LXT388LE [ETC]

PCM TRANSCEIVER|DUAL|CEPT PCM-30/E-1|CMOS|QFP|100PIN|PLASTIC ; PCM收发器|双| CEPT PCM - 30 / E - 1 | CMOS | QFP | 100PIN |塑料\n
LXT388LE
型号: LXT388LE
厂家: ETC    ETC
描述:

PCM TRANSCEIVER|DUAL|CEPT PCM-30/E-1|CMOS|QFP|100PIN|PLASTIC
PCM收发器|双| CEPT PCM - 30 / E - 1 | CMOS | QFP | 100PIN |塑料\n

电信集成电路 PC
文件: 总78页 (文件大小:935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT388  
Dual T1/E1/J1 Transceiver  
Datasheet  
The LXT388 is a dual short haul Pulse Code Modulation (PCM) transceiver for use in both  
1.544 Mbps (T1) and 2.048 Mbps (E1) applications. It incorporates four receivers and two  
transmitters in a single LQFP-100 package.  
The transmit drivers provide low impedance independent of the transmit pattern and supply  
voltage variations. The LXT388 transmits shaped waveforms meeting G.703 and T1.102  
specifications. The LXT388 meets the latest transmit return loss specifications, such as ETSI  
ETS-300166.  
The LXT388 differential receivers provide high noise margin for T1/E1 short-haul operation. In  
addition, the LXT388 includes two extra receiver/jitter attenuation blocks that can be used for  
Driver Performance Monitoring (DPM) in the active channels. These blocks can also be used to  
provide jitter attenuation in the receive and transmit paths simultaneously.  
Jitter attenuation performance meets the latest international specifications such as CTR12/13.  
The jitter attenuator was optimized for Synchronous Optical NETwork/Synchronous Digital  
Hierarchy (SONET/SDH) applications including a 32/64 bit FIFO and a second order DPLL.  
The LXT388 includes Intel Hitless Protection Switching (Intel HPS) feature which helps  
increase quality of service and eliminates relays in redundancy and 1+1 protection applications.  
Fast tristate-able drivers and a constant delay jitter attenuator are critical to achieving Intel  
HPS.  
Applications  
SONET/SDH tributary interfaces  
Digital cross connects  
Microwave transmission systems  
M13, E1-E3 MUX  
Public/private switching trunk line  
interfaces  
Product Features  
Driver Performance Monitor (DPM)  
Tx and Rx Jitter Attenuator  
Intel HPS for 1 to 1 protection without  
relays  
HDB3, B8ZS, or AMI line encoder/decoder  
Single rail 3.3V supply with 5V tolerant  
inputs  
Analog/digital and remote loopback testing  
functions  
Superior crystal-less jitter attenuator  
LOS per ITU G.775, ETS 300 233 and  
Meets ETSI CTR12/13, ITU G.736,  
G.742, G.823 and AT&T Pub 62411  
specifications  
T1.231  
JTAG Boundary Scan test port per IEEE  
1149.1  
Optimized for SONET/SDH  
applications, meets ITU G.783 mapping  
jitter specification  
100 pin LQFP package  
Low power consumption of 150mW per  
channel (typical)  
Constant throughput delay jitter  
attenuator  
As of January 15, 2001, this document replaces the Level One document  
LXT388 — Dual T1/E1/J1 Transceiver.  
Order Number: 249269-002  
February 2001  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT388 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current  
characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Dual T1/E1/J1 Transceiver — LXT388  
Contents  
1.0  
2.0  
Pin Assignments and Signal Description ......................................................10  
Functional Description...........................................................................................21  
2.1  
2.2  
Initialization..........................................................................................................21  
2.1.1 Reset Operation .....................................................................................21  
Receiver ..............................................................................................................22  
2.2.1 Loss of Signal Detector ..........................................................................23  
2.2.2 Alarm Indication Signal (AIS) Detection .................................................23  
2.2.3 In Service Code Violation Monitoring .....................................................24  
Transmitter ..........................................................................................................24  
2.3.1 Transmit Pulse Shaping .........................................................................25  
Line Protection ....................................................................................................26  
Driver Failure Monitor..........................................................................................26  
Driver Performance Monitor ................................................................................29  
Jitter Attenuation .................................................................................................30  
2.7.1 Transmit and Receive Jitter Attenuation ................................................31  
Loopbacks...........................................................................................................32  
2.8.1 Analog Loopback....................................................................................32  
2.8.2 Digital Loopback.....................................................................................33  
2.8.3 Remote Loopback ..................................................................................33  
2.8.4 Transmit All Ones (TAOS)......................................................................34  
Intel Hitless Protection Switching (Intel HPS)................................................35  
Operation Mode Summary ..................................................................................35  
Interfacing with 5V logic ......................................................................................36  
Parallel Host Interface.........................................................................................36  
2.12.1 Motorola Interface ..................................................................................37  
2.12.2 Intel Interface..........................................................................................38  
Interrupt Handling................................................................................................38  
2.13.1 Interrupt Sources....................................................................................38  
2.13.2 Interrupt Enable......................................................................................38  
2.13.3 Interrupt Clear ........................................................................................38  
Serial Host Mode.................................................................................................39  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
2.13  
2.14  
3.0  
4.0  
Register Descriptions.............................................................................................40  
JTAG Boundary Scan.............................................................................................47  
4.1  
4.2  
4.3  
4.4  
Overview .............................................................................................................47  
Architecture .........................................................................................................47  
TAP Controller.....................................................................................................47  
JTAG Register Description..................................................................................49  
4.4.1 Boundary Scan Register (BSR)..............................................................50  
4.4.2 Device Identification Register (IDR) .......................................................52  
4.4.3 Bypass Register (BYR) ..........................................................................52  
4.4.4 Analog Port Scan Register (ASR) ..........................................................52  
4.4.5 Instruction Register (IR) .........................................................................53  
Datasheet  
3
LXT388 — Dual T1/E1/J1 Transceiver  
5.0  
6.0  
Test Specifications..................................................................................................55  
5.1 Recommendations and Specifications................................................................77  
Mechanical Specifications ...................................................................................78  
Figures  
1
2
LXT388 Block Diagram .........................................................................................9  
LXT388 Low-Profile Quad Flate Package (LQFP) 100 Pin Assignments and  
Package Markings...............................................................................................10  
Pullup Resistor to RESET ...................................................................................22  
50% AMI Encoding..............................................................................................25  
External Transmit/Receive Line Circuitry............................................................28  
Driver Performance Monitoring ...........................................................................29  
Jitter Attenuator Loop..........................................................................................31  
Transmit and Receive Jitter Attenuation .............................................................32  
Analog Loopback ................................................................................................33  
Digital Loopback..................................................................................................33  
Remote Loopback...............................................................................................34  
TAOS Data Path .................................................................................................34  
TAOS with Digital Loopback ...............................................................................35  
TAOS with Analog Loopback ..............................................................................35  
Serial Host Mode Timing.....................................................................................39  
LXT388 JTAG Architecture .................................................................................47  
JTAG State Diagram...........................................................................................49  
Analog Test Port Application...............................................................................54  
Transmit Clock Timing Diagram..........................................................................61  
Receive Clock Timing Diagram...........................................................................62  
JTAG Timing .......................................................................................................63  
Non-Multiplexed Intel Mode Read Timing...........................................................64  
Multiplexed Intel Read Timing.............................................................................65  
Non-Multiplexed Intel Mode Write Timing ...........................................................66  
Multiplexed Intel Mode Write Timing...................................................................67  
Non-Multiplexed Motorola Mode Read Timing....................................................68  
Multiplexed Motorola Mode Read Timing............................................................69  
Non-Multiplexed Motorola Mode Write Timing....................................................70  
Multiplexed Motorola Mode Write Timing............................................................71  
Serial Input Timing ..............................................................................................72  
Serial Output Timing ...........................................................................................72  
E1, G.703 Mask Templates.................................................................................73  
T1, T1.102 Mask Templates ...............................................................................74  
Jitter Tolerance Performance..............................................................................75  
Jitter Transfer Performance ................................................................................76  
Output Jitter for CTR12/13 applications..............................................................77  
Low Quad Flat Package (LQFP) Dimensions .....................................................78  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
4
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Tables  
1
2
3
4
5
6
7
8
Assignments and Signal Descriptions - Power and N/C .....................................11  
Pin Assignments and Signal Descriptions - Digital Interface...............................11  
Pin Assignments and Signal Descriptions - Analog Interface .............................15  
Pin Assignments and Signal Descriptions - JTAG Port.......................................15  
Pin Assignments and Signal Descriptions - Microprocessor/Configuration.........16  
Line Length Equalizer Inputs...............................................................................26  
Jitter Attenuation Specifications ..........................................................................30  
Operation Mode Summary ..................................................................................35  
Microprocessor Parallel Interface Selection........................................................37  
Serial and Parallel Port Register Addresses .......................................................40  
Register Bit Names .............................................................................................40  
ID Register, ID (00H)...........................................................................................41  
Analog Loopback Register, ALOOP (01H)..........................................................42  
Remote Loopback Register, RLOOP (02H) ........................................................42  
TAOS Enable Register, TAOS (03H) ..................................................................42  
LOS Status Monitor Register, LOS (04H) ...........................................................42  
DFM Status Monitor Register, DFM (05H) ..........................................................42  
LOS Interrupt Enable Register, LIE (06H)...........................................................43  
DFM Interrupt Enable Register, DIE (07H)..........................................................43  
LOS Interrupt Status Register, LIS (08H)............................................................43  
DFM Interrupt Status Register, DIS (09H)...........................................................43  
Software Reset Register, RES (0AH)..................................................................43  
Reserved (0BH)...................................................................................................43  
Digital Loopback Register, DL (0CH) ..................................................................44  
LOS/AIS Criteria Register, LCS (0DH)................................................................44  
Automatic TAOS Select Register, ATS (0EH).....................................................44  
Global Control Register, GCR (0FH)...................................................................44  
Pulse Shaping Indirect Address Register, PSIAD (10H).....................................45  
Pulse Shaping Data Register, PSDAT (11H) ......................................................45  
Output Enable Register, OER (12H) ...................................................................46  
AIS Status Monitor Register, AIS (13H) ..............................................................46  
AIS Interrupt Enable Register, AISIE (14H) ........................................................46  
AIS Interrupt Status Register, AISIS (15H) .........................................................46  
TAP State Description.........................................................................................48  
Boundary Scan Register (BSR)...........................................................................50  
Device Identification Register (IDR) ....................................................................52  
Analog Port Scan Register (ASR) .......................................................................53  
Instruction Register (IR) ......................................................................................53  
Absolute Maximum Ratings.................................................................................55  
Recommended Operating Conditions .................................................................55  
DC Characteristics ..............................................................................................56  
E1 Transmit Transmission Characteristics..........................................................57  
E1 Receive Transmission Characteristics...........................................................57  
T1 Transmit Transmission Characteristics..........................................................58  
T1 Receive Transmission Characteristics...........................................................59  
Jitter Attenuator Characteristics ..........................................................................60  
Analog Test Port Characteristics.........................................................................61  
Transmit Timing Characteristics..........................................................................61  
Receive Timing Characteristics...........................................................................62  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
Datasheet  
5
LXT388 Dual T1/E1/J1 Transceiver  
50  
51  
52  
53  
54  
55  
56  
58  
57  
Intel Mode Read Timing Characteristics .............................................................63  
JTAG Timing Characteristics ..............................................................................63  
Intel Mode Write Timing Characteristics .............................................................65  
Motorola Bus Read Timing Characteristics.........................................................67  
Motorola Mode Write Timing Characteristics ......................................................69  
Serial I/O Timing Characteristics.........................................................................71  
Transformer Specifications3 ................................................................................72  
T1.102 1.544 Mbit/s Pulse Mask Specifications..................................................73  
G.703 2.048 Mbit/s Pulse Mask Specifications...................................................73  
6
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Revision History  
Revision  
Date  
Description  
-002  
02/12/01  
Figure 2, changed pin 70 from TCK to TDI.  
Figure 2, changed pin 71 from GND to TCK.  
Moved Product Features from page 9 to page 1.  
Added Intel to page 1, 3, and 35.  
Datasheet  
7
LXT388 Dual T1/E1/J1 Transceiver  
8
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 1. LXT388 Block Diagram  
MODE  
JTAG  
LOOP 0..3  
SERIAL/  
PARALLEL  
PORT  
HARDWARE / SOFTWARE CONTROL  
JASEL  
CLKE  
MCLK  
LOS  
LOS  
DATA SLICER  
RTIP  
RPOS  
JITTER  
CLOCK  
ATTENUATOR  
RX OR TX  
PATH  
B8ZS / HDB3  
DECODER  
RECOVERY  
RCLK  
RRING  
TTIP  
RNEG  
LINE DRIVER  
TPOS  
JITTER  
ATTENUATOR  
RX OR TX  
PATH  
PULSE  
SHAPER  
B8ZS / HDB3  
ENCODER  
TCLK  
TRING  
TNEG  
0
RTIP  
1
LOS  
LOS  
DATA SLICER  
RTIP  
RPOS  
JITTER  
ATTENUATOR  
RX OR TX  
PATH  
CLOCK  
B8ZS / HDB3  
DECODER  
RECOVERY  
RCLK  
RRING  
RNEG  
TPOS  
JITTER  
ATTENUATOR  
RX OR TX  
PATH  
B8ZS / HDB3  
ENCODER  
TCLK  
TNEG  
MONITORING / JA  
2
3
Datasheet  
9
LXT388 Dual T1/E1/J1 Transceiver  
1.0  
Pin Assignments and Signal Description  
Figure 2. LXT388 Low-Profile Quad Flate Package (LQFP) 100 Pin Assignments and  
Package Markings  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
VCC  
MOT  
1
GND  
2
R / W  
DS  
TDO  
3
TRST  
TMS  
4
VCC  
5
GND  
TDI  
6
VCC  
TCK  
7
GND  
VCC  
8
VCC  
VCC  
9
VCC  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
GND  
GND  
TCLK2  
TPOS2  
TNEG2  
RCLK2  
RPOS2  
RNEG2  
LOS2  
TCLK3  
TPOS3  
TNEG3  
RCLK3  
RPOS3  
RNEG3  
LOS3  
TCLK1  
TPOS1  
TNEG1  
RCLK1  
RPOS1  
RNEG1  
LOS1  
TCLK0  
TPOS0  
TNEG0  
RCLK0  
RPOS0  
RNEG0  
LOS0  
Rev #  
LXT388LE XX  
XXXXXX  
XXXXXXXX  
Part #  
LOT #  
FPO #  
55  
54  
53  
52  
51  
21  
22  
23  
24  
25  
Package Topside Markings  
Marking  
Definition  
Part #  
Rev #  
Lot #  
Unique identifier for this product family.  
Identifies the particular silicon stepping” — refer to the specification update for additional stepping information.  
Identifies the batch.  
FPO #  
Identifies the Finish Process Order.  
10  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 1. Assignments and Signal Descriptions - Power and N/C  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
5, 7, 10,  
11, 65, 66,  
74  
GND  
VCC  
S
S
S
Power Supply Ground. Connect all pins to power supply ground.  
Power Supply. Connect all pins to +3.3 volt power supply  
4, 6, 8, 9,  
67, 68, 75,  
Transmit Driver Power Supply. Power supply pins for the output drivers. TVCC pins can  
be connected to either a 3.3V or 5V power supply. Refer to Transmitteron page 24 for  
details.  
-
TVCC  
Transmit Driver Power Supply. Power supply pin for the port 0 output driver. TVCC pins  
can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter  
description.  
26  
TVCC0  
S
29  
32  
TGND0  
TGND1  
S
S
Transmit Driver Ground. Ground pin for the output driver.  
Transmit Driver Ground.  
Transmit Driver Power Supply. Power supply pin for the port 1 output driver. TVCC pins  
can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter  
description.  
35  
38  
TVCC1  
S
Transmit Driver Power Supply. Power supply pin for the port 0 output driver. TVCC pins  
can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter  
description.  
TVCC0  
N/C  
S
39  
40  
N/C  
Not Connected. These pins must be left open for normal operation.  
41  
44  
TGND2  
TGND3  
S
S
Transmit Driver Ground.  
Transmit Driver Ground.  
45  
46  
Not Connected. These pins must be left open for normal operation.  
N/C  
N/C  
Transmit Driver Power Supply. Power supply pin for the port 1 output driver. TVCC pins  
can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter  
description.  
47  
TVCC1  
N/C  
S
50  
NC  
Not Connected. These pins must be left open for normal operation.  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Table 2. Pin Assignments and Signal Descriptions - Digital Interface  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
12  
TCLK1  
DI  
Transmit Clock.  
TPOS1/  
TDATA1  
DI  
DI  
Transmit Positive Data.  
Transmit Data.  
13  
TNEG1/  
UBS1  
DI  
DI  
Transmit Negative Data.  
Unipolar/Bipolar Select.  
14  
15  
RCLK1  
DO  
Receive Clock.  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Datasheet  
11  
LXT388 Dual T1/E1/J1 Transceiver  
Table 2. Pin Assignments and Signal Descriptions - Digital Interface (Continued)  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
RPOS1/  
RDATA1  
DO  
DO  
Receive Positive Data.  
Receive Data.  
16  
RNEG1/  
BPV1  
DO  
DO  
Receive Negative Data.  
Bipolar Violation Detect.  
17  
18  
LOS1  
DO  
Loss of Signal.  
Transmit Clock. During normal operation TCLK is active, and TPOS and TNEG are  
sampled on the falling edge of TCLK. If TCLK is Low, the output drivers enter a low power  
high Z mode. If TCLK is High for more than 16 clock cycles the pulse shaping circuit is  
disabled and the transmit output pulse widths are determined by the TPOS and TNEG  
duty cycles.  
TCLK  
Operating Mode  
Normal operation  
Clocked  
H
TAOS (if MCLK supplied)  
Disable transmit pulse shaping (when  
MCLK is not available)  
19  
TCLK0  
DI  
H
L
Driver outputs enter tri-state  
When pulse shaping is disabled, it is possible to overheat and damage the LXT384  
device by leaving transmit inputs high continuously. For example a programmable ASIC  
might leave all outputs high until it is programmed. To prevent this clock one of these  
signals: TPOS, TNEG, TCLK or MCLK. Another solution is to set one of these signals  
low: TPOS, TNEG, TCLK, or OE.  
Note that the TAOS generator uses MCLK as a timing reference. In order to assure that  
the output frequency is within specification limits, MCLK must have the applicable  
stability.  
Transmit Positive Data.  
Transmit Data.  
Transmit Negative Data.  
DI  
DI  
Unipolar/Bipolar Select.  
TPOS0/  
TDATA0  
20  
Bipolar Mode:  
TPOS/TNEG are active high NRZ inputs. TPOS indicates the transmission of a positive  
pulse whereas TNEG indicates the transmission of a negative pulse.  
.
Unipolar Mode:  
When TNEG/UBS is pulled High for more than 16 consecutive TCLK clock cycles,  
unipolar I/O is selected. In unipolar mode, B8ZS/HDB3 or AMI encoding/decoding is  
determined by the CODEN pin (hardware mode) or by the CODEN bit in the GCR register  
(software mode).  
TDATA is the data input in unipolar I/O mode.  
TPOS  
TNEG  
Selection  
TNEG0/  
UBS0  
DI  
DI  
21  
0
1
0
1
0
0
1
1
Space  
Positive Mark  
Negative Mark  
Space  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
12  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 2. Pin Assignments and Signal Descriptions - Digital Interface (Continued)  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Receive Clock.  
Normal Mode:  
This pin provides the recovered clock from the signal received at RTIP and RRING.  
Under LOS conditions there is a transition from RCLK signal (derived from the recovered  
data) to MCLK signal at the RCLK output.  
22  
RCLK0  
DO  
Data Recovery Mode:  
If MCLK is High, the clock recovery circuit is disabled and RPOS and RNEG are internally  
connected to an EXOR that is fed to the RCLK output for external clock recovery  
applications.  
RCLK will be in high impedance state if the MCLK pin is Low.  
Receive Positive.  
Receive Data.  
Receive Negative Data.  
Bipolar Violation Detect.  
Bipolar Mode:  
DO  
DO  
RPOS0/  
RDATA0  
23  
In clock recovery mode these pins act as active high bipolar non return to zero (NRZ)  
receive signal outputs. A High signal on RPOS corresponds to receipt of a positive pulse  
on RTIP/RRING. A High signal on RNEG corresponds to receipt of a negative pulse on  
RTIP/RRING. These signals are valid on the falling or rising edges of RCLK depending  
on the CLKE input.  
In Data recovery Mode these pins act as RZ data receiver outputs. The output polarity is  
selectable with CLKE (Active High output polarity when CLKE is High and Active Low  
Polarity when CLKE is Low).  
RPOS and RNEG will go to the high impedance state when the MCLK pin is Low.  
Unipolar Mode:  
In uni-polar mode, the LXT388 asserts BPV High if any in-service Line Code Violation is  
detected. RDATA acts as the receive data output.  
RNEG0/  
BPV0  
DO  
DO  
24  
25  
Hardware Mode: During a LOS condition, RPOS and RNEG will remain active.  
Host Mode: RPOS and RNEG will either remain active or insert AIS into the receive path.  
Selection is determined by the RAISEN bit in the GCR register.  
Loss of Signal. LOS goes High to indicate a loss of signal, i.e. when the incoming signal has  
no transitions for a specified time interval. The LOS condition is cleared and the output pin  
returns to Low when the incoming signal has sufficient number of transitions in a specified time  
interval. see Loss of Signal Detectoron page 23  
LOS0  
LOS3  
DO  
D
51  
52  
Loss of Signal.  
DO  
RNEG3/  
BPV3  
DO  
DO  
Receive Negative Data.  
Bipolar Violation Detect.  
RPOS3/  
RDATA3  
DO  
DO  
Receive Positive Data.  
Receive Data.  
53  
54  
55  
RCLK3  
DO  
Receive Clock.  
TNEG3/  
UBS3  
DI  
DI  
Transmit Negative Data.  
Unipolar/Bipolar Select.  
TPOS3/  
TDATA3  
DI  
DI  
Transmit Positive Data.  
Transmit Data.  
56  
57  
TCLK3  
DI  
Transmit Clock.  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Datasheet  
13  
LXT388 Dual T1/E1/J1 Transceiver  
Table 2. Pin Assignments and Signal Descriptions - Digital Interface (Continued)  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
58  
LOS2  
DO  
Loss of Signal.  
RNEG2/  
BPV2  
DO  
DO  
Receive Negative Data.  
Bipolar Violation Detect.  
59  
RPOS2/  
RDATA2  
DO  
DO  
Receive Positive Data.  
Receive Data.  
60  
61  
62  
RCLK2  
DO  
Receive Clock.  
TNEG2/  
UBS2  
DI  
DI  
Transmit Negative Data.  
Unipolar/Bipolar Select.  
TPOS2/  
TDATA2  
DI  
DI  
Transmit Positive Data.  
Transmit Data.  
63  
64  
TCLK2  
DI  
Transmit Clock.  
Master Clock. MCLK is an independent, free-running reference clock. Its frequency  
should be 1.544 MHz for T1 operation and 2.048 MHz for E1 operation.  
This reference clock is used to generate several internal reference signals:  
Timing reference for the integrated clock recovery unit  
Timing reference for the integrated digital jitter attenuator  
Generation of RCLK signal during a loss of signal condition  
Reference clock during a blue alarm transmit all ones condition  
Reference timing for the parallel processor wait state generation logic  
78  
MCLK  
DI  
If MCLK is High, the PLL clock recovery circuit is disabled. In this mode, the LXT388  
operates as simple data receiver.  
If MCLK is Low, the complete receive path is powered down and the output pins RCLK,  
RPOS and RNEG are switched to Tri-state mode.  
MCLK is not required if LXT388 is used as a simple analog front-end without clock  
recovery and jitter attenuation.  
Note that wait state generation via RDY/ACK is not available if MCLK is not provided.  
Reset Input. (Added in Revision B1) In either hardware mode or software mode, setting  
RESET low will begin to initialize the LXT388 and freeze the device until set high. One  
microsecond after setting RESET high, initialization will complete and the LXT388 will be  
ready for normal operation. Only revision B1 requires a pull up resistor to VCC at this pin  
between 1 and 10 kohms in value. It is necessary to retain the pull up resistor for other  
revisions. Please refer to the section on Reset Operation for more information.  
100  
RESET  
DI  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
14  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 3. Pin Assignments and Signal Descriptions - Analog Interface  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Transmit Tip.  
Transmit Ring.  
27  
28  
TTIP0  
AO  
AO  
These pins are differential line driver outputs. TTIP and TRING will be in high impedance  
state if the TCLK pin is Low or the OE pin is Low. In software mode, TTIP and TRING can  
be tristated on a port-by-port basis by writing a 1to the OEx bit in the Output Enable  
Register (OER).  
TRING0  
Receive Tip.  
30  
31  
RTIP0  
AI  
AI  
Receive Ring.  
RRING0  
These pins are the inputs to the differential line receiver. Data and clock are recovered  
and output on the RPOS/RNEG and RCLK pins.  
33  
34  
TRING1  
TTIP1  
AO  
AO  
Transmit Ring.  
Transmit Tip.  
36  
37  
RRING1  
RTIP1  
AI  
AI  
Receive Ring.  
Receive Tip.  
42  
43  
RTIP2  
AI  
AI  
Receive TIP.  
RRING2  
Receive Ring.  
48  
49  
RRING3  
RTIP3  
AI  
AI  
Receive Ring.  
Receive Tip.  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Table 4. Pin Assignments and Signal Descriptions - JTAG Port  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
76  
77  
AT2  
AT1  
AO  
AI  
JTAG Analog Output Test Port 2.  
JTAG Analog Input Test Port 1.  
JTAG Controller Reset. Input is used to reset the JTAG controller. TRST is pulled up  
internally and may be left disconnected.  
72  
TRST  
JTAG Test Mode Select. Used to control the test logic state machine. Sampled on rising  
edge of TCK. TMS is pulled up internally and may be left disconnected.  
71  
69  
73  
TMS  
TCK  
TDO  
DI  
DI  
JTAG Clock. Clock input for JTAG. Connect to GND when not used.  
JTAG Data Output. Test Data Output for JTAG. Used for reading all serial configuration  
and test data from internal test logic. Updated on falling edge of TCK.  
DO  
JTAG Data Input. Test Data input for JTAG. Used for loading serial instructions and data  
into internal test logic. Sampled on rising edge of TCK. TDI is pulled up internally and may  
be left disconnected.  
70  
TDI  
DI  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Datasheet  
15  
LXT388 Dual T1/E1/J1 Transceiver  
Table 5. Pin Assignments and Signal Descriptions - Microprocessor/Configuration  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Motorola/Intel/Codec Enable Select.  
Host Mode:  
When Low, the host interface is configured for Motorola microcontrollers. When High, the  
host interface is configured for Intel microcontrollers.  
MOT/INTL/  
CODEN  
DI  
DI  
1
Hardware Mode:  
This pin determines the line encode/decode selection when in unipolar mode:  
When Low, B8ZS/HDB3 encoders/decoders are enabled for T1/E1 respectively. When  
High, enables AMI encoder/decoder (transparent mode).  
Read/Write (Motorola Mode).  
Read Enable (Intel mode).  
Line Length Equalizer (Hardware Mode).  
Host Mode  
R / W/  
RD/  
DI  
DI  
DI  
2
This pin functions as the read/write signal in Motorola mode and as the Read Enable in  
Intel mode.  
LEN1  
Hardware Mode  
This pin determines the shape and amplitude of the transmit pulse. Refer to Table 6.  
Data Strobe (Motorola Mode).  
Write Enable (Intel mode).  
Serial Data Input (Serial Mode).  
Line Length Equalizer (Hardware Mode).  
Host Mode  
DS/  
WR/  
SDI/  
LEN0  
DI  
DI  
DI  
DI  
3
This pin acts as data strobe in Motorola mode and as Write Enable in Intel mode. In serial  
mode this pin is used as Serial Data Input.  
Hardware Mode  
This pin determines the shape and amplitude of the transmit pulse. Refer to Table 6.  
Mode Select. This pin is used to select the operating mode of the LXT386. In Hardware  
Mode, the parallel processor interface is disabled and hardwired pins are used to control  
configuration and report status.  
In Parallel Host Mode, the parallel port interface pins are used to control configuration and  
report status.  
In Serial Host Mode the serial interface pins: SDI, SDO, SCLK and CS are used  
79  
MODE  
DI  
MODE  
Operating Mode  
Hardware Mode  
L
H
Parallel Host Mode  
Serial Host Mode  
Vcc/2  
For Serial Host Mode, the pin should connected to a resistive divider consisting of two 10  
kresistors across VCC and Ground.  
Interrupt. This active Low, maskable, open drain output requires an external 10k pull up  
resistor. If the corresponding interrupt enable bit is enabled, INT goes Low to flag the host  
when the LXT388 changes state (see details in the interrupt handling section). The  
microprocessor INT input should be set to level triggering.  
80  
INT  
DO  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
16  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 5. Pin Assignments and Signal Descriptions - Microprocessor/Configuration  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Data Transfer acknowledge (Motorola Mode).  
Ready (Intel mode).  
Serial Data Output (Serial Mode).  
Motorola Mode  
A Low signal during a databus read operation indicates that the information is valid. A  
Low signal during a write operation acknowledges that a data transfer into the addressed  
register has been accepted (acknowledge signal).Wait states only occur if a write cycle  
immediately follows a previous read or write cycle (e.g. read modify write).  
ACK/  
RDY/  
SDO  
DO  
DO  
DO  
81  
Intel Mode  
A High signal acknowledges that a register access operation has been completed (Ready  
Signal). A Low signal on this pin signals that a data transfer operation is in progress. The  
pin goes tristate after completion of a bus cycle.  
Serial Mode  
If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on  
the falling edge of SCLK. This pin goes into high Z state during a serial port write access.  
Address Latch Enable (Host Mode).  
Shift Clock (Serial Mode).  
Address Strobe (Motorola Mode).  
Line Length Equalizer (Hardware Mode).  
Host Mode  
ALE/  
SCLK/  
AS/  
DI  
DI  
DI  
DI  
The address on the multiplexed address/data bus is clocked into the device with the  
falling edge of ALE.  
82  
In serial Host mode this pin acts as serial shift clock.  
In Motorola mode this pin acts a an active Low address strobe.  
Hardware Mode  
LEN2  
This pin determines the shape and amplitude of the transmit pulse in transceivers 0 and  
1. It also determines the receiver setting (T1 or E1) in all the receivers. Please refer to  
Table 6 on page 26.  
Output Driver Enable. If this pin is asserted Low all analog driver outputs immediately  
enter a high impedance mode to support redundancy applications without external  
mechanical relays. All other internal circuitry stays active. In software mode, TTIP and  
TRING can be tristated on a port-by-port basis by writing a 1to the OEx bit in the Output  
Enable Register (OER).  
83  
OE  
DI  
Clock Edge Select. In clock recovery mode, setting CLKE High causes RDATA or RPOS  
and RNEG to be valid on the falling edge of RCLK and SDO to be valid on the rising edge  
of SCLK. Setting CLKE Low makes RDATA or RPOS and RNEG to be valid on the rising  
edge of RCLK and SDO to be valid on the falling edge of SCLK. In Data recovery Mode,  
RDATA or RPOS/RNEG are active High output polarity when CLKE is High and active low  
polarity when CLKE is Low.  
84  
CLKE  
DI  
CLKE  
Low  
RPOS/RNEG  
SDO  
RCLK  
RCLK  
SCLK  
SCLK  
High  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Datasheet  
17  
LXT388 Dual T1/E1/J1 Transceiver  
Table 5. Pin Assignments and Signal Descriptions - Microprocessor/Configuration  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Address Select Inputs.  
89  
88  
87  
86  
85  
A4  
A3  
A2  
A1  
A0  
DI  
DI  
DI  
DI  
DI  
Host Mode  
In non-multiplexed host mode, these pins function as non-multiplexed address pins. In  
multiplexed host mode, these pins must be connected to Ground.  
Hardware Mode  
These pins must be grounded.  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
18  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 5. Pin Assignments and Signal Descriptions - Microprocessor/Configuration  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Loopback Mode Select/Parallel Data bus.  
Host Mode:  
When a non-multiplexed microprocessor interface is selected, these pins function as a bi-  
directional 8-bit data port.  
When a multiplexed microprocessor interface is selected, these pins carry both bi-  
directional 8-bit data and address inputs A0 -A7.  
In serial Mode, D0-7 should be grounded.  
Hardware Mode:  
In hardware mode, these pins control the operation of transceivers 0, 1 and receivers 2, 3  
according to the table below.  
During remote loopback mode, data on TPOS and TNEG is ignored and data received on  
RTIP and RRING is looped around and retransmitted on TTIP and TRING. Note: in data  
recovery mode, the pulse template cannot be guaranteed while in a remote loopback.  
90  
91  
92  
93  
94  
95  
96  
97  
D0/LOOP0  
D1/LOOP1  
D2/LOOP2  
D3/LOOP3  
D4/DLOOP0  
D5/DLOOP1  
D6/DLOOP2  
D7/DLOOP3  
DI/O  
DI/O  
DI/O  
DI/O  
DI/O  
DI/O  
DI/O  
DI/O  
In analog local loopback mode, data received on RTIP and RRING is ignored and data  
transmitted on TTIP and TRING is internally looped around and routed back to the  
receiver inputs.  
Operating Mode  
Transceivers 0,1  
Operating Mode  
Receivers 2, 3  
LOOP  
DLOOP  
Open  
x
x
0
1
Normal Mode  
Normal Mode  
0
1
1
Remote Loopback  
-
Analog Local Loopback  
Digital Local Loopback  
-
Digital Local Loopback  
In digital local loopback mode, data received on TCLK/TPOS/TNEG is digitally looped  
back to RCLK/RPOS/RNEG.  
Figure 9 through Figure 14 illustrate the different loopback modes.  
Note: When these inputs are left open, they stay in a high impedance state. Therefore,  
the layout design should not route signals with fast transitions near the LOOP pins. This  
practice will minimize capacitive coupling.  
Multiplexed/Non-Multiplexed Select.  
When Low the parallel host interface operates in non-multiplexed mode. When High the  
parallel host interface operates in multiplexed mode. In hardware mode tie this unused  
input low.  
99  
MUX  
DI  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
Datasheet  
19  
LXT388 Dual T1/E1/J1 Transceiver  
Table 5. Pin Assignments and Signal Descriptions - Microprocessor/Configuration  
Pin #  
LQFP  
Symbol  
I/O1  
Description  
Chip Select/Jitter Attenuator Select.  
Host Mode  
This active Low input is used to access the serial/parallel interface. For each read or write  
operation, CS must transition from High to Low, and remain Low.  
Hardware Mode  
This input determines the Jitter Attenuator position in the data path.  
CS/  
DI  
DI  
98  
JASEL  
JASEL  
JA Position  
L
H
Z
Transmit path  
Receive path  
Disabled  
1. DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply;  
N.C.: Not Connected.  
20  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
2.0  
Functional Description  
The LXT388 is a fully integrated dual line interface unit designed for T1 1.544 Mbps and E1 2.048  
Mbps short haul applications. It features two complete transceivers and two additional receiver and  
jitter attenuation blocks. These block allow the LXT388 to work as a quad T1/E1 receiver with  
jitter attenuation. Alternatively, these blocks can be used for Driver Performance Monitoring  
(DPM) in the transceiver channel. They can also be used for jitter attenuation in the receive and  
transmit paths simultaneously as discussed in Driver Performance Monitoringon page 29.  
Each transceiver front end interfaces with four lines, one pair for transmit, one pair for receive.  
These two lines comprise a digital data loop for full duplex transmission.  
The LXT388 can be controlled through hard-wired pins or by a microprocessor through a serial or  
parallel interface (Host mode).  
The transmitter timing reference is TCLK, and the receiver reference clock is MCLK. The LXT388  
is designed to operate without any reference clock when used as an analog front-end (line driver  
and data recovery). MCLK is mandatory if the on chip clock recovery capability is used. All four  
clock recovery circuits share the same reference clock defined by the MCLK input signal.  
2.1  
Initialization  
During power up, the transceiver remains static until the power supply reaches approximately 60%  
of VCC. During power-up, an internal reset sets all registers to their default values and resets the  
status and state machines for the LOS.  
2.1.1  
Reset Operation  
With revision B1, no-connect pin 100 converted to the RESET pin. Only revsion B1 requires a pull  
up resistor to VCC at pin 100 in the LQFP package as shown in Figure 3.  
There are two methods of resetting the LXT388:  
1. Override Reset - Setting the RESET pin low in either hardware mode or host mode. Until the  
RESET pin returns high, the LXT388 remains frozen and will not function. Once the RESET  
pin has returned high, the LXT388 will operaate normally. Override Reset changes all the  
internal registers to their default values.  
2. Software Reset - Writing to the RES reset register initiates a 1microsecond reset cycle, except  
in Intel non-multiplexed mode. In Intel non-multiplexed mode, the reset cycle takes 2  
microseconds. Please refer to Host Mode section for more information. This operation  
changes all LXT388 registers to their default values.  
Datasheet  
21  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 3. Pullup Resistor to RESET  
VCC  
1K  
100  
RESET  
LXT388  
2.2  
Receiver  
The four receivers in the LXT388 are identical. The following paragraphs describe the operation of  
one.  
The twisted-pair input is received via a 1:2 step down transformer. Positive pulses are received at  
RTIP, negative pulses at RRING. Recovered data is output at RPOS and RNEG in the bipolar mode  
and at RDATA in the unipolar mode. The recovered clock is output at RCLK. RPOS/RNEG  
validation relative to RCLK is pin selectable using the CLKE pin.  
The receive signal is processed through the peak detector and data slicers. The peak detector  
samples the received signal and determines its maximum value. A percentage of the peak value is  
provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1  
applications (line length inputs LEN2-0 from 011 to 111) the threshold is set to 70% (typical) of the  
peak value. This threshold is maintained above the specified level for up to 15 successive zeros  
over the range of specified operating conditions. For E1 applications (LEN2-0 = 000), the  
threshold is set to 50% (typical).  
The receiver is capable of accurately recovering signals with up to 12 dB of attenuation (from 2.4  
V), corresponding to a received signal level of approximately 500 mV. Maximum line length is  
1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level,  
the peak detectors are held above a minimum level of 0.150 V (typical) to provide immunity from  
impulsive noise.  
After processing through the data slicers, the received signal goes to the data and timing recovery  
section. The data and timing recovery circuits provide an input jitter tolerance better than required  
by Pub 62411 and ITU G.823, as shown in Test Specifications, Figure 34.  
Depending on the options selected, recovered clock and data signals may be routed through the  
jitter attenuator, through the B8ZS/HDB3/AMI decoder, and may be output to the framer as either  
bipolar or unipolar data.  
22  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
2.2.1  
Loss of Signal Detector  
The loss of signal detector in the LXT388 uses a dedicated analog and digital loss of signal  
detection circuit. It is independent of its internal data slicer comparators and complies to the latest  
ITU G.775 and ANSI T1.231 recommendations. Under software control, the detector can be  
configured to comply to the ETSI ETS 300 233 specification (LACS Register). In hardware mode,  
the LXT388 supports LOS per G.775 for E1 and ANSI T1.231 for T1 operation.  
The receiver monitor loads a digital counter at the RCLK frequency. The counter is incremented  
each time a zero is received, and reset to zero each time a one (mark) is received. Depending on the  
operation mode, a certain number of consecutive zeros sets the LOS signal. The recovered clock is  
replaced by MCLK at the RCLK output. When the LOS condition is cleared, the LOS flag is reset  
and another transition replaces MCLK with the recovered clock at RCLK. RPOS/RNEG will  
reflect the data content at the receiver input during the entire LOS detection period for that channel.  
2.2.1.1  
E1 Mode  
In G.775 mode a loss of signal is detected if the signal is below 200mV (typical) for 32 consecutive  
pulse intervals. When the received signal reaches 12.5% ones density (4 marks in a sliding 32-bit  
period) with no more than 15 consecutive zeros and the signal level exceeds 250mV (typical), the  
LOS flag is reset and another transition replaces MCLK with the recovered clock at RCLK.  
In ETSI 300 233 mode, a loss of signal is detected if the signal is below 200mV for 2048  
consecutive intervals (1 ms). The LOS condition is cleared and the output pin returns to Low when  
the incoming signal has transitions when the signal level is equal or greater than 250mV for more  
than 32 consecutive pulse intervals. This mode is activated by setting the LACS register bit to one.  
If it is necessary to use AIS with LOS, see errata 10.3 for a way to implement this.  
2.2.1.2  
2.2.1.3  
T1 Mode  
The T1.231 LOS detection criteria is employed. LOS is detected if the signal is below 200mV for  
175 contiguous pulse positions. The LOS condition is terminated upon detecting an average pulse  
density of 12.5% over a period of 175 contiguous pulse positions starting with the receipt of a  
pulse. The incoming signal is considered to have transitions when the signal level is equal or  
greater than 250mV.  
Data Recovery Mode  
In data recovery mode the LOS digital timing is derived from a internal self timed circuit. RPOS/  
RNEG stay active during loss of signal. The analog LOS detector complies with ITU-G.775  
recommendation. The LXT388 monitors the incoming signal amplitude. Any signal below 200mV  
for more than 30µs (typical) will assert the corresponding LOS pin. The LOS condition is cleared  
when the signal amplitude rises above 250mV. The LXT388 requires more than 10 and less than  
255 bit periods to declare a LOS condition in accordance to ITU G.775.  
2.2.2  
Alarm Indication Signal (AIS) Detection  
The AIS detection is performed by the receiver independent of any loopback mode. This feature is  
available in host mode only. Because there is no clock in data recovery mode, AIS detection will  
not work in that mode. AIS requires MCLK to have clock applied, since this function depends on  
the clock to count the number of ones in an interval.  
Datasheet  
23  
LXT388 Dual T1/E1/J1 Transceiver  
2.2.2.1  
E1 Mode  
One detection mode suitable for both ETSI and ITU is available when the LACS register bits are  
cleared to zero. If the LACS register bit is set to one, see errata 10.3 to implement this.  
ETSI ETS300233 and G.775 detection  
The AIS condition is declared when the received data stream contains less than 3 zeros within a  
period of 512 bits.  
The AIS condition is cleared when 3 or more zeros within 512 bits are detected.  
2.2.2.2  
T1 Mode  
ANSI T1.231 detection is employed.  
The AIS condition is declared when less than 9 zeros are detected in any string of 8192 bits. This  
corresponds to a 99.9% ones density over a period of 5.3 ms.  
The AIS condition is cleared when the received signal contains 9 or more zeros in any string of  
8192 bits.  
2.2.3  
In Service Code Violation Monitoring  
In unipolar I/O mode with HDB3/B8ZS decoding, the LXT388 reports bipolar violations on  
RNEG/BPV for one RCLK period for every HDB3/B8ZS code violation that is not part of the zero  
code substitution rules. In AMI mode, all bipolar violations (two consecutive pulses with the same  
polarity) are reported at the BPV output.  
2.3  
Transmitter  
The two low power transmitters of the LXT388 are identical.  
Transmit data is clocked serially into the device at TPOS/TNEG in the bipolar mode or at TDATA  
in the unipolar mode. The transmit clock (TCLK) supplies the input synchronization. Unipolar I/O  
and HDB3/B8ZS/AMI encoding/decoding is selected by pulling TNEG High for more than 16  
consecutive TCLK clock cycles. The transmitter samples TPOS/TNEG or TDATA inputs on the  
falling edge of TCLK. Refer to the Test Specifications Section for MCLK and TCLK timing  
characteristics. If TCLK is not supplied, the transmitter remains powered down and the TTIP/  
TRING outputs are held in a High Z state. In addition, fast output tristatability is also available  
through the OE pin (all ports) and/or the ports OEx bit in the Output Enable Register (OER).  
Zero suppression is available only in Unipolar Mode. The two zero-suppression types are B8ZS,  
used in T1 environments, and HDB3, used in E1 environments. The scheme selected depends on  
whether the device is set for T1 or E1 operation (determined by LEN2-0 pulse shaping settings).  
The LXT388 also supports AMI line coding/decoding as shown in Figure 4. In Hardware mode,  
AMI coding/decoding is selected by the CODEN pin. In host mode, AMI coding/decoding is  
selected by bit 4 in the GCR (Global Control Register).  
24  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 4. 50% AMI Encoding  
TTIP  
Bit Cell  
1
1
0
TRING  
Each output driver is supplied by a separate power supply (TVCC and TGND). The transmit pulse  
shaper is bypassed if no MCLK is supplied while TCLK is pulled high. In this case TPOS and  
TNEG control the pulse width and polarity on TTIP and TRING. With MCLK supplied and TCLK  
pulled high the driver enters TAOS (Transmit All Ones pattern). Note: The TAOS generator uses  
MCLK as a timing reference. In order to assure that the output frequency is within specification  
limits, MCLK must have the applicable stability.TAOS is inhibited during Remote Loopback.  
2.3.0.1  
Hardware Mode  
In hardware mode, pins LEN0-2 determine the pulse shaping as described in Table 6 on page 26.  
The LEN settings also determine whether the operating mode is T1 or E1. Note that in T1 operation  
mode, all four ports will share the same pulse shaping setting. Independent pulse shaping for each  
channel is available in host mode.  
2.3.0.2  
2.3.1  
Host Mode  
In Host Mode, the contents of the Pulse Shaping Data Register (PSDAT) determines the shape of  
pulse output at TTIP/TRING. Refer to Table 28 on page 45 and Table 29 on page 45.  
Transmit Pulse Shaping  
The transmitted pulse shape is internally generated using a high speed D/A converter. Shaped  
pulses are further applied to the line driver for transmission onto the line at TTIP and TRING. The  
line driver provides a constant low output impedance regardless of whether it is driving marks,  
spaces or if it is in transition. This well controlled dynamic impedance provides excellent return  
loss when used with external precision resistors (± 1% accuracy) in series with the transformer.  
2.3.1.1  
Output Driver Power Supply  
The output driver power supply (TVCC pins) can be either 3.3V or 5V nominal. When TVCC=5V,  
LXT388 drives both E1 (75/120Ω) and T1 100lines through a 1:2 transformer and 11Ω/9.1Ω  
series resistors.  
When TVCC=3.3V, the LXT388 drives E1 (75/120Ω) lines through a 1:2 transformer and 11Ω  
series resistor. A configuration with a 1:2 transformer and without series resistors should be used to  
drive T1 100lines.  
Datasheet  
25  
LXT388 Dual T1/E1/J1 Transceiver  
Table 6. Line Length Equalizer Inputs  
LEN2  
LEN1  
LEN0  
Line Length1  
Cable Loss2  
Operation Mode  
0
1
1
1
1
0
1
0
0
1
1
0
1
0
1
0
1
0
0 - 133 ft. ABAM  
0.6 dB  
1.2 dB  
1.8 dB  
2.4 dB  
3.0 dB  
133 - 266 ft. ABAM  
266 - 399 ft. ABAM  
399 - 533 ft. ABAM  
533 - 655 ft. ABAM  
T1  
E1  
E1 G.703, 75coaxial cable and 120twisted pair cable.  
1. Line length from LXT388 to DSX-1 cross-connect point.  
2. Maximum cable loss at 772KHz.  
Removing the series resistors for T1 applications with TVCC=3.3V, improves the power  
consumption of the device. See Table 40 on page 55.  
Series resistors in the transmit configuration improve the transmit return loss performance. Good  
transmit return loss performance minimizes reflections in harsh cable environments. In addition,  
series resistors provide protection against surges coupled to the device. The resistors should be  
used in systems requiring protection switching without external relays. Please refer to Figure 5 on  
page 28 for the recommended external line circuitry.  
2.3.1.2  
Power Sequencing  
For the LXT384, we recommend sequencing TVCC first then VCC second or at the same time as  
TVCC to prevent excessive current draw.  
2.4  
Line Protection  
Figure 5 on page 28 shows recommended line interface circuitry. In the receive side, the 1 kΩ  
series resistors protect the receiver against current surges coupled into the device. Due to the high  
receiver impedance (70 ktypical) the resistors do not affect the receiver sensitivity. In the  
transmit side, the Schottky diodes D1-D4 protect the output driver.While not mandatory for normal  
operation, these protection elements are strongly recommended to improve the design robustness.  
2.5  
Driver Failure Monitor  
The LXT388 transceiver incorporates a internal power Driver Failure Monitor (DFM) in parallel  
with TTIP and TRING that is capable of detecting secondary shorts without cable. DFM is  
available only in configurations with no transmit series resistors (T1 mode with TVCC=3.3V).  
This feature is available in the serial and parallel host modes but not available in the hardware  
mode of operation.  
A capacitor, charged via a measure of the driver output current and discharged by a measure of the  
maximum allowable current, is used to detect a secondary short failure. Secondary shorted lines  
draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal  
26  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
charge window, a driver short circuit fail (DFM) is reported in the respective register by setting an  
interrupt. During a long string of spaces, a short-induced overcharge eventually bleeds off, clearing  
the DFM flag.  
Note: Unterminated lines of adequate length (λ/4) may effectively behave as short-circuits as seen  
by the driver and therefore trigger the DFM. Under these circumstances, the alarm should be  
disabled.  
In addition, the LXT388 features output driver short-circuit protection. When the output current  
exceeds 100 mA, LXT388 limits the drivers output voltage to avoid damage.  
Datasheet  
27  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 5. External Transmit/Receive Line Circuitry  
TVCC  
TVCC  
TVS1  
68µF  
1
0.1µF  
TVCC  
D4  
RT  
1:2  
TTIP  
D3  
3.3V  
Tx LINE  
2
VCC  
GND  
560pF  
TVCC  
0.1µF  
D2  
D1  
TRING  
RT  
3
LXT388  
(ONE CHANNEL)  
1k  
1:2  
RTIP  
RR  
Rx LINE  
0.22µF  
RR  
RRING  
1k  
1
2
3
Common decoupling capacitor for all TVCC and TGND pins.  
Typical value. Adjust for actual board parasitics to obtain optimum return loss.  
Refer to Transformer Specifications Table for transformer specifications.  
28  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 6. Driver Performance Monitoring  
TVCC  
D4  
D3  
RT  
1:2  
TTIP  
560pF  
TRANSMITTER # 0/1  
TVCC  
D2  
D1  
TRING  
RT  
LXT388  
0.1  
µF  
0.1  
µF  
1.8 kΩ  
1.8 k  
RTIP  
470  
470  
0.22µF  
RECEIVER # 2/3  
LOS / DPM  
RRING  
2.6  
Driver Performance Monitor  
The two additional receiver blocks in the LXT388 can be used to monitor the transmitter  
performance in channels 0 and 1 as illustrated in Figure 6.  
The transmitter outputs in channels 0 and 1 are connected to receivers 2 and 3 through capacitive  
coupling. If the output driver stops transmitting data, the LOS output in the monitoring receiver  
will be asserted indicating a driver failure. Therefore, the LOS output effectively acts as a driver  
performance monitor indicator (DPM). This alarm is also available in host mode through the LOS  
registers.  
The DPM set and reset operation is identical to the LOS set and reset operation as described in  
Loss of Signal Detectoron page 23.  
Datasheet  
29  
LXT388 Dual T1/E1/J1 Transceiver  
Note: T1/E1 receiver operation in channels 2 and 3 is determined by the LEN settings as described in  
Table 6 on page 26.  
2.7  
Jitter Attenuation  
A digital Jitter Attenuation Loop (JAL) combined with a FIFO provides Jitter attenuation. The JAL  
is internal and requires no external crystal nor high-frequency (higher than line rate) reference  
clock.  
The FIFO is a 32 x 2-bit or 64 x 2-bit register (selected by the FIFO64 bit in the GCR). Data is  
clocked into the FIFO with the associated clock signal (TCLK or RCLK), and clocked out of the  
FIFO with the dejittered JAL clock. See Figure 7. When the FIFO is within two bits of overflowing  
or underflowing, the FIFO adjusts the output clock by 1/8 of a bit period. The Jitter Attenuator  
produces a control delay of 17 or 33 bits in the associated path (refer to test specifications). This  
feature is required for hitless switching applications. This advanced digital jitter attenuator meets  
latest jitter attenuation specifications. See Table 7.  
Under software control, the low limit jitter attenuator corner frequency depends on FIFO length  
and the JACF bit setting (this bit is in the GCR register). In Hardware Mode, the FIFO length is  
fixed to 64 bits. The corner frequency is fixed to 6 Hz for T1 mode and 3.5 Hz for E1 mode.  
Table 7. Jitter Attenuation Specifications  
T1  
E1  
AT&T Pub 62411  
GR-253-CORE1  
ITU-T G.736  
ITU-T G.7423  
ITU-T G.7834  
ETSI CTR12/13  
BAPT 220  
TR-TSY-0000092  
1. Category I, R5-203.  
2. Section 4.6.3.  
3. Section 6.2 When used with the SXT6234 E2-E1 mux/demux.  
4. Section 6.2.3.3 combined jitter when used with the SXT6251 21E1 mapper.  
30  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 7. Jitter Attenuator Loop  
FIFO64  
TPOS  
TPOSo  
RPOS  
RPOSi  
TNEG  
TNEGo  
RNEG  
FIFO  
RNEGi  
IN CK  
OUT CK  
TCLK  
TCLK  
RCLK  
IN  
OUT  
DPLL  
RCLKi  
JASEL0-1  
JASEL0-1  
MCLK  
JACF  
x 32  
GCR control bits  
In Host Mode, the Global Control Register (GCR) determines whether the JAL is positioned in the  
receive path, transmit path or disabled. In Hardware Mode, the JAL position is determined by the  
JASEL pin.  
2.7.1  
Transmit and Receive Jitter Attenuation  
Simultaneous transmit and receive jitter attenuation can be implemented using the additional jitter  
attenuators in the receiver/JA blocks 2 and 3. Please refer to Figure 8. In this example, the jitter  
attenuator in channels 0 and 1 is placed in the transmit path. Receive path jitter attenuation is  
obtained by routing the corresponding RCLK/RPOS/RNEG signals through the JAs in blocks 2  
and 3. This is accomplished by enabling a digital loopback in these channels. Note that the CLKE  
pin should be tied High to allow direct connection between RCLK/RPOS/RNEG and TCLK/  
TPOS/TNEG. Connections in Figure 8 are shown for bipolar mode operation. In unipolar mode  
(TNEG=High), RCLK and RDATA should be connected to TCLK and TDATA. Bipolar violations  
for channels 0 and 1 will be reported at the BPV (RNEG) outputs in those channels.  
Datasheet  
31  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 8. Transmit and Receive Jitter Attenuation  
TRANSCEIVERS, #0, 1  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA  
TRING  
RTIP  
RCLK  
RPOS  
RNEG  
Timing  
& Data  
Recovery  
RRING  
LOS  
1
MONITORING/JA, #2, 3  
TCLK  
TPOS  
TNEG  
JA  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
& Data  
Recovery  
RRING  
LOS/DPM  
* If Enabled  
Inverter not necessary if CLKE is high. However, if  
CLKE is low, inverter required.  
1
2.8  
Loopbacks  
The LXT388 offers three loopback modes for diagnostic purposes. In hardware mode, the loopback  
mode is selected with the LOOPn pins. In software mode, the ALOOP, DLOOP and RLOOP  
registers are employed.  
2.8.1  
Analog Loopback  
When selected, the transmitter outputs (TTIP & TRING) are connected internally to the receiver  
inputs (RTIP & RRING) as shown in Figure 9. Data and clock are output at RCLK, RPOS &  
RNEG pins for the corresponding transceiver. Note that signals on the RTIP & RRING pins are  
ignored during analog loopback.  
32  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 9. Analog Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA*  
JA*  
TRING  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
2.8.2  
Digital Loopback  
The digital loopback function is available in software and Hardware mode. When selected, the  
transmit clock and data inputs (TCLK, TPOS & TNEG) are looped back and output on the RCLK,  
RPOS & RNEG pins (Figure 10). The data presented on TCLK, TPOS & TNEG is also output on  
the TTIP & TRING pins. Note that signals on the RTIP & RRING pins are ignored during digital  
loopback.  
Figure 10. Digital Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA*  
JA*  
TRING  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
2.8.3  
Remote Loopback  
During remote loopback (Figure 11) the RCLK, RPOS & RNEG outputs routed to the transmit  
circuits and output on the TTIP & TRING pins. Note that input signals on the TCLK, TPOS &  
TNEG pins are ignored during remote loopback.  
Datasheet  
33  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 11. Remote Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA*  
JA*  
TRING  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
Note: In data recovery mode, the pulse template cannot be guaranteed while in a remote loopback.  
2.8.4  
Transmit All Ones (TAOS)  
In Hardware mode, the TAOS mode is set by pulling TCLK High for more than 16 MCLK cycles.  
In software mode, TAOS mode is set by asserting the corresponding bit in the TAOS Register. In  
addition, automatic ATS insertion (in case of LOS) may be set using the ATS Register. Note that  
the TAOS generator uses MCLK as a timing reference, therefore TAOS doesnt work in data  
recovery mode. In order to assure that the output frequency is within specification limits, MCLK  
must have the applicable stability. DLOOP does not function with TOAS active.  
Figure 12. TAOS Data Path  
MCLK  
TAOS mode  
Timing &  
Control  
TTIP  
TCLK  
TPOS  
TNEG  
TRING  
(ALL 1’s)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
JA*  
RRING  
* If Enabled  
34  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 13. TAOS with Digital Loopback  
MCLK  
TAOS Mode  
Timing &  
Control  
TTIP  
TCLK  
TPOS  
TNEG  
JA*  
JA*  
TRING  
(ALL 1’s)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
Figure 14. TAOS with Analog Loopback  
MCLK  
TAOS Mode  
Timing &  
Control  
TCLK  
TPOS  
TNEG  
TTIP  
TRING  
(ALL 1’s)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
JA*  
RRING  
* If Enabled  
2.9  
Intel Hitless Protection Switching (Intel HPS)  
The LXT388 transceivers include an output driver tristatability feature for T1/E1/J1 redundancy  
applications. This feature greatly reduces the cost of implementing redundancy protection by  
eliminating external relays. Please refer to Application Note 249134 LXT380/1/4/6/8  
Redundancy Applicationsfor guidelines on implementing redundancy systems for both T1/E1/J1  
operation using the LXT380/1/4/6/8.  
2.10  
Operation Mode Summary  
Table 8 lists summarizes all LXT388 hardware settings and corresponding operating modes.  
Table 8. Operation Mode Summary  
MCLK  
TCLK  
LOOP1  
Receive Mode  
Transmit Mode  
Loopback  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Open  
Data/Clock recovery  
Data/Clock recovery  
Data/Clock recovery  
Pulse Shaping ON  
Pulse Shaping ON  
Pulse Shaping ON  
No Loopback  
Remote Loopback  
Analog Loopback  
L
H
1. Hardware mode only.  
Datasheet  
35  
LXT388 Dual T1/E1/J1 Transceiver  
Table 8. Operation Mode Summary (Continued)  
MCLK  
TCLK  
LOOP1  
Receive Mode  
Transmit Mode  
Loopback  
Clocked  
L
Open  
Data/Clock recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Data/Clock Recovery  
Power Down  
Power down  
Power down  
No Loopback  
No effect on op.  
No Analog Loopback  
No Loopback  
Clocked  
L
L
Clocked  
L
H
Power down  
Clocked  
H
Open  
Transmit All Ones  
Pulse Shaping ON  
Transmit All Ones  
Pulse Shaping ON  
Pulse Shaping ON  
Pulse Shaping ON  
Pulse Shaping OFF  
Pulse Shaping OFF  
Pulse Shaping OFF  
Power down  
Clocked  
H
L
Remote Loopback  
No effect on op.  
No Loopback  
Clocked  
H
H
L
L
Clocked  
Open  
Clocked  
L
Power Down  
No Remote Loopback  
No effect on op.  
No Loopback  
L
Clocked  
H
Power Down  
L
H
Open  
Power Down  
L
H
L
Power Down  
No Remote Loop  
No effect on op.  
No Loopback  
L
H
H
X
Power Down  
L
L
Power Down  
H
H
H
H
H
H
H
H
Clocked  
Open  
L
Data Recovery  
Data Recovery  
Data Recovery  
Data Recovery  
Data Recovery  
Data Recovery  
Data Recovery  
Data Recovery  
Pulse Shaping ON  
Pulse Shaping OFF  
Pulse Shaping ON  
Power down  
No Loopback  
Clocked  
Remote Loopback  
Analog Loopback  
No Loopback  
Clocked  
H
L
L
Open  
L
Pulse Shaping OFF  
Pulse Shaping OFF  
Pulse Shaping OFF  
Pulse Shaping OFF  
Remote Loopback  
No Loopback  
H
H
H
Open  
L
Remote Loopback  
Analog Loopback  
H
1. Hardware mode only.  
2.11  
2.12  
Interfacing with 5V logic  
The LXT388 can interface directly with 5V logic. The internal input pads are tolerant to 5V outputs  
from TTL and CMOS family devices.  
Parallel Host Interface  
The LXT388 incorporates a highly flexible 8-bit parallel microprocessor interface. The interface is  
generic and is designed to support both non-multiplexed and multiplexed address/data bus systems  
for Motorola and Intel bus topologies. Two pins (MUX and MOT/INTL) select four different  
operating modes as shown in Table 9.  
36  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 9. Microprocessor Parallel Interface Selection  
MUX  
MOT/INTL  
Operating Mode  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Motorola Non-Multiplexed  
Intel Non-Multiplexed  
Motorola Multiplexed  
Intel Multiplexed  
The interface includes an address bus (A4 - A0) and a data bus (D7 - D0) for non-multiplexed  
operation and an 8-bit address/data bus for multiplexed operation. WR, RD, R/W, CS, ALE, DS,  
INT and RDY/ACK are used as control signals. A significant enhancement is an internal wait-state  
generator that controls an Intel and Motorola compatible handshake output signal (RDY/ACK). In  
Motorola mode ACK Low signals valid information is on the data bus. During a write cycle a Low  
signal acknowledges the acceptance of the write data.  
In Intel mode RDY High signals to the controlling processor that the bus cycle can be completed.  
While Low the microprocessor must insert wait states. This allows the LXT388 to interface with  
wait-state capable micro controllers, independent of the processor bus speed. To activate this  
function a reference clock is required on the MCLK pin.  
There is one exception to write cycle timing for Intel non-multiplexed mode: Register 0Ah, the  
reset register. Because of timing issues, the RDY line remains high after the first part of the cycle  
is done, not signalling write cycle completion with another transition low. Add 2 microseconds of  
delay to allow the reset cycle to completely initialize the device before proceeding.  
An additional active Low interrupt output signal indicates alarm conditions like LOS and DFM to  
the microprocessor.  
The LXT388 has a 5 bit address bus and provides 18 user accessible 8-bit registers for  
configuration, alarm monitoring and control of the chip.  
2.12.1  
Motorola Interface  
The Motorola interface is selected by asserting the MOT/INTL pin Low. In non-multiplexed mode  
the falling edge of DS is used to latch the address information on the address bus. In multiplexed  
operation the address on the multiplexed address data bus is latched into the device with the falling  
edge of AS. In non-multiplexed mode, AS should be pulled High.  
The R/W signal indicates the direction of the data transfer. The DS signal is the timing reference  
for all data transfers and typically has a duty cycle of 50%. A read cycle is indicated by asserting R/  
W High with a falling edge on DS. A write cycle is indicated by asserting R/W Low with a rising  
edge on DS.  
Both cycles require the CS signal to be Low and the Address pins to be actively driven by the  
microprocessor. Note that CS and DS can be connected together in Motorola mode. In a write cycle  
the data bus is driven by the microprocessor. In a read cycle the bus is driven by the LXT388.  
Datasheet  
37  
LXT388 Dual T1/E1/J1 Transceiver  
2.12.2  
Intel Interface  
The Intel interface is selected by asserting the MOT/INTL pin High. The LXT388 supports non-  
multiplexed interfaces with separate address and data pins when MUX is asserted Low, and  
multiplexed interfaces when MUX is asserted High. The address is latched in on the falling edge of  
ALE. In non-multiplexed mode, ALE should be pulled High. R/W is used as the RD signal and DS  
is used as the WR signal. A read cycle is indicated to the LXT388 when the processor asserts RD  
Low while the WR signal is held High. A write operation is indicated to the LXT388 by asserting  
WR Low while the RD signal is held High. Both cycles require the CS signal to be Low.  
2.13  
Interrupt Handling  
2.13.1  
Interrupt Sources  
There are three interrupt sources:  
1. Status change in the Loss Of Signal (LOS) status register (04H). The LXT388s analog/digital  
loss of signal processor continuously monitors the receiver signal and updates the specific  
LOS status bit to indicate presence or absence of a LOS condition.  
2. Status change in the Driver Failure Monitoring (DFM) status register (05H). The LXT388s  
smart power driver circuit continuously monitors the output drivers signal and updates the  
specific DFM status bit to indicate presence or absence of a secondary driver short circuit  
condition.  
3. Status change in the Alarm Indication Signal (AIS) status register (13H).The LXT388s  
receiver monitors the incoming data stream and updates the specific AIS status bit to indicate  
presence or absence of a AIS condition.  
2.13.2  
Interrupt Enable  
The LXT388 provides a latched interrupt output (INT). An interrupt occurs any time there is a  
transition on any enabled bit in the status register. Registers 06H, 07H and 14H are the LOS, DFM  
and AIS interrupt enable registers (respectively). Writing a logic 1into the mask register will  
enable the respective bit in the respective Interrupt status register to generate an interrupt. The  
power-on default value is all zeroes. The setting of the interrupt enable bit does not affect the  
operation of the status registers.  
Registers 08H, 09H and 15H are the LOS, DFM and AIS (respectively) interrupt status registers.  
When there is a transition on any enabled bit in a status register, the associated bit of the interrupt  
status register is set and an interrupt is generated (if one is not already pending). When an interrupt  
occurs, the INT pin is asserted Low. The output stage of the INT pin consists only of a pull-down  
device; an external pull-up resistor of approximately 10k ohm is required to support wired-OR  
operation.  
2.13.3  
Interrupt Clear  
When an interrupt occurs, the interrupt service routine (ISR) should read the interrupt status  
registers (08H, 09H and 15H) to identify the interrupt source. Reading the Interrupt Status register  
clears the "sticky" bit set by the interrupt. Automatically clearing the register prepares it for the  
next interrupt. The ISR should then read the corresponding status monitor register to obtain the  
current status of the device. Note: there are three status monitor registers: the LOS (04H), the DFM  
38  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
(05H) and the AIS (013H). Reading either status monitors register will clear its corresponding  
interrupts on the rising edge of the read or data strobe. When all pending interrupts are cleared, the  
INT pin goes High.  
2.14  
Serial Host Mode  
The LXT388 operates in Serial Host Mode when the MODE pin is tied to VCC÷2. Figure 15 shows  
the SIO data structure. The registers are accessible through a 16 bit word: an 8bit Command/  
Address byte (bits R/W and A1-A7) and a subsequent 8bit data byte (bits D0-7). Bit R/W  
determines whether a read or a write operation occurs. Bits A5-0 in the Command/Address byte  
address specific registers (the address decoder ignores bits A7-6). The data byte depends on both  
the value of bit R/W and the address of the register as set in the Command/Address byte.  
Figure 15. Serial Host Mode Timing  
CS  
SCLK  
INPUT DATA BYTE  
D2 D3 D4 D5  
ADDRESS/COMMAND BYTE  
R/W A1 A2  
A3 A4 A5  
A6 A7  
D0 D1  
D6  
D7  
SDI  
X
X
SDO - REMAINS HIGH Z  
SDO IS DRIVEN IF R/W = 1  
R/W = 1: Read from the LXT388  
R/W = 0: Write to the LXT388  
X = Dont care  
Datasheet  
39  
LXT388 Dual T1/E1/J1 Transceiver  
3.0  
Register Descriptions  
Table 10. Serial and Parallel Port Register Addresses  
Address  
Name  
Symbol  
Mode  
Serial Port  
A7-A1  
Parallel Port  
A7-A0  
ID Register  
ID  
ALOOP  
RLOOP  
TAOS  
LOS  
DFM  
LIE  
xx00000  
xx00001  
xx00010  
xx00011  
xx00100  
xx00101  
xx00110  
xx00111  
xx01000  
xx01001  
xx01010  
xx01011  
xx01100  
xx01101  
xx01110  
xx01111  
xxx00000  
xxx00001  
xxx00010  
xxx00011  
xxx00100  
xxx00101  
xxx00110  
xxx00111  
xxx01000  
xxx01001  
xxx01010  
xxx01011  
xxx01100  
xxx01101  
xxx01110  
xxx01111  
R
Analog Loopback  
R/W  
R/W  
R/W  
R
Remote Loopback  
TAOS Enable  
LOS Status Monitor  
DFM Status Monitor  
LOS Interrupt Enable  
DFM Interrupt Enable  
LOS Interrupt Status  
DFM Interrupt Status  
Software Reset Register  
Performance Monitoring  
Digital Loopback  
R
R/W  
R/W  
R
DIE  
LIS  
DIS  
R
RES  
MON  
DL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LOS/AIS Criteria Selection  
Automatic TAOS Select  
Global Control Register  
LOSC  
ATS  
GCR  
Pulse Shaping Indirect  
Address Register  
PSIAD  
PSDAT  
xx10000  
xx10001  
xxx10000  
xxx10001  
R/W  
R/W  
Pulse Shaping Data  
Register  
Output Enable Register  
AIS Status Register  
AIS Interrupt Enable  
AIS Interrupt Status  
OER  
AIS  
xx10010  
xx10011  
xx10100  
xx10101  
xxx10010  
xxx10011  
xxx10100  
xxx10101  
R/W  
R
AISIE  
AISIS  
R/W  
R
Table 11. Register Bit Names  
Register  
Bit  
Name  
ID Register  
Sym  
RW  
7
6
5
4
3
2
1
0
ID  
R
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
reserve  
d
Analog Loopback  
Remote Loopback  
ALOOP R/W  
RLOOP R/W  
-
-
-
-
-
-
-
-
reserved  
reserved  
AL1  
RL1  
AL0  
RL0  
reserve  
d
40  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 11. Register Bit Names (Continued)  
Register  
Bit  
Name  
Sym  
RW  
7
6
5
4
3
2
1
0
reserve  
d
TAOS Enable  
TAOS  
LOS  
DFM  
LIE  
R/W  
R
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
reserved  
LOS2  
TAOS1  
LOS1  
DFM1  
LIE1  
TAOS0  
LOS0  
DFM0  
LIE0  
LOS Status Monitor  
DFM Status Monitor  
LOS Interrupt Enable  
DFM Interrupt Enable  
LOS Interrupt Status  
DFM Interrupt Status  
LOS3  
reserve  
d
R
reserved  
LIE2  
R/W  
R/W  
R
LIE3  
reserve  
d
DIE  
reserved  
LIS2  
DIE1  
LIS1  
DIE0  
LIS0  
LIS  
LIS3  
reserve  
d
DIS  
R
reserved  
DIS1  
DIS0  
Software Reset  
Register  
RES  
-
R/W  
R/W  
-
-
-
-
RES3  
RES2  
RES1  
RES0  
reserve reserve reserve reserve reserve  
Reserved  
reserved reserved reserved  
d
d
d
d
d
Digital Loopback  
DL  
R/W  
R/W  
-
-
-
-
DL3  
DL2  
DL1  
DL0  
LOS/AIS Criteria Select  
LACS  
-
-
-
-
LACS3  
LACS2  
LACS1  
LACS0  
reserve  
d
Automatic TAOS Select  
Global Control Register  
ATS  
R/W  
R/W  
-
-
-
-
reserved  
JACF  
ATS1  
ATS0  
reserve RAISE  
GCR  
CDIS  
CODEN FIFO64  
JASEL1  
JASEL0  
d
N
Pulse Shaping Indirect  
Address Register  
reserve reserve reserve reserve reserve  
PSIAD R/W  
PSDAT R/W  
LENAD2 LENAD1 LENAD0  
d
d
d
d
d
Pulse Shaping Data  
Register  
reserve reserve reserve reserve reserve  
LEN2  
LEN1  
OE1  
LEN0  
OE0  
d
d
d
d
d
reserve  
d
Output Enable Register  
OER  
R/W  
-
-
-
-
reserved  
AIS Status Register  
AIS Interrupt Enable  
AIS Interrupt Status  
AIS  
R
R/W  
R
-
-
-
-
-
-
-
-
-
-
-
-
AIS3  
AIS2  
AIS1  
AIS0  
AISIE  
AISIS  
AISIE3  
AISIS3  
AISIE2  
AISIS2  
AISIE1  
AISIS1  
AISIE0  
AISIS0  
Table 12. ID Register, ID (00H)  
Bit  
Name  
Function  
This register contains a unique revision code and is mask programmed.  
Revision  
A1  
ID Code  
00h  
7-0  
ID7-ID0  
B1  
21h  
B2  
22h  
Datasheet  
41  
LXT388 Dual T1/E1/J1 Transceiver  
Table 13. Analog Loopback Register, ALOOP (01H)  
Bit  
Name  
Function  
1-0  
7-2  
AL1-AL0  
-
Setting a bit to 1enables analog local loopback for transceivers 1- 0 respectively.  
Write 0to these positions for normal operation.  
Table 14. Remote Loopback Register, RLOOP (02H)  
Bit  
Name  
Function  
1-0  
7-2  
RL1-RL0  
-
Setting a bit to 1enables remote loopback for transceivers 1-0 respectively.  
Write 0to these positions for normal operation.  
Table 15. TAOS Enable Register, TAOS (03H)  
Bit1  
Name  
Function2  
Setting a bit to 1causes a continuous stream of marks to be sent out at the TTIP and  
TRING pins of the respective transceiver 1-0.  
1-0  
7-2  
TAOS1-TAOS0  
-
Write 0to these positions for normal operation.  
1. On power up all register bits are set to 0.  
2. MCLK is used as timing reference. If MCLK is not available then the channel TCLK is used as the reference. TAOS is not  
available in data recovery mode and line driver mode (MCLK=TCLK=High).  
Table 16. LOS Status Monitor Register, LOS (04H)  
Bit1  
Name  
Function  
Respective bit(s) are set to 1every time the LOS processor detects a valid loss of signal  
condition in receivers 3-0.  
3-0  
LOS3-LOS0  
1. On power up all register bits are set to 0. Any change in the state causes an interrupt. All LOS interrupts are cleared by a  
single read operation.  
Table 17. DFM Status Monitor Register, DFM (05H)  
Bit1  
Name  
Function  
Respective bit(s) are set to 1every time the short circuit monitor detects a valid  
secondary output driver short circuit condition in transceivers 1-0. Note that DFM is  
available only in configurations with no transmit series resistors (T1 mode with  
TVCC=3.3V).  
1-0  
7-2  
DFM1-DFM0  
-
Write 0to these positions for normal operation.  
1. On power-up all the register bits are set to 0. All DFM interrupts are cleared by a single read operation.  
42  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 18. LOS Interrupt Enable Register, LIE (06H)  
Bit1  
Name  
Function  
3-0  
7-4  
LIE1-LIE0  
-
Receiver 3-0 LOS interrupts are enabled by writing a 1to the respective bit.  
Write 0to these positions for normal operation.  
1. On power-up all the register bits are set to 0and all interrupts are disabled.  
Table 19. DFM Interrupt Enable Register, DIE (07H)  
Bit1  
Name  
Function  
1-0  
7-2  
DIE13-DIE0  
-
Transceiver 1-0 DFM interrupts are enabled by writing a 1to the respective bit.  
Write 0to these positions for normal operation.  
1. On power-up all the register bits are set to 0and all interrupts are disabled.  
Table 20. LOS Interrupt Status Register, LIS (08H)  
Bit  
Name  
Function  
These bits are set to 1every time a LOS status change has occurred since the last clear  
interrupt in receivers 3-0 respectively.  
3-0  
LIS3-LIS0  
Table 21. DFM Interrupt Status Register, DIS (09H)  
Bit  
Name  
Function  
These bits are set to 1every time a DFM status change has occurred since the last  
cleared interrupt in transceivers 1-0 respectively.  
1-0  
DIS1-DIS0  
Table 22. Software Reset Register, RES (0AH)  
Bit  
Name  
Function  
Writing to this register initiates a 1 microsecond reset cycle, except in Intel non-  
multiplexed mode. When using Intel non-multiplexed host mode, extend cycle time to 2  
microseconds. Please refer to Host Mode section for more information. This operation  
sets all LXT388 registers to their default values.  
3-0  
RES3-RES0  
Table 23. Reserved (0BH)  
Bit  
Name  
Function  
7-0  
reserved  
Write 0to these positions for normal operation.  
Datasheet  
43  
LXT388 Dual T1/E1/J1 Transceiver  
Table 24. Digital Loopback Register, DL (0CH)  
Bit1  
Name  
Function2  
3-0  
DL3-DL0  
Setting a bit to 1enables digital loopback for the respective channel.  
1. On power up all register bits are set to 0.  
2. During digital loopback LOS and TAOS stay active and independent of TCLK, while data received on TPOS/TNEG/TCKLK is  
looped back to RPOS/RNEG/RCLK.  
Table 25. LOS/AIS Criteria Register, LCS (0DH)  
Bit1  
Name  
Function2  
T1 Mode2  
Dont care. T1.231 compliant LOS/AIS detection is used.  
LCS3-LCS01  
E1 Mode  
3-0  
Setting a bit to 1selects the ETS1 300233 LOS. Setting a bit to 0selects G.775 LOS  
mode. AIS works correctly for both ETSI and ITU when the bit is cleared to 0. See  
errata revision 10.3 or higher for a way to implement ETSI LOS and AIS.  
1. On power-on reset the register is set to 0.  
2. T1 or E1 operation mode is determined by the PSDR settings.  
Table 26. Automatic TAOS Select Register, ATS (0EH)  
Bit1  
Name  
Function  
Setting a bit to 1enables automatic TAOS generation whenever a LOS condition is  
detected in the respective transceiver.  
1-0  
7-2  
ATS1-ATS0  
-
Write 0to these positions for normal operation.  
1. On power-on reset the register is set to 0.This feature is not available in data recovery and line driver mode (MCLK= High  
and TCLK = High)  
Table 27. Global Control Register, GCR (0FH)  
Bit1  
Name  
Function  
0
JASEL0  
These bits determine the jitter attenuator position.  
JASEL0  
JASEL1  
JA Position  
1
1
0
0
1
x
Transmit Path  
Receive Path  
Disabled  
1
JASEL1  
This bit determines the jitter attenuator low limit 3dB corner frequency. Refer to the Jitter  
Attenuator specifications for details (Table 46 on page 60).  
2
3
JACF  
This bit determines the jitter attenuator FIFO depth:  
FIFO64  
0 = 32 bit  
1 = 64 bit  
1. On power-on reset the register is set to 0.  
44  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 27. Global Control Register, GCR (0FH) (Continued)  
Bit1  
Name  
Function  
This bit selects the zero suppression code for unipolar operation mode:  
4
CODEN  
0 = B8ZS/HDB3 (T1/E1 respectively)  
1 = AMI  
This bit controls enables/disables the short circuit protection feature:  
5
CDIS  
0 = enabled  
1 = disabled  
This bit controls automatic AIS insertion in the receive path when LOS occurs:  
0 = Receive AIS insertion disabled on LOS  
1 = RPOS/RNEG = AIS on LOS  
6
7
RAISEN  
-
Note: this feature is not available in data recovery mode (MCLK=High). Disable AIS  
interrupts when changing this bit value to prevent inadvertent interrupts.  
Reserved.  
1. On power-on reset the register is set to 0.  
Table 28. Pulse Shaping Indirect Address Register, PSIAD (10H)  
Bit1  
Name  
Function  
The three bit value written to these bits determine the channel to be addressed:  
0H = channel 0  
1H = channel 1  
2H = receiver 2  
3H = receiver 3  
0-2  
LENAD 0-2  
Data can be read from (written to) the Pulse Shaping Data Register (PSDAT).  
Reserved.  
3 - 7  
-
1. On power-on reset the register is set to 0.  
Table 29. Pulse Shaping Data Register, PSDAT (11H)  
Bit  
Name  
Function  
LEN0-2 determine the LXT388 operation mode (T1 or E1) in all the receivers. In addition,  
for T1 operation, LEN2-0 set transmit pulse shaping in order to meet T1.102 pulse  
template at the DSX-1 cross-connect point for various cable lengths.  
Operation  
Mode  
LEN2  
LEN1  
LEN0  
Line Length  
Cable Loss2  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
0 - 133 ft. ABAM  
133 - 266 ft. ABAM  
266 - 399 ft. ABAM  
399 - 533 ft. ABAM  
533 - 655 ft. ABAM  
0.6 dB  
1.2 dB  
1.8 dB  
2.4 dB  
3.0 dB  
0-2  
LEN 0-2 1,3  
T1  
E1 G.703, 75coaxial cable and 120 Ω  
0
0
0
E1  
twisted pair cable.  
3 - 7  
-
Reserved.  
1. On power-on reset the register is set to 0.  
2. Maximum cable loss at 772 KHz.  
3. When reading LEN, bit values appear inverted. B1revision silicon will fix this so the bits read back correctly.  
Datasheet  
45  
LXT388 Dual T1/E1/J1 Transceiver  
Table 30. Output Enable Register, OER (12H)  
Bit1  
Name  
Function  
1-0  
7-2  
OE1 - OE0  
-
Setting a bit to 1tristates the output driver of the corresponding transceiver.  
Write 0to these positions for normal operation.  
1. On power-up all the register bits are set to 0.  
Table 31. AIS Status Monitor Register, AIS (13H)  
Bit1  
Name  
Function  
Respective bit(s) are set to 1every time the receiver detects a AIS condition in receivers  
3-0.  
3-0  
AIS3-AIS0  
1. On power-up all the register bits are set to 0. All AIS interrupts are cleared by a single read operation.  
Table 32. AIS Interrupt Enable Register, AISIE (14H)  
Bit1  
Name  
Function  
3-0  
7-4  
AISIE3-AISIE0  
-
Transceiver 3-0 AIS interrupts are enabled by writing a 1to the respective bit.  
Write 0to these positions for normal operation.  
1. On power-up all the register bits are set to 0.  
Table 33. AIS Interrupt Status Register, AISIS (15H)  
Bit1  
Name  
Function  
These bits are set to 1every time a AIS status change has occurred since the last clear  
interrupt in receivers 3-0 respectively.  
3-0  
AISIS3-AISIS0  
1. On power-up all the register bits are set to 0.  
46  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
4.0  
JTAG Boundary Scan  
4.1  
Overview  
The LXT388 supports IEEE 1149.1 compliant JTAG boundary scan. Boundary scan allows easy  
access to the interface pins for board testing purposes.  
In addition to the traditional IEE1149.1 digital boundary scan capabilities, the LXT388 also  
includes analog test port capabilities. This feature provides access to the TIP and RING signals in  
each channel (transmit and receive). This way, the signal path integrity across the primary winding  
of each coupling transformer can be tested.  
4.2  
Architecture  
Figure 16 represents the LXT388 basic JTAG architecture. The LXT388 JTAG architecture  
includes a TAP Test Access Port Controller, data registers and an instruction register. The  
following paragraphs describe these blocks in detail.  
Figure 16. LXT388 JTAG Architecture  
Boundry Scan Data Register  
BSR  
Analog Port Scan Register  
ASR  
Device Identification Register  
MUX  
TDO  
TDI  
IDR  
Bypass Register  
BYR  
Instruction Register  
IR  
TCK  
TAP  
Controller  
TMS  
TRST  
4.3  
TAP Controller  
The TAP controller is a 16 state synchronous state machine controlled by the TMS input and  
clocked by TCK (Figure 17).The TAP controls whether the LXT388 is in reset mode, receiving an  
instruction, receiving data, transmitting data or in an idle state. Table 34 describes in detail each of  
the states represented in Figure 17.  
Datasheet  
47  
LXT388 Dual T1/E1/J1 Transceiver  
Table 34. TAP State Description  
State  
Description  
In this state the test logic is disabled. The device is set to normal operation mode. While  
in this state, the instruction register is set to the ICODE instruction.  
Test Logic Reset  
Run -Test/Idle  
Capture - DR  
Shift - DR  
The TAP controller stays in this state as long as TMS is low. Used to perform tests.  
The Boundary Scan Data Register (BSR) is loaded with input pin data.  
Shifts the selected test data registers by one stage word its serial output.  
Data is latched into the parallel output of the BSR when selected.  
Used to load the instruction register with a fixed instruction.  
Shifts the instruction register by one stage.  
Update - DR  
Capture - IR  
Shift - IR  
Update - IR  
Loads a new instruction into the instruction register.  
Pause - IR  
Pause - DR  
Momentarily pauses shifting of data through the data/instruction registers.  
Exit1 - IR  
Exit1 - DR  
Exit2 - IR  
Exit2 - DR  
Temporary states that can be used to terminate the scanning process.  
48  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 17. JTAG State Diagram  
1
TEST-LOGIC  
RESET  
0
0
1
1
1
RUN TEST/IDLE  
SELECT-DR  
SELECT-IR  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
0
0
SHIFT-DR  
SHIFT-IR  
1
1
1
0
1
EXIT1-DR  
EXIT1-IR  
0
0
0
PAUSE-DR  
PAUSE-IR  
1
1
0
0
EXIT2-DR  
EXIT2-IR  
1
0
UPDATE-DR  
UPDATE-IR  
1
0
1
0
4.4  
JTAG Register Description  
The following paragraphs describe each of the registers represented in Figure 16.  
Datasheet  
49  
LXT388 Dual T1/E1/J1 Transceiver  
4.4.1  
Boundary Scan Register (BSR)  
The BSR is a shift register that provides access to all the digital I/O pins. The BSR is used to apply  
and read test patterns to/from the board. Each pin is associated with a scan cell in the BSR register.  
Bidirectional pins or tristatable pins require more than one position in the register. Table 35 shows  
the BSR scan cells and their functions. Data into the BSR is shifted in LSB first.  
Table 35. Boundary Scan Register (BSR)  
Pin  
Signal  
I/O  
Type  
Bit  
Symbol  
Bit #  
Comments  
0
LOS3  
O
O
LOS3  
RNEG3  
RNEG3  
HIZ3 controls the RPOS3, RNEG3 and RCLK3 pins. Setting HIZ3 to 0”  
enables output on the pins. Setting HIZ3 to 1tristates the pins.  
N/A  
-
HIZ3  
RPOS3  
RCLK3  
TNEG3  
TPOS3  
TCLK3  
LOS2  
O
O
I
RPOS3  
RCLK3  
TNEG3  
TPOS3  
TCLK3  
LOS2  
I
I
O
O
RNEG2  
RNEG2  
HIZ2 controls the RPOS2, RNEG2 and RCLK2 pins. Setting HIZ2 to 0”  
enables output on the pins. Setting HIZ2 to 1tristates the pins.  
N/A  
-
HIZ2  
RPOS2  
RCLK2  
TNEG2  
TPOS2  
TCLK2  
MCLK  
MODE  
INT  
O
O
I
RPOS2  
RCLK2  
TNEG2  
TPOS2  
TCLK2  
I
I
I
MCLK  
I
MODE  
O
INTRUPTB  
SDORDYENB controls the ACK pin. Setting SDORDYENB to 0enables  
output on ACK pin. Setting SDORDYENB to 1tristates the pin.  
N/A  
-
SDORDYENB  
ACK  
ALE  
OE  
O
I
SDORDY  
ALE  
OE  
I
CLKE  
A0  
I
CLKE  
A0  
I
A1  
I
A1  
A2  
I
A2  
1. LOOP4 corresponds to DLOOP0.  
2. LOOP5 corresponds to DLOOP1.  
3. LOOP6 corresponds to DLOOP2.  
4. LOOP7 corresponds to DLOOP3..  
50  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 35. Boundary Scan Register (BSR) (Continued)  
Pin  
Signal  
I/O  
Type  
Bit  
Symbol  
Bit #  
Comments  
A3  
I
A3  
A4  
I
A4  
LOOP0  
LOOP0  
LOOP1  
LOOP1  
LOOP2  
LOOP2  
LOOP3  
LOOP3  
LOOP41  
LOOP41  
LOOP52  
LOOP52  
LOOP63  
LOOP63  
LOOP74  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PADD0  
PDO0  
PADI1  
PDO1  
PADI2  
PDO2  
PADI3  
PDO3  
PADI4  
PDO4  
PADI5  
PDO5  
PADI6  
PDO6  
PADI7  
PDOENB controls the LOOP0 through LOOP7 pins.  
Setting PDOENB to 0configures the pins as outputs. The output value  
N/A  
-
PDOENB  
to the pin is set in PDO[0..7].  
Setting PDOENB to 1tristates all the pins. The input value to the pins  
can be read in PADD[0..7].  
LOOP7  
CS  
I/O  
PDO7  
CSB  
I
I
MUX  
MUX  
RESET  
MOT/INTL  
R/W  
I
RSTB  
IMB  
I
I
RDB  
DS  
I
WRB  
TCLK1  
TPOS1  
TNEG1  
RCLK1  
RPOS1  
I
TCLK1  
TPOS1  
TNEG1  
RCLK1  
RPOS1  
I
I
O
O
HIZ1 controls the RPOS1, RNEG1 and RCLK1 pins. Setting HIZ1 to 0”  
enables output on the pins. Setting HIZ1 to 1tristates the pins.  
N/A  
-
HIZ1  
1. LOOP4 corresponds to DLOOP0.  
2. LOOP5 corresponds to DLOOP1.  
3. LOOP6 corresponds to DLOOP2.  
4. LOOP7 corresponds to DLOOP3..  
Datasheet  
51  
LXT388 Dual T1/E1/J1 Transceiver  
Table 35. Boundary Scan Register (BSR) (Continued)  
Pin  
Signal  
I/O  
Type  
Bit  
Symbol  
Bit #  
Comments  
RNEG1  
LOS1  
O
O
I
RNEG1  
LOS1  
TCLK0  
TPOS0  
TNEG0  
RCLK0  
RPOS0  
TCLK0  
TPOS0  
TNEG0  
RCLK0  
RPOS0  
I
I
O
O
HIZ0 controls the RPOS0, RNEG0 and RCLK0 pins. Setting HIZ0 to 0”  
enables output on the pins. Setting HIZ0 to 1tristates the pins.  
N/A  
-
HIZ0  
RNEG0  
LOS0  
O
O
RNEG0  
LOS0  
1. LOOP4 corresponds to DLOOP0.  
2. LOOP5 corresponds to DLOOP1.  
3. LOOP6 corresponds to DLOOP2.  
4. LOOP7 corresponds to DLOOP3..  
4.4.2  
Device Identification Register (IDR)  
The IDR register provides access to the manufacturer number, part number and the LXT388  
revision. The register is arranged per IEEE 1149.1 and is represented in Table 36. Data into the IDR  
is shifted in LSB first.  
Table 36. Device Identification Register (IDR)  
Bit #  
Comments  
31 - 28  
27 - 12  
11 - 1  
0
Revision Number  
Part Number  
Manufacturer Number  
Set to 1”  
4.4.3  
4.4.4  
Bypass Register (BYR)  
The Bypass Register is a 1 bit register that allows direct connection between the TDI input and the  
TDO output.  
Analog Port Scan Register (ASR)  
The ASR is a 5 bit shift register used to control the analog test port at pins AT1, AT2. When the  
INTEST_ANALOG instruction is selected, TDI connects to the ASR input and TDO connects to  
the ASR output. After 5 TCK rising edges, a 5 bit control code is loaded into the ASR. Data into  
the ASR is shifted in LSB first.  
52  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 37 shows the 8 possible control codes and the corresponding operation on the analog port.  
The Analog Test Port can be used to verify continuity across the coupling transformers primary  
winding.  
The Analog Test Port can be used to verify continuity across the coupling transformers primary  
winding as shown in Figure 18. By applying a stimulus to the AT1 input, a known voltage will  
appear at AT2 for a given load. This, in effect, tests the continuity of a receive or transmit interface.  
Table 37. Analog Port Scan Register (ASR)  
ASR Control Code  
AT1 Forces Voltage To:  
AT2 Senses Voltage From:  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
TTIP0  
TTIP1  
TRING0  
TRING1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RTIP0  
RTIP1  
RTIP2  
RTIP3  
RRING0  
RRING1  
RRING2  
RRING3  
Reserved  
Reserved  
Reserved  
Reserved  
4.4.5  
Instruction Register (IR)  
The IR is a 3 bit shift register that loads the instruction to be performed. The instructions are shifted  
LSB first. Table 38 shows the valid instruction codes and the corresponding instruction description.  
Table 38. Instruction Register (IR)  
Instruction  
Code #  
Comments  
Connects the BSR to TDI and TDO. Input pins values are loaded into the BSR.  
Output pins values are loaded from the BSR.  
EXTEST  
000  
Connects the ASR to TDI and TDO. Allows voltage forcing/sensing through AT1 and  
AT2. Refer to Table 37.  
INTEST_ANALOG  
010  
Connects the BSR to TDI and TDO. The normal path between the LXT388 logic and  
the I/O pins is maintained. The BSR is loaded with the signals in the I/O pins.  
SAMPLE / PRELOAD  
IDCODE  
100  
110  
111  
Connects the IDR to the TDO pin.  
Serial data from the TDI input is passed to the TDO output through the 1 bit Bypass  
Register.  
BYPASS  
Datasheet  
53  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 18. Analog Test Port Application  
JTAG Port  
ASR Register  
RTIP3  
Receiver w/JA 3  
Receiver w/JA 2  
Transceiver 1  
RRING3  
n/c  
n/c  
RTIP2  
RRING2  
n/c  
n/c  
RTIP1  
RRING1  
TTIP1  
TRING1  
RTIP0  
1K  
RRING0  
Transceiver 0  
1K  
TTIP0  
TRING0  
AT2  
AT1  
54  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
5.0  
Test Specifications  
Table 39 through Table 58 and Figure 19 through Figure 36 represent the performance  
specifications of the LXT388 and are guaranteed by test except, where noted, by design. The  
minimum and maximum values listed in Table 41 through Table 58 are guaranteed over the  
recommended operating conditions specified in Table Table 40.  
Table 39. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
DC supply voltage  
Vcc  
Tvcc 0-3  
Vin  
-0.5  
-0.5  
4.0  
7.0  
5.5  
V
V
V
DC supply voltage  
Input voltage on any digital pin  
GND-0.5  
VCC + 0.5  
VCC + 0.5  
Input voltage on RTIP, RRING1  
Vin  
GND-0.5  
2000  
V
ESD voltage on any Pin 2  
Vin  
Iin  
V
Transient latch-up current on any pin  
Input current on any digital pin 3  
DC input current on TTIP, TRING 3  
DC input current on RTIP, RRING 3  
Storage temperature  
100  
10  
mA  
mA  
mA  
mA  
°C  
Iin  
-10  
Iin  
±100  
±100  
+150  
Iin  
Tstor  
-65  
Case Temperature, 100 pin LQFP  
package  
T
120  
120  
mW  
case  
Case Temperature, 160 pin PBGA  
package  
T
°C/W  
case  
Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
1. Referenced to ground.  
2. Human body model.  
3. Constant input current.  
Table 40. Recommended Operating Conditions  
Parameter  
LEN  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
Digital supply voltage (VCC)  
VCC  
3.135  
3.3  
3.465  
V
3.3V ± 5%  
Transmitter supply voltage, TVCC=5V  
nominal  
TVCC  
4.75  
5.0  
3.3  
5.25  
V
V
5V ± 5%  
Transmitter supply voltage, TVCC=3.3V  
nominal  
TVCC  
Ta  
3.135  
3.465  
3.3V ± 5%  
Ambient operating temperature  
-40  
-
25  
45  
+85  
60  
°C  
Average Digital Power Supply Current 1, 4  
I
mA  
VCC  
1. Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all  
channels.  
2. Power consumption includes power absorbed by line load and external transmitter components.  
3. T1 maximum values measured with maximum cable length (LEN = 111). Typical values measured with typical cable length  
(LEN = 101).  
4. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50pF load.  
Datasheet  
55  
LXT388 Dual T1/E1/J1 Transceiver  
Table 40. Recommended Operating Conditions (Continued)  
Parameter  
LEN  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
108  
60  
123  
-
mA  
mA  
100% 1s  
50% 1s  
Average Transmitter Power Supply Current,  
T1 Mode 1, 2, 3  
I
-
TVCC  
Output load at TTIP and TRING  
Rl  
25  
Device Power Consumption  
LEN  
Mode  
TVCC  
Load  
Typ  
Max1,2  
Unit  
Test Condition  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
350  
-
470  
-
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
50% 1s  
100% 1s  
50% 1s  
100% 1s  
50% 1s  
100% 1s  
50% 1s  
100% 1s  
50% 1s  
100% 1s  
50% 1s  
100% 1s  
75 Ω  
000  
000  
-
330  
-
E1  
3.3V  
120 Ω  
100 Ω  
75 Ω  
430  
-
410  
-
T13  
E1  
3.3V  
5.0V  
5.0V  
101-111  
000  
640  
-
470  
-
640  
-
440  
-
120 Ω  
100 Ω  
000  
650  
-
580  
-
T13  
101-111  
870  
1. Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all  
channels.  
2. Power consumption includes power absorbed by line load and external transmitter components.  
3. T1 maximum values measured with maximum cable length (LEN = 111). Typical values measured with typical cable length  
(LEN = 101).  
4. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50pF load.  
Table 41. DC Characteristics  
Parameter  
Sym  
Vih  
Min  
Typ  
Max  
Unit  
Test Condition  
High level input voltage  
Low level input voltage  
High level output voltage1  
Low level output voltage1  
2
0.8  
V
V
V
V
V
Vil  
Voh  
Vol  
2.4  
VCC  
IOUT= 400µA  
IOUT= 1.6mA  
0.4  
Low level input voltage  
Vinl  
1/3VCC-0.2  
Midrange level input  
voltage  
MODE,  
LOOP0-3  
Vinm  
1/3VCC+0.2  
1/2VCC  
2/3VCC-0.2  
V
and  
High level input voltage  
Low level input current  
High level input current  
Vinh  
Iinl  
Iinh  
Iil  
2/3VCC+0.2  
V
JASEL  
50  
µA  
µA  
µA  
µA  
50  
Input leakage current  
-10  
-10  
+10  
+10  
Tri state leakage current  
Ihz  
56  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 41. DC Characteristics (Continued)  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
Tri state output current  
Ihz  
1
µA  
TTIP, TRING  
2 x 11 series  
resistors and 1:2  
transformer  
mA  
Line short circuit current  
50  
50  
RMS  
Input Leakage (TMS, TDI, TRST)  
µA  
Table 42. E1 Transmit Transmission Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
75Ω  
2.14  
2.7  
2.37  
3.0  
2.60  
3.3  
V
V
Output pulse  
amplitude  
Tested at the line side  
120Ω  
75Ω  
-0.237  
-0.3  
0.237  
0.3  
V
V
Peak voltage of a  
space  
120Ω  
Transmit amplitude variation with supply  
Difference between pulse sequences  
-1  
+1  
%
200  
mV  
For 17 consecutive pulses  
Pulse width ratio of the positive and negative  
pulses  
At the nominal half  
amplitude  
0.95  
1.05  
Transmit transformer turns ratio for  
1:2  
Rt = 11 ± 1%  
75/120characteristic impedance  
Note: 51kHz to 102 kHz  
Note: Transmit  
Note: 102 kHz to 2.048  
return loss  
15  
15  
15  
17  
17  
17  
dB  
dB  
dB  
Using components in the  
LXD384 evaluation board.  
MHz  
75 coaxial  
cable1  
Note: 2.048 MHz to 3.072  
MHz  
51kHz to 102 kHz  
Transmit return  
15  
15  
15  
20  
20  
20  
dB  
dB  
dB  
Using components in the  
LXD384 evaluation board.  
loss 120 twisted  
102 kHz to 2.048 MHz  
pair cable1  
2.048 MHz to 3.072 MHz  
Transmit intrinsic jitter; 20Hz to 100kHz  
0.030  
0.050  
U.I.  
U.I.  
U.I.  
Tx path TCLK is jitter free  
JA Disabled  
Bipolar mode  
Transmit path delay  
2
7
Unipolar mode  
1. Guaranteed by design and other correlation methods.  
Table 43. E1 Receive Transmission Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
Permissible cable attenuation  
Receiver dynamic range  
12  
dB  
Vp  
@1024 kHz  
DR  
0.5  
Per G.703, O.151 @ 6 dB  
cable Attenuation  
Signal to noise interference margin  
S/Ι  
-15  
dB  
Data decision threshold  
Data slicer threshold  
SRE  
43  
50  
57  
%
Rel. to peak input voltage  
150  
mV  
1. Guaranteed by design and other correlation methods.  
Datasheet  
57  
LXT388 Dual T1/E1/J1 Transceiver  
Table 43. E1 Receive Transmission Characteristics (Continued)  
Parameter  
Loss of signal threshold  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
200  
50  
mV  
mV  
LOS hysteresis  
32  
G.775 recommendation  
Consecutive zeros before loss of signal  
LOS reset  
2048  
ETSI 300 233 specification  
12.5%  
1s density  
Low limit  
1Hz to 20Hz  
36  
1.5  
0.2  
U.I.  
U.I.  
U.I.  
G735 recommendation  
Note 1  
input jitter  
tolerance 1  
20Hz to 2.4kHz  
18kHz to 100kHz  
Cable Attenuation is 6 dB  
Differential receiver input impedance  
Input termination resistor tolerance  
Common mode input impedance to ground  
70  
±1  
k Ω  
%
@1.024 MHz  
20  
k W  
Measured against nominal  
impedance using  
components in the LXD384  
evaluation board.  
51 kHz - 102 kHz  
20  
20  
20  
dB  
dB  
dB  
Input return  
102 - 2048 kHz  
loss1  
2048kHz - 3072 kHz  
LOS delay time  
10  
30  
σ
marks  
U.I.  
Data recovery mode  
Data recovery mode  
Wide band jitter  
LOS reset  
255  
Receive intrinsic jitter, RCLK output  
0.040 0.0625  
Bipolar mode  
Receive  
1
6
U.I.  
JA Disabled  
path delay  
Unipolar mode  
U.I.  
1. Guaranteed by design and other correlation methods.  
Table 44. T1 Transmit Transmission Characteristics  
Parameter  
Output pulse amplitude  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
2.4  
-0.15  
3.0  
3.6  
+0.15  
V
V
Measured at the DSX  
Peak voltage of a space  
Driver output impedance1  
1
@ 772 KHz  
Transmit amplitude variation with power  
supply  
-1  
+1  
%
Ratio of positive to negative pulse amplitude  
Difference between pulse sequences  
Pulse width variation at half amplitude  
10Hz - 8KHz  
0.95  
1.05  
200  
20  
T1.102, isolated pulse  
mV  
ns  
For 17 consecutive  
pulses, GR-499-CORE  
0.020  
0.025  
0.025  
0.050  
Jitter added by  
8KHz - 40KHz  
Transmitter1  
AT&T Pub 62411  
UI  
pk-pk  
10Hz - 40KHz  
TCLK is jitter free.  
Wide Band  
Output power  
@ 772 KHz  
levels2  
T1.102 - 1993  
12.6  
-29  
dBm  
dBm  
17.9  
Referenced to power at  
772 KHz  
@ 1544 KHz  
1. Guaranteed by design and other correlation methods.  
2. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1s pattern.  
58  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 44. T1 Transmit Transmission Characteristics (Continued)  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
With transmit series  
resistors (TVCC=5V).  
Using components in the  
LXD384 evaluation  
board.  
51kHz to 102 kHz  
15  
15  
15  
21  
21  
21  
dB  
dB  
dB  
Transmit return  
loss 1  
102 kHz to 2.048 MHz  
2.048 MHz to 3.072 MHz  
Bipolar mode  
2
7
U.I.  
U.I.  
Transmit path delay  
JA Disabled  
Unipolar mode  
1. Guaranteed by design and other correlation methods.  
2. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1s pattern.  
Table 45. T1 Receive Transmission Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
@ 772 KHz  
Permissible cable attenuation  
Receiver dynamic range  
Signal to noise interference margin  
Data decision threshold  
Data slicer threshold  
DR  
S/I  
SRE  
0.5  
-16.5  
63  
12  
dB  
Vp  
dB  
%
@ 655 ft. of 22 ABAM cable  
Rel. to peak input voltage  
70  
150  
200  
50  
175  
77  
mV  
mV  
mV  
Loss of signal threshold  
LOS hysteresis  
Consecutive zeros before loss of signal  
LOS reset  
100  
12.5%  
250  
T1.231 - 1993  
1s density  
Low limit  
0.1Hz to 1Hz  
138  
28  
U.I.  
U.I.  
U.I.  
input jitter  
tolerance 1  
4.9Hz to 300Hz  
10KHz to 100KHz  
-
-
-
AT&T Pub. 62411  
@772 kHz  
0.4  
Differential receiver input impedance  
Input termination resistor tolerance  
Common mode input impedance to ground  
-
-
-
-
-
-
70  
-
±1  
-
k Ω  
%
20  
-
k Ω  
Measured against nominal  
impedance. Using  
components in the LXD384  
evaluation board.  
51 KHz - 102 KHz  
20  
20  
20  
dB  
dB  
dB  
Input return  
102 - 2048 KHz  
loss1  
-
-
2048 KHz - 3072 KHz  
LOS delay time  
-
-
-
-
10  
-
30  
-
µs  
-
Data recovery mode  
Data recovery mode  
Wide band jitter  
LOS reset  
-
0.035  
1
255  
Receive intrinsic jitter, RCLK output1  
0.0625  
U.I.  
U.I.  
U.I.  
Bipolar mode  
Receive  
JA Disabled  
path delay  
Unipolar mode  
6
1. Guaranteed by design and other correlation methods.  
Datasheet  
59  
LXT388 Dual T1/E1/J1 Transceiver  
Table 46. Jitter Attenuator Characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition  
32bit  
FIFO  
-
2.5  
-
Hz  
JACF =  
0
64bit  
FIFO  
-
-
-
-
-
-
-
3.5  
2.5  
3.5  
3
-
-
-
-
-
-
-
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
E1 jitter attenuator 3dB  
corner frequency, host  
mode1  
32bit  
FIFO  
JACF =  
1
64bit  
FIFO  
32bit  
FIFO  
Sinusoidal jitter modulation  
JACF =  
0
64bit  
FIFO  
3
T1 jitter attenuator 3dB  
corner frequency, host  
mode1  
32bit  
FIFO  
6
JACF =  
1
64bit  
FIFO  
6
E1  
T1  
-
-
3.5  
6
-
-
Hz  
Hz  
Jitter attenuator 3dB corner  
frequency, hardware mode1  
32bit  
FIFO  
-
-
-
-
17  
33  
24  
56  
-
-
-
-
UI  
UI  
UI  
UI  
Delay through the Jitter attenuator  
only. Add receive and transmit path  
delay for total throughput delay.  
Data latency delay  
64bit  
FIFO  
32bit  
FIFO  
Input jitter tolerance before FIFO  
overflow or underflow  
64bit  
FIFO  
@ 3 Hz  
-0.5  
-0.5  
+19.5  
+19.5  
@ 40 Hz  
E1 jitter attenuation  
@ 400 Hz  
ITU-T G.736, See Figure 35 on  
page 76  
dB  
@ 100 KHz  
@ 1 Hz  
@ 20 Hz  
0
0
AT&T Pub. 62411, See Figure 35 on  
page 76  
T1 jitter attenuation  
@ 1 KHz  
@ 1.4 KHz  
@ 70 KHz  
33.3  
40  
40  
dB  
UI  
Output Jitter in remote loopback1  
0.060  
0.11  
ETSI CTR12/13 Output jitter  
1. Guaranteed by design and other correlation methods.  
60  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 47. Analog Test Port Characteristics  
Parameter  
3 dB bandwidth  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
At13db  
At1iv  
-
5
-
-
MHz  
V
Input voltage range  
Output voltage range  
0
0
VCC  
VCC  
At2ov  
-
V
Figure 19. Transmit Clock Timing Diagram  
TCLK  
tSUT  
tHT  
TPOS  
TNEG  
Table 48. Transmit Timing Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
E1  
T1  
MCLK  
MCLK  
2.048  
1.544  
MHz  
MHz  
ppm  
%
Master clock frequency  
Master clock tolerance  
Master clock duty cycle  
-100  
40  
219  
291  
-
100  
60  
269  
356  
-
E1  
T1  
E1  
T1  
Tw  
244  
324  
2.048  
1.544  
ns  
Output pulse width  
Tw  
ns  
Tclke1  
Tclkt1  
Tclkt  
Tclkb  
Tdc  
MHz  
MHz  
ppm  
MHz  
%
Transmit clock frequency  
-
-
Transmit clock tolerance  
Transmit clock burst rate  
Transmit clock duty cycle  
-50  
-
+50  
20  
90  
Gapped transmit clock  
NRZ mode  
10  
RZ mode (TCLK = H for  
>16 clock cycles)  
E1 TPOS/TNEG pulse width (RZ mode)  
Tmpwe1  
236  
252  
ns  
TPOS/TNEG to TCLK setup time  
TCLK to TPOS/TNEG hold time  
Delay time OE Low to driver High Z  
Tsut  
Tht  
20  
20  
-
-
-
-
-
ns  
ns  
µs  
µs  
Toez  
Ttz  
-
1
Delay time TCLK Low to driver High Z  
50  
60  
75  
Datasheet  
61  
LXT388 Dual T1/E1/J1 Transceiver  
Table 49. Receive Timing Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Condition  
E1  
T1  
±80  
ppm  
Relative to  
nominal frequency  
Clock recovery capture range  
MCLK = ±100  
ppm  
±180  
ppm  
Receive clock duty cycle 1  
Receive clock pulse width 1  
Rckd  
Tpw  
40  
50  
488  
648  
244  
324  
244  
324  
60  
529  
713  
285  
389  
285  
389  
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
E1  
T1  
E1  
T1  
E1  
T1  
447  
583  
203  
259  
203  
259  
20  
Tpw  
Tpwl  
Tpwl  
Tpwh  
Tpwh  
Tr  
Receive clock pulse width Low time  
Receive clock pulse width High time  
Rise/fall time 4  
@ CL=15 pF  
E1  
T1  
E1  
T1  
E1  
T1  
Tpwdl  
Tpwdl  
200  
250  
200  
200  
200  
200  
244  
324  
244  
324  
244  
324  
300  
400  
RPOS/RNEG pulse width (MCLK=H) 2  
RPOS/RNEG to RCLK rising setup time  
Tsur  
RCLK Rising to RPOS/RNEG hold time  
Thr  
Delay time between RPOS/RNEG and RCLK  
5
MCLK = H 3  
1. RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK  
duty cycles are for worst case jitter conditions (0.2UI displacement for E1 per ITU G.823).  
2. Clock recovery is disabled in this mode.  
3. If MCLK = H the receive PLLs are replaced by a simple EXOR circuit.  
4. For all digital outputs.  
Figure 20. Receive Clock Timing Diagram  
tPW  
RCLK  
tPWH  
tSUR  
tPWL  
tHR  
RPOS  
RNEG  
CLKE = 1  
tSUR  
tHR  
RPOS  
RNEG  
CLKE = 0  
62  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 50. Intel Mode Read Timing Characteristics  
Parameter2  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Address setup time to latch  
Tsalr  
Tvl  
10  
30  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Valid address latch pulse width  
Latch active to active read setup time  
Chip select setup time to active read  
Chip select hold time from inactive read  
Address hold time from inactive ALE  
Active read to data valid delay time  
Address setup time to RD inactive  
Address hold time from RD inactive  
Inactive read to data tri-state delay time  
Valid read signal pulse width  
Tslr  
Tscsr  
Thcsr  
Thalr  
Tprd  
Thar  
Tsar  
0
5
10  
1
50  
5
Tzrd  
Tvrd  
Tint  
3
35  
60  
Inactive read to inactive INT delay time  
Active chip select to RDY delay time  
Active ready Low time  
10  
12  
40  
3
Tdrdy  
Tvrdy  
Trdyz  
0
Inactive ready to tri-state delay time  
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.  
2. C = 100pF on D0-D7, all other outputs are loaded with 50pF.  
L
Table 51. JTAG Timing Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Conditions  
Cycle time  
Tcyc  
Tsut  
Tht  
200  
50  
50  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
J-TMS/J-TDI to J-TCK rising edge time  
J-CLK rising to J-TMS/L-TDI hold time  
J-TCLK falling to J-TDO valid  
-
Tdod  
50  
Figure 21. JTAG Timing  
tCYC  
TCK  
tSUR  
tHT  
TMS  
TDI  
tDOD  
TDO  
Datasheet  
63  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 22. Non-Multiplexed Intel Mode Read Timing  
tSAR  
ADDRESS  
A4 - A0  
ALE  
tHAR  
(pulled High)  
tHCSR  
tSCSR  
CS  
RD  
tVRD  
tPRD  
tZRD  
D7 - D0  
INT  
DATA OUT  
tINT  
tDRDY  
tRDYZ  
tDRDY  
tVRDY  
Tristate  
Tristate  
RDY  
64  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 23. Multiplexed Intel Read Timing  
tVL  
tSLR  
ALE  
tSCSR  
tHSCR  
CS  
tVRD  
tPRD  
RD  
tSALR  
tZRD  
DATA OUT  
tINT  
tHALR  
ADDRESS  
AD7-AD0  
INT  
tDRDY  
tDRDY  
tVRDY  
tRDYZ  
Tristate  
Tristate  
RDY  
Table 52. Intel Mode Write Timing Characteristics  
Parameter2  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Address setup time to latch  
Tsalw  
Tvl  
10  
30  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Valid address latch pulse width  
Latch active to active write setup time  
Chip select setup time to active write  
Chip select hold time from inactive write  
Address hold time from inactive ALE  
Data valid to write active setup time  
Data hold time to active write  
Tslw  
Tscsw  
Thcsw  
Thalw  
Tsdw  
Thdw  
Thaw  
Tsaw  
0
5
40  
30  
2
Address setup time to WR inactive  
Address hold time from WR inactive  
6
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.  
2. C = 100pF on D0-D7, all other outputs are loaded with 50pF.  
L
3. These times dont apply for Reset Register 0Ah, since RDY line goes low once during the cycle. Please refer to Reset  
Operation and Host Mode sections for more information.  
Datasheet  
65  
LXT388 Dual T1/E1/J1 Transceiver  
Table 52. Intel Mode Write Timing Characteristics (Continued)  
Parameter2  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Valid write signal pulse width  
Inactive write to inactive INT delay time  
Chip select to RDY delay time3  
Active ready Low time  
Tvwr  
Tint  
60  
ns  
ns  
ns  
ns  
ns  
10  
12  
40  
3
Tdrdy  
Tvrdy  
Trdyz  
0
Inactive ready to tri-state delay time3  
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.  
2. C = 100pF on D0-D7, all other outputs are loaded with 50pF.  
L
3. These times dont apply for Reset Register 0Ah, since RDY line goes low once during the cycle. Please refer to Reset  
Operation and Host Mode sections for more information.  
Figure 24. Non-Multiplexed Intel Mode Write Timing  
tSAW  
A4-A0  
ALE  
CS  
ADDRESS  
(pulled High)  
tHAW  
tSCSW  
tHCSW  
tVWR  
WR  
tHDW  
tSDW  
D7-D0  
INT  
WRITE DATA  
tINT  
tDRDY  
tDRDY  
tVRDY  
tRDYZ  
Tristate  
Tristate  
RDY  
66  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 25. Multiplexed Intel Mode Write Timing  
tSLW  
ALE  
CS  
tVL  
tSCSW  
tHCSW  
tVWR  
WR  
tHALW  
tHDW  
tSDW  
tSALW  
ADDRESS  
WRITE DATA  
tINT  
AD7-AD0  
INT  
tDRDY  
tDRDYZ  
tDRDY  
tVRDY  
Tristate  
Tristate  
RDY  
Table 53. Motorola Bus Read Timing Characteristics  
Parameter2  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Address setup time to address or data strobe  
Address hold time from address or data strobe  
Valid address strobe pulse width  
Tsar  
Thar  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tvas  
Tsrw  
95  
10  
0
R/W setup time to active data strobe  
R/W hold time from inactive data strobe  
Chip select setup time to active data strobe  
Chip select hold time from inactive data strobe  
Address strobe active to data strobe active delay  
Delay time from active data strobe to valid data  
Delay time from inactive data strobe to data High Z  
Valid data strobe pulse width  
Thrw  
Tscs  
0
Thcs  
Tasds  
Tpds  
Tdz  
0
20  
3
30  
30  
3
Tvds  
Tint  
60  
Inactive data strobe to inactive INT delay time  
Data strobe inactive to address strobe inactive delay  
DS asserted to ACK asserted delay  
10  
Tdsas  
Tdackp  
Tdack  
Tpack  
15  
40  
10  
0
DS deasserted to ACK deasserted delay  
Active ACK to valid data delay  
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.  
2. C = 100pF on D0-D7, all other outputs are loaded with 50pF.  
L
Datasheet  
67  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 26. Non-Multiplexed Motorola Mode Read Timing  
ADDRESS  
tSAR tHAR  
A4-A0  
AS  
(pulled High)  
tSRW  
tHRW  
R/W  
tSCS  
tHCS  
CS  
DS  
tVDS  
tPDS  
tDZ  
D7-D0  
INT  
DATA OUT  
tINT  
tDACKP  
tPACK  
tDACK  
ACK  
68  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 27. Multiplexed Motorola Mode Read Timing  
tVAS  
tDSAS  
AS  
tSRW  
tHRW  
R/W  
tSCS  
tHCS  
CS  
tASDS  
tVDS  
DS  
tPDS  
tSAR  
tHAR  
tDZ  
DATA OUT  
ADDRESS  
D7-D0  
INT  
tINT  
tDACKP  
tDACK  
tPACK  
ACK  
Table 54. Motorola Mode Write Timing Characteristics  
Parameter2  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Address setup time to address strobe  
Address hold time to address strobe  
Valid address strobe pulse width  
Tsas  
Thas  
Tvas  
Tsrw  
Thrw  
Tscs  
Thcs  
Tasds  
Tsdw  
Thdw  
Tvds  
Tint  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
95  
10  
0
R/W setup time to active data strobe  
R/W hold time from inactive data strobe  
Chip select setup time to active data strobe  
Chip select hold time from inactive data strobe  
Address strobe active to data strobe active delay  
Data setup time to DS deassertion  
0
0
20  
40  
30  
60  
Data hold time from DS deassertion  
Valid data strobe pulse width  
Inactive data strobe to inactive INT delay time  
10  
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.  
2. C = 100pF on D0-D7, all other outputs are loaded with 50pF.  
L
Datasheet  
69  
LXT388 Dual T1/E1/J1 Transceiver  
Table 54. Motorola Mode Write Timing Characteristics (Continued)  
Parameter2  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Data strobe inactive to address strobe inactive delay  
Active data strobe to ACK output enable time  
DS asserted to ACK asserted delay  
Tdsas  
Tdack  
15  
0
ns  
ns  
ns  
12  
40  
Tdackp  
1. Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.  
2. C = 100pF on D0-D7, all other outputs are loaded with 50pF.  
L
Figure 28. Non-Multiplexed Motorola Mode Write Timing  
A4-A0  
AS  
ADDRESS  
tSAS  
tHAS  
(pulled High)  
tSRW  
tHRW  
tHCS  
R/W  
CS  
tSCS  
tVDS  
DS  
tSDW  
tHDW  
WRITE DATA  
D7-D0  
INT  
tINT  
tDACKP  
tDACK  
ACK  
70  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 29. Multiplexed Motorola Mode Write Timing  
tVAS  
tDSAS  
AS  
tHRW  
tSRW  
R/W  
tHCS  
tSCS  
CS  
tASDS  
tVDS  
DS  
tHDW  
tSDW  
tSAS  
tHAS  
ADDRESS  
WRITE DATA  
tINT  
D7-D0  
INT  
tDACKP  
tDACK  
ACK  
Table 55. Serial I/O Timing Characteristics  
Parameter  
Rise/fall time any pin  
Sym  
Min  
Typ1  
Max  
Unit  
Test Condition  
Trf  
Tdc  
-
-
-
-
-
-
-
-
-
-
-
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Load 1.6mA, 50 pF  
SDI to SCLK setup time  
SCLK to SDI hold time  
SCLK Low time  
5
-
-
Tcdh  
Tcl  
5
25  
25  
-
-
SCLK High time  
Tch  
-
SCLK rise and fall time  
CS falling edge to SCLK rising edge  
Last SCLK edge to CS rising edge  
CS inactive time  
Tr, Tf  
Tcc  
50  
-
10  
10  
50  
-
Tcch  
Tcwh  
Tcdv  
-
-
SCLK to SDO valid delay time  
5
SCLK falling edge or CS rising edge to SDO  
High Z  
Tcdz  
-
10  
-
ns  
1. Typical figures are at 25 C° and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
71  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 30. Serial Input Timing  
CS  
t
CWH  
t
CC  
t
CH  
t
CCH  
t
CL  
SCLK  
SDI  
tCDH  
tCDH  
t
DC  
LSB  
LSB  
MSB  
CONTROL BYTE  
DATA BYTE  
Figure 31. Serial Output Timing  
CLKE = 0  
2
3
4
5
6
6
7
7
8
8
9
10  
11  
12  
13  
14  
15  
16  
1
SCLK  
CS  
tCCH  
t
CDZ  
SDO  
4
0
9
1
2
3
5
6
7
CLKE = 1  
2
3
4
5
10  
11  
12  
13  
14  
15  
16  
1
SCLK  
CS  
t
CCH  
t
CDZ  
4
0
1
2
3
5
6
7
SDO  
Table 56. Transformer Specifications3  
Primary  
Inductance  
mH  
Leakage  
Inductance  
µH  
Interwinding  
Capacitance  
pF  
Dielectric Breakdown  
DCR  
(max.)  
Voltage  
Tx/Rx  
Turns Ratio1  
V2  
(min.)  
(max.)  
(max.)  
(min.)  
0.70 pri  
TX  
RX  
1:2  
1:2  
1.2  
1.2  
0.60  
0.60  
60  
60  
1500 Vrms  
1500 Vrms  
1.20 sec  
1.10 pri  
1.10 sec  
1. Transformer turns ratio accuracy is ± 2%.  
2. This parameter is application dependent.LIU side: Line side.  
3. Refer to the FAQ or Application Note Transformer Specification for Intel Transceiver Applications for recommended  
magnetics.  
72  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Table 57. G.703 2.048 Mbit/s Pulse Mask Specifications  
Cable  
Unit  
Parameter  
TWP  
120  
Coax  
Test load impedance  
75  
V
Nominal peak mark voltage  
3.0  
2.37  
Nominal peak space voltage  
0 ±0.30  
244  
0 ±0.237  
244  
V
Nominal pulse width  
ns  
%
%
Ratio of positive and negative pulse amplitudes at center of pulse  
Ratio of positive and negative pulse amplitudes at nominal half amplitude  
95-105  
95-105  
95-105  
95-105  
Figure 32. E1, G.703 Mask Templates  
269 ns  
(244+25)  
V = 100%  
194 ns  
(244- 50)  
NOMINAL PULSE  
50%  
244 ns  
219 ns  
(244-25)  
0%  
20%  
488 ns  
(244+244)  
Table 58. T1.102 1.544 Mbit/s Pulse Mask Specifications  
Cable  
Parameter  
Unit  
TWP  
Test load impedance  
100  
3.0  
V
Nominal peak mark voltage  
Nominal peak space voltage  
Nominal pulse width  
0 ±0.15  
324  
V
ns  
%
Ratio of positive and negative pulse amplitudes  
95-105  
Datasheet  
73  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 33. T1, T1.102 Mask Templates  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.80  
-0.60  
-0.40  
-0.20  
0.00  
-0.20  
0.20  
0.40  
0.60  
0.80  
1.00  
1.20  
-0.40  
-0.60  
Time [UI]  
74  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 34. Jitter Tolerance Performance  
1000 UI  
100 UI  
28 UI  
@ 4.9 Hz  
AT&T 62411, Dec 1990 (T1)  
18 UI @ 1.8 Hz  
LXT388 typ.  
28 UI  
@ 300 Hz  
10 UI  
GR-499-CORE, Dec 1995 (T1)  
5 UI @ 500 Hz  
0.4 UI  
ITU G.823, Mar 1993 (E1)  
@ 10 kHz  
1 UI  
1.5 UI  
@ 2.4 kHz  
1.5 UI  
@ 20 Hz  
0.2 UI  
@ 18 kHz  
0.1 UI @ 8 kHz  
.1 UI  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
Datasheet  
75  
LXT388 Dual T1/E1/J1 Transceiver  
Figure 35. Jitter Transfer Performance  
10 dB  
E1  
ITU G.736 Template  
0.5 dB @ 40Hz  
0.5 dB @ 3Hz  
0 dB  
-10 dB  
-20 dB  
-30 dB  
f 3dB =2.5 Hz  
-19.5 dB @ 20 kHz  
-19.5 dB @ 400 Hz  
f 3dB =3.5 Hz  
-40 dB  
-60 dB  
LXT388 typ.  
-80 dB  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz 100 kHz  
Frequency  
10 dB  
0 dB @ 1 Hz  
0 dB @ 20 Hz 0.1 dB @ 40 Hz  
0.5 dB @ 350 Hz  
T1  
0 dB  
AT&T Pub 62411  
GR-253-CORE  
TR-TSY-000009  
-10 dB  
-6 dB @  
2 Hz  
-20 dB  
-30 dB  
-33.3 dB @ 1 kHz  
-33.7 dB @ 2.5kHz  
-40 dB @ 1.4 kHz  
f 3dB = 3 Hz  
-40 dB @ 70 kHz  
-49.2 dB @ 15kHz  
f 3dB = 6 Hz  
-40 dB  
-60 dB  
-80 dB  
LXT388 typ.  
-60 dB @ 57 Hz  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz 100 kHz  
Frequency  
76  
Datasheet  
Dual T1/E1/J1 Transceiver LXT388  
Figure 36. Output Jitter for CTR12/13 applications  
0.2  
0.15  
0.1  
LXT388 typ, f 3dB = 2.5Hz & 3.5 Hz  
0.05  
0
10 Hz  
20 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
5.1  
Recommendations and Specifications  
AT&T  
Pub 62411  
ANSI T1.102 - 199X Digital Hierarchy Electrical Interface  
ANSI T1.231 - 1993 Digital Hierarchy Layer 1 In-Service Digital Transmission Performance  
Monitoring  
Bellcore  
Bellcore  
Bellcore  
G.703  
G. 704  
G.735  
TR-TSY-000009 Asynchronous Digital Multiplexes Requirements and Objectives  
GR-253-CORE SONET Transport Systems Common Generic Criteria  
GR-499-CORE Transport Systems Generic Requirements  
Physical/electrical characteristics of hierarchical digital interfaces  
Functional characteristics of interfaces associated with network nodes  
Characteristics of Primary PCM multiplex equipment operating at 2048 kbit/s and  
offering digital access at 384 kbit/s and/or synchronous digital access at 64 kbit/s  
Characteristics of a synchronous digital multiplex equipment operating at 2048  
kbit/s  
G.736  
G.772  
G.775  
Protected Monitoring Points provided on Digital Transmission Systems  
Loss of signal (LOS) and alarm indication (AIS) defect detection and clearance  
criteria  
G.783  
G.823  
O.151  
Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional  
Blocks  
The control of jitter and wander within digital networks which are based on the  
2048 kbit/s hierarchy  
Specification of instruments to measure error performance in digital systems  
OFTEL OTR-001 Short Circuit Current Requirements  
ETS 300166 Physical and Electrical Characteristics  
ETS 300386-1 Electromagnetic Compatibility Requirement  
Datasheet  
77  
LXT388 Dual T1/E1/J1 Transceiver  
6.0  
Mechanical Specifications  
Figure 37. Low Quad Flat Package (LQFP) Dimensions  
100 Pin LQFP  
Part Number LXT388LE  
Extended Temperature Range (-40°C to 85° C)  
ALL DIMENSIONS IN MILLIMETERS  
All dimensions and tolerances conform to ANSI Y14.5M-1982.  
16.00 BSC  
14.00 BSC  
12.00 BSC  
0.22  
±0.05  
16.00 BSC  
14.00 BSC 12.00 BSC  
Pin #1 Index  
0.50  
BSC  
2 3  
1
See Detail "A"  
1.60  
max  
0.05 min  
0.15 max  
1.40 ±0.05  
DETAIL "A"  
0.20  
min  
0.60  
±0.15  
1.00  
REF  
78  
Datasheet  

相关型号:

LXT400

All Rate Extended Range Switched 56/DDS Transceiver
LevelOne

LXT400JE

Transceiver Circuit For Telecommunications
ETC

LXT400M0100BPF42245

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 400V, 20% +Tol, 20% -Tol, 100uF, Through Hole Mount
YAGEO

LXT400M0100BPF43030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 400V, 20% +Tol, 20% -Tol, 100uF, Through Hole Mount
YAGEO

LXT400M0120BPF42245

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 400V, 20% +Tol, 20% -Tol, 120uF, Through Hole Mount
YAGEO

LXT400M0220BPF43540

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 400V, 20% +Tol, 20% -Tol, 220uF, Through Hole Mount
YAGEO

LXT400NC

Telecom Circuit, 1-Func, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
INTEL

LXT400NE

Telecom Circuit, 1-Func, CMOS, PDIP28, PLASTIC, DIP-28
INTEL

LXT400NE

Telecom Circuit, 1-Func, CMOS, PDIP28, PLASTIC, DIP-28
LevelOne

LXT400NH

Telecom Circuit, 1-Func, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
INTEL

LXT400NI

Telecom Circuit, 1-Func, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
INTEL

LXT400PC

Telecom Circuit, 1-Func, CMOS, PQCC28, PLASTIC, LCC-28
INTEL