58)  
System control determines the overall operation of the device. It provides information about the  
device, controls the clocking of the device and individual peripherals, and handles reset detection  
and reporting.  
1.4.8  
Hardware Details  
Details on the pins and package can be found in the following sections:  
„
„
„
„
„
Section 17, “Pin Diagram,” on page 387  
Section 18, “Signal Tables,” on page 388  
Section 19, “Operating Characteristics,” on page 397  
Section 20, “Electrical Characteristics,” on page 398  
Section 21, “Package Information,” on page 412  
April 27, 2007  
33  
Preliminary  
Architectural Overview  
1.5  
System Block Diagram  
Figure 1-2. LM3S612 Controller System-Level Block Diagram  
VDD_3.3V  
LDO  
VDD_2.5V  
LDO  
GND  
ARM Cortex-M3  
(50 MHz)  
CM3Core  
DCode  
ICode  
Flash  
(32 KB)  
NVIC  
Debug  
Bus  
OSC0  
OSC1  
IOSC PLL  
SRAM  
(8 KB)  
APB Bridge  
POR  
BOR  
Watchdog  
Timer  
System  
Control  
& Clocks  
RST  
GPIO Port B  
GPIO Port A  
PB7/TRST  
Analog  
Comparator  
PB6/C0+  
PB4/C0-  
PA5/SSITx  
PA4/SSIRx  
PA3/SSIFss  
PA2/SSIClk  
SSI  
PB3/I2CSDA  
PB2/I2CSCL  
Master  
2
I C  
Slave  
PA1/U0Tx  
PA0/U0Rx  
UART0  
PB1  
GPIO Port C  
PB0/CCP0  
PB5/CCP5  
GP Timer0  
PC6/CCP3  
PC3/TDO/SWO  
PC2/TDI  
PC1/TMS/SWDIO  
PC0/TCK/SWCLK  
JTAG  
SWD/SWO  
GPIO Port D  
PD6/Fault  
PD0/PWM0  
PD1/PWM1  
PC7/CCP4  
PWM0  
UART1  
GP Timer2  
PC4  
PC5  
PD2/U1Rx  
PD3/U1Tx  
GPIO Port E  
PE0  
PE1  
PD4  
PD5/CCP2  
GP Timer1  
PE2  
PE3/CCP1  
PD7/C0o  
ADC  
ADC1  
ADC0  
Temperature  
Sensor  
LM3S612  
34  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
ARM Cortex-M3 Processor Core  
The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that  
meets the needs of minimal memory implementation, reduced pin count, and low power  
consumption, while delivering outstanding computational performance and exceptional system  
response to interrupts. Features include:  
„
„
Compact core.  
Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the  
memory size usually associated with 8- and 16-bit devices; typically in the range of a few  
kilobytes of memory for microcontroller class applications.  
„
„
„
Exceptional interrupt handling, by implementing the register manipulations required for  
handling an interrupt in hardware.  
Memory protection unit (MPU) to provide a privileged mode of operation for complex  
applications.  
Full-featured debug solution with a:  
Serial Wire JTAG Debug Port (SWJ-DP)  
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints  
Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,  
and system profiling  
Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer  
The Stellaris family of microcontrollers builds on this core to bring high-performance 32-bit  
computing to cost-sensitive embedded microcontroller applications, such as factory automation  
and control, industrial control power devices, and building and home automation.  
For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex™-M3  
Technical Reference Manual. For information on SWJ-DP, see the CoreSight™ Design Kit  
Technical Reference Manual.  
April 27, 2007  
35  
Preliminary  
ARM Cortex-M3 Processor Core  
2.1  
Block Diagram  
Figure 2-1. CPU Block Diagram  
Nested  
Vectored  
Interrupt  
Controller  
Interrupts  
Sleep  
Serial  
Wire  
Output  
Trace  
Port  
ARM  
Cortex-M3  
CM3 Core  
Debug  
Instructions Data  
Trace  
Port  
Interface  
Unit  
Memory  
Protection  
Unit  
(SWO)  
Private  
Peripheral  
Bus  
Instrumentation  
Trace Macrocell  
Data  
Watchpoint  
and Trace  
Flash  
Patch and  
Breakpoint  
(external)  
ROM  
Table  
Private Peripheral  
Bus  
Adv. Peripheral  
Bus  
(internal )  
I-code bus  
D-code bus  
System bus  
Bus  
Matrix  
Adv. High-  
Perf. Bus  
Access Port  
Serial Wire JTAG  
Debug Port  
2.2  
2.2.1  
36  
Functional Description  
Important: The ARM® Cortex™-M3 Technical Reference Manual describes all the features of  
an ARM Cortex-M3 in detail. However, these features differ based on the  
implementation. This section describes the Stellaris implementation.  
Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1. As noted in  
the ARM® Cortex™-M3 Technical Reference Manual, several Cortex-M3 components are flexible  
in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested  
Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.  
Serial Wire and JTAG Debug  
Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM  
CoreSight™-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12,  
“Debug Port,” of the ARM® Cortex™-M3 Technical Reference Manual does not apply to Stellaris  
devices.  
The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the  
CoreSight™ Design Kit Technical Reference Manual for details on SWJ-DP.  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2.2.2  
2.2.3  
Embedded Trace Macrocell (ETM)  
ETM was not implemented in the Stellaris devices. This means Chapters 15 and 16 of the ARM®  
Cortex™-M3 Technical Reference Manual can be ignored.  
Trace Port Interface Unit (TPIU)  
The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace  
Port Analyzer. The Stellaris devices have implemented TPIU as shown in Figure 2-2. This is  
similar to the non-ETM version described in the ARM® Cortex™-M3 Technical Reference Manual,  
however, SWJ-DP only provides SWVoutput for the TPIU.  
Figure 2-2. TPIU Block Diagram  
Debug  
Serial Wire  
Trace Port  
(SWO)  
ATB  
Interface  
Trace Out  
(serializer)  
ATB  
Slave  
Port  
Asynchronous FIFO  
APB  
Slave  
Port  
APB  
Interface  
2.2.4  
2.2.5  
ROM Table  
The default ROM table was implemented as described in the ARM® Cortex™-M3 Technical  
Reference Manual.  
Memory Protection Unit (MPU)  
The Memory Protection Unit (MPU) is included on the LM3S612 controller and supports the  
standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full  
support for protection regions, overlapping protection regions, access permissions, and exporting  
memory attributes to the system.  
2.2.6  
Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC):  
„
„
„
Facilitates low-latency exception and interrupt handling  
Controls power management  
Implements system control registers  
The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of  
priority. The NVIC and the processor core interface are closely coupled, which enables low latency  
April 27, 2007  
37  
Preliminary  
ARM Cortex-M3 Processor Core  
interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains  
knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.  
You can only fully access the NVIC from privileged mode, but you can pend interrupts in  
user-mode if you enable the Configuration Control Register (see the ARM® Cortex™-M3  
Technical Reference Manual). Any other user-mode access causes a bus fault.  
All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.  
All NVIC registers and system debug registers are little endian regardless of the endianness state  
of the processor.  
2.2.6.1  
2.2.6.2  
Interrupts  
The ARM® Cortex™-M3 Technical Reference Manual describes the maximum number of  
interrupts and interrupt priorities. The LM3S612 microcontroller supports 25 interrupts with eight  
priority levels.  
System Timer (SysTick)  
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used in several different ways, for example:  
„
An RTOS tick timer which fires at a programmable rate (for example 100 Hz) and invokes a  
SysTick routine.  
„
„
A high-speed alarm timer using the system clock.  
A variable rate alarm or signal timer—the duration is range-dependent on the reference clock  
used and the dynamic range of the counter.  
„
„
A simple counter. Software can use this to measure time to completion and time used.  
An internal clock source control based on missing/meeting durations. The COUNTFLAG  
bit-field in the control and status register can be used to determine if an action completed  
within a set duration, as part of a dynamic clock management control loop.  
Functional Description  
The timer consists of three registers:  
„
A control and status counter to configure its clock, enable the counter, enable the SysTick  
interrupt, and determine counter status.  
„
„
The reload value for the counter, used to provide the counter's wrap value.  
The current value of the counter.  
A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris  
devices.  
When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value  
in the SysTick Reload Value register on the next clock edge, then decrements on subsequent  
clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap.  
When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on  
reads.  
Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write  
does not trigger the SysTick exception logic. On a read, the current value is the value of the  
register at the time the register is accessed.  
38  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
If the core is in debug state (halted), the counter will not decrement. The timer is clocked with  
respect to a reference clock. The reference clock can be the core clock or an external clock  
source.  
April 27, 2007  
39  
Preliminary  
ARM Cortex-M3 Processor Core  
Register 1: SysTick Control and Status Register  
Use the SysTick Control and Status Register to enable the SysTick features.  
SysTick Control and Status  
Address: 0xE000E010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COUNTFLAG  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TICKINT ENABLE  
CLKSOURCE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
16  
COUNTFLAG  
R/W  
0
Returns 1 if timer counted to 0 since last time this was read.  
Clears on read by application. If read by the debugger using the  
DAP, this bit is cleared on read-only if the MasterType bit in the  
AHB-AP Control Register is set to 0. Otherwise, the  
COUNTFLAG bit is not changed by the debugger read.  
15:3  
2
reserved  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
CLKSOURCE  
R/W  
0 = external reference clock. (Not implemented for Stellaris  
microcontrollers.)  
1 = core clock.  
If no reference clock is provided, it is held at 1 and so gives the  
same time as the core clock. The core clock must be at least 2.5  
times faster than the reference clock. If it is not, the count values  
are Unpredictable.  
1
0
TICKINT  
ENABLE  
R/W  
R/W  
0
0
1 = counting down to 0 pends the SysTick handler.  
0 = counting down to 0 does not pend the SysTick handler.  
Software can use the COUNTFLAG to determine if ever counted  
to 0.  
1 = counter operates in a multi-shot way. That is, counter loads  
with the Reload value and then begins counting down. On  
reaching 0, it sets the COUNTFLAG to 1 and optionally pends  
the SysTick handler, based on TICKINT. It then loads the Reload  
value again, and begins counting.  
0 = counter disabled.  
40  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 2: SysTick Reload Value Register  
Use the SysTick Reload Value Register to specify the start value to load into the current value  
register when the counter reaches 0. It can be any value between 1 and 0x00FFFFFF. A start  
value of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are  
activated when counting from 1 to 0.  
Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is  
any value from 1 to 0x00FFFFFF. So, if the tick interrupt is required every 100 clock pulses, 99  
must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as  
single shot, then the actual count down must be written. For example, if a tick is next required after  
400 clock pulses, 400 must be written into the RELOAD.  
SysTick Reload Value  
Address: 0xE000E014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
RELOAD  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RELOAD  
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:24  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should never  
be changed.  
23:0  
RELOAD  
W1C  
-
Value to load into the SysTick Current Value Register when the  
counter reaches 0.  
April 27, 2007  
41  
Preliminary  
ARM Cortex-M3 Processor Core  
Register 3: SysTick Current Value Register  
Use the SysTick Current Value Register to find the current value in the register.  
SysTick Current Value  
Address: 0xE000E018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CURRENT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CURRENT  
Type  
Reset  
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
W1C  
-
SysTick Current Value Register bit assignments  
Bit/Field  
31:24  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
23:0  
CURRENT  
W1C  
-
Current value at the time the register is accessed. No  
read-modify-write protection is provided, so change with care.  
This register is write-clear. Writing to it with any value clears the  
register to 0. Clearing this register also clears the COUNTFLAG  
bit of the SysTick Control and Status Register.  
2.2.6.3  
SysTick Calibration Value Register  
The SysTick Calibration Value register is not implemented.  
42  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
3
Memory Map  
The memory map for the LM3S612 is provided in Table 3-1. In this manual, register addresses are  
given as a hexadecimal increment, relative to the module’s base address as shown in the memory  
map. See also Chapter 4, “Memory Map” in the ARM® Cortex™-M3 Technical Reference Manual.  
Table 3-1. Memory Map (Sheet 1 of 2)  
For details on  
registers, see ...  
Start  
End  
Description  
Memory  
0x00000000  
0x00008000  
0x20000000  
0x20002000  
0x22000000  
0x22040000  
0x00007FFF  
0x1FFFFFFF  
0x20001FFF  
0x200FFFFF  
0x2203FFFF  
0x23FFFFFF  
On-chip flash  
page 105  
Reserveda  
Bit-banded on-chip SRAM  
-
-
-
-
Reserveda  
Bit-band alias of 0x20000000 through 0x20001FFF  
Reserveda  
FiRM Peripherals  
0x40000000  
0x40001000  
0x40000FFF  
0x40003FFF  
Watchdog timer  
page 189  
-
Reserved for three additional watchdog timers (per FiRM  
specification)a  
0x40004000  
0x40005000  
0x40006000  
0x40007000  
0x40008000  
0x40009000  
0x40004FFF  
0x40005FFF  
0x40006FFF  
0x40007FFF  
0x40008FFF  
0x4000BFFF  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
SSI  
page 124  
page 124  
page 124  
page 287  
-
Reserved for three additional SSIs (per FiRM  
specification)a  
0x4000C000  
0x4000D000  
0x4000E000  
0x4000CFFF  
0x4000DFFF  
0x4000FFFF  
UART0  
UART1  
page 246  
page 246  
-
Reserved for two additional UARTs (per FiRM  
specification)a  
0x40010000  
0x4001FFFF  
Reserved for future FiRM peripheralsa  
-
Peripherals  
0x40020000  
0x40020800  
0x40021000  
0x400207FF  
0x40020FFF  
0x40023FFF  
I2C Master  
I2C Slave  
Reserveda  
page 323  
page 337  
-
April 27, 2007  
43  
Preliminary  
Memory Map  
Table 3-1. Memory Map (Sheet 2 of 2)  
For details on  
registers, see ...  
Start  
End  
Description  
0x40024000  
0x40025000  
0x40028000  
0x40029000  
0x4002C000  
0x40030000  
0x40031000  
0x40032000  
0x40033000  
0x40038000  
0x40039000  
0x4003C000  
0x4003D000  
0x400FD000  
0x400FE000  
0x40100000  
0x42000000  
0x44000000  
0x40024FFF  
0x40027FFF  
0x40028FFF  
0x4002BFFF  
0x4002FFFF  
0x40030FFF  
0x40031FFF  
0x40032FFF  
0x40037FFF  
0x40038FFF  
0x4003BFFF  
0x4003CFFF  
0x400FCFFF  
0x400FDFFF  
0x400FFFFF  
0x41FFFFFF  
0x43FFFFFF  
0xDFFFFFFF  
GPIO Port E  
page 124  
Reserveda  
-
PWM  
page 362  
Reserveda  
-
Reserveda  
-
Timer0  
page 166  
Timer1  
page 166  
Timer2  
page 166  
Reserveda  
-
ADC  
page 215  
Reserveda  
-
Analog comparator  
page 348  
Reserveda  
-
Flash control  
page 105  
System control  
page 65  
Reserveda  
-
-
-
Bit-band alias of 0x40000000 through 0x400FFFFF  
Reserveda  
Private Peripheral Bus  
0xE0000000  
0xE0001000  
0xE0002000  
0xE0003000  
0xE000E000  
0xE000F000  
0xE0040000  
0xE0041000  
0xE0042000  
0xE0100000  
0xE0000FFF  
Instrumentation Trace Macrocell (ITM)  
Data Watchpoint and Trace (DWT)  
Flash Patch and Breakpoint (FPB)  
Reserveda  
ARM® Cortex™-M3  
Technical Reference  
Manual  
0xE0001FFF  
0xE0002FFF  
0xE000DFFF  
0xE000EFFF  
0xE003FFFF  
0xE0040FFF  
0xE0041FFF  
0xE00FFFFF  
0xFFFFFFFF  
Nested Vectored Interrupt Controller (NVIC)  
Reserveda  
Trace Port Interface Unit (TPIU)  
Reserveda  
-
-
-
Reserveda  
Reserved for vendor peripheralsa  
a. All reserved space returns a bus fault when read or written.  
44  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
4
Interrupts  
The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and  
handle all exceptions. All exceptions are handled in Handler Mode. The processor state is  
automatically stored to the stack on an exception, and automatically restored from the stack at the  
end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving,  
which enables efficient interrupt entry. The processor supports tail-chaining, which enables  
back-to-back interrupts to be performed without the overhead of state saving and restoration.  
Table 4-1 lists all the exceptions. Software can set eight priority levels on seven of these  
exceptions (system handlers) as well as on 25 interrupts (listed in Table 4-2). Priorities on the  
system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled  
through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority  
registers. You can also group priorities by splitting priority levels into pre-emption priorities and  
subpriorities. All the interrupt registers are described in Chapter 8, “Nested Vectored Interrupt  
Controller” in the ARM® Cortex™-M3 Technical Reference Manual.  
Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and  
a Hard Fault. Note that 0 is the default priority for all the settable priorities.  
If you assign the same priority level to two or more interrupts, their hardware priority (the lower the  
position number) determines the order in which the processor activates them. For example, if both  
GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.  
See Chapter 5, “Exceptions” and Chapter 8, “Nested Vectored Interrupt Controller” in the ARM®  
Cortex™-M3 Technical Reference Manual for more information on exceptions and interrupts.  
Table 4-1. Exception Types  
Exception Type  
Position  
Prioritya  
Description  
0
Stack top is loaded from first entry of vector table on  
reset.  
-
-
Reset  
1
2
-3 (highest)  
Invoked on power up and warm reset. On first  
instruction, drops to lowest priority (and then is  
called the base level of activation). This is  
asynchronous.  
Non-Maskable  
Interrupt (NMI)  
-2  
Cannot be stopped or preempted by any exception  
but reset. This is asynchronous.  
An NMI is only producible by software, using the  
NVIC Interrupt Control State register.  
Hard Fault  
3
4
-1  
All classes of Fault, when the fault cannot activate  
due to priority or the configurable fault handler has  
been disabled. This is synchronous.  
Memory  
Management  
settable  
MPU mismatch, including access violation and no  
match. This is synchronous.  
The priority of this exception can be changed.  
Bus Fault  
5
settable  
Pre-fetch fault, memory access fault, and other  
address/memory related faults. This is synchronous  
when precise and asynchronous when imprecise.  
You can enable or disable this fault.  
April 27, 2007  
45  
Preliminary  
Interrupts  
Table 4-1. Exception Types (Continued)  
Exception Type  
Position  
Prioritya  
Description  
Usage Fault  
6
settable  
Usage fault, such as undefined instruction executed  
or illegal state transition attempt. This is  
synchronous.  
7-10  
11  
Reserved.  
-
-
SVCall  
settable  
System service call with SVC instruction. This is  
synchronous.  
Debug Monitor  
12  
settable  
Debug monitor (when not halting). This is  
synchronous, but only active when enabled. It does  
not activate if lower priority than the current  
activation.  
13  
14  
Reserved.  
-
-
PendSV  
settable  
Pendable request for system service. This is  
asynchronous and only pended by software.  
SysTick  
15  
settable  
settable  
System tick timer has fired. This is asynchronous.  
Interrupts  
16 and  
above  
Asserted from outside the ARM Cortex-M3 core and  
fed through the NVIC (prioritized). These are all  
asynchronous. Table 4-2 lists the interrupts on the  
LM3S612 controller.  
a. 0 is the default priority for all the settable priorities.  
Table 4-2. Interrupts  
Interrupt  
Description  
(Bit in Interrupt Registers)  
0
1
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
GPIO Port E  
UART0  
2
3
4
5
6
UART1  
7
SSI  
8
I2C  
9
PWM Fault  
PWM Generator 0  
Reserved  
10  
11-13  
14  
ADC Sequence 0  
46  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 4-2. Interrupts (Continued)  
Interrupt  
Description  
(Bit in Interrupt Registers)  
15  
16  
ADC Sequence 1  
ADC Sequence 2  
ADC Sequence 3  
Watchdog timer  
Timer0a  
17  
18  
19  
20  
Timer0b  
21  
Timer1a  
22  
Timer1b  
23  
Timer2a  
24  
Timer2b  
25  
Analog Comparator 0  
Reserved  
26-27  
28  
System Control  
Flash Control  
Reserved  
29  
30-31  
April 27, 2007  
47  
Preliminary  
JTAG Interface  
5
JTAG Interface  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and  
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial  
interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data  
Registers (DR) can be used to test the interconnections of assembled printed circuit boards and  
obtain manufacturing information on the components. The JTAG Port also provides a means of  
accessing and controlling design-for-test features such as I/O pin observation and control, scan  
testing, and debugging.  
The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is  
transmitted serially into the controller on TDIand out of the controller on TDO. The interpretation of  
this data is dependent on the current state of the TAP controller. For detailed information on the  
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test  
Access Port and Boundary-Scan Architecture.  
The LMI JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is  
implemented by multiplexing the TDOoutputs from both JTAG controllers. ARM JTAG instructions  
select the ARM TDOoutput while LMI JTAG instructions select the LMI TDOoutputs. The  
multiplexer is controlled by the LMI JTAG controller, which has comprehensive programming for  
the ARM, LMI, and unimplemented JTAG instructions.  
The JTAG module has the following features:  
„
„
„
IEEE 1149.1-1990 compatible Test Access Port (TAP) controller  
Four-bit Instruction Register (IR) chain for storing JTAG instructions  
IEEE standard instructions:  
BYPASS instruction  
IDCODE instruction  
SAMPLE/PRELOAD instruction  
EXTEST instruction  
INTEST instruction  
„
„
ARM additional instructions:  
APACC instruction  
DPACC instruction  
ABORT instruction  
Integrated ARM Serial Wire Debug (SWD)  
See the ARM® Cortex™-M3 Technical Reference Manual for more information on the ARM JTAG  
controller.  
48  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
5.1  
Block Diagram  
Figure 5-1. JTAG Module Block Diagram  
TRST  
TCK  
TMS  
TAP Controller  
TDI  
Instruction Register (IR)  
BYPASS Data Register  
Boundary Scan Data Register  
IDCODE Data Register  
ABORT Data Register  
DPACC Data Register  
APACC Data Register  
TDO  
Cortex-M3  
Debug  
Port  
5.2  
Functional Description  
A high-level conceptual drawing of the JTAG module is shown in Figure 5-1. The JTAG module is  
composed of the Test Access Port (TAP) controller and serial shift chains with parallel update  
registers. The TAP controller is a simple state machine controlled by the TRST, TCKand TMS  
inputs. The current state of the TAP controller depends on the current value of TRSTand the  
sequence of values captured on TMSat the rising edge of TCK. The TAP controller determines  
when the serial shift chains capture new data, shift data from TDItowards TDO, and update the  
parallel load registers. The current state of the TAP controller also determines whether the  
Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.  
The serial shift chains with parallel load registers are comprised of a single Instruction Register  
(IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel  
load register determines which DR chain is captured, shifted, or updated during the sequencing of  
the TAP controller.  
Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not  
capture, shift, or update any of the chains. Instructions that are not implemented decode to the  
BYPASS instruction to ensure that the serial path between TDIand TDOis always connected (see  
Table 5-2 on page 54 for a list of implemented instructions).  
See “JTAG and Boundary Scan” on page 407 for JTAG timing diagrams.  
April 27, 2007  
49  
Preliminary  
JTAG Interface  
5.2.1  
JTAG Interface Pins  
The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and  
their associated reset state are given in Table 5-1. Detailed information on each pin follows.  
Table 5-1. JTAG Port Pins Reset State  
Data  
Direction  
Internal  
Pull-Up  
Internal  
Pull-Down  
Drive  
Strength  
Pin Name  
Drive Value  
TRST  
TCK  
TMS  
TDI  
Input  
Input  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
N/A  
N/A  
N/A  
N/A  
Input  
N/A  
N/A  
Input  
N/A  
N/A  
TDO  
Output  
2-mA driver  
High-Z  
5.2.1.1  
Test Reset Input (TRST)  
The TRSTpin is an asynchronous active Low input signal for initializing and resetting the JTAG  
TAP controller and associated JTAG circuitry. When TRSTis asserted, the TAP controller resets to  
the Test-Logic-Reset state and remains there while TRSTis asserted. When the TAP controller  
enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default  
instruction, IDCODE.  
By default, the internal pull-up resistor on the TRSTpin is enabled after reset. Changes to the  
pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains  
enabled on PB7/TRST; otherwise JTAG communication could be lost.  
5.2.1.2  
Test Clock Input (TCK)  
The TCKpin is the clock for the JTAG module. This clock is provided so the test logic can operate  
independently of any other system clocks. In addition, it ensures that multiple JTAG TAP  
controllers that are daisy-chained together can synchronously communicate serial test data  
between components. During normal operation, TCKis driven by a free-running clock with a  
nominal 50% duty cycle. When necessary, TCKcan be stopped at 0 or 1 for extended periods of  
time. While TCKis stopped at 0 or 1, the state of the TAP controller does not change and data in  
the JTAG Instruction and Data Registers is not lost.  
By default, the internal pull-up resistor on the TCKpin is enabled after reset. This assures that no  
clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down  
resistors can be turned off to save internal power as long as the TCKpin is constantly being driven  
by an external source.  
5.2.1.3  
Test Mode Select (TMS)  
The TMSpin selects the next state of the JTAG TAP controller. TMSis sampled on the rising edge  
of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is  
entered. Because the TMSpin is sampled on the rising edge of TCK, the IEEE Standard 1149.1  
expects the value on TMSto change on the falling edge of TCK.  
Holding TMShigh for five consecutive TCKcycles drives the TAP controller state machine to the  
Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG  
Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can  
be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state  
machine can be seen in its entirety in Figure 5-2 on page 52.  
50  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
By default, the internal pull-up resistor on the TMSpin is enabled after reset. Changes to the  
pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains  
enabled on PC1/TMS; otherwise JTAG communication could be lost.  
5.2.1.4  
Test Data Input (TDI)  
The TDIpin provides a stream of serial information to the IR chain and the DR chains. TDIis  
sampled on the rising edge of TCKand, depending on the current TAP state and the current  
instruction, presents this data to the proper shift register chain. Because the TDIpin is sampled on  
the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDIto change on the  
falling edge of TCK.  
By default, the internal pull-up resistor on the TDIpin is enabled after reset. Changes to the  
pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains  
enabled on PC2/TDI; otherwise JTAG communication could be lost.  
5.2.1.5  
Test Data Output (TDO)  
The TDOpin provides an output stream of serial information from the IR chain or the DR chains.  
The value of TDOdepends on the current TAP state, the current instruction, and the data in the  
chain being accessed. In order to save power when the JTAG port is not being used, the TDOpin is  
placed in an inactive drive state when not actively shifting out data. Because TDOcan be  
connected to the TDIof another controller in a daisy-chain configuration, the IEEE Standard  
1149.1 expects the value on TDOto change on the falling edge of TCK.  
By default, the internal pull-up resistor on the TDOpin is enabled after reset. This assures that the  
pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up  
and pull-down resistors can be turned off to save internal power if a High-Z output value is  
acceptable during certain TAP controller states.  
5.2.2  
JTAG TAP Controller  
The JTAG TAP controller state machine is shown in Figure 5-2 on page 52. The TAP controller  
state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR)  
or the assertion of TRST. Asserting the correct sequence on the TMSpin allows the JTAG module  
to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed  
information on the function of the TAP controller and the operations that occur in each state,  
please refer to IEEE Standard 1149.1.  
April 27, 2007  
51  
Preliminary  
JTAG Interface  
Figure 5-2. Test Access Port State Machine  
Test Logic  
1
0
Run Test Idle  
Select DR Scan  
0
Select IR Scan  
0
1
1
1
0
Capture DR  
0
Capture IR  
0
1
1
Shift DR  
1
Shift IR  
1
0
1
0
1
Exit 1 DR  
0
Exit 1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
Exit 2 DR  
1
Exit 2 IR  
1
0
0
Update DR  
Update IR  
1
0
1
0
5.2.3  
5.2.4  
Shift Registers  
The Shift Registers consist of a serial shift register chain and a parallel load register. The serial  
shift register chain samples specific information during the TAP controller’s CAPTURE states and  
allows this information to be shifted out of TDOduring the TAP controller’s SHIFT states. While the  
sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift  
register on TDI. This new data is stored in the parallel load register during the TAP controller’s  
UPDATE states. Each of the shift registers is discussed in detail in “Shift Registers” on page 52.  
Operational Considerations  
There are certain operational considerations when using the JTAG module. Because the JTAG  
pins can be programmed to be GPIOs, board configuration and reset conditions on these pins  
must be considered. In addition, because the JTAG module has integrated ARM Serial Wire  
Debug, the method for switching between these two operational modes requires clarification.  
5.2.4.1  
GPIO Functionality  
When the controller is reset with either a POR or RST, the JTAG port pins default to their JTAG  
configurations. The default configuration includes enabling the pull-up resistors (setting GPIOPUR  
52  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
to 1 for PB7and PC[3:0]) and enabling the alternate hardware function (setting GPIOAFSEL to 1  
for PB7and PC[3:0]) on the JTAG pins.  
It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7and  
PC[3:0]in the GPIOAFSEL register. If the user does not require the JTAG port for debugging or  
board-level testing, this provides five more GPIOs for use in the design.  
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external  
pull-down resistors connected to both of them at the same time. If both pins are pulled Low during  
reset, the controller has unpredictable behavior. If this happens, remove one or both of the  
pull-down resistors, and apply RST or power-cycle the part  
In addition, it is possible to create a software sequence that prevents the debugger from connecting  
to the Stellaris microcontroller. If the program code loaded into flash immediately changes the  
JTAG pins to their GPIO functionality, the debugger does not have enough time to connect and  
halt the controller before the JTAG pin functionality switches. This locks the debugger out of the  
part. This can be avoided with a software routine that restores JTAG functionality using an  
external trigger.  
5.2.4.2  
ARM Serial Wire Debug (SWD)  
In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire  
debugger must be able to connect to the Cortex-M3 core without having to perform, or have any  
knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the  
SWD session begins.  
The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP  
controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller  
through the following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR,  
Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR,  
Select IR, and Test-Logic-Reset states.  
Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state  
machine twice without shifting in a new instruction enables the SWD interface and disables the  
JTAG interface. For more information on this operation and the SWD interface, see the ARM®  
Cortex™-M3 Technical Reference Manual and the ARM® CoreSight Technical Reference Manual.  
Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG  
TAP controller is not fully compliant to the IEEE Standard 1149.1. This is the only instance where  
the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low  
probability of this sequence occurring during normal operation of the TAP controller, it should not  
affect normal performance of the JTAG interface.  
5.3  
Initialization and Configuration  
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for  
JTAG communication. No user-defined initialization or configuration is needed. However, if the  
user application changes these pins to their GPIO function, they must be configured back to their  
JTAG functionality before JTAG communication can be restored. This is done by enabling the five  
JTAG pins (PB7and PC[3:0]) for their alternate function using the GPIOAFSEL register.  
April 27, 2007  
53  
Preliminary  
JTAG Interface  
5.4  
Register Descriptions  
There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The  
registers within the JTAG controller are all accessed serially through the TAP Controller. The  
registers can be broken down into two main categories: Instruction Registers and Data Registers.  
5.4.1  
Instruction Register (IR)  
The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register  
connected between the JTAG TDIand TDOpins. When the TAP Controller is placed in the correct  
states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the  
chain and updated, they are interpreted as the current instruction. The decode of the Instruction  
Register bits is shown in Table 5-2. A detailed explanation of each instruction, along with its  
associated Data Register, follows.  
Table 5-2. JTAG Instruction Register Commands  
IR[3:0]  
Instruction  
Description  
0000  
EXTEST  
Drives the values preloaded into the Boundary Scan Chain by the  
SAMPLE/PRELOAD instruction onto the pads.  
0001  
0010  
INTEST  
Drives the values preloaded into the Boundary Scan Chain by the  
SAMPLE/PRELOAD instruction into the controller.  
SAMPLE / PRELOAD  
Captures the current I/O values and shifts the sampled values out of the  
Boundary Scan Chain while new preload data is shifted in.  
1000  
1010  
1011  
1110  
ABORT  
DPACC  
APACC  
IDCODE  
Shifts data into the ARM Debug Port Abort Register.  
Shifts data into and out of the ARM DP Access Register.  
Shifts data into and out of the ARM AC Access Register.  
Loads manufacturing information defined by the IEEE Standard 1149.1  
into the IDCODE chain and shifts it out.  
1111  
BYPASS  
Reserved  
Connects TDIto TDOthrough a single Shift Register chain.  
All Others  
Defaults to the BYPASS instruction to ensure that TDIis always  
connected to TDO.  
5.4.1.1  
EXTEST Instruction  
The EXTEST instruction does not have an associated Data Register chain. The EXTEST  
instruction uses the data that has been preloaded into the Boundary Scan Data Register using the  
SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction  
Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and  
output enables are used to drive the GPIO pads rather than the signals coming from the core. This  
allows tests to be developed that drive known values out of the controller, which can be used to  
verify connectivity.  
5.4.1.2  
INTEST Instruction  
The INTEST instruction does not have an associated Data Register chain. The INTEST instruction  
uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/  
PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the  
preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive  
the signals going into the core rather than the signals coming from the GPIO pads. This allows  
54  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
tests to be developed that drive known values into the controller, which can be used for testing. It  
is important to note that although the RSTinput pin is on the Boundary Scan Data Register chain,  
it is only observable.  
5.4.1.3  
SAMPLE/PRELOAD Instruction  
The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between  
TDIand TDO. This instruction samples the current state of the pad pins for observation and  
preloads new test data. Each GPIO pad has an associated input, output, and output enable signal.  
When the TAP controller enters the Capture DR state during this instruction, the input, output, and  
output-enable signals to each of the GPIO pads are captured. These samples are serially shifted  
out of TDOwhile the TAP controller is in the Shift DR state and can be used for observation or  
comparison in various tests.  
While these samples of the inputs, outputs, and output enables are being shifted out of the  
Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register  
from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is  
saved in the parallel load registers when the TAP controller enters the Update DR state. This  
update of the parallel load register preloads data into the Boundary Scan Data Register that is  
associated with each input, output, and output enable. This preloaded data can be used with the  
EXTEST and INTEST instructions to drive data into or out of the controller. Please see “Boundary  
Scan Data Register” on page 56 for more information.  
5.4.1.4  
5.4.1.5  
5.4.1.6  
5.4.1.7  
ABORT Instruction  
The ABORT instruction connects the associated ABORT Data Register chain between TDIand  
TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or  
initiates a DAP abort of a previous request. Please see the “ABORT Data Register” on page 57 for  
more information.  
DPACC Instruction  
The DPACC instruction connects the associated DPACC Data Register chain between TDIand  
TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this register and reading the data output from this  
register allows read and write access to the ARM debug and status registers. Please see “DPACC  
Data Register” on page 57 for more information.  
APACC Instruction  
The APACC instruction connects the associated APACC Data Register chain between TDIand  
TDO. This instruction provides read and write access to the APACC Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this register and reading the data output from this  
register allows read and write access to internal components and buses through the Debug Port.  
Please see “APACC Data Register” on page 57 for more information.  
IDCODE Instruction  
The IDCODE instruction connects the associated IDCODE Data Register chain between TDIand  
TDO. This instruction provides information on the manufacturer, part number, and version of the  
ARM core. This information can be used by testing equipment and debuggers to automatically  
configure their input and output data streams. IDCODE is the default instruction that is loaded into  
the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRSTis asserted, or the  
Test-Logic-Reset state is entered. Please see “IDCODE Data Register” on page 56 for more  
information.  
April 27, 2007  
55  
Preliminary  
JTAG Interface  
5.4.1.8  
BYPASS Instruction  
The BYPASS instruction connects the associated BYPASS Data Register chain between TDIand  
TDO. This instruction is used to create a minimum length serial path between the TDIand TDO  
ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test  
efficiency by allowing components that are not needed for a specific test to be bypassed in the  
JTAG scan chain by loading them with the BYPASS instruction. Please see “BYPASS Data  
Register” on page 56 for more information.  
5.4.2  
Data Registers  
The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary  
Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is  
discussed in the following sections.  
5.4.2.1  
IDCODE Data Register  
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in  
Figure 5-3. The standard requires that every JTAG-compliant device implement either the  
IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE  
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB  
of 0. This allows auto configuration test tools to determine which instruction is the default  
instruction.  
The major uses of the JTAG port are for manufacturer testing of component assembly, and  
program development and debug. To facilitate the use of auto-configuration debug tools, the  
IDCODE instruction outputs a value of 0x1BA00477. This value indicates an ARM Cortex-M3,  
Version 1 processor. This allows the debuggers to automatically configure themselves to work  
correctly with the Cortex-M3 during debug.  
Figure 5-3. IDCODE Register Format  
31 28 27  
Version  
12 11  
1 0  
1
TDI  
TDO  
Part Number  
Manufacturer ID  
5.4.2.2  
BYPASS Data Register  
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in  
Figure 5-4. The standard requires that every JTAG-compliant device implement either the  
BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS  
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB  
of 1. This allows auto configuration test tools to determine which instruction is the default  
instruction.  
Figure 5-4. BYPASS Register Format  
0
TDI  
TDO  
0
5.4.2.3  
Boundary Scan Data Register  
The format of the Boundary Scan Data Register is shown in Figure 5-5. Each GPIO pin, in a  
counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data  
Register. Each GPIO pin has three associated digital signals that are included in the chain. These  
56  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
signals are input, output, and output enable, and are arranged in that order as can be seen in the  
figure. In addition to the GPIO pins, the controller reset pin, RST, is included in the chain. Because  
the reset pin is always an input, only the input signal is included in the Data Register chain.  
When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the  
input, output, and output enable from each digital pad are sampled and then shifted out of the  
chain to be verified. The sampling of these values occurs on the rising edge of TCKin the Capture  
DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan  
chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use  
with the EXTEST and INTEST instructions. These instructions either force data out of the  
controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.  
Figure 5-5. Boundary Scan Register Format  
O
O
O
U
T
O
U
T
TDI  
TDO  
I
N
I
N
I
N
I
N
I
N
O
E
O
E
O
E
O
E
...  
...  
U
T
U
T
GPIO PB6  
GPIO m  
GPIO m+1  
GPIO n  
RST  
For detailed information on the order of the input, output, and output enable bits for each of the  
GPIO ports, please refer to the Stellaris Family Boundary Scan Description Language (BSDL)  
files, downloadable from www.luminarymicro.com.  
5.4.2.4  
5.4.2.5  
5.4.2.6  
APACC Data Register  
The format for the 35-bit APACC Data Register defined by ARM is described in the ARM®  
Cortex™-M3 Technical Reference Manual.  
DPACC Data Register  
The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM®  
Cortex™-M3 Technical Reference Manual.  
ABORT Data Register  
The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM®  
Cortex™-M3 Technical Reference Manual.  
April 27, 2007  
57  
Preliminary  
System Control  
6
System Control  
System control determines the overall operation of the device. It provides information about the  
device, controls the clocking of the device and individual peripherals, and handles reset detection  
and reporting.  
6.1  
Functional Description  
The System Control module provides the following capabilities:  
„
„
Device identification, see page 58  
Local control, such as reset (see page 58), power (see page 61) and clock control (see  
page 61)  
„
System control (Run, Sleep, and Deep-Sleep modes), see page 63  
6.1.1  
Device Identification  
Seven read-only registers provide software with information on the microcontroller, such as  
version, part number, SRAM size, Flash size, and other features. See the DID0, DID1 and  
DC0-DC4 registers starting on page 66.  
6.1.2  
Reset Control  
This section discusses aspects of hardware functions during reset as well as system software  
requirements following the reset sequence.  
6.1.2.1  
Reset Sources  
The controller has six sources of reset:  
1. External reset input pin (RST) assertion, see page 58.  
2. Power-on reset (POR), see page 59.  
3. Internal brown-out (BOR) detector, see page 59.  
4. Software-initiated reset (with the software reset registers), see page 60.  
5. A watchdog timer reset condition violation, see page 60.  
6. Internal low drop-out (LDO) regulator output, see page 61.  
After a reset, the Reset Cause (RESC) register (see page 85) is set with the reset cause. The bits  
in this register are sticky and maintain their state across multiple reset sequences, except when an  
external reset is the cause, and then all the other bits in the RESC register are cleared.  
Note: The main oscillator is used for external resets and power-on resets; the internal oscillator  
is used during the internal process by internal reset and clock verification circuitry.  
6.1.2.2  
RST Pin Assertion  
The external reset pin (RST) resets the controller. This resets the core and all the peripherals  
except the JTAG TAP controller (see “JTAG Interface” on page 48). The external reset sequence is  
as follows:  
1. The external reset pin (RST) is asserted and then de-asserted.  
2. After RSTis de-asserted, the main crystal oscillator must be allowed to settle and there is an  
internal main oscillator counter that takes from 15-30 ms to account for this. During this time,  
internal reset to the rest of the controller is held active.  
58  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, and the first instruction designated by the program counter, and then  
begins execution.  
The external reset timing is shown in Figure 20-9 on page 410.  
6.1.2.3  
Power-On Reset (POR)  
The Power-On Reset (POR) circuitry detects a rise in power-supply voltage and generates an  
on-chip reset pulse. To use the on-chip circuitry, the RSTinput needs a pull-up resistor (1K to  
10K Ω).  
The device must be operating within the specified operating parameters at the point when the  
on-chip power-on reset pulse is complete. The specified operating parameters include supply  
voltage, frequency, temperature, and so on. If the operating conditions are not met at the point of  
POR end, the Stellaris controller does not operate correctly. In this case, the reset must be  
extended using external circuitry. The RSTinput may be used with the circuit as shown in  
Figure 6-1.  
Figure 6-1. External Circuitry to Extend Reset  
Stellaris  
D1  
R1  
RST  
R2  
C1  
The R and C components define the power-on delay. The R resistor mitigates any leakage from  
1
1
2
the RSTinput. The diode discharges C rapidly when the power supply is turned off.  
1
The Power-On Reset sequence is as follows:  
1. The controller waits for the later of external reset (RST) or internal POR to go inactive.  
2. After the resets are inactive, the main crystal oscillator must be allowed to settle and there is  
an internal main oscillator counter that takes from 15-30 ms to account for this. During this  
time, internal reset to the rest of the controller is held active.  
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, and the first instruction designated by the program counter, and then  
begins execution.  
The internal POR is only active on the initial power-up of the controller. The Power-On Reset  
timing is shown in Figure 20-10 on page 410.  
6.1.2.4  
Brown-Out Reset (BOR)  
A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used  
to reset the controller. This is initially disabled and may be enabled by software.  
The system provides a brown-out detection circuit that triggers if V drops below V  
. The  
BTH  
DD  
circuit is provided to guard against improper operation of logic and peripherals that operate off V  
and not the LDO voltage. If a brown-out condition is detected, the system may generate a  
controller interrupt or a system reset. The BOR circuit has a digital filter that protects against  
noise-related detection. This feature may be optionally enabled.  
DD  
April 27, 2007  
59  
Preliminary  
System Control  
Brown-out resets are controlled with the Power-On and Brown-Out Reset Control (PBORCTL)  
register (see page 76). The BORIORbit in the PBORCTL register must be set for a brown-out to  
trigger a reset. The brown-out reset sequence is as follows:  
1. When V drops below V  
, an internal BOR condition is set.  
BTH  
DD  
2. If the BORWTbit in the PBORCTL register is set, the BOR condition is resampled sometime  
later (specified by BORTIM) to determine if the original condition was caused by noise. If the  
BOR condition is not met the second time, then no action is taken.  
3. If the BOR condition exists, an internal reset is asserted.  
4. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, and the first instruction designated by the program counter, and then  
begins execution.  
5. The internal BORsignal is released after 500 µs to prevent another BOR condition from being  
set before software has a chance to investigate the original cause.  
The internal Brown-Out Reset timing is shown in Figure 20-11 on page 410.  
6.1.2.5  
Software Reset  
Each peripheral can be reset by software. There are three registers that control this function (see  
the SRCRn registers, starting on page 78). If the bit position corresponding to a peripheral is set,  
the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the  
clock gating control for peripherals and on-chip functions (see “System Control” on page 63).  
Writing a bit lane with a value of 1 initiates a reset of the corresponding unit. Note that all reset  
signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.  
The entire system can be reset by software also. Setting the SYSRESETREQbit in the Cortex-M3  
Application Interrupt and Reset Control register resets the entire system including the core. The  
software-initiated system reset sequence is as follows:  
1. A software system reset in initiated by writing the SYSRESETREQbit in the ARM Cortex-M3  
Application Interrupt and Reset Control register.  
2. An internal reset is asserted.  
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, and the first instruction designated by the program counter, and then  
begins execution.  
The software-initiated system reset timing is shown in Figure 20-12 on page 410.  
6.1.2.6  
Watchdog Timer Reset  
The watchdog timer module's function is to prevent system hangs. The watchdog timer can be  
configured to generate an interrupt to the controller on its first time-out, and to generate a reset  
signal on its second time-out.  
After the first time-out event, the 32-bit counter is reloaded with the value of the Watchdog Timer  
Load (WDTLOAD) register (see page 190), and the timer resumes counting down from that value.  
If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the  
reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The  
watchdog timer reset sequence is as follows:  
1. The watchdog timer times out for the second time without being serviced.  
2. An internal reset is asserted.  
60  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, and the first instruction designated by the program counter, and then  
begins execution.  
The watchdog reset timing is shown in Figure 20-13 on page 411.  
6.1.2.7  
Low Drop-Out  
A reset can be initiated when the internal low drop-out (LDO) regulator output goes unregulated.  
This is initially disabled and may be enabled by software. LDO is controlled with the LDO Power  
Control (LDOPCTL) register (see page 77). The LDO reset sequence is as follows:  
1. LDO goes unregulated and the LDOARSTbit in the LDOARST register is set.  
2. An internal reset is asserted.  
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, and the first instruction designated by the program counter, and then  
begins execution.  
The LDO reset timing is shown in Figure 20-14 on page 411.  
6.1.3  
Power Control  
The LDO regulator permits the adjustment of the on-chip output voltage (V  
). The output may  
OUT  
be adjusted in 50 mV increments between the range of 2.25 V through 2.75 V. The adjustment is  
made through the VADJfield of the LDO Power Control (LDOPCTL) register (see page 77).  
6.1.4  
Clock Control  
System control determines the clocking and control of clocks in this part.  
6.1.4.1  
Fundamental Clock Sources  
There are two fundamental clock sources for use in the device:  
„
„
The main oscillator, driven from either an external crystal or a single-ended source. As a  
crystal, the main oscillator source is specified to run from 1-8 MHz. However, when the crystal  
is being used as the PLL source, it must be from 3.579545–8.192 MHz to meet PLL  
requirements. As a single-ended source, the range is from DC to the specified speed of the  
device.  
The internal oscillator, which is an on-chip free running clock. The internal oscillator is  
specified to run at 15 MHz ± 50%. It can be used to clock the system, but the tolerance of  
frequency range must be met.  
The internal system clock may be driven by either of the above two reference sources as well as  
the internal PLL, provided that the PLL input is connected to a clock source that meets its AC  
requirements.  
Nearly all of the control for the clocks is provided by the Run-Mode Clock Configuration (RCC)  
register (see page 86).  
Figure 6-2 shows the logic for the main clock tree. The peripheral blocks are driven by the System  
Clock signal and can be programmatically enabled/disabled. The ADC clock signal is  
automatically divided down to 14-18 MHz for proper ADC operation. The PWM clock signal is a  
synchronous divide by of the system clock to provide the PWM circuit with more range.  
April 27, 2007  
61  
Preliminary  
System Control  
Figure 6-2. Main Clock Tree  
USESYSDIVa  
OSC1  
OSC2  
Main  
Osc  
1-8 MHz  
System Clock  
PWM Clock  
SYSDIVa  
PLL  
(200 MHz  
output )  
Internal  
Osc  
15 MHz  
÷4  
OSCSRCa  
OENa  
XTALa  
PWMDIVa  
PWRDNa  
BYPASSa  
a
USEPWMDIV  
Constant  
Divide  
(16.667 MHz output )  
ADC Clock  
a. These are bit fields within the Run-Mode Clock Configuration (RCC) register.  
6.1.4.2  
PLL Frequency Configuration  
The user does not have direct control over the PLL frequency, but is required to match the external  
crystal used to an internal PLL-Crystal table. This table is used to create the best fit for PLL  
parameters to the crystal chosen. Not all crystals result in the PLL operating at exactly 200 MHz,  
though the frequency is within ±1%. The result of the lookup is kept in the XTAL to PLL  
Translation (PLLCFG) register (see page 91).  
Table 6-4 on page 90 describes the available crystal choices and default programming of the  
PLLCFG register. The crystal number is written into the XTALfield of the Run-Mode Clock  
Configuration (RCC) register (see page 86). Any time the XTALfield changes, a read of the  
internal table is performed to get the correct value. Table 6-4 on page 90 describes the available  
crystal choices and default programming values.  
6.1.4.3  
PLL Modes  
The PLL has two modes of operation: Normal and Power-Down  
„
„
Normal: The PLL multiplies the input clock reference and drives the output.  
Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the  
output.  
The modes are programmed using the RCC register fields as shown in Table 6-4 on page 90.  
6.1.4.4  
PLL Operation  
If the PLL configuration is changed, the PLL output is not stable for a period of time (PLL  
T
=0.5 ms) and during this time, the PLL is not usable as a clock reference.  
READY  
The PLL is changed by one of the following:  
„
Change to the XTALvalue in the RCC register (see page 86)—writes of the same value do not  
cause a relock.  
„
Change in the PLL from Power-Down to Normal mode.  
A counter is defined to measure the T  
requirement. The counter is clocked by the main  
READY  
oscillator. The range of the main oscillator has been taken into account and the down counter is  
set to 0x1200 (that is, ~600 µs at a 8.192-MHz external oscillator clock). Hardware is provided to  
62  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
keep the PLL from being used as a system clock until the T  
condition is met after one of the  
READY  
two changes above. It is the user's responsibility to have a stable clock source (like the main  
oscillator) before the RCC register is switched to use the PLL.  
6.1.4.5  
Clock Verification Timers  
There are three identical clock verification circuits that can be enabled though software. The circuit  
checks the faster clock by a slower clock using timers:  
„
„
„
The main oscillator checks the PLL.  
The main oscillator checks the internal oscillator.  
The internal oscillator divided by 64 checks the main oscillator.  
If the verification timer function is enabled and a failure is detected, the main clock tree is  
immediately switched to a working clock and an interrupt is generated to the controller. Software  
can then determine the course of action to take. The actual failure indication and clock switching  
does not clear without a write to the CLKVCLR register, an external reset, or a POR reset. The  
clock verification timers are controlled by the PLLVER, IOSCVER, and MOSCVERbits in the RCC  
register (see page 86).  
6.1.5  
System Control  
For power-savings purposes, the RCGCn, SCGCn, and DCGCn registers control the clock gating  
logic for each peripheral or block in the system while the controller is in Run, Sleep, and  
Deep-Sleep mode, respectively. The DC1, DC2 and DC4 registers act as a write mask for the  
RCGCn, SCGCn, and DCGCn registers.  
In Run mode, the controller is actively executing code. In Sleep mode, the clocking of the device is  
unchanged but the controller no longer executes code (and is no longer clocked). In Deep-Sleep  
mode, the clocking of the device may change (depending on the Run mode clock configuration)  
and the controller no longer executes code (and is no longer clocked). An interrupt returns the  
device to Run mode from one of the sleep modes; the sleep modes are entered on request from  
the code. Each mode is described in more detail in this section.  
6.1.5.1  
6.1.5.2  
Run Mode  
Run mode provides normal operation of the processor and all of the peripherals that are currently  
enabled by the RCGCn registers. The system clock can be any of the available clock sources  
including the PLL.  
Sleep Mode  
In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked.  
Peripherals are clocked that are enabled in the SCGCn register when Auto Clock Gating is  
enabled (see RCC register on page 86) or the RCGCn register when the Auto Clock Gating is  
disabled. The System Clock has the same source and frequency as that during Run mode.  
6.1.5.3  
Deep-Sleep Mode  
The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are  
clocked that are enabled in the DCGCn register when Auto Clock Gating is enabled (see RCC  
register) or the RCGCn register when the Auto Clock Gating is disabled. The system clock source  
is the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if  
one is enabled (see page 97). When the DSLPCLKCFG register is used, the internal oscillator is  
powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the  
time of the WFI instruction, hardware powers the PLL down and overrides the SYSDIVfield of the  
active RCC register to be /16 or /64 respectively. When the Deep-Sleep exit event occurs,  
April 27, 2007  
63  
Preliminary  
System Control  
hardware brings the system clock back to the source and frequency it had at the onset of  
Deep-Sleep mode before enabling the clocks that were stopped during the Deep-Sleep duration.  
6.2  
Initialization and Configuration  
The PLL is configured using direct register writes to the Run-Mode Clock Configuration (RCC)  
register. The steps required to successfully change the PLL-based system clock are:  
1. Bypass the PLL and system clock divider by setting the BYPASSbit and clearing the USESYS  
bit in the RCC register. This configures the system to run off a “raw” clock source (using the  
main oscillator or internal oscillator) and allows for the new PLL configuration to be validated  
before switching the system clock to the PLL.  
2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDNand OEN  
bits in RCC. Setting the XTALfield automatically pulls valid PLL configuration data for the  
appropriate crystal, and clearing the PWRDNand OENbits powers and enables the PLL and its  
output.  
3. Select the desired system divider (SYSDIV) and set the USESYSbit in RCC. The SYSDIVfield  
determines the system frequency for the microcontroller.  
4. Wait for the PLL to lock by polling the PLLLRISbit in the Raw Interrupt Status (RIS) register.  
If the PLL doesn’t lock, the configuration is invalid.  
5. Enable use of the PLL by clearing the BYPASSbit in RCC.  
Important: If the BYPASSbit is cleared before the PLL locks, it is possible to render the device  
unusable.  
6.3  
Register Map  
Table 6-1 lists the System Control registers, grouped by function. The offset listed is a  
hexadecimal increment to the register’s address, relative to the System Control base address of  
0x400FE000.  
Table 6-1. System Control Register Map  
Offset Name Reset  
See  
page  
Type  
Description  
Device Identification and Capabilities  
0x000  
0x004  
0x008  
0x010  
0x014  
0x018  
0x01C  
DID0  
DID1  
DC0  
DC1  
DC2  
DC3  
DC4  
-
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Device identification 0  
Device identification 1  
Device capabilities 0  
Device capabilities 1  
Device capabilities 2  
Device Capabilities 3  
Device Capabilities 4  
66  
67  
69  
70  
72  
73  
75  
-
0x001F000F  
0x00000003  
0x01071013  
0x3F0301C3  
0x0000001F  
Local Control  
0x030 PBORCTL  
0x00007FFD  
R/W  
Power-On and Brown-Out Reset Control  
76  
64  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 6-1. System Control Register Map (Continued)  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x034  
0x040  
0x044  
0x048  
0x050  
0x054  
0x058  
0x05C  
0x060  
0x064  
LDOPCTL  
SRCR0  
SRCR1  
SRCR2  
RIS  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
-
R/W  
R/W  
R/W  
R/W  
RO  
LDO Power Control  
77  
78  
79  
80  
81  
82  
84  
85  
86  
91  
Software Reset Control 0  
Software Reset Control 1  
Software Reset Control 2  
Raw Interrupt Status  
IMC  
R/W  
Interrupt Mask Control  
MISC  
R/W1C Masked Interrupt Status and Clear  
RESC  
RCC  
R/W  
R/W  
RO  
Reset Cause  
0x078E3AC0  
-
Run-Mode Clock Configuration  
XTAL to PLL translation  
PLLCFG  
System Control  
RCGC0  
0x100  
0x104  
0x108  
0x110  
0x114  
0x118  
0x120  
0x124  
0x128  
0x144  
0x150  
0x160  
0x00000000  
0x00000000  
0x00000000  
0x00000001  
0x00000000  
0x00000000  
0x00000001  
0x00000000  
0x00000000  
0x07800000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Run-Mode Clock Gating Control 0  
Run-Mode Clock Gating Control 1  
Run-Mode Clock Gating Control 2  
Sleep-Mode Clock Gating Control 0  
Sleep-Mode Clock Gating Control 1  
Sleep-Mode Clock Gating Control 2  
92  
94  
96  
92  
94  
96  
RCGC1  
RCGC2  
SCGC0  
SCGC1  
SCGC2  
DCGC0  
Deep-Sleep-Mode Clock Gating Control 0  
Deep-Sleep-Mode Clock Gating Control 1  
Deep-Sleep-Mode Clock Gating Control 2  
Deep-Sleep Clock Configuration  
92  
94  
96  
97  
98  
99  
DCGC1  
DCGC2  
DSLPCLKCFG  
CLKVCLR  
LDOARST  
Clock verification clear  
Allow unregulated LDO to reset the part  
6.4  
Register Descriptions  
The remainder of this section lists and describes the System Control registers, in numerical order  
by address offset.  
April 27, 2007  
65  
Preliminary  
System Control  
Register 1: Device Identification 0 (DID0), offset 0x000  
This register identifies the version of the device.  
Device Identification 0 (DID0)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
VER  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MAJOR  
MINOR  
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
30:28  
VER  
RO  
0
This field defines the version of the DID0 register format:  
0=Register version for the Stellaris microcontrollers  
27:16  
15:8  
reserved  
MAJOR  
RO  
RO  
0
-
Reserved bits return an indeterminate value, and should  
never be changed.  
This field specifies the major revision number of the device.  
The major revision number is indicated in the part number  
as a letter (A for first revision, B for second, and so on).  
This field is encoded as follows:  
0: Revision A (initial device)  
1: Revision B (first revision)  
and so on.  
7:0  
MINOR  
RO  
-
This field specifies the minor revision number of the device.  
This field is numeric and is encoded as follows:  
0: No changes. Major revision was most recent update.  
1: One interconnect change made since last major revision  
update.  
2: Two interconnect changes made since last major revision  
update.  
and so on.  
66  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 2: Device Identification 1 (DID1), offset 0x004  
This register identifies the device family, part number, temperature range, and package type.  
Note: The bit diagram indicates some values are device-specific. The table below indicates  
values for your part.  
Device Identification 1 (DID1)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VER  
FAM  
PARTNO  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TEMP  
PKG  
RoHS  
QUAL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
-
RO  
-
Bit/Field  
31:28  
Name  
VER  
Type  
RO  
Reset  
0x0  
Description  
This field defines the version of the DID1 register format:  
0=Register version for the Stellaris microcontrollers  
27:24  
FAM  
RO  
0x0  
Family  
This field provides the family identification of the device  
within the Luminary Micro product portfolio.  
The 0x0 value indicates the Stellaris family of  
microcontrollers.  
23:16  
PARTNO  
RO  
0x24  
Part Number  
This field provides the part number of the device within the  
family.  
The 0x24 value indicates the LM3S612 microcontroller.  
15:8  
7:5  
reserved  
TEMP  
RO  
RO  
0
1
Reserved bits return an indeterminate value, and should  
never be changed.  
Temperature Range  
This field specifies the temperature rating of the device. A  
value of 1 indicates the industrial temperature range (-40°C  
to 85°C).  
4:3  
2
PKG  
RO  
RO  
0x1  
1
This field specifies the package type. A value of 1 indicates  
a 48-pin LQFP package.  
RoHS  
RoHS-Compliance  
A 1 in this bit specifies the device is RoHS-compliant.  
April 27, 2007  
67  
Preliminary  
System Control  
Bit/Field  
1:0  
Name  
QUAL  
Type  
RO  
Reset  
Description  
see table  
This field specifies the qualification status of the device.  
This field is encoded as follows:  
QUAL  
00  
Description  
Engineering Sample (unqualified)  
Pilot Production (unqualified)  
Fully Qualified  
01  
10  
11  
Reserved  
68  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 3: Device Capabilities 0 (DC0), offset 0x008  
This register is predefined by the part and can be used to verify features.  
Note: The bit diagram indicates the values are device-specific. The table below indicates values  
for your specific part.  
Device Capabilities Register 0 (DC0)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
SRAMSZ  
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FLSHSZ  
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
SRAMSZ  
0x001F  
Indicates the size of the on-chip SRAM. A value of 0x001F  
indicates 8 KB of SRAM.  
15:0  
FLSHSZ  
RO  
0x000F  
Indicates the size of the on-chip flash memory. A value of  
0x000F indicates 32 KB of Flash.  
April 27, 2007  
69  
Preliminary  
System Control  
Register 4: Device Capabilities 1 (DC1), offset 0x010  
This register is predefined by the part and can be used to verify features.  
Device Capabilities 1 (DC1)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
PWM  
reserved  
ADC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MINSYSDIV  
MAXADCSPD  
MPU reserved TEMP  
PLL  
WDT  
SWO  
SWD  
JTAG  
Type  
Reset  
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:21  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
20  
PWMa  
RO  
RO  
1
0
A 1 in this bit indicates the presence of the PWM module.  
19:17  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
16  
ADCa  
RO  
RO  
1
A 1 in this bit indicates the presence of the ADC module.  
15:12  
MINSYSDIV  
0x03  
The reset value is hardware-dependent. A value of 0x03  
specifies a 50-MHz CPU clock with a PLL divider of 4.See  
the RCC register (page 86) for how to change the system  
clock divisor using the SYSDIVbit.  
11:8  
7
MAXADCSPDa  
MPU  
RO  
RO  
0x2  
1
This field indicates the maximum rate at which the ADC  
samples data. A value of 0x2 indicates 500K samples per  
second.  
This bit indicates whether the Memory Protection Unit  
(MPU) in the Cortex-M3 is available. A 0 in this bit indicates  
the MPU is not available; a 1 indicates the MPU is  
available.  
See the ARM® Cortex™-M3 Technical Reference Manual  
for details on the MPU.  
6
5
4
3
reserved  
TEMP  
PLL  
RO  
RO  
RO  
RO  
0
1
1
1
Reserved bits return an indeterminate value, and should  
never be changed.  
This bit specifies the presence of an internal temperature  
sensor.  
A 1 in this bit indicates the presence of an implemented  
PLL in the device.  
WDTa  
A 1 in this bit indicates a watchdog timer on the device.  
70  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
2
Name  
SWOa  
Type  
RO  
Reset  
1
Description  
A 1 in this bit indicates the presence of the ARM Serial Wire  
Output (SWO) trace port capabilities.  
1
SWDa  
JTAGa  
RO  
1
A 1 in this bit indicates the presence of the ARM Serial Wire  
Debug (SWD) capabilities.  
0
RO  
1
A 1 in this bit indicates the presence of a JTAG port.  
a. These bits mask the Run-Mode Clock Gating Control 0 (RCGC0) register (see page 113), Sleep-Mode Clock Gating Control 0  
(SCGC0) register (see page 113), and Deep-Sleep-Mode Clock Gating Control 0 (DCGC0) register (see page 113). Bits that are  
not noted are passed as 0. ADCSP is clipped to the maximum value specified in DC1.  
April 27, 2007  
71  
Preliminary  
System Control  
Register 5: Device Capabilities 2 (DC2), offset 0x014  
This register is predefined by the part and can be used to verify features.  
Device Capabilities 2 (DC2)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
GPTM2 GPTM1 GPTM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C  
reserved  
SSI  
reserved  
UART1 UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
1
RO  
1
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
COMP0  
reserved  
GPTM2  
GPTM1  
GPTM0  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
24  
23:19  
18  
RO  
RO  
RO  
RO  
RO  
RO  
1
0
1
1
1
0
A 1 in this bit indicates the presence of analog  
comparator 0.  
Reserved bits return an indeterminate value, and should  
never be changed.  
A 1 in this bit indicates the presence of General-Purpose  
Timer module 2.  
17  
A 1 in this bit indicates the presence of General-Purpose  
Timer module 1.  
16  
A 1 in this bit indicates the presence of General-Purpose  
Timer module 0.  
15:13  
Reserved bits return an indeterminate value, and should  
never be changed.  
12  
I2C  
RO  
RO  
1
0
A 1 in this bit indicates the presence of the I2C module.  
11:5  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
4
SSI  
RO  
RO  
1
0
A 1 in this bit indicates the presence of the SSI module.  
3:2  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
UART1  
UART0  
RO  
RO  
1
1
A 1 in this bit indicates the presence of the UART1 module.  
A 1 in this bit indicates the presence of the UART0 module.  
72  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 6: Device Capabilities 3 (DC3), offset 0x018  
Note: The bit diagram indicates all possible features. The table below indicates values for your  
specific part.  
This register is predefined by the part and can be used to verify features.  
Device Capabilities 3 (DC3)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CCP5  
CCP4  
CCP3  
CCP2  
CCP1  
CCP0  
reserved  
ADC1  
ADC0  
Type  
Reset  
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
C0o  
C0+  
C0-  
reserved  
PWM1 PWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
29  
28  
CCP5  
CCP4  
CCP3  
CCP2  
CCP1  
CCP0  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
1
1
0
A 1 in this bit indicates the presence of the Capture/  
Compare/PWM pin 5.  
A 1 in this bit indicates the presence of the Capture/  
Compare/PWM pin 4.  
27  
A 1 in this bit indicates the presence of the Capture/  
Compare/PWM pin 3.  
26  
A 1 in this bit indicates the presence of the Capture/  
Compare/PWM pin 2.  
25  
A 1 in this bit indicates the presence of the Capture/  
Compare/PWM pin 1.  
24  
A 1 in this bit indicates the presence of the Capture/  
Compare/PWM pin 0.  
23:18  
Reserved bits return an indeterminate value, and should  
never be changed.  
17  
16  
ADC1  
ADC0  
RO  
RO  
RO  
1
1
0
A 1 in this bit indicates the presence of the ADC1 pin.  
A 1 in this bit indicates the presence of the ADC0 pin.  
15:9  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
8
7
6
C0o  
C0+  
C0-  
RO  
RO  
RO  
1
1
1
A 1 in this bit indicates the presence of the C0o pin.  
A 1 in this bit indicates the presence of the C0+ pin.  
A 1 in this bit indicates the presence of the C0- pin.  
April 27, 2007  
73  
Preliminary  
System Control  
Bit/Field  
5:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
PWM1  
PWM0  
RO  
RO  
1
1
A 1 in this bit indicates the presence of the PWM1 pin.  
A 1 in this bit indicates the presence of the PWM0 pin.  
74  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 7: Device Capabilities 4 (DC4), offset 0x01C  
This register is predefined by the part and can be used to verify features.  
Device Capabilities 4 (DC4)  
Offset 0x01C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PORTE PORTD PORTC PORTB PORTA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:5  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
4
3
2
1
0
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
1
A 1 in this bit indicates the presence of GPIO Port E.  
A 1 in this bit indicates the presence of GPIO Port D.  
A 1 in this bit indicates the presence of GPIO Port C.  
A 1 in this bit indicates the presence of GPIO Port B.  
A 1 in this bit indicates the presence of GPIO Port A.  
April 27, 2007  
75  
Preliminary  
System Control  
Register 8: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030  
This register is responsible for controlling reset conditions after initial power-on reset.  
Power-On and Brown-Out Reset Control (PBORCTL)  
Offset 0x030  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BORTIM  
BORIOR BORWT  
Type  
Reset  
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:2  
BORTIM  
R/W  
0x1FFF  
This field specifies the number of internal oscillator clocks  
delayed before the BOR output is resampled if the BORWT  
bit is set.  
The width of this field is derived by the tBOR width of 500 µs  
and the internal oscillator (IOSC) frequency of 15 MHz ±  
50%. At +50%, the counter value has to exceed 10,000.  
1
0
BORIOR  
BORWT  
R/W  
R/W  
0
1
BOR Interrupt or Reset  
This bit controls how a BOR event is signaled to the  
controller. If set, a reset is signaled. Otherwise, an interrupt  
is signaled.  
BOR Wait and Check for Noise  
This bit specifies the response to a brown-out signal  
assertion. If BORWTis set to 1, the controller waits BORTIM  
IOSC periods before resampling the BOR output, and if  
asserted, it signals a BOR condition interrupt or reset. If the  
BOR resample is deasserted, the cause of the initial  
assertion was likely noise and the interrupt or reset is  
suppressed. If BORWTis 0, BOR assertions do not resample  
the output and any condition is reported immediately if  
enabled.  
76  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 9: LDO Power Control (LDOPCTL), offset 0x034  
The VADJfield in this register adjusts the on-chip output voltage (V  
).  
OUT  
LDO Power Control (LDOPCTL)  
Offset 0x034  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
VADJ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
5:0  
VADJ  
R/W  
0x0  
This field sets the on-chip output voltage. The programming  
values for the VADJfield are provided in Table 6-2.  
Table 6-2. VADJ to V  
OUT  
VADJ Value  
VOUT (V)  
VADJ Value  
VOUT (V)  
VADJ Value  
VOUT (V)  
0x1B  
0x1C  
0x1D  
0x1E  
2.75  
2.70  
2.65  
2.60  
0x1F  
0x00  
0x01  
0x02  
2.55  
2.50  
2.45  
2.40  
0x03  
0x04  
2.35  
2.30  
0x05  
2.25  
0x06-0x3F  
Reserved  
April 27, 2007  
77  
Preliminary  
System Control  
Register 10: Software Reset Control 0 (SRCR0), offset 0x040  
Writes to this register are masked by the bits in the Device Capabilities 1 (DC1) register (see  
page 70).  
Software Reset Control 0 (SRCR0)  
Offset 0x040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
PWM  
reserved  
ADC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:21  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
20  
PWM  
R/W  
RO  
0
0
Reset control for the PWM units.  
19:17  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
16  
ADC  
R/W  
RO  
0
0
Reset control for the ADC unit.  
15:4  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
WDT  
R/W  
RO  
0
0
Reset control for the Watchdog unit.  
2:0  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
78  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 11: Software Reset Control 1 (SRCR1), offset 0x044  
Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register (see  
page 72).  
Software Reset Control 1 (SRCR1)  
Offset 0x044  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
GPTM2 GPTM1 GPTM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C  
reserved  
SSI  
reserved  
UART1 UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
24  
COMP0  
reserved  
R/W  
RO  
0
0
Reset control for analog comparator 0.  
23:19  
Reserved bits return an indeterminate value, and should  
never be changed.  
18  
17  
GPTM2  
GPTM1  
GPTM0  
reserved  
R/W  
R/W  
R/W  
RO  
0
0
0
0
Reset control for General-Purpose Timer module 2.  
Reset control for General-Purpose Timer module 1.  
Reset control for General-Purpose Timer module 0.  
16  
15:13  
Reserved bits return an indeterminate value, and should  
never be changed.  
12  
I2C  
R/W  
RO  
0
0
Reset control for the I2C units.  
11:5  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
4
SSI  
R/W  
RO  
0
0
Reset control for the SSI units.  
3:2  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
UART1  
UART0  
R/W  
R/W  
0
0
Reset control for the UART1 module.  
Reset control for the UART0 module.  
April 27, 2007  
79  
Preliminary  
System Control  
Register 12: Software Reset Control 2 (SRCR2), offset 0x048  
Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register (see  
page 75).  
Software Reset Control (SRCR2)  
Offset 0x048  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PORTE PORTD PORTC PORTB PORTA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:5  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
4
3
2
1
0
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Reset control for GPIO Port E.  
Reset control for GPIO Port D.  
Reset control for GPIO Port C.  
Reset control for GPIO Port B.  
Reset control for GPIO Port A.  
80  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 13: Raw Interrupt Status (RIS), offset 0x050  
Central location for system control raw interrupts. These are set and cleared by hardware.  
Raw Interrupt Status (RIS)  
Offset 0x050  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLRIS CLRIS IOFRIS MOFRIS  
BORRIS PLLFRIS  
LDORIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
6
5
4
3
2
1
PLLLRIS  
CLRIS  
RO  
0
0
0
0
0
0
PLL Lock Raw Interrupt Status  
This bit is set when the PLL TREADY Timer asserts.  
RO  
RO  
RO  
RO  
RO  
Current Limit Raw Interrupt Status  
This bit is set if the LDO’s CLE output asserts.  
IOFRIS  
MOFRIS  
LDORIS  
BORRIS  
Internal Oscillator Fault Raw Interrupt Status  
This bit is set if an internal oscillator fault is detected.  
Main Oscillator Fault Raw Interrupt Status  
This bit is set if a main oscillator fault is detected.  
LDO Power Unregulated Raw Interrupt Status  
This bit is set if a LDO voltage is unregulated.  
Brown-Out Reset Raw Interrupt Status  
This bit is the raw interrupt status for any brown-out  
conditions. If set, a brown-out condition was detected. An  
interrupt is reported if the BORIMbit in the IMC register is  
set and the BORIORbit in the PBORCTL register is cleared.  
0
PLLFRIS  
RO  
0
PLL Fault Raw Interrupt Status  
This bit is set if a PLL fault is detected (stops oscillating).  
April 27, 2007  
81  
Preliminary  
System Control  
Register 14: Interrupt Mask Control (IMC), offset 0x054  
Central location for system control interrupt masks.  
Interrupt Mask Control (IMC)  
Offset 0x054  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLIM CLIM IOFIM MOFIM  
BORIM PLLFIM  
LDOIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
6
5
4
3
2
PLLLIM  
CLIM  
R/W  
0
0
0
0
0
PLL Lock Interrupt Mask  
This bit specifies whether a current limit detection is  
promoted to a controller interrupt. If set, an interrupt is  
generated if PLLLRISin RIS is set; otherwise, an interrupt  
is not generated.  
R/W  
R/W  
R/W  
R/W  
Current Limit Interrupt Mask  
This bit specifies whether a current limit detection is  
promoted to a controller interrupt. If set, an interrupt is  
generated if CLRISis set; otherwise, an interrupt is not  
generated.  
IOFIM  
MOFIM  
LDOIM  
Internal Oscillator Fault Interrupt Mask  
This bit specifies whether an internal oscillator fault  
detection is promoted to a controller interrupt. If set, an  
interrupt is generated if IOFRISis set; otherwise, an  
interrupt is not generated.  
Main Oscillator Fault Interrupt Mask  
This bit specifies whether a main oscillator fault detection is  
promoted to a controller interrupt. If set, an interrupt is  
generated if MOFRISis set; otherwise, an interrupt is not  
generated.  
LDO Power Unregulated Interrupt Mask  
This bit specifies whether an LDO unregulated power  
situation is promoted to a controller interrupt. If set, an  
interrupt is generated if LDORISis set; otherwise, an  
interrupt is not generated.  
82  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
BORIM  
Brown-Out Reset Interrupt Mask  
This bit specifies whether a brown-out condition is  
promoted to a controller interrupt. If set, an interrupt is  
generated if BORRISis set; otherwise, an interrupt is not  
generated.  
0
PLLFIM  
R/W  
0
PLL Fault Interrupt Mask  
This bit specifies whether a PLL fault detection is promoted  
to a controller interrupt. If set, an interrupt is generated if  
PLLFRISis set; otherwise, an interrupt is not generated.  
April 27, 2007  
83  
Preliminary  
System Control  
Register 15: Masked Interrupt Status and Clear (MISC), offset 0x058  
Central location for system control result of RIS AND IMC to generate an interrupt to the controller.  
All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS  
register (see page 81).  
Masked Interrupt Status and Clear (MISC)  
Offset 0x058  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLMIS CLMIS IOFMIS MOFMIS  
BORMISPLLFMIS  
LDOMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
6
5
4
3
2
1
PLLLMIS  
CLMIS  
R/W1C  
0
0
0
0
0
0
PLL Lock Masked Interrupt Status  
This bit is set when the PLL TREADY timer asserts. The  
interrupt is cleared by writing a 1 to this bit.  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
Current Limit Masked Interrupt Status  
This bit is set if the LDO’s CLE output asserts. The interrupt  
is cleared by writing a 1 to this bit.  
IOFMIS  
MOFMIS  
LDOMIS  
BORMIS  
Internal Oscillator Fault Masked Interrupt Status  
This bit is set if an internal oscillator fault is detected. The  
interrupt is cleared by writing a 1 to this bit.  
Main Oscillator Fault Masked Interrupt Status  
This bit is set if a main oscillator fault is detected. The  
interrupt is cleared by writing a 1 to this bit.  
LDO Power Unregulated Masked Interrupt Status  
This bit is set if LDO power is unregulated. The interrupt is  
cleared by writing a 1 to this bit.  
Brown-Out Reset Masked Interrupt Status  
This bit is the masked interrupt status for any brown-out  
conditions. If set, a brown-out condition was detected. An  
interrupt is reported if the BORIMbit in the IMC register is  
set and the BORIORbit in the PBORCTL register is cleared.  
The interrupt is cleared by writing a 1 to this bit.  
0
PLLFMIS  
R/W1C  
0
PLL Fault Masked Interrupt Status  
This bit is set if a PLL fault is detected (stops oscillating).  
The interrupt is cleared by writing a 1 to this bit.  
84  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 16: Reset Cause (RESC), offset 0x05C  
This field specifies the cause of the reset event to software. The reset value is determined by the  
cause of the reset. When an external reset is the cause (EXTis set), all other reset bits are  
cleared. However, if the reset is due to any other cause, the remaining bits are sticky, allowing  
software to see all causes.  
Reset Cause (RESC)  
Offset 0x05C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
LDO  
SW  
WDT  
BOR  
POR  
EXT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
5
4
3
2
1
0
LDO  
SW  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
-
When set to 1, LDO power OK lost is the cause of the reset  
event.  
When set to 1, a software reset is the cause of the reset  
event.  
WDT  
BOR  
POR  
EXT  
When set to 1, a watchdog reset is the cause of the reset  
event.  
When set to 1, a brown-out reset is the cause of the reset  
event.  
When set to 1, a power-on reset is the cause of the reset  
event.  
When set to 1, an external reset (RSTassertion) is the  
cause of the reset event.  
April 27, 2007  
85  
Preliminary  
System Control  
Register 17: Run-Mode Clock Configuration (RCC), offset 0x060  
This register is defined to provide source control and frequency speed.  
Run-Mode Clock Configuration (RCC)  
Offset 0x060  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
ACG  
SYSDIV  
USESYSDIV reserved USEPWMDIV  
PWMDIV  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
RO  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWRDN  
OEN  
BYPASS PLLVER  
XTAL  
OSCSRC  
IOSCVER MOSCVER IOSCDIS MOSCDIS  
Type  
Reset  
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
Bit/Field  
31:28  
Name  
Type  
RO  
Reset  
0
Description  
Reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
27  
ACG  
R/W  
0
Auto Clock Gating  
This bit specifies whether the system uses the Sleep-Mode  
Clock Gating Control (SCGCn) registers (see page 92)  
and Deep-Sleep-Mode Clock Gating Control (DCGCn)  
registers (see page 92) if the controller enters a Sleep or  
Deep-Sleep mode (respectively). If set, the SCGCn or  
DCGCn registers are used to control the clocks distributed  
to the peripherals when the controller is in a sleep mode.  
Otherwise, the Run-Mode Clock Gating Control (RCGCn)  
registers (see page 92) are used when the controller enters  
a sleep mode.  
The RCGCn registers are always used to control the clocks  
in Run mode.  
This allows peripherals to consume less power when the  
controller is in a sleep mode and the peripheral is unused.  
86  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
26:23  
Name  
Type  
R/W  
Reset  
0xF  
Description  
SYSDIV  
System Clock Divisor  
Specifies which divisor is used to generate the system clock  
from the PLL output (200 MHz).  
Binary  
Value  
Divisor  
(BYPASS=1)  
Frequency  
(BYPASS=0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
reserved  
/2  
reserved  
reserved  
/3  
reserved  
/4  
50 MHz  
/5  
40 MHz  
/6  
33.33 MHz  
28.57 MHz  
25 MHz  
/7  
/8  
/9  
22.22 MHz  
20 MHz  
/10  
/11  
/12  
/13  
/14  
/15  
/16  
18.18 MHz  
16.67 MHz  
15.38 MHz  
14.29 MHz  
13.33 MHz  
12.5 MHz (default)  
When reading the Run-Mode Clock Configuration (RCC)  
register (see page 86), the SYSDIVvalue is MINSYSDIVif  
a lower divider was requested and the PLL is being used.  
This lower value is allowed to divide a non-PLL source.  
22  
USESYSDIV  
R/W  
0
Use the system clock divider as the source for the system  
clock. The system clock divider is forced to be used when  
the PLL is selected as the source.  
21  
20  
reserved  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
USEPWMDIV  
R/W  
Use the PWM clock divider as the source for the PWM  
clock.  
April 27, 2007  
87  
Preliminary  
System Control  
Bit/Field  
19:17  
Name  
Type  
R/W  
Reset  
0x7  
Description  
PWMDIV  
PWM Unit Clock Divisor  
This field specifies the binary divisor used to predivide the  
system clock down for use as the timing reference for the  
PWM module. This clock is only power 2 divide and rising  
edge is synchronous without phase shift from the system  
clock.  
Value  
000  
001  
010  
011  
100  
101  
110  
111  
Divisor  
/2  
/4  
/8  
/16  
/32  
/64  
/64  
/64 (default)  
16:14  
13  
reserved  
PWRDN  
RO  
0
1
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
PLL Power Down  
This bit connects to the PLL PWRDN input. The reset value  
of 1 powers down the PLL. See Table 6-4 on page 90 for  
PLL mode control.  
12  
OEN  
R/W  
1
PLL Output Enable  
This bit specifies whether the PLL output driver is enabled.  
If cleared, the driver transmits the PLL clock to the output.  
Otherwise, the PLL clock does not oscillate outside the PLL  
module.  
Note: Both PWRDNand OENmust be cleared to run the  
PLL.  
11  
BYPASS  
R/W  
1
PLL Bypass  
Chooses whether the system clock is derived from the PLL  
output or the OSC source. If set, the clock that drives the  
system is the OSC source. Otherwise, the clock that drives  
the system is the PLL output clock divided by the system  
divider.  
Note: The ADC module must be clocked from the PLL or  
directly from a 14-MHz to an 18-MHz clock source  
in order to operate properly.  
88  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
10  
Name  
Type  
R/W  
Reset  
0
Description  
PLLVER  
PLL Verification  
This bit controls the PLL verification timer function. If set,  
the verification timer is enabled and an interrupt is  
generated if the PLL becomes inoperative. Otherwise, the  
verification timer is not enabled.  
9:6  
XTAL  
R/W  
R/W  
0xB  
0x0  
This field specifies the crystal value attached to the main  
oscillator. The encoding for this field is provided in Table 6-4  
on page 90.  
Oscillator-Related Bits  
5:4  
OSCSRC  
Picks among the four input sources for the OSC. The  
values are:  
Value  
00  
Input Source  
Main oscillator (default)  
Internal oscillator  
01  
10  
Internal oscillator / 4 (this is necessary if used  
as input to PLL)  
11  
reserved  
3
2
1
0
IOSCVER  
MOSCVER  
IOSCDIS  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
This bit controls the internal oscillator verification timer  
function. If set, the verification timer is enabled and an  
interrupt is generated if the timer becomes inoperative.  
Otherwise, the verification timer is not enabled.  
This bit controls the main oscillator verification timer  
function. If set, the verification timer is enabled and an  
interrupt is generated if the timer becomes inoperative.  
Otherwise, the verification timer is not enabled.  
Internal Oscillator Disable  
0: Internal oscillator is enabled.  
1: Internal oscillator is disabled.  
MOSCDIS  
Main Oscillator Disable  
0: Main oscillator is enabled.  
1: Main oscillator is disabled.  
Table 6-3. PLL Mode Control  
PWRDN  
OEN  
Mode  
1
0
X
0
Power down  
Normal  
April 27, 2007  
89  
Preliminary  
System Control  
Table 6-4. Default Crystal Field Values and PLL Programming  
Crystal Number  
(XTAL Binary Value)  
Crystal Frequency (MHz)  
reserved  
0000-0011  
0100  
0101  
0110  
0111  
3.579545 MHz  
3.6864 MHz  
4 MHz  
4.096 MHz  
4.9152 MHz  
5 MHz  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
5.12 MHz  
6 MHz (reset value)  
6.144 MHz  
7.3728 MHz  
8 MHz  
1111  
8.192 MHz  
90  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 18: XTAL to PLL Translation (PLLCFG), offset 0x064  
This register provides a means of translating external crystal frequencies into the appropriate PLL  
settings. This register is initialized during the reset sequence and updated anytime that the XTAL  
field changes in the Run-Mode Clock Configuration (RCC) register (see page 86).  
XTAL to PLL Translation (PLLCFG)  
Offset 0x064  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OD  
F
R
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:14  
13:5  
4:0  
OD  
F
RO  
RO  
RO  
-
-
-
This field specifies the value supplied to the PLL’s OD input.  
This field specifies the value supplied to the PLL’s F input.  
This field specifies the value supplied to the PLL’s R input.  
R
April 27, 2007  
91  
Preliminary  
System Control  
Register 19: Run-Mode Clock Gating Control 0 (RCGC0), offset 0x100  
Register 20: Sleep-Mode Clock Gating Control 0 (SCGC0), offset 0x110  
Register 21: Deep-Sleep-Mode Clock Gating Control 0 (DCGC0), offset 0x120  
These registers control the clock gating logic. Each bit controls a clock enable for a given  
interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will  
generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that  
all functional units are disabled. It is the responsibility of software to enable the ports necessary for  
the application. Note that these registers may contain more bits than there are interfaces,  
functions, or units to control. This is to assure reasonable code compatibility with other family and  
future parts.  
RCGC0 is the clock configuration register for running operation, SCGC0 for Sleep operation, and  
DCGC0 for Deep-Sleep operation. Setting the ACGbit in the Run-Mode Clock Configuration  
(RCC) register (see page 86) specifies that the system uses sleep modes.  
Run-Mode, Sleep-Mode and Deep-Sleep-Mode Clock Gating Control 0 (RCGC0, SCG0, and DCGC0)  
Offset 0x100, 0x110, 0x120  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
PWM  
reserved  
ADC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MAXADCSPD  
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:21  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
20  
PWM  
R/W  
0
This bit controls the clock gating for the PWM module. If  
set, the unit receives a clock and functions. Otherwise, the  
unit is unclocked and disabled.a  
19:17  
16  
reserved  
ADC  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
This bit controls the clock gating for the ADC module. If  
set, the unit receives a clock and functions. Otherwise, the  
unit is unclocked and disabled.a  
15:12  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
92  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
11:8  
Name  
Type  
R/W  
Reset  
0x0  
Description  
MAXADCSPD  
This field sets the rate at which the ADC samples data.  
You can set the sample rate by setting the MAXADCSPDbit  
as follows (you cannot set the rate higher than the  
maximum rate.):  
Value  
0x0  
Sample Rate  
125K samples/second  
250K samples/second  
500K samples/second  
0x1  
0x2  
7:4  
3
reserved  
WDT  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
This bit controls the clock gating for the WDT module. If  
set, the unit receives a clock and functions. Otherwise, the  
unit is unclocked and disabled.a  
2:0  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
a. If the unit is unclocked, a read or write to the unit generates a bus fault.  
April 27, 2007  
93  
Preliminary  
System Control  
Register 22: Run-Mode Clock Gating Control 1 (RCGC1), offset 0x104  
Register 23: Sleep-Mode Clock Gating Control 1 (SCGC1), offset 0x114  
Register 24: Deep-Sleep-Mode Clock Gating Control 1 (DCGC1), offset 0x124  
These registers control the clock gating logic. Each bit controls a clock enable for a given  
interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will  
generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that  
all functional units are disabled. It is the responsibility of software to enable the ports necessary for  
the application. Note that these registers may contain more bits than there are interfaces,  
functions, or units to control. This is to assure reasonable code compatibility with other family and  
future parts.  
RCGC1 is the clock configuration register for running operation, SCGC1 for Sleep operation, and  
DCGC1 for Deep-Sleep operation. Setting the ACGbit in the Run-Mode Clock Configuration  
(RCC) register (see page 86) specifies that the system uses sleep modes.  
Run-Mode, Sleep-Mode, and Deep-Sleep-Mode Clock Gating Control 1 (RCGC1, SCGC1, and DCGC1)  
Offset 0x104, 0x114, and 0x124  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
GPTM2 GPTM1 GPTM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C  
reserved  
SSI  
reserved  
UART1 UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
24  
COMP0  
R/W  
0
This bit controls the clock gating for the Comparator 0  
module. If set, the unit receives a clock and functions.  
Otherwise, the unit is unclocked and disabled.a  
23:19  
18  
reserved  
GPTM2  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
This bit controls the clock gating for the General Purpose  
Timer 2 module. If set, the unit receives a clock and  
functions. Otherwise, the unit is unclocked and disabled.a  
17  
16  
GPTM1  
GPTM0  
R/W  
R/W  
0
0
This bit controls the clock gating for the General Purpose  
Timer 1 module. If set, the unit receives a clock and  
functions. Otherwise, the unit is unclocked and disabled.a  
This bit controls the clock gating for the General Purpose  
Timer 0 module. If set, the unit receives a clock and  
functions. Otherwise, the unit is unclocked and disabled.a  
94  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
15:13  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
12  
I2C  
R/W  
0
This bit controls the clock gating for the I2C module. If set,  
the unit receives a clock and functions. Otherwise, the unit  
is unclocked and disabled.a  
11:5  
4
reserved  
SSI  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
This bit controls the clock gating for the SSI module. If set,  
the unit receives a clock and functions. Otherwise, the unit  
is unclocked and disabled.a  
3:2  
1
reserved  
UART1  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
This bit controls the clock gating for the UART1 module. If  
set, the unit receives a clock and functions. Otherwise, the  
unit is unclocked and disabled.a  
0
UART0  
R/W  
0
This bit controls the clock gating for the UART0 module. If  
set, the unit receives a clock and functions. Otherwise, the  
unit is unclocked and disabled.a  
a. If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
April 27, 2007  
95  
Preliminary  
System Control  
Register 25: Run-Mode Clock Gating Control 2 (RCGC2), offset 0x108  
Register 26: Sleep-Mode Clock Gating Control 2 (SCGC2), offset 0x118  
Register 27: Deep-Sleep-Mode Clock Gating Control 2 (DCGC2), offset 0x128  
These registers control the clock gating logic. Each bit controls a clock enable for a given  
interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will  
generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that  
all functional units are disabled. It is the responsibility of software to enable the ports necessary for  
the application. Note that these registers may contain more bits than there are interfaces,  
functions, or units to control. This is to assure reasonable code compatibility with other family and  
future parts.  
RCGC2 is the clock configuration register for running operation, SCGC2 for Sleep operation, and  
DCGC2 for Deep-Sleep operation. Setting the ACGbit in the Run-Mode Clock Configuration  
(RCC) register (see page 86) specifies that the system uses sleep modes.  
Run-Mode, Sleep-Mode, and Deep-Sleep-Mode Clock Gating Control 2 (RCGC2, SCGC2, and DCGC2)  
Offset 0x108, 0x118, and 0x128  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PORTE PORTD PORTC PORTB PORTA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:5  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
4
3
2
1
0
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
This bit controls the clock gating for the GPIO Port E  
module. If set, the unit receives a clock and functions.  
Otherwise, the unit is unclocked and disabled.a  
This bit controls the clock gating for the GPIO Port D  
module. If set, the unit receives a clock and functions.  
Otherwise, the unit is unclocked and disabled.a  
This bit controls the clock gating for the GPIO Port C  
module. If set, the unit receives a clock and functions.  
Otherwise, the unit is unclocked and disabled.a  
This bit controls the clock gating for the GPIO Port B  
module. If set, the unit receives a clock and functions.  
Otherwise, the unit is unclocked and disabled.a  
This bit controls the clock gating for the GPIO Port A  
module. If set, the unit receives a clock and functions.  
Otherwise, the unit is unclocked and disabled.a  
a. If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
96  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 28: Deep-Sleep Clock Configuration (DSLPCLKCFG), offset 0x144  
This register is used to automatically switch from the main oscillator to the internal oscillator when  
entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this  
register is set, the internal oscillator is powered up and the main oscillator is powered down. When  
the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and  
frequency it had at the onset of Deep-Sleep mode.  
Deep-Sleep Clock Configuration (DSLPCLKCFG)  
Offset 0x144  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IOSC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
Reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IOSC  
R/W  
0
This field allows an override of the main oscillator when  
Deep-Sleep mode is running. When set, this field forces the  
internal oscillator to be the clock source during Deep-Sleep  
mode. Otherwise, the main oscillator remains as the default  
system clock source.  
April 27, 2007  
97  
Preliminary  
System Control  
Register 29: Clock Verification Clear (CLKVCLR), offset 0x150  
This register is provided as a means of clearing the clock verification circuits by software. Since  
the clock verification circuits force a known good clock to control the process, the controller is  
allowed the opportunity to solve the problem and clear the verification fault. This register clears all  
clock verification faults. To clear a clock verification fault, the VERCLRbit must be set and then  
cleared by software. This bit is not self-clearing.  
Clock Verification Clear (CLKVCLR)  
Offset 0x150  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
VERCLR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
Reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
VERCLR  
R/W  
0
Clear clock verification faults.  
98  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 30: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160  
This register is provided as a means of allowing the LDO to reset the part if the voltage goes  
unregulated. Use this register to choose whether to automatically reset the part if the LDO goes  
unregulated, based on the design tolerance for LDO fluctuation.  
Allow Unregulated LDO to Reset the Part (LDOARST)  
Offset 0x160  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
LDOARST  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
Reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
LDOARST  
R/W  
0
Set to 1 to allow unregulated LDO output to reset the part.  
April 27, 2007  
99  
Preliminary  
Internal Memory  
7
Internal Memory  
The LM3S612 microcontroller comes with 8 KB of bit-banded SRAM and 32 KB of flash memory.  
The flash controller provides a user-friendly interface, making flash programming a simple task.  
Flash protection can be applied to the flash memory on a 2-KB block basis.  
7.1  
Block Diagram  
Figure 7-1. Flash Block Diagram  
Flash Timing  
USECRL  
Flash Control  
ICode  
DCode  
Cortex-M3  
FMA  
FMD  
Flash Array  
FMC  
System Bus  
FCRIS  
FCIM  
FCMISC  
APB  
Bridge  
Flash Protection  
FMPRE  
FMPPE  
SRAM Array  
7.2  
Functional Description  
This section describes the functionality of both memories.  
7.2.1  
SRAM Memory  
The internal SRAM of the Stellaris devices is located at address 0x20000000 of the device  
memory map. To reduce the number of time consuming read-modify-write (RMW) operations,  
ARM has introduced bit-banding technology in the new Cortex-M3 processor. With a  
bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can  
use address aliases to access individual bits in a single, atomic operation.  
100  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
The bit-band alias is calculated by using the formula:  
bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)  
For example, if bit 3 at address 0x20001000 is to be modified, the bit-band alias is calculated as:  
0x22000000 + (0x1000 * 32) + (3 * 4) = 0x2202000C  
With the alias address calculated, an instruction performing a read/write to address 0x2202000C  
allows direct access to only bit 3 of the byte at address 0x20001000.  
For details about bit-banding, please refer to Chapter 4, “Memory Map” in the ARM® Cortex™-M3  
Technical Reference Manual.  
7.2.2  
Flash Memory  
The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block  
causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of  
2-KB blocks that can be individually protected. The blocks can be marked as read-only or  
execute-only, providing different levels of code protection. Read-only blocks cannot be erased or  
programmed, protecting the contents of those blocks from being modified. Execute-only blocks  
cannot be erased or programmed, and can only be read by the controller instruction fetch  
mechanism, protecting the contents of those blocks from being read by either the controller or by a  
debugger.  
7.2.2.1  
Flash Memory Timing  
The timing for the flash is automatically handled by the flash controller. However, in order to do so,  
it must know the clock rate of the system in order to time its internal signals properly. The number  
of clock cycles per microsecond must be provided to the flash controller for it to accomplish this  
timing. It is software's responsibility to keep the flash controller updated with this information via  
the USec Reload (USECRL) register (see page 108).  
On reset, USECRL is loaded with a value that configures the flash timing so that it works with the  
default crystal value of 6 MHz. If software changes the system operating frequency, the new  
operating frequency must be loaded into USECRL before any flash modifications are attempted.  
For example, if the device is operating at a speed of 20 MHz, a value of 0x13 must be written to  
the USECRL register.  
7.2.2.2  
Flash Memory Protection  
The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide  
registers. The protection policy for each form is controlled by individual bits (per policy per block) in  
the FMPPE (see page 107) and FMPRE registers (see page 106).  
„
Flash Memory Protection Program Enable (FMPPE[Blockn:Block0]): If set, the block may  
be programmed (written) or erased. If cleared, the block may not be changed.  
„
Flash Memory Protection Read Enable (FMPRE[Blockn:Block0]): If set, the block may be  
executed or read by software or debuggers. If cleared, the block may only be executed. The  
contents of the memory block are prohibited from being accessed as data and traversing the  
DCode bus.  
April 27, 2007  
101  
Preliminary  
Internal Memory  
The policies may be combined as shown in Table 7-1.  
Table 7-1. Flash Protection Policy Combinations  
FMPPE  
FMPRE  
Protection  
0
0
Execute-only protection. The block may only be executed and may not be  
written or erased. This mode is used to protect code.  
1
0
0
1
The block may be written, erased, or executed, but not read. This  
combination is unlikely to be used.  
Read-only protection. The block may be read or executed but may not be  
written or erased. This mode is used to lock the block from further modification  
while allowing any read or execute access.  
1
1
No protection. The block may be written, erased, executed, or read.  
An access that attempts to program or erase a PE-protected block is prohibited. A controller  
interrupt may be optionally generated (by setting the AMASKbit in the FIM register) to alert  
software developers of poorly behaving software during the development and debug phases.  
An access that attempts to read an RE-protected block is prohibited. Such accesses return data  
filled with all 0s. A controller interrupt may be optionally generated to alert software developers of  
poorly behaving software during the development and debug phases.  
The factory settings for the FMPRE and FMPPE registers are a value of 1 for all implemented  
banks. This implements a policy of open access and programmability. The register bits may be  
changed by writing the specific register bit. The changes are not permanent until the register is  
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0  
and not committed, it may be restored by executing a power-on reset sequence.  
7.2.2.3  
Flash Protection by Disabling Debug Access  
Flash memory may also be protected by permanently disabling access to the Debug Access Port  
(DAP) through the JTAG and SWD interfaces. This is accomplished by clearing the DBG field of  
the FMPRE register.  
Flash Memory Protection Read Enable (DBG field): If set to 0x2, access to the DAP is enabled  
through the JTAG and SWD interfaces. If clear, access to the DAP is disabled. The DBG field  
programming becomes permanent, and irreversible, after a commit sequence is performed.  
In the initial state, provided from the factory, access is enabled in order to facilitate code  
development and debug. Access to the DAP may be disabled at the end of the manufacturing flow,  
once all tests have passed and software loaded. This change will not take effect until the next  
power-up of the device. Note that it is recommended that disabling access to the DAP be  
combined with a mechanism for providing end-user installable updates (if necessary) such as the  
Stellaris boot loader.  
Important: Once the DBGfield is cleared and committed, this field can never be restored to the  
factory-programmed value—which means JTAG/SWD interface to the debug module  
can never be re-enabled. This sequence does NOT disable the JTAG controller, it  
only disables the access of the DAP through the JTAG or SWD interfaces. The JTAG  
interface remains functional and access to the Test Access Port remains enabled,  
allowing the user to execute the IEEE JTAG-defined instructions (for example, to  
perform boundary scan operations).  
102  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
If the user will also be using the FMPRE bits to protect flash memory from being read as data (to  
mark sets of 2 KB blocks of flash memory as execute-only), these one-time-programmable bits  
should be written at the same time that the debug disable bits are programmed. Mechanisms to  
execute the one-time code sequence to disable all debug access include:  
„
„
Selecting the debug disable option in the Stellaris boot loader  
Loading the debug disable sequence into SRAM and running it once from SRAM after  
programming the final end application code into flash  
7.2.2.4  
Flash Memory Programming  
Writing the flash memory requires that the code be executed out of SRAM to avoid corrupting or  
interrupting the bus timing. Flash pages can be erased on a page basis (1 KB in size), or by  
performing a mass erase of the entire flash.  
All erase and program operations are performed using the Flash Memory Address (FMA), Flash  
Memory Data (FMD) and Flash Memory Control (FMC) registers. See section 7.3 for examples.  
7.3  
Initialization and Configuration  
This section shows examples for using the flash controller to perform various operations on the  
contents of the flash memory.  
7.3.1  
Changing Flash Protection Bits  
As discussed in Section 7.2.2.2, changes to the protection bits must be committed before they  
take effect. The sequence below is used change and commit a block protection bit in the FMPRE  
or FMPPE registers. The sequence to change and commit a bit in software is as follows:  
1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection  
Program Enable (FMPPE) registers are written, changing the intended bit(s). The action of  
these changes can be tested by software while in this state.  
2. The Flash Memory Address (FMA) register (see page 109) bit 0 is set to 1 if the FMPPE  
register is to be committed; otherwise, a 0 commits the FMPRE register.  
3. The Flash Memory Control (FMC) register (see page 112) is written with the COMTbit set.  
This initiates a write sequence and commits the changes.  
There is a special sequence to change and commit the DBGbits in the Flash Memory Protection  
Read Enable (FMPRE) register. This sequence also sets and commits any changes from 1 to 0 in  
the block protection bits (for execute-only) in the FMPRE register.  
1. 1. The Flash Memory Protection Read Enable (FMPRE) register is written, changing the  
intended bit(s). The action of these changes can be tested by software while in this state.  
2. 2. The Flash Memory Address (FMA) register (see page 102) is written with a value of 0x900.  
3. 3. The Flash Memory Control (FMC) register (see page 104) is written with the COMT bit set.  
This initiates a write sequence and commits the changes.  
Below is an example code sequence to permanently disable the JTAG and SWD interface to the  
debug module using Luminary Micro's DriverLib peripheral driver library:  
#include "hw_types.h"  
#include "hw_flash.h"  
void  
permanently_disable_jtag_swd(void)  
{
April 27, 2007  
103  
Preliminary  
Internal Memory  
//  
// Clear the DBG field of the FMPRE register. Note that the value  
// used in this instance does not affect the state of the BlockN  
// bits, but were the value different, all bits in the FMPRE are  
// affected by this function!  
//  
HWREG(FLASH_FMPRE) &= 0x3fffffff;  
//  
// The following sequence activates the one-time  
// programming of the FMPRE register.  
//  
HWREG(FLASH_FMA) = 0x900;  
HWREG(FLASH_FMC) = (FLASH_FMC_WRKEY | FLASH_FMC_COMT);  
//  
// Wait until the operation is complete.  
//  
while (HWREG(FLASH_FMC) & FLASH_FMC_COMT)  
{
}
}
7.3.2  
Flash Programming  
The Stellaris devices provide a user-friendly interface for flash programming. All erase/program  
operations are handled via three registers: FMA, FMD and FMC.  
The flash is programmed using the following sequence:  
1. Write source data to the FMD register.  
2. Write the target address to the FMA register.  
3. Write the flash write key and the WRITEbit (a value of 0xA4420001) to the FMC register.  
4. Poll the FMC register until the WRITEbit is cleared.  
To perform an erase of a 1-KB page:  
1. Write the page address to the FMA register.  
2. Write the flash write key and the ERASEbit (a value of 0xA4420002) to the FMC register.  
3. Poll the FMC register until the ERASEbit is cleared.  
To perform a mass erase of the flash:  
1. Write the flash write key and the MERASEbit (a value of 0xA4420004) to the FMC register.  
2. Poll the FMC register until the MERASEbit is cleared.  
7.4  
Register Map  
Table 7-2 lists the Flash memory and control registers. The offset listed is a hexadecimal  
increment to the register’s address, relative to the Flash control base address of 0x400FD000,  
104  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
except for FMPRE and FMPPE, which are relative to the System Control base address of  
0x400FE000.  
Table 7-2. Flash Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x130a  
0x134a  
0X140a  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
FMPRE  
FMPPE  
USECRL  
FMA  
0xFFFF  
R/W0  
R/W0  
R/W  
R/W  
R/W  
R/W  
RO  
Flash memory read protect  
Flash memory program protect  
USec reload  
106  
107  
108  
109  
111  
112  
114  
115  
116  
0xFFFF  
0x00000031  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Flash memory address  
Flash memory data  
FMD  
FMC  
Flash memory control  
FCRIS  
FCIM  
Flash controller raw interrupt status  
Flash controller interrupt mask  
R/W  
FCMISC  
R/W1C Flash controller masked interrupt status and clear  
a. Relative to System Control base address of 0x400FE000.  
7.5  
Register Descriptions  
The remainder of this section lists and describes the Flash Memory registers, in numerical order  
by address offset.  
April 27, 2007  
105  
Preliminary  
Internal Memory  
Register 1: Flash Memory Protection Read Enable (FMPRE), offset 0x130  
Note: Offset is relative to System Control base address of 0x400FE000  
This register stores the read-only (FMPRE) protection bits for each 2-KB flash block and bits to  
disable debug access through JTAG and SWD. This register is loaded during the power-on reset  
sequence.  
The factory setting for the FMPRE register is a value of 1 for all implemented flash banks and 0x2  
for the DBG field. These bits implement a policy of open access, programmability, and debug  
access. The register bits may be changed by writing the specific register bit. However, this register  
is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a  
1).  
The changes are not permanent until the register is committed (saved), at which point the bit  
change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by  
executing a power-on reset sequence.  
For additional information, see “Flash Memory Protection” on page 87.  
Flash Memory Protection Read Enable (FMPRE)  
Offset 0x130 and 0x134  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DBG  
reserved  
Type  
Reset  
R/W0  
1
R/W0  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Block15 Block14 Block13 Block12 Block11 Block10 Block9  
Block8  
Block7  
Block6  
Block5  
Block4  
Block3  
Block2  
Block1  
Block0  
Type  
Reset  
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
Bit/Field  
31:30  
Name  
DBG  
Type  
Reset  
Description  
R/W0  
0x2  
Controls access to the debug access port (DAP)  
through the JTAG and SWD interfaces. A value of  
0x2 enables access. A value of 0 disables access.  
29:16  
15:0  
reserved  
RO  
0
Reserved bits return an indeterminate value, and  
should never be changed.  
Block15-  
Block0  
R/W0  
0xFFFF  
Enable 2-KB flash blocks to be executed or read.  
The policies may be combined as shown in  
Table 7-1 on page 102.  
106  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 2: Flash Memory Protection Program Enable (FMPPE), offset 0x134  
Note: Offset is relative to System Control base address of 0x400FE000  
This register stores the execute-only (FMPPE) protection bits for each 2-KB flash block. This  
register is loaded during the power-on reset sequence.  
The factory setting for the FMPPE register is a value of 1 for all implemented banks. This  
implements a policy of open access and programmability. The register bits may be changed by  
writing the specific register bit. However, this register is R/W0; the user can only change the  
protection bit from a 1 to a 0 (and may NOT change a 0 to a 1).  
The changes are not permanent until the register is committed (saved), at which point the bit  
change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by  
executing a power-on reset sequence.  
For additional information, see “Flash Memory Protection” on page 101.  
Flash Memory Protection Program Enable (FMPPE)  
Offset 0x130 and 0x134  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Ty  
pe  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Block15 Block14 Block13 Block
1
2
B
lock11 Block10 Block9  
Block8  
Block7  
Block6  
Block5  
Block4  
Block3  
Block2  
Block1  
Block0  
Ty  
pe  
R/W0  
1  
R/W0  
1  
R/W0  
1  
R/W0  
1  
R/W0  
1  
R/W0  
1  
R/W0  
1  
R/W0  
1  
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
R/W0  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and  
should never be changed.  
15:0  
Block15-  
Block0  
R/W0  
1
Enable 2-KB flash blocks to be written or erased  
(FMPPE register). This policy may be combined with  
the FMPRE register as shown in Table 7-1 on  
page 102.  
April 27, 2007  
107  
Preliminary  
Internal Memory  
Register 3: USec Reload (USECRL), offset 0x140  
Note: Offset is relative to System Control base address of 0x400FE000  
This register is provided as a means of creating a 1-µs tick divider reload value for the flash  
controller. The internal flash has specific minimum and maximum requirements on the length of  
time the high voltage write pulse can be applied. It is required that this register contain the  
operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is  
required to change this value if the clocking conditions are changed for a flash erase/program  
operation.  
Usec Reload (USECRL)  
Offset 0x140  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
USEC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
USEC  
R/W  
0x31  
MHz -1 of the controller clock when the flash is being  
erased or programmed.  
USECshould be set to 0x31 (49 MHz) whenever the flash is  
being erased or programmed.  
108  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 4: Flash Memory Address (FMA), offset 0x000  
During a write operation, this register contains a 4-byte-aligned address and specifies where the  
data is written. During erase operations, this register contains a 1 KB-aligned address and  
April 27, 2007  
109  
Preliminary  
Internal Memory  
specifies which page is erased. Note that the alignment requirements must be met by software or  
the results of the operation are unpredictable.  
Flash Memory Address (FMA)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OFFSET  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Flash Memory Address (FMA)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OFFSET  
Type  
Reset  
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Flash Memory Address (FMA)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OFFSET  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Flash Memory Address (FMA)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OFFSET  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:15  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
14:0  
OFFSET  
R/W  
0x0  
Address offset in flash where operation is performed.  
110  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 5: Flash Memory Data (FMD), offset 0x004  
This register contains the data to be written during the programming cycle or read during the read  
cycle. Note that the contents of this register are undefined for a read access of an execute-only  
block. This register is not used during the erase cycles.  
Flash Memory Data (FMD)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
DATA  
Type  
R/W  
Reset  
0x0  
Description  
Data value for write operation.  
April 27, 2007  
111  
Preliminary  
Internal Memory  
Register 6: Flash Memory Control (FMC), offset 0x008  
When this register is written, the flash controller initiates the appropriate access cycle for the  
location specified by the Flash Memory Address (FMA) register (see page 109). If the access is  
a write access, the data contained in the Flash Memory Data (FMD) register (see page 111) is  
written.  
This is the final register written and initiates the memory operation. There are four control bits in  
the lower byte of this register that, when set, initiate the memory operation. The most used of  
these register bits are the ERASEand WRITEbits.  
It is a programming error to write multiple control bits and the results of such an operation are  
unpredictable.  
Flash Memory Control (FMC)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WRKEY  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
COMT MERASE ERASE WRITE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
WO  
Reset  
Description  
WRKEY  
0x0  
This field contains a write key, which is used to minimize the  
incidence of accidental flash writes. The value 0xA442 must  
be written into this field for a write to occur. Writes to the  
FMC register without this WRKEY value are ignored. A  
read of this field returns the value 0.  
15:4  
3
reserved  
COMT  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
Commit (write) of register value to nonvolatile storage. A  
write of 0 has no effect on the state of this bit.  
If read, the state of the previous commit access is provided.  
If the previous commit access is complete, a 0 is returned;  
otherwise, if the commit access is not complete, a 1 is  
returned.  
This can take up to 50 µs.  
Mass erase flash memory  
2
MERASE  
R/W  
0
If this bit is set, the flash main memory of the device is all  
erased. A write of 0 has no effect on the state of this bit.  
If read, the state of the previous mass erase access is  
provided. If the previous mass erase access is complete, a  
0 is returned; otherwise, if the previous mass erase access  
is not complete, a 1 is returned.  
This can take up to 250 ms.  
112  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
ERASE  
Erase a page of flash memory  
If this bit is set, the page of flash main memory as specified  
by the contents of FMA is erased. A write of 0 has no effect  
on the state of this bit.  
If read, the state of the previous erase access is provided. If  
the previous erase access is complete, a 0 is returned;  
otherwise, if the previous erase access is not complete, a 1  
is returned.  
This can take up to 25 ms.  
0
WRITE  
R/W  
0
Write a word into flash memory  
If this bit is set, the data stored in FMD is written into the  
location as specified by the contents of FMA. A write of 0  
has no effect on the state of this bit.  
If read, the state of the previous write update is provided. If  
the previous write access is complete, a 0 is returned;  
otherwise, if the write access is not complete, a 1 is  
returned.  
This can take up to 50 µs.  
April 27, 2007  
113  
Preliminary  
Internal Memory  
Register 7: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C  
This register indicates that the flash controller has an interrupt condition. An interrupt is only  
signaled if the corresponding FCIM register bit is set.  
Flash Controller Raw Interrupt Status (FCRIS)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PRIS  
ARIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
PRIS  
RO  
0
Programming Raw Interrupt Status  
This bit indicates the current state of the programming  
cycle. If set, the programming cycle completed; if cleared,  
the programming cycle has not completed. Programming  
cycles are either write or erase actions generated through  
the Flash Memory Control (FMC) register bits (see  
page 112).  
0
ARIS  
RO  
0
Access Raw Interrupt Status  
This bit indicates if the flash was improperly accessed. If  
set, the program tried to access the flash counter to the  
policy as set in the Flash Memory Protection Read  
Enable (FMPRE) and Flash Memory Protection Program  
Enable (FMPPE) registers (see page 106). Otherwise, no  
access has tried to improperly access the flash.  
114  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 8: Flash Controller Interrupt Mask (FCIM), offset 0x010  
This register controls whether the flash controller generates interrupts to the controller.  
Flash Controller Interrupt Mask (FCIM)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMASK  
reserved  
AMASK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
PMASK  
R/W  
0
Programming Interrupt Mask  
This bit controls the reporting of the programming raw  
interrupt status to the controller. If set, a  
programming-generated interrupt is promoted to the  
controller. Otherwise, interrupts are recorded but  
suppressed from the controller.  
0
AMASK  
R/W  
0
Access Interrupt Mask  
This bit controls the reporting of the access raw interrupt  
status to the controller. If set, an access-generated interrupt  
is promoted to the controller. Otherwise, interrupts are  
recorded but suppressed from the controller.  
April 27, 2007  
115  
Preliminary  
Internal Memory  
Register 9: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014  
This register provides two functions. First, it reports the cause of an interrupt by indicating which  
interrupt source or sources are signaling the interrupt. Second, it serves as the method to clear the  
interrupt reporting.  
Flash Controller Masked Interrupt Status and Clear (FCMISC)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMISC AMISC  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
PMISC  
R/W1C  
0
Programming Masked Interrupt Status and Clear  
This bit indicates whether an interrupt was signaled  
because a programming cycle completed and was not  
masked. This bit is cleared by writing a 1. The PRISbit in  
the FCRIS register (see page 114) is also cleared when the  
PMISCbit is cleared.  
0
AMISC  
R/W1C  
0
Access Masked Interrupt Status and Clear  
This bit indicates whether an interrupt was signaled  
because an improper access was attempted and was not  
masked. This bit is cleared by writing a 1. The ARISbit in  
the FCRIS register is also cleared when the AMISCbit is  
cleared.  
116  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
8
General-Purpose Input/Outputs (GPIOs)  
The GPIO module is composed of five physical GPIO blocks, each corresponding to an individual  
GPIO port (Port A, Port B, Port C, Port D, and Port E). The GPIO module is FiRM-compliant and  
supports 7 to 34 programmable input/output pins, depending on the peripherals being used.  
The GPIO module has the following features:  
„
Programmable control for GPIO interrupts:  
Interrupt generation masking  
Edge-triggered on rising, falling, or both  
Level-sensitive on High or Low values  
5-V-tolerant input/outputs  
„
„
„
Bit masking in both read and write operations through address lines  
Programmable control for GPIO pad configuration:  
Weak pull-up or pull-down resistors  
2-mA, 4-mA, and 8-mA pad drive  
Slew rate control for the 8-mA drive  
Open drain enables  
Digital input enables  
April 27, 2007  
117  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
8.1  
Block Diagram  
Figure 8-1. GPIO Module Block Diagram  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
U0Rx  
U0Tx  
UART0  
SSI  
PE0  
PE1  
PE2  
PE3  
SSIClk  
SSIFss  
SSIRx  
SSITx  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
CCP0  
CCP1  
Timer 0  
I2C  
PWM0  
PWM1  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
Fault  
PWM0  
U1Rx  
U1Tx  
I2CSCL  
I2CSDA  
UART1  
C0-  
Analog  
Comparator  
C0o  
C0+  
CCP3  
CCP5  
Timer 1  
Timer 2  
CCP2  
CCP4  
JTAG  
GPIO Port C  
118  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
8.2  
Functional Description  
Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the  
exception of the five JTAG pins (PB7and PC[3:0]. The JTAG pins default to their  
JTAG functionality (GPIOAFSEL=1). Asserting a Power-On-Reset (POR) or an  
external reset (RST) puts both groups of pins back to their default state.  
Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 8-2).  
The LM3S612 microcontroller contains five ports and thus five of these physical GPIO blocks.  
Figure 8-2. GPIO Port Block Diagram  
Function  
Selection  
GPIOAFSEL  
D
E
M
U
X
Alternate Input  
Pad Input  
Alternate Output  
Alternate Output Enable  
M
U
X
Package I/O Pin  
I/O  
Pad  
Pad Output  
GPIO Input  
I/O  
Data  
GPIO Output  
GPIODATA  
M
U
X
Pad Output Enable  
GPIO Output Enable  
GPIODIR  
Interrupt  
Control  
I/O Pad  
Control  
GPIODR2R  
GPIODR4R  
GPIODR8R  
GPIOSLR  
GPIOPUR  
GPIOPDR  
GPIOODR  
GPIODEN  
GPIOIS  
GPIOIBE  
GPIOIEV  
GPIOIM  
Interrupt  
GPIORIS  
GPIOMIS  
GPIOICR  
Identification Registers  
GPIOPeriphID0 GPIOPeriphID4 GPIOPCellID0  
GPIOPeriphID1 GPIOPeriphID5 GPIOPCellID1  
GPIOPeriphID2 GPIOPeriphID6 GPIOPCellID2  
GPIOPeriphID3 GPIOPeriphID7 GPIOPCellID3  
8.2.1  
Data Register Operation  
To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the  
GPIO Data (GPIODATA) register (see page 125) by using bits [9:2] of the address bus as a mask.  
This allows software drivers to modify individual GPIO pins in a single instruction, without affecting  
the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write  
operation to set or clear an individual GPIO pin. To accommodate this feature, the GPIODATA  
register covers 256 locations in the memory map.  
During a write, if the address bit associated with that data bit is set to 1, the value of the  
GPIODATA register is altered. If it is cleared to 0, it is left unchanged.  
For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in  
Figure 8-3, where u is data unchanged by the write.  
April 27, 2007  
119  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Figure 8-3. GPIODATA Write Example  
ADDR[9:2]  
0x098  
5
0
9
0
8
7
1
6
0
4
1
3
2
0
1
0
0
0
0
1
0xEB  
1
1
1
0
1
0
1
1
GPIODATA  
u
7
u
6
1
5
u
4
u
3
0
2
1
1
u
0
During a read, if the address bit associated with the data bit is set to 1, the value is read. If the  
address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual  
value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-4.  
Figure 8-4. GPIODATA Read Example  
ADDR[9:2]  
0x0C4  
5
0
9
0
8
0
7
1
6
1
4
0
3
0
2
1
1
0
0
0
GPIODATA  
1
0
1
1
1
1
1
0
Returned Value  
0
7
0
6
1
5
1
4
0
3
0
2
0
1
0
0
8.2.2  
8.2.3  
Data Direction  
The GPIO Direction (GPIODIR) register (see page 126) is used to configure each individual pin  
as an input or output.  
Interrupt Operation  
The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these  
registers, it is possible to select the source of the interrupt, its polarity, and the edge properties.  
When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt  
controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt  
to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external  
source holds the level constant for the interrupt to be recognized by the controller.  
Three registers are required to define the edge or sense that causes interrupts:  
„
„
„
GPIO Interrupt Sense (GPIOIS) register (see page 127)  
GPIO Interrupt Both Edges (GPIOIBE) register (see page 128)  
GPIO Interrupt Event (GPIOIEV) register (see page 129)  
Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 130).  
When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations:  
the GPIO Raw Interrupt Status (GPIORIS) and GPIO Masked Interrupt Status (GPIOMIS)  
registers (see pages 131 and 132). As the name implies, the GPIOMIS register only shows  
interrupt conditions that are allowed to be passed to the controller. The GPIORIS register indicates  
that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the  
controller.  
120  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
In addition to providing GPIO functionality, PB4can also be used as an external trigger for the  
ADC. If PB4is configured as a non-masked interrupt pin (GPIOIM is set to 1), not only is an  
interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the ADC Event  
Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC  
conversion is initiated.  
If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored  
Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts  
and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt  
handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC  
interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC  
registers until the conversion is completed.  
Interrupts are cleared by writing a 1 to the GPIO Interrupt Clear (GPIOICR) register (see  
page 133).  
When programming interrupts, the interrupts should be masked (GPIOIM set to 0). Writing any  
value to an interrupt control register (GPIOIS, GPIOIBE, or GPIOIEV) can generate a spurious  
interrupt if the corresponding bits are enabled.  
8.2.4  
Mode Control  
The GPIO pins can be controlled by either hardware or software. When hardware control is  
enabled via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 134), the pin  
state is controlled by its alternate function (that is, the peripheral). Software control corresponds to  
GPIO mode, where the GPIODATA register is used to read/write the corresponding pins.  
8.2.5  
8.2.6  
8.3  
Pad Configuration  
The pad configuration registers allow for GPIO pad configuration by software based on the  
application requirements. The pad configuration registers include the GPIODR2R, GPIODR4R,  
GPIODR8R, GPIOODR, GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers.  
Identification  
The identification registers configured at reset allow software to detect and identify the module as  
a GPIO block. The identification registers include the GPIOPeriphID0-GPIOPeriphID7 registers  
as well as the GPIOPCellID0-GPIOPCellID3 registers.  
Initialization and Configuration  
To use the GPIO, the peripheral clock must be enabled by setting PORTA, PORTB, PORTC, PORTD,  
and PORTEin the RCGC2 register.  
On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose input mode  
(GPIODIR and GPIOAFSEL both set to 0). Table 8-1 shows all possible configurations of the  
April 27, 2007  
121  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
GPIO pads and the control register settings required to achieve them. Table 8-2 shows how a  
rising edge interrupt would be configured for pin 2 of a GPIO port.  
Table 8-1. GPIO Pad Configuration Examples  
Register Bit Valuea  
Configuration  
Digital Input (GPIO)  
0
0
0
0
1
1
1
1
1
1
0
1
0
1
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
1
?
?
X
X
X
?
?
?
?
?
0
?
?
?
X
X
X
?
?
?
?
?
0
?
X
?
X
?
?
X
?
?
?
?
X
?
X
?
X
?
?
X
?
?
?
?
X
?
X
?
X
?
?
X
?
?
?
?
X
?
X
?
X
?
?
X
?
?
?
?
X
?
Digital Output (GPIO)  
Open Drain Input (GPIO)  
Open Drain Output (GPIO)  
Open Drain Input/Output (I2C)  
Digital Input (Timer CCP)  
Digital Output (PWM)  
0
1
X
X
X
X
X
X
0
Digital Output (Timer PWM)  
Digital Input/Output (SSI)  
Digital Input/Output (UART)  
Analog Input (Comparator)  
Digital Output (Comparator)  
a. X=Ignored (don’t care bit)  
X
?=Can be either 0 or 1, depending on the configuration  
Table 8-2. GPIO Interrupt Configuration Example  
Pin 2 Bit Valuea  
Desired Interrupt  
Register  
Event Trigger  
7
6
5
4
3
2
1
0
GPIOIS  
0=edge  
1=level  
X
X
X
X
X
X
0
X
X
X
GPIOIBE  
GPIOIEV  
0=single edge  
1=both edges  
X
X
X
X
X
X
X
X
0
1
X
X
0=Low level, or  
negative edge  
1=High level, or  
positive edge  
X
0
X
0
GPIOIM  
0=masked  
1=not masked  
0
0
0
0
1
0
a. X=Ignored (don’t care bit)  
122  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
8.4  
Register Map  
Table 8-2 lists the GPIO registers. The offset listed is a hexadecimal increment to the register’s  
address, relative to that GPIO port’s base address:  
„
„
„
„
„
GPIO Port A: 0x40004000  
GPIO Port B: 0x40005000  
GPIO Port C: 0x40006000  
GPIO Port D: 0x40007000  
GPIO Port E: 0x40024000  
Important: The GPIO registers in this chapter are duplicated in each GPIO block, however,  
depending on the block, all eight bits may not be connected to a GPIO pad (see  
Figure 8-1 on page 118). In those cases, writing to those unconnected bits has no  
effect and reading those unconnected bits returns no meaningful data.  
Table 8-3. GPIO Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x400  
0x404  
0x408  
0x40C  
0x410  
0x414  
0x418  
0x41C  
0x420  
0x500  
0x504  
0x508  
0x50C  
0x510  
0x514  
0x518  
0x51C  
0xFD0  
GPIODATA  
GPIODIR  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
see notea  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
Data  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
Data direction  
GPIOIS  
Interrupt sense  
GPIOIBE  
Interrupt both edges  
Interrupt event  
GPIOIEV  
GPIOIM  
Interrupt mask enable  
Raw interrupt status  
Masked interrupt status  
Interrupt clear  
GPIORIS  
GPIOMIS  
GPIOICR  
RO  
W1C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
GPIOAFSEL  
GPIODR2R  
GPIODR4R  
GPIODR8R  
GPIOODR  
GPIOPUR  
GPIOPDR  
GPIOSLR  
GPIODEN  
GPIOPeriphID4  
Alternate function select  
2-mA drive select  
4-mA drive select  
8-mA drive select  
Open drain select  
Pull-up select  
0x000000FF  
0x00000000  
0x00000000  
0x00000000  
0x000000FF  
0x00000000  
0x00000000  
0x000000FF  
0x00000000  
Pull-down select  
Slew rate control select  
Digital input enable  
Peripheral identification 4  
April 27, 2007  
123  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Table 8-3. GPIO Register Map (Continued)  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
GPIOPeriphID5  
GPIOPeriphID6  
GPIOPeriphID7  
GPIOPeriphID0  
GPIOPeriphID1  
GPIOPeriphID2  
GPIOPeriphID3  
GPIOPCellID0  
GPIOPCellID1  
GPIOPCellID2  
GPIOPCellID3  
0x00000000  
0x00000000  
0x00000000  
0x00000061  
0x00000000  
0x00000018  
0x00000001  
0x0000000D  
0x000000F0  
0x00000005  
0x000000B1  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Peripheral identification 5  
Peripheral identification 6  
Peripheral identification 7  
Peripheral identification 0  
Peripheral identification 1  
Peripheral identification 2  
Peripheral identification 3  
GPIO PrimeCell identification 0  
GPIO PrimeCell identification 1  
GPIO PrimeCell identification 2  
GPIO PrimeCell identification 3  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
a. The default reset value for the GPIOAFSEL register is 0x00000000 for all GPIO pins, with the exception of the five JTAG pins  
(PB7and PC[3:0]. These five pins default to JTAG functionality. Because of this, the default reset value of GPIOAFSEL for  
GPIO Port B is 0x00000080 while the default reset value of GPIOAFSEL for Port C is 0x0000000F.  
8.5  
Register Descriptions  
The remainder of this section lists and describes the GPIO registers, in numerical order by  
address offset.  
124  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 1: GPIO Data (GPIODATA), offset 0x000  
The GPIODATA register is the data register. In software control mode, values written in the  
GPIODATA register are transferred onto the GPIO port pins if the respective pins have been  
configured as outputs through the GPIO Direction (GPIODIR) register (see page 126).  
In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus  
bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.  
Similarly, the values read from this register are determined for each bit by the mask bit derived  
from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask  
cause the corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask  
cause the corresponding bits in GPIODATA to be read as 0, regardless of their value.  
A read from GPIODATA returns the last bit value written if the respective pins are configured as  
outputs, or it returns the value on the corresponding input pin when these are configured as inputs.  
All bits are cleared by a reset.  
GPIO Data (GPIODATA)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
Name  
Type  
RO  
Reset  
Description  
31:8  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DATA  
R/W  
0
GPIO Data  
This register is virtually mapped to 256 locations in the address  
space. To facilitate the reading and writing of data to these  
registers by independent drivers, the data read from and the data  
written to the registers are masked by the eight address lines  
ipaddr[9:2]. Reads from this register return its current  
state. Writes to this register only affect bits that are not masked  
by ipaddr[9:2]and are configured as outputs. See “Data  
Register Operation” on page 119 for examples of reads and  
writes.  
April 27, 2007  
125  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 2: GPIO Direction (GPIODIR), offset 0x400  
The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure  
the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are  
cleared by a reset, meaning all GPIO pins are inputs by default.  
GPIO Direction (GPIODIR)  
Offset 0x400  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DIR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DIR  
R/W  
0x00  
GPIO Data Direction  
0: Pins are inputs.  
1: Pins are outputs.  
126  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404  
The GPIOIS register is the interrupt sense register. Bits set to 1 in GPIOIS configure the  
corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits  
are cleared by a reset.  
GPIO Interrupt Sense (GPIOIS)  
Offset 0x404  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
IS  
R/W  
0x00  
GPIO Interrupt Sense  
0: Edge on corresponding pin is detected (edge-sensitive).  
1: Level on corresponding pin is detected (level-sensitive).  
April 27, 2007  
127  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408  
The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in the GPIO  
Interrupt Sense (GPIOIS) register (see page 127) is set to detect edges, bits set to High in  
GPIOIBE configure the corresponding pin to detect both rising and falling edges, regardless of the  
corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 129). Clearing a bit  
configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.  
GPIO Interrupt Both Edges (GPIOIBE)  
Offset 0x408  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IBE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
IBE  
R/W  
0x00  
GPIO Interrupt Both Edges  
0: Interrupt generation is controlled by the GPIO Interrupt Event  
(GPIOIEV) register (see page 142).  
1: Both edges on the corresponding pin trigger an interrupt.  
Note: Single edge is determined by the corresponding bit in  
GPIOIEV.  
128  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C  
The GPIOIEV register is the interrupt event register. Bits set to High in GPIOIEV configure the  
corresponding pin to detect rising edges or high levels, depending on the corresponding bit value  
in the GPIO Interrupt Sense (GPIOIS) register (see page 127). Clearing a bit configures the pin to  
detect falling edges or low levels, depending on the corresponding bit value in GPIOIS. All bits are  
cleared by a reset.  
GPIO Interrupt Event (GPIOIEV)  
Offset 0x40C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IEV  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
IEV  
R/W  
0x00  
GPIO Interrupt Event  
0: Falling edge or Low levels on corresponding pins trigger  
interrupts.  
1: Rising edge or High levels on corresponding pins trigger  
interrupts.  
April 27, 2007  
129  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410  
The GPIOIM register is the interrupt mask register. Bits set to High in GPIOIM allow the  
corresponding pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing  
a bit disables interrupt triggering on that pin. All bits are cleared by a reset.  
GPIO Interrupt Mask (GPIOIM)  
Offset 0x410  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IME  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
IME  
R/W  
0x00  
GPIO Interrupt Mask Enable  
0: Corresponding pin interrupt is masked.  
1: Corresponding pin interrupt is not masked.  
130  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414  
The GPIORIS register is the raw interrupt status register. Bits read High in GPIORIS reflect the  
status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the  
requirements have been met, before they are finally allowed to trigger by the GPIO Interrupt  
Mask (GPIOIM) register (see page 130). Bits read as zero indicate that corresponding input pins  
have not initiated an interrupt. All bits are cleared by a reset.  
GPIO Raw Interrupt Status (GPIORIS)  
Offset 0x414  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
RIS  
RO  
0x00  
GPIO Interrupt Raw Status  
Reflect the status of interrupt trigger condition detection on pins  
(raw, prior to masking).  
0: Corresponding pin interrupt requirements not met.  
1: Corresponding pin interrupt has met requirements.  
April 27, 2007  
131  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418  
The GPIOMIS register is the masked interrupt status register. Bits read High in GPIOMIS reflect  
the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has  
been generated, or the interrupt is masked.  
In addition to providing GPIO functionality, PB4can also be used as an external trigger for the  
ADC. If PB4is configured as a non-masked interrupt pin (GPIOIM is set to 1), not only is an  
interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the ADC Event  
Multiplexer Select (ADCEMUX) register (see page 221) is configured to use the external trigger,  
an ADC conversion is initiated.  
If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored  
Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts  
and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt  
handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC  
interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC  
registers until the conversion is completed.  
GPIOMIS is the state of the interrupt after masking.  
GPIO Masked Interrupt Status (GPIOMIS)  
Offset 0x418  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
MIS  
RO  
0x00  
GPIO Masked Interrupt Status  
Masked value of interrupt due to corresponding pin.  
0: Corresponding GPIO line interrupt not active.  
1: Corresponding GPIO line asserting interrupt.  
132  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C  
The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the  
corresponding interrupt edge detection logic register. Writing a 0 has no effect.  
GPIO Interrupt Clear (GPIOICR)  
Offset 0x41C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
IC  
W1C  
0x00  
GPIO Interrupt Clear  
0: Corresponding interrupt is unaffected.  
1: Corresponding interrupt is cleared.  
April 27, 2007  
133  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420  
The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register  
selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset,  
therefore no GPIO line is set to hardware control by default.  
Caution – All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the  
exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG  
functionality (GPIOAFSEL=1). Asserting a Power-On-Reset (POR) or an external reset (RST)  
puts both groups of pins back to their default state.  
If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down  
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the  
controller has unpredictable behavior. If this happens, remove one or both of the pull-down  
resistors, and apply RST or power-cycle the part.  
In addition, it is possible to create a software sequence that prevents the debugger from connecting  
to the Stellaris microcontroller. If the program code loaded into flash immediately changes the  
JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and  
halt the controller before the JTAG pin functionality switches. This may lock the debugger out of  
the part. This can be avoided with a software routine that restores JTAG functionality based on an  
external or software trigger.  
GPIO Alternate Function Select (GPIOAFSEL)  
Offset 0x420  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
AFSEL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
AFSEL  
R/W  
see note GPIO Alternate Function Select  
0: Software control of corresponding GPIO line (GPIO mode).  
1: Hardware control of corresponding GPIO line (alternate  
hardware function).  
Note: The default reset value for the GPIOAFSEL register is  
0x00 for all GPIO pins, with the exception of the five  
JTAG pins (PB7and PC[3:0]). These five pins  
default to JTAG functionality. Because of this, the  
default reset value of GPIOAFSEL for GPIO Port B is  
0x80 while the default reset value of GPIOAFSEL for  
Port C is 0x0F.  
134  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500  
The GPIODR2R register is the 2-mA drive control register. It allows for each GPIO signal in the  
port to be individually configured without affecting the other pads. When writing a DRV2bit for a  
GPIO signal, the corresponding DRV4bit in the GPIODR4R register and the DRV8bit in the  
GPIODR8R register are automatically cleared by hardware.  
GPIO 2-mADrive Select (GPIODR2R)  
Offset 0x500  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DRV2  
R/W  
0xFF  
Output Pad 2-mA Drive Enable  
A write of 1 to either GPIODR4[n] or GPIODR8[n] clears the  
corresponding 2-mA enable bit. The change is effective on the  
second clock cycle after the write.  
April 27, 2007  
135  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504  
The GPIODR4R register is the 4-mA drive control register. It allows for each GPIO signal in the  
port to be individually configured without affecting the other pads. When writing the DRV4bit for a  
GPIO signal, the corresponding DRV2bit in the GPIODR2R register and the DRV8bit in the  
GPIODR8R register are automatically cleared by hardware.  
GPIO 4-mADrive Select (GPIODR4R)  
Offset 0x504  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DRV4  
R/W  
0x00  
Output Pad 4-mA Drive Enable  
A write of 1 to either GPIODR2[n] or GPIODR8[n] clears the  
corresponding 4-mA enable bit. The change is effective on the  
second clock cycle after the write.  
136  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508  
The GPIODR8R register is the 8-mA drive control register. It allows for each GPIO signal in the  
port to be individually configured without affecting the other pads. When writing the DRV8bit for a  
GPIO signal, the corresponding DRV2bit in the GPIODR2R register and the DRV4bit in the  
GPIODR4R register are automatically cleared by hardware.  
GPIO 8-mADrive Select (GPIODR8R)  
Offset 0x508  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV8  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DRV8  
R/W  
0x00  
Output Pad 8-mA Drive Enable  
A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the  
corresponding 8-mA enable bit. The change is effective on the  
second clock cycle after the write.  
April 27, 2007  
137  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C  
The GPIOODR register is the open drain control register. Setting a bit in this register enables the  
open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the  
corresponding bit should also be set in the GPIO Digital Input Enable (GPIODEN) register (see  
page 142). Corresponding bits in the drive strength registers (GPIODR2R, GPIODR4R,  
GPIODR8R, and GPIOSLR) can be set to achieve the desired rise and fall times. The GPIO acts  
as an open drain input if the corresponding bit in the GPIODIR register is set to 0; and as an open  
drain output when set to 1.  
2
When using the I C module, the GPIO Alternate Function Select (GPIOAFSEL) register bit for  
PB2and PB3should be set to 1 (see examples in “Initialization and Configuration” on page 121).  
GPIO Open Drain Select (GPIOODR)  
Offset 0x50C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ODE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
ODE  
R/W  
0x00  
Output Pad Open Drain Enable  
0: Open drain configuration is disabled.  
1: Open drain configuration is enabled.  
138  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510  
The GPIOPUR register is the pull-up control register. When a bit is set to 1, it enables a weak  
pull-up resistor on the corresponding GPIO signal. Setting a bit in GPIOPUR automatically clears  
the corresponding bit in the GPIO Pull-Down Select (GPIOPDR) register (see page 140).  
GPIO Pull-Up Select (GPIOPUR)  
Offset 0x510  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PUE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PUE  
R/W  
0xFF  
Pad Weak Pull-Up Enable  
A write of 1 to GPIOPDR[n] clears the corresponding  
GPIOPUR[n] enables. The change is effective on the second  
clock cycle after the write.  
April 27, 2007  
139  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514  
The GPIOPDR register is the pull-down control register. When a bit is set to 1, it enables a weak  
pull-down resistor on the corresponding GPIO signal. Setting a bit in GPIOPDR automatically  
clears the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 139).  
GPIO Pull-Down Select (GPIOPDR)  
Offset 0x514  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PDE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PDE  
R/W  
0x00  
Pad Weak Pull-Down Enable  
A write of 1 to GPIOPUR[n] clears the corresponding  
GPIOPDR[n] enables. The change is effective on the second  
clock cycle after the write.  
140  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518  
The GPIOSLR register is the slew rate control register. Slew rate control is only available when  
using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see  
page 137).  
GPIO Slew Rate Control Select (GPIOSLR)  
Offset 0x518  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SRL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
SRL  
R/W  
0
Slew Rate Limit Enable (8-mA drive only)  
0: Slew rate control disabled.  
1: Slew rate control enabled.  
April 27, 2007  
141  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 18: GPIO Digital Input Enable (GPIODEN), offset 0x51C  
The GPIODEN register is the digital input enable register. By default, all GPIO signals are  
configured as digital inputs at reset. The only time that a pin should not be configured as a digital  
input is when the GPIO pin is configured to be one of the analog input signals for the analog  
comparators.  
GPIO Digital Input Enable (GPIODEN)  
Offset 0x51C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DEN  
R/W  
0xFF  
Digital-Input Enable  
0: Digital input disabled  
1: Digital input enabled  
142  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 4 (GPIOPeriphID4)  
Offset 0xFD0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID4  
RO  
0x00  
GPIO Peripheral ID Register[7:0]  
April 27, 2007  
143  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 5 (GPIOPeriphID5)  
Offset 0xFD4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID5  
RO  
0x00  
GPIO Peripheral ID Register[15:8]  
144  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 6 (GPIOPeriphID6)  
Offset 0xFD8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID6  
RO  
0x00  
GPIO Peripheral ID Register[23:16]  
April 27, 2007  
145  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 7 (GPIOPeriphID7)  
Offset 0xFDC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID7  
RO  
0x00  
GPIO Peripheral ID Register[31:24]  
146  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 0 (GPIOPeriphID0)  
Offset 0xFE0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID0  
RO  
0x61  
GPIO Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this  
peripheral.  
April 27, 2007  
147  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 24: GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 1 (GPIOPeriphID1)  
Offset 0xFE4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID1  
RO  
0x00  
GPIO Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this  
peripheral.  
148  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 2 (GPIOPeriphID2)  
Offset 0xFE8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID2  
RO  
0x18  
GPIO Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this  
peripheral.  
April 27, 2007  
149  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit  
register, used by software to identify the peripheral.  
GPIO Peripheral Identification 3 (GPIOPeriphID3)  
Offset 0xFEC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID3  
RO  
0x01  
GPIO Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this  
peripheral.  
150  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit  
wide registers, that can conceptually be treated as one 32-bit register. The register is used as a  
standard cross-peripheral identification system.  
GPIO Primecell Identification 0 (GPIOPCellID0)  
Offset 0xFF0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID0  
RO  
0x0D  
GPIO PrimeCell ID Register[7:0]  
Provides software a standard cross-peripheral identification  
system.  
April 27, 2007  
151  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit  
wide registers, that can conceptually be treated as one 32-bit register. The register is used as a  
standard cross-peripheral identification system.  
GPIO Primecell Identification 1 (GPIOPCellID1)  
Offset 0xFF4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID1  
RO  
0xF0  
GPIO PrimeCell ID Register[15:8]  
Provides software a standard cross-peripheral identification  
system.  
152  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit  
wide registers, that can conceptually be treated as one 32-bit register. The register is used as a  
standard cross-peripheral identification system.  
GPIO Primecell Identification 2 (GPIOPCellID2)  
Offset 0xFF8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID2  
RO  
0x05  
GPIO PrimeCell ID Register[23:16]  
Provides software a standard cross-peripheral identification  
system.  
April 27, 2007  
153  
Preliminary  
General-Purpose Input/Outputs (GPIOs)  
Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit  
wide registers, that can conceptually be treated as one 32-bit register. The register is used as a  
standard cross-peripheral identification system.  
GPIO Primecell Identification 3 (GPIOPCellID3)  
Offset 0xFFC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID3  
RO  
0xB1  
GPIO PrimeCell ID Register[31:24]  
Provides software a standard cross-peripheral identification  
system.  
154  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
9
General-Purpose Timers  
Programmable timers can be used to count or time external events that drive the Timer input pins.  
The LM3S612 controller General-Purpose Timer Module (GPTM) contains three GPTM blocks  
(Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timer/counters (referred to  
as TimerA and TimerB) that can be configured to operate independently as timers or event  
counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).  
Timers can also be used to trigger analog-to-digital (ADC) conversions. The trigger signals from all  
of the general-purpose timers are ORed together before reaching the ADC module, so only one  
timer should be used to trigger ADC events.  
The General-Purpose Timer Module is one timing resource available on the Stellaris  
microcontrollers. Other timer resources include the System Timer (SysTick) (see “System Timer  
(SysTick)” on page 38) and the PWM timer in the PWM module (see “PWM Timer” on page 356).  
The following modes are supported:  
„
32-bit Timer modes:  
Programmable one-shot timer  
Programmable periodic timer  
Real-Time Clock using 32.768-KHz input clock  
Software-controlled event stalling (excluding RTC mode)  
16-bit Timer modes:  
„
General-purpose timer function with an 8-bit prescaler  
Programmable one-shot timer  
Programmable periodic timer  
Software-controlled event stalling  
16-bit Input Capture modes:  
„
„
Input edge count capture  
Input edge time capture  
16-bit PWM mode:  
Simple PWM mode with software-programmable output inversion of the PWM signal  
April 27, 2007  
155  
Preliminary  
General-Purpose Timers  
9.1  
Block Diagram  
Figure 9-1. GPTM Module Block Diagram  
0x0000 (Down Counter Modes )  
TimerA Control  
GPTMTAPMR  
GPTMTAPR  
TA Comparator  
GPTMAR En  
Clock / Edge  
Detect  
GPTMTAMATCHR  
Interrupt / Config  
GPTMTAILR  
GPTMTAMR  
CCP (even)  
GPTMCFG  
GPTMCTL  
GPTMIMR  
GPTMRIS  
GPTMMIS  
GPTMICR  
TimerA  
Interrupt  
RTC Divider  
TimerB  
Interrupt  
TimerB Control  
GPTMTBR En  
TB Comparator  
GPTMTBPMR  
GPTMTBPR  
Clock / Edge  
Detect  
CCP (odd)  
GPTMTBMATCHR  
GPTMTBILR  
GPTMTBMR  
0x0000 (Down Counter Modes )  
System  
Clock  
9.2  
Functional Description  
The main components of each GPTM block are two free-running 16-bit up/down counters (referred  
to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two  
16-bit load/initialization registers and their associated control functions. The exact functionality of  
each GPTM is controlled by software and configured through the register interface.  
Software configures the GPTM using the GPTM Configuration (GPTMCFG) register (see  
page 167), the GPTM TimerA Mode (GPTMTAMR) register (see page 168), and the GPTM  
TimerB Mode (GPTMTBMR) register (see page 169). When in one of the 32-bit modes, the timer  
can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its  
two 16-bit timers configured in any combination of the 16-bit modes.  
9.2.1  
GPTM Reset Conditions  
After reset has been applied to the GPTM module, the module is in an inactive state, and all  
control registers are cleared and in their default states. Counters TimerA and TimerB are initialized  
to 0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load  
(GPTMTAILR) register (see page 177) and the GPTM TimerB Interval Load (GPTMTBILR)  
register (see page 178). The prescale counters are initialized to 0x00: the GPTM TimerA  
Prescale (GPTMTAPR) register (see page 181) and the GPTM TimerB Prescale (GPTMTBPR)  
register (see page 182).  
9.2.2  
32-Bit Timer Operating Modes  
Note: Both the odd- and even-numbered CCP pins are used for 16-bit mode. Only the  
even-numbered CCP pins are used for 32-bit mode.  
156  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and  
their configuration.  
The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1  
(RTC mode) to the GPTM Configuration (GPTMCFG) register. In both configurations, certain  
GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:  
„
„
„
„
GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 177  
GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 178  
GPTM TimerA (GPTMTAR) register [15:0], see page 185  
GPTM TimerB (GPTMTBR) register [15:0], see page 186  
In the 32-bit modes, the GPTM translates a 32-bit write access to GPTMTAILR into a write access  
to both GPTMTAILR and GPTMTBILR. The resulting word ordering for such a write operation is:  
GPTMTBILR[15:0]:GPTMTAILR[15:0]. Likewise, a read access to GPTMTAR returns the  
value: GPTMTBR[15:0]:GPTMTAR[15:0].  
9.2.2.1  
32-Bit One-Shot/Periodic Timer Mode  
In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB  
registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is  
determined by the value written to the TAMRfield of the GPTM TimerA Mode (GPTMTAMR)  
register (see page 168), and there is no need to write to the GPTM TimerB Mode (GPTMTBMR)  
register.  
When software writes the TAENbit in the GPTM Control (GPTMCTL) register (see page 170), the  
timer begins counting down from its preloaded value. Once the 0x00000000 state is reached, the  
timer reloads its start value from the concatenated GPTMTAILR on the next cycle. If configured to  
be a one-shot timer, the timer stops counting and clears the TAENbit in the GPTMCTL register. If  
configured as a periodic timer, it continues counting.  
In addition to reloading the count value, the GPTM generates interrupts and output triggers when it  
reaches the 0x0000000 state. The GPTM sets the TATORISbit in the GPTM Raw Interrupt  
Status (GPTMRIS) register (see page 174), and holds it until it is cleared by writing the GPTM  
Interrupt Clear (GPTMICR) register (see page 176). If the time-out interrupt is enabled in the  
GPTM Interrupt Mask (GPTIMR) register (see page 172), the GPTM also sets the TATOMISbit in  
the GPTM Masked Interrupt Status (GPTMISR) register (see page 175).  
The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the  
0x00000000 state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE  
bit in GPTMCTL, and can trigger SoC-level events such as ADC conversions.  
If software reloads the GPTMTAILR register while the counter is running, the counter loads the  
new value on the next clock cycle and continues counting from the new value.  
If the TASTALLbit in the GPTMCTL register is asserted, the timer freezes counting until the signal  
is deasserted.  
9.2.2.2  
32-Bit Real-Time Clock Timer Mode  
In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers  
are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is  
loaded with a value of 0x00000001. All subsequent load values must be written to the GPTM  
TimerA Match (GPTMTAMATCHR) register (see page 179) by the controller.  
The input clock on the CCP0, CCP2 or CCP4 pins is required to be 32.768 KHz in RTC mode. The  
clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit  
counter.  
April 27, 2007  
157  
Preliminary  
General-Purpose Timers  
When software writes the TAENbit in GPTMCTL, the counter starts counting up from its preloaded  
value of 0x00000001. When the current count value matches the preloaded value in  
GPTMTAMATCHR, it rolls over to a value of 0x00000000 and continues counting until either a  
hardware reset, or it is disabled by software (clearing the TAENbit). When a match occurs, the  
GPTM asserts the RTCRISbit in GPTMRIS. If the RTC interrupt is enabled in GPTIMR, the GPTM  
also sets the RTCMISbit in GPTMISR and generates a controller interrupt. The status flags are  
cleared by writing the RTCCINTbit in GPTMICR.  
If the TASTALLand/or TBSTALLbits in the GPTMCTL register are set, the timer does not freeze if  
the RTCENbit is set in GPTMCTL.  
9.2.3  
16-Bit Timer Operating Modes  
The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the GPTM Configuration  
(GPTMCFG) register (see page 167). This section describes each of the GPTM 16-bit modes of  
operation. Timer A and Timer B have identical modes, so a single description is given using an n  
to reference both.  
9.2.3.1  
16-Bit One-Shot/Periodic Timer Mode  
In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with  
an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The  
selection of one-shot or periodic mode is determined by the value written to the TnMRfield of the  
GPTMTnMR register. The optional prescaler is loaded into the GPTM Timern Prescale  
(GPTMTnPR) register.  
When software writes the TnENbit in the GPTMCTL register, the timer begins counting down from  
its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from  
GPTMTnILR and GPTMTnPR on the next cycle. If configured to be a one-shot timer, the timer  
stops counting and clears the TnENbit in the GPTMCTL register. If configured as a periodic timer,  
it continues counting.  
In addition to reloading the count value, the timer generates interrupts and output triggers when it  
reaches the 0x0000 state. The GPTM sets the TnTORISbit in the GPTMRIS register, and holds it  
until it is cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTIMR,  
the GPTM also sets the TnTOMISbit in GPTMISR and generates a controller interrupt.  
The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000  
state, and deasserted on the following clock cycle. It is enabled by setting the TnOTEbit in the  
GPTMCTL register, and can trigger SoC-level events such as ADC conversions.  
If software reloads the GPTMTAILR register while the counter is running, the counter loads the  
new value on the next clock cycle and continues counting from the new value.  
If the TnSTALLbit in the GPTMCTL register is enabled, the timer freezes counting until the signal  
is deasserted.  
The following example shows a variety of configurations for a 16-bit free running timer while using  
the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).  
158  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 9-1. 16-Bit Timer with Prescaler Configurations  
Prescale  
#Clock (TC)a  
Max Time  
Units  
00000000  
00000001  
00000010  
------------  
11111100  
11111110  
11111111  
1
2
1.3107  
2.6214  
3.9321  
mS  
mS  
mS  
3
--  
254  
255  
256  
332.9229  
334.2336  
335.5443  
mS  
mS  
mS  
a. TC is the clock period.  
9.2.3.2  
16-Bit Input Edge Count Mode  
In Edge Count mode, the timer is configured as a down-counter capable of capturing three types  
of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMRbit  
of the GPTMTnMR register must be set to 0. The type of edge that the timer counts is determined  
by the TnEVENTfields of the GPTMCTL register. During initialization, the GPTM Timern Match  
(GPTMTnMATCHR) register is configured so that the difference between the value in the  
GPTMTnILR register and the GPTMTnMATCHR register equals the number of edge events that  
must be counted.  
When software writes the TnENbit in the GPTM Control (GPTMCTL) register, the timer is enabled  
for event capture. Each input event on the CCPpin decrements the counter by 1 until the event  
count matches GPTMTnMATCHR. When the counts match, the GPTM asserts the CnMRISbit in  
the GPTMRIS register (and the CnMMISbit, if the interrupt is not masked). The counter is then  
reloaded using the value in GPTMTnILR, and stopped since the GPTM automatically clears the  
TnENbit in the GPTMCTL register. Once the event count has been reached, all further events are  
ignored until TnENis re-enabled by software.  
Figure 9-2 shows how input edge count mode works. In this case, the timer start value is set to  
GPTMnILR=0x000A and the match value is set to GPTMnMATCHR=0x0006 so that four edge  
events are counted. The counter is configured to detect both edges of the input signal.  
Note that the last two edges are not counted since the timer automatically clears the TnENbit after  
the current count matches the value in the GPTMnMR register.  
April 27, 2007  
159  
Preliminary  
General-Purpose Timers  
Figure 9-2. 16-Bit Input Edge Count Mode Example  
Timer reload  
on next cycle  
Ignored Ignored  
Count  
0x000A  
0x0009  
0x0008  
0x0007  
0x0006  
Timer stops,  
flags  
asserted  
Input Signal  
9.2.3.3  
16-Bit Input Edge Time Mode  
In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value  
loaded in the GPTMTnILR register (or 0xFFFF at reset). This mode allows for event capture of  
both rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMRbit in  
the GPTMTnMR register, and the type of event that the timer captures is determined by the  
TnEVENTfields of the GPTMCTL register.  
Note: Prescaler is not available in 16-Bit Input Edge Time mode.  
When software writes the TnENbit in the GPTMCTL register, the timer is enabled for event  
capture. When the selected input event is detected, the current Tn counter value is captured in the  
GPTMTnR register and is available to be read by the controller. The GPTM then asserts the  
CnERISbit (and the CnEMISbit, if the interrupt is not masked).  
After an event has been captured, the timer does not stop counting. It continues to count until the  
TnENbit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the  
GPTMnILR register.  
Figure 9-3 shows how input edge timing mode works. In the diagram, it is assumed that the start  
value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge  
events.  
Each time a rising edge event is detected, the current count value is loaded into the GPTMTnR  
register, and is held there until another rising edge is detected (at which point the new count value  
is loaded into GPTMTnR).  
160  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 9-3. 16-Bit Input Edge Time Mode Example  
Count  
GPTMTnR=X  
0xFFFF  
GPTMTnR=Y  
GPTMTnR=Z  
Z
X
Y
Time  
Input Signal  
9.2.3.4  
16-Bit PWM Mode  
The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a  
down-counter with a start value (and thus period) defined by GPTMTnILR. PWM mode is enabled  
with the GPTMTnMR register by setting the TnAMSbit to 0x1, the TNCMRbit to 0x0, and the TnMR  
field to 0x2.  
PWM mode can take advantage of the 8-bit prescaler by using the GPTM Timern Prescale  
Register (GPTMTnPR) and the GPTM Timern Prescale Match Register (GPTMTnPMR). This  
effectively extends the range of the timer to 24 bits.  
When software writes the TnENbit in the GPTMCTL register, the counter begins counting down  
until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from  
GPTMTnILR (and GPTMTnPR if using a prescaler) and continues counting until disabled by  
software clearing the TnENbit in the GPTMCTL register. No interrupts or status bits are asserted  
in PWM mode.  
The output PWM signal asserts when the counter is at the value of the GPTMTnILR register (its  
start state), and is deasserted when the counter value equals the value in the GPTM Timern  
Match Register (GPTMnMATCHR). Software has the capability of inverting the output PWM  
signal by setting the TnPWMLbit in the GPTMCTL register.  
Figure 9-4 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle  
assuming a 50-MHz input clock and TnPWML=0 (duty cycle would be 33% for the TnPWML=1  
configuration). For this example, the start value is GPTMnIRL=0xC350 and the match value is  
GPTMnMR=0x411A.  
April 27, 2007  
161  
Preliminary  
General-Purpose Timers  
Figure 9-4. 16-Bit PWM Mode Example  
GPTMTnR=GPTMnMR  
GPTMTnR=GPTMnMR  
Count  
0xC350  
0x411A  
Time  
TnEN set  
TnPWML = 0  
TnPWML = 1  
Output  
Signal  
9.3  
Initialization and Configuration  
To use the general purpose timers, the peripheral clock must be enabled by setting the GPTM0,  
GPTM1, and GPTM2bits in the RCGC1 register.  
This section shows module initialization and configuration examples for each of the supported  
timer modes.  
9.3.1  
32-Bit One-Shot/Periodic Timer Mode  
The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:  
1. Ensure the timer is disabled (the TAENbit in the GPTMCTL register is cleared) before making  
any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.  
3. Set the TAMRfield in the GPTM TimerA Mode Register (GPTMTAMR):  
a. Write a value of 0x1 for One-Shot mode.  
b. Write a value of 0x2 for Periodic mode.  
4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).  
5. If interrupts are required, set the TATOIMbit in the GPTM Interrupt Mask Register  
(GPTMIMR).  
6. Set the TAENbit in the GPTMCTL register to enable the timer and start counting.  
7. Poll the TATORISbit in the GPTMRIS register or wait for the interrupt to be generated (if  
enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINTbit of the  
GPTM Interrupt Clear Register (GPTMICR).  
162  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
In One-Shot mode, the timer stops counting after step 7. To re-enable the timer, repeat the  
sequence. A timer configured in Periodic mode does not stop counting after it times out.  
9.3.2  
32-Bit Real-Time Clock (RTC) Mode  
To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2 or CCP4  
pins. To enable the RTC feature, follow these steps:  
1. Ensure the timer is disabled (the TAENbit is cleared) before making any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.  
3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).  
4. Set/clear the RTCENbit in the GPTM Control Register (GPTMCTL) as desired.  
5. If interrupts are required, set the RTCIMbit in the GPTM Interrupt Mask Register  
(GPTMIMR).  
6. Set the TAENbit in the GPTMCTL register to enable the timer and start counting.  
When the timer count equals the value in the GPTMTAMATCHR register, the counter is re-loaded  
with 0x00000000 and begins counting. If an interrupt is enabled, it does not have to be cleared.  
9.3.3  
16-Bit One-Shot/Periodic Timer Mode  
A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:  
1. Ensure the timer is disabled (the TnENbit is cleared) before making any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.  
3. Set the TnMRfield in the GPTM Timer Mode (GPTMTnMR) register:  
a. Write a value of 0x1 for One-Shot mode.  
b. Write a value of 0x2 for Periodic mode.  
4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register  
(GPTMTnPR).  
5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).  
6. If interrupts are required, set the TnTOIMbit in the GPTM Interrupt Mask Register  
(GPTMIMR).  
7. Set the TnENbit in the GPTM Control Register (GPTMCTL) to enable the timer and start  
counting.  
8. Poll the TnTORISbit in the GPTMRIS register or wait for the interrupt to be generated (if  
enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINTbit of the  
GPTM Interrupt Clear Register (GPTMICR).  
In One-Shot mode, the timer stops counting after step 8. To re-enable the timer, repeat the  
sequence. A timer configured in Periodic mode does not stop counting after it times out.  
9.3.4  
16-Bit Input Edge Count Mode  
A timer is configured to Input Edge Count mode by the following sequence:  
1. Ensure the timer is disabled (the TnENbit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMRfield to 0x0 and the TnMR  
field to 0x3.  
April 27, 2007  
163  
Preliminary  
General-Purpose Timers  
4. Configure the type of event(s) that the timer captures by writing the TnEVENTfield of the  
GPTM Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.  
7. If interrupts are required, set the CnMIMbit in the GPTM Interrupt Mask (GPTMIMR) register.  
8. Set the TnENbit in the GPTMCTL register to enable the timer and begin waiting for edge  
events.  
9. Poll the CnMRISbit in the GPTMRIS register or wait for the interrupt to be generated (if  
enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINTbit of the  
GPTM Interrupt Clear (GPTMICR) register.  
In Input Edge Count Mode, the timer stops after the desired number of edge events has been  
detected. To re-enable the timer, ensure that the TnENbit is cleared and repeat steps 4-9.  
9.3.5  
16-Bit Input Edge Timing Mode  
A timer is configured to Input Edge Timing mode by the following sequence:  
1. Ensure the timer is disabled (the TnENbit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMRfield to 0x1 and the TnMR  
field to 0x3.  
4. Configure the type of event that the timer captures by writing the TnEVENTfield of the GPTM  
Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. If interrupts are required, set the CnEIMbit in the GPTM Interrupt Mask (GPTMIMR) register.  
7. Set the TnENbit in the GPTM Control (GPTMCTL) register to enable the timer and start  
counting.  
8. Poll the CnERISbit in the GPTMRIS register or wait for the interrupt to be generated (if  
enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINTbit of the  
GPTM Interrupt Clear (GPTMICR) register. The time at which the event happened can be  
obtained by reading the GPTM Timern (GPTMTnR) register.  
In Input Edge Timing mode, the timer continues running after an edge event has been detected,  
but the timer interval can be changed at any time by writing the GPTMTnILR register. The change  
takes effect at the next cycle after the write.  
9.3.6  
16-Bit PWM Mode  
A timer is configured to PWM mode using the following sequence:  
1. Ensure the timer is disabled (the TnENbit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMSbit to 0x1, the TNCMRbit to  
0x0, and the TnMRfield to 0x2.  
4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnEVENT  
field of the GPTM Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.  
164  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
7. If a prescaler is going to be used, configure the GPTM Timern Prescale (GPTMTnPR)  
register and the GPTM Timern Prescale Match (GPTMTnPMR) register.  
8. Set the TnENbit in the GPTM Control (GPTMCTL) register to enable the timer and begin  
generation of the output PWM signal.  
In PWM Timing mode, the timer continues running after the PWM signal has been generated. The  
PWM period can be adjusted at any time by writing the GPTMTnILR register, and the change  
takes effect at the next cycle after the write.  
9.4  
Register Map  
Table 9-1 lists the GPTM registers. The offset listed is a hexadecimal increment to the register’s  
address, relative to that timer’s base address:  
„
„
„
Timer0: 0x40030000  
Timer1: 0x40031000  
Timer2: 0x40032000  
Table 9-2. GPTM Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x004  
0x008  
0x00C  
0x018  
0x01C  
0x020  
0x024  
0x028  
GPTMCFG  
GPTMTAMR  
GPTMTBMR  
GPTMCTL  
GPTMIMR  
GPTMRIS  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
Configuration  
167  
168  
169  
170  
172  
174  
175  
176  
177  
TimerA mode  
TimerB mode  
Control  
Interrupt mask  
Interrupt status  
Masked interrupt status  
Interrupt clear  
TimerA interval load  
GPTMMIS  
GPTMICR  
GPTMTAILR  
RO  
W1C  
R/W  
0x0000FFFFa  
0xFFFFFFFF  
0x02C  
0x030  
GPTMTBILR  
0x0000FFFF  
R/W  
R/W  
TimerB interval load  
TimerA match  
178  
179  
GPTMTAMATCHR  
0x0000FFFFa  
0xFFFFFFFF  
0x034  
0x038  
0x03C  
0x040  
0x044  
GPTMTBMATCHR 0x0000FFFF  
R/W  
R/W  
R/W  
R/W  
R/W  
TimerB match  
180  
181  
182  
183  
184  
GPTMTAPR  
GPTMTBPR  
GPTMTAPMR  
GPTMTBPMR  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
TimerA prescale  
TimerB prescale  
TimerA prescale match  
TimerB prescale match  
April 27, 2007  
165  
Preliminary  
General-Purpose Timers  
Table 9-2. GPTM Register Map (Continued)  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x048  
GPTMTAR  
0x0000FFFFa  
0xFFFFFFFF  
RO  
TimerA  
185  
0x04C  
GPTMTBR  
0x0000FFFF  
RO  
TimerB  
186  
a. The default reset value for the GPTMTAILR, GPTMTAMATCHR, and GPTMTAR registers is 0x0000FFFF when in 16-bit mode  
and 0xFFFFFFFF when in 32-bit mode.  
9.5  
Register Descriptions  
The remainder of this section lists and describes the GPTM registers, in numerical order by  
address offset.  
166  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 1: GPTM Configuration (GPTMCFG), offset 0x000  
This register configures the global operation of the GPTM module. The value written to this  
register determines whether the GPTM is in 32- or 16-bit mode.  
GPTM Configuration (GPTMCFG)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPTMCFG  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
2:0  
GPTMCFG  
R/W  
0
GPTM Configuration  
0x0: 32-bit timer configuration.  
0x1: 32-bit real-time clock (RTC) counter configuration.  
0x2: Reserved.  
0x3: Reserved.  
0x4-0x7: 16-bit timer configuration, function is controlled by bits  
1:0 of GPTMTAMR and GPTMTBMR.  
April 27, 2007  
167  
Preliminary  
General-Purpose Timers  
Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004  
This register configures the GPTM based on the configuration selected in the GPTMCFG register.  
When in 16-bit PWM mode, set the TAAMSbit to 0x1, the TACMRbit to 0x0, and the TAMRfield to  
0x2.  
GPTM TimerA Mode (GPTMTAMR)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAAMS TACMR  
TAMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
3
TAAMS  
R/W  
0
GPTM TimerA Alternate Mode Select  
0: Capture mode is enabled.  
1: PWM mode is enabled.  
Note: To enable PWM mode, you must also clear the TACMR  
bit and set the TAMRfield to 0x2.  
2
TACMR  
TAMR  
R/W  
R/W  
0
0
GPTM TimerA Capture Mode  
0: Edge-Count mode.  
1: Edge-Time mode.  
1:0  
GPTM TimerA Mode  
0x0: Reserved.  
0x1: One-Shot Timer mode.  
0x2: Periodic Timer mode.  
0x3: Capture mode.  
The Timer mode is based on the timer configuration defined by  
bits 2:0 in the GPTMCFG register (16-or 32-bit).  
In 16-bit timer configuration, TAMRcontrols the 16-bit timer  
modes for TimerA.  
In 32-bit timer configuration, this register controls the mode and  
the contents of GPTMTBMR are ignored.  
168  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008  
This register configures the GPTM based on the configuration selected in the GPTMCFG register.  
When in 16-bit PWM mode, set the TBAMSbit to 0x1, the TBCMRbit to 0x0, and the TBMRfield to  
0x2.  
GPTM TimerB Mode (GPTMTBMR)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBAMS TBCMR  
TBMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
3
TBAMS  
R/W  
0
GPTM TimerB Alternate Mode Select  
0: Capture mode is enabled.  
1: PWM mode is enabled.  
Note: To enable PWM mode, you must also clear the TBCMR  
bit and set the TBMRfield to 0x2.  
2
TBCMR  
TBMR  
R/W  
R/W  
0
0
GPTM TimerB Capture Mode  
0: Edge-Count mode.  
1: Edge-Time mode.  
1:0  
GPTM TimerB Mode  
0x0: Reserved.  
0x1: One-Shot Timer mode.  
0x2: Periodic Timer mode.  
0x3: Capture mode.  
The timer mode is based on the timer configuration defined by  
bits 2:0 in the GPTMCFG register.  
In 16-bit timer configuration, these bits control the 16-bit timer  
modes for TimerB.  
In 32-bit timer configuration, this register’s contents are ignored  
and GPTMTAMR is used.  
April 27, 2007  
169  
Preliminary  
General-Purpose Timers  
Register 4: GPTM Control (GPTMCTL), offset 0x00C  
This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer  
configuration, and to enable other features such as timer stall and the output trigger. The output  
trigger can be used to initiate transfers on the ADC module.  
GPTM Control (GPTMCTL)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
res  
TBPWML TBOTE  
res  
TBEVENT  
TBSTALL TBEN  
res  
TAPWML TAOTE  
RTCEN  
TAEVENT  
TASTALL TAEN  
Type  
Reset  
RO  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:15  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
14  
13  
TBPWML  
TBOTE  
R/W  
R/W  
0
GPTM TimerB PWM Output Level  
0: Output is unaffected.  
1: Output is inverted.  
0
GPTM TimerB Output Trigger Enable  
0: The output TimerB trigger is disabled.  
1: The output TimerB trigger is enabled.  
12  
reserved  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
11:10  
TBEVENT  
R/W  
GPTM TimerB Event Mode  
00: Positive edge.  
01: Negative edge.  
10: Reserved.  
11: Both edges.  
9
8
TBSTALL  
TBEN  
R/W  
R/W  
0
0
GPTM TimerB Stall Enable  
0: TimerB stalling is disabled.  
1: TimerB stalling is enabled.  
GPTM TimerB Enable  
0: TimerB is disabled.  
1: TimerB is enabled and begins counting or the capture logic is  
enabled based on the GPTMCFG register.  
7
reserved  
RO  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
170  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
6
Name  
Type  
R/W  
Reset  
0
Description  
TAPWML  
GPTM TimerA PWM Output Level  
0: Output is unaffected.  
1: Output is inverted.  
5
4
TAOTE  
RTCEN  
R/W  
R/W  
R/W  
0
0
0
GPTM TimerA Output Trigger Enable  
0: The output TimerA trigger is disabled.  
1: The output TimerA trigger is enabled.  
GPTM RTC Enable  
0: RTC counting is disabled.  
1: RTC counting is enabled.  
3:2  
TAEVENT  
GPTM TimerA Event Mode  
00: Positive edge.  
01: Negative edge.  
10: Reserved.  
11: Both edges.  
1
0
TASTALL  
TAEN  
R/W  
R/W  
0
0
GPTM TimerA Stall Enable  
0: TimerA stalling is disabled.  
1: TimerA stalling is enabled.  
GPTM TimerA Enable  
0: TimerA is disabled.  
1: TimerA is enabled and begins counting or the capture logic is  
enabled based on the GPTMCFG register.  
April 27, 2007  
171  
Preliminary  
General-Purpose Timers  
Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018  
This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1  
enables the interrupt, while writing a 0 disables it.  
GPTM Interrupt Mask (GPTMIMR)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBEIM CBMIM  
reserved  
RTCIM CAEIM CAMIM TATOIM  
TBTOIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
CBEIM  
CBMIM  
TBTOIM  
R/W  
R/W  
R/W  
0
GPTM CaptureB Event Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
0
0
GPTM CaptureB Match Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
8
GPTM TimerB Time-Out Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
7:4  
3
reserved  
RTCIM  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
R/W  
GPTM RTC Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
2
CAEIM  
R/W  
0
GPTM CaptureA Event Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
172  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
CAMIM  
GPTM CaptureA Match Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
0
TATOIM  
R/W  
0
GPTM TimerA Time-Out Interrupt Mask  
0: Interrupt is disabled.  
1: Interrupt is enabled.  
April 27, 2007  
173  
Preliminary  
General-Purpose Timers  
Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C  
This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or  
not the interrupt is masked in the GPTMIMR register. Each bit can be cleared by writing a 1 to its  
corresponding bit in GPTMICR.  
GPTM Raw Interrupt Status (GPTMRIS)  
Offset 0x01C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBERIS CBMRIS TBTORIS  
reserved  
RTCRIS CAERIS CAMRIS TATORIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
CBERIS  
CBMRIS  
TBTORIS  
RO  
RO  
RO  
0
GPTM CaptureB Event Raw Interrupt  
This is the CaptureB Event interrupt status prior to masking.  
0
0
GPTM CaptureB Match Raw Interrupt  
This is the CaptureB Match interrupt status prior to masking.  
8
GPTM TimerB Time-Out Raw Interrupt  
This is the TimerB time-out interrupt status prior to masking.  
7:4  
3
reserved  
RTCRIS  
RO  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
GPTM RTC Raw Interrupt  
This is the RTC Event interrupt status prior to masking.  
2
1
0
CAERIS  
CAMRIS  
TATORIS  
RO  
RO  
RO  
0
0
0
GPTM CaptureA Event Raw Interrupt  
This is the CaptureA Event interrupt status prior to masking.  
GPTM CaptureA Match Raw Interrupt  
This is the CaptureA Match interrupt status prior to masking.  
GPTM TimerA Time-Out Raw Interrupt  
This the TimerA time-out interrupt status prior to masking.  
174  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020  
This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in  
GPTMIMR, and there is an event that causes the interrupt to be asserted, the corresponding bit is  
set in this register. All bits are cleared by writing a 1 to the corresponding bit in GPTMICR.  
GPTM Masked Interrupt Status (GPTMMIS)  
Offset 0x020  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBEMIS CBMMIS TBTOMIS  
reserved  
RTCMIS CAEMIS CAMMIS TATOMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
CBEMIS  
CBMMIS  
TBTOMIS  
RO  
RO  
RO  
0
GPTM CaptureB Event Masked Interrupt  
This is the CaptureB event interrupt status after masking.  
0
0
GPTM CaptureB Match Masked Interrupt  
This is the CaptureB match interrupt status after masking.  
8
GPTM TimerB Time-Out Masked Interrupt  
This is the TimerB time-out interrupt status after masking.  
7:4  
3
reserved  
RTCMIS  
RO  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
GPTM RTC Masked Interrupt  
This is the RTC event interrupt status after masking.  
2
1
0
CAEMIS  
CAMMIS  
TATOMIS  
RO  
RO  
RO  
0
0
0
GPTM CaptureA Event Masked Interrupt  
This is the CaptureA event interrupt status after masking.  
GPTM CaptureA Match Masked Interrupt  
This is the CaptureA match interrupt status after masking.  
GPTM TimerA Time-Out Masked Interrupt  
This is the TimerA time-out interrupt status after masking.  
April 27, 2007  
175  
Preliminary  
General-Purpose Timers  
Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024  
This register is used to clear the status bits in the GPTMRIS and GPTMMIS registers. Writing a 1  
to a bit clears the corresponding bit in the GPTMRIS and GPTMMIS registers.  
GPTM Interrupt Clear (GPTMICR)  
Offset 0x024  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
CBECINT CBMCINT TBTOCINT  
RTCCINT CAECINT CAMCINTTATOCINT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
CBECINT  
CBMCINT  
TBTOCINT  
W1C  
W1C  
W1C  
0
GPTM CaptureB Event Interrupt Clear  
0: The interrupt is unaffected.  
1: The interrupt is cleared.  
0
0
GPTM CaptureB Match Interrupt Clear  
0: The interrupt is unaffected.  
1: The interrupt is cleared.  
8
GPTM TimerB Time-Out Interrupt Clear  
0: The interrupt is unaffected.  
1: The interrupt is cleared.  
7:4  
3
reserved  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
RTCCINT  
W1C  
GPTM RTC Interrupt Clear  
0: The interrupt is unaffected.  
1: The interrupt is cleared.  
2
CAECINT  
W1C  
0
GPTM CaptureA Event Interrupt Clear  
0: The interrupt is unaffected.  
1: The interrupt is cleared.  
1
0
CAMCINT  
TATOCINT  
W1C  
W1C  
0
0
GPTM CaptureA Match Raw Interrupt  
This is the CaptureA match interrupt status after masking.  
GPTM TimerA Time-Out Raw Interrupt  
0: The interrupt is unaffected.  
1: The interrupt is cleared.  
176  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028  
This register is used to load the starting count value into the timer. When GPTM is configured to  
one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond  
to the contents of the GPTM TimerB Interval Load (GPTMTBILR) register). In 16-bit mode, the  
upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.  
GPTM TimerA Interval Load (GPTMTAILR)  
Offset 0x028  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TAILRH  
Type  
Reset  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TAILRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
1/0 = 1 if timer is configured in 32-bit mode; 0 if timer is configured in 16-bit mode.  
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
GPTM TimerA Interval Load Register High  
TAILRH  
0xFFFF  
(32-bit  
mode)  
When configured for 32-bit mode via the GPTMCFG register,  
the GPTM TimerB Interval Load (GPTMTBILR) register loads  
this value on a write. A read returns the current value of  
GPTMTBILR.  
0x0000  
(16-bit  
mode)  
In 16-bit mode, this field reads as 0 and does not have an effect  
on the state of GPTMTBILR.  
15:0  
TAILRL  
R/W  
0xFFFF  
GPTM TimerA Interval Load Register Low  
For both 16- and 32-bit modes, writing this field loads the  
counter for TimerA. A read returns the current value of  
GPTMTAILR.  
April 27, 2007  
177  
Preliminary  
General-Purpose Timers  
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C  
This register is used to load the starting count value into TimerB. When the GPTM is configured to  
a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.  
GPTM TimerB Interval Load (GPTMTBILR)  
Offset 0x02C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBILRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
15:0  
TBILRL  
R/W  
0xFFFF  
GPTM TimerB Interval Load Register  
When the GPTM is not configured as a 32-bit timer, a write to  
this field updates GPTMTBILR. In 32-bit mode, writes are  
ignored, and reads return the current value of GPTMTBILR.  
178  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030  
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count  
modes.  
GPTM TimerA Match (GPTMTAMATCHR)  
Offset 0x030  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TAMRH  
Type  
Reset  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
R/W  
1/0  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TAMRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
1/0 = 1 if timer is configured in 32-bit mode; 0 if timer is configured in 16-bit mode.  
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
GPTM TimerA Match Register High  
TAMRH  
0xFFFF  
(32-bit  
mode)  
When configured for 32-bit Real-Time Clock (RTC) mode via  
the GPTMCFG register, this value is compared to the upper  
half of GPTMTAR, to determine match events.  
0x0000  
(16-bit  
mode)  
In 16-bit mode, this field reads as 0 and does not have an effect  
on the state of GPTMTBMATCHR.  
15:0  
TAMRL  
R/W  
0xFFFF  
GPTM TimerA Match Register Low  
When configured for 32-bit Real-Time Clock (RTC) mode via  
the GPTMCFG register, this value is compared to the lower half  
of GPTMTAR, to determine match events.  
When configured for PWM mode, this value along with  
GPTMTAILR, determines the duty cycle of the output PWM  
signal.  
When configured for Edge Count mode, this value along with  
GPTMTAILR, determines how many edge events are counted.  
The total number of edge events counted is equal to the value  
in GPTMTAILR minus this value.  
April 27, 2007  
179  
Preliminary  
General-Purpose Timers  
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034  
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count  
modes.  
GPTM TimerB Match (GPTMTBMATCHR)  
Offset 0x034  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBMRL  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
15:0  
TBMRL  
R/W  
0xFFFF  
GPTM TimerB Match Register Low  
When configured for PWM mode, this value along with  
GPTMTBILR, determines the duty cycle of the output PWM  
signal.  
When configured for Edge Count mode, this value along with  
GPTMTBILR, determines how many edge events are counted.  
The total number of edge events counted is equal to the value  
in GPTMTBILR minus this value.  
180  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038  
This register allows software to extend the range of the 16-bit timers.  
GPTM TimerA Prescale (GPTMTAPR)  
Offset 0x038  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAPSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
TAPSR  
R/W  
0
GPTM TimerA Prescale  
The register loads this value on a write. A read returns the  
current value of the register.  
Refer to Table 9-1 on page 159 for more details and an  
example.  
April 27, 2007  
181  
Preliminary  
General-Purpose Timers  
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C  
This register allows software to extend the range of the 16-bit timers.  
GPTM TimerB Prescale (GPTMTBPR)  
Offset 0x03C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBPSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
TBPSR  
R/W  
0
GPTM TimerB Prescale  
The register loads this value on a write. A read returns the  
current value of this register.  
Refer to Table 9-1 on page 159 for more details and an  
example.  
182  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040  
This register effectively extends the range of GPTMTAMATCHR to 24 bits.  
GPTM TimerA Prescale Match (GPTMTAPMR)  
Offset 0x040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAPSMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
0
0
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
TAPSMR  
R/W  
0
GPTM TimerA Prescale Match  
This value is used alongside GPTMTAMATCHR to detect timer  
match events while using a prescaler.  
April 27, 2007  
183  
Preliminary  
General-Purpose Timers  
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044  
This register effectively extends the range of GPTMTBMATCHR to 24 bits.  
GPTM TimerB Prescale Match (GPTMTBPMR)  
Offset 0x044  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBPSMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
0
0
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
TBPSMR  
R/W  
0
GPTM TimerB Prescale Match  
This value is used alongside GPTMTBMATCHR to detect timer  
match events while using a prescaler.  
184  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 17: GPTM TimerA (GPTMTAR), offset 0x048  
This register shows the current value of the TimerA counter in all cases except for Input Edge  
Count mode. When in this mode, this register contains the time at which the last edge event took  
place.  
GPTM TimerA (GPTMTAR)  
Offset 0x048  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TARH  
TARL  
Type  
Reset  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
RO  
1/0  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
1/0 = 1 if timer is configured in 32-bit mode; 0 if timer is configured in 16-bit mode.  
Bit/Field  
31:16  
Name  
TARH  
Type  
RO  
Reset  
Description  
GPTM TimerA Register High  
0xFFFF  
(32-bit  
mode)  
If the GPTMCFG is in a 32-bit mode, TimerB value is read. If the  
GPTMCFG is in a 16-bit mode, this is read as zero.  
0x0000  
(16-bit  
mode)  
15:0  
TARL  
RO  
0xFFFF  
GPTM TimerA Register Low  
A read returns the current value of the GPTM TimerA Count  
Register, except in Input Edge Count mode, when it returns the  
timestamp from the last edge event.  
April 27, 2007  
185  
Preliminary  
General-Purpose Timers  
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C  
This register shows the current value of the TimerB counter in all cases except for Input Edge  
Count mode. When in this mode, this register contains the time at which the last edge event took  
place.  
GPTM TimerB (GPTMTBR)  
Offset 0x04C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBRL  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
15:0  
TBRL  
RO  
0xFFFF  
GPTM TimerB  
A read returns the current value of the GPTM TimerB Count  
Register, except in Input Edge Count mode, when it returns the  
timestamp from the last edge event.  
186  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
10  
Watchdog Timer  
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is  
reached. The watchdog timer is used to regain control when a system has failed due to a software  
error or due to the failure of an external device to respond in the expected way.  
The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load  
register, interrupt generation logic, a locking register, and user-enabled stalling.  
The Watchdog Timer can be configured to generate an interrupt to the controller on its first  
time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has  
been configured, the lock register can be written to prevent the timer configuration from being  
inadvertently altered.  
10.1  
Block Diagram  
Figure 10-1. WDT Module Block Diagram  
WDTLOAD  
Control/ Clock /  
Interrupt  
Generation  
WDTCTL  
WDTICR  
Interrupt  
WDTRIS  
WDTMIS  
32-Bit Down  
Counter  
WDTLOCK  
WDTTEST  
0x00000000  
System Clock  
Comparator  
WDTVALUE  
Identification Registers  
WDTPCellID0 WDTPeriphID0 WDTPeriphID4  
WDTPCellID1 WDTPeriphID1 WDTPeriphID5  
WDTPCellID2 WDTPeriphID2 WDTPeriphID6  
WDTPCellID3 WDTPeriphID3 WDTPeriphID7  
April 27, 2007  
187  
Preliminary  
Watchdog Timer  
10.2  
Functional Description  
The Watchdog Timer module consists of a 32-bit down counter, a programmable load register,  
interrupt generation logic, and a locking register. Once the Watchdog Timer has been configured,  
the Watchdog Timer Lock (WDTLOCK) register is written, which prevents the timer configuration  
from being inadvertently altered by software.  
The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches  
the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt.  
After the first time-out event, the 32-bit counter is re-loaded with the value of the Watchdog Timer  
Load (WDTLOAD) register, and the timer resumes counting down from that value.  
If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the  
reset signal has been enabled (via the WatchdogResetEnablefunction), the Watchdog timer  
asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its  
second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and  
counting resumes from that value.  
If WDTLOAD is written with a new value while the Watchdog Timer counter is counting, then the  
counter is loaded with the new value and continues counting.  
Writing to WDTLOAD does not clear an active interrupt. An interrupt must be specifically cleared  
by writing to the Watchdog Interrupt Clear (WDTICR) register.  
The Watchdog module interrupt and reset generation can be enabled or disabled as required.  
When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and  
not its last state.  
10.3  
Initialization and Configuration  
To use the WDT, its peripheral clock must be enabled by setting the WDTbit in the RCGC0 register.  
The Watchdog Timer is configured using the following sequence:  
1. Load the WDTLOAD register with the desired timer load value.  
2. If the Watchdog is configured to trigger system resets, set the RESENbit in the WDTCTL  
register.  
3. Set the INTENbit in the WDTCTL register to enable the Watchdog and lock the control  
register.  
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can  
be fully locked by writing any value to the WDTLOCK register. To unlock the Watchdog Timer,  
write a value of 0x1ACCE551.  
10.4  
Register Map  
Table 10-1 lists the Watchdog registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to the Watchdog Timer base address of 0x40000000.  
Table 10-1. WDT Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x004  
0x008  
WDTLOAD  
WDTVALUE  
WDTCTL  
0xFFFFFFFF  
0xFFFFFFFF  
0x00000000  
R/W  
RO  
Load  
190  
191  
192  
Current value  
Control  
R/W  
188  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 10-1. WDT Register Map (Continued)  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x00C  
0x010  
0x014  
0x418  
0xC00  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
WDTICR  
-
WO  
RO  
RO  
R/W  
R/W  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Interrupt clear  
193  
194  
195  
197  
196  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
WDTRIS  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000005  
0x00000018  
0x00000018  
0x00000001  
0x0000000D  
0x000000F0  
0x00000005  
0x000000B1  
Raw interrupt status  
WDTMIS  
Masked interrupt status  
Watchdog stall enable  
Lock  
WDTTEST  
WDTLOCK  
WDTPeriphID4  
WDTPeriphID5  
WDTPeriphID6  
WDTPeriphID7  
WDTPeriphID0  
WDTPeriphID1  
WDTPeriphID2  
WDTPeriphID3  
WDTPCellID0  
WDTPCellID1  
WDTPCellID2  
WDTPCellID3  
Peripheral identification 4  
Peripheral identification 5  
Peripheral identification 6  
Peripheral identification 7  
Peripheral identification 0  
Peripheral identification 1  
Peripheral identification 2  
Peripheral identification 3  
PrimeCell identification 0  
PrimeCell identification 1  
PrimeCell identification 2  
PrimeCell identification 3  
10.5  
Register Descriptions  
The remainder of this section lists and describes the WDT registers, in numerical order by address  
offset.  
April 27, 2007  
189  
Preliminary  
Watchdog Timer  
Register 1: Watchdog Load (WDTLOAD), offset 0x000  
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the  
value is immediately loaded and the counter restarts counting down from the new value. If the  
WDTLOAD register is loaded with 0x00000000, an interrupt is immediately generated.  
Watchdog Load (WDTLOAD)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTLoad  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
R/W  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
1
8
1
7
15  
14  
13  
12  
11  
10  
9
6
5
4
3
2
1
0
WDTLoad  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
R/W  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
1
1
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
Watchdog Load Value  
WDTLoad  
0xFFFFFFFF  
190  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 2: Watchdog Value (WDTVALUE), offset 0x004  
This register contains the current count value of the timer.  
Watchdog Value (WDTVALUE)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTValue  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
1
7
15  
14  
13  
12  
11  
10  
9
8
6
5
4
3
2
1
0
WDTValue  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
RO  
RO  
1
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
1
1
1
1
1
Bit/Field  
31:0  
Name  
Type  
RO  
Reset  
Description  
WDTValue  
0xFFFFFFFF  
Watchdog Value  
Current value of the 32-bit down counter.  
April 27, 2007  
191  
Preliminary  
Watchdog Timer  
Register 3: Watchdog Control (WDTCTL), offset 0x008  
This register is the watchdog control register. The watchdog timer can be configured to generate a  
reset signal (upon second time-out) or an interrupt on time-out.  
When the watchdog interrupt has been enabled, all subsequent writes to the control register are  
ignored. The only mechanism that can re-enable writes is a hardware reset.  
Watchdog Control (WDTCTL)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RESEN INTEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
RESEN  
INTEN  
R/W  
R/W  
0
0
Watchdog Reset Enable  
0: Disabled.  
1: Enable the Watchdog module reset output.  
Watchdog Interrupt Enable  
0: Interrupt event disabled (once this bit is set, it can only  
be cleared by a hardware reset)  
1: Interrupt event enabled. Once enabled, all writes are  
ignored.  
192  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C  
This register is the interrupt clear register. A write of any value to this register clears the Watchdog  
interrupt and reloads the 32-bit counter from the WDTLOAD register. Value for a read or reset is  
indeterminate.  
Watchdog Interrupt Clear (WDTICR)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTIntClr  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTIntClr  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
-
Bit/Field  
31:0  
Name  
Type  
WO  
Reset  
-
Description  
Watchdog Interrupt Clear  
WDTIntClr  
April 27, 2007  
193  
Preliminary  
Watchdog Timer  
Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010  
This register is the raw interrupt status register. Watchdog interrupt events can be monitored via  
this register if the controller interrupt is masked.  
Watchdog Raw Interrupt Status (WDTRIS)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDTRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
WDTRIS  
RO  
0
Watchdog Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of  
WDTINTR.  
194  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014  
This register is the masked interrupt status register. The value of this register is the logical AND of  
the raw interrupt bit and the Watchdog interrupt enable bit.  
Watchdog Masked Interrupt Status (WDTMIS)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDTMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
WDTMIS  
RO  
0
Watchdog Masked Interrupt Status  
Gives the masked interrupt state (after masking) of the  
WDTINTR interrupt.  
April 27, 2007  
195  
Preliminary  
Watchdog Timer  
Register 7: Watchdog Lock (WDTLOCK), offset 0xC00  
Writing 0x1ACCE551 to the WDTLOCK register enables write access to all other registers. Writing  
any other value to the WDTLOCK register re-enables the locked state for register writes to all the  
other registers. Reading the WDTLOCK register returns the lock status rather than the 32-bit  
value written. Therefore, when write accesses are disabled, reading the WDTLOCK register  
returns 0x00000001 (when locked; otherwise, the returned value is 0x00000000 (unlocked)).  
Watchdog Lock (WDTLOCK)  
Offset 0xC00  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTLock  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
8
0
7
15  
14  
13  
12  
11  
10  
9
6
5
4
3
2
1
0
WDTLock  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
0
Bit/Field  
31:0  
Name  
Type  
R/W  
Reset  
Description  
WDTLock  
0x0000  
Watchdog Lock  
A write of the value 0x1ACCE551 unlocks the watchdog  
registers for write access. A write of any other value  
reapplies the lock, preventing any register updates.  
A read of this register returns the following values:  
Locked: 0x00000001  
Unlocked: 0x00000000  
196  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 8: Watchdog Test (WDTTEST), offset 0x418  
This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag  
during debug.  
Watchdog Test (WDTTEST)  
Offset 0x418  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
STALL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:9  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
8
STALL  
R/W  
0
Watchdog Stall Enable  
When set to 1, if the Stellaris microcontroller is stopped  
with a debugger, the watchdog timer stops counting. Once  
the microcontroller is restarted, the watchdog timer  
resumes counting.  
7:0  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
April 27, 2007  
197  
Preliminary  
Watchdog Timer  
Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 4 (WDTPeriphID4)  
Offset 0xFD0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID4  
RO  
0x00  
WDT Peripheral ID Register[7:0]  
198  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 5 (WDTPeriphID5)  
Offset 0xFD4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID5  
RO  
0x00  
WDT Peripheral ID Register[15:8]  
April 27, 2007  
199  
Preliminary  
Watchdog Timer  
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 6 (WDTPeriphID6)  
Offset 0xFD8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID6  
RO  
0x00  
WDT Peripheral ID Register[23:16]  
200  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 7 (WDTPeriphID7)  
Offset 0xFDC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID7  
RO  
0x00  
WDT Peripheral ID Register[31:24]  
April 27, 2007  
201  
Preliminary  
Watchdog Timer  
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 0 (WDTPeriphID0)  
Offset 0xFE0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID0  
RO  
0x05  
Watchdog Peripheral ID Register[7:0]  
202  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 1 (WDTPeriphID1)  
Offset 0xFE4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID1  
RO  
0x18  
Watchdog Peripheral ID Register[15:8]  
April 27, 2007  
203  
Preliminary  
Watchdog Timer  
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 2 (WDTPeriphID2)  
Offset 0xFE8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID2  
RO  
0x18  
Watchdog Peripheral ID Register[23:16]  
204  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 3 (WDTPeriphID3)  
Offset 0xFEC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID3  
RO  
0x01  
Watchdog Peripheral ID Register[31:24]  
April 27, 2007  
205  
Preliminary  
Watchdog Timer  
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Primecell Identification 0 (WDTPCellID0)  
Offset 0xFF0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID0  
RO  
0x0D  
Watchdog PrimeCell ID Register[7:0]  
206  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Primecell Identification 1 (WDTPCellID1)  
Offset 0xFF4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID1  
RO  
0xF0  
Watchdog PrimeCell ID Register[15:8]  
April 27, 2007  
207  
Preliminary  
Watchdog Timer  
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Primecell Identification 2 (WDTPCellID2)  
Offset 0xFF8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID2  
RO  
0x05  
Watchdog PrimeCell ID Register[23:16]  
208  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Primecell Identification 3 (WDTPCellID3)  
Offset 0xFFC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID3  
RO  
0xB1  
Watchdog PrimeCell ID Register[31:24]  
April 27, 2007  
209  
Preliminary  
Analog-to-Digital Converter (ADC)  
11  
Analog-to-Digital Converter (ADC)  
An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a  
discrete digital number.  
The Stellaris ADC module features 10-bit conversion resolution and supports two input channels,  
plus an internal temperature sensor. The ADC module contains a programmable sequencer which  
allows for the sampling of multiple analog input sources without controller intervention. Each  
sample sequence provides flexible programming with fully configurable input source, trigger  
events, interrupt generation, and sequence priority.  
The Stellaris ADC provides the following features:  
„
„
„
„
„
Two analog input channels  
Single-ended and differential-input configurations  
Internal temperature sensor  
Sample rate of 500 thousand samples/second  
Four programmable sample conversion sequences from one to eight entries long, with  
corresponding conversion result FIFOs  
„
Flexible trigger control  
Controller (software)  
Timers  
Analog Comparators  
PWM  
GPIO  
„
Hardware averaging of up to 64 samples for improved accuracy  
210  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
11.1  
Block Diagram  
Figure 11-1. ADC Module Block Diagram  
Trigger Events  
Analog Inputs  
Sample  
Sequencer 0  
Comparator  
Control/Status  
GPIO (PB4)  
Timer  
PWM  
SS3  
SS2  
SS1  
SS0  
ADCACTSS  
ADCOSTAT  
ADCUSTAT  
ADCSSPRI  
ADCSSMUX0  
ADCSSCTL0  
Analog-to-Digital  
Converter  
ADCSSFSTAT0  
Comparator  
GPIO (PB4)  
Timer  
Sample  
Sequencer 1  
PWM  
ADCSSMUX1  
ADCSSCTL1  
Comparator  
GPIO (PB4)  
Timer  
Hardware Averager  
ADCSAC  
ADCSSFSTAT1  
PWM  
Sample  
Sequencer 2  
Comparator  
GPIO (PB4)  
Timer  
ADCSSMUX2  
ADCSSCTL2  
PWM  
FIFO Block  
ADCSSFSTAT2  
ADCSSFIFO0  
ADCSSFIFO1  
ADCSSFIFO2  
ADCSSFIFO3  
ADCEMUX  
ADCPSSI  
Sample  
Sequencer 3  
Interrupt Control  
ADCIM  
ADCRIS  
ADCISC  
ADCSSMUX3  
ADCSSCTL3  
SS0 Interrupt  
SS1 Interrupt  
SS2 Interrupt  
SS3 Interrupt  
ADCSSFSTAT3  
11.2  
Functional Description  
The Stellaris ADC collects sample data by using a programmable sequence-based approach  
instead of the traditional single or double-sampling approach found on many ADC modules. Each  
sample sequence is a fully programmed series of consecutive (back-to-back) samples, allowing  
the ADC to collect data from multiple input sources without having to be re-configured or serviced  
by the controller. The programming of each sample in the sample sequence includes parameters  
such as the input source and mode (differential versus single-ended input), interrupt generation on  
sample completion, and the indicator for the last sample in the sequence.  
11.2.1  
Sample Sequencers  
The sampling control and data capture is handled by the Sample Sequencers. All of the  
sequencers are identical in implementation except for the number of samples that can be captured  
and the depth of the FIFO. Table 11-1 shows the maximum number of samples that each  
Sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry  
is a 32-bit word, with the lower 10 bits containing the conversion result.  
Table 11-1. Samples and FIFO Depth of Sequencers  
Number of  
Samples  
Sequencer  
Depth of FIFO  
SS3  
SS2  
SS1  
SS0  
1
4
4
8
1
4
4
8
April 27, 2007  
211  
Preliminary  
Analog-to-Digital Converter (ADC)  
For a given sample sequence, each sample is defined by two 4-bit nibbles in the ADC Sample  
Sequence Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control  
(ADCSSCTLn) registers, where "n" corresponds to the sequence number. The ADCSSMUXn  
nibbles select the input pin, while the ADCSSCTLn nibbles contain the sample control bits  
corresponding to parameters such as temperature sensor selection, interrupt enable, end of  
sequence, and differential input mode. Sample Sequencers are enabled by setting the respective  
ASENnbit in the ADC Active Sample Sequencer (ADCACTSS) register, but can be configured  
before being enabled.  
When configuring a sample sequence, multiple uses of the same input pin within the same  
sequence is allowed. In the ADCSSCTLn register, the Interrupt Enable (IE)bits can be set  
for any combination of samples, allowing interrupts to be generated after every sample in the  
sequence if necessary. Also, the ENDbit can be set at any point within a sample sequence. For  
example, if Sequencer 0 is used, the ENDbit can be set in the nibble associated with the fifth  
sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth  
sample.  
After a sample sequence completes execution, the result data can be retrieved from the ADC  
Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers  
that read a single address to "pop" result data. For software debug purposes, the positions of the  
FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status  
(ADCSSFSTATn) registers along with FULLand EMPTYstatus flags. Overflow and underflow  
conditions are monitored using the ADCOSTAT and ADCUSTAT registers.  
11.2.2  
Module Control  
Outside of the Sample Sequencers, the remainder of the control logic is responsible for tasks such  
as interrupt generation, sequence prioritization, and trigger configuration.  
Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is  
configured automatically by hardware when the system XTALis selected. The automatic clock  
divider configuration targets 16.667 MHz operation for all Stellaris devices.  
11.2.2.1  
Interrupts  
The Sample Sequencers dictate the events that cause interrupts, but they don't have control over  
whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signal  
is controlled by the state of the MASKbits in the ADC Interrupt Mask (ADCIM) register. Interrupt  
status can be viewed at two locations: the ADC Raw Interrupt Status (ADCRIS) register, which  
shows the raw status of a Sample Sequencer's interrupt signal, and the ADC Interrupt Status  
and Clear (ADCISC) register, which shows the logical AND of the ADCRIS register’s INRbit and  
the ADCIM register’s MASKbits. Interrupts are cleared by writing a 1 to the corresponding INbit in  
ADCISC.  
11.2.2.2  
11.2.2.3  
Prioritization  
When sampling events (triggers) happen concurrently, they are prioritized for processing by the  
values in the ADC Sample Sequencer Priority (ADCSSPRI) register. Valid priority values are in  
the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active Sample  
Sequencer units with the same priority do not provide consistent results, so software must ensure  
that all active Sample Sequencer units have a unique priority value.  
Sampling Events  
Sample triggering for each Sample Sequencer is defined in the ADC Event Multiplexer Select  
(ADCEMUX) register. The external peripheral triggering sources vary by Stellaris family member,  
but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by  
setting the CHbits in the ADC Processor Sample Sequence Initiate (ADCPSSI) register.  
212  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
When using the "Always" trigger, care must be taken. If a sequence's priority is too high, it is  
possible to starve other lower priority sequences.  
11.2.3  
Hardware Sample Averaging Circuit  
Higher precision results can be generated using the hardware averaging circuit, however, the  
improved results are at the cost of throughput. Up to 64 samples can be accumulated and  
averaged to form a single data entry in the sequencer FIFO. Throughput is decreased  
proportionally to the number of samples in the averaging calculation. For example, if the averaging  
circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.  
By default the averaging circuit is off and all data from the converter passes through to the  
sequencer FIFO. The averaging hardware is controlled by the ADC Sample Averaging Control  
(ADCSAC) register (see page 225). There is a single averaging circuit and all input channels  
receive the same amount of averaging whether they are single-ended or differential.  
11.2.4  
11.2.5  
Analog-to-Digital Converter  
The converter itself generates a 10-bit output value for selected analog input. Special analog pads  
are used to minimize the distortion on the input.  
Test Modes  
There is a user-available test mode that allows for loopback operation within the digital portion of  
the ADC module. This can be useful for debugging software without having to provide actual  
analog stimulus. This mode is available through the ADC Test Mode Loopback (ADCTMLB)  
register (see page 238).  
11.2.6  
Internal Temperature Sensor  
The internal temperature sensor provides an analog temperature reading as well as a reference  
voltage. The voltage at the output terminal SENSO is given by the following equation:  
SENSO = 2.7 - ((T + 55) / 75)  
This relation is shown in Figure 11-2 on page 213.  
Figure 11-2. Internal Temperature Sensor Characteristic  
11.3  
Initialization and Configuration  
In order for the ADC module to be used, the PLL must be enabled and using a supported crystal  
frequency (see the RCC register on page 86). Using unsupported frequencies can cause faulty  
operation in the ADC module.  
April 27, 2007  
213  
Preliminary  
Analog-to-Digital Converter (ADC)  
11.3.1  
Module Initialization  
Initialization of the ADC module is a simple process with very few steps. The main steps include  
enabling the clock to the ADC and reconfiguring the Sample Sequencer priorities (if needed).  
The initialization sequence for the ADC is as follows:  
1. Enable the ADC clock by writing a value of 0x00010000 to the RCGC1 register in the System  
Control module.  
2. If required by the application, reconfigure the Sample Sequencer priorities in the ADCSSPRI  
register. The default configuration has Sample Sequencer 0 with the highest priority, and  
Sample Sequencer 3 as the lowest priority.  
11.3.2  
Sample Sequencer Configuration  
Configuration of the Sample Sequencers is slightly more complex than the module initialization  
since each sample sequence is completely programmable.  
The configuration for each Sample Sequencer should be as follows:  
1. Ensure that the Sample Sequencer is disabled by writing a 0 to the corresponding ASENbit in  
the ADCACTSS register. Programming of the Sample Sequencers is allowed without having  
them enabled. Disabling the Sequencer during programming prevents erroneous execution if  
a trigger event were to occur during the configuration process.  
2. Configure the trigger event for the Sample Sequencer in the ADCEMUX register.  
3. For each sample in the sample sequence, configure the corresponding input source in the  
ADCSSMUXn register.  
4. For each sample in the sample sequence, configure the sample control bits in the  
corresponding nibble in the ADCSSCTLn register. When programming the last nibble, ensure  
that the ENDbit is set. Failure to set the ENDbit causes unpredictable behavior.  
5. If interrupts are to be used, write a 1 to the corresponding MASKbit in the ADCIM register.  
6. Enable the Sample Sequencer logic by writing a 1 to the corresponding ASENbit in the  
ADCACTSS register.  
11.4  
Register Map  
Table 11-2 lists the ADC registers. The offset listed is a hexadecimal increment to the register’s  
address, relative to the ADC base address of 0x40038000.  
Table 11-2. ADC Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
ADCACTSS  
ADCRIS  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
RO  
Active sample sequencer  
Raw interrupt status and clear  
Interrupt mask  
216  
217  
218  
219  
220  
221  
222  
ADCIM  
R/W  
ADCISC  
R/W1C Interrupt status and clear  
R/W1C Overflow status  
ADCOSTAT  
ADCEMUX  
ADCUSTAT  
R/W  
Event multiplexer select  
R/W1C Underflow status  
214  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 11-2. ADC Register Map (Continued)  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x020  
0x028  
0x030  
0x040  
0x044  
0x048  
0x04C  
0x060  
0x064  
0x068  
0x06C  
0x080  
0x084  
0x088  
0x08C  
0x0A0  
0x0A4  
0x0A8  
0x0AC  
0x100  
ADCSSPRI  
0x00003210  
-
R/W  
WO  
R/W  
R/W  
R/W  
RO  
Sample sequencer priority  
223  
224  
225  
ADCPSSI  
Processor sample sequence initiate  
Sample averaging control  
ADCSAC  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000100  
0x00000000  
0x00000000  
0x00000000  
0x00000100  
0x00000000  
0x00000000  
0x00000000  
0x00000100  
0x00000000  
0x00000002  
0x00000000  
0x00000100  
0x00000000  
ADCSSMUX0  
ADCSSCTL0  
ADCSSFIFO0  
ADCSSFSTAT0  
ADCSSMUX1  
ADCSSCTL1  
ADCSSFIFO1  
ADCSSFSTAT1  
ADCSSMUX2  
ADCSSCTL2  
ADCSSFIFO2  
ADCSSFSTAT2  
ADCSSMUX3  
ADCSSCTL3  
ADCSSFIFO3  
ADCSSFSTAT3  
ADCTMLB  
Sample sequence input multiplexer select 0  
Sample sequence control 0  
226  
228  
230  
231  
232  
233  
233  
233  
234  
235  
235  
235  
236  
237  
237  
237  
238  
Sample sequence result FIFO 0  
Sample sequence FIFO 0 status  
Sample sequence input multiplexer select 1  
Sample sequence control 1  
RO  
R/W  
R/W  
RO  
Sample sequence result FIFO 1  
Sample sequence FIFO 1 status  
Sample sequence input multiplexer select 2  
Sample sequence control 2  
RO  
R/W  
R/W  
RO  
Sample sequence result FIFO 2  
Sample sequence FIFO 2 status  
Sample sequence input multiplexer select 3  
Sample sequence control 3  
RO  
R/W  
R/W  
RO  
Sample sequence result FIFO 3  
Sample sequence FIFO 3 status  
Test mode loopback  
RO  
R/W  
11.5  
Register Descriptions  
The remainder of this section lists and describes the ADC registers, in numerical order by address  
offset.  
April 27, 2007  
215  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000  
This register controls the activation of the Sample Sequencers. Each Sample Sequencer can be  
enabled/disabled independently.  
ADC Active Sample Sequencer (ADCACTSS)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ASEN3 ASEN2 ASEN1 ASEN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never be  
changed.  
3
2
1
0
ASEN3  
ASEN2  
ASEN1  
ASEN0  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Specifies whether Sample Sequencer 3 is enabled. If set, the  
sample sequence logic for Sequencer 3 is active. Otherwise, the  
Sequencer is inactive.  
Specifies whether Sample Sequencer 2 is enabled. If set, the  
sample sequence logic for Sequencer 2 is active. Otherwise, the  
Sequencer is inactive.  
Specifies whether Sample Sequencer 1 is enabled. If set, the  
sample sequence logic for Sequencer 1 is active. Otherwise, the  
Sequencer is inactive.  
Specifies whether Sample Sequencer 0 is enabled. If set, the  
sample sequence logic for Sequencer 0 is active. Otherwise, the  
Sequencer is inactive.  
216  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004  
This register shows the status of the raw interrupt signal of each Sample Sequencer. These bits  
may be polled by software to look for interrupt conditions without having to generate controller  
interrupts.  
ADC Raw Interrupt Status (ADCRIS)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
INR3  
INR2  
INR1  
INR0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
2
1
0
INR3  
INR2  
INR1  
INR0  
RO  
RO  
RO  
RO  
0
0
0
0
Set by hardware when a sample with its respective  
ADCSSCTL3 IEbit has completed conversion. This bit is  
cleared by writing a 1 to the ADCISC IN3bit.  
Set by hardware when a sample with its respective  
ADCSSCTL2 IEbit has completed conversion. This bit is  
cleared by writing a 1 to the ADCISC IN2bit.  
Set by hardware when a sample with its respective  
ADCSSCTL1 IEbit has completed conversion. This bit is  
cleared by writing a 1 to the ADCISC IN1bit.  
Set by hardware when a sample with its respective  
ADCSSCTL0 IEbit has completed conversion. This bit is  
cleared by writing a 1 to the ADCISC IN0bit.  
April 27, 2007  
217  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 3: ADC Interrupt Mask (ADCIM), offset 0x008  
This register controls whether the Sample Sequencer raw interrupt signals are promoted to  
controller interrupts. The raw interrupt signal for each Sample Sequencer can be masked  
independently.  
ADC Interrupt Mask (ADCIM)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MASK3 MASK2 MASK1 MASK0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
3
2
1
0
MASK3  
MASK2  
MASK1  
MASK0  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Specifies whether the raw interrupt signal from Sample  
Sequencer 3 (ADCRIS register INR3bit) is promoted to a  
controller interrupt. If set, the raw interrupt signal is promoted to  
a controller interrupt. Otherwise, it is not.  
Specifies whether the raw interrupt signal from Sample  
Sequencer 2 (ADCRIS register INR2bit) is promoted to a  
controller interrupt. If set, the raw interrupt signal is promoted to  
a controller interrupt. Otherwise, it is not.  
Specifies whether the raw interrupt signal from Sample  
Sequencer 1 (ADCRIS register INR1bit) is promoted to a  
controller interrupt. If set, the raw interrupt signal is promoted to  
a controller interrupt. Otherwise, it is not.  
Specifies whether the raw interrupt signal from Sample  
Sequencer 0 (ADCRIS register INR0bit) is promoted to a  
controller interrupt. If set, the raw interrupt signal is promoted to  
a controller interrupt. Otherwise, it is not.  
218  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C  
This register provides the mechanism for clearing interrupt conditions, and shows the status of  
controller interrupts generated by the Sample Sequencers. When read, each bit field is the logical  
AND of the respective INRand MASKbits. Interrupts are cleared by writing a 1 to the  
corresponding bit position. If software is polling the ADCRIS instead of generating interrupts, the  
INRbits are still cleared via the ADCISC register, even if the INbit is not set.  
ADC Interrupt Status and Clear (ADCISC)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN3  
IN2  
IN1  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
3
2
1
0
IN3  
IN2  
IN1  
IN0  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
This bit is set by hardware when the MASK3and INR3bits are  
both 1, providing a level-based interrupt to the controller. It is  
cleared by writing a 1, and also clears the INR3bit.  
This bit is set by hardware when the MASK2and INR2bits are  
both 1, providing a level based interrupt to the controller. It is  
cleared by writing a 1, and also clears the INR2bit.  
This bit is set by hardware when the MASK1and INR1bits are  
both 1, providing a level based interrupt to the controller. It is  
cleared by writing a 1, and also clears the INR1bit.  
This bit is set by hardware when the MASK0and INR0bits are  
both 1, providing a level based interrupt to the controller. It is  
cleared by writing a 1, and also clears the INR0bit.  
April 27, 2007  
219  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010  
This register indicates overflow conditions in the Sample Sequencer FIFOs. Once the overflow  
condition has been handled by software, the condition can be cleared by writing a 1 to the  
corresponding bit position.  
ADC Overflow Status (ADCOSTAT)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OV3  
OV2  
OV1  
OV0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
2
1
0
OV3  
OV2  
OV1  
OV0  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
This bit specifies that the FIFO for Sample Sequencer 3 has  
hit an overflow condition where the FIFO is full and a write  
was requested. When an overflow is detected, the most  
recent write is dropped and this bit is set by hardware to  
indicate the occurrence of dropped data. This bit is cleared by  
writing a 1.  
This bit specifies that the FIFO for Sample Sequencer 2 has  
hit an overflow condition where the FIFO is full and a write  
was requested. When an overflow is detected, the most  
recent write is dropped and this bit is set by hardware to  
indicate the occurrence of dropped data. This bit is cleared by  
writing a 1.  
This bit specifies that the FIFO for Sample Sequencer 1 has  
hit an overflow condition where the FIFO is full and a write  
was requested. When an overflow is detected, the most  
recent write is dropped and this bit is set by hardware to  
indicate the occurrence of dropped data. This bit is cleared by  
writing a 1.  
This bit specifies that the FIFO for Sample Sequencer 0 has  
hit an overflow condition where the FIFO is full and a write  
was requested. When an overflow is detected, the most  
recent write is dropped and this bit is set by hardware to  
indicate the occurrence of dropped data. This bit is cleared by  
writing a 1.  
220  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014  
The ADCEMUX selects the event (trigger) that initiates sampling for each Sample Sequencer.  
Each Sample Sequencer can be configured with a unique trigger source.  
ADC Event Multiplexer Select (ADCEMUX)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EM3  
EM2  
EM1  
EM0  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:12  
EM3  
R/W  
0
This field selects the trigger source for Sample Sequencer 3.  
The valid configurations for this field are:  
EM Binary Value  
0000  
Event  
Controller (default)  
Analog Comparator 0  
Reserved  
0001  
0010  
0011  
Reserved  
0100  
External (GPIO PB4)  
Timer  
0101  
0110  
PWM0  
0111  
Reserved  
1000  
Reserved  
1001-1110  
1111  
Reserved  
Always (continuously sample)  
11:8  
7:4  
EM2  
EM1  
EM0  
R/W  
R/W  
R/W  
0
0
0
This field selects the trigger source for Sample Sequencer 2.  
The encodings are the same as those for EM3.  
This field selects the trigger source for Sample Sequencer 1.  
The encodings are the same as those for EM3.  
3:0  
This field selects the trigger source for Sample Sequencer 0.  
The encodings are the same as those for EM3.  
April 27, 2007  
221  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018  
This register indicates underflow conditions in the Sample Sequencer FIFOs. The corresponding  
underflow condition can be cleared by writing a 1 to the relevant bit position.  
ADC Underflow Status (ADCUSTAT)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
UV3  
UV2  
UV1  
UV0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
2
1
0
UV3  
UV2  
UV1  
UV0  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
This bit specifies that the FIFO for Sample Sequencer 3 has  
hit an underflow condition where the FIFO is empty and a  
read was requested. The problematic read does not move  
the FIFO pointers, and 0s are returned. This bit is cleared by  
writing a 1.  
This bit specifies that the FIFO for Sample Sequencer 2 has  
hit an underflow condition where the FIFO is empty and a  
read was requested. The problematic read does not move the  
FIFO pointers, and 0s are returned. This bit is cleared by  
writing a 1.  
This bit specifies that the FIFO for Sample Sequencer 1 has  
hit an underflow condition where the FIFO is empty and a  
read was requested. The problematic read does not move the  
FIFO pointers, and 0s are returned. This bit is cleared by  
writing a 1.  
This bit specifies that the FIFO for Sample Sequencer 0 has  
hit an underflow condition where the FIFO is empty and a  
read was requested. The problematic read does not move the  
FIFO pointers, and 0s are returned. This bit is cleared by  
writing a 1.  
222  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020  
This register sets the priority for each of the Sample Sequencers. Out of reset, Sequencer 0 has  
the highest priority, and sample sequence 3 has the lowest priority. When reconfiguring sequence  
priorities, each sequence must have a unique priority or the ADC behavior is inconsistent.  
ADC Sample Sequencer Priority (ADCSSPRI)  
Offset 0x020  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SS3  
reserved  
SS2  
reserved  
SS1  
reserved  
SS0  
Type  
Reset  
RO  
0
RO  
0
R/W  
1
R/W  
1
RO  
0
RO  
0
R/W  
1
R/W  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:14  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
13:12  
SS3  
R/W  
0x3  
The SS3field contains a binary-encoded value that specifies  
the priority encoding of Sample Sequencer 3. A priority  
encoding of 0 is highest and 3 is lowest. The priorities  
assigned to the Sequencers must be uniquely mapped. ADC  
behavior is not consistent if two or more fields are equal.  
11:10  
9:8  
reserved  
SS2  
RO  
R/W  
RO  
0
0x2  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
The SS2field contains a binary-encoded value that specifies  
the priority encoding of Sample Sequencer 2.  
7:6  
reserved  
SS1  
Reserved bits return an indeterminate value, and should  
never be changed.  
5:4  
R/W  
RO  
0x1  
0
The SS1field contains a binary-encoded value that specifies  
the priority encoding of Sample Sequencer 1.  
3:2  
reserved  
SS0  
Reserved bits return an indeterminate value, and should  
never be changed.  
1:0  
R/W  
0x0  
The SS0field contains a binary-encoded value that specifies  
the priority encoding of Sample Sequencer 0.  
April 27, 2007  
223  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028  
This register provides a mechanism for application software to initiate sampling in the Sample  
Sequencers. Sample sequences can be initiated individually or in any combination. When multiple  
sequences are triggered simultaneously, the priority encodings in ADCSSPRI dictate execution  
order.  
ADC Processor Sample Sequence Initiate (ADCPSSI)  
Offset 0x028  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SS3  
SS2  
SS1  
SS0  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
Bit/Field  
31:4  
Name  
Type  
WO  
Reset  
-
Description  
reserved  
Only a write by software is valid; a read of the register  
returns no meaningful data.  
3
2
1
0
SS3  
SS2  
SS1  
SS0  
WO  
WO  
WO  
WO  
-
-
-
-
Only a write by software is valid; a read of the register  
returns no meaningful data. When set by software, sampling  
is triggered on Sample Sequencer 3, assuming the  
Sequencer is enabled in the ADCACTSS register.  
Only a write by software is valid; a read of the register  
returns no meaningful data. When set by software, sampling  
is triggered on Sample Sequencer 2, assuming the  
Sequencer is enabled in the ADCACTSS register.  
Only a write by software is valid; a read of the register  
returns no meaningful data. When set by software, sampling  
is triggered on Sample Sequencer 1, assuming the  
Sequencer is enabled in the ADCACTSS register.  
Only a write by software is valid; a read of the register  
returns no meaningful data. When set by software, sampling  
is triggered on Sample Sequencer 0, assuming the  
Sequencer is enabled in the ADCACTSS register.  
224  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030  
This register controls the amount of hardware averaging applied to conversion results. The final  
AVG  
conversion result stored in the FIFO is averaged from 2  
consecutive ADC samples at the  
specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If  
AVG is 6, 64 consecutive ADC samples are averaged to generate one result in the sequencer  
FIFO. An AVG = 7 provides unpredictable results.  
ADC Sample Averaging Control (ADCSAC)  
Offset 0x030  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
AVG  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
2:0  
AVG  
R/W  
0
Specifies the amount of hardware averaging that will be  
applied to ADC samples. The AVGfield can be any value  
between 0 and 6. Entering a value of 7 creates unpredictable  
results.  
April 27, 2007  
225  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040  
This register defines the analog input configuration for each sample in a sequence executed with  
Sample Sequencer 0.  
This register is 32-bits wide and contains information for eight possible samples.  
ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0)  
Offset 0x040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
reserved  
MUX7  
MUX6  
reserved  
MUX5  
reserved  
MUX4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
R0  
0
RO  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
MUX3  
MUX2  
MUX1  
MUX0  
reserved  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
R0  
0
RO  
0
R/W  
0
Bit/Field  
31:29  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never be  
changed.  
28  
MUX7  
R/W  
0
The MUX7field is used during the eighth sample of a sequence  
executed with Sample Sequencer 0. It specifies which of the  
analog inputs is sampled for the analog-to-digital conversion. The  
value set here indicates the corresponding pin, for example, a  
value of 1 indicates the input is ADC1.  
27:25  
24  
reserved  
MUX6  
RO  
0
0
Reserved bits return an indeterminate value, and should never be  
changed.  
R/W  
The MUX6field is used during the seventh sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
23:21  
20  
reserved  
MUX5  
RO  
0
0
Reserved bits return an indeterminate value, and should never be  
changed.  
R/W  
The MUX5field is used during the sixth sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
19:17  
16  
reserved  
MUX4  
RO  
0
0
Reserved bits return an indeterminate value, and should never be  
changed.  
R/W  
The MUX4field is used during the fifth sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
15:13  
12  
reserved  
MUX3  
RO  
0
0
Reserved bits return an indeterminate value, and should never be  
changed.  
R/W  
The MUX3field is used during the fourth sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
226  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
11:9  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never be  
changed.  
8
MUX2  
R/W  
0
The MUX2field is used during the third sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
7:5  
4
reserved  
MUX1  
RO  
0
0
Reserved bits return an indeterminate value, and should never be  
changed.  
R/W  
The MUX1field is used during the second sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
3:1  
0
reserved  
MUX0  
RO  
0
0
Reserved bits return an indeterminate value, and should never be  
changed.  
R/W  
The MUX0field is used during the first sample of a sequence  
executed with Sample Sequencer 0 and specifies which of the  
analog inputs is sampled for the analog-to-digital conversion.  
April 27, 2007  
227  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044  
This register contains the configuration information for each sample for a sequence executed with  
Sample Sequencer 0. When configuring a sample sequence, the ENDbit must be set at some  
point, whether it be after the first sample, last sample, or any sample in between.  
This register is 32-bits wide and contains information for eight possible samples.  
ADC Sample Sequence Control 0 (ADCSSCTL0)  
Offset 0x044  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TS7  
IE7  
END7  
D7  
TS6  
IE6  
END6  
D6  
TS5  
IE5  
END5  
D5  
TS4  
IE4  
END4  
D4  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TS3  
IE3  
END3  
D3  
TS2  
IE2  
END2  
D2  
TS1  
IE1  
END1  
D1  
TS0  
IE0  
END0  
D0  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31  
Name  
TS7  
Type  
R/W  
Reset  
Description  
0
The TS7bit is used during the eighth sample of the sample  
sequence and specifies the input source of the sample. If set,  
the temperature sensor is read. Otherwise, the input pin  
specified by the ADCSSMUX register is read.  
30  
29  
IE7  
R/W  
R/W  
0
The IE7bit is used during the eighth sample of the sample  
sequence and specifies whether the raw interrupt signal (INR0  
bit) is asserted at the end of the sample's conversion. If the  
MASK0bit in the ADCIM register is set, the interrupt is  
promoted to a controller-level interrupt. When this bit is set, the  
raw interrupt is asserted, otherwise it is not. It is legal to have  
multiple samples within a sequence generate interrupts.  
END7  
0
The END7bit indicates that this is the last sample of the  
sequence. It is possible to end the sequence on any sample  
position. Samples defined after the sample containing a set  
END are not requested for conversion even though the fields  
may be non-zero. It is required that software write the ENDbit  
somewhere within the sequence. (Sample Sequencer 3,  
which only has a single sample in the sequence, is hardwired  
to have the END0bit set.)  
Setting this bit indicates that this sample is the last in the  
sequence.  
28  
D7  
R/W  
0
The D7bit indicates that the analog input is to be differentially  
sampled. The corresponding ADCSSMUXx nibble must be set  
to the pair number "i", where the paired inputs are "2i and 2i+1".  
The temperature sensor does not have a differential option.  
When set, the analog inputs are differentially sampled.  
27  
26  
25  
TS6  
IE6  
R/W  
R/W  
R/W  
0
0
0
Same definition as TS7but used during the seventh sample.  
Same definition as IE7but used during the seventh sample.  
Same definition as END7but used during the seventh sample.  
END6  
228  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Name  
D6  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0
Description  
Same definition as D7but used during the seventh sample.  
Same definition as TS7but used during the sixth sample.  
Same definition as IE7but used during the sixth sample.  
Same definition as END7but used during the sixth sample.  
Same definition as D7but used during the sixth sample.  
Same definition as TS7but used during the fifth sample.  
Same definition as IE7but used during the fifth sample.  
Same definition as END7but used during the fifth sample.  
Same definition as D7but used during the fifth sample.  
Same definition as TS7but used during the fourth sample.  
Same definition as IE7but used during the fourth sample.  
Same definition as END7but used during the fourth sample.  
Same definition as D7but used during the fourth sample.  
Same definition as TS7but used during the third sample.  
Same definition as IE7but used during the third sample.  
Same definition as END7but used during the third sample.  
Same definition as D7but used during the third sample.  
Same definition as TS7but used during the second sample.  
Same definition as IE7but used during the second sample.  
Same definition as END7but used during the second sample.  
Same definition as D7but used during the second sample.  
Same definition as TS7but used during the first sample.  
Same definition as IE7but used during the first sample.  
TS5  
IE5  
0
0
END5  
D5  
0
0
TS4  
IE4  
0
0
END4  
D4  
0
0
TS3  
IE3  
0
0
END3  
D3  
0
0
TS2  
IE2  
0
0
END2  
D2  
0
8
0
7
TS1  
IE1  
0
6
0
5
END1  
D1  
0
4
0
3
TS0  
IE0  
0
2
0
1
END0  
0
Same definition as END7but used during the first sample.  
Since this sequencer has only one entry, this bit must be set.  
0
D0  
R/W  
0
Same definition as D7but used during the first sample.  
April 27, 2007  
229  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048  
This register contains the conversion results for samples collected with Sample Sequencer 0.  
Reads of this register return conversion result data in the order sample 0, sample 1, and so on,  
until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow  
conditions are registered in the ADCOSTAT and ADCUSTAT registers.  
ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)  
Offset 0x048  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
9:0  
DATA  
RO  
0
Conversion result data.  
230  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 14: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C  
This register provides a window into the Sample Sequencer FIFO 0, providing full/empty status  
information as well as the positions of the head and tail pointers. The reset value of 0x100  
indicates an empty FIFO.  
ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)  
Offset 0x04C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
FULL  
reserved  
EMPTY  
HPTR  
TPTR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:13  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
12  
FULL  
RO  
RO  
0
0
When set, indicates that the FIFO is currently full.  
11:9  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
8
EMPTY  
HPTR  
RO  
RO  
1
0
When set, indicates that the FIFO is currently empty.  
7:4  
This field contains the current "head" pointer index for the  
FIFO, that is, the next entry to be written.  
3:0  
TPTR  
RO  
0
This field contains the current "tail" pointer index for the FIFO,  
that is, the next entry to be read.  
April 27, 2007  
231  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 15: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060  
This register defines the analog input configuration for each sample in a sequence executed with  
Sample Sequencer 1.  
This register is 16-bits wide and contains information for four possible samples. This register’s bit  
fields are as shown in the diagram below. Bit field definitions are the same as those in the  
ADCSSMUX0 register (see page 226) but are for Sample Sequencer 1.  
ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)  
Offset 0x060  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
MUX2  
MUX3  
reserved  
MUX1  
MUX0  
reserved  
Type  
Reset  
RO  
RO  
0
RO  
R/W  
0
RO  
RO  
0
RO  
R/W  
0
RO  
RO  
0
RO  
R/W  
0
RO  
R0  
0
RO  
R/W  
0
0
0
0
0
0
0
0
0
232  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 16: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064  
This register contains the configuration information for each sample for a sequence executed with  
Sample Sequencer 1. When configuring a sample sequence, the ENDbit must be set at some  
point, whether it be after the first sample, last sample, or any sample in between.  
This register is 16-bits wide and contains information for four possible samples. This register’s bit  
fields are as shown in the diagram below. Bit field definitions are the same as those in the  
ADCSSCTL0 register (see page 228) but are for Sample Sequencer 1.  
ADC Sample Sequence Control 1 (ADCSSCTL1)  
Offset 0x064  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TS3  
IE3  
END3  
D3  
TS2  
IE2  
END2  
D2  
TS1  
IE1  
END1  
D1  
TS0  
IE0  
END0  
D0  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register 17: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068  
This register contains the conversion results for samples collected with Sample Sequencer 1.  
Reads of this register return conversion result data in the order sample 0, sample 1, and so on,  
until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow  
conditions are registered in the ADCOSTAT and ADCUSTAT registers.  
Bit fields and definitions are the same as ADCSSFIFO0 (see page 230) but are for FIFO 1.  
Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C  
This register provides a window into the Sample Sequencer FIFO 1, providing full/empty status  
information as well as the positions of the head and tail pointers. The reset value of 0x100  
indicates an empty FIFO.  
This register has the same bit fields and definitions as ADCSSFSTAT0 (see page 231) but is for  
FIFO 1.  
April 27, 2007  
233  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 19: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080  
This register defines the analog input configuration for each sample in a sequence executed with  
Sample Sequencer 2.  
This register is 16-bits wide and contains information for four possible samples. This register’s bit  
fields are as shown in the diagram below. Bit field definitions are the same as those in the  
ADCSSMUX0 register (see page 226) but are for Sample Sequencer 2.  
ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2)  
Offset 0x080  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
MUX3  
MUX2  
reserved  
MUX1  
MUX0  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
R0  
0
RO  
0
R/W  
0
234  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 20: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084  
This register contains the configuration information for each sample for a sequence executed with  
Sample Sequencer 2. When configuring a sample sequence, the ENDbit must be set at some  
point, whether it be after the first sample, last sample, or any sample in between.  
This register is 16-bits wide and contains information for four possible samples. This register’s bit  
fields are as shown in the diagram below. Bit field definitions are the same as those in the  
ADCSSCTL0 register (see page 228) but are for Sample Sequencer 2.  
ADC Sample Sequence Control 2 (ADCSSCTL2)  
Offset 0x084  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TS3  
IE3  
END3  
D3  
TS2  
IE2  
END2  
D2  
TS1  
IE1  
END1  
D1  
TS0  
IE0  
END0  
D0  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register 21: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088  
This register contains the conversion results for samples collected with Sample Sequencer 2.  
Reads of this register return conversion result data in the order sample 0, sample 1, and so on,  
until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow  
conditions are registered in the ADCOSTAT and ADCUSTAT registers.  
Bit fields and definitions are the same as ADCSSFIFO0 (see page 230) but are for FIFO 2.  
Register 22: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C  
This register provides a window into the Sample Sequencer FIFO 2, providing full/empty status  
information as well as the positions of the head and tail pointers. The reset value of 0x100  
indicates an empty FIFO.  
This register has the same bit fields and definitions as ADCSSFSTAT0 (see page 231) but is for  
FIFO 2.  
April 27, 2007  
235  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 23: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0  
This register defines the analog input configuration for each sample in a sequence executed with  
Sample Sequencer 3.  
This register is 4-bits wide and contains information for one possible sample. This register’s bit  
fields are as shown in the diagram below. Bit field definitions are the same as those in the  
ADCSSMUX0 register ( see page 226) but are for Sample Sequencer 3.  
ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3)  
Offset 0x0A0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MUX0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
236  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 24: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4  
This register contains the configuration information for each sample for a sequence executed with  
Sample Sequencer 3. The ENDbit is always set since there is only one sample in this sequencer.  
This register is 4-bits wide and contains information for one possible sample. This register’s bit  
fields are as shown in the diagram below. Bit field definitions are the same as those in the  
ADCSSCTL0 register (see page 228) but are for Sample Sequencer 3.  
ADC Sample Sequence Control 3 (ADCSSCTL3)  
Offset 0x0A4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TS0  
IE0  
END0  
D0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
Register 25: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8  
This register contains the conversion results for samples collected with Sample Sequencer 3.  
Reads of this register return the conversion result data. If the FIFO is not properly handled by  
software, overflow and underflow conditions are registered in the ADCOSTAT and ADCUSTAT  
registers.  
Bit fields and definitions are the same as ADCSSFIFO0 (see page 230) but are for FIFO 3.  
Register 26: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC  
This register provides a window into the Sample Sequencer FIFO 3, providing full/empty status  
information as well as the positions of the head and tail pointers. The reset value of 0x100  
indicates an empty FIFO.  
This register has the same bit fields and definitions as ADCSSFSTAT0 (see page 231) but is for  
FIFO 3.  
April 27, 2007  
237  
Preliminary  
Analog-to-Digital Converter (ADC)  
Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100  
This register provides loopback operation within the digital logic of the ADC, which can be useful in  
debugging software without having to provide actual analog stimulus. This test mode is entered by  
writing a value of 0x00000001 to this register. When data is read from the FIFO in loopback mode,  
the read-only portion of this register is returned.  
ADC Test Mode Loopback (ADCTMLB): Read  
Offset 0x100  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CNT  
CONT  
DIFF  
TS  
MUX  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
ADC Test Mode Loopback (ADCTMLB):Write  
Offset 0x100  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
LB  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
Name  
Type  
Reset  
Description  
Read-Only Register  
31:10  
9:6  
reserved  
RO  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
CNT  
Continuous sample counter that is initialized to 0 and counts  
each sample as it processed. This helps provide a unique value  
for the data received.  
5
CONT  
RO  
0
When set, indicates that this is a continuation sample. For  
example if two sequencers were to run back-to-back, this  
indicates that the controller kept continuously sampling at full  
rate.  
4
3
DIFF  
TS  
RO  
RO  
0
0
When set, indicates that this was to be a differential sample.  
When set, indicates that this was to be a temperature sensor  
sample.  
2:0  
MUX  
RO  
0
Indicate which analog input was to be sampled.  
238  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
Name  
Type  
Reset  
Description  
Write-Only Register  
31:1  
0
reserved  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
LB  
WO  
When set, forces a loopback within the digital block to provide  
information on input and unique numbering.  
The 10-bit loopback data is defined as shown in the read for  
bits 9:0 below.  
April 27, 2007  
239  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
12  
Universal Asynchronous Receivers/Transmitters  
(UARTs)  
The Universal Asynchronous Receivers/Transmitters (UARTs) provide fully programmable,  
16C550-type serial interface characteristics. The LM3S612 controller is equipped with two UART  
modules.  
Each UART has the following features:  
„
„
Separate transmit and receive FIFOs  
Programmable FIFO length, including 1-byte deep operation providing conventional  
double-buffered interface  
„
„
„
„
„
„
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Programmable baud-rate generator allowing rates up to 460.8 Kbps  
Standard asynchronous communication bits for start, stop and parity  
False start bit detection  
Line-break generation and detection  
Fully programmable serial interface characteristics:  
5, 6, 7, or 8 data bits  
Even, odd, stick, or no-parity bit generation/detection  
1 or 2 stop bit generation  
240  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
12.1  
Block Diagram  
Figure 12-1. UART Module Block Diagram  
System Clock  
TXFIFO  
16x8  
Interrupt Control  
Interrupt  
UARTIFLS  
UARTIM  
.
.
.
UARTMIS  
UARTRIS  
Identification  
Registers  
UARTICR  
Transmitter  
UnTx  
UARTPCellID0  
Baud Rate  
Generator  
UARTPCellID1  
UARTDR  
UARTPCellID2  
UARTPCellID3  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTPeriphID3  
UARTIBRD  
UARTFBRD  
Receiver  
UnRx  
UART PeriphID4  
RXFIFO  
16x8  
Control / Status  
UARTPeriphID5  
UARTRSR/ECR  
UARTPeriphID6  
.
.
.
UARTFR  
UARTPeriphID7  
UARTLCRH  
UARTCTL  
12.2  
Functional Description  
The Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It  
is similar in functionality to a 16C550 UART, but is not register compatible.  
The UART is configured for transmit and/or receive via the TXEand RXEbits of the UART Control  
(UARTCTL) register (see page 257). Transmit and receive are both enabled out of reset. Before  
any control registers are programmed, the UART must be disabled by clearing the UARTENbit in  
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is  
completed prior to the UART stopping.  
12.2.1  
Transmit/Receive Logic  
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.  
The control logic outputs the serial bit stream beginning with a start bit, and followed by the data  
April 27, 2007  
241  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the  
control registers. See Figure 12-2 for details.  
The receive logic performs serial-to-parallel conversion on the received bit stream after a valid  
start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are  
also performed, and their status accompanies the data that is written to the receive FIFO.  
Figure 12-2. UART Character Frame  
UnTX  
1
1-2  
stop bits  
LSB  
MSB  
5-8 data bits  
0
n
Parity bit  
if enabled  
Start  
12.2.2  
Baud-Rate Generation  
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.  
The number formed by these two values is used by the baud-rate generator to determine the bit  
period. Having a fractional baud-rate divider allows the UART to generate all the standard baud  
rates.  
The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register  
(see page 253) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate  
Divisor (UARTFBRD) register (see page 254). The baud-rate divisor (BRD) has the following  
relationship to the system clock (where BRDI is the integer part of the BRDand BRDF is the  
fractional part, separated by a decimal place.):  
BRD = BRDI + BRDF = SysClk / (16 * Baud Rate)  
The 6-bit fractional number (that is to be loaded into the DIVFRACbit field in the UARTFBRD  
register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64,  
and adding 0.5 to account for rounding errors:  
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)  
The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as  
Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for  
error detection during receive operations.  
Along with the UART Line Control, High Byte (UARTLCRH) register (see page 255), the  
UARTIBRD and UARTFBRD registers form an internal 30-bit register. This internal register is only  
updated when a write operation to UARTLCRH is performed, so any changes to the baud-rate  
divisor must be followed by a write to the UARTLCRH register for the changes to take effect.  
To update the baud-rate registers, there are four possible sequences:  
„
„
„
„
UARTIBRD write, UARTFBRD write, and UARTLCRH write  
UARTFBRD write, UARTIBRD write, and UARTLCRH write  
UARTIBRD write and UARTLCRH write  
UARTFBRD write and UARTLCRH write  
242  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
12.2.3  
Data Transmission  
Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra  
four bits per character for status information. For transmission, data is written into the transmit  
FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters  
indicated in the UARTLCRH register. Data continues to be transmitted until there is no data left in  
the transmit FIFO. The BUSYbit in the UART Flag (UARTFR) register (see page 251) is asserted  
as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains  
asserted while data is being transmitted. The BUSYbit is negated only when the transmit FIFO is  
empty, and the last character has been transmitted from the shift register, including the stop bits.  
The UART can indicate that it is busy even though the UART may no longer be enabled.  
When the receiver is idle (U0Rx or U1Rx is continuously 1) and the data input goes Low (a start bit  
has been received), the receive counter begins running and data is sampled on the eighth cycle of  
Baud16(described in “Transmit/Receive Logic” on page 241).  
The start bit is valid if U0Rx or U1Rx is still low on the eighth cycle of Baud16, otherwise a false  
start bit is detected and it is ignored. Start bit errors can be viewed in the UART Receive Status  
(UARTRSR) register (see page 249). If the start bit was valid, successive data bits are sampled on  
every 16th cycle of Baud16(that is, one bit period later) according to the programmed length of  
the data characters. The parity bit is then checked if parity mode was enabled. Data length and  
parity are defined in the UARTLCRH register.  
Lastly, a valid stop bit is confirmed if U0Rx or U1Rx is High, otherwise a framing error has  
occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits  
associated with that word.  
12.2.4  
FIFO Operation  
The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed  
via the UART Data (UARTDR) register (see page 247). Read operations of the UARTDR register  
return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit  
data in the transmit FIFO.  
Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are  
enabled by setting the FENbit in UARTLCRH (page 255).  
FIFO status can be monitored via the UART Flag (UARTFR) register (see page 251) and the  
UART Receive Status (UARTRSR) register. Hardware monitors empty, full and overrun  
conditions. The UARTFR register contains empty and full flags (TXFE, TXFF, RXFEand RXFFbits)  
and the UARTRSR register shows overrun status via the OEbit.  
The trigger points at which the FIFOs generate interrupts is controlled via the UART Interrupt  
FIFO Level Select (UARTIFLS) register (see page 258). Both FIFOs can be individually  
configured to trigger interrupts at different levels. Available configurations include 1/8, 1/4, 1/2, 3/4  
and 7/8. For example, if the 1/4 option is selected for the receive FIFO, the UART generates a  
receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger  
an interrupt at the 1/2 mark.  
12.2.5  
Interrupts  
The UART can generate interrupts when the following conditions are observed:  
„
„
„
„
Overrun Error  
Break Error  
Parity Error  
Framing Error  
April 27, 2007  
243  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
„
„
„
Receive Timeout  
Transmit (when condition defined in the TXIFLSELbit in the UARTIFLS register is met)  
Receive (when condition defined in the RXIFLSELbit in the UARTIFLS register is met)  
All of the interrupt events are ORed together before being sent to the interrupt controller, so the  
UART can only generate a single interrupt request to the controller at any given time. Software can  
service multiple interrupt events in a single interrupt service routine by reading the UART Masked  
Interrupt Status (UARTMIS) register (see page 262).  
The interrupt events that can trigger a controller-level interrupt are defined in the UART Interrupt  
Mask (UARTIM) register (see page 259) by setting the corresponding IMbit to 1. If interrupts are  
not used, the raw interrupt status is always visible via the UART Raw Interrupt Status (UARTRIS)  
register (see page 261).  
Interrupts are always cleared (for both the UARTMIS and UARTRIS registers) by setting the  
corresponding bit in the UART Interrupt Clear (UARTICR) register (see page 263).  
12.2.6  
Loopback Operation  
The UART can be placed into an internal loopback mode for diagnostic or debug work. This is  
accomplished by setting the LBEbit in the UARTCTL register (see page 257). In loopback mode,  
data transmitted on the U0Tx output is received on the U0Rx input, and data transmitted on U1Tx  
is received on U1Rx.  
12.3  
Initialization and Configuration  
To use the UARTs, the peripheral clock must be enabled by setting the UART0or UART1bits in the  
RCGC1 register.  
This section discusses the steps that are required for using a UART module. For this example, the  
system clock is assumed to be 20 MHz and the desired UART configuration is:  
„
„
„
„
„
„
115200 baud rate  
Data length of 8 bits  
One stop bit  
No parity  
FIFOs disabled  
No interrupts  
The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the  
UARTIBRD and UARTFBRD registers must be written before the UARTLCRH register. Using the  
equation described in “Baud-Rate Generation” on page 242, the BRD can be calculated:  
BRD = 20,000,000 / (16 * 115,200) = 10.8507  
which means that the DIVINTfield of the UARTIBRD register (see page 253) should be set to 10.  
The value to be loaded into the UARTFBRD register (see page 254) is calculated by the equation:  
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54  
With the BRD values in hand, the UART configuration is written to the module in the following  
order:  
1. Disable the UART by clearing the UARTENbit in the UARTCTL register.  
2. Write the integer portion of the BRD to the UARTIBRD register.  
244  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
3. Write the fractional portion of the BRD to the UARTFBRD register.  
4. Write the desired serial parameters to the UARTLCRH register (in this case, a value of  
0x00000060).  
5. Enable the UART by setting the UARTENbit in the UARTCTL register.  
12.4  
Register Map  
Table 12-1 lists the UART registers. The offset listed is a hexadecimal increment to the register’s  
address, relative to that UART’s base address:  
„
„
UART0: 0x4000C000  
UART1: 0x4000D000  
Note: The UART must be disabled (see the UARTENbit in the UARTCTL register on page 257)  
before any of the control registers are reprogrammed. When the UART is disabled during  
a TX or RX operation, the current transaction is completed prior to the UART stopping.  
Table 12-1. UART Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x004  
UARTDR  
0x00000000  
0x00000000  
R/W  
R/W  
Data  
247  
249  
UARTRSR  
UARTECR  
Receive Status (read)  
Error Clear (write)  
0x018  
0x024  
0x028  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x040  
0x044  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
UARTFR  
0x00000090  
0x00000000  
0x00000000  
0x00000000  
0x00000300  
0x00000012  
0x00000000  
0x0000000F  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000011  
0x00000000  
0x00000018  
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
Flag Register (read only)  
Integer Baud-Rate Divisor  
Fractional Baud-Rate Divisor  
Line Control Register, High byte  
Control Register  
251  
253  
254  
255  
257  
258  
259  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
UARTIBRD  
UARTFBRD  
UARTLCRH  
UARTCTL  
UARTIFLS  
Interrupt FIFO Level Select  
Interrupt Mask  
UARTIM  
UARTRIS  
Raw Interrupt Status  
UARTMIS  
RO  
Masked Interrupt Status  
Interrupt Clear  
UARTICR  
W1C  
RO  
UARTPeriphID4  
UARTPeriphID5  
UARTPeriphID6  
UARTPeriphID7  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
Peripheral identification 4  
Peripheral identification 5  
Peripheral identification 6  
Peripheral identification 7  
Peripheral identification 0  
Peripheral identification 1  
Peripheral identification 2  
RO  
RO  
RO  
RO  
RO  
RO  
April 27, 2007  
245  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Table 12-1. UART Register Map (Continued)  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
UARTPeriphID3  
UARTPCellID0  
UARTPCellID1  
UARTPCellID2  
UARTPCellID3  
0x00000001  
0x0000000D  
0x000000F0  
0x00000005  
0x000000B1  
RO  
RO  
RO  
RO  
RO  
Peripheral identification 3  
PrimeCell identification 0  
PrimeCell identification 1  
PrimeCell identification 2  
PrimeCell identification 3  
271  
272  
273  
274  
275  
12.5  
Register Descriptions  
The remainder of this section lists and describes the UART registers, in numerical order by  
address offset.  
246  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 1: UART Data (UARTDR), offset 0x000  
This register is the data register (the interface to the FIFOs).  
When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs  
are disabled, data is stored in the transmitter holding register (the bottom word of the transmit  
FIFO). A write to this register initiates a transmission from the UART.  
For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity  
and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and  
status are stored in the receiving holding register (the bottom word of the receive FIFO). The  
received data can be retrieved by reading this register.  
UART Data (UARTDR)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OE  
BE  
PE  
FE  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
11  
OE  
BE  
RO  
0
UART Overrun Error  
1=New data was received when the FIFO was full, resulting in  
data loss.  
0=There has been no data loss due to a FIFO overrun.  
UART Break Error  
10  
RO  
0
This bit is set to 1 when a break condition is detected, indicating  
that the receive data input was held Low for longer than a full-  
word transmission time (defined as start, data, parity, and stop  
bits).  
In FIFO mode, this error is associated with the character at the  
top of the FIFO. When a break occurs, only one 0 character is  
loaded into the FIFO. The next character is only enabled after  
the received data input goes to a 1 (marking state) and the next  
valid start bit is received.  
9
PE  
RO  
0
UART Parity Error  
This bit is set to 1 when the parity of the received data character  
does not match the parity defined by bits 2 and 7 of the  
UARTLCRH register.  
In FIFO mode, this error is associated with the character at the  
top of the FIFO.  
April 27, 2007  
247  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
8
Name  
FE  
Type  
RO  
Reset  
0
Description  
UART Framing Error  
This bit is set to 1 when the received character does not have a  
valid stop bit (a valid stop bit is 1).  
7:0  
DATA  
R/W  
0
When written, the data that is to be transmitted via the UART.  
When read, the data that was received by the UART.  
248  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004  
The UARTRSR/UARTECR register is the receive status register/error clear register.  
In addition to the UARTDR register, receive status can also be read from the UARTRSR register. If  
the status is read from this register, then the status information corresponds to the entry read from  
UARTDR prior to reading UARTRSR. The status information for overrun is set immediately when  
an overrun condition occurs.  
A write of any value to the UARTECR register clears the framing, parity, break, and overrun errors.  
All the bits are cleared to 0 on reset.  
UART Receive Status (UARTRSR): Read  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OE  
BE  
PE  
FE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
UART Error Clear (UARTECR): Write  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
Name  
Type  
Reset  
Description  
Read-Only Receive Status (UARTRSR) Register  
31:4  
3
reserved  
OE  
RO  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed. The UARTRSR register cannot be written.  
UART Overrun Error  
When this bit is set to 1, data is received and the FIFO is already  
full. This bit is cleared to 0 by a write to UARTECR.  
The FIFO contents remain valid since no further data is written  
when the FIFO is full, only the contents of the shift register are  
overwritten. The CPU must now read the data in order to empty  
the FIFO.  
April 27, 2007  
249  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
2
Name  
BE  
Type  
RO  
Reset  
0
Description  
UART Break Error  
This bit is set to 1 when a break condition is detected, indicating  
that the received data input was held Low for longer than a full-  
word transmission time (defined as start, data, parity, and stop  
bits).  
This bit is cleared to 0 by a write to UARTECR.  
In FIFO mode, this error is associated with the character at the  
top of the FIFO. When a break occurs, only one 0 character is  
loaded into the FIFO. The next character is only enabled after  
the receive data input goes to a 1 (marking state) and the next  
valid start bit is received.  
1
0
PE  
FE  
RO  
RO  
0
0
UART Parity Error  
This bit is set to 1 when the parity of the received data character  
does not match the parity defined by bits 2 and 7 of the  
UARTLCRH register.  
This bit is cleared to 0 by a write to UARTECR.  
UART Framing Error  
This bit is set to 1 when the received character does not have a  
valid stop bit (a valid stop bit is 1).  
This bit is cleared to 0 by a write to UARTECR.  
In FIFO mode, this error is associated with the character at the  
top of the FIFO.  
Write-Only Error Clear (UARTECR) Register  
31:8  
7:0  
reserved  
DATA  
WO  
WO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
A write to this register of any data clears the framing, parity,  
break and overrun flags.  
250  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 3: UART Flag (UARTFR), offset 0x018  
The UARTFR register is the flag register. After reset, the TXFF, RXFF, and BUSYbits are 0, and  
TXFEand RXFEbits are 1.  
UART Flag (UARTFR)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXFE  
RXFF  
TXFF  
RXFE  
BUSY  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7
6
5
TXFE  
RXFF  
TXFF  
RO  
RO  
RO  
1
UART Transmit FIFO Empty  
The meaning of this bit depends on the state of the FENbit in the  
UARTLCRH register.  
If the FIFO is disabled (FENis 0), this bit is set when the transmit  
holding register is empty.  
If the FIFO is enabled (FENis 1), this bit is set when the transmit  
FIFO is empty.  
0
UART Receive FIFO Full  
The meaning of this bit depends on the state of the FENbit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the receive holding  
register is full.  
If the FIFO is enabled, this bit is set when the receive FIFO is  
full.  
0
UART Transmit FIFO Full  
The meaning of this bit depends on the state of the FENbit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the transmit holding  
register is full.  
If the FIFO is enabled, this bit is set when the transmit FIFO is  
full.  
April 27, 2007  
251  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
4
Name  
RXFE  
Type  
RO  
Reset  
1
Description  
UART Receive FIFO Empty  
The meaning of this bit depends on the state of the FENbit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the receive holding  
register is empty.  
If the FIFO is enabled, this bit is set when the receive FIFO is  
empty.  
3
BUSY  
RO  
RO  
0
0
UART Busy  
When this bit is 1, the UART is busy transmitting data. This bit  
remains set until the complete byte, including all stop bits, has  
been sent from the shift register.  
This bit is set as soon as the transmit FIFO becomes non-empty  
(regardless of whether UART is enabled).  
2:0  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
252  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024  
The UARTIBRD register is the integer part of the baud-rate divisor value. All the bits are cleared  
on reset. The minimum possible divide ratio is 1 (when UARTIBRD=0), in which case the  
UARTFBRD register is ignored. When changing the UARTIBRD register, the new value does not  
take effect until transmission/reception of the current character is complete. Any changes to the  
baud-rate divisor must be followed by a write to the UARTLCRH register. See “Baud-Rate  
Generation” on page 242 for configuration details.  
UART Integer Baud-Rate Divisor  
Offset 0x024  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DIVINT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
15:0  
DIVINT  
R/W  
0x0000  
Integer Baud-Rate Divisor  
April 27, 2007  
253  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028  
The UARTFBRD register is the fractional part of the baud-rate divisor value. All the bits are  
cleared on reset. When changing the UARTFBRD register, the new value does not take effect until  
transmission/reception of the current character is complete. Any changes to the baud-rate divisor  
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 242  
for configuration details.  
UART Fractional Baud-Rate Divisor (UARTFBRD)  
Offset 0x028  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DIVFRAC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
5:0  
DIVFRAC  
R/W  
0x00  
Fractional Baud-Rate Divisor  
254  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 6: UART Line Control (UARTLCRH), offset 0x02C  
The UARTLCRH register is the line control register. Serial parameters such as data length, parity  
and stop bit selection are implemented in this register.  
When updating the baud-rate divisor (UARTIBRD and/or UARTIFRD), the UARTLCRH register  
must also be written. The write strobe for the baud-rate divisor registers is tied to the UARTLCRH  
register.  
UART Line Control (UARTLCRH)  
Offset 0x02C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SPS  
WLEN  
FEN  
STP2  
EPS  
PEN  
BRK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7
SPS  
R/W  
0
UART Stick Parity Select  
When bits 1, 2 and 7 of UARTLCRH are set, the parity bit is  
transmitted and checked as a 0. When bits 1 and 7 are set and 2  
is cleared, the parity bit is transmitted and checked as a 1.  
When this bit is cleared, stick parity is disabled.  
UART Word Length  
6:5  
WLEN  
R/W  
0
The bits indicate the number of data bits transmitted or received  
in a frame as follows:  
0x3: 8 bits  
0x2: 7 bits  
0x1: 6 bits  
0x0: 5 bits (default)  
4
3
FEN  
R/W  
R/W  
0
0
UART Enable FIFOs  
If this bit is set to 1, transmit and receive FIFO buffers are  
enabled (FIFO mode).  
When cleared to 0, FIFOs are disabled (Character mode). The  
FIFOs become 1-byte-deep holding registers.  
STP2  
UART Two Stop Bits Select  
If this bit is set to 1, two stop bits are transmitted at the end of a  
frame. The receive logic does not check for two stop bits being  
received.  
April 27, 2007  
255  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
2
Name  
EPS  
Type  
R/W  
Reset  
0
Description  
UART Even Parity Select  
If this bit is set to 1, even parity generation and checking is  
performed during transmission and reception, which checks for  
an even number of 1s in data and parity bits.  
When cleared to 0, then odd parity is performed, which checks  
for an odd number of 1s.  
This bit has no effect when parity is disabled by the PENbit.  
1
0
PEN  
BRK  
R/W  
R/W  
0
0
UART Parity Enable  
If this bit is set to 1, parity checking and generation is enabled;  
otherwise, parity is disabled and no parity bit is added to the data  
frame.  
UART Send Break  
If this bit is set to 1, a Low level is continually output on the UNTX  
output, after completing transmission of the current character.  
For the proper execution of the break command, the software  
must set this bit for at least two frames (character periods). For  
normal use, this bit must be cleared to 0.  
256  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 7: UART Control (UARTCTL), offset 0x030  
The UARTCTL register is the control register. All the bits are cleared on reset except for the  
Transmit Enable (TXE)and Receive Enable (RXE)bits, which are set to 1.  
To enable the UART module, the UARTENbit must be set to 1. If software requires a configuration  
change in the module, the UARTENbit must be cleared before the configuration changes are  
written. If the UART is disabled during a transmit or receive operation, the current transaction is  
completed prior to the UART stopping.  
UART Control (UARTCR)  
Offset 0x030  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
RXE  
TXE  
LBE  
UARTEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
9
8
7
RXE  
TXE  
LBE  
R/W  
R/W  
R/W  
1
UART Receive Enable  
If this bit is set to 1, the receive section of the UART is enabled.  
When the UART is disabled in the middle of a receive, it  
completes the current character before stopping.  
1
0
UART Transmit Enable  
If this bit is set to 1, the transmit section of the UART is enabled.  
When the UART is disabled in the middle of a transmission, it  
completes the current character before stopping.  
UART Loop Back Enable  
If this bit is set to 1, the UNTXpath is fed through the UNRXpath.  
6:1  
0
reserved  
UARTEN  
RO  
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
R/W  
UART Enable  
If this bit is set to 1, the UART is enabled. When the UART is  
disabled in the middle of transmission or reception, it completes  
the current character before stopping.  
April 27, 2007  
257  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034  
The UARTIFLS register is the interrupt FIFO level select register. You can use this register to  
define the FIFO level at which the TXRISand RXRISbits in the UARTRIS register are triggered.  
The interrupts are generated based on a transition through a level rather than being based on the  
level. That is, the interrupts are generated when the fill level progresses through the trigger level.  
For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the  
module is receiving the 9th character.  
Out of reset, the TXIFLSELand RXIFLSELbits are configured so that the FIFOs trigger an  
interrupt at the half-way mark.  
UART Interrupt FIFO Level Select (UARTIFLS)  
Offset 0x034  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RXIFLSEL  
TXIFLSEL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
5:3  
RXIFLSEL  
R/W  
0X2  
UART Receive Interrupt FIFO Level Select  
The trigger points for the receive interrupt are as follows:  
000: RX FIFO 1/8 full  
001: RX FIFO 1/4 full  
010: RX FIFO 1/2 full (default)  
011: RX FIFO 3/4 full  
100: RX FIFO 7/8 full  
101-111: Reserved  
2:0  
TXIFLSEL  
R/W  
0X2  
UART Transmit Interrupt FIFO Level Select  
The trigger points for the transmit interrupt are as follows:  
000: TX FIFO 1/8 full  
001: TX FIFO 1/4 full  
010: TX FIFO 1/2 full (default)  
011: TX FIFO 3/4 full  
100: TX FIFO 7/8 full  
101-111: Reserved  
258  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 9: UART Interrupt Mask (UARTIM), offset 0x038  
The UARTIM register is the interrupt mask set/clear register.  
On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to  
a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a  
0 prevents the raw interrupt signal from being sent to the interrupt controller.  
UART Interrupt Mask (UARTIM)  
Offset 0x038  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEIM  
BEIM  
PEIM  
FEIM  
RTIM  
TXIM  
RXIM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
OEIM  
BEIM  
PEIM  
FEIM  
RTIM  
R/W  
R/W  
R/W  
R/W  
R/W  
0
UART Overrun Error Interrupt Mask  
On a read, the current mask for the OEIMinterrupt is returned.  
Setting this bit to 1 promotes the OEIMinterrupt to the interrupt  
controller.  
9
0
0
0
0
UART Break Error Interrupt Mask  
On a read, the current mask for the BEIMinterrupt is returned.  
Setting this bit to 1 promotes the BEIMinterrupt to the interrupt  
controller.  
8
UART Parity Error Interrupt Mask  
On a read, the current mask for the PEIMinterrupt is returned.  
Setting this bit to 1 promotes the PEIMinterrupt to the interrupt  
controller.  
7
UART Framing Error Interrupt Mask  
On a read, the current mask for the FEIMinterrupt is returned.  
Setting this bit to 1 promotes the FEIMinterrupt to the interrupt  
controller.  
6
UART Receive Time-Out Interrupt Mask  
On a read, the current mask for the RTIMinterrupt is returned.  
Setting this bit to 1 promotes the RTIMinterrupt to the interrupt  
controller.  
April 27, 2007  
259  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Bit/Field  
5
Name  
TXIM  
Type  
R/W  
Reset  
0
Description  
UART Transmit Interrupt Mask  
On a read, the current mask for the TXIMinterrupt is returned.  
Setting this bit to 1 promotes the TXIMinterrupt to the interrupt  
controller.  
4
RXIM  
R/W  
RO  
0
0
UART Receive Interrupt Mask  
On a read, the current mask for the RXIMinterrupt is returned.  
Setting this bit to 1 promotes the RXIMinterrupt to the interrupt  
controller.  
3:0  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
260  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C  
The UARTRIS register is the raw interrupt status register. On a read, this register gives the current  
raw status value of the corresponding interrupt. A write has no effect.  
UART Raw Interrupt Status (UARTRIS)  
Offset 0x03C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
OERIS  
BERIS  
PERIS  
FERIS  
RTRIS  
TXRIS  
RXRIS  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
UART Overrun Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
0
0
UART Break Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
8
UART Parity Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
7
0
UART Framing Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
6
0
UART Receive Time-Out Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
5
0
UART Transmit Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
4
0
UART Receive Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
3:0  
0xF  
This reserved bit is read-only and has a reset value of 0xF.  
April 27, 2007  
261  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040  
The UARTMIS register is the masked interrupt status register. On a read, this register gives the  
current masked status value of the corresponding interrupt. A write has no effect.  
UART Masked Interrupt Status (UARTMIS)  
Offset 0x040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
OEMIS  
BEMIS  
PEMIS  
FEMIS  
RTMIS  
TXMIS  
RXMIS  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
UART Overrun Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
0
0
0
0
0
0
0
UART Break Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
8
UART Parity Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
7
UART Framing Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
6
UART Receive Time-Out Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
5
UART Transmit Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
4
UART Receive Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
3:0  
Reserved bits return an indeterminate value, and should never  
be changed.  
262  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 12: UART Interrupt Clear (UARTICR), offset 0x044  
The UARTICR register is the interrupt clear register. On a write of 1, the corresponding interrupt  
(both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.  
UART Interrupt Clear (UARTICR)  
Offset 0x044  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEIC  
BEIC  
PEIC  
FEIC  
RTIC  
TXIC  
RXIC  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
RO  
RO  
RO  
RO  
0
0
0
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
10  
9
OEIC  
BEIC  
W1C  
W1C  
W1C  
W1C  
W1C  
W1C  
W1C  
RO  
0
Overrun Error Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
0
0
0
0
0
0
0
Break Error Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
8
PEIC  
Parity Error Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
7
FEIC  
Framing Error Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
6
RTIC  
Receive Time-Out Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
5
TXIC  
Transmit Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
4
RXIC  
Receive Interrupt Clear  
0: No effect on the interrupt.  
1: Clears interrupt.  
3:0  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
April 27, 2007  
263  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 4 (UARTPeriphID4)  
Offset 0xFD0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID4  
RO  
0x00  
UART Peripheral ID Register[7:0]  
264  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 5 (UARTPeriphID5)  
Offset 0xFD4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID5  
RO  
0x00  
UART Peripheral ID Register[15:8]  
April 27, 2007  
265  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 6 (UARTPeriphID6)  
Offset 0xFD8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID6  
RO  
0x00  
UART Peripheral ID Register[23:16]  
266  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 7 (UARTPeriphID7)  
Offset 0xFDC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID7  
RO  
0x00  
UART Peripheral ID Register[31:24]  
April 27, 2007  
267  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 0 (UARTPeriphID0)  
Offset 0xFE0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID0  
RO  
0x11  
UART Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this  
peripheral.  
268  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 1 (UARTPeriphID1)  
Offset 0xFE4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID1  
RO  
0x00  
UART Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this  
peripheral.  
April 27, 2007  
269  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 2 (UARTPeriphID2)  
Offset 0xFE8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID2  
RO  
0x18  
UART Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this  
peripheral.  
270  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 3 (UARTPeriphID3)  
Offset 0xFEC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
PID3  
RO  
0x01  
UART Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this  
peripheral.  
April 27, 2007  
271  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Primecell Identification 0 (UARTPCellID0)  
Offset 0xFF0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID0  
RO  
0x0D  
UART PrimeCell ID Register[7:0]  
Provides software a standard cross-peripheral identification  
system.  
272  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Primecell Identification 1 (UARTPCellID1)  
Offset 0xFF4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID1  
RO  
0xF0  
UART PrimeCell ID Register[15:8]  
Provides software a standard cross-peripheral identification  
system.  
April 27, 2007  
273  
Preliminary  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Primecell Identification 2 (UARTPCellID2)  
Offset 0xFF8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID2  
RO  
0x05  
UART PrimeCell ID Register[23:16]  
Provides software a standard cross-peripheral identification  
system.  
274  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Primecell Identification 3 (UARTPCellID3)  
Offset 0xFFC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
CID3  
RO  
0xB1  
UART PrimeCell ID Register[31:24]  
Provides software a standard cross-peripheral identification  
system.  
April 27, 2007  
275  
Preliminary  
Synchronous Serial Interface (SSI)  
13  
Synchronous Serial Interface (SSI)  
The Stellaris Synchronous Serial Interface (SSI) is a master or slave interface for synchronous  
serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or  
Texas Instruments synchronous serial interfaces.  
The Stellaris SSI has the following features:  
„
„
„
„
Master or slave operation  
Programmable clock bit rate and prescale  
Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep  
Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments  
synchronous serial interfaces  
„
„
Programmable data frame size from 4 to 16 bits  
Internal loopback test mode for diagnostic/debug testing  
13.1  
Block Diagram  
Figure 13-1. SSI Module Block Diagram  
Interrupt  
Interrupt Control  
SSIIM  
SSIMIS  
SSIRIS  
SSIICR  
TxFIFO  
8 x 16  
Control / Status  
.
.
.
SSICR0  
SSICR1  
SSISR  
SSITx  
SSIRx  
SSIClk  
SSIFss  
Transmit/  
Receive  
Logic  
SSIDR  
RxFIFO  
8 x 16  
System Clock  
.
.
.
Clock  
Prescaler  
Identification Registers  
SSICPSR  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
SSIPCellID3  
SSIPeriphID0  
SSIPeriphID1  
SSIPeriphID2  
SSIPeriphID3  
SSIPeriphID4  
SSIPeriphID5  
SSIPeriphID6  
SSIPeriphID7  
276  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
13.2  
Functional Description  
The SSI performs serial-to-parallel conversion on data received from a peripheral device. The  
CPU accesses data, control, and status information. The transmit and receive paths are buffered  
with internal FIFO memories allowing up to eight 16-bit values to be stored independently in both  
transmit and receive modes.  
13.2.1  
Bit Rate Generation  
The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output  
clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by  
peripheral devices.  
The serial bit rate is derived by dividing down the 50-MHz input clock. The clock is first divided by  
an even prescale value CPSDVSRfrom 2 to 254, which is programmed in the SSI Clock Prescale  
(SSICPSR) register (see page 294). The clock is further divided by a value from 1 to 256, which is  
1 + SCR, where SCR is the value programmed in the SSI Control0 (SSICR0) register (see  
page 288).  
The frequency of the output clock SSICLKis defined by:  
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))  
Note that although the SSICLKtransmit clock can theoretically be 25 MHz, the module may not be  
able to operate at that speed. For master mode, the system clock must be at least two times faster  
than the SSICLK. For slave mode, the system clock must be at least 12 times faster than the  
SSICLK.  
See “Electrical Characteristics” on page 398 to view SSI timing parameters.  
13.2.2  
FIFO Operation  
13.2.2.1  
Transmit FIFO  
The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The  
CPU writes data to the FIFO by writing the SSI Data (SSIDR) register (see page 292), and data is  
stored in the FIFO until it is read out by the transmission logic.  
When configured as a master or a slave, parallel data is written into the transmit FIFO prior to  
serial conversion and transmission to the attached slave or master, respectively, through the  
SSITXpin.  
13.2.2.2  
Receive FIFO  
The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.  
Received data from the serial interface is stored in the buffer until read out by the CPU, which  
accesses the read FIFO by reading the SSIDR register.  
When configured as a master or slave, serial data received through the SSIRXpin is registered  
prior to parallel loading into the attached slave or master receive FIFO, respectively.  
13.2.3  
Interrupts  
The SSI can generate interrupts when the following conditions are observed:  
„
„
„
„
Transmit FIFO service  
Receive FIFO service  
Receive FIFO time-out  
Receive FIFO overrun  
April 27, 2007  
277  
Preliminary  
Synchronous Serial Interface (SSI)  
All of the interrupt events are ORed together before being sent to the interrupt controller, so the  
SSI can only generate a single interrupt request to the controller at any given time. You can mask  
each of the four individual maskable interrupts by setting the appropriate bits in the SSI Interrupt  
Mask (SSIIM) register (see page 295). Setting the appropriate mask bit to 1 enables the interrupt.  
Provision of the individual outputs, as well as a combined interrupt output, allows use of either a  
global interrupt service routine, or modular device drivers to handle interrupts. The transmit and  
receive dynamic dataflow interrupts have been separated from the status interrupts so that data  
can be read or written in response to the FIFO trigger levels. The status of the individual interrupt  
sources can be read from the SSI Raw Interrupt Status (SSIRIS) and SSI Masked Interrupt  
Status (SSIMIS) registers (see page 296 and page 297, respectively).  
13.2.4  
Frame Formats  
Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is  
transmitted starting with the MSB. There are three basic frame types that can be selected:  
„
„
„
Texas Instruments synchronous serial  
Freescale SPI  
MICROWIRE  
For all three formats, the serial clock (SSICLK) is held inactive while the SSI is idle, and SSICLK  
transitions at the programmed frequency only during active transmission or reception of data. The  
idle state of SSICLKis utilized to provide a receive timeout indication that occurs when the receive  
FIFO still contains data after a timeout period.  
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low,  
and is asserted (pulled down) during the entire transmission of the frame.  
For Texas Instruments synchronous serial frame format, the SSIFSSpin is pulsed for one serial  
clock period starting at its rising edge, prior to the transmission of each frame. For this frame  
format, both the SSI and the off-chip slave device drive their output data on the rising edge of  
SSICLK, and latch data from the other device on the falling edge.  
Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a  
special master-slave messaging technique, which operates at half-duplex. In this mode, when a  
frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no  
incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes  
it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent,  
responds with the requested data. The returned data can be 4 to 16 bits in length, making the total  
frame length anywhere from 13 to 25 bits.  
13.2.4.1  
Texas Instruments Synchronous Serial Frame Format  
Figure 13-2 shows the Texas Instruments synchronous serial frame format for a single transmitted  
frame.  
Figure 13-2. TI Synchronous Serial Frame Format (Single Transfer)  
SSIClk  
SSIFss  
MSB  
LSB  
SSITx/SSIRx  
4 to 16 bits  
278  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
In this mode, SSICLKand SSIFSSare forced Low, and the transmit data line SSITXis tristated  
whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSSis  
pulsed High for one SSICLKperiod. The value to be transmitted is also transferred from the  
transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSICLK,  
the MSB of the 4 to 16-bit data frame is shifted out on the SSITXpin. Likewise, the MSB of the  
received data is shifted onto the SSIRXpin by the off-chip serial slave device.  
Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on  
the falling edge of each SSICLK. The received data is transferred from the serial shifter to the  
receive FIFO on the first rising edge of SSICLKafter the LSB has been latched.  
Figure 13-3 shows the Texas Instruments synchronous serial frame format when back-to-back  
frames are transmitted.  
Figure 13-3. TI Synchronous Serial Frame Format (Continuous Transfer)  
SSIClk  
SSIFss  
MSB  
LSB  
SSITx/SSIRx  
4 to 16 bits  
13.2.4.2  
Freescale SPI Frame Format  
The Freescale SPI interface is a four-wire interface where the SSIFSSsignal behaves as a slave  
select. The main feature of the Freescale SPI format is that the inactive state and phase of the  
SSICLKsignal are programmable through the SPOand SPHbits within the SSISCR0 control  
register.  
SPO Clock Polarity Bit  
When the SPOclock polarity control bit is Low, it produces a steady state Low value on the  
SSICLKpin. If the SPObit is High, a steady state High value is placed on the SSICLKpin when  
data is not being transferred.  
SPH Phase Control Bit  
The SPHphase control bit selects the clock edge that captures data and allows it to change state.  
It has the most impact on the first bit transmitted by either allowing or not allowing a clock  
transition before the first data capture edge. When the SPHphase control bit is Low, data is  
captured on the first clock edge transition. If the SPHbit is High, data is captured on the second  
clock edge transition.  
13.2.4.3  
Freescale SPI Frame Format with SPO=0 and SPH=0  
Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and  
SPH=0 are shown in Figure 13-4 and Figure 13-5.  
April 27, 2007  
279  
Preliminary  
Synchronous Serial Interface (SSI)  
Figure 13-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
SSITx  
MSB  
LSB  
LSB  
Q
4 to 16 bits  
MSB  
Figure 13-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
LSB  
LSB  
MSB  
LSB  
LSB  
MSB  
4 to 16 bits  
SSITx  
MSB  
MSB  
In this configuration, during idle periods:  
„
„
„
„
„
SSICLKis forced Low  
SSIFSSis forced High  
The transmit data line SSITXis arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSICLKpad  
When the SSI is configured as a slave, it disables the SSICLKpad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFSSmaster signal being driven Low. This causes slave data to be enabled  
onto the SSIRXinput line of the master. The master SSITXoutput pad is enabled.  
One half SSICLKperiod later, valid master data is transferred to the SSITXpin. Now that both the  
master and slave data have been set, the SSICLKmaster clock pin goes High after one further  
half SSICLKperiod.  
The data is now captured on the rising and propagated on the falling edges of the SSICLKsignal.  
In the case of a single word transmission, after all bits of the data word have been transferred, the  
SSIFSSline is returned to its idle High state one SSICLKperiod after the last bit has been  
captured.  
However, in the case of continuous back-to-back transmissions, the SSIFSSsignal must be  
pulsed High between each data word transfer. This is because the slave select pin freezes the  
data in its serial peripheral register and does not allow it to be altered if the SPHbit is logic zero.  
Therefore, the master device must raise the SSIFSSpin of the slave device between each data  
transfer to enable the serial peripheral data write. On completion of the continuous transfer, the  
SSIFSSpin is returned to its idle state one SSICLKperiod after the last bit has been captured.  
13.2.4.4  
Freescale SPI Frame Format with SPO=0 and SPH=1  
The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in  
Figure 13-6, which covers both single and continuous transfers.  
280  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 13-6. Freescale SPI Frame Format with SPO=0 and SPH=1  
SSIClk  
SSIFss  
SSIRx  
SSITx  
Q
LSB  
LSB  
Q
MSB  
MSB  
4 to 16 bits  
In this configuration, during idle periods:  
„
„
„
„
„
SSICLKis forced Low  
SSIFSSis forced High  
The transmit data line SSITXis arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSICLKpad  
When the SSI is configured as a slave, it disables the SSICLKpad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFSSmaster signal being driven Low. The master SSITXoutput is enabled.  
After a further one half SSICLKperiod, both master and slave valid data is enabled onto their  
respective transmission lines. At the same time, the SSICLKis enabled with a rising edge  
transition.  
Data is then captured on the falling edges and propagated on the rising edges of the SSICLK  
signal.  
In the case of a single word transfer, after all bits have been transferred, the SSIFSSline is  
returned to its idle High state one SSICLKperiod after the last bit has been captured.  
For continuous back-to-back transfers, the SSIFSSpin is held Low between successive data  
words and termination is the same as that of the single word transfer.  
13.2.4.5  
Freescale SPI Frame Format with SPO=1 and SPH=0  
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and  
SPH=0 are shown in Figure 13-7 and Figure 13-8.  
Figure 13-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
SSITx  
MSB  
LSB  
LSB  
Q
4 to 16 bits  
MSB  
April 27, 2007  
281  
Preliminary  
Synchronous Serial Interface (SSI)  
Figure 13-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0  
SSIClk  
SSIFss  
LSB  
MSB  
LSB  
MSB  
SSITx/SSIRx  
4 to 16 bits  
In this configuration, during idle periods:  
„
„
„
„
„
SSICLKis forced High  
SSIFSSis forced High  
The transmit data line SSITXis arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSICLKpad  
When the SSI is configured as a slave, it disables the SSICLKpad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFSSmaster signal being driven Low, which causes slave data to be  
immediately transferred onto the SSIRXline of the master. The master SSITXoutput pad is  
enabled.  
One half period later, valid master data is transferred to the SSITXline. Now that both the master  
and slave data have been set, the SSICLKmaster clock pin becomes Low after one further half  
SSICLKperiod. This means that data is captured on the falling edges and propagated on the rising  
edges of the SSICLKsignal.  
In the case of a single word transmission, after all bits of the data word are transferred, the  
SSIFSSline is returned to its idle High state one SSICLKperiod after the last bit has been  
captured.  
However, in the case of continuous back-to-back transmissions, the SSIFSSsignal must be  
pulsed High between each data word transfer. This is because the slave select pin freezes the  
data in its serial peripheral register and does not allow it to be altered if the SPHbit is logic zero.  
Therefore, the master device must raise the SSIFSSpin of the slave device between each data  
transfer to enable the serial peripheral data write. On completion of the continuous transfer, the  
SSIFSSpin is returned to its idle state one SSICLKperiod after the last bit has been captured.  
13.2.4.6  
Freescale SPI Frame Format with SPO=1 and SPH=1  
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in  
Figure 13-9, which covers both single and continuous transfers.  
Figure 13-9. Freescale SPI Frame Format with SPO=1 and SPH=1  
SSIClk  
SSIFss  
SSIRx  
SSITx  
Q
LSB  
LSB  
Q
MSB  
MSB  
4 to 16 bits  
Note: Q is undefined in Figure 13-9.  
282  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
In this configuration, during idle periods:  
„
„
„
„
„
SSICLKis forced High  
SSIFSSis forced High  
The transmit data line SSITXis arbitrarily forced Low  
When the SSI is configured as a master, it enables the SSICLKpad  
When the SSI is configured as a slave, it disables the SSICLKpad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFSSmaster signal being driven Low. The master SSITXoutput pad is enabled.  
After a further one-half SSICLKperiod, both master and slave data are enabled onto their  
respective transmission lines. At the same time, SSICLKis enabled with a falling edge transition.  
Data is then captured on the rising edges and propagated on the falling edges of the SSICLK  
signal.  
After all bits have been transferred, in the case of a single word transmission, the SSIFSSline is  
returned to its idle high state one SSICLKperiod after the last bit has been captured.  
For continuous back-to-back transmissions, the SSIFSSpin remains in its active Low state, until  
the final bit of the last word has been captured, and then returns to its idle state as described  
above.  
For continuous back-to-back transfers, the SSIFSSpin is held Low between successive data  
words and termination is the same as that of the single word transfer.  
13.2.4.7  
MICROWIRE Frame Format  
Figure 13-10 shows the MICROWIRE frame format, again for a single frame. Figure 13-11 shows  
the same format when back-to-back frames are transmitted.  
Figure 13-10. MICROWIRE Frame Format (Single Frame)  
SSIClk  
SSIFss  
MSB  
LSB  
SSITx  
SSIRx  
8-bit control  
MSB  
LSB  
0
4 to 16 bits  
output data  
MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead  
of full-duplex, using a master-slave message passing technique. Each serial transmission begins  
with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this  
transmission, no incoming data is received by the SSI. After the message has been sent, the  
off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control  
message has been sent, responds with the required data. The returned data is 4 to 16 bits in  
length, making the total frame length anywhere from 13 to 25 bits.  
In this configuration, during idle periods:  
„
„
„
SSICLKis forced Low  
SSIFSSis forced High  
The transmit data line SSITXis arbitrarily forced Low  
April 27, 2007  
283  
Preliminary  
Synchronous Serial Interface (SSI)  
A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of  
SSIFSScauses the value contained in the bottom entry of the transmit FIFO to be transferred to  
the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out  
onto the SSITXpin. SSIFSSremains Low for the duration of the frame transmission. The SSIRX  
pin remains tristated during this transmission.  
The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of  
each SSICLK. After the last bit is latched by the slave device, the control byte is decoded during a  
one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is  
driven onto the SSIRXline on the falling edge of SSICLK. The SSI in turn latches each bit on the  
rising edge of SSICLK. At the end of the frame, for single transfers, the SSIFSSsignal is pulled  
High one clock period after the last bit has been latched in the receive serial shifter, which causes  
the data to be transferred to the receive FIFO.  
Note: The off-chip slave device can tristate the receive line either on the falling edge of SSICLK  
after the LSB has been latched by the receive shifter, or when the SSIFSSpin goes High.  
For continuous transfers, data transmission begins and ends in the same manner as a single  
transfer. However, the SSIFSSline is continuously asserted (held Low) and transmission of data  
occurs back-to-back. The control byte of the next frame follows directly after the LSB of the  
received data from the current frame. Each of the received values is transferred from the receive  
shifter on the falling edge of SSICLK, after the LSB of the frame has been latched into the SSI.  
Figure 13-11. MICROWIRE Frame Format (Continuous Transfer)  
SSIClk  
SSIFss  
LSB  
MSB  
LSB  
SSITx  
8-bit control  
SSIRx  
MSB  
LSB  
MSB  
0
4 to 16 bits  
output data  
In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of  
SSICLKafter SSIFSShas gone Low. Masters that drive a free-running SSICLKmust ensure that  
the SSIFSSsignal has sufficient setup and hold margins with respect to the rising edge of  
SSICLK.  
Figure 13-12 illustrates these setup and hold time requirements. With respect to the SSICLKrising  
edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFSSmust have a  
setup of at least two times the period of SSICLKon which the SSI operates. With respect to the  
SSICLKrising edge previous to this edge, SSIFSSmust have a hold of at least one SSICLK  
period.  
284  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 13-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements  
tSetup =(2*tSSIClk  
tHold=tSSIClk  
)
SSIClk  
SSIFss  
SSIRx  
First RX data to be  
sampled by SSI slave  
13.3  
Initialization and Configuration  
To use the SSI, its peripheral clock must be enabled by setting the SSIbit in the RCGC1 register.  
For each of the frame formats, the SSI is configured using the following steps:  
1. Ensure that the SSEbit in the SSICR1 register is disabled before making any configuration  
changes.  
2. Select whether the SSI is a master or slave:  
a. For master operations, set the SSICR1 register to 0x00000000.  
b. For slave mode (output enabled), set the SSICR1 register to 0x00000004.  
c. For slave mode (output disabled), set the SSICR1 register to 0x0000000C.  
3. Configure the clock prescale divisor by writing the SSICPSR register.  
4. Write the SSICR0 register with the following configuration:  
Serial clock rate (SCR)  
Desired clock phase/polarity, if using Freescale SPI mode (SPHand SPO)  
The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)  
The data size (DSS)  
5. Enable the SSI by setting the SSEbit in the SSICR1 register.  
As an example, assume the SSI must be configured to operate with the following parameters:  
„
„
„
„
Master operation  
Freescale SPI mode (SPO=1, SPH=1)  
1 Mbps bit rate  
8 data bits  
Assuming the system clock is 20 MHz, the bit rate calculation would be:  
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR)) ' 1x106 = 20x106 / (CPSDVSR * (1 +  
SCR))  
In this case, if CPSDVSR=2, SCRmust be 9.  
The configuration sequence would be as follows:  
1. Ensure that the SSEbit in the SSICR1 register is disabled.  
2. Write the SSICR1 register with a value of 0x00000000.  
April 27, 2007  
285  
Preliminary  
Synchronous Serial Interface (SSI)  
3. Write the SSICPSR register with a value of 0x00000002.  
4. Write the SSICR0 register with a value of 0x000009C7.  
5. The SSI is then enabled by setting the SSEbit in the SSICR1 register to 1.  
13.4  
Register Map  
Table 13-1 lists the SSI registers. The offset listed is a hexadecimal increment to the register’s  
address, relative to the SSI base address of 0x40008000.  
Note: The SSI must be disabled (see the SSEbit in the SSICR1 register) before any of the  
control registers are reprogrammed.  
Table 13-1. SSI Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
SSICR0  
0x00000000  
0x00000000  
0x00000000  
0x00000003  
0x00000000  
0x00000000  
0x00000008  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000022  
0x00000000  
0x00000018  
0x00000001  
0x0000000D  
0x000000F0  
0x00000005  
0x000000B1  
R/W  
R/W  
R/W  
RO  
R/W  
R/W  
RO  
RO  
W1C  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Control 0  
288  
290  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
SSICR1  
Control 1  
SSIDR  
Data  
SSISR  
Status  
SSICPSR  
SSIIM  
Clock prescale  
Interrupt mask  
SSIRIS  
Raw interrupt status  
Masked interrupt status  
Interrupt clear  
SSIMIS  
SSIICR  
SSIPeriphID4  
SSIPeriphID5  
SSIPeriphID6  
SSIPeriphID7  
SSIPeriphID0  
SSIPeriphID1  
SSIPeriphID2  
SSIPeriphID3  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
SSIPCellID3  
Peripheral identification 4  
Peripheral identification 5  
Peripheral identification 6  
Peripheral identification 7  
Peripheral identification 0  
Peripheral identification 1  
Peripheral identification 2  
Peripheral identification 3  
PrimeCell identification 0  
PrimeCell identification 1  
PrimeCell identification 2  
PrimeCell identification 3  
286  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
13.5  
Register Descriptions  
The remainder of this section lists and describes the SSI registers, in numerical order by address  
offset.  
April 27, 2007  
287  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 1: SSI Control 0 (SSICR0), offset 0x000  
SSICR0 is control register 0 and contains bit fields that control various functions within the SSI  
module. Functionality such as protocol mode, clock rate and data size are configured in this  
register.  
SSI Control 0 (SSICR0)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SCR  
SPH  
SPO  
FRF  
DSS  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
15:8  
SCR  
R/W  
0
SSI Serial Clock Rate  
The value SCRis used to generate the transmit and receive bit  
rate of the SSI. The bit rate is:  
BR= FSSICLK/(CPSDVSR * (1 + SCR))  
where CPSDVSRis an even value from 2-254 programmed in the  
SSICPSR register, and SCRis a value from 0-255.  
7
SPH  
R/W  
0
SSI Serial Clock Phase  
This bit is only applicable to the Freescale SPI Format.  
The SPHcontrol bit selects the clock edge that captures data  
and allows it to change state. It has the most impact on the first  
bit transmitted by either allowing or not allowing a clock  
transition before the first data capture edge.  
When the SPHbit is 0, data is captured on the first clock edge  
transition. If SPHis 1, data is captured on the second clock edge  
transition.  
6
SPO  
R/W  
0
SSI Serial Clock Polarity  
This bit is only applicable to the Freescale SPI Format.  
When the SPObit is 0, it produces a steady state Low value on  
the SSICLKpin. If SPOis 1, a steady state High value is placed  
on the SSICLKpin when data is not being transferred.  
288  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
5:4  
Name  
FRF  
Type  
R/W  
Reset  
0
Description  
SSI Frame Format Select.  
The FRFvalues are defined as follows:  
FRF Value  
Frame Format  
00  
01  
Freescale SPI Frame Format  
Texas Instruments Synchronous  
Serial Frame Format  
10  
11  
MICROWIRE Frame Format  
Reserved  
3:0  
DSS  
R/W  
0
SSI Data Size Select  
The DSS values are defined as follows:  
DSS Value  
0000-0010  
0011  
Data Size  
Reserved  
4-bit data  
5-bit data  
6-bit data  
7-bit data  
8-bit data  
9-bit data  
10-bit data  
11-bit data  
12-bit data  
13-bit data  
14-bit data  
15-bit data  
16-bit data  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
April 27, 2007  
289  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 2: SSI Control 1 (SSICR1), offset 0x004  
SSICR1 is control register 1 and contains bit fields that control various functions within the SSI  
module. Master and slave mode functionality is controlled by this register.  
SSI Control 1 (SSCR1)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SOD  
MS  
SSE  
LBM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
SOD  
R/W  
0
SSI Slave Mode Output Disable  
This bit is relevant only in the Slave mode (MS=1). In  
multiple-slave systems, it is possible for the SSI master to  
broadcast a message to all slaves in the system while  
ensuring that only one slave drives data onto the serial output  
line. In such systems, the TXD lines from multiple slaves  
could be tied together. To operate in such a system, the SOD  
bit can be configured so that the SSI slave does not drive the  
SSITXpin.  
0: SSI can drive SSITXoutput in Slave Output mode.  
1: SSI must not drive the SSITXoutput in Slave mode.  
2
MS  
R/W  
0
SSI Master/Slave Select  
This bit selects Master or Slave mode and can be modified  
only when SSI is disabled (SSE=0).  
0: Device configured as a master.  
1: Device configured as a slave.  
290  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
1
Name  
SSE  
Type  
R/W  
Reset  
0
Description  
SSI Synchronous Serial Port Enable  
Setting this bit enables SSI operation.  
0: SSI operation disabled.  
1: SSI operation enabled.  
Note: This bit must be set to 0 before any control registers  
are reprogrammed.  
0
LBM  
R/W  
0
SSI Loopback Mode  
Setting this bit enables Loopback Test mode.  
0: Normal serial port operation enabled.  
1: Output of the transmit serial shift register is connected  
internally to the input of the receive serial shift register.  
April 27, 2007  
291  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 3: SSI Data (SSIDR), offset 0x008  
SSIDR is the data register and is 16-bits wide. When SSIDR is read, the entry in the receive FIFO  
(pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI  
receive logic from the incoming data frame, they are placed into the entry in the receive FIFO  
(pointed to by the current FIFO write pointer).  
When SSIDR is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written  
to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is  
loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the  
programmed bit rate.  
When a data size of less than 16 bits is selected, the user must right-justify data written to the  
transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is  
automatically right-justified in the receive buffer.  
When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is  
eight bits (the most significant byte is ignored). The receive data size is controlled by the  
programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSEbit in the  
SSICR1 register is set to zero. This allows the software to fill the transmit FIFO before enabling the  
SSI.  
SSI Data (SSIDR)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:0  
DATA  
R/W  
0
SSI Receive/Transmit Data  
A read operation reads the receive FIFO. A write operation  
writes the transmit FIFO.  
Software must right-justify data when the SSI is programmed  
for a data size that is less than 16 bits. Unused bits at the top  
are ignored by the transmit logic. The receive logic  
automatically right-justifies the data.  
292  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 4: SSI Status (SSISR), offset 0x00C  
SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy  
status.  
SSI Status (SSISR)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BSY  
RFF  
RNE  
TNF  
TFE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
Bit/Field  
31:5  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
4
BSY  
RO  
0
SSI Busy Bit  
0: SSI is idle.  
1: SSI is currently transmitting and/or receiving a frame, or the  
transmit FIFO is not empty.  
3
2
1
0
RFF  
RNE  
TNF  
TFE  
RO  
RO  
RO  
R0  
0
0
1
1
SSI Receive FIFO Full  
0: Receive FIFO is not full.  
1: Receive FIFO is full.  
SSI Receive FIFO Not Empty  
0: Receive FIFO is empty.  
1: Receive FIFO is not empty.  
SSI Transmit FIFO Not Full  
0: Transmit FIFO is full.  
1: Transmit FIFO is not full.  
SSI Transmit FIFO Empty  
0: Transmit FIFO is not empty.  
1: Transmit FIFO is empty.  
April 27, 2007  
293  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 5: SSI Clock Prescale (SSICPSR), offset 0x010  
SSICPSR is the clock prescale register and specifies the division factor by which the system clock  
must be internally divided before further use.  
The value programmed into this register must be an even number between 2 and 254. The  
least-significant bit of the programmed number is hard-coded to zero. If an odd number is written  
to this register, data read back from this register has the least-significant bit as zero.  
SSI Clock Prescale (SSICPSR)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CPSDVSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CPSDVSR  
R/W  
0
SSI Clock Prescale Divisor  
This value must be an even number from 2 to 254, depending  
on the frequency of SSICLK. The LSB always returns 0 on  
reads.  
294  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014  
The SSIIM register is the interrupt mask set or clear register. It is a read/write register and all bits  
are cleared to 0 on reset.  
On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to  
the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the  
corresponding mask.  
SSI Interrupt Mask (SSIIM)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXIM  
RXIM  
RTIM RORIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
2
1
0
TXIM  
RXIM  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
SSI Transmit FIFO Interrupt Mask  
0: TX FIFO half-full or less condition interrupt is masked.  
1: TX FIFO half-full or less condition interrupt is not masked.  
SSI Receive FIFO Interrupt Mask  
0: RX FIFO half-full or more condition interrupt is masked.  
1: RX FIFO half-full or more condition interrupt is not masked.  
RTIM  
SSI Receive Time-Out Interrupt Mask  
0: RX FIFO time-out interrupt is masked.  
1: RX FIFO time-out interrupt is not masked.  
RORIM  
SSI Receive Overrun Interrupt Mask  
0: RX FIFO overrun interrupt is masked.  
1: RX FIFO overrun interrupt is not masked.  
April 27, 2007  
295  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018  
The SSIRIS register is the raw interrupt status register. On a read, this register gives the current  
raw status value of the corresponding interrupt prior to masking. A write has no effect.  
SSI Raw Interrupt Status (SSIRIS)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXRIS RXRIS RTRIS RORRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
2
1
0
TXRIS  
RXRIS  
RTRIS  
RO  
RO  
RO  
RO  
1
0
0
0
SSI Transmit FIFO Raw Interrupt Status  
Indicates that the transmit FIFO is half full or less, when set.  
SSI Receive FIFO Raw Interrupt Status  
Indicates that the receive FIFO is half full or more, when set.  
SSI Receive Time-Out Raw Interrupt Status  
Indicates that the receive time-out has occurred, when set.  
RORRIS  
SSI Receive Overrun Raw Interrupt Status  
Indicates that the receive FIFO has overflowed, when set.  
296  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C  
The SSIMIS register is the masked interrupt status register. On a read, this register gives the  
current masked status value of the corresponding interrupt. A write has no effect.  
SSI Masked Interrupt Status (SSIMIS)  
Offset 0x01C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXMIS RXMIS RTMIS RORMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
3
2
1
0
TXMIS  
RXMIS  
RTMIS  
RO  
RO  
RO  
RO  
0
0
0
0
SSI Transmit FIFO Masked Interrupt Status  
Indicates that the transmit FIFO is half full or less, when set.  
SSI Receive FIFO Masked Interrupt Status  
Indicates that the receive FIFO is half full or more, when set.  
SSI Receive Time-Out Masked Interrupt Status  
Indicates that the receive time-out has occurred, when set.  
RORMIS  
SSI Receive Overrun Masked Interrupt Status  
Indicates that the receive FIFO has overflowed, when set.  
April 27, 2007  
297  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020  
The SSIICR register is the interrupt clear register. On a write of 1, the corresponding interrupt is  
cleared. A write of 0 has no effect.  
SSI Interrupt Clear (SSIICR)  
Offset 0x020  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RTIC  
RORIC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
RTIC  
W1C  
W1C  
0
0
SSI Receive Time-Out Interrupt Clear  
0: No effect on interrupt.  
1: Clears interrupt.  
RORIC  
SSI Receive Overrun Interrupt Clear  
0: No effect on interrupt.  
1: Clears interrupt.  
298  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 4 (SSIPeriphID4)  
Offset 0xFD0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID4  
RO  
0x00  
SSI Peripheral ID Register[7:0]  
April 27, 2007  
299  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 5 (SSIPeriphID5)  
Offset 0xFD4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID5  
RO  
0x00  
SSI Peripheral ID Register[15:8]  
300  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 6 (SSIPeriphID6)  
Offset 0xFD8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID6  
RO  
0x00  
SSI Peripheral ID Register[23:16]  
April 27, 2007  
301  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 7 (SSIPeriphID7)  
Offset 0xFDC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID7  
RO  
0x00  
SSI Peripheral ID Register[31:24]  
302  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 0 (SSIPeriphID0)  
Offset 0xFEO  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID0  
RO  
0x22  
SSI Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this  
peripheral.  
April 27, 2007  
303  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 1 (SSIPeriphID1)  
Offset 0xFE4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID1  
RO  
0x00  
SSI Peripheral ID Register [15:8]  
Can be used by software to identify the presence of this  
peripheral.  
304  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 2 (SSIPeriphID2)  
Offset 0xFE8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID2  
RO  
0x18  
SSI Peripheral ID Register [23:16]  
Can be used by software to identify the presence of this  
peripheral.  
April 27, 2007  
305  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 3 (SSIPeriphID3)  
Offset 0xFEC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
PID3  
RO  
0x01  
SSI Peripheral ID Register [31:24]  
Can be used by software to identify the presence of this  
peripheral.  
306  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Primecell Identification 0 (SSIPCellID0)  
Offset 0xFF0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID0  
RO  
0x0D  
SSI PrimeCell ID Register [7:0]  
Provides software a standard cross-peripheral identification  
system.  
April 27, 2007  
307  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Primecell Identification 1 (SSIPCellID1)  
Offset 0xFF4  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID1  
RO  
0xF0  
SSI PrimeCell ID Register [15:8]  
Provides software a standard cross-peripheral identification  
system.  
308  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Primecell Identification 2 (SSIPCellID2)  
Offset 0xFF8  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID2  
RO  
0x05  
SSI PrimeCell ID Register [23:16]  
Provides software a standard cross-peripheral identification  
system.  
April 27, 2007  
309  
Preliminary  
Synchronous Serial Interface (SSI)  
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC  
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Primecell Identification 3 (SSIPCellID3)  
Offset 0xFFC  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
CID3  
RO  
0xB1  
SSI PrimeCell ID Register [31:24]  
Provides software a standard cross-peripheral identification  
system.  
310  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
14  
Inter-Integrated Circuit (I2C) Interface  
2
The Inter-Integrated Circuit (I C) bus provides bi-directional data transfer through a two-wire  
design (a serial data line SDL and a serial clock line SCL).  
2
2
The I C bus interfaces to external I C devices such as serial memory (RAMs and ROMs),  
2
networking devices, LCDs, tone generators, and so on. The I C bus may also be used for system  
testing and diagnostic purposes in product development and manufacture.  
2
2
The Stellaris I C module provides the ability to communicate to other IC devices over an I C bus.  
2
The I C bus supports devices that can both transmit and receive (write and read) data.  
2
2
Devices on the I C bus can be designated as either a master or a slave. The I C module supports  
both sending and receiving data as either a master or a slave, and also supports the simultaneous  
2
operation as both a master and a slave. The four I C modes are: Master Transmit, Master  
Receive, Slave Transmit, and Slave Receive.  
2
The Stellaris I C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).  
2
2
Both the I C master and slave can generate interrupts. The I C master generates interrupts when  
2
a transmit or receive operation completes (or aborts due to an error). The I C slave generates  
interrupts when data has been sent or requested by a master.  
14.1  
Block Diagram  
2
Figure 14-1. I C Block Diagram  
I2CSCL  
I2C Control  
I2CMSA  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
I2CSOAR  
I2CSCSR  
I2CSDR  
I2CSIM  
I2C Master Core  
I2CSDA  
I2CSCL  
I2CSDA  
Interrupt  
I2C I/O Select  
I2CSRIS  
I2CSMIS  
I2CSICR  
I2CSCL  
I2CSDA  
I2C Slave Core  
14.2  
Functional Description  
The I C module is comprised of both a master and slave function. The master and slave functions  
2
2
are implemented as separate peripherals. The I C module must be connected to bi-directional  
2
Open-Drain pads. A typical I C bus configuration is shown in Figure 14-2.  
2
See “I2C Timing” on page 404 for I C timing diagrams.  
April 27, 2007  
311  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Figure 14-2. I C Bus Configuration  
R
R
PUP  
PUP  
SCL  
SDA  
2
I C Bus  
I2CSCL I2CSDA  
SCL  
SDA  
SCL  
SDA  
3rd Party Device  
3rd Party Device  
TM  
2
2
Stellaris  
with I C Interface  
with I C Interface  
2
14.2.1  
I C Bus Functional Overview  
2
The I C bus uses only two signals: SDA and SCL, named I2CSDAand I2CSCLon Stellaris  
microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock  
line.  
14.2.1.1  
Data Transfers  
Both the SDA and SCL lines are bi-directional, connected to the positive supply via pull-up  
resistors. The bus is idle or free, when both lines are High. The output devices (pad drivers) must  
2
have an open-drain configuration. Data on the I C bus can be transferred at rates up to 100 Kbps  
in Standard mode and up to 400 Kbps in Fast mode.  
14.2.1.2  
Data Validity  
The data on the SDA line must be stable during the High period of the clock. The data line can only  
change when the clock SCL is in its Low state (see Figure 14-3).  
2
Figure 14-3. Data Validity During Bit Transfer on the I C Bus  
SDA  
SCL  
Change  
of data  
allowed  
Dataline  
stable  
14.2.1.3  
START and STOP Conditions  
2
The protocol of the I C bus defines two states: START and STOP. A High-to-Low transition on the  
SDA line while the SCL is High is a START condition. A Low-to-High transition on the SDA line  
while SCL is High is defined as a STOP condition. The bus is considered busy after a START  
condition. The bus is considered free after a STOP condition. See Figure 14-4.  
Figure 14-4. START and STOP Conditions  
SDA  
SCL  
SDA  
SCL  
START  
condition  
STOP  
condition  
312  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
14.2.1.4  
14.2.1.5  
Byte Format  
Every byte put out on the SDA line must be 8-bits long. The number of bytes per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the  
MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL  
Low and force the transmitter into a wait state. The data transfer continues when the receiver  
releases the clock SCL.  
Acknowledge  
Data transfer with an acknowledge is obligatory. The acknowledge-related clock pulse is  
generated by the master. The transmitter releases the SDA line during the acknowledge clock  
pulse.  
The receiver must pull down SDA during the acknowledge clock pulse such that it remains stable  
(Low) during the High period of the acknowledge clock pulse.  
When a slave receiver does not acknowledge the slave address, the data line must be left in a  
High state by the slave. The master can then generate a STOP condition to abort the current  
transfer.  
If the master receiver is involved in the transfer, it must signal the end of data to the  
slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the  
slave. The slave-transmitter must release the SDA line to allow the master to generate the STOP  
or a repeated START condition.  
14.2.1.6  
Arbitration  
A master may start a transfer only if the bus is idle. Two or more masters may generate a START  
condition within minimum hold time of the START condition. Arbitration takes place on the SDA  
line, while SCL is in the High state, in such a manner that the master transmitting a High level  
(while another master is transmitting a Low level) will switch off its data output stage.  
Arbitration can be over several bits. Its first stage is a comparison of address bits. If both masters  
are trying to address the same device, arbitration continues with comparison of data bits.  
14.2.1.7  
Data Format with 7-Bit Address  
Data transfers follow the format shown in Figure 14-5. After the START condition, a slave address  
is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (R/Sbit in  
the I2CMSA register). A zero indicates a transmission (Send); a one indicates a request for data  
(Receive). A data transfer is always terminated by a STOP condition generated by the master.  
However, a master can still communicate on the bus by generating a repeated START condition  
and addressing another slave without first generating a STOP condition. Various combinations of  
receive/send formats are then possible within such a transfer.  
Figure 14-5. Complete Data Transfer with a 7-Bit Address  
SDA  
MSB  
LSB  
R/S  
ACK  
MSB  
LSB  
ACK  
SCL  
1
2
7
8
9
1
2
7
8
9
Slave address  
Data  
The first seven bits of the first byte make up the slave address (see Figure 14-6). The eighth bit  
determines the direction of the message. A zero in the R/S position of the first byte means that the  
master will write (send) information to a selected slave. A one in this position means that the  
master will receive information from the slave.  
April 27, 2007  
313  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 14-6. R/S Bit in First Byte  
MSB  
LSB  
R/S  
Slave address  
2
14.2.1.8  
I C Master Command Sequences  
2
Figure 14-7 through Figure 14-12 present the command sequences available for the I C master.  
314  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 14-7. Master Single SEND  
Idle  
Write Slave  
Address to  
I2CMSA  
Sequence  
may be  
omitted in a  
Single Master  
system  
Write data to  
I2CMDR  
Read I2CMCS  
NO  
BUSBSY bit=0?  
YES  
Write ---0-111  
to I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Idle  
April 27, 2007  
315  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 14-8. Master Single RECEIVE  
Idle  
Sequence may be  
omitted in a Single  
Master system  
Write Slave  
Address to  
I2CMSA  
Read I2CMCS  
NO  
BUSBSY bit=0?  
YES  
Write ---00111  
to I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Read data from  
I2CMDR  
Idle  
316  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 14-9. Master Burst SEND (sending n bytes)  
Idle  
Write Slave  
Address to  
I2CMSA  
Sequence  
may be  
omitted in a  
Single Master  
system  
Read I2CMCS  
Write data to  
I2CMDR  
NO  
BUSY bit=0?  
YES  
Read I2CMCS  
NO  
ERROR bit=0?  
NO  
BUSBSY bit=0?  
YES  
NO  
Write data to  
I2CMDR  
ARBLST bit=1?  
YES  
Write ---0-011  
YES  
to I2CMCS  
Write ---0-100  
to I2CMCS  
NO  
Write ---0-001  
to I2CMCS  
Index=n?  
Error Service  
Idle  
YES  
Write ---0-101  
to I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Idle  
April 27, 2007  
317  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 14-10. Master Burst RECEIVE (receiving m bytes)  
Idle  
Sequence  
may be  
Write Slave  
Address to  
I2CMSA  
omitted in a  
Single Master  
system  
Read I2CMCS  
BUSY bit=0?  
Read I2CMCS  
NO  
YES  
NO  
BUSBSY bit=0?  
NO  
ERROR bit=0?  
YES  
NO  
ARBLST bit=1?  
Write ---01011  
to I2CMCS  
Read data from  
I2CMDR  
YES  
Write ---0-100  
to I2CMCS  
NO  
Write ---01001  
to I2CMCS  
Index=m-1?  
Error Service  
Idle  
YES  
Write ---00101  
to I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
ERROR bit=0?  
YES  
Read data from  
I2CMDR  
Error Service  
Idle  
318  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 14-11. Master Burst RECEIVE after Burst SEND  
Idle  
Master operates in  
Master Transmit mode  
STOP condition is not  
generated  
Write Slave  
Address to  
I2CMSA  
Write ---01011  
to I2CMCS  
Repeated START  
condition is generated  
with changing data  
direction  
Master operates in  
Master Receive mode  
Idle  
April 27, 2007  
319  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Figure 14-12. Master Burst SEND after Burst RECEIVE  
Idle  
Master operates in  
Master Receive mode  
STOP condition is not  
generated  
Write Slave  
Address to  
I2CMSA  
Write ---0-011  
to I2CMCS  
Repeated START  
condition is generated  
with changing data  
direction  
Master operates in  
Master Transmit mode  
Idle  
2
14.2.1.9  
I C Slave Command Sequences  
2
Figure 14-13 presents the command sequence available for the I C slave.  
320  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 14-13. Slave Command Sequence  
Idle  
Write OWN Slave  
Address to  
I2CSOAR  
Write -------1  
to I2CSCSR  
Read I2CSCSR  
RREQ bit=1?  
NO  
NO  
TREQ bit=1?  
FBR is  
YES  
YES  
also valid  
Write data to  
I2CSDR  
Read data from  
I2CSDR  
14.2.2  
Available Speed Modes  
The SCL clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and  
SCL_HP.  
where:  
CLK_PRDis the system clock period  
SCL_LPis the Low phase of the SCL clock (fixed at 6)  
SCL_HPis the High phase of the SCL clock (fixed at 4)  
TIMER_PRDis the programmed value in the I2C Master Timer Period (I2CMTPR) register (see  
page 331).  
The SCL clock period is calculated as follows:  
SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD  
April 27, 2007  
321  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
For example:  
CLK_PRD = 50 ns  
TIMER_PRD = 2  
SCL_LP=6  
SCL_HP=4  
yields a SCL frequency of:  
1/T = 333 Khz  
Table 14-1 gives examples of Timer period, system clock, and speed mode (Standard or Fast).  
2
Table 14-1. Examples of I C Master Timer Period versus Speed Mode  
System  
Clock  
Timer  
Period  
Standard  
Mode  
Timer  
Period  
Fast  
Mode  
4 Mhz  
6 Mhz  
0x01  
0x02  
0x06  
0x08  
0x09  
0x0C  
0x10  
0x13  
0x18  
100 Kbps  
100 Kbps  
89 Kbps  
-
-
-
-
12.5 Mhz  
16.7 Mhz  
20 Mhz  
25 Mhz  
33Mhz  
0x01  
0x02  
0x02  
0x03  
0x04  
0x04  
0x06  
312 Kbps  
278 Kbps  
333 Kbps  
312 Kbps  
330 Kbps  
400 Kbps  
357 Kbps  
93 Kbps  
100 Kbps  
96.2 Kbps  
97.1 Kbps  
100 Kbps  
100 Kbps  
40Mhz  
50Mhz  
14.3  
Initialization and Configuration  
The following example shows how to configure the I C module to send a single byte as a master.  
This assumes the system clock is 20 MHz.  
2
2
1. Enable the I C clock by writing a value of 0x00001000 to the RCGC1 register in the System  
Control module.  
2. In the GPIO module, enable the appropriate pins for their alternate function using the  
GPIOAFSEL register. Also, be sure to enable the same pins for Open Drain operation.  
2
3. Initialize the I C Master by writing the I2CMCR register with a value of 0x00000020.  
4. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct  
value. The value written to the I2CMTPR register represents the number of system clock  
periods in one SCL clock period. The TPR value is determined by the following equation:  
TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;  
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;  
TPR = 9  
Write the I2CMTPR register with the value of 0x00000009.  
322  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
5. Specify the slave address of the master and that the next operation will be a Send by writing  
the I2CMSA register with a value of 0x00000076. This sets the slave address to 0x3B.  
6. Place data (byte) to be sent in the data register by writing the I2CMDR register with the  
desired data.  
7. Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with  
a value of 0x00000007 (STOP, START, RUN).  
8. Wait until the transmission completes by polling the I2CMCS register’s BUSBSYbit until it has  
been cleared.  
14.4  
Register Map  
2
2
Table 14-2 lists the I C registers. All addresses given are relative to the I C base addresses for the  
master and slave:  
2
„
„
I C Master: 0x40020000  
2
I C Slave: 0x40020800  
2
Table 14-2. I C Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
I2CMSA  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
I2CSOAR  
I2CSCSR  
I2CSDR  
I2CSIMR  
I2CSRIS  
I2CSMIS  
I2CSICR  
0x00000000  
0x00000000  
0x00000000  
0x00000001  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
Master slave address  
Master control/status  
Master data  
324  
325  
330  
331  
332  
333  
333  
334  
335  
337  
338  
340  
341  
342  
343  
344  
Master timer period  
Master interrupt mask  
Master raw interrupt status  
Master masked interrupt status  
Master interrupt clear  
Master configuration  
Slave address  
RO  
WO  
R/W  
R/W  
RO  
Slave control/status  
Slave data  
R/W  
R/W  
RO  
Slave interrupt mask  
Slave raw interrupt status  
Slave masked interrupt status  
Slave interrupt clear  
RO  
WO  
14.5  
Register Descriptions (I2C Master)  
The remainder of this section lists and describes the I C master registers, in numerical order by  
address offset. See also “Register Descriptions (I2C Slave)” on page 337.  
2
April 27, 2007  
323  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 1: I C Master Slave Address (I2CMSA), offset 0x000  
This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which  
determines if the next operation is a Receive (High), or Send (Low).  
I2C Master Slave Address (I2CMSA)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SA  
R/S  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
7:1  
0
SA  
R/W  
R/W  
0
I2C Slave Address  
This field specifies bits A6 through A0 of the slave address.  
R/S  
0
Receive/Send  
The R/Sbit specifies if the next operation is a Receive (High) or  
Send (Low).  
0: Send  
1: Receive  
324  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
Register 2: I C Master Control/Status (I2CMCS), offset 0x004  
This register accesses four control bits when written, and accesses seven status bits when read.  
2
The status register consists of seven bits, which when read determine the state of the I C bus  
controller.  
The control register consists of four bits: the RUN, START, STOP, and ACKbits.  
The STARTbit causes the generation of the START, or REPEATED START condition.  
The STOPbit determines if the cycle stops at the end of the data cycle, or continues on to a burst.  
To generate a single send cycle, the I2C Master Slave Address (I2CMSA) register is written with  
the desired address, the R/Sbit is set to 0, and the Control register is written with ACK=X (0 or 1),  
STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is  
completed (or aborted due an error), the interrupt pin becomes active and the data may be read  
2
from the I2CMDR register. When the I C module operates in Master receiver mode, the ACKbit  
2
must be set normally to logic 1. This causes the I C bus controller to send an acknowledge  
2
automatically after each byte. This bit must be reset when the I C bus controller requires no further  
data to be sent from the slave transmitter.  
I2C Master Status (I2CMCS): Read  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BUSBSY  
IDLE  
ARBLST DATACK ADRACK ERROR  
BUSY  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
I2C Master Control (I2CMCS): Write  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ACK  
STOP START RUN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
Name  
Type  
Reset  
Description  
Read-Only Status Register  
31:7  
6
reserved  
BUSBSY  
RO  
R
0
0
Reserved bits return an indeterminate value, and should never  
be changed.  
This bit specifies the state of the I2C bus. If set, the bus is busy;  
otherwise, the bus is idle. The bit changes based on the START  
and STOP conditions.  
5
IDLE  
R
0
This bit specifies the I2C controller state. If set, the controller is  
idle; otherwise the controller is not idle.  
April 27, 2007  
325  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Bit/Field  
4
Name  
Type  
R
Reset  
0
Description  
ARBLST  
This bit specifies the result of bus arbitration. If set, the controller  
lost arbitration; otherwise, the controller won arbitration.  
3
2
1
DATACK  
ADRACK  
ERROR  
R
R
R
0
0
0
This bit specifies the result of the last data operation. If set, the  
transmitted data was not acknowledged; otherwise, the data  
was acknowledged.  
This bit specifies the result of the last address operation. If set,  
the transmitted address was not acknowledged; otherwise, the  
address was acknowledged.  
This bit specifies the result of the last bus operation. If set, an  
error occurred on the last operation; otherwise, no error was  
detected. The error can be from the slave address not being  
acknowledged, the transmit data not being acknowledged, or  
because the controller lost arbitration.  
0
BUSY  
R
0
This bit specifies the state of the controller. If set, the controller is  
busy; otherwise, the controller is idle. When the BUSYbit is set,  
the other status bits are not valid.  
Write-Only Control Register  
31:7  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
6-4  
3
reserved  
ACK  
W
W
0
0
Write reserved.  
When set, causes received data byte to be acknowledged  
automatically by the master. See field decoding in Table 14-3 on  
page 327.  
2
1
0
STOP  
START  
RUN  
W
W
W
0
0
0
When set, causes the generation of the STOP condition. See  
field decoding in Table 14-3.  
When set, causes the generation of a START or repeated  
START condition. See field decoding in Table 14-3.  
When set, allows the master to send or receive data. See field  
decoding in Table 14-3.  
326  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)  
I2CMSA[0]  
I2CMCS[3:0]  
STOP START  
Current  
State  
Description  
R/S  
ACK  
RUN  
Idle  
0
Xa  
0
1
1
START condition followed by SEND  
(master goes to the Master Transmit  
state).  
0
1
1
1
1
X
0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
START condition followed by a SEND and  
STOP condition (master remains in Idle  
state).  
START condition followed by RECEIVE  
operation with negative ACK (master  
goes to the Master Receive state).  
START condition followed by RECEIVE  
and STOP condition (master remains in  
Idle state).  
START condition followed by RECEIVE  
(master goes to the Master Receive  
state).  
Illegal.  
NOP.  
All other combinations not listed are non-operations.  
April 27, 2007  
327  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 2 of 3)  
I2CMSA[0]  
I2CMCS[3:0]  
STOP START  
Current  
State  
Description  
R/S  
ACK  
RUN  
Master  
Transmit  
X
X
0
0
1
SEND operation (master remains in  
Master Transmit state).  
X
X
0
X
X
X
1
1
0
0
0
1
0
1
1
STOP condition (master goes to Idle  
state).  
SEND followed by STOP condition  
(master goes to Idle state).  
Repeated START condition followed by a  
SEND (master remains in Master  
Transmit state).  
0
1
1
1
1
X
0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
Repeated START condition followed by  
SEND and STOP condition (master goes  
to Idle state).  
Repeated START condition followed by a  
RECEIVE operation with a negative ACK  
(master goes to Master Receive state).  
Repeated START condition followed by a  
SEND and STOP condition (master goes  
to Idle state).  
Repeated START condition followed by  
RECEIVE (master goes to Master  
Receive state).  
Illegal.  
NOP.  
All other combinations not listed are non-operations.  
328  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 3 of 3)  
I2CMSA[0]  
I2CMCS[3:0]  
STOP START  
Current  
State  
Description  
R/S  
ACK  
RUN  
Master  
Receive  
X
0
0
0
1
RECEIVE operation with negative ACK  
(master remains in Master Receive state).  
X
X
X
X
0
1
1
1
0
0
0
0
0
1
1
STOP condition (master goes to Idle  
state).b  
RECEIVE followed by STOP condition  
(master goes to Idle state).  
RECEIVE operation (master remains in  
Master Receive state).  
X
1
1
0
1
0
0
1
1
1
Illegal.  
Repeated START condition followed by  
RECEIVE operation with a negative ACK  
(master remains in Master Receive state).  
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
Repeated START condition followed by  
RECEIVE and STOP condition (master  
goes to Idle state).  
Repeated START condition followed by  
RECEIVE (master remains in Master  
Receive state).  
X
X
Repeated START condition followed by  
SEND (master goes to Master Transmit  
state).  
Repeated START condition followed by  
SEND and STOP condition (master goes  
to Idle state).  
All other combinations not listed are non-operations.  
NOP.  
a. An X in a table cell indicates that applies to a bit set to 0 or 1.  
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the  
master or an Address Negative Acknowledge executed by the slave.  
April 27, 2007  
329  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 3: I C Master Data (I2CMDR), offset 0x008  
This register contains the data to be transmitted when in the Master Transmit state, and the data  
received when in the Master Receive state.  
I2C Master Data (I2CMDR)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
DATA  
R/W  
0x00  
Data transferred during transaction.  
330  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
Register 4: I C Master Timer Period (I2CMTPR), offset 0x00C  
This register specifies the period of the SCL clock  
I2C Master Timer Period (I2CMTPR)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TPR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should never  
be changed.  
7:0  
TPR  
R/W  
0x1  
This field specifies the period of the SCL clock.  
SCL_PRD = 2*(1 + TPR)*(SCL_LP +  
SCL_HP)*CLK_PRD  
where:  
SCL_PRDis the SCL line period (I2C clock).  
TPRis the Timer Period register value (range of 1 to 255).  
SCL_LPis the SCL Low period (fixed at 6).  
SCL_HPis the SCL High period (fixed at 4).  
April 27, 2007  
331  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 5: I C Master Interrupt Mask (I2CMIMR), offset 0x010  
This register controls whether a raw interrupt is promoted to a controller interrupt.  
I2C Master Interrupt Mask (I2CMIMR)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IM  
R/W  
0
This bit controls whether a raw interrupt is promoted to a  
controller interrupt. If set, the interrupt is not masked and  
the interrupt is promoted; otherwise, the interrupt is  
masked.  
332  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
Register 6: I C Master Raw Interrupt Status (I2CMRIS), offset 0x014  
This register specifies whether an interrupt is pending.  
I2C Master Raw Interrupt Status (I2CMRIS)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
RIS  
RO  
0
This bit specifies the raw interrupt state (prior to masking) of  
the I2C master block. If set, an interrupt is pending;  
otherwise, an interrupt is not pending.  
April 27, 2007  
333  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 7: I C Master Masked Interrupt Status (I2CMMIS), offset 0x018  
This register specifies whether an interrupt was signaled.  
I2C Master Masked Interrupt Status (I2CMMIS)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
MIS  
RO  
0
This bit specifies the raw interrupt state (after masking) of  
the I2C master block. If set, an interrupt was signaled;  
otherwise, an interrupt has not been generated since the bit  
was last cleared.  
334  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
Register 8: I C Master Interrupt Clear (I2CMICR), offset 0x01C  
This register clears the raw interrupt.  
I2C Master Interrupt Clear (I2CMICR)  
Offset 0x01C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IC  
WO  
0
Interrupt Clear  
This bit controls the clearing of the raw interrupt. A write of  
1 clears the interrupt; otherwise, a write of 0 has no affect  
on the interrupt state. A read of this register returns no  
meaningful data.  
April 27, 2007  
335  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 9: I C Master Configuration (I2CMCR), offset 0x020  
This register configures the mode (Master or Slave) and sets the interface for test mode loopback.  
I2C Master Configuration (I2CMCR)  
Offset 0x020  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SFE  
MFE  
reserved  
LPBK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
5
SFE  
MFE  
R/W  
0
I2C Slave Function Enable  
This bit specifies whether the interface may operate in  
Slave mode. If set, Slave mode is enabled; otherwise,  
Slave mode is disabled.  
4
R/W  
0
I2C Master Function Enable  
This bit specifies whether the interface may operate in  
Master mode. If set, Master mode is enabled; otherwise,  
Master mode is disabled and the interface clock is disabled.  
3:1  
0
reserved  
LPBK  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
I2C Loopback  
This bit specifies whether the interface is operating  
normally or in Loopback mode. If set, the device is put in a  
test mode loopback configuration; otherwise, the device  
operates normally.  
336  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
14.6  
Register Descriptions (I2C Slave)  
The remainder of this section lists and describes the I C slave registers, in numerical order by  
address offset. See also “Register Descriptions (I2C Master)” on page 323.  
2
2
Register 10: I C Slave Own Address (I2CSOAR), offset 0x000  
2
2
This register consists of seven address bits that identify the Stellaris I C device on the I C bus.  
I2C Slave Own Address Register (I2CSOAR)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OAR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
Description  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
6:0  
OAR  
R/W  
0
I2C Slave Own Address  
This field specifies bits A6 through A0 of the slave  
address.  
April 27, 2007  
337  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 11: I C Slave Control/Status (I2CSCSR), offset 0x004  
This register accesses one control bit when written, and two status bits when read.  
The read-only Status register consists of three bits: the FBRbit, the RREQbit, and the TREQbit. The  
First Byte Received (FBR)bit is set only after the Stellaris device detects its own slave  
2
address and receives the first data byte from the I C master. The Receive Request (RREQ)bit  
2
2
indicates that the Stellaris I C device has received a data byte from an I C master. Read one data  
byte from the I2C Slave Data (I2CSDR) register to clear the RREQbit. The Transmit Request  
2
(TREQ)bit indicates that the Stellaris I C device is addressed as a Slave Transmitter. Write one  
data byte into the I2C Slave Data (I2CSDR) register to clear the TREQbit.  
The write-only Control register consists of one bit: the DAbit. The DAbit enables and disables the  
2
Stellaris I C slave operation.  
I2C Slave Status Register (I2CSCSR): Read  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TREQ RREQ  
FBR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
I2C Slave Control Register (I2CSCSR): Write  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
Name  
Type  
Reset  
Description  
Read-Only Status Register  
31:3  
2
reserved  
FBR  
RO  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
Indicates that the first byte following the slave’s own  
address is received. This bit is only valid when the RREQ  
bit is set, and is automatically cleared when data has been  
read from the I2CSDR register.  
Note: This bit is not used for slave transmit operations.  
338  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
1
Name  
TREQ  
Type  
RO  
Reset  
0
Description  
This bit specifies the state of the I2C slave with regards to  
outstanding transmit requests. If set, the I2C unit has been  
addressed as a slave transmitter and uses clock  
stretching to delay the master until data has been written  
to the I2CSDR register. Otherwise, there is no outstanding  
transmit request.  
0
RREQ  
RO  
0
Receive Request  
This bit specifies the status of the I2C slave with regards  
to outstanding receive requests. If set, the I2C unit has  
outstanding receive data from the I2C master and uses  
clock stretching to delay the master until the data has  
been read from the I2CSDR register. Otherwise, no  
receive data is outstanding.  
Write-Only Control Register  
31:1  
0
reserved  
DA  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
WO  
Device Active  
1=Enables the I2C slave operation.  
0=Disables the I2C slave operation.  
April 27, 2007  
339  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 12: I C Slave Data (I2CSDR), offset 0x008  
This register contains the data to be transmitted when in the Slave Transmit state, and the data  
received when in the Slave Receive state.  
I2C Slave Data (I2CSDR)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
Reset  
Description  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
7:0  
DATA  
R/W  
0x0  
This field contains the data for transfer during a slave  
receive or transmit operation.  
340  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
Register 13: I C Slave Interrupt Mask (I2CSIMR), offset 0x00C  
This register controls whether a raw interrupt is promoted to a controller interrupt.  
I2C Slave Interrupt Mask (I2CSIMR)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
Description  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IM  
R/W  
0
This bit controls whether a raw interrupt is promoted to a  
controller interrupt. If set, the interrupt is not masked and  
the interrupt is promoted; otherwise, the interrupt is  
masked.  
April 27, 2007  
341  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 14: I C Slave Raw Interrupt Status (I2CSRIS), offset 0x010  
This register specifies whether an interrupt is pending.  
I2C Slave Raw Interrupt Status (I2CSRIS)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
RIS  
RO  
0
This bit specifies the raw interrupt state (prior to masking) of  
the I2C slave block. If set, an interrupt is pending;  
otherwise, an interrupt is not pending.  
342  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
2
Register 15: I C Slave Masked Interrupt Status (I2CSMIS), offset 0x014  
This register specifies whether an interrupt was signaled.  
I2C Slave Masked Interrupt Status (I2CSMIS)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
MIS  
RO  
0
This bit specifies the raw interrupt state (after masking) of  
the I2C slave block. If set, an interrupt was signaled;  
otherwise, an interrupt has not been generated since the bit  
was last cleared.  
April 27, 2007  
343  
Preliminary  
Inter-Integrated Circuit (I2C) Interface  
2
Register 16: I C Slave Interrupt Clear (I2CSICR), offset 0x018  
This register clears the raw interrupt.  
I2C Slave Interrupt Clear (I2CSICR)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IC  
WO  
0
This bit controls the clearing of the raw interrupt. A write of  
1 clears the interrupt; otherwise a write of 0 has no affect on  
the interrupt state. A read of this register returns no  
meaningful data.  
344  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
15  
Analog Comparator  
An analog comparator is a peripheral that compares two analog voltages, and provides a logical  
output that signals the comparison result.  
The LM3S612 controller provides one analog comparator that can be configured to drive an output  
or generate an interrupt or ADC event.  
A comparator can compare a test voltage against any one of these voltages:  
„
„
„
An individual external reference voltage  
A shared single external reference voltage  
A shared internal reference voltage  
The comparator can provide its output to a device pin, acting as a replacement for an analog  
comparator on the board, or it can be used to signal the application via interrupts or triggers to the  
ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering  
logic is separate. This means, for example, that an interrupt can be generated on a rising edge and  
the ADC triggered on a falling edge.  
15.1  
Block Diagram  
Figure 15-1. Analog Comparator Module Block Diagram  
C0-  
-ve input  
+ve input  
Comparator 0  
C0+  
output  
C0o  
+ve input (alternate)  
trigger  
trigger  
ACCTL0  
ACSTAT0  
interrupt  
interrupt  
reference input  
Voltage  
Ref  
internal  
bus  
ACREFCTL  
15.2  
Functional Description  
Important: It is recommended that the Digital-Input enable (the GPIODENbit in the GPIO  
module) for the analog input pin be disabled to prevent excessive current draw from  
the I/O pads.  
The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.  
As shown in Figure 15-2, the input source for VIN- is an external input. In addition to an external  
input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.  
April 27, 2007  
345  
Preliminary  
Analog Comparator  
Figure 15-2. Structure of Comparator Unit  
-ve input  
+ve input  
0
1
2
output  
CINV  
+ve input (alternate)  
reference input  
IntGen  
TrigGen  
ACCTL  
ACSTAT  
A comparator is configured through two status/control registers (ACCTL and ACSTAT). The  
internal reference is configured through one control register (ACREFCTL). Interrupt status and  
control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating  
modes of the comparators are shown in Table 15-1.  
Typically, the comparator output is used internally to generate controller interrupts. It may also be  
used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.  
Important: Certain register bit values must be set before using the analog comparators. The  
proper pad configuration for the comparator input and output pins are described in  
Table 8-1 on page 122.  
Table 15-1. Comparator 0 Operating Modes  
ACCNTL0  
ASRCP  
Comparator 0  
Output  
VIN-  
VIN+  
Interrupt  
ADC Trigger  
00  
C0-  
C0-  
C0-  
C0-  
C0+  
C0+  
C0o  
C0o  
C0o  
C0o  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
01  
10  
11  
Vref  
reserved  
15.2.1  
Internal Reference Programming  
The structure of the internal reference is shown in Figure 15-3. This is controlled by a single  
configuration register (ACREFCTL). Table 15-2 shows the programming options to develop  
specific internal reference values, to compare an external voltage against a particular voltage  
generated internally.  
346  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 15-3. Comparator Internal Reference Structure  
8R  
AVDD  
8R  
R
R
R
R
•••  
EN  
15  
14  
1
0
•••  
Decoder  
internal  
reference  
VREF  
RNG  
Table 15-2. Internal Reference Voltage and ACREFCTL Field Values  
ACREFCTL Register  
Output Reference Voltage Based on VREF Field Value  
EN Bit Value  
RNG Bit Value  
EN=0  
RNG=X  
0 V (GND) for any value of VREF; however, it is recommended that  
RNG=1 and VREF=0 for the least noisy ground reference.  
EN=1  
RNG=0  
Total resistance in ladder is 32 R.  
RVREF  
---------------  
×
VREF = AVDD  
RT  
(VREF + 8)  
-----------------------------  
VREF = AVDD  
×
32  
VREF = 0.825 + 0.103 VREF  
The range of internal reference in this mode is 0.825–2.37 V.  
RNG=1  
Total resistance in ladder is 24 R.  
RVREF  
---------------  
×
VREF = AVDD  
RT  
(VREF)  
-------------------  
VREF = AVDD  
×
24  
VREF = 0.1375 VREF  
The range of internal reference for this mode is 0.0–2.0625 V.  
15.3  
Initialization and Configuration  
The following example shows how to configure analog comparator to read back its output value  
from an internal register.  
1. Enable the analog comparator 0 clock by writing a value of 0x00100000 to the RCGC1 register  
in the System Control module.  
2. In the GPIO module, enable the GPIO port/pin associated with C0-as a GPIO input.  
3. Configure the internal voltage reference to 1.65 V by writing the ACREFCTL register with the  
value 0x0000030C.  
4. Configure comparator 0 to use the internal voltage reference and to not invert the output on  
the C0Opin by writing the ACCTL0 register with the value of 0x0000040C.  
April 27, 2007  
347  
Preliminary  
Analog Comparator  
5. Delay for some time.  
6. Read the comparator output value by reading the ACSTAT0 register’s OVALvalue.  
Change the level of the signal input on C0-to see the OVALvalue change.  
15.4  
Register Map  
Table 15-3 lists the comparator registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to the Analog Comparator base address of 0x4003C000.  
Table 15-3. Analog Comparator Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
0x00  
0X04  
0X08  
0x10  
0x20  
0x24  
ACMIS  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W1C Interrupt status  
349  
350  
351  
352  
353  
354  
ACRIS  
RO  
R/W  
R/W  
RO  
Raw interrupt status  
ACINTEN  
ACREFCTL  
ACSTAT0  
ACCTL0  
Interrupt enable  
Reference voltage control  
Comparator 0 status  
Comparator 0 control  
R/W  
15.5  
Register Descriptions  
The remainder of this section lists and describes the Analog Comparator registers, in numerical  
order by address offset.  
348  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00  
This register provides a summary of the interrupt status (masked) of the comparator.  
Analog Comparator Masked Interrupt Status (ACMIS)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
0
IN0  
R/1WC  
0
Comparator 0 Masked Interrupt Status  
Gives the masked interrupt state of this interrupt. Write 1 to this  
field to clear the pending interrupt.  
April 27, 2007  
349  
Preliminary  
Analog Comparator  
Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04  
This register provides a summary of the interrupt status (raw) of the comparator.  
Analog Comparator Raw Interrupt Status (ACRIS)  
Offset 0x04  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
0
IN0  
RO  
0
When set, indicates that an interrupt has been generated by  
comparator 0.  
350  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08  
This register provides the interrupt enable for the comparator.  
Analog Comparator Interrupt Enable (ACINTEN)  
Offset 0x08  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
Description  
reserved  
0
Reserved bits return an indeterminate value, and should never  
be changed.  
0
IN0  
R/W  
0
When set, enables the controller interrupt from the comparator 0  
output.  
April 27, 2007  
351  
Preliminary  
Analog Comparator  
Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10  
This register specifies whether the resistor ladder is powered on as well as the range and tap.  
Analog Comparator Reference Voltage Control (ACREFCTL)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ENRNG  
VREF  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
9
EN  
R/W  
0
The ENbit specifies whether the resistor ladder is powered  
on. If 0, the resistor ladder is unpowered. If 1, the resistor  
ladder is connected to the analog VDD  
.
This bit is reset to 0 so that the internal reference consumes  
the least amount of power if not used and programmed.  
8
RNG  
R/W  
0
The RNGbit specifies the range of the resistor ladder. If 0, the  
resistor ladder has a total resistance of 32 R. If 1, the resistor  
ladder has a total resistance of 24 R.  
7:4  
3:0  
reserved  
VREF  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
The VREFbit field specifies the resistor ladder tap that is  
passed through an analog multiplexer. The voltage  
corresponding to the tap position is the internal reference  
voltage available for comparison. See Table 15-2 on page 347  
for some output reference voltage examples.  
352  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20  
This register specifies the current output value of that comparator.  
Analog Comparator Status 0 (ACSTAT0)  
Offset 0x020  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OVAL reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
OVAL  
RO  
RO  
0
0
The OVALbit specifies the current output value of the  
comparator.  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
April 27, 2007  
353  
Preliminary  
Analog Comparator  
Register 6: Analog Comparator Control 0 (ACCTL0), offset 0x24  
This register configures that comparator’s input and output.  
Analog Comparator Control 0 (ACCTL0)  
Offset 0x024  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TOEN  
ASRCP  
reserved TSLVAL  
TSEN  
ISLVAL  
ISEN  
CINV reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
11  
TOEN  
R/W  
R/W  
0
0
The TOENbit enables the ADC event transmission to the  
ADC. If 0, the event is suppressed and not sent to the ADC. If  
1, the event is transmitted to the ADC.  
10:9  
ASRCP  
The ASRCPfield specifies the source of input voltage to the  
VIN+ terminal of the comparator. The encodings for this field  
are as follows:  
ASRCP  
00  
Function  
Pin value  
01  
Pin value of C0+  
Internal voltage reference  
Reserved  
10  
11  
8
7
reserved  
TSLVAL  
RO  
0
0
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
The TSLVALbit specifies the sense value of the input that  
generates an ADC event if in Level Sense mode. If 0, an ADC  
event is generated if the comparator output is Low. Otherwise,  
an ADC event is generated if the comparator output is High.  
6:5  
TSEN  
R/W  
0
The TSENfield specifies the sense of the comparator output  
that generates an ADC event. The sense conditioning is as  
follows:  
TSEN  
00  
Function  
Level sense, see TSLVAL  
Falling edge  
01  
10  
Rising edge  
11  
Either edge  
354  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Bit/Field  
4
Name  
Type  
R/W  
Reset  
0
Description  
ISLVAL  
The ISLVALbit specifies the sense value of the input that  
generates an interrupt if in Level Sense mode. If 0, an  
interrupt is generated if the comparator output is Low.  
Otherwise, an interrupt is generated if the comparator output  
is High.  
3:2  
ISEN  
R/W  
0
The ISENfield specifies the sense of the comparator output  
that generates an interrupt. The sense conditioning is as  
follows:  
ISEN  
00  
Function  
Level sense, see ISLVAL  
Falling edge  
01  
10  
Rising edge  
11  
Either edge  
1
0
CINV  
R/W  
RO  
0
0
The CINVbit conditionally inverts the output of the  
comparator. If 0, the output of the comparator is unchanged. If  
1, the output of the comparator is inverted prior to being  
processed by hardware.  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
April 27, 2007  
355  
Preliminary  
Pulse Width Modulator (PWM)  
16  
Pulse Width Modulator (PWM)  
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.  
High-resolution counters are used to generate a square wave, and the duty cycle of the square  
wave is modulated to encode an analog signal. Typical applications include switching power  
supplies and motor control.  
The LM3S612 PWM module consists of one PWM generator block and a control block. The PWM  
generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM  
signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. The control block  
determines the polarity of the PWM signals, and which signals are passed through to the pins.  
The PWM generator block produces two PWM signals that can either be independent signals  
(other than being based on the same timer and therefore having the same frequency) or a single  
pair of complementary signals with dead-band delays inserted. The output of the PWM generation  
block is managed by the output control block before being passed to the device pins.  
The LM3S612 PWM module provides a great deal of flexibility. It can generate simple PWM  
signals, such as those required by a simple charge pump. It can also generate paired PWM  
signals with dead-band delays, such as those required by a half-H bridge driver.  
16.1  
Block Diagram  
Figure 16-1 provides a block diagram of a Stellaris PWM module. The LM3S612 controller  
contains one generator block (PWM0) and generates two independent PWM signals or one paired  
PWM signal with dead-band delays inserted.  
Figure 16-1. PWM Module Block Diagram  
PWM Generator Block  
PWMnLOAD  
zero  
PWMnGENA  
PWM Clock  
load  
dir  
PWMnGENB  
Timer  
Fault  
PWMnCOUNT  
16  
PWMnCMPA  
PWMnDBCTL  
PWMnDBRISE  
PWMnDBFALL  
PWMENABLE  
PWMINVERT  
PWMFAULT  
cmpA  
cmpB  
PWM  
Generator  
pwma  
pwmb  
Comparator A  
Dead-Band  
Generator  
PWM Output  
Control  
PWMnCMPB  
Comparator B  
PWMnINTEN  
Interrupt  
Interrupt and  
Trigger Generate  
ADC Trigger  
PWMnRIS  
PWMnISC  
16.2  
Functional Description  
16.2.1  
PWM Timer  
The timer runs in one of two modes: Count-Down mode or Count-Up/Down mode. In Count-Down  
mode, the timer counts from the load value to zero, goes back to the load value, and continues  
counting down. In Count-Up/Down mode, the timer counts from zero up to the load value, back  
down to zero, back up to the load value, and so on. Generally, Count-Down mode is used for  
generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used for  
generating center-aligned PWM signals.  
356  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
The timers output three signals that are used in the PWM generation process: the direction signal  
(this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down  
mode), a single-clock-cycle-width High pulse when the counter is zero, and a  
single-clock-cycle-width High pulse when the counter is equal to the load value. Note that in  
Count-Down mode, the zero pulse is immediately followed by the load pulse.  
16.2.2  
PWM Comparators  
There are two comparators in the PWM generator that monitor the value of the counter; when  
either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/  
Down mode, these comparators match both when counting up and when counting down; they are  
therefore qualified by the counter direction signal. These qualified pulses are used in the PWM  
generation process. If either comparator match value is greater than the counter load value, then  
that comparator never outputs a High pulse.  
Figure 16-2 shows the behavior of the counter and the relationship of these pulses when the  
counter is in Count-Down mode. Figure 16-3 shows the behavior of the counter and the  
relationship of these pulses when the counter is in Count-Up/Down mode.  
Figure 16-2. PWM Count-Down Mode  
Load  
CompA  
CompB  
Zero  
Load  
Zero  
A
B
Dir  
BDown  
ADown  
April 27, 2007  
357  
Preliminary  
Pulse Width Modulator (PWM)  
Figure 16-3. PWM Count-Up/Down Mode  
Load  
CompA  
CompB  
Zero  
Load  
Zero  
A
B
Dir  
BUp  
BDown  
ADown  
AUp  
16.2.3  
PWM Signal Generator  
The PWM generator takes these pulses (qualified by the direction signal), and generates two  
PWM signals. In Count-Down mode, there are four events that can affect the PWM signal: zero,  
load, match A down, and match B down. In Count-Up/Down mode, there are six events that can  
affect the PWM signal: zero, load, match A down, match A up, match B down, and match B up.  
The match A or match B events are ignored when they coincide with the zero or load events. If the  
match A and match B events coincide, the first signal, PWMA, is generated based only on the match  
A event, and the second signal, PWMB, is generated based only on the match B event.  
For each event, the effect on each output PWM signal is programmable: it can be left alone  
(ignoring the event), it can be toggled, it can be driven Low, or it can be driven High. These actions  
can be used to generate a pair of PWM signals of various positions and duty cycles, which do or  
do not overlap. Figure 16-4 shows the use of Count-Up/Down mode to generate a pair of  
center-aligned, overlapped PWM signals that have different duty cycles.  
Figure 16-4. PWM Generation Example In Count-Up/Down Mode  
Load  
CompA  
CompB  
Zero  
PWMA  
PWMB  
In this example, the first generator is set to drive High on match A up, drive Low on match A down,  
and ignore the other four events. The second generator is set to drive High on match B up, drive  
Low on match B down, and ignore the other four events. Changing the value of comparator A  
changes the duty cycle of the PWMAsignal, and changing the value of comparator B changes the  
duty cycle of the PWMBsignal.  
358  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
16.2.4  
Dead-Band Generator  
The two PWM signals produced by the PWM generator are passed to the dead-band generator. If  
disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is  
lost and two PWM signals are generated based on the first PWM signal. The first output PWM  
signal is the input signal with the rising edge delayed by a programmable amount. The second  
output PWM signal is the inversion of the input signal with a programmable delay added between  
the falling edge of the input signal and the rising edge of this new signal.  
This is therefore a pair of active High signals where one is always High, except for a  
programmable amount of time at transitions where both are Low. These signals are therefore  
suitable for driving a half-H bridge, with the dead-band delays preventing shoot-through current  
from damaging the power electronics. Figure 16-5 shows the effect of the dead-band generator on  
an input PWM signal.  
Figure 16-5. PWM Dead-Band Generator  
Input  
PWMA  
PWMB  
Rising Edge  
Delay  
Falling Edge  
Delay  
16.2.5  
Interrupt/ADC-Trigger Selector  
The PWM generator also takes the same four (or six) counter events and uses them to generate  
an interrupt or an ADC trigger. Any of these events or a set of these events can be selected as a  
source for an interrupt; when any of the selected events occur, an interrupt is generated.  
Additionally, the same event, a different event, the same set of events, or a different set of events  
can be selected as a source for an ADC trigger; when any of these selected events occur, an ADC  
trigger pulse is generated. The selection of events allows the interrupt or ADC trigger to occur at a  
specific position within the PWM signal. Note that interrupts and ADC triggers are based on the  
raw events; delays in the PWM signal edges caused by the dead-band generator are not taken  
into account.  
16.2.6  
Synchronization Methods  
There is a global reset capability that can synchronously reset any or all of the counters in the  
PWM generator.  
The counter load values and comparator match values of the PWM generator can be updated in  
two ways. The first is immediate update mode, where a new value is used as soon as the counter  
reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and  
overly short or overly long output PWM pulses are prevented.  
The other update method is synchronous, where the new value is not used until a global  
synchronized update signal is asserted, at which point the new value is used as soon as the  
counter reaches zero. This second mode allows multiple items to be updated simultaneously  
without odd effects during the update; everything runs from the old values until a point at which  
they all run from the new values.  
16.2.7  
Fault Conditions  
There are two external conditions that affect the PWM block; the signal input on the Fault pin and  
the stalling of the controller by a debugger. There are two mechanisms available to handle such  
conditions: the output signals can be forced into an inactive state and/or the PWM timers can be  
stopped.  
April 27, 2007  
359  
Preliminary  
Pulse Width Modulator (PWM)  
Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal  
to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an  
extended period of time, this keeps the output signal from driving the outside world in a dangerous  
manner during the fault condition. A fault condition can also generate a controller interrupt.  
Each PWM generator can also be configured to stop counting during a stall condition. The user  
can select for the counters to run until they reach zero then stop, or to continue counting and  
reloading. A stall condition does not generate a controller interrupt.  
16.2.8  
Output Control Block  
With the PWM generator block producing two raw PWM signals, the output control block takes  
care of the final conditioning of the PWM signals before they go to the pins. Via a single register,  
the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for  
example, to perform commutation of a brushless DC motor with a single register write (and without  
modifying the individual PWM generators, which are modified by the feedback control loop).  
Similarly, fault control can disable any of the PWM signals as well. A final inversion can be applied  
to any of the PWM signals, making them active Low instead of the default active High.  
16.3  
Initialization and Configuration  
The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and  
with a 25% duty cycle on the PWM0pin and a 75% duty cycle on the PWM1pin. This example  
assumes the system clock is 20 MHz.  
1. Enable the PWM clock by writing a value of 0x00100000 to the RCGC0 register in the System  
Control module.  
2. In the GPIO module, enable the appropriate pins for their alternate function using the  
GPIOAFSEL register.  
3. Configure the Run-Mode Clock Configuration (RCC) register in the System Control module  
to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).  
4. Configure the PWM generator for countdown mode with immediate updates to the  
parameters.  
Write the PWM0CTL register with a value of 0x00000000.  
Write the PWM0GENA register with a value of 0x0000008C.  
Write the PWM0GENB register with a value of 0x0000080C.  
5. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM  
clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per  
period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the LOAD  
field in the PWM0LOAD register to the requested period minus one.  
Write the PWM0LOAD register with a value of 0x0000018F.  
6. Set the pulse width of the PWM0pin for a 25% duty cycle.  
Write the PWM0CMPA register with a value of 0x0000012B.  
7. Set the pulse width of the PWM1pin for a 75% duty cycle.  
Write the PWM0CMPB register with a value of 0x00000063.  
8. Start the timers in PWM generator 0.  
Write the PWM0CTL register with a value of 0x00000001.  
9. Enable PWM outputs.  
360  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Write the PWMENABLE register with a value of 0x00000003.  
16.4  
Register Map  
Table 16-2 lists the PWM registers. The offset listed is a hexadecimal increment to the register’s  
address, relative to the PWM base address of 0x40028000.  
Table 16-1. PWM Register Map  
See  
page  
Offset  
Name  
Reset  
Type  
Description  
PWM Module Control  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
PWMCTL  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
Master control of the PWM module  
Counter synchronization for the PWM generators  
Master enable for the PWM output pins  
Inversion control for the PWM output pins  
Fault handling for the PWM output pins  
Interrupt enable  
363  
364  
365  
366  
367  
368  
369  
370  
371  
PWMSYNC  
PWMENABLE  
PWMINVERT  
PWMFAULT  
PWMINTEN  
PWMRIS  
Raw interrupt status  
PWMISC  
R/W1C Interrupt status and clear  
PWMSTATUS  
RO  
Value of the Fault input signal  
PWM Generator 0  
PWM0CTL  
0x040  
0x044  
0x048  
0x04C  
0x050  
0x054  
0x058  
0x05C  
0x060  
0x064  
0x068  
0x06C  
0x070  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
RO  
Master control of the PWM0 generator block  
Interrupt and trigger enable  
372  
373  
375  
376  
377  
377  
379  
380  
381  
383  
384  
385  
386  
PWM0INTEN  
PWM0RIS  
Raw interrupt status  
PWM0ISC  
R/W1C Interrupt status and clear  
PWM0LOAD  
PWM0COUNT  
PWM0CMPA  
PWM0CMPB  
PWM0GENA  
PWM0GENB  
PWM0DBCTL  
PWM0DBRISE  
PWM0DBFALL  
R/W  
RO  
Load value for the counter  
Current counter value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Comparator A value  
Comparator B value  
Controls PWM generator A  
Controls PWM generator B  
Control the dead-band generator  
Dead-band rising-edge delay count  
Dead-band falling-edge delay count  
April 27, 2007  
361  
Preliminary  
Pulse Width Modulator (PWM)  
16.5  
Register Descriptions  
The remainder of this section lists and describes the PWM registers, in numerical order by address  
offset.  
362  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 1: PWM Master Control (PWMCTL), offset 0x000  
This register provides master control over the PWM generation block.  
PWM Master Control (PWMCTL)  
Offset 0x000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GlobalSync0  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
GlobalSync0  
R/W  
0
Setting this bit causes any queued update to a load or  
comparator register in PWM generator 0 to be applied the  
next time the corresponding counter becomes zero. This bit  
automatically clears when the updates have completed; it  
cannot be cleared by software.  
April 27, 2007  
363  
Preliminary  
Pulse Width Modulator (PWM)  
Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004  
This register provides a method to perform synchronization of the counters in the PWM generation  
blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing  
multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has  
occurred; reading them back as zero indicates that the synchronization has completed.  
PWM Time Base Sync (PWMSYNC)  
Offset 0x004  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Sync0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
Sync0  
R/W  
0
Performs a reset of the PWM generator 0 counter.  
364  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 3: PWM Output Enable (PWMENABLE), offset 0x008  
This register provides a master control of which generated PWM signals are output to device pins.  
By disabling a PWM output, the generation process can continue (for example when the time  
bases are synchronized) without driving PWM signals to the pins. When bits in this register are  
set, the corresponding PWM signal is passed through to the output stage, which is controlled by  
the PWMINVERT register. When bits are not set, the PWM signal is replaced by a zero value  
which is also passed to the output stage.  
PWM Output Enable (PWMENABLE)  
Offset 0x008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWM1En PWM0En  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
PWM1En  
PWM0En  
R/W  
R/W  
0
0
When set, allows the generated PWM1 signal to be passed  
to the device pin.  
When set, allows the generated PWM0 signal to be passed  
to the device pin.  
April 27, 2007  
365  
Preliminary  
Pulse Width Modulator (PWM)  
Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C  
This register provides a master control of the polarity of the PWM signals on the device pins. The  
PWM signals generated by the dead-band block are active High; they can optionally be made  
active Low via this register. Disabled PWM channels are also passed through the output inverter (if  
so configured) so that inactive channels maintain the correct polarity.  
PWM Output Inversion (PWMINVERT)  
Offset 0x00C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWM1Inv PWM0Inv  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
PWM1Inv  
PWM0Inv  
R/W  
R/W  
0
0
When set, the generated PWM1 signal is inverted.  
When set, the generated PWM0 signal is inverted.  
366  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 5: PWM Output Fault (PWMFAULT), offset 0x010  
This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the  
fault input and debug events are considered fault conditions. On a fault condition, each PWM  
signal can either be passed through unmodified or driven Low. For outputs that are configured for  
pass-through, the debug event handling on the corresponding PWM generator also determines if  
the PWM signal continues to be generated.  
Fault condition control happens before the output inverter, so PWM signals driven Low on fault are  
inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault  
condition).  
PWM Output Fault (PWMFAULT)  
Offset 0x010  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Fault1  
Fault0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
1
0
Fault1  
Fault0  
R/W  
R/W  
0
0
When set, the PWM1 output signal is driven Low on a fault  
condition.  
When set, the PWM0 output signal is driven Low on a fault  
condition.  
April 27, 2007  
367  
Preliminary  
Pulse Width Modulator (PWM)  
Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014  
This register controls the global interrupt generation capabilities of the PWM module. The events  
that can cause an interrupt are the fault input and the individual interrupts from the PWM  
generator.  
PWM Interrupt Enable (PWMINTEN)  
Offset 0x014  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
IntFault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntPWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
16  
15:1  
0
IntFault  
reserved  
IntPWM0  
R/W  
RO  
0
0
0
When 1, an interrupt occurs when the fault input is  
asserted.  
Reserved bits return an indeterminate value, and should  
never be changed.  
R/W  
When 1, an interrupt occurs when the PWM generator 0  
block asserts an interrupt.  
368  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018  
This register provides the current set of interrupt sources that are asserted, regardless of whether  
they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection; it  
must be cleared through the PWM Interrupt Status and Clear (PWMISC) register (see  
page 370). The PWM generator interrupts simply reflect the status of the PWM generator; they are  
cleared via the interrupt status register in the PWM generator block. Bits set to 1 indicate the  
events that are active; a zero bit indicates that the event in question is not active.  
PWM Interrupt Raw Status (PWMRIS)  
Offset 0x018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
IntFault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntPWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
16  
IntFault  
RO  
RO  
0
0
Indicates that the fault input has been asserted.  
15:1  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IntPWM0  
RO  
0
Indicates that the PWM generator 0 block is asserting its  
interrupt.  
April 27, 2007  
369  
Preliminary  
Pulse Width Modulator (PWM)  
Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C  
This register provides a summary of the interrupt status of the PWM generator block. A bit set to 1  
indicates that the generator block is asserting an interrupt. The individual interrupt status registers  
must be consulted to determine the reason for the interrupt, and used to clear the interrupt. For the  
fault interrupt, a write of 1 to that bit position clears the latched interrupt status.  
PWM Interrupt Status and Clear (PWMISC)  
Offset 0x01C  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
IntFault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntPWM0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
RO  
RO  
0
0
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
16  
IntFault  
R/W1C  
RO  
0
0
Indicates if the fault input is asserting an interrupt.  
15:1  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
IntPWM0  
RO  
0
Indicates if the PWM generator 0 block is asserting an  
interrupt.  
370  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 9: PWM Status (PWMSTATUS), offset 0x020  
This register provides the status of the Fault input signal.  
PWM Status (PWMSTATUS)  
Offset 0x020  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Fault  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
Fault  
RO  
0
When set to 1, indicates the fault input is asserted.  
April 27, 2007  
371  
Preliminary  
Pulse Width Modulator (PWM)  
Register 10: PWM0 Control (PWM0CTL), offset 0x040  
This register configures the PWM signal generation block. The Register Update mode, Debug  
mode, Counting mode, and Block Enable mode are all controlled via this register. The block  
produces the PWM signals, which can be either two independent PWM signals (from the same  
counter), or a paired set of PWM signals with dead-band delays added.  
The PWM0 block produces the PWM0 and PWM1 outputs.  
PWMn Control (PWMnCTL)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CmpBUpdCmpAUpd LoadUpd Debug  
Mode  
Enable  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
5
4
CmpBUpd  
CmpAUpd  
R/W  
R/W  
0
0
Same as CmpAUpdbut for the comparator B register.  
The Update mode for the comparator A register. If 0,  
updates to the register are reflected to the comparator the  
next time the counter is 0. If 1, updates to the register are  
delayed until the next time the counter is 0 after a  
synchronous update has been requested through the PWM  
Master Control (PWMCTL) register (see page 363).  
3
LoadUpd  
R/W  
0
The Update mode for the load register. If 0, updates to the  
register are reflected to the counter the next time the  
counter is 0. If 1, updates to the register are delayed until  
the next time the counter is 0 after a synchronous update  
has been requested through the PWM Master Control  
(PWMCTL) register.  
2
1
Debug  
Mode  
R/W  
R/W  
0
0
The behavior of the counter in Debug mode. If 0, the  
counter stops running when it next reaches 0, and  
continues running again when no longer in Debug mode. If  
1, the counter always runs.  
The mode for the counter. If 0, the counter counts down  
from the load value to 0 and then wraps back to the load  
value (Count-Down mode). If 1, the counter counts up from  
0 to the load value, back down to 0, and then repeats  
(Count-Up/Down mode).  
0
Enable  
R/W  
0
Master enable for the PWM generation block. If 0, the entire  
block is disabled and not clocked. If 1, the block is enabled  
and produces PWM signals.  
372  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 11: PWM0 Interrupt/Trigger Enable (PWM0INTEN), offset 0x044  
This register controls the interruptThese registers control the interrupt and ADC trigger generation  
capabilities of the PWM generator. The events that can cause an interrupt or an ADC trigger are:  
„
„
„
„
„
„
The counter being equal to the load register  
The counter being equal to zero  
The counter being equal to the comparator A register while counting up  
The counter being equal to the comparator A register while counting down  
The counter being equal to the comparator B register while counting up  
The counter being equal to the comparator B register while counting down  
Any combination of these events can generate either an interrupt or an ADC trigger, though no  
determination can be made as to the actual event that caused an ADC trigger.  
PWMn Interrupt/Trigger Enable (PWMnINTEN)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TrCmpBD TrCmpBU TrCmpAD TrCmpAU TrCntLoad TrCntZero  
reserved  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad IntCntZero  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:14  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
13  
12  
11  
10  
9
TrCmpBD  
TrCmpBU  
TrCmpAD  
TrCmpAU  
TrCntLoad  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
When 1, a trigger pulse is output when the counter matches  
the comparator B value and the counter is counting down.  
When 1, a trigger pulse is output when the counter matches  
the comparator B value and the counter is counting up.  
When 1, a trigger pulse is output when the counter matches  
the comparator A value and the counter is counting down.  
When 1, a trigger pulse is output when the counter matches  
the comparator A value and the counter is counting up.  
When 1, a trigger pulse is output when the counter matches  
the PWMnLOAD register.  
8
TrCntZero  
reserved  
R/W  
RO  
0
0
When 1, a trigger pulse is output when the counter is 0.  
7:6  
Reserved bits return an indeterminate value, and should  
never be changed.  
5
IntCmpBD  
R/W  
0
When 1, an interrupt occurs when the counter matches the  
comparator B value and the counter is counting down.  
April 27, 2007  
373  
Preliminary  
Pulse Width Modulator (PWM)  
Bit/Field  
4
Name  
Type  
R/W  
Reset  
0
Description  
IntCmpBU  
When 1, an interrupt occurs when the counter matches the  
comparator B value and the counter is counting up.  
3
2
1
0
IntCmpAD  
IntCmpAU  
IntCntLoad  
IntCntZero  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
When 1, an interrupt occurs when the counter matches the  
comparator A value and the counter is counting down.  
When 1, an interrupt occurs when the counter matches the  
comparator A value and the counter is counting up.  
When 1, an interrupt occurs when the counter matches the  
PWMnLOAD register.  
When 1, an interrupt occurs when the counter is 0.  
374  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 12: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048  
This register provides the current set of interrupt sources that are asserted, regardless of whether  
they cause an interrupt to be asserted to the controller. Bits set to 1 indicate the latched events  
that have occurred; a 0 bit indicates that the event in question has not occurred.  
PWMn Raw Interrupt Status (PWMnRIS)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad IntCntZero  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
5
4
3
2
1
0
IntCmpBD  
IntCmpBU  
IntCmpAD  
IntCmpAU  
IntCntLoad  
IntCntZero  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
Indicates that the counter has matched the comparator B  
value while counting down.  
Indicates that the counter has matched the comparator B  
value while counting up.  
Indicates that the counter has matched the comparator A  
value while counting down.  
Indicates that the counter has matched the comparator A  
value while counting up.  
Indicates that the counter has matched the PWMnLOAD  
register.  
Indicates that the counter has matched 0.  
April 27, 2007  
375  
Preliminary  
Pulse Width Modulator (PWM)  
Register 13: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C  
This register provides the current set of interrupt sources that are asserted to the controller. Bits  
set to 1 indicate the latched events that have occurred; a 0 bit indicates that the event in question  
has not occurred. These are R/W1C registers; writing a 1 to a bit position clears the corresponding  
interrupt reason.  
PWMn Interrupt Status (PWMnISC)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad IntCntZero  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
5
4
3
2
1
0
IntCmpBD  
IntCmpBU  
IntCmpAD  
IntCmpAU  
IntCntLoad  
IntCntZero  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
Indicates that the counter has matched the comparator B  
value while counting down.  
Indicates that the counter has matched the comparator B  
value while counting up.  
Indicates that the counter has matched the comparator A  
value while counting down.  
Indicates that the counter has matched the comparator A  
value while counting up.  
Indicates that the counter has matched the PWMnLOAD  
register.  
Indicates that the counter has matched 0.  
376  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 14: PWM0 Load (PWM0LOAD), offset 0x050  
This register contains the load value for the PWM counter. Based on the counter mode, either this  
value is loaded into the counter after it reaches zero, or it is the limit of up-counting after which the  
counter decrements back to zero. If the Load Value Update mode is immediate, this value is used  
the next time the counter reaches zero; if the mode is synchronous, it is used the next time the  
counter reaches zero after a synchronous update has been requested through the PWM Master  
Control (PWMCTL) register (see page 363). If this register is re-written before the actual update  
occurs, the previous value is never used and is lost.  
PWMn Load (PWMnLOAD)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Load  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:0  
Load  
R/W  
0
The counter load value.  
April 27, 2007  
377  
Preliminary  
Pulse Width Modulator (PWM)  
Register 15: PWM0 Counter (PWM0COUNT), offset 0x054  
This register contains the current value of the PWM counter. When this value matches the load  
register, a pulse is output; this can drive the generation of a PWM signal (via the PWMnGENA/  
PWMnGENB registers, see page 381 and 383) or drive an interrupt or ADC trigger (via the  
PWMnINTEN register, see page 373). A pulse with the same capabilities is generated when this  
value is zero.  
PWMn Counter (PWMnCOUNT)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Count  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:0  
Count  
RO  
0
The current value of the counter.  
378  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 16: PWM0 Compare A (PWM0CMPA), offset 0x058  
This register contains a value to be compared against the counter. When this value matches the  
counter, a pulse is output; this can drive the generation of a PWM signal (via the PWMnGENA/  
PWMnGENB registers) or drive an interrupt or ADC trigger (via the PWMnINTEN register). If the  
value of this register is greater than the PWMnLOAD register (see page 377), then no pulse is  
ever output.  
For comparator A, if the update mode is immediate (based on the CmpAUpdbit in the PWMnCTL  
register), then this 16-bit CompAvalue is used the next time the counter reaches zero. If the update  
mode is synchronous, it is used the next time the counter reaches zero after a synchronous  
update has been requested through the PWM Master Control (PWMCTL) register (see  
page 363). If this register is rewritten before the actual update occurs, the previous value is never  
used and is lost.  
PWMn Compare A (PWMnCMPA)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CompA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:0  
CompA  
R/W  
0
The value to be compared against the counter.  
April 27, 2007  
379  
Preliminary  
Pulse Width Modulator (PWM)  
Register 17: PWM0 Compare B (PWM0CMPB), offset 0x05C  
This register contains a value to be compared against the counter. When this value matches the  
counter, a pulse is output; this can drive the generation of a PWM signal (via the PWMnGENA/  
PWMnGENB registers) or drive an interrupt or ADC trigger (via the PWMnINTEN register). If the  
value of this register is greater than the PWMnLOAD register, then no pulse is ever output.  
For comparator B, if the update mode is immediate (based on the CmpBUpdbit in the PWMnCTL  
register), then this 16-bit CompBvalue is used the next time the counter reaches zero after a  
synchronous update has been requested through the PWM Master Control (PWMCTL) register  
(see page 363). If this register is rewritten before the actual update occurs, the previous value is  
never used and is lost.  
PWMn Compare B (PWMnCMPB)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CompB  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
15:0  
CompB  
R/W  
0
The value to be compared against the counter.  
380  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 18: PWM0 Generator A Control (PWM0GENA), offset 0x060  
This register controls the generation of the PWMNAsignal based on the load and zero output pulses  
from the counter, as well as the compare A and compare B pulses from the comparators. When  
the counter is running in Count-Down mode, only four of these events occur; when running in  
Count-Up/Down mode, all six occur. These events provide great flexibility in the positioning and  
duty cycle of the PWM signal that is produced.  
The PWM0GENA register controls generation of the PWM0Asignal.  
Each field can take on one of the values defined in Table 16-2, which defines the effect of the  
event on the output signal.  
If a zero or load event coincides with a compare A or compare B event, the zero or load action is  
taken and the compare A or compare B action is ignored. If a compare A event coincides with a  
compare B event, the compare A action is taken and the compare B action is ignored.  
PWMn Generator A Control (PWMnGENA)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ActCmpBD  
ActCmpBU  
ActCmpAD  
ActCmpAU  
ActLoad  
ActZero  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
R/W  
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
0
0
0
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
11:10  
9:8  
ActCmpBD  
ActCmpBU  
R/W  
R/W  
0
0
The action to be taken when the counter matches  
comparator B while counting down.  
The action to be taken when the counter matches  
comparator B while counting up. Occurs only when the  
Modebit in the PWMnCTL register (see page 372) is set  
to 1.  
7:6  
5:4  
ActCmpAD  
ActCmpAU  
R/W  
R/W  
0
0
The action to be taken when the counter matches  
comparator A while counting down.  
The action to be taken when the counter matches  
comparator A while counting up.Occurs only when the  
Modebit in the PWMnCTL register is set to 1.  
3:2  
1:0  
ActLoad  
ActZero  
R/W  
R/W  
0
0
The action to be taken when the counter matches the load  
value.  
The action to be taken when the counter is zero.  
April 27, 2007  
381  
Preliminary  
Pulse Width Modulator (PWM)  
Table 16-2. PWM Generator Action Encodings  
Value  
Description  
00  
01  
10  
11  
Do nothing.  
Invert the output signal.  
Set the output signal to 0.  
Set the output signal to 1.  
382  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 19: PWM0 Generator B Control (PWM0GENB), offset 0x064  
This register controls the generation of the PWMNBsignal based on the load and zero output pulses  
from the counter, as well as the compare A and compare B pulses from the comparators. When  
the counter is running in Down mode, only four of these events occur; when running in Up/Down  
mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the  
PWM signal that is produced.  
The PWM0GENB register controls generation of the PWM0Bsignal.  
Each field can take on one of the values defined in Table 16-2 on page 382, which defines the  
effect of the event on the output signal.  
If a zero or load event coincides with a compare A or compare B event, the zero or load action is  
taken and the compare A or compare B action is ignored. If a compare A event coincides with a  
compare B event, the compare B action is taken and the compare A action is ignored.  
PWMn Generator B Control (PWMnGENB)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ActCmpBD  
ActCmpBU  
ActCmpAD  
ActCmpAU  
ActLoad  
ActZero  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
R/W  
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
0
0
0
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
11:10  
9:8  
ActCmpBD  
ActCmpBU  
R/W  
R/W  
0
0
The action to be taken when the counter matches  
comparator B while counting down.  
The action to be taken when the counter matches  
comparator B while counting up. Occurs only when the  
Modebit in the PWMnCTL register (see page 372) is set  
to 1.  
7:6  
5:4  
ActCmpAD  
ActCmpAU  
R/W  
R/W  
0
0
The action to be taken when the counter matches  
comparator A while counting down.  
The action to be taken when the counter matches  
comparator A while counting up. Occurs only when the  
Modebit in the PWMnCTL register is set to 1.  
3:2  
1:0  
ActLoad  
ActZero  
R/W  
R/W  
0
0
The action to be taken when the counter matches the load  
value.  
The action to be taken when the counter is 0.  
April 27, 2007  
383  
Preliminary  
Pulse Width Modulator (PWM)  
Register 20: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068  
The PWM0DBCTL register controls the dead-band generator, which produces the PWM0and PWM1  
signals based on the PWM0Aand PWM0Bsignals. When disabled, the PWM0Asignal passes through  
to the PWM0signal and the PWM0Bsignal passes through to the PWM1signal. When enabled, the  
PWM0Bsignal is ignored; the PWM0signal is generated by delaying the rising edge(s) of the PWM0A  
signal by the value in the PWM0DBRISE register (see page 385), and the PWM1signal is  
generated by delaying the falling edge(s) of the PWM0Asignal by the value in the PWM0DBFALL  
register (see page 386).  
PWMn Dead-Band Control (PWMnDBCTL)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Enable  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
0
Enable  
R/W  
0
When set, the dead-band generator inserts dead bands into  
the output signals; when clear, it simply passes the PWM  
signals through.  
384  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Register 21: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C  
The PWM0DBRISE register contains the number of clock ticks to delay the rising edge of the  
PWM0Asignal when generating the PWM0signal. If the dead-band generator is disabled through the  
PWMnDBCTL register, the PWM0DBRISE register is ignored. If the value of this register is larger  
than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire  
High time of the signal, resulting in no High time on the output. Care must be taken to ensure that  
the input High time always exceeds the rising-edge delay.  
PWMn Dead-Band Rising-Edge Delay (PWMnDBRISE)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RiseDelay  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Reserved bits return an indeterminate value, and should  
never be changed.  
11:0  
RiseDelay  
R/W  
0
The number of clock ticks to delay the rising edge.  
April 27, 2007  
385  
Preliminary  
Pulse Width Modulator (PWM)  
Register 22: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070  
The PWM0DBFALL register contains the number of clock ticks to delay the falling edge of the  
PWM0Asignal when generating the PWM1signal. If the dead-band generator is disabled, this  
register is ignored. If the value of this register is larger than the width of a Low pulse on the input  
PWM signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low  
time on the output. Care must be taken to ensure that the input Low time always exceeds the  
falling-edge delay.  
PWMn Dead-Band Falling-Edge-Delay Register (PWMnDBFALL)  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
FallDelay  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
Reset Description  
reserved  
RO  
0
Reserved bits return an indeterminate value, and should  
never be changed.  
11:0  
FallDelay  
R/W  
0
The number of clock ticks to delay the falling edge.  
386  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
17  
Pin Diagram  
Figure 17-1 shows the pin diagram and pin-to-signal-name mapping.  
Figure 17-1. Pin Connection Diagram  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PE1  
ADC0  
ADC1  
2
PE0  
3
PB3/I2CSDA  
PB2/I2CSCL  
VDD  
PE3/CCP1  
PE2  
4
5
RST  
6
GND  
LDO  
7
PB1  
VDD  
8
PB0/CCP0  
PD3/U1Tx  
PD2/U1Rx  
PD1/PWM1  
PD0/PWM0  
GND  
9
OSC0  
10  
11  
12  
OSC1  
PC7/CCP4  
PC6/CCP3  
LM3S612  
April 27, 2007  
387  
Preliminary  
Signal Tables  
18  
Signal Tables  
The following tables list the signals available for each pin. Functionality is enabled by software with  
the GPIOAFSEL register (see page 134).  
Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins  
(PB7and PC[3:0]) which default to the JTAG functionality.  
Table 18-1 shows the pin-to-signal-name mapping, including functional characteristics of the  
signals. Table 18-2 lists the signals in alphabetical order by signal name. Table 18-3 groups the  
signals by functionality, except for GPIOs. Table 18-4 lists the GPIO pins and their alternate  
functionality.  
Table 18-1. Signals by Pin Number (Sheet 1 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
ADC0  
Description  
Analog-to-digital converter input 0.  
1
2
3
I
I
Analog  
Analog  
TTL  
ADC1  
PE3  
Analog-to-digital converter input 1.  
GPIO port E bit 3.  
I/O  
I/O  
I/O  
I
CCP1  
PE2  
TTL  
Timer 0 capture input, compare output, or PWM output channel 1.  
GPIO port E bit 2.  
4
5
6
TTL  
RST  
LDO  
TTL  
System reset input.  
-
Power  
The low drop-out regulator output voltage. This pin requires an  
external capacitor between the pin and GND of 1 µF or greater.  
7
8
VDD  
GND  
OSC0  
OSC1  
PC7  
-
-
Power  
Power  
Analog  
Analog  
TTL  
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Oscillator crystal input or an external clock reference input.  
Oscillator crystal output.  
9
I
10  
11  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
GPIO port C bit 7.  
CCP4  
PC6  
TTL  
Timer 2 capture input, compare output, or PWM output channel 4.  
GPIO port C bit 6.  
12  
TTL  
CCP3  
PC5  
TTL  
Timer 1 capture input, compare output, or PWM output channel 3.  
GPIO port C bit 5.  
13  
14  
15  
16  
17  
TTL  
PC4  
TTL  
GPIO port C bit 4.  
VDD  
GND  
PA0  
Power  
Power  
TTL  
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
GPIO port A bit 0.  
-
I/O  
I
U0Rx  
TTL  
UART0 receive data input.  
388  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 18-1. Signals by Pin Number (Sheet 2 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PA1  
Description  
18  
19  
I/O  
O
TTL  
TTL  
TTL  
TTL  
GPIO port A bit 1.  
U0Tx  
PA2  
UART0 transmit data output.  
GPIO port A bit 2.  
I/O  
I/O  
SSIClk  
SSI clock reference (input when in slave mode and output in  
master mode).  
20  
PA3  
I/O  
I/O  
TTL  
TTL  
GPIO port A bit 3.  
SSIFss  
SSI frame enable (input for an SSI slave device and output for an  
SSI master device).  
21  
22  
PA4  
I/O  
I
TTL  
TTL  
GPIO port A bit 4.  
SSIRx  
PA5  
SSI receive data input.  
I/O  
O
TTL  
GPIO port A bit 5.  
SSITx  
VDD  
TTL  
SSI transmit data output.  
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
GPIO port D bit 0.  
23  
24  
25  
-
Power  
Power  
TTL  
GND  
PD0  
-
I/O  
O
PWM0  
PD1  
TTL  
Pulse width modulator channel 0 output.  
GPIO port D bit 1.  
26  
27  
28  
29  
I/O  
O
TTL  
PWM1  
PD2  
TTL  
Pulse width modulator channel 1 output.  
GPIO port D bit 2.  
I/O  
I
TTL  
U1Rx  
PD3  
TTL  
UART1 receive data input.  
GPIO port D bit 3.  
I/O  
O
TTL  
U1Tx  
PB0  
TTL  
UART1 transmit data output.  
GPIO port B bit 0.  
I/O  
I/O  
I/O  
-
TTL  
CCP0  
PB1  
TTL  
Timer 0 capture input, compare output, or PWM output channel 0.  
GPIO port B bit 1.  
30  
31  
32  
33  
TTL  
GND  
VDD  
Power  
Power  
TTL  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
GPIO port B bit 2.  
-
PB2  
I/O  
I/O  
I/O  
I/O  
I2CSCL  
PB3  
OD  
I2C serial clock.  
34  
TTL  
GPIO port B bit 3.  
I2CSDA  
OD  
I2C serial data.  
April 27, 2007  
389  
Preliminary  
Signal Tables  
Table 18-1. Signals by Pin Number (Sheet 3 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PE0  
Description  
35  
36  
37  
I/O  
I/O  
I/O  
O
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Analog  
TTL  
TTL  
TTL  
TTL  
Analog  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port E bit 0.  
GPIO port E bit 1.  
GPIO port C bit 3.  
PE1  
PC3  
TDO  
SWO  
PC2  
TDI  
JTAG scan test data output.  
Serial-wire output.  
O
38  
39  
I/O  
I
GPIO port C bit 2.  
JTAG scan test data input.  
GPIO port C bit 1.  
PC1  
TMS  
SWDIO  
PC0  
TCK  
SWCLK  
PB7  
I/O  
I
JTAG scan test mode select input.  
Serial-wire debug input/output.  
GPIO port C bit 0.  
I/O  
I/O  
I
40  
JTAG scan test clock reference input.  
Serial wire clock reference input.  
GPIO port B bit 7.  
I
41  
42  
43  
I/O  
I
TRST  
PB6  
JTAG scan test reset input.  
GPIO port B bit 6.  
I/O  
I
C0+  
Analog comparator 0 positive-reference input.  
GPIO port B bit 5.  
PB5  
I/O  
I/O  
O
CCP5  
C0o  
Timer 2 capture input, compare output, or PWM output channel 5.  
Analog comparator 0 output.  
GPIO port B bit 4.  
44  
PB4  
I/O  
I
C0–  
Analog comparator 0 negative-reference input.  
GPIO port D bit 4.  
45  
46  
PD4  
PD5  
CCP2  
PD6  
Fault  
PD7  
C0o  
I/O  
I/O  
I/O  
I/O  
I
GPIO port D bit 5.  
Timer 1 capture input, compare output, or PWM output channel 2.  
GPIO port D bit 6.  
47  
48  
PWM fault detect input.  
I/O  
O
GPIO port D bit 7.  
Analog comparator 0 output.  
390  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 18-2. Signals by Signal Name (Sheet 1 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
ADC0  
Description  
Analog-to-digital converter input 0.  
1
I
I
Analog  
Analog  
Analog  
Analog  
TTL  
ADC1  
C0+  
2
Analog-to-digital converter input 1.  
42  
44  
48  
29  
3
I
Analog comparator 0 positive-reference input.  
Analog comparator 0 negative-reference input.  
Analog comparator 0 output.  
C0–  
I
C0o  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
CCP0  
CCP1  
CCP2  
CCP3  
CCP4  
CCP5  
Fault  
TTL  
Timer 0 capture input, compare output, or PWM output channel 0.  
Timer 0 capture input, compare output, or PWM output channel 1.  
Timer 1 capture input, compare output, or PWM output channel 2.  
Timer 1 capture input, compare output, or PWM output channel 3.  
Timer 2 capture input, compare output, or PWM output channel 4.  
Timer 2 capture input, compare output, or PWM output channel 5.  
PWM fault detect input.  
TTL  
46  
12  
11  
43  
47  
8
TTL  
TTL  
TTL  
TTL  
TTL  
GND  
-
Power  
Power  
Power  
Power  
OD  
Ground reference for logic and I/O pins.  
GND  
16  
24  
31  
33  
34  
6
-
Ground reference for logic and I/O pins.  
GND  
-
Ground reference for logic and I/O pins.  
GND  
-
Ground reference for logic and I/O pins.  
I2CSCL  
I2CSDA  
LDO  
I/O  
I/O  
-
I2C serial clock.  
OD  
I2C serial data.  
Power  
The low drop-out regulator output voltage. This pin requires an  
external capacitor between the pin and GND of 1 µF or greater.  
OSC0  
OSC1  
PA0  
9
I
Analog  
Analog  
TTL  
Oscillator crystal input or an external clock reference input.  
Oscillator crystal output.  
GPIO port A bit 0.  
10  
17  
18  
19  
20  
21  
22  
29  
30  
33  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PA1  
TTL  
GPIO port A bit 1.  
PA2  
TTL  
GPIO port A bit 2.  
PA3  
TTL  
GPIO port A bit 3.  
PA4  
TTL  
GPIO port A bit 4.  
PA5  
TTL  
GPIO port A bit 5.  
PB0  
PB1  
PB2  
TTL  
GPIO port B bit 0.  
TTL  
GPIO port B bit 1.  
TTL  
GPIO port B bit 2.  
April 27, 2007  
391  
Preliminary  
Signal Tables  
Table 18-2. Signals by Signal Name (Sheet 2 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PB3  
Description  
34  
44  
43  
42  
41  
40  
39  
38  
37  
14  
13  
12  
11  
25  
26  
27  
28  
45  
46  
47  
48  
35  
36  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port B bit 3.  
GPIO port B bit 4.  
GPIO port B bit 5.  
GPIO port B bit 6.  
GPIO port B bit 7.  
GPIO port C bit 0.  
GPIO port C bit 1.  
GPIO port C bit 2.  
GPIO port C bit 3.  
GPIO port C bit 4.  
GPIO port C bit 5.  
GPIO port C bit 6.  
GPIO port C bit 7.  
GPIO port D bit 0.  
GPIO port D bit 1.  
GPIO port D bit 2.  
GPIO port D bit 3.  
GPIO port D bit 4.  
GPIO port D bit 5.  
GPIO port D bit 6.  
GPIO port D bit 7.  
GPIO port E bit 0.  
GPIO port E bit 1.  
GPIO port E bit 2.  
GPIO port E bit 3.  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE0  
PE1  
PE2  
PE3  
PWM0  
PWM1  
RST  
SSIClk  
3
25  
26  
5
Pulse width modulator channel 0 output.  
Pulse width modulator channel 1 output.  
System reset input.  
O
I
19  
I/O  
SSI clock reference (input when in slave mode and output in  
master mode).  
392  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 18-2. Signals by Signal Name (Sheet 3 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
SSIFss  
Description  
20  
I/O  
TTL  
SSI frame enable (input for an SSI slave device and output for an  
SSI master device).  
SSIRx  
SSITx  
SWCLK  
SWDIO  
SWO  
TCK  
21  
22  
40  
39  
37  
40  
38  
37  
39  
41  
17  
18  
27  
28  
7
I
O
I
TTL  
TTL  
SSI receive data input.  
SSI transmit data output.  
TTL  
Serial wire clock reference input.  
Serial-wire debug input/output.  
Serial-wire output.  
I/O  
O
I
TTL  
TTL  
TTL  
JTAG scan test clock reference input.  
JTAG scan test data input.  
TDI  
I
TTL  
TDO  
O
I
TTL  
JTAG scan test data output.  
JTAG scan test mode select input.  
JTAG scan test reset input.  
TMS  
TTL  
TRST  
U0Rx  
U0Tx  
U1Rx  
U1Tx  
VDD  
I
TTL  
I
TTL  
UART0 receive data input.  
O
I
TTL  
UART0 transmit data output.  
UART1 receive data input.  
TTL  
O
-
TTL  
UART1 transmit data output.  
Positive supply for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Power  
Power  
Power  
Power  
VDD  
15  
23  
32  
-
VDD  
-
VDD  
-
Table 18-3. Signals by Function, Except for GPIO (Sheet 1 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Function  
ADC  
Pin Name  
ADC0  
Description  
1
2
I
I
I
Analog  
Analog  
Analog  
Analog-to-digital converter input 0.  
Analog-to-digital converter input 1.  
ADC1  
C0+  
Analog  
Comparators  
42  
Analog comparator 0 positive-reference  
input.  
C0–  
C0o  
44  
48  
I
Analog  
TTL  
Analog comparator 0 negative-reference  
input.  
O
Analog comparator 0 output.  
April 27, 2007  
393  
Preliminary  
Signal Tables  
Table 18-3. Signals by Function, Except for GPIO (Sheet 2 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Function  
Pin Name  
CCP0  
Description  
General-Purpose  
Timers  
29  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Timer 0 capture input, compare output, or  
PWM output channel 0.  
CCP1  
CCP2  
CCP3  
CCP4  
CCP5  
Timer 0 capture input, compare output, or  
PWM output channel 1.  
46  
12  
11  
43  
Timer 1 capture input, compare output, or  
PWM output channel 2.  
Timer 1 capture input, compare output, or  
PWM output channel 3.  
Timer 2 capture input, compare output, or  
PWM output channel 4.  
Timer 2 capture input, compare output, or  
PWM output channel 5.  
I2C  
I2CSCL  
I2CSDA  
SWCLK  
SWDIO  
SWO  
TCK  
33  
34  
40  
39  
37  
40  
38  
37  
39  
41  
8
I/O  
OD  
OD  
I2C serial clock.  
I/O  
I2C serial data.  
JTAG/SWD/SWO  
I
I/O  
O
I
TTL  
Serial-wire clock reference input.  
Serial-wire debug input/output.  
Serial-wire output.  
TTL  
TTL  
TTL  
JTAG scan test clock reference input.  
JTAG scan test data input.  
TDI  
I
TTL  
TDO  
O
I
TTL  
JTAG scan test data output.  
JTAG scan test mode select input.  
JTAG scan test reset input.  
TMS  
TTL  
TRST  
GND  
I
TTL  
Power  
-
Power  
Power  
Power  
Power  
Power  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Ground reference for logic and I/O pins.  
GND  
16  
24  
31  
6
-
GND  
-
GND  
-
LDO  
-
The low drop-out regulator output voltage.  
This pin requires an external capacitor  
between the pin and GND of 1 µF or greater.  
VDD  
VDD  
VDD  
VDD  
7
-
-
-
-
Power  
Power  
Power  
Power  
Positive supply for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Positive supply for logic and I/O pins.  
15  
23  
32  
394  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 18-3. Signals by Function, Except for GPIO (Sheet 3 of 3)  
Pin  
Number  
Pin  
Type  
Buffer  
Type  
Function  
PWM  
Pin Name  
Fault  
Description  
PWM fault detect input.  
47  
25  
26  
19  
I
TTL  
TTL  
TTL  
TTL  
PWM0  
PWM1  
SSIClk  
O
Pulse width modulator channel 0 output.  
Pulse width modulator channel 1 output.  
O
SSI  
I/O  
SSI clock reference (input when in slave  
mode and output in master mode).  
SSIFss  
20  
I/O  
TTL  
SSI frame enable (input for an SSI slave  
device and output for an SSI master device).  
SSIRx  
SSITx  
OSC0  
21  
22  
9
I
O
I
TTL  
TTL  
SSI receive data input.  
SSI transmit data output.  
System Control &  
Clocks  
Analog  
Oscillator crystal input or an external clock  
reference input.  
OSC1  
RST  
10  
5
O
I
Analog  
TTL  
Oscillator crystal output.  
System reset input.  
UART  
U0Rx  
U0Tx  
U1Rx  
U1Tx  
17  
18  
27  
28  
I
TTL  
UART0 receive data input.  
UART0 transmit data output.  
UART1 receive data input.  
UART1 transmit data output.  
O
I
TTL  
TTL  
O
TTL  
Table 18-4. GPIO Pins and Alternate Functions (Sheet 1 of 2)  
Pin  
Number  
Multiplexed  
Function  
Multiplexed  
Function  
GPIO Pin  
PA0  
17  
18  
19  
20  
21  
22  
29  
30  
33  
34  
44  
U0Rx  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
U0Tx  
SSIClk  
SSIFss  
SSIRx  
SSITx  
CCP0  
I2CSCL  
I2CSDA  
C0-  
April 27, 2007  
395  
Preliminary  
Signal Tables  
Table 18-4. GPIO Pins and Alternate Functions (Sheet 2 of 2)  
Pin  
Number  
Multiplexed  
Function  
Multiplexed  
Function  
GPIO Pin  
PB5  
43  
42  
41  
40  
39  
38  
37  
14  
13  
12  
11  
25  
26  
27  
28  
45  
46  
47  
48  
35  
36  
4
CCP5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE0  
PE1  
PE2  
PE3  
C0+  
TRST  
TCK  
TMS  
TDI  
SWCLK  
SWDIO  
TDO  
SWO  
CCP3  
CCP4  
PWM0  
PWM1  
U1Rx  
U1Tx  
Fault  
3
CCP1  
396  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
19  
Operating Characteristics  
Table 19-1. Temperature Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Operating temperature rangea  
TA  
-40 to +85 for industrial  
°C  
a. Maximum storage temperature is 150°C.  
Table 19-2. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance (junction to ambient)a  
Average junction temperatureb  
θJA  
76  
°C/W  
°C  
TJ  
TA + (PAVG θJA)  
Maximum junction temperature  
TJMAX  
115c  
°C  
a. Junction to ambient thermal resistance θJA numbers are determined by a package simulator.  
b. Power dissipation is a function of temperature.  
c. TJMAX calculation is based on power consumption values and conditions as specified in “Power Specifications” on page 400 of  
the data sheet.  
April 27, 2007  
397  
Preliminary  
Electrical Characteristics  
20  
Electrical Characteristics  
20.1  
DC Characteristics  
20.1.1  
Maximum Ratings  
The maximum ratings are the limits to which the device can be subjected without permanently  
damaging the device.  
Note: The device is not guaranteed to operate properly at the maximum ratings.  
Table 20-1. Maximum Ratings  
Characteristica  
Symbol  
Value  
Unit  
Supply voltage range (VDD  
)
VDD  
VIN  
I
0.0 to +3.6  
-0.3 to 5.5  
100  
V
V
Input voltage  
Maximum current for pins, excluding pins  
operating as GPIOs  
mA  
Maximum current for GPIO pins  
I
100  
mA  
a. Voltages are measured with respect to GND.  
Important: This device contains circuitry to protect the inputs against damage due to high-static  
voltages or electric fields; however, it is advised that normal precautions be taken to  
avoid application of any voltage higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are  
connected to an appropriate logic voltage level (for example, either GNDor V ).  
DD  
20.1.2  
Recommended DC Operating Conditions  
Table 20-2. Recommended DC Operating Conditions  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
VDD  
VIH  
Supply voltage  
3.0  
3.3  
3.6  
5.0  
V
V
V
V
V
V
V
High-level input voltage  
2.0  
-
-
-
-
-
-
VIL  
Low-level input voltage  
-0.3  
1.3  
VSIH  
VSIL  
VOH  
VOL  
High-level input voltage for Schmitt trigger inputs  
Low-level input voltage for Schmitt trigger inputs  
High-level output voltage  
0.8 * VDD  
VDD  
0.2 * VDD  
-
0
2.4  
-
Low-level output voltage  
0.4  
398  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 20-2. Recommended DC Operating Conditions (Continued)  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
IOH  
High-level source current, VOH=2.4 V  
2-mA Drive  
2.0  
4.0  
8.0  
-
-
-
-
-
-
mA  
mA  
mA  
4-mA Drive  
8-mA Drive  
IOL  
Low-level sink current, VOL=0.4 V  
2-mA Drive  
4-mA Drive  
8-mA Drive  
2.0  
4.0  
8.0  
-
-
-
-
-
-
mA  
mA  
mA  
20.1.3  
On-Chip Low Drop-Out (LDO) Regulator Characteristics  
Table 20-3. LDO Regulator Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
VLDOOUT  
Programmable internal (logic) power supply  
output value  
2.25  
-
2.75  
V
Output voltage accuracy  
Power-on time  
-
-
-
-
-
-
2%  
-
-
%
µs  
tPON  
tON  
100  
200  
100  
-
Time on  
-
µs  
tOFF  
Time off  
-
µs  
VSTEP  
CLDO  
Step programming incremental voltage  
50  
1
mV  
µF  
External filter capacitor size for internal  
power supply  
-
April 27, 2007  
399  
Preliminary  
Electrical Characteristics  
20.1.4  
Power Specifications  
The power measurements specified in Table 20-4 are run on the core processor using SRAM with  
the following specifications:  
„
„
V
= 3.3 V  
DD  
Temperature = 25°C  
Table 20-4. Power Specifications  
Parameter  
Parameter  
Conditions  
Nom  
Max  
Unit  
Name  
IDD_RUN  
Run mode 1  
(Flash loop)  
LDO = 2.50 V  
95  
110  
mA  
Code = while(1){}executed in Flash  
Peripherals = All clock-gated ON  
System Clock = 50 MHz (with PLL)  
Run mode 2  
(Flash loop)  
LDO = 2.50 V  
60  
85  
50  
75  
95  
60  
mA  
mA  
mA  
Code = while(1){}executed in Flash  
Peripherals = All clock-gated OFF  
System Clock = 50 MHz (with PLL)  
Run mode 1  
(SRAM loop)  
LDO = 2.50 V  
Code = while(1){}executed in SRAM  
Peripherals = All clock-gated ON  
System Clock = 50 MHz (with PLL)  
Run mode 2  
(SRAM loop)  
LDO = 2.50 V  
Code = while(1){}executed in SRAM  
Peripherals = All clock-gated OFF  
System Clock = 50 MHz (with PLL)  
IDD_SLEEP  
Sleep mode  
LDO = 2.50 V  
19  
22  
mA  
µA  
Peripherals = All clock-gated OFF  
System Clock = 50 MHz (with PLL)  
IDD_DEEPSLEEP Deep-Sleep  
mode  
LDO = 2.25 V  
950  
1150  
Peripherals = All clock-gated OFF  
System Clock = MOSC/16  
400  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
20.1.5  
Flash Memory Characteristics  
Table 20-5. Flash Memory Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
PECYC  
Number of guaranteed program/erase  
cyclesa before failure  
10,000  
-
-
cycles  
TRET  
Data retention at average operating  
temperature of 85°C  
10  
-
-
years  
TPROG  
TERASE  
TME  
Word program time  
Page erase time  
Mass erase time  
20  
20  
-
-
-
-
-
-
µs  
ms  
ms  
200  
a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.  
20.2  
AC Characteristics  
20.2.1  
Load Conditions  
Unless otherwise specified, the following conditions are true for all timing measurements. Timing  
measurements are for 4-mA drive strength.  
Figure 20-1. Load Conditions  
pin  
CL = 50 pF  
GND  
20.2.2  
Clocks  
Table 20-6. Phase Locked Loop (PLL) Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
fREF_CRYSTAL  
fREF_EXT  
fPLL  
Crystal referencea  
External clock referencea  
PLL frequencyb  
3.579545  
-
8.192  
8.192  
-
MHz  
MHz  
MHz  
ms  
3.579545  
-
200  
-
-
-
TREADY  
PLL lock time  
0.5  
a. The exact value is determined by the crystal value programmed into the XTALfield of the Run-Mode Clock  
Configuration (RCC) register (see page 86).  
b. PLL frequency is automatically calculated by the hardware based on the XTALfield of the RCC register.  
April 27, 2007  
401  
Preliminary  
Electrical Characteristics  
Table 20-7. Clock Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
fIOSC  
Internal oscillator  
frequency  
7
15  
22  
MHz  
fMOSC  
Main oscillator frequency  
Main oscillator period  
1
125  
1
-
-
-
8
1000  
8
MHz  
ns  
tMOSC_PER  
fREF_CRYSTAL_BYPASS  
Crystal reference using the  
main oscillator (PLL in  
BYPASS mode)a  
MHz  
fREF_EXT_BYPASS  
External clock reference  
(PLL in BYPASS mode)a  
0
0
-
-
50  
50  
MHz  
MHz  
fSYSTEM_CLOCK  
System clock  
a. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source in order to operate  
properly.  
20.2.3  
Temperature Sensor  
Table 20-8. Temperature Sensor Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
VTSO  
tTSERR  
Output voltage  
0.3  
-
-
-
2.7  
V
Output voltage temperature  
accuracy  
± 3.5  
°C  
tTSNL  
Output temperature nonlinearity  
-
-
± 1  
°C  
20.2.4  
Analog-to-Digital Converter  
Table 20-9. ADC Characteristics  
Parameter  
VADCIN  
Parameter Name  
Min  
Nom  
Max  
Unit  
Maximum single-ended, full-scale  
analog input voltage  
-
-
-
3.0  
0
V
Minimum single-ended, full-scale  
analog input voltage  
-
-
-
-
V
V
Maximum differential, full-scale  
analog input voltage  
-
1.5  
-1.5  
-
Minimum differential, full-scale analog  
input voltage  
-
V
CADCIN  
Equivalent input capacitance  
1
pF  
402  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Table 20-9. ADC Characteristics (Continued)  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
N
Resolution  
-
10  
-
9
bits  
MHz  
fADC  
ADC internal clock frequency  
Conversion time  
Conversion rate  
Integral nonlinearity  
Differential nonlinearity  
Offset  
7
8
tADCCONV  
fADCCONV  
INL  
-
-
16  
563  
±1  
±1  
+2  
±2  
tADC cyclesa  
k samples/s  
LSB  
438  
500  
-
-
-
-
-
-
-
-
DNL  
LSB  
OFF  
LSB  
GAIN  
Gain  
LSB  
a. tADC = 1/fADC clock  
20.2.5  
Analog Comparator  
Table 20-10. Analog Comparator Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
VOS  
VCM  
CMRR  
TRT  
Input offset voltage  
-
0
± 10  
± 25  
mV  
V
Input common mode voltage range  
Common mode rejection ratio  
Response time  
-
-
-
-
VDD-1.5  
50  
-
-
dB  
µs  
µs  
1
TMC  
Comparator mode change to Output Valid  
-
10  
Table 20-11. Analog Comparator Voltage Reference Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
RHR  
RLR  
AHR  
ALR  
Resolution high range  
-
-
-
-
VDD/32  
-
LSB  
LSB  
LSB  
LSB  
Resolution low range  
VDD/24  
-
Absolute accuracy high range  
Absolute accuracy low range  
-
-
± 1/2  
± 1/4  
April 27, 2007  
403  
Preliminary  
Electrical Characteristics  
2
20.2.6  
I C  
2
Table 20-12. I C Characteristics  
Parameter  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
No.  
I1a  
tSCH  
Start condition hold time  
Clock Low period  
36  
-
-
system  
clocks  
I2a  
I3b  
I4a  
I5c  
I6a  
I7a  
I8a  
I9a  
tLP  
tSRT  
tDH  
36  
-
-
-
-
system  
clocks  
I2CSCL/I2CSDArise time  
(VIL=0.5 V to VIH=2.4 V)  
(see  
note b)  
ns  
Data hold time  
2
-
-
10  
-
system  
clocks  
tSFT  
I2CSCL/I2CSDAfall time  
(VIH=2.4 V to VIL=0.5 V)  
-
9
-
ns  
tHT  
Clock High time  
24  
18  
36  
24  
system  
clocks  
tDS  
Data setup time  
-
-
system  
clocks  
tSCSR  
Start condition setup time (for repeated  
start condition only)  
-
-
system  
clocks  
tSCS  
Stop condition setup time  
-
-
system  
clocks  
a. Values depend on the value programmed into the TPRbit in the I2C Master Timer Period (I2CMTPR) register (see page 331); a  
TPRprogrammed for the maximum I2CSCLfrequency (TPR=0x2) results in a minimum output timing as shown in the table  
above. The I2C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCLLow period.  
The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are  
minimum values.  
b. Because I2CSCLand I2CSDAare open-drain-type outputs, which the controller can only actively drive Low, the  
time I2CSCLor I2CSDAtakes to reach a high level depends on external signal capacitance and pull-up resistor  
values.  
c. Specified at a nominal 50 pF load.  
2
Figure 20-2. I C Timing  
I2  
I6  
I5  
I2CSCL  
I2CSDA  
I1  
I4  
I7  
I8  
I3  
404  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
20.2.7  
Synchronous Serial Interface (SSI)  
Table 20-13. SSI Characteristics  
Parameter  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
No.  
S1  
tCLK_PER  
SSICLKcycle time  
2
-
65024  
system  
clocks  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
tCLK_HIGH  
tCLK_LOW  
tCLKRF  
tDMD  
SSICLKhigh time  
-
-
1/2  
-
-
tCLK_PER  
SSICLKlow time  
1/2  
tCLK_PER  
SSICLKrise/fall time  
-
7.4  
26  
20  
-
ns  
ns  
ns  
ns  
ns  
ns  
Data from master valid delay time  
Data from master setup time  
Data from master hold time  
Data from slave setup time  
Data from slave hold time  
0
-
-
-
-
-
tDMS  
20  
40  
20  
40  
tDMH  
-
tDSS  
-
tDSH  
-
Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement  
S1  
S2  
S4  
SSIClk  
SSIFss  
S3  
SSITx  
SSIRx  
MSB  
LSB  
4 to 16 bits  
April 27, 2007  
405  
Preliminary  
Electrical Characteristics  
Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
Figure 20-5. SSI Timing for SPI Frame Format (FRF=00), with SPH=1  
S1  
S4  
SSIClk  
(SPO=0)  
S2  
S3  
SSIClk  
(SPO=1)  
S6  
S7  
S9  
SSITx  
(master)  
MSB  
LSB  
S5  
S8  
SSIRx  
(slave)  
MSB  
LSB  
SSIFss  
406  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
20.2.8  
JTAG and Boundary Scan  
Table 20-14. JTAG Characteristics  
Parameter  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
No.  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
fTCK  
tTCK  
TCKoperational clock frequency  
TCKoperational clock period  
TCKclock Low time  
TCKclock High time  
TCKrise time  
0
100  
-
-
10  
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
tTCK_LOW  
tTCK_HIGH  
tTCK_R  
½ tTCK  
-
-
½ tTCK  
-
0
-
-
10  
10  
-
tTCK_F  
TCKfall time  
0
tTMS_SU  
tTMS_HLD  
tTDI_SU  
tTDI_HLD  
TMSsetup time to TCKrise  
TMShold time from TCKrise  
TDIsetup time to TCKrise  
TDIhold time from TCKrise  
2-mA drive  
20  
20  
25  
25  
-
-
-
-
-
-
-
-
J11  
tTDO_ZDV  
TCKfall to  
Data Valid  
from High-Z  
23  
15  
14  
18  
21  
14  
13  
18  
9
35  
26  
25  
29  
35  
25  
24  
28  
11  
9
4-mA drive  
8-mA drive  
8-mA drive with slew rate control  
2-mA drive  
J12  
tTDO_DV  
TCKfall to  
Data Valid  
from Data  
Valid  
-
-
4-mA drive  
8-mA drive  
8-mA drive with slew rate control  
2-mA drive  
J13  
tTDO_DVZ  
TCKfall to  
High-Z from  
Data Valid  
4-mA drive  
7
8-mA drive  
6
8
8-mA drive with slew rate control  
TRSTassertion time  
TRSTsetup time to TCKrise  
7
9
J14  
J15  
tTRST  
100  
10  
-
-
tTRST_SU  
-
-
April 27, 2007  
407  
Preliminary  
Electrical Characteristics  
Figure 20-6. JTAG Test Clock Input Timing  
J2  
J3  
J4  
TCK  
J6  
J5  
Figure 20-7. JTAG Test Access Port (TAP) Timing  
TCK  
J7  
TMS Input Valid  
J9 J10  
TDI Input Valid  
J8  
J7  
TMS Input Valid  
J9 J10  
TDI Input Valid  
J8  
TMS  
TDI  
J11  
J12  
J13  
TDO Output Valid  
TDO Output Valid  
TDO  
Figure 20-8. JTAG TRST Timing  
TCK  
J14  
J15  
TRST  
408  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
20.2.9  
General-Purpose I/O  
a
Table 20-15. GPIO Characteristics  
Parameter Parameter Name  
Condition  
Min  
Nom  
Max  
Unit  
tGPIOR  
GPO Rise Time  
(from 20% to 80%  
2-mA drive  
4-mA drive  
-
17  
9
26  
13  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
of VDD  
)
8-mA drive  
6
8-mA drive with slew rate control  
2-mA drive  
10  
17  
8
12  
25  
12  
10  
13  
tGPIOF  
GPO Fall Time  
(from 80% to 20%  
-
4-mA drive  
of VDD  
)
8-mA drive  
6
8-mA drive with slew rate control  
11  
a. All GPIOs are 5 V-tolerant.  
20.2.10 Reset  
Table 20-16. Reset Characteristics  
Parameter  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
No.  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
VTH  
VBTH  
Reset threshold  
-
2.85  
-
2.0  
2.9  
10  
500  
-
-
2.95  
-
V
Brown-Out threshold  
V
TPOR  
Power-On Reset timeout  
Brown-Out timeout  
ms  
µs  
ms  
µs  
ms  
TBOR  
-
-
TIRPOR  
TIRBOR  
TIRHWR  
Internal reset timeout after POR  
Internal reset timeout after BORa  
15  
2.5  
15  
30  
20  
30  
-
Internal reset timeout after hardware  
-
reset (RSTpin)  
R8  
R9  
TIRSWR  
Internal reset timeout after  
2.5  
2.5  
2.5  
-
-
-
20  
20  
µs  
µs  
software-initiated system reseta  
TIRWDR  
Internal reset timeout after watchdog  
reseta  
R10  
TIRLDOR  
Internal reset timeout after LDO reseta  
Supply voltage (VDD) rise time (0V-3.3V)  
20  
µs  
R11  
TVDDRISE  
100  
ms  
a. 20 * tMOSC_PER  
April 27, 2007  
409  
Preliminary  
Electrical Characteristics  
Figure 20-9. External Reset Timing (RST)  
RST  
R7  
/Reset  
(Internal)  
Figure 20-10. Power-On Reset Timing  
R1  
VDD  
R3  
/POR  
(Internal)  
R5  
/Reset  
(Internal)  
Figure 20-11. Brown-Out Reset Timing  
R2  
VDD  
R4  
/BOR  
(Internal)  
R6  
/Reset  
(Internal)  
Figure 20-12. Software Reset Timing  
SW Reset  
R8  
/Reset  
(Internal)  
410  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Figure 20-13. Watchdog Reset Timing  
WDT  
Reset  
(Internal)  
R9  
/Reset  
(Internal)  
Figure 20-14. LDO Reset Timing  
LDO Reset  
(Internal)  
R10  
/Reset  
(Internal)  
April 27, 2007  
411  
Preliminary  
Package Information  
21  
Package Information  
Figure 21-1. 48-Pin LQFP Package  
aaa  
bbb  
ccc  
NOTES:  
1.  
All dimensions are in mm. All dimensioning and tolerancing  
conform to ANSI Y14.5M-1982.  
2.  
The top package body size may be smaller than the bottom  
package body size by as much as 0.20.  
A-B  
-D-  
-H-  
.
3.  
4.  
5.  
Datums  
and  
to be determined at datum plane  
-C-  
To be determined at seating plane  
.
Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is 0.25 per side. D1 and E1 are  
maximum plastic body size dimensions including mold  
mismatch.  
ddd  
6.  
7.  
Surface finish of the package is #24-27 Charmille  
PACKAGE TYPE  
48LD LQFP  
(1.6-2.3µmR ) Pin 1 and ejector pin may be less than  
0
0.1µmR .  
0
Dambar removal protrusion does not exceed 0.08. Intrusion  
does not exceed 0.03.  
MIN  
===  
0.05  
1.35  
NOM  
===  
===  
1.40  
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.80  
0.50 BSC  
0.22  
0.20  
MAX  
1.60  
0.15  
1.45  
8.  
9.  
Burr does not exceed 0.08 in any direction.  
A
A1  
A2  
D
D1  
E
E1  
L
e
Dimension b does not include Dambar protrusion.  
Allowable Dambar protrusion shall not cause the lead width  
to exceed the maximum b dimension by more than 0.08.  
Dambar cannot be located on the lower radius or the foot.  
Minimum space between protrusion and adjacent lead is  
0.07 for 0.40 and 0.50 pitch package.  
10. Corner radius of plastic body does not exceed 0.20.  
11. These dimensions apply to the flat section of the lead  
between 0.10 and 0.25 from the lead tip.  
0.45  
0.75  
b
b1  
c
0.17  
0.17  
0.09  
0.09  
0.27  
0.23  
0.20  
0.16  
12. A1 is defined as the distance from the seating plane to the  
lowest point of the package body.  
===  
===  
13. Finish of leads is tin plated.  
c1  
14. All specifications and dimensions are subjected to IPAC’S  
manufacturing process flow and materials.  
Tolerances of form and position  
aaa  
bbb  
ccc  
ddd  
0.20  
0.20  
0.08  
0.08  
15. The packages described in the drawing conform to JEDEC  
M5-026A. Where discrepancies between the JEDEC and  
IPAC documents exist, this drawing will take the  
precedence.  
412  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Appendix A. Serial Flash Loader  
The Stellaris serial flash loader is used to download code to the flash memory of a device without  
the use of a debug interface. The serial flash loader uses a simple packet interface to provide  
synchronous communication with the device. The flash loader runs off the crystal and does not  
enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can  
be used are the UART0 and SSI interfaces. For simplicity, both the data format and  
communication protocol are identical for both serial interfaces.  
22.1  
Interfaces  
Once communication with the flash loader is established via one of the serial interfaces, that  
interface is used until the flash loader is reset or new code takes over. For example, once you start  
communicating using the SSI port, communications with the flash loader via the UART are  
disabled until the device is reset.  
22.1.1  
UART  
The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial  
format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is  
automatically detected by the flash loader and can be any valid baud rate supported by the host  
and the device. The auto detection sequence requires that the baud rate should be no more than  
1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the  
same as the hardware limitation for the maximum baud rate for any UART on a Stellaris device.  
In order to determine the baud rate, the serial flash loader needs to determine the relationship  
between its own crystal frequency and the baud rate. This is enough information for the flash  
loader to configure its UART to the same baud rate as the host. This automatic baud rate detection  
allows the host to use any valid baud rate that it wants to communicate with the device.  
The method used to perform this automatic synchronization relies on the host sending the flash  
loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can  
use to calculate the ratios needed to program the UART to match the host’s baud rate. After the  
host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader  
returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not  
received after at least twice the time required to transfer the two bytes, the host can resend  
another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader  
acknowledges that it has received a synchronization pattern correctly. For example, the time to  
wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate  
(bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35ms.  
22.1.2  
SSI  
The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications,  
with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See the section  
on SSI formats for more details on this transfer protocol. Like the UART, this interface has  
hardware requirements that limit the maximum speed that the SSI clock can run. This allows the  
SSI clock to be at most 1/12 the crystal frequency of the board running the flash loader. Since the  
host device is the master, the SSI on the flash loader device does not need to determine the clock  
as it is provided directly by the host.  
22.2  
Packet Handling  
All communications, with the exception of the UART auto-baud, are done via defined packets that  
are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same  
April 27, 2007  
413  
Preliminary  
format for receiving and sending packets, including the method used to acknowledge successful or  
unsuccessful reception of a packet.  
22.2.1  
Packet Format  
All packets sent and received from the device use the following byte-packed format.  
struct  
{
unsigned char ucSize;  
unsigned char ucCheckSum;  
unsigned char Data[];  
};  
ucSize – The first byte received holds the total size of the transfer including the size and checksum  
bytes.  
ucChecksum – This holds a simple checksum of the bytes in the data buffer only. The algorithm is  
Data[0]+Data[1]+…+ Data[ucSize-3].  
Data – This is the raw data intended for the device, which is formatted in some form of command  
interface. There should be ucSize – 2 bytes of data provided in this buffer to or from the device.  
22.2.2  
Sending Packets  
The actual bytes of the packet can be sent individually or all at once, the only limitation is that  
commands that cause flash memory access should limit the download sizes to prevent losing  
bytes during flash programming. This limitation is discussed further in the commands that interact  
with the flash.  
Once the packet has been formatted correctly by the host, it should be sent out over the UART or  
SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data  
returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33)  
byte from the device indicating the packet was received successfully (ACK) or unsuccessfully  
(NAK). This does not indicate that the actual contents of the command issued in the data portion of  
the packet were valid, just that the packet was received correctly.  
22.2.3  
Receiving Packets  
The flash loader sends a packet of data in the same format that it receives a packet. The flash  
loader may transfer leading zero data before the first actual byte of data is sent out. The first  
non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the  
data itself. There is no break in the data after the first non-zero byte is sent from the flash loader.  
Once the device communicating with the flash loader receives all the bytes, it must either ACK or  
NAK the packet to indicate that the transmission was successful. The appropriate response after  
sending a NAK to the flash loader is to resend the command that failed and request the data  
again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to  
the flash loader, as the flash loader only accepts the first non-zero data as a valid response. This  
zero padding is needed by the SSI interface in order to receive data to or from the flash loader.  
22.3  
Commands  
The next section defines the list of commands that can be sent to the flash loader. The first byte of  
the data should always be one of the defined commands, followed by data or parameters as  
determined by the command that is sent.  
414  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
22.3.1  
22.3.2  
22.3.3  
COMMAND_PING (0x20)  
This command simply accepts the command and sets the global status to success. The format of  
the packet is as follows:  
Byte[0] = 0x03;  
Byte[1] = checksum(Byte[2]);  
Byte[2] = COMMAND_PING;  
The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of  
one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return  
status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.  
COMMAND_GET_STATUS (0x23)  
This command returns the status of the last command that was issued. Typically, this command  
should be sent after every command to ensure that the previous command was successful or to  
properly respond to a failure. The command requires one byte in the data of the packet and should  
be followed by reading a packet with one byte of data that contains a status code. The last step is  
to ACK or NAK the received data so the flash loader knows that the data has been read.  
Byte[0] = 0x03  
Byte[1] = checksum(Byte[2])  
Byte[2] = COMMAND_GET_STATUS  
COMMAND_DOWNLOAD (0x21)  
This command is sent to the flash loader to indicate where to store data and how many bytes will  
be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two  
32-bit values that are both transferred MSB first. The first 32-bit value is the address to start  
programming data into, while the second is the 32-bit size of the data that will be sent. This  
command also triggers an erase of the full area to be programmed so this command takes longer  
than other commands. This results in a longer time to receive the ACK/NAK back from the board.  
This command should be followed by a COMMAND_GET_STATUS to ensure that the Program  
Address and Program size are valid for the device running the flash loader.  
The format of the packet to send this command is a follows:  
Byte[0] = 11  
Byte[1] = checksum(Bytes[2:10])  
Byte[2] = COMMAND_DOWNLOAD  
Byte[3] = Program Address [31:24]  
Byte[4] = Program Address [23:16]  
Byte[5] = Program Address [15:8]  
Byte[6] = Program Address [7:0]  
Byte[7] = Program Size [31:24]  
Byte[8] = Program Size [23:16]  
Byte[9] = Program Size [15:8]  
Byte[10] = Program Size [7:0]  
22.3.4  
COMMAND_SEND_DATA (0x24)  
This command should only follow a COMMAND_DOWNLOAD command or another  
COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands  
April 27, 2007  
415  
Preliminary  
automatically increment address and continue programming from the previous location. The caller  
should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program  
successfully and not overflow input buffers of the serial interfaces. The command terminates  
programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has  
been received. Each time this function is called it should be followed by a  
COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If  
the flash loader sends a NAK to this command, the flash loader does not increment the current  
address to allow retransmission of the previous data.  
Byte[0] = 11  
Byte[1] = checksum(Bytes[2:10])  
Byte[2] = COMMAND_SEND_DATA  
Byte[3] = Data[0]  
Byte[4] = Data[1]  
Byte[5] = Data[2]  
Byte[6] = Data[3]  
Byte[7] = Data[4]  
Byte[8] = Data[5]  
Byte[9] = Data[6]  
Byte[10] = Data[7]  
22.3.5  
COMMAND_RUN (0x22)  
This command is used to tell the flash loader to execute from the address passed as the  
parameter in this command. This command consists of a single 32-bit value that is interpreted as  
the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds  
with an ACK signal back to the host device before actually executing the code at the given  
address. This allows the host to know that the command was received successfully and the code  
is now running.  
Byte[0] = 7  
Byte[1] = checksum(Bytes[2:6])  
Byte[2] = COMMAND_RUN  
Byte[3] = Execute Address[31:24]  
Byte[4] = Execute Address[23:16]  
Byte[5] = Execute Address[15:8]  
Byte[6] = Execute Address[7:0]  
22.3.6  
COMMAND_RESET (0x25)  
This command is used to tell the flash loader device to reset. This is useful when downloading a  
new image that overwrote the flash loader and wants to start from a full reset. Unlike the  
COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and  
set up for the new code. It can also be used to reset the flash loader if a critical error occurs and  
the host device wants to restart communication with the flash loader.  
Byte[0] = 3  
Byte[1] = checksum(Byte[2])  
Byte[2] = COMMAND_RESET  
416  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
The flash loader responds with an ACK signal back to the host device before actually executing  
the software reset to the device running the flash loader. This allows the host to know that the  
command was received successfully and the part will be reset.  
April 27, 2007  
417  
Preliminary  
Ordering and Contact Information  
Ordering Information  
Features  
PWM  
ADC  
c
Order Number  
LM3S612-IQN50  
7
LM3S612-IQN50(T)f  
32  
8
to  
3
500K  
2
2
-
2
6
-
I
QN  
50  
34  
a. Minimum is number of pins dedicated to GPIO; additional pins are available if certain peripherals are not used. See  
data sheet for details.  
b. One timer available as RTC.  
c. PWM motion control functionality can be achieved through dedicated motion control hardware (using the PWM pins)  
or through the motion control features of the general-purpose timers (using the CCP pins). See data sheet for details.  
d. I=Industrial (–40 to 85°C).  
e. QN=48-pin RoHS-compliant LQFP.  
f. T=Tape and Reel.  
Development Kit  
The Luminary Micro Stellaris® Family Development Kit  
Tools to  
begin  
development  
quickly  
provides the hardware and software tools that engineers  
need to begin development quickly. Ask your Luminary Micro  
distributor for part number DK-LM3S815. See the Luminary  
Micro website for the latest tools available.  
Company Information  
Founded in 2004, Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers  
(MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the  
world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the Stellaris®  
family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller  
designs. With entry-level pricing at $1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris  
product line allows for standardization that eliminates future architectural upgrades or software tool changes.  
Luminary Micro, Inc.  
108 Wild Basin, Suite 350  
Austin, TX 78746  
Main: +1-512-279-8800  
Fax: +1-512-279-8879  
http://www.luminarymicro.com  
418  
April 27, 2007  
Preliminary  
LM3S612 Data Sheet  
Support Information  
For support on Luminary Micro products, contact:  
support@luminarymicro.com  
+1-512-279-8800, ext. 3  
April 27, 2007  
419  
Preliminary  

相关型号:

LM3S612-IQC25-A2

Microcontroller
ETC

LM3S612-IQC25-A2T

Microcontroller
ETC

LM3S612-IQC25-B0

Microcontroller
ETC

LM3S612-IQC25-B0T

Microcontroller
ETC

LM3S612-IQC50-A0

Microcontroller
ETC

LM3S612-IQC50-A0T

Microcontroller
ETC

LM3S612-IQC50-A1

Microcontroller
ETC

LM3S612-IQC50-A1T

Microcontroller
ETC

LM3S612-IQC50-A2

Microcontroller
ETC

LM3S612-IQC50-A2T

Microcontroller
ETC

LM3S612-IQC50-B0

Microcontroller
ETC

LM3S612-IQC50-B0T

Microcontroller
ETC