LXT9785BC [ETC]

LAN TRANSCEIVER|OCTAL|BGA|241PIN|PLASTIC ; LAN收发器|八路| BGA | 241PIN |塑料\n
LXT9785BC
型号: LXT9785BC
厂家: ETC    ETC
描述:

LAN TRANSCEIVER|OCTAL|BGA|241PIN|PLASTIC
LAN收发器|八路| BGA | 241PIN |塑料\n

局域网
文件: 总138页 (文件大小:1573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT9785  
Advanced 10/100 8-Port PHY  
Datasheet  
The LXT9785 is an 8-port Fast Ethernet PHY Transceiver that supports IEEE 802.3 physical  
layer applications at both 10Mbps and 100Mbps. This device provides both Serial/Source  
Synchronous (SMII/SS-SMII) and Reduced Media Independent (RMII) Interfaces for switching  
and other independent port applications.  
All network ports provide a combination twisted-pair (TP) or pseudo-ECL (PECL) interface for  
both 10Mbps or 100Mbps (10BASE-T and 100BASE-TX) Ethernet over twisted-pair, or  
100Mbps (100BASE-FX) Ethernet over fiber-optic media .  
The LXT9785 provides three discrete LED driver outputs for each port. The device supports  
both half-duplex and full-duplex operation at 10Mbps and 100Mbps and requires only a single  
2.5V power supply.  
Applications  
10BASE-T, 10/100BASE-TX, or  
100BASE-FX Switches and multi-port  
NICs.  
Product Features  
Eight IEEE 802.3-compliant 10BASE-T or JTAG boundary scan.  
100BASE-TX ports with integrated filters.  
2.5V operation.  
Multiple RMII or SMII/SS-SMII ports for  
independent PHY port operation.  
Optimized for dual-high stacked RJ-45  
Configurable via MDIO port or external  
applications.  
control pins.  
Proprietary Optimal Signal Processing™  
architecture improves SNR by 3 dB over  
ideal analog filters.  
Low power consumption; 250 mW per port  
typical.  
Auto MDIX crossover capabilities.  
208-pin PQFP and 241-pin BGA packages.  
Robust baseline wander correction.  
100BASE-FX fiber-optic capability on all  
MDIO sectionalization into 2x4 or 1x8  
ports.  
configurations.  
Supports both auto-negotiation systems and  
legacy systems without auto-negotiation  
capability.  
As of January 15, 2001, this document replaces the Level One document  
known as LXT9785 Advanced 10/100 8-Port PHY Datasheet.  
Order Number: 249241-002  
January 2001  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT9785 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current  
characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Advanced 10/100 8-Port PHY — LXT9785  
Contents  
1.0  
Pin Assignments and Signal Descriptions....................................................12  
1.1 Signal Name Conventions...................................................................................39  
Functional Description...........................................................................................51  
2.0  
2.1  
Introduction..........................................................................................................51  
2.1.1 OSPArchitecture................................................................................51  
2.1.2 Comprehensive Functionality.................................................................51  
2.1.2.1 Sectionalization .........................................................................52  
Interface Descriptions..........................................................................................52  
2.2.1 10/100 Network Interface .......................................................................52  
2.2.1.1 Twisted-Pair Interface ...............................................................53  
2.2.1.2 MDI Crossover (MDIX)..............................................................53  
2.2.1.3 Fiber Interface ...........................................................................53  
Media Independent Interface (MII) Interfaces .....................................................53  
2.3.1 Global MII Mode Select..........................................................................54  
2.3.2 Internal Loopback...................................................................................54  
2.3.3 RMII Data Interface ................................................................................54  
2.3.4 Serial Media Independent Interface (SMII) and Source Synchronous Data  
Interfaces54  
2.2  
2.3  
2.3.4.1 SMII Interface ............................................................................54  
2.3.4.2 Source Synchronous Interface ..................................................55  
2.3.5 Configuration Management Interface.....................................................55  
2.3.6 MII Isolate...............................................................................................55  
2.3.6.1 MDIO Management Interface....................................................55  
2.3.6.2 MII Sectionalization ...................................................................57  
2.3.6.3 MII Interrupts .............................................................................57  
2.3.6.4 Hardware Control Interface .......................................................57  
Operating Requirements .....................................................................................58  
2.4.1 Power Requirements..............................................................................58  
2.4.2 Clock/SYNC Requirements....................................................................58  
2.4.2.1 Reference Clock........................................................................58  
2.4.2.2 TxClk Signal (SS-SMII only)......................................................58  
2.4.2.3 TxSYNC Signal (SMII/SS-SMII) ................................................58  
2.4.2.4 RxSYNC Signal (SS-SMII only).................................................58  
2.4.2.5 RxCLK Signal (SS-SMII only)....................................................58  
Initialization..........................................................................................................59  
2.5.1 MDIO Control Mode ...............................................................................59  
2.5.2 Hardware Control Mode .........................................................................59  
2.5.3 Power-Down Mode.................................................................................60  
2.5.3.1 Global (Hardware) Power Down................................................60  
2.5.3.2 Port (Software) Power Down.....................................................61  
2.5.4 Reset......................................................................................................61  
2.5.5 Hardware Configuration Settings ...........................................................62  
Link Establishment ..............................................................................................62  
2.6.1 Auto-Negotiation.....................................................................................62  
2.6.1.1 Base Page Exchange................................................................62  
2.6.1.2 Next Page Exchange.................................................................62  
2.4  
2.5  
2.6  
Datasheet  
3
LXT9785 — Advanced 10/100 8-Port PHY  
2.6.1.3 Controlling Auto-Negotiation .....................................................63  
2.6.1.4 Link Criteria ...............................................................................63  
2.6.1.5 Parallel Detection ......................................................................63  
Serial MII Operation ............................................................................................64  
2.7.1 SMII Reference Clock ............................................................................67  
2.7.2 TxSYNC Pulse (SMII/SS-SMII)..............................................................67  
2.7.3 Transmit Data Stream............................................................................67  
2.7.3.1 Transmit Enable ........................................................................67  
2.7.3.2 Transmit Error ...........................................................................67  
2.7.4 Receive Data Stream.............................................................................68  
2.7.4.1 Carrier Sense ............................................................................68  
2.7.4.2 Receive Data Valid....................................................................68  
2.7.4.3 Receive Error ............................................................................68  
2.7.4.4 Receive Status Encoding ..........................................................68  
2.7.5 Collision..................................................................................................68  
2.7.5.1 Source Synchronous SMII.........................................................70  
RMII Operation....................................................................................................74  
2.8.1 RMII Reference Clock............................................................................74  
2.8.2 Transmit Enable.....................................................................................74  
2.8.3 Carrier Sense & Data Valid....................................................................74  
2.8.4 Receive Error .........................................................................................74  
2.8.5 Out-of-Band Signalling...........................................................................74  
2.8.6 4B/5B Coding Operations ......................................................................74  
100Mbps Operation.............................................................................................78  
2.9.1 100BASE-X Network Operations ...........................................................78  
2.9.2 100BASE-X Protocol Sublayer Operations............................................78  
2.9.2.1 PCS Sublayer............................................................................78  
2.9.3 PMA Sublayer ........................................................................................80  
2.9.3.1 Twisted-Pair PMD Sublayer......................................................82  
2.9.3.2 Fiber PMD Sublayer..................................................................82  
10Mbps Operation...............................................................................................83  
2.10.1 Preamble Handling.................................................................................83  
2.10.2 Dribble Bits.............................................................................................83  
2.10.3 Link Test.................................................................................................83  
2.10.3.1Link Failure................................................................................84  
2.10.4 Jabber ....................................................................................................84  
Monitoring Operations.........................................................................................84  
2.11.1 Monitoring Auto-Negotiation...................................................................84  
2.11.2 Per-Port LED Driver Functions...............................................................84  
2.11.3 Out-of-Band Signalling...........................................................................85  
2.11.4 Boundary Scan Interface........................................................................86  
2.11.5 State Machine ........................................................................................86  
2.11.6 Instruction Register ................................................................................86  
2.11.7 Boundary Scan Register ........................................................................87  
2.7  
2.8  
2.9  
2.10  
2.11  
3.0  
Application Information.........................................................................................88  
3.1  
3.2  
Design Recommendations..................................................................................88  
General Design Guidelines .................................................................................88  
3.2.1 Power Supply Filtering ...........................................................................88  
3.2.2 Power and Ground Plane Layout Considerations..................................89  
3.2.2.1 Chassis Ground.........................................................................89  
4
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
3.2.3 MII Terminations.....................................................................................89  
3.2.4 Twisted-Pair Interface ............................................................................90  
3.2.4.1 Magnetics Information ...............................................................90  
3.2.5 The Fiber Interface.................................................................................90  
3.2.6 LED Circuit .............................................................................................90  
Typical Application Circuits .................................................................................92  
3.3  
4.0  
5.0  
6.0  
Test Specifications..................................................................................................94  
Register Definitions...............................................................................................119  
Package Specifications .......................................................................................136  
Datasheet  
5
LXT9785 Advanced 10/100 8-Port PHY  
Figures  
1
LXT9785 Block Diagram .....................................................................................11  
2
3
4
5
6
7
8
9
LXT9785 RMII 208-Pin PQFP Assignments .......................................................12  
LXT9785 SMII 208-Pin PQFP Assignments .......................................................13  
LXT9785 SS-SMII 208-Pin PQFP Assignments .................................................14  
LXT9785 RMII 241-Ball PBGA Assignments ......................................................15  
LXT9785 SMII 241-Ball PBGA Assignments ......................................................16  
LXT9785 SS-SMII 241-Ball PBGA Assignments ................................................17  
LXT9785 Interfaces.............................................................................................52  
Internal Loopback................................................................................................54  
Management Interface Read Frame Structure....................................................56  
Management Interface Write Frame Structure....................................................56  
Port Address Scheme .........................................................................................56  
Interrupt Logic .....................................................................................................57  
Initialization Sequence ........................................................................................60  
Auto-Negotiation Operation.................................................................................63  
Typical SMII Interface Diagram...........................................................................65  
Typical SMII Quad Sectionalization Diagram......................................................66  
100Mbps Serial MII Data Flow............................................................................67  
Serial MII Transmit Synchronization ...................................................................68  
Serial MII Receive Synchronization ....................................................................69  
Typical SS-SMII Interface Diagram.....................................................................71  
Typical SS-SMII Quad Sectionalization Diagram................................................72  
Source Synchronous Transmit Timing................................................................73  
Source Synchronous Receive Timing.................................................................73  
RMII Data Flow ...................................................................................................75  
Typical RMII Interface Diagram...........................................................................76  
Typical RMII Quad Sectionalization Diagram......................................................77  
100BASE-X Frame Format .................................................................................78  
Protocol Sublayers..............................................................................................79  
LED Pulse Stretching..........................................................................................85  
RMII Programmable Out-of-Bank Signaling........................................................86  
LED Circuit..........................................................................................................91  
Power and Ground Supply Connections.............................................................92  
Typical Twisted-Pair Interface.............................................................................93  
Typical Fiber Interface.........................................................................................93  
SMII - 100BASE-TX Receive Timing ..................................................................98  
SMII - 100BASE-TX Transmit Timing .................................................................99  
SMII - 100BASE-FX Receive Timing ................................................................100  
SMII - 100BASE-FX Transmit Timing ...............................................................101  
SMII - 10BASE-T Receive Timing.....................................................................102  
SMII - 10BASE-T Transmit Timing....................................................................103  
Source Synchronous SMII 100BASE-TX Receive Timing ................................104  
Source Synchronous SMII 100BASE-TX Transmit Timing ...............................105  
Source Synchronous SMII - 100BASE-FX Receive Timing..............................106  
Source Synchronous SMII - 100BASE-FX Transmit Timing.............................107  
Source Synchronous SMII - 10BASE-T Receive Timing ..................................108  
Source Synchronous SMII - 10BASE-T Transmit Timing .................................109  
RMII - 100BASE-TX Receive Timing ................................................................110  
RMII - 100BASE-TX Transmit Timing ...............................................................111  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
6
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
RMII - 100BASE-FX Receive Timing ................................................................112  
RMII - 100BASE-FX Transmit Timing ...............................................................113  
RMII - 10BASE-T Receive Timing.....................................................................114  
RMII - 10BASE-T Transmit Timing....................................................................115  
Auto-Negotiation and Fast Link Pulse Timing ...................................................116  
Fast Link Pulse Timing......................................................................................116  
MDIO Write Timing (MDIO Sourced by MAC)...................................................117  
MDIO Read Timing (MDIO Sourced by PHY) ...................................................117  
Power-Up Timing...............................................................................................118  
Reset Recovery Timing.....................................................................................118  
PHY Identifier Bit Mapping ................................................................................122  
LXT9785 208-Pin PQFP Plastic Package Specification....................................136  
LXT9785 241-Ball PBGA Package Specification (LXT9785BC) .......................137  
Tables  
1
2
3
4
5
6
7
8
RMII PQFP Pin List .............................................................................................18  
SMII PQFP Pin List .............................................................................................25  
SS-SMII PQFP Pin List .......................................................................................32  
LXT9785 RMII Signal Descriptions .....................................................................39  
LXT9785 SMII / SS-SMII Common Signal Descriptions......................................41  
LXT9785 SMII Specific Signal Descriptions........................................................41  
LXT9785 SS-SMII Specific Signal Descriptions..................................................42  
MDIO Control Interface Signals...........................................................................43  
LXT9785 Signal Detect .......................................................................................44  
LXT9785 Network Interface Signal Descriptions.................................................44  
LXT9785 JTAG Test Signal Descriptions............................................................45  
LXT9785 Miscellaneous Signal Descriptions ......................................................46  
LXT9785 LED Signal Descriptions......................................................................48  
LXT9785 Power Supply Signal Descriptions.......................................................49  
Unused / Reserved Pins......................................................................................50  
MDIX Selection....................................................................................................53  
MII Mode Select ..................................................................................................54  
Global Hardware Configuration Settings.............................................................62  
SMII Signal Summary..........................................................................................64  
RX Status Encoding Bit Definitions .....................................................................69  
Source Synchronous SMII..................................................................................70  
4B/5B Coding ......................................................................................................80  
BSR Mode of Operation ......................................................................................87  
Supported JTAG Instructions ..............................................................................87  
Magnetics Requirements.....................................................................................91  
Absolute Maximum Ratings.................................................................................94  
Operating Conditions...........................................................................................94  
Digital I/O Characteristics (VCCIO = 2.5V +/- 5%)..............................................95  
Digital I/O Characteristics (VCCIO = 3.3V +/- 5%)..............................................96  
Required Clock Characteristics...........................................................................96  
100BASE-TX Transceiver Characteristics ..........................................................96  
100BASE-FX Transceiver Characteristics ..........................................................97  
10BASE-T Transceiver Characteristics...............................................................97  
SMII - 100BASE-TX Receive Timing Parameters...............................................98  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Datasheet  
7
LXT9785 Advanced 10/100 8-Port PHY  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
SMII - 100BASE-TX Transmit Timing Parameters..............................................99  
SMII - 100BASE-FX Receive Timing Parameters.............................................100  
SMII - 100BASE-FX Transmit Timing Parameters............................................101  
SMII - 10BASE-T Receive Timing Parameters .................................................102  
SMII-10BASE-T Transmit Timing Parameters ..................................................103  
Source Synchronous SMII 100BASE-TX Receive Timing Parameters.............104  
Source Synchronous SMII 100BASE-TX Transmit Timing ...............................105  
Source Synchronous SMII - 100BASE-FX Receive Timing Parameters ..........106  
Source Synchronous SMII - 100BASE-FX Transmit Timing Parameters .........107  
Source Synchronous SMII - 10BASE-T Receive Timing Parameters...............108  
Source Synchronous SMII - 10BASE-T Transmit Timing Parameters..............109  
RMII - 100BASE-TX Receive Timing Parameters.............................................110  
RMII - 100BASE-TX Transmit Timing Parameters............................................111  
RMII - 100BASE-FX Receive Timing Parameters.............................................112  
RMII - 100BASE-FX Transmit Timing Parameters............................................113  
RMII - 10BASE-T Receive Timing Parameters.................................................114  
RMII - 10BASE-T Transmit Timing Parameters................................................115  
Auto-Negotiation and Fast Link Pulse Timing Parameters ...............................116  
MDIO Timing Parameters .................................................................................117  
Power-Up Timing Parameters..........................................................................118  
Reset Recovery Timing Parameters .................................................................118  
Register Set ......................................................................................................119  
Control Register (Address 0).............................................................................120  
Status Register (Address 1)..............................................................................121  
PHY Identification Register 1 (Address 2).........................................................122  
PHY Identification Register 2 (Address 3).........................................................122  
Auto-Negotiation Advertisement Register (Address 4)4 ...................................123  
Auto-Negotiation Link Partner Base Page Ability Register (Address 5)............124  
Auto-Negotiation Expansion (Address 6)..........................................................125  
Auto-Negotiation Next Page Transmit Register (Address 7).............................125  
Auto-Negotiation Link Partner Next Page Receive Register (Address 8) .........126  
Port Configuration Register (Address 16, Hex 10)............................................127  
Quick Status Register (Address 17, Hex 11) ....................................................128  
Interrupt Enable Register (Address 18, Hex 12) ...............................................128  
Interrupt Status Register (Address 19, Hex 13) ................................................130  
LED Configuration Register (Address 20, Hex 14) ...........................................131  
Receive Error Count Register (Address 21)......................................................132  
RMII Out-of-Band Signalling Register (Address 25) .........................................133  
Trim Enable Register (Address 27)...................................................................133  
Register Bit Map................................................................................................134  
8
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Revision History  
Date  
Revision  
Description  
January 2001  
002  
Global: Add bar to all LEDm_n for active low status.  
Tables 1, 2 and 3: Add RMII, SMII, and SS-SMII numeric pin lists.  
Introduction: Deleted (up to 100 meters)and (up to 185 meters).  
Sectionalization: Change second sentence.  
SMII/SS-SMII Interfaces: Delete text from SMII Interface: The SMII interface only operates with  
VCCIO at 3.3V (refer to Table 26 on page 73).”  
Reference Clock: Changed language.  
Simplified SMII Application Diagram: Delete old Figure 17 -- redundant.  
Under Purpose, switch descriptions for TXD and RXD.  
Per-Port LED Driver Functions: Add text to third paragraph after first line:  
LED Circuits: Add LED Circuit text and diagram.  
Power and Ground Connections: Add 0.1 µF capacitor value to figure.  
Typical Twisted-Pair Interface: Change capacitor value from 0.1 µF to .01 µF.  
Delete old Figure 35 and old Table 33, SMII Sync Timing (Parameters)  
Delete Old Figure 37 Typical RMII Interface -- redundant.  
Absolute Maximum Ratings: Change Operating temperature for Case under Max from 120to  
+120.  
Operating Conditions: Two lines for Recommended Supply Voltage for VCCPECL are:  
I/O (SD_2P5V = 0); Sym=VCCPECL; Min=3.14; Typ (2.5)=2.5; Typ (3.3)=3.3; Max=3.46  
I/O (SD_2P5V = 1): Sym= VCCPECL; Min=2.38; TypTyp=2.5 ; Max=2.53. For Supply Voltage, I/O  
(SD_205V = 1) under Max, change value from 2.53to 2.63.  
Delete Table note 3  
Digital I/O Characteristics (2.5V): Change Output Low Voltage/Max = 0.2 (was 0.1); Output High  
voltage/Min = 2.07 (was 2.27). Add to Input Low voltage SD pins: Sym=VIL-SD, Max=0.755V.  
Add to Input High voltage SD pins: Sym=VIH-SD, Min=1.58V. Add new line: Output Low voltage  
(LEDn_m pins)  
Digital I/O Characteristics (3.3V): Add new table.  
Required Clock Characteristics: Delete Input Low voltageand Input High voltagelines.  
100BASE-FX Transceiver Characteristics: Remove TBDs.  
Modify all timing diagrams and related tables due to completion of Intels design verification testing.  
Control Register (Address 0): Restructure table notes.  
Status Register (Address 1): Change as follows: 1 = Extended register capabilities  
0 = Basic register capabilities.  
Auto-Negotiation Advertisement Register (Address 4): Add table note 4: Restart Auto-Negotiation  
process whenever Register 4 is written/modified.Table note 2: Change pin 79to pin 50. Table  
note 3: Change LED/CFGto CFG.  
Port Configuration Register (Address 16, Hex 10): For Register bit 16.7 under description, change  
to: Write as one. Ignore on read. (changed from zero)  
Receive Error Count Register: Add text to paragraph under Description.  
Datasheet  
9
Advanced 10/100 8-Port PHY LXT9785  
Figure 1. LXT9785 Block Diagram  
8 Port Global  
Functions  
RMII/SMII Contr  
ADD_<4:0>  
Management /  
RESET  
Mode Select  
Logic & LED  
Drivers  
MDIO  
PWRDN  
2
MDC  
Clock  
Generator  
REFCLK  
2
MDINT  
2
SYNC (SMII only)  
Register Set  
Manchester  
Encoder  
+
10  
TP  
Driver  
Pulse  
Shaper  
TXDn  
TP /  
Fiber  
Out  
TPFOPn  
TPFONn  
Parallel/Serial  
Converter  
Scrambler  
& Encoder  
100  
-
+
ECL  
Driver  
Auto  
Negotiation  
Mgmt  
Counters  
CIM  
-
Fiber  
select n  
Register Set  
+
Media  
Select  
Clock Generator  
Adaptive EQ with BL  
Wander Cancellation  
100TX  
100FX  
10BT  
Port LED  
Drivers  
-
3
LEDn_<2:0>  
RXDn  
+
Manchester  
TPFIPn  
TPFINn  
TP /  
Fiber In  
Serial to  
Parallel  
Converter  
10  
Decoder  
Slicer  
-
Decoder &  
Descrambler  
100  
Carrier Sense  
Data Valid  
+
Error Detect  
-
Per-Port Functions  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
Datasheet  
11  
LXT9785 Advanced 10/100 8-Port PHY  
1.0  
Pin Assignments and Signal Descriptions  
Figure 2. LXT9785 RMII 208-Pin PQFP Assignments  
CRS_DV6..... 1  
RXER6..... 2  
TXEN6..... 3  
TXD6_0..... 4  
TXD6_1..... 5  
REFCLK1..... 6  
RXD5_1..... 7  
RXD5_0..... 8  
GNDIO..... 9  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
CRS_DV5..... 10  
RXER5..... 11  
TXEN5..... 12  
TXD5_0..... 13  
TXD5_1..... 14  
RXD4_1..... 15  
RXD4_0..... 16  
CRS_DV4..... 17  
VCCIO..... 18  
GNDIO..... 19  
RXER4..... 20  
TXEN4..... 21  
TXD4_0..... 22  
TXD4_1..... 23  
MDC1..... 24  
MDIO1..... 25  
MDINT1..... 26  
RXD3_1..... 27  
RXD3_0..... 28  
VCCIO..... 29  
GNDIO..... 30  
CRS_DV3..... 31  
RXER3..... 32  
TXEN3..... 33  
TXD3_0..... 34  
TXD3_1..... 35  
RXD2_1..... 36  
RXD2_0..... 37  
GNDIO..... 38  
CRS_DV2..... 39  
RXER2..... 40  
TXEN2..... 41  
TXD2_0..... 42  
TXD2_1..... 43  
REFCLK0..... 44  
RXD1_1..... 45  
RXD1_0..... 46  
VCCIO..... 47  
GNDIO..... 48  
CRS_DV1..... 49  
ER1/PAUSE..... 50  
TXEN1..... 51  
TXD1_0..... 52  
Part #  
LOT #  
FPO #  
LXT9785 XX  
XXXXXX  
XXXXXXXX  
Rev #  
12  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 3. LXT9785 SMII 208-Pin PQFP Assignments  
N/C..... 1  
N/C..... 2  
N/C..... 3  
TXD6..... 4  
N/C..... 5  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
REFCLK1..... 6  
N/C..... 7  
RXD5..... 8  
GNDIO..... 9  
N/C..... 10  
N/C..... 11  
N/C..... 12  
TXD5..... 13  
N/C..... 14  
N/C..... 15  
RXD4..... 16  
N/C..... 17  
VCCIO..... 18  
GNDIO..... 19  
N/C..... 20  
N/C..... 21  
TXD4..... 22  
N/C..... 23  
MDC1..... 24  
MDIO1..... 25  
MDINT1..... 26  
N/C..... 27  
RXD3..... 28  
VCCIO..... 29  
GNDIO..... 30  
N/C..... 31  
Part #  
LOT #  
FPO #  
LXT9785 XX  
XXXXXX  
XXXXXXXX  
Rev #  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
N/C..... 32  
N/C..... 33  
TXD3..... 34  
SYNC0..... 35  
N/C..... 36  
RXD2..... 37  
GNDIO..... 38  
N/C..... 39  
N/C..... 40  
N/C..... 41  
TXD2..... 42  
N/C..... 43  
REFCLK0..... 44  
N/C..... 45  
RXD1..... 46  
VCCIO..... 47  
GNDIO..... 48  
N/C..... 49  
PAUSE..... 50  
N/C..... 51  
TXD1..... 52  
Datasheet  
13  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 4. LXT9785 SS-SMII 208-Pin PQFP Assignments  
N/C..... 1  
N/C..... 2  
N/C..... 3  
TXD6..... 4  
N/C..... 5  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
REFCLK1..... 6  
RXD5..... 7  
N/C..... 8  
GNDIO..... 9  
N/C..... 10  
N/C..... 11  
N/C..... 12  
TXD5..... 13  
N/C..... 14  
RXD4..... 15  
N/C..... 16  
RX_SYNC1..... 17  
VCCIO..... 18  
GNDIO..... 19  
N/C..... 20  
RX_CLK1..... 21  
TXD4..... 22  
N/C..... 23  
MDC1..... 24  
MDIO1..... 25  
MDINT1..... 26  
RXD3..... 27  
N/C..... 28  
VCCIO..... 29  
GNDIO..... 30  
N/C..... 31  
Part #  
LOT #  
FPO #  
LXT9785 XX  
XXXXXX  
XXXXXXXX  
Rev #  
TX_CLK0..... 32  
N/C..... 33  
TXD3..... 34  
TX_SYNC0..... 35  
RXD2..... 36  
N/C..... 37  
GNDIO..... 38  
N/C..... 39  
N/C..... 40  
N/C..... 41  
TXD2..... 42  
N/C..... 43  
REFCLK0..... 44  
RXD1..... 45  
N/C..... 46  
VCCIO..... 47  
GNDIO..... 48  
N/C..... 49  
PAUSE..... 50  
N/C..... 51  
TXD1..... 52  
14  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 5. LXT9785 RMII 241-Ball PBGA Assignments  
RMI  
I
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
CRS_D  
V2  
A
B
C
D
E
F
GNDD  
VCCIO  
RXD1_0  
TXD2_1  
TXD3_1  
TXEN3  
VCCIO  
GNDD  
MDIO1  
TXD4_0  
RXER4  
RXD4_0  
TXEN5  
RXER5  
TXD6_1  
RXER6  
A
B
CRS_D  
V3  
CRS_D  
V4  
CRS_  
DV6  
RXD0_1  
VCCIO  
GNDD  
TXEN1  
GNDD  
TXD1_0  
GNDD  
RXD1_1  
TXD2_0  
GNDD  
RXD2_0  
TXEN2  
GNDD  
GNDD  
RXD2_1  
RXER2  
GNDD  
RXD3_1  
MDINT1  
RXD3_0  
GNDD  
MDC1  
TXD4_1  
GNDD  
TXEN4  
VCCIO  
TXD5_1  
GNDD  
TXD5_0  
GNDD  
TXD6_0  
GNDD  
GNDD  
VCCD  
RXD5_0  
TXEN6  
VCCIO  
TXD7_0  
RXD7_1  
N/C  
RXD5_1  
RXD6_0  
GNDD  
RXD6_1  
GNDD  
CRS_D  
V1  
RXD0_0  
RXER3  
RXD4_1  
TXD7_1  
TXEN7  
RXD7_0  
LED7_3  
N/C  
C
D
E
F
RXER0/  
MDIX  
RXER1/  
PAUSE  
CRS_D  
V5  
TXD1_1  
TXD3_0  
RXER7  
GNDD  
CRS_D  
V0  
REF  
CLK0  
REF  
CLK1  
CRS_D  
V7  
MDC0  
TXD0_0  
LED3_1  
N/C  
TXEN0  
MDIO0  
LED3_2  
LED2_2  
LED1_2  
LED0_1  
CFG_2  
ADD_2  
GNDD  
VCCD  
N/C  
MDINT0  
LED2_3  
LED1_3  
LED0_3  
TXD0_1  
LED3_3  
N/C  
N/C  
LED7_2  
LED6_3  
LED5_3  
LED4_3  
LED4_2  
G
H
J
LED7_1  
LED6_1  
LED5_1  
N/C  
G
H
J
LED2_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
N/C  
LED6_2  
LED5_2  
LED4_1  
LED1_1  
N/C  
VCCD  
N/C  
VCCD  
SGND  
AMDIX_  
EN  
K
L
LED0_2  
CFG_3  
ADD_3  
ADD_0  
SD0  
K
L
VCC  
PECL  
VCC  
PECL  
PWR  
DWN  
SEC  
TION  
MODE  
SEL_0  
MODE  
SEL_1  
MDDIS  
CFG_1  
ADD_1  
ADD_4  
TxSLE  
W_1  
GND  
PECL  
GND  
PECL  
G_FX/  
TP  
M
N
P
R
T
RESET  
TDO  
TCK  
TMS  
SD5  
TRST  
SD7  
M
N
P
R
T
TxSLE  
W_0  
SD1  
SD3  
VCCT  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
VCCR  
GNDR  
GNDR  
TDI  
SD_2P5  
V
SD2  
VCCR  
GNDR  
GNDT  
VCCR  
VCCR  
GNDT  
SD4  
SD6  
TPFIP  
(0)  
TPFON(  
1)  
TPFIP  
(2)  
TPFIN  
(3)  
TPFON  
(4)  
TPFIP  
(6)  
TPFOP  
(7)  
TPFIP  
(7)  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
TPFIN  
(0)  
TPFOP  
(0)  
TPFOP  
(1)  
TPFIN  
(1)  
TPFIN  
(2)  
TPFOP  
(2)  
TPFON  
(3)  
TPFIP  
(3)  
TPFIP  
(4)  
TPFOP  
(4)  
TPFOP  
(5)  
TPFIN  
(5)  
TPFIN  
(6)  
TPFOP  
(6)  
TPFON  
(7)  
TPFIN  
(7)  
TPFON  
(0)  
TPFIP  
(1)  
TPFON  
(2)  
TPFOP  
(3)  
TPFIN  
(4)  
TPFON  
(5)  
TPFIP  
(5)  
TPFON  
(6)  
U
GNDT  
GNDT  
GNDT  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Datasheet  
15  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 6. LXT9785 SMII 241-Ball PBGA Assignments  
SMI  
I
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
A
GNDD  
VCCIO  
RXD1  
N/C  
N/C  
SYNC0  
N/C  
VCCIO  
GNDD  
MDIO1  
TXD4  
N/C  
RXD4  
N/C  
N/C  
N/C  
N/C  
A
B
B
C
D
E
F
N/C  
N/C  
RXD0  
MDIX  
GNDD  
TXD1  
N/C  
N/C  
TXD2  
GNDD  
PAUSE  
GNDD  
VCCD  
N/C  
RXD2  
N/C  
GNDD  
N/C  
N/C  
N/C  
N/C  
MDC1  
N/C  
N/C  
VCCIO  
N/C  
N/C  
N/C  
N/C  
TXD5  
GNDD  
TXD6  
GNDD  
GNDD  
VCCD  
RXD5  
N/C  
N/C  
RXD6  
GNDD  
N/C  
N/C  
N/C  
VCCIO  
GNDD  
MDINT1  
RXD3  
SYNC1  
N/C  
GNDD  
N/C  
C
D
E
F
GNDD  
N/C  
N/C  
GNDD  
N/C  
TXD3  
GNDD  
VCCIO  
TXD7  
N/C  
REF  
CLK0  
REF  
CLK1  
MDC0  
TXD0  
LED3_1  
N/C  
N/C  
GNDD  
GNDD  
GNDD  
RXD7  
GNDD  
LED7_2  
LED6_3  
LED5_3  
LED4_3  
LED4_2  
MDINT0  
LED2_3  
LED1_3  
LED0_3  
MDIO0  
LED3_2  
LED2_2  
LED1_2  
LED0_1  
CFG_2  
ADD_2  
N/C  
N/C  
LED7_3  
N/C  
G
H
J
LED3_3  
N/C  
N/C  
LED7_1  
LED6_1  
LED5_1  
N/C  
G
H
J
LED2_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
N/C  
LED6_2  
LED5_2  
LED4_1  
LED1_1  
N/C  
VCCD  
N/C  
VCCD  
SGND  
AMDIX_  
EN  
K
L
LED0_2  
CFG_3  
ADD_3  
ADD_0  
SD0  
K
L
VCC  
PECL  
VCC  
PECL  
PWR  
DWN  
SECTIO  
N
MODE  
SEL_0  
MODE  
SEL_1  
MDDIS  
CFG_1  
ADD_1  
ADD_4  
TxSLE  
W_1  
GND  
PECL  
GND  
PECL  
G_FX/  
TP  
M
N
P
R
T
RESET  
TDO  
TCK  
TMS  
SD5  
TRST  
SD7  
M
N
P
R
T
TxSLE  
W_0  
SD1  
SD3  
VCCT  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
VCCR  
GNDR  
GNDR  
TDI  
SD_2P5  
V
SD2  
VCCR  
GNDR  
GNDT  
VCCR  
VCCR  
GNDT  
SD4  
SD6  
TPFIP  
(0)  
TPFON(  
1)  
TPFIP  
(2)  
TPFIN  
(3)  
TPFON(  
4)  
TPFIP  
(6)  
TPFOP(  
7)  
TPFIP  
(7)  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
TPFIN(  
0)  
TPFOP(  
0)  
TPFOP(  
1)  
TPFIN(  
1)  
TPFIN(  
2)  
TPFOP(  
2)  
TPFON(  
3)  
TPFIP  
(3)  
TPFIP  
(4)  
TPFOP(  
4)  
TPFOP(  
5)  
TPFIN  
(5)  
TPFIN  
(6)  
TPFOP(  
6)  
TPFON(  
7)  
TPFIN(  
7)  
TPFON(  
0)  
TPFIP  
(1)  
TPFON(  
2)  
TPFOP(  
3)  
TPFIN  
(4)  
TPFON(  
5)  
TPFIP  
(5)  
TPFON(  
6)  
U
GNDT  
GNDT  
GNDT  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
16  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 7. LXT9785 SS-SMII 241-Ball PBGA Assignments  
SS-  
SMI  
I
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
TX_SY  
NC0  
A
B
C
D
E
F
GNDD  
VCCIO  
N/C  
N/C  
N/C  
N/C  
VCCIO  
GNDD  
MDIO1  
TXD4  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
A
B
RX_  
CLK1  
RX_SY  
NC1  
RXD0  
VCCIO  
GNDD  
N/C  
RXD0  
MDIX  
GNDD  
TXD1  
GNDD  
RXD1  
N/C  
TXD2  
GNDD  
PAUSE  
GNDD  
VCCD  
N/C  
N/C  
N/C  
GNDD  
RXD2  
N/C  
N/C  
RXD3  
MDINT1  
N/C  
MDC1  
N/C  
TXD5  
GNDD  
TXD6  
N/C  
N/C  
RXD5  
N/C  
N/C  
RXD6  
TX_CL  
K0  
TX_SY  
NC1  
VCCIO  
N/C  
RXD4  
N/C  
GNDD  
C
D
E
F
TX_CL  
K1  
N/C  
GNDD  
TXD3  
GNDD  
VCCIO  
TXD7  
RXD7  
N/C  
GNDD  
N/C  
N/C  
RX_  
CLK0  
Rx_SY  
NC0  
REF  
CLK0  
REF  
CLK1  
MDC0  
TXD0  
LED3_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VCCD  
N/C  
GNDD  
LED7_2  
LED6_3  
LED5_3  
LED4_3  
LED4_2  
MDINT0  
LED2_3  
LED1_3  
LED0_3  
MDIO0  
LED3_2  
LED2_2  
LED1_2  
LED0_1  
CFG_2  
ADD_2  
N/C  
LED3_3  
N/C  
N/C  
LED7_3  
N/C  
G
H
J
LED7_1  
LED6_1  
LED5_1  
N/C  
G
H
J
LED2_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
N/C  
LED6_2  
LED5_2  
LED4_1  
LED1_1  
N/C  
VCCD  
N/C  
VCCD  
SGND  
AMDIX_  
EN  
K
L
LED0_2  
CFG_3  
ADD_3  
ADD_0  
SD0  
K
L
VCC  
PECL  
VCC  
PECL  
PWR  
DWN  
SEC  
TION  
MODE  
SEL_0  
MODE  
SEL_1  
MDDIS  
CFG_1  
ADD_1  
ADD_4  
TxSLE  
W_1  
GND  
PECL  
GND  
PECL  
G_FX/  
TP  
M
N
P
R
T
RESET  
TDO  
TCK  
TMS  
SD5  
TRST  
SD7  
M
N
P
R
T
TxSLE  
W_0  
SD1  
SD3  
VCCT  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
VCCR  
GNDR  
GNDR  
TDI  
SD_2P  
5V  
SD2  
VCCR  
GNDR  
GNDT  
VCCR  
VCCR  
GNDT  
SD4  
SD6  
TPFIP  
(0)  
TPFON  
(1)  
TPFIP  
(2)  
TPFIN  
(3)  
TPFON  
(4)  
TPFIP  
(6)  
TPFOP  
(7)  
TPFIP  
(7)  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
TPFIN  
(0)  
TPFOP  
(0)  
TPFOP  
(1)  
TPFIN  
(1)  
TPFIN  
(2)  
TPFOP  
(2)  
TPFON  
(3)  
TPFIP  
(3)  
TPFIP  
(4)  
TPFOP  
(4)  
TPFOP  
(5)  
TPFIN  
(5)  
TPFIN  
(6)  
TPFOP  
(6)  
TPFON  
(7)  
TPFIN  
(7)  
TPFON  
(0)  
TPFIP  
(1)  
TPFON  
(2)  
TPFOP  
(3)  
TPFIN  
(4)  
TPFON  
(5)  
TPFIP  
(5)  
TPFON  
(6)  
U
GNDT  
GNDT  
GNDT  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Datasheet  
17  
LXT9785 Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
1
CRS_DV6  
RXER6  
TXEN6  
O, TS, SL  
O, TS, SL, ID  
I, ID  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 8 on page 43  
Table 8 on page 43  
Table 8 on page 43  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
2
3
4
TXD6_0  
TXD6_1  
REFCLK1  
RXD5_1  
RXD5_0  
GNDIO  
I, ID  
5
I, ID  
6
I
7
O, TS, ID  
O, TS  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
CRS_DV5  
RXER5  
TXEN5  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TXD5_0  
TXD5_1  
RXD4_1  
RXD4_0  
CRS_DV4  
VCCIO  
I, ID  
I, ID  
O, TS,ID  
O, TS  
O, TS, SL  
GNDIO  
RXER4  
TXEN4  
O, TS, SL, ID  
I, ID  
TXD4_0  
TXD4_1  
MDC1  
I, ID  
I, ID  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
O, TS, ID  
O, TS  
MDIO1  
MDINT1  
RXD3_1  
RXD3_0  
VCCIO  
GNDIO  
CRS_DV3  
RXER3  
TXEN3  
O, TS, SL  
O, TS, SL, ID  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
18  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
TXD3_0  
I, ID  
I, ID  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 12 on page 46  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 12 on page 46  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 8 on page 43  
Table 8 on page 43  
Table 14 on page 49  
Table 14 on page 49  
Table 8 on page 43  
TXD3_1  
RXD2_1  
RXD2_0  
GNDIO  
O, TS, ID  
O, TS  
CRS_DV2  
RXER2  
O, TS, SL  
O, TS, SL, ID  
TXEN2  
I, ID  
TXD2_0  
TXD2_1  
REFCLK0  
RXD1_1  
RXD1_0  
VCCIO  
I, ID  
I, ID  
I
O, TS, ID  
O, TS  
GNDIO  
CRS_DV1  
O, TS, SL  
RXER1/PAUSE O, TS, SL, ID  
TXEN1  
I, ID  
TXD1_0  
TXD1_1  
RXD0_1  
RXD0_0  
VCCIO  
I, ID  
I, ID  
O, TS, ID  
O, TS  
GNDIO  
CRS_DV0  
RXER0/MDIX  
TXEN0  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TXD0_0  
TXD0_1  
MDC0  
I, ID  
I, ID  
I, ST, ID  
MDIO0  
I/O, TS, SL, IP  
VCCD  
GNDD  
MDINT0  
OD, TS, SL, IP  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
Datasheet  
19  
LXT9785 Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
LED3_3  
OD, TS, SO, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 12 on page 46  
Table 8 on page 43  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 9 on page 44  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
LED3_2  
LED3_1  
LED2_3  
LED2_2  
LED2_1  
GNDIO  
LED1_3  
LED1_2  
LED1_1  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
GNDD  
LED0_3  
LED0_2  
LED0_1  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I
SD1  
I
VCCPECL  
GNDPECL  
SD2  
I
SD3  
I
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
20  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
N/C  
Table 15 on page 50  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
VCCR0  
TPFIP0  
TPFIN0  
GNDR0  
TPFOP0  
TPFON0  
VCCT0/1  
TPFON1  
TPFOP1  
GNDR1  
GNDT0/1  
TPFIN1  
TPFIP1  
VCCR1  
VCCR2  
TPFIP2  
TPFIN2  
GNDR2  
TPFOP2  
TPFON2  
VCCT2/3  
TPFON3  
TPFOP3  
GNDR3  
GNDT2/3  
TPFIN3  
TPFIP3  
VCCR3  
VCCR4  
TPFIP4  
TPFIN4  
GNDT4/5  
GNDR4  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
Datasheet  
21  
LXT9785 Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
TPFOP4  
AO/AI  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
Table 11 on page 45  
Table 11 on page 45  
Table 11 on page 45  
TPFON4  
VCCT4/5  
TPFON5  
TPFOP5  
GNDR5  
TPFIN5  
TPFIP5  
VCCR5  
VCCR6  
TPFIP6  
TPFIN6  
GNDT6/7  
GNDR6  
TPFOP6  
TPFON6  
VCCT6/7  
TPFON7  
TPFOP7  
GNDR7  
TPFIN7  
TPFIP7  
VCCR7  
N/C  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
N/C  
SD4  
I
SD5  
I
GNDPECL  
VCCPECL  
SD6  
I
SD7  
I
TDI  
I, ST, IP  
O, TS  
I, ST, IP  
TDO  
TMS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
22  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
TCK  
I, ST, ID  
Table 11 on page 45  
Table 11 on page 45  
Table 15 on page 50  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
TRST  
I, ST, IP  
N/C  
G_FX/TP  
PWRDWN  
RESET  
Section  
ModeSel0  
ModeSel1  
SGND  
I, ST, ID  
I, ST, ID  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
LED4_1  
LED4_2  
LED4_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
LED5_1  
LED5_2  
LED5_3  
GNDIO  
LED6_1  
LED6_2  
LED6_3  
LED7_1  
LED7_2  
LED7_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
RXD7_1  
RXD7_0  
GNDIO  
CRS_DV7  
RXER7  
TXEN7  
TXD7_0  
O, TS, ID  
O, TS  
O, TS, SL  
O, TS, SL, ID  
I, ID  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
Datasheet  
23  
LXT9785 Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
204  
205  
206  
207  
208  
TXD7_1  
I, ID  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
RXD6_1  
RXD6_0  
GNDIO  
VCCIO  
O, TS, ID  
O, TS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
24  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 2. SMII PQFP Pin List  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
1
N/C  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 6 on page 41  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 15 on page 50  
Table 6 on page 41  
Table 15 on page 50  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 8 on page 43  
Table 8 on page 43  
Table 8 on page 43  
Table 15 on page 50  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
2
N/C  
3
N/C  
4
TXD6  
N/C  
I, ID  
5
I, ID  
6
REFCLK1  
N/C  
I
7
8
RXD5  
GNDIO  
N/C  
O, TS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
N/C  
N/C  
TXD5  
N/C  
I, ID  
N/C  
O, TS,ID  
RXD4  
N/C  
O, TS  
VCCIO  
GNDIO  
N/C  
O, TS, SL, ID  
N/C  
I, ID  
TXD4  
N/C  
I, ID  
MDC1  
MDIO1  
MDINT1  
N/C  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
RXD3  
VCCIO  
GNDIO  
N/C  
O, TS  
N/C  
N/C  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
25  
LXT9785 Advanced 10/100 8-Port PHY  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
TXD3  
I, ID  
Table 5 on page 41  
Table 6 on page 41  
Table 15 on page 50  
Table 6 on page 41  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 12 on page 46  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 15 on page 50  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 12 on page 46  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 8 on page 43  
Table 8 on page 43  
Table 14 on page 49  
Table 14 on page 49  
Table 8 on page 43  
SYNC0  
N/C  
I, ID  
RXD2  
GNDIO  
N/C  
O, TS  
N/C  
N/C  
TXD2  
N/C  
I, ID  
REFCLK0  
N/C  
I
RXD1  
VCCIO  
GNDIO  
N/C  
O, TS  
PAUSE  
N/C  
I, ID  
TXD1  
N/C  
I, ID  
N/C  
RXD0  
VCCIO  
GNDIO  
N/C  
O, TS  
MDIX  
N/C  
I, ID  
TXD0  
N/C  
I, ID  
MDC0  
MDIO0  
VCCD  
GNDD  
MDINT0  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
26  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
LED3_3  
OD, TS, SO, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 12 on page 46  
Table 8 on page 43  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 9 on page 44  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
LED3_2  
LED3_1  
LED2_3  
LED2_2  
LED2_1  
GNDIO  
LED1_3  
LED1_2  
LED1_1  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
GNDD  
LED0_3  
LED0_2  
LED0_1  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I
SD1  
I
VCCPECL  
GNDPECL  
SD2  
I
SD3  
I
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
27  
LXT9785 Advanced 10/100 8-Port PHY  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
N/C  
Table 15 on page 50  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
VCCR0  
TPFIP0  
TPFIN0  
GNDR0  
TPFOP0  
TPFON0  
VCCT0/1  
TPFON1  
TPFOP1  
GNDR1  
GNDT0/1  
TPFIN1  
TPFIP1  
VCCR1  
VCCR2  
TPFIP2  
TPFIN2  
GNDR2  
TPFOP2  
TPFON2  
VCCT2/3  
TPFON3  
TPFOP3  
GNDR3  
GNDT2/3  
TPFIN3  
TPFIP3  
VCCR3  
VCCR4  
TPFIP4  
TPFIN4  
GNDT4/5  
GNDR4  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
28  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
TPFOP4  
TPFON4  
VCCT4/5  
TPFON5  
TPFOP5  
GNDR5  
TPFIN5  
TPFIP5  
VCCR5  
VCCR6  
TPFIP6  
TPFIN6  
GNDT6/7  
GNDR6  
TPFOP6  
TPFON6  
VCCT6/7  
TPFON7  
TPFOP7  
GNDR7  
TPFIN7  
TPFIP7  
VCCR7  
N/C  
AO/AI  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
Table 11 on page 45  
Table 11 on page 45  
Table 11 on page 45  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
N/C  
SD4  
I
SD5  
I
GNDPECL  
VCCPECL  
SD6  
I
SD7  
I
TDI  
I, ST, IP  
O, TS  
I, ST, IP  
TDO  
TMS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
29  
LXT9785 Advanced 10/100 8-Port PHY  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
TCK  
I, ST, ID  
Table 11 on page 45  
Table 11 on page 45  
Table 15 on page 50  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 6 on page 41  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
TRST  
I, ST, IP  
N/C  
G_FX/TP  
PWRDWN  
RESET  
Section  
ModeSel0  
ModeSel1  
SGND  
I, ST, ID  
I, ST, ID  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
LED4_1  
LED4_2  
LED4_3  
GNDD  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
LED5_1  
LED5_2  
LED5_3  
GNDIO  
LED6_1  
LED6_2  
LED6_3  
LED7_1  
LED7_2  
LED7_3  
GNDD  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
N/C  
O, TS, ID  
RXD7  
O, TS  
GNDIO  
N/C  
N/C  
N/C  
TXD7  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
30  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
204  
205  
206  
207  
208  
SYNC1  
I, ID  
Table 6 on page 41  
Table 15 on page 50  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
N/C  
O, TS  
RXD6  
GNDIO  
VCCIO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
31  
LXT9785 Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
1
N/C  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 5 on page 41  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 7 on page 42  
Table 15 on page 50  
Table 7 on page 42  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 7 on page 42  
Table 5 on page 41  
Table 15 on page 50  
Table 8 on page 43  
Table 8 on page 43  
Table 8 on page 43  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 7 on page 42  
Table 15 on page 50  
2
N/C  
3
N/C  
4
TXD6  
N/C  
I, ID  
5
I, ID  
6
REFCLK1  
RXD5  
N/C  
I
7
O, TS, ID  
8
9
GNDIO  
N/C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
N/C  
N/C  
TXD5  
N/C  
I, ID  
RXD4  
N/C  
O, TS, ID  
RX_SYNC1  
VCCIO  
GNDIO  
N/C  
O, TS, ID  
RX_CLK1  
TXD4  
N/C  
O, TS, ID  
I, ID  
MDC1  
MDIO1  
MDINT1  
RXD3  
N/C  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
O, TS, ID  
VCCIO  
GNDIO  
N/C  
TX_CLK0  
N/C  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
32  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
TXD3  
I, ID  
Table 5 on page 41  
Table 7 on page 42  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 5 on page 41  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 50  
Table 12 on page 46  
Table 15 on page 50  
Table 5 on page 41  
Table 15 on page 50  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 14 on page 49  
Table 7 on page 42  
Table 12 on page 46  
Table 7 on page 42  
Table 5 on page 41  
Table 15 on page 50  
Table 8 on page 43  
Table 8 on page 43  
Table 14 on page 49  
Table 14 on page 49  
Table 8 on page 43  
TX_SYNC0  
RXD2  
N/C  
I, ID  
O, TS, ID  
GNDIO  
N/C  
N/C  
N/C  
TXD2  
N/C  
I, ID  
REFCLK0  
RXD1  
N/C  
I
O, TS, ID  
VCCIO  
GNDIO  
N/C  
PAUSE  
N/C  
I, ID  
TXD1  
N/C  
I, ID  
RXD0  
N/C  
O, TS, ID  
VCCIO  
GNDIO  
RX_SYNC0  
MDIX  
O, TS, ID  
I, ID  
RX_CLK0  
TXD0  
N/C  
I, ID  
MDC0  
MDIO0  
VCCD  
GNDD  
MDINT0  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
33  
LXT9785 Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
LED3_3  
OD, TS, SO, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 12 on page 46  
Table 8 on page 43  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 9 on page 44  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
LED3_2  
LED3_1  
LED2_3  
LED2_2  
LED2_1  
GNDIO  
LED1_3  
LED1_2  
LED1_1  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
GNDD  
LED0_3  
LED0_2  
LED0_1  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I
SD1  
I
VCCPECL  
GNDPECL  
SD2  
I
SD3  
I
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
34  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
N/C  
Table 15 on page 50  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
VCCR0  
TPFIP0  
TPFIN0  
GNDR0  
TPFOP0  
TPFON0  
VCCT0/1  
TPFON1  
TPFOP1  
GNDR1  
GNDT0/1  
TPFIN1  
TPFIP1  
VCCR1  
VCCR2  
TPFIP2  
TPFIN2  
GNDR2  
TPFOP2  
TPFON2  
VCCT2/3  
TPFON3  
TPFOP3  
GNDR3  
GNDT2/3  
TPFIN3  
TPFIP3  
VCCR3  
VCCR4  
TPFIP4  
TPFIN4  
GNDT4/5  
GNDR4  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
35  
LXT9785 Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
TPFOP4  
TPFON4  
VCCT4/5  
TPFON5  
TPFOP5  
GNDR5  
TPFIN5  
TPFIP5  
VCCR5  
VCCR6  
TPFIP6  
TPFIN6  
GNDT6/7  
GNDR6  
TPFOP6  
TPFON6  
VCCT6/7  
TPFON7  
TPFOP7  
GNDR7  
TPFIN7  
TPFIP7  
VCCR7  
N/C  
AO/AI  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 15 on page 50  
Table 15 on page 50  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
Table 11 on page 45  
Table 11 on page 45  
Table 11 on page 45  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
N/C  
SD4  
I
SD5  
I
GNDPECL  
VCCPECL  
SD6  
I
SD7  
I
TDI  
I, ST, IP  
O, TS  
I, ST, IP  
TDO  
TMS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
36  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Pin  
Symbol  
Type1  
Description  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
TCK  
I, ST, ID  
Table 11 on page 45  
Table 11 on page 45  
Table 15 on page 50  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 15 on page 50  
Table 7 on page 42  
Table 15 on page 50  
Table 5 on page 41  
TRST  
I, ST, IP  
N/C  
G_FX/TP  
PWRDWN  
RESET  
Section  
ModeSel0  
ModeSel1  
SGND  
I, ST, ID  
I, ST, ID  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
LED4_1  
LED4_2  
LED4_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
LED5_1  
LED5_2  
LED5_3  
GNDIO  
LED6_1  
LED6_2  
LED6_3  
LED7_1  
LED7_2  
LED7_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
RXD7  
O, TS, ID  
N/C  
GNDIO  
N/C  
TX_CLK1  
N/C  
I, ID  
TXD7  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
37  
LXT9785 Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
204  
205  
206  
207  
208  
TX_SYNC1  
RXD6  
I, ID  
Table 7 on page 42  
Table 7 on page 42  
Table 15 on page 50  
Table 14 on page 49  
Table 14 on page 49  
O, TS, ID  
N/C  
GNDIO  
VCCIO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
38  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
1.1  
Signal Name Conventions  
Signal names may contain either a port designation or a serial designation, or a combination of the  
two designations. Signal naming conventions are as follows:  
Port Number Only. Individual signals that apply to a particular port are designated by the  
Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit  
Enable signals would be identified as TXEN0, TXEN1, and TXEN2.  
Serial Number Only. A set of signals which are not tied to any specific port are designated by  
the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set  
of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3.  
Port and Serial Number. In cases where each port is assigned a set of multiple signals, each  
signal is designated in the following order: Signal Mnemonic, Port Designation, an  
underscore, and the serial designation. For example, a set of three Port Configuration signals  
would be identified as RXD0_0 and RXD0_1, RXD1_0 and RXD1_1, and RXD2_0 and  
RXD2_1.  
Table 4. LXT9785 RMII Signal Descriptions  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Reference Clock. 50 MHz RMII reference clock is always required. RMII  
inputs are sampled on the rising edge of REFCLK, RMII outputs are  
sourced on the falling edge. See Clock/SYNC Requirementson page 58  
for detailed CLK requirements.  
44  
6
E6,  
E12  
REFCLK0  
REFCLK1  
I
61  
62  
E2,  
F4  
TXD0_0  
TXD0_1  
Transmit Data - Port 0. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 0 are clocked in synchronously to REFCLK.  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
52  
53  
C3,  
D4  
TXD1_0  
TXD1_1  
Transmit Data - Port 1. Inputs containing 2-bit parallel di-bits to be  
transmitted from Port 1 are clocked in synchronously to REFCLK  
42  
43  
B5  
A4  
TXD2_0  
TXD2_1  
Transmit Data - Port 2. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 2 are clocked in synchronously to REFCLK.  
34  
35  
D8,  
A6  
TXD3_0  
TXD3_1  
Transmit Data - Port 3. Inputs containing 2-bit parallel di-bits to be  
transmitted from Port 3 are clocked in synchronously to REFCLK.  
22  
23  
A11,  
C10  
TXD4_0  
TXD4_1  
Transmit Data - Port 4. Inputs containing 2-bit parallel di-bits to be  
transmitted from Port 4 are clocked in synchronously to REFCLK.  
13  
14  
B13,  
D11  
TXD5_0  
TXD5_1  
Transmit Data - Port 5. Inputs containing 2-bit parallel di-bits to be  
transmitted from Port 5 are clocked in synchronously to REFCLK.  
4
5
D13,  
A16  
TXD6_0  
TXD6_1  
Transmit Data - Port 6. Inputs containing 2-bit parallel di-bits to be  
transmitted from Port 6 are clocked in synchronously to REFCLK.  
203  
204  
E14,  
C16  
TXD7_0  
TXD7_1  
Transmit Data - Port 7. Inputs containing 2-bit parallel di-bits to be  
transmitted from Port 7 are clocked in synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. RXD[0:7]_0, RXD[0:7]_1, CRS_DV[0:7] and RXER[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and  
during H/W reset.  
Datasheet  
39  
LXT9785 Advanced 10/100 8-Port PHY  
Table 4. LXT9785 RMII Signal Descriptions (Continued)  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
60  
PBGA  
E3,  
TXEN0  
51  
41  
33  
21  
12  
3
B2,  
C6,  
A7,  
B11,  
A14,  
C14,  
D16  
TXEN1  
TXEN2  
TXEN3  
TXEN4  
TXEN5  
TXEN6  
TXEN7  
Transmit Enable - Ports 0-7. Active High input enables respective port  
transmitter. This signal must be synchronous to the REFCLK.  
I, ID  
202  
55  
54  
C2,  
B1  
RXD0_0  
RXD0_1  
O, TS  
O, TS, ID  
Receive Data - Port 0. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
46  
45  
A3,  
B4  
RXD1_0  
RXD1_1  
O, TS  
O, TS, ID  
Receive Data - Port 1. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
37  
36  
B6,  
C7  
RXD2_0  
RXD2_1  
O, TS  
O, TS, ID  
Receive Data - Port 2. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
28  
27  
D9,  
B9  
RXD3_0  
RXD3_1  
O, TS  
O, TS, ID  
Receive Data - Port 3. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
16  
15  
A13,  
C12  
RXD4_0  
RXD4_1  
O, TS  
O, TS, ID  
Receive Data - Port 4. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
8
7
B14,  
B15  
RXD5_0  
RXD5_1  
O, TS  
O, TS, ID  
Receive Data - Port 5. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
206  
205  
C15,  
B17  
RXD6_0  
RXD6_1  
O, TS  
O, TS, ID  
Receive Data - Port 6. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
198  
197  
E16,  
F14  
RXD7_0  
RXD7_1  
O, TS  
O, TS, ID  
Receive Data - Port 7. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
58  
49  
39  
31  
17  
10  
1
E4,  
C4,  
A5,  
B8,  
B12,  
D12,  
B16,  
E15  
CRS_DV0  
CRS_DV1  
CRS_DV2  
CRS_DV3  
CRS_DV4  
CRS_DV5  
CRS_DV6  
CRS_DV7  
Carrier Sense/Receive Data Valid - Ports 0-7. On detection of valid  
carrier, these signals are asserted asynchronously with respect to  
REFCLK. CRS_DVn is deasserted on loss of carrier, synchronous to  
REFCLK.  
O, TS, SL,  
ID  
200  
59  
50  
40  
32  
20  
11  
2
D2,  
D5,  
D7,  
C8,  
A12,  
A15,  
A17,  
D17  
RXER0  
RXER1  
RXER2  
RXER3  
RXER4  
RXER5  
RXER6  
RXER7  
Receive Error - Ports 0-7. These signals are synchronous to the  
respective REFCLK. Active High indicates that received code group is  
invalid, or that PLL is not locked.  
O, TS, SL,  
ID  
201  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. RXD[0:7]_0, RXD[0:7]_1, CRS_DV[0:7] and RXER[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and  
during H/W reset.  
40  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 5. LXT9785 SMII / SS-SMII Common Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
61  
52  
42  
34  
22  
13  
4
E2,  
C3,  
B5,  
D8,  
A11,  
B13,  
D13,  
E14  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
Transmit Data - Ports 0-7. These serial input streams provide data to be  
transmitted to the network. The LXT9785 clocks the data in synchronously to  
REFCLK.  
I, ID  
203  
Reference Clock. The LXT9785 always requires a 125 MHz reference clock  
input. Refer to Functional Description for detailed clock requirements. REFCLK0  
and REFCLK1 are always connected regardless of sectionalization mode.  
E6,  
44  
6
REFCLK0  
REFCLK1  
I
E12  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Table 6. LXT9785 SMII Specific Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
SMII Synchronization. The MAC must generate a SYNC pulse every 10  
REFCLK cycles to synchronize the SMII. SYNC0 is used when 1x8 port  
sectionalization is selected. SYNC0 and SYNC1 are to be used when 2x4  
port sectionalization is chosen.  
35  
204  
A6,  
C16  
SYNC0  
SYNC1  
I, ID  
55  
46  
37  
28  
16  
8
C2,  
A3,  
B6,  
D9,  
A13,  
B14,  
C15,  
E16  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
Receive Data - Ports 0-7. These serial output streams provide data  
received from the network. The LXT9785 drives the data out synchronously  
to REFCLK.  
O, TS  
206  
198  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. RXD[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W reset.  
Datasheet  
41  
LXT9785 Advanced 10/100 8-Port PHY  
Table 7. LXT9785 SS-SMII Specific Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
SS-SMII Transmit Synchronization. The MAC must generate a TX_SYNC  
pulse every 10 TX_CLK cycles to mark the start of TXD segments.  
TX_SYNC0 is used when 1x8 port sectionalization is selected.  
35  
204  
A6,  
C16  
TX_SYNC0  
TX_SYNC1  
I, ID  
SS-SMII Receive Synchronization. The LXT9785 generates these pulses  
every 10 RX_CLK cycles to mark the start of RXD segments for the MAC.  
RX_SYNC1 is used and RX_SYNC0 is tri-stated when 1x8 port  
sectionalization is selected. These outputs are only enabled when SS-SMII  
mode is enabled.  
RX_SYNC0  
RX_SYNC1  
58  
17  
E4,  
B12  
O, TS,  
ID  
SS-SMII Transmit Clock. The MAC sources this 125 MHz clock as the  
timing reference for TXD and TX_SYNC. Only TX_CLK0 is used when 1x8  
port sectionalization is selected. See “Clock/SYNC Requirements” on page 58 for  
detailed clock requirements.  
32  
201  
C8,  
D17  
TX_CLK0  
TX_CLK1  
I, ID  
SS-SMII Receive Clock. The LXT9785 generates these clocks, based on  
REFCLK, to provide a timing reference for RXD and RX_SYNC to the MAC.  
RX_CLK1 used and RX_CLK0 is tri-stated when 1x8 port sectionalization is  
selected. See “Clock/SYNC Requirements” on page 58 for detailed clock  
requirements. These outputs are only enabled when SS-SMII mode is  
enabled.  
60  
21  
E3,  
B11  
RX_CLK0  
RX_CLK1  
O, TS,  
ID  
54  
45  
36  
27  
15  
7
B1,  
B4,  
C7,  
B9,  
C12,  
B15,  
B17,  
F14  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
Receive Data - Ports 0-7. These serial output streams provide data received  
from the network. The LXT9785 drives the data out synchronously to  
REFCLK.  
O, TS,  
ID  
205  
197  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. RXD[0:7], RXSYNC[0:1], and RXCLK[0:1] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W  
reset.  
42  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 8. MDIO Control Interface Signals  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3,4  
PQFP  
PBGA  
Management Data Input/Output. Bidirectional serial data channel for  
communication between the PHY and MAC or switch ASIC. Only MDIO0  
is used when 1x8 port sectionalization is selected. In 2x4 port  
sectionalization mode, MDIO0 accesses ports 0-3 and MDIO1 accesses  
Ports 4-7. For an example, refer to Figure 22 on page 72.  
64  
25  
F3,  
A10  
MDIO0  
MDIO1  
I/O, TS, SL,  
IP  
Management Data Interrupt. When bit 18.1 = 1, an active Low output on  
this Pin indicates status change. Only MDINT0 is used when 1x8 port  
67  
26  
F1,  
C9  
MDINT0  
MDINT1  
OD,TS, SL, sectionalization is selected. In 2x4 port sectionalization mode, MDINT0  
IP  
is associated with Ports 0-3 and MDINT1 is associated with Ports 4-7. For  
an example, refer to Figure 22 on page 72.  
Management Data Clock. Clock for the MDIO serial data channel.  
Maximum frequency is 20 MHz. Only MDC0 is used when 1x8 port  
sectionalization is selected. In 2x4 port sectionalization mode, MDC0  
clocks Ports 0-3 register accesses and MDC1 clocks Ports 4-7 register  
accesses. For an example, refer to Figure 22 on page 72.  
63  
24  
E1,  
B10  
MDC0  
MDC1  
I, ST, ID  
Management Disable. When MDDIS is tied High, the MDIO port is  
completely disabled and the Hardware Control Interface pins set their  
respective bits at power up and reset.  
When MDDIS is pulled Low at power up or reset, via the internal pull-down  
resistor or by tieing it to ground, the Hardware Control Interface Pins  
control only the initial or defaultvalues of their respective register bits.  
After the power-up/reset cycle is complete, bit control reverts to the MDIO  
serial channel.  
84  
L1  
MDDIS  
I, ST, ID  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. MDIO[0:1] and MDINT[0:1] outputs are tri-stated in H/W Power-Down mode and during H/W reset.  
4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation, where X is the  
register number (0-32) and Y is the bit number (0-15).  
Datasheet  
43  
LXT9785 Advanced 10/100 8-Port PHY  
Table 9. LXT9785 Signal Detect  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Signal Detect 2.5 Volt Interface. When the SD interface is at 2.5 V, tie this  
input to VCCPECL. Floating this input or tieing it to GNDPECL indicates that  
a 3.3 V SD interface is being used.  
95  
P1  
SD_2P5V  
I, ST, ID  
96  
97  
P2,  
N4,  
P3,  
N5,  
P15,  
P16,  
P17,  
N17  
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SD7  
Signal Detect - Ports 0-7. The SD inputs are only applicable for ports set in  
Fiber mode.  
100  
101  
161  
162  
165  
166  
I
When SD is high, the process of searching for receive idles for the purpose of  
bring link up is initiated.  
If SD is low, link is declared lost.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. Tie SD[0:7] inputs to GNDPECL if unused.  
Table 10. LXT9785 Network Interface Signal Descriptions  
Pin/Ball Designation  
Symbol  
Type1  
Signal Description  
PQFP  
PBGA  
107, 108  
111, 110  
121, 122  
125, 124  
136, 137  
140, 139  
150, 151  
154, 153  
T2, U1,  
T3, R4,  
T6, U5,  
U7, T7,  
T10, R10,  
T11, U11,  
T14,U15,  
R14, T15  
TPFOP0, TPFON0  
TPFOP1, TPFON1  
TPFOP2, TPFON2  
TPFOP3, TPFON3  
TPFOP4, TPFON4  
TPFOP5, TPFON5  
TPFOP6, TPFON6  
TPFOP7, TPFON7  
Twisted-Pair/Fiber Outputs2, Positive & Negative,  
Ports 0-7.  
During 100BASE-TX or 10BASE-T operation, TPFO pins drive  
802.3 compliant pulses onto the line.  
AO/AI  
During 100BASE-FX operation, TPFO pins produce differential  
PECL outputs for fiber transceivers.  
104, 105  
115, 114  
118, 119  
129, 128  
132, 133  
143, 142  
146, 147  
157, 156  
R2, T1,  
U3, T4,  
R6, T5,  
T8, R8,  
TPFIP0, TPFIN0  
TPFIP1, TPFIN1  
TPFIP2, TPFIN2  
TPFIP3, TPFIN3  
TPFIP4, TPFIN4  
TPFIP5, TPFIN5  
TPFIP6, TPFIN6  
TPFIP7, TPFIN7  
Twisted-Pair/Fiber Inputs3, Positive & Negative,  
Ports 0-7.  
During 100BASE-TX or 10BASE-T operation, TPFI pins receive  
differential 100BASE-TX or 10BASE-T signals from the line.  
AI/AO  
T9, U9,  
U13, T12,  
R12, T13,  
R16, T16  
During 100BASE-FX operation, TPFI pins receive differential  
PECL inputs from fiber transceivers.  
1. Type Column Coding: AI = Analog Input, AO = Analog Output.  
2. Switched to Inputs (see TPFIP/N desc.) when not in Fiber mode and MDIX is not active [i.e., Twisted-Pair, non-crossover MDI  
mode].  
3. Switched to Outputs (see TPFOP/N desc.) when not in Fiber mode and MDIX is not active [i.e., Twisted-Pair, non-crossover  
MDI mode].  
44  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 11. LXT9785 JTAG Test Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
167  
PBGA  
N14  
TDI  
I, ST, IP  
O, TS  
Test Data Input. Test data sampled with respect to the rising edge of TCK.  
Test Data Output. Test data driven with respect to the falling edge of TCK.  
Test Mode Select.  
168  
169  
170  
171  
N15  
N16  
M16  
M17  
TDO  
TMS  
TCK  
I, ST, IP  
I, ST, ID  
I, ST, IP  
Test Clock. Clock input for JTAG test.  
TRST  
Test Reset. Reset input for JTAG test.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Tri-State-able output, SMT = Schmitt Triggered input, SL  
= Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. TDO output is tri-stated in H/W Power-Down mode and during H/W reset.  
Datasheet  
45  
LXT9785 Advanced 10/100 8-Port PHY  
Table 12. LXT9785 Miscellaneous Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Tx Output Slew Controls 0 and 1 Defaults.  
These pins are read at startup or reset. Their value at that time is used to  
set the default state of register bits 27.11:10 for all ports. These register  
bits can be read and overwritten after startup / reset.  
These pins select the TX output slew rate for all ports (rise and fall time)  
as follows:  
TxSLEW_0  
TxSLEW_1  
94  
93  
N3,  
M4  
I, ST, ID  
TxSLEW_1  
TxSLEW_0  
Slew Rate (Rise and Fall Time)  
0
0
1
1
0
1
0
1
3.3 ns  
3.6 ns  
3.9 ns  
4.2 ns  
Pause Default. This pin is read at startup or reset. Its value at that time is  
used to set the default state of register bit 4.10 for all ports. This register  
bit can be read and overwritten after startup / reset.  
When High, the LXT9785 advertises Pause capabilities on all ports during  
auto-negotiation.  
50  
D5  
PAUSE  
I, ID  
This pin is shared with RMII-RXER1. An external pull-up resistor (see  
applications section for value) can be used to set Pause active while  
RXER1 is tri-stated during H/W reset. If no pull-up is used, the default  
Pause state is set inactive via the internal pull-down resistor.  
Power-Down. When High, forces the LXT9785 into global power-down  
mode.  
174  
175  
L14  
PWRDWN  
RESET  
I, ST, ID  
I, ST, IP  
Pin is not on JTAG chain.  
Reset. This active low input is ORed with the control register Reset bit  
(0.15). When held Low, all outputs are forced to inactive state.  
M15  
Pin is not on JTAG chain  
Address <4:0>. Sets base address. Each port adds its port number  
(starting with 0) to this address to determine its PHY address.  
Port 0 Address = Base  
88  
89  
90  
91  
92  
L4,  
M2,  
M3,  
N1,  
N2  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
Port 1 Address = Base + 1  
Port 2 Address = Base + 2  
Port 3 Address = Base + 3  
Port 4 Address = Base + 4  
Port 5 Address = Base + 5  
Port 6 Address = Base + 6  
Port 7 Address = Base + 7  
I, ST, ID  
Mode Select[1:0]  
00 = RMII  
01 = SMII  
10 = SS-SMII  
11= Reserved  
178  
177  
L17,  
L16  
MODESEL_1  
MODESEL_0  
I, ST, ID  
All ports are configured the same. Interfaces cannot be mixed and must  
be all RMII, SMII, or SS-SMII.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
46  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 12. LXT9785 Miscellaneous Signal Descriptions (Continued)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Sectionalization Select. This pin selects sectionalization into separate  
ports.  
176  
L15  
K1  
SECTION  
I, ST, ID  
0 = 1x8 ports,  
1 = 2x4 ports  
Auto-MDIX Enable Default. This pin is read at startup or reset. Its value  
at that time is used to set the default state of register bit 27.9 for all ports.  
These register bits can be read and overwritten after startup / reset. Refer  
to Table 16 on page 53.  
83  
AMDIX_EN  
I, ST, IP  
When active (high), automatic MDI crossover (MDIX) (regardless of  
segmentation) is selected for all ports. When inactive (low) MDIX is  
selected according to the MDIX pin.  
MDIX Select Default. This pin is read at startup or reset. Its value at that  
time is used to set the default state of register bit 27.8 for all ports. These  
register bits can be read and overwritten after startup / reset. Refer to  
Table 16 on page 53.  
When AMDIX_EN is active this pin is ignored.  
When AMDIX_EN is inactive, all ports are forced to the MDI or the MDIX  
function regardless of segmentation. If this pin is active (high), MDI  
crossover (MDIX) is selected. If this pin is inactive, non-crossover MDI  
mode is set.  
59  
D2  
MDIX  
I, ID  
This pin is shared with RMII-RXER0. An external pull-up resistor (see  
applications section for value) can be used to set MDIX active while  
RXER0 is tri-stated during H/W reset. If no pull-up is used, the default  
MDIX state is set inactive via the internal pull-down resistor. Do not tie this  
pin directly to VCCIO (vs. using a pull-up) in non-RMII modes.  
Global Port Configuration Defaults 1-3. These pins are read at startup  
or reset. Their value at that time is used to set the default state of register  
bits shown in Table 18 on page 62 for all ports. These register bits can be  
read and overwritten after startup / reset.  
85  
86  
87  
L2,  
L3,  
M1  
CFG_3  
CFG_2  
CFG_1  
I, ST, ID  
I, ST, ID  
When operating in Hardware Control Mode, these pins provide  
configuration control options for all the ports (refer to page 62 for details).  
Global FX/TP Enable Default. This pin is read at startup or reset. Its  
value at that time is used to set the default state of register bit 16.0 for all  
ports. These register bits can be read and overwritten after startup /  
reset. Refer to “Port Configuration Register (Address 16, Hex 10)on  
page 127.  
173  
M14  
G_FX/TP  
This input selects whether all the ports are defaulted to TP vs. FX mode.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Datasheet  
47  
LXT9785 Advanced 10/100 8-Port PHY  
Table 13. LXT9785 LED Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Port 0 LED Drivers 1-3. These pins drive LED indicators for Port 0.  
OD, TS, SL, Each LED can display one of several available status conditions as  
82  
81  
80  
K3,  
K2,  
J1  
LED0_1  
LED0_2  
LED0_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 1 LED Drivers 1-3. These pins drive LED indicators for Port 1.  
OD, TS, SL, Each LED can display one of several available status conditions as  
77  
76  
75  
J4,  
J3,  
H1  
LED1_1  
LED1_2  
LED1_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 2 LED Drivers 1-3. These pins drive LED indicators for Port 2.  
OD, TS, SL, Each LED can display one of several available status conditions as  
73  
72  
71  
H2,  
H3,  
G1  
LED2_1  
LED2_2  
LED2_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 3 LED Drivers 1-3. These pins drive LED indicators for Port 3.  
OD, TS, SL, Each LED can display one of several available status conditions as  
70  
69  
68  
F2,  
G3,  
G4  
LED3_1  
LED3_2  
LED3_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 4 LED Drivers 1-3. These pins drive LED indicators for Port 4.  
OD, TS, SL, Each LED can display one of several available status conditions as  
180  
181  
182  
K16,  
K17,  
J17  
LED4_1  
LED4_2  
LED4_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 5 LED Drivers 1-3. These pins drive LED indicators for Port 5.  
OD, TS, SL, Each LED can display one of several available status conditions as  
185  
186  
187  
J15,  
J16,  
H17  
LED5_1  
LED5_2  
LED5_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 6 LED Drivers 1-3. These pins drive LED indicators for Port 6.  
OD, TS, SL, Each LED can display one of several available status conditions as  
189  
190  
191  
H15,  
H16,  
G17  
LED6_1  
LED6_2  
LED6_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
Port 7 LED Drivers 1-3. These pins drive LED indicators for Port 7.  
OD, TS, SL, Each LED can display one of several available status conditions as  
192  
193  
194  
G15,  
F17,  
F16  
LED7_1  
LED7_2  
LED7_3  
IP  
selected by the LED Configuration Register (refer to Table 70 on  
page 131 for details).  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. The LED outputs are tri-stated in H/W Power-Down mode and during H/W reset.  
48  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 14. LXT9785 Power Supply Signal Descriptions  
Pin/Ball Designation  
Symbol  
Type  
Signal Description  
PQFP  
PBGA  
65, 78, 184, G13, J14,  
VCCD  
-
-
Digital Power Supply - Core. +2.5V supply for core digital circuits.  
196  
F5, J5  
Digital Power Supply - I/O Ring. +2.5/3.3V supply for digital I/O  
circuits. The digital input circuits running off of this rail, having a TTL-level  
threshold and over-voltage protection, may be interfaced with 3.3/5.0 V,  
when the IO supply is 3.3V, and 2.5/3.3/5.0 V when 2.5V.  
A2, A8,  
C1, C11,  
D14  
18, 29, 47,  
56, 208  
VCCIO  
VCCPECL  
VCCR  
Digital Power Supply - PECL Signal Detect Inputs. +2.5/3.3V supply  
for PECL Signal Detect input circuits. If Fiber Mode is not used, tie these  
pins to GNDPECL to save power.  
98, 164  
L13, L5  
-
-
-
103, 116,  
117, 130,  
131, 144,  
145, 158  
N13, P4,  
P7, P8,  
P9, P10,  
P11, P12  
Analog Power Supply - Receive. +2.5V supply for all analog receive  
circuits.  
N6, N7,  
N9, N11,  
N12  
109, 123,  
138, 152  
Analog Power Supply - Transmit. +2.5V supply for all analog transmit  
circuits.  
VCCT  
A1, A9,  
B3, B7,  
C5, C13,  
C17, D1,  
D3, D6,  
D10, D15,  
E5, E7,  
E9, E11,  
E13, E17,  
F13, H8,  
H9, H10,  
J8, J9,  
66, 79,  
183, 195  
Digital Ground. Ground return for core digital supplies (VCCD). All  
ground pins can be tied together using a single ground plane.  
GNDD  
-
J10, K8,  
K9, K10  
9, 19, 30,  
38, 48, 57,  
74, 188,  
GNDIO  
-
-
-
Digital GND - I/O Ring. Ground return for digital I/O circuits (VCCIO).  
199, 207  
Digital GND - PECL Signal Detect Inputs. Ground return for PECL  
Signal Detect input circuits.  
99, 163  
M5, M13  
GNDPECL  
GNDR  
106, 112,  
120, 126,  
135, 141,  
149, 155  
P5, P6,  
P13, R7,  
R9, R11,  
R13, U8  
Analog Ground - Receive. Ground return for receive analog supply. All  
ground pins can be tied together using a single ground plane.  
P14, R1,  
R3, R5,  
R15, R17,  
T17, U2,  
U4, U6,  
U10, U12,  
U14, U16,  
U17  
113, 127,  
134, 148  
Analog Ground - Transmit. Ground return for transmit analog supply.  
All ground pins can be tied together using a single ground plane.  
GNDT  
SGND  
-
-
Substrate Ground. Ground for chip substrate. All ground pins can be  
tied together using a single ground plane.  
179  
K14  
Datasheet  
49  
LXT9785 Advanced 10/100 8-Port PHY  
Table 15. Unused / Reserved Pins  
Pin/Ball Designation  
Symbol  
Type1  
Signal Description  
PQFP  
PBGA  
F15, G2,  
G5, G14,  
G16, H4,  
H14, J2,  
J13, K4,  
K15  
N/C  
N/C  
No Connection.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
50  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
2.0  
Functional Description  
2.1  
Introduction  
The LXT9785 is an 8-port Fast Ethernet 10/100 PHY transceiver that supports 10Mbps and  
100Mbps networks, complying with all applicable requirements of IEEE 802.3 standards. The  
device incorporates a Serial MII (SMII), Source Synchronous SMII (SS-SMII), and a Reduced MII  
(RMII) to enable each individual network port to interface with multiple 10/100 MACs. Each port  
directly drives either a 100BASE-TX line or a 10BASE-T line. The LXT9785 also supports  
100BASE-FX operation via a Pseudo-ECL (PECL) interface. The device has a 241-pin BGA or a  
208- pin QFP package.  
2.1.1  
OSP™ Architecture  
The Intel LXT9785 incorporates high-efficiency Optimal Signal Processingdesign techniques,  
combining the best properties of digital and analog signal processing to produce a truly optimal  
device.  
The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by  
as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques  
in the receive equalizer avoids the quantization noise and calculation truncation errors found in  
traditional DSP-based receivers (typically complex DSP engines with A/D converters). The result  
is improved receiver noise and cross-talk performance.  
The OSP architecture also requires substantially less computational logic than traditional DSP-  
based designs. The result is lower power consumption and reduced logic switching noise generated  
by DSP engines clocked at speeds up to 125 MHz. The logic switching noise can be a considerable  
source of EMI when generated from the devices power supplies.  
The OSP-based LXT9785 provides improved data recovery, EMI performance and power  
consumption.  
2.1.2  
Comprehensive Functionality  
The LXT9785 performs all functions of the Physical Coding Sublayer (PCS) and Physical Media  
Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. This device  
also performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX  
connections.  
On power-up, the LXT9785 reads its configuration inputs to check for forced operation settings. If  
not configured for forced operation, each port uses auto-negotiation/parallel detection to  
automatically determine line operating conditions. If the PHY device on the other side of the link  
supports auto-negotiation, the LXT9785 auto-negotiates with it using Fast Link Pulse (FLP)  
Bursts. If the PHY partner does not support auto-negotiation, the LXT9785 automatically detects  
the presence of either link pulses (10Mbps PHY) or Idle symbols (100Mbps PHY) and set its  
operating conditions accordingly.  
The LXT9785 provides half-duplex and full-duplex operation at 100Mbps and10Mbps.  
Datasheet  
51  
LXT9785 Advanced 10/100 8-Port PHY  
2.1.2.1  
Sectionalization  
The LXT9785s sectional design allows flexibility with large multiport MACs and ASICs. With the  
use of the Section pin, the LXT9785 can be configured into a single 8-port or two separate 4-port  
sections, each with its own MDIO (with separate MDC clock) and MII data (with separate  
REFCLK/TX_CLK/RX_CLK clocks) interfaces. See Figure 17 on page 66, Figure 22 on page 72,  
and Figure 27 on page 77.  
2.2  
Interface Descriptions  
2.2.1  
10/100 Network Interface  
The LXT9785 supports both 10BASE-T and 100BASE-TX Ethernet over twisted-pair, or  
100Mbps Ethernet over fiber media (100BASE-FX). Each network interface port consists of four  
external pins (two differential signal pairs). The pins are shared between twisted-pair (TP) and  
fiber. The LXT9785 pinout is designed to interface seamlessly with dual-high stacked RJ-45  
connectors. Refer to Table 10 on page 44 for specific pin assignments.  
The LXT9785 output drivers generate either 100BASE-TX, 10BASE-T, or 100BASE-FX output.  
When not transmitting data, the device generates IEEE 802.3-compliant link pulses or idle code.  
Input signals are decoded either as a 100BASE-TX, 100BASE-FX, or 10BASE-T input, depending  
on the mode selected. Auto-negotiation/parallel detection or manual control is used to determine  
the speed of this interface.  
Figure 8. LXT9785 Interfaces  
TXENn  
TXDn_0  
TXDn_1  
TXCLK  
TPFOPn  
TPFONn  
Network  
I/F  
DATA  
I/F  
RXCLK  
RXDn_1  
TPFIPn  
TPFINn  
RXDn_0  
RXERn  
CRS_DVn  
MDIOn  
MDCn  
MDIO  
Mgmt  
I/F  
MDINTn  
MDDIS  
Direct Drive  
LEDn_2  
Port LEDs/  
Controls  
LEDn_2  
LEDn_3  
+3.3V  
OR  
+2.5V  
MDIX_Enb  
Mode Select  
ADD<4:0>  
Addr &  
MDIX/  
Contr  
VCCIO  
VCCD  
GNDD  
+2.5V  
.01uF  
52  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
2.2.1.1  
Twisted-Pair Interface  
The LXT9785 supports either 100BASE-TX or 10BASE-T connections over 100Ω, Category 5,  
Unshielded Twisted-Pair (UTP). Only a transformer, load resistors, RJ-45, and bypass capacitors  
are required to complete this interface. Using Intels patented waveshaping technology, the  
transmitter shapes the outgoing signal to help reduce the need for external EMI filters. Four slew  
rate settings (refer to Table 12 on page 46) allow the designer to match the output waveform to the  
magnetic characteristics. Both transmit and receive terminations are built into the LXT9785 so no  
external components are required between the LXT9785 and the external transformer. The  
transmitter uses a transformer with a center tap to help reduce power consumption.  
When operating at 100Mbps, MLT3 symbols are continuously transmitted and received. When not  
transmitting data, the LXT9785 generates IDLEsymbols.  
During 10Mbps operation, LXT9785 encoded data is exchanged. When no data are being  
exchanged, the line is left in an idle state.  
2.2.1.2  
MDI Crossover (MDIX)  
The LXT9785 crossover function, which is compliant to the IEEE 802.3, clause 23 standard,  
connects the transmit output of the device to the far-end receiver in a link segment. This function  
can be disabled via register bit 27.9:8 or by using the hardware configuration pins.  
Table 16. MDIX Selection  
AMDIX_EN  
MDIX  
MDIX Mode  
0
0
1
0
1
X
MDIX Disabled  
MDIX forced  
AUTO-MDIX  
2.2.1.3  
Fiber Interface  
The LXT9785 provides a PECL interface that complies with the ANSI X3.166 specification. This  
interface is suitable for driving a fiber-optic coupler (see Figure 35 on page 93).  
Fiber ports cannot be enabled via auto-negotiation and must be enabled via the Global Hardware  
Control Interface pins or MDIO registers. All ports are selected for fiber or twisted-pair when  
configured via hardware, and can only be intermixed via software. Using external circuitry, the  
LXT9785 can interface the fiber transceiver with 2.5V, 3.3V, or 5V supply voltages. Fiber mode  
per port may be selected using register 16.0. Please refer to Table 10 on page 44 for correct pin  
assignments.  
2.3  
Media Independent Interface (MII) Interfaces  
The LXT9785 supports Reduced MII or Serial MII, but not concurrently. The interface mode  
selection pins configures the device for either RMII or SMII/SS-SMII on all eight ports. Refer to  
Table 17 for the mode select settings.  
Datasheet  
53  
LXT9785 Advanced 10/100 8-Port PHY  
2.3.1  
Global MII Mode Select  
The mode select pins are used for MII interface configuration settings upon power-up sequencing.  
All ports are configured the same and cannot be intermixed.  
Table 17. MII Mode Select  
ModeSel1  
ModeSel0  
RMII  
SMII  
0
0
1
1
0
1
0
1
SS-SMII  
Reserved  
2.3.2  
Internal Loopback  
A test loopback function is available for 10Mbps and 100Mbps mode testing. Bits 0.8, 0.13, and  
0.14 must be set to 1 for correct operation. When data is looped back, whatever the MAC transmits  
is looped back in its entirety, including the preamble.  
Figure 9. Internal Loopback  
LXT9785  
Fx  
Driver  
RMII/  
SMII/  
SS-  
SMII  
inter  
face  
Analog  
Block  
Digital  
Block  
Loopback  
Tx  
Driver  
2.3.3  
RMII Data Interface  
The LXT9785 provides a separate RMII for each network port, each complying with the RMII  
standard. The RMII includes both a data interface and an MDIO management interface. The RMII  
Data Interface exchanges data between the LXT9785 and up to eight Media Access Controllers  
(MACs).  
2.3.4  
Serial Media Independent Interface (SMII) and Source Synchronous  
Data Interfaces  
2.3.4.1  
SMII Interface  
The LXT9785 provides an independent serial interface for each network port. All SMII ports use a  
common reference clock and SYNC signal. The SMII Data Interface exchanges data between the  
LXT9785 and multiple Media Access Controllers (MACs). All signals are synchronous to the  
54  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
reference clock. One SYNC control stream is sourced by the MAC to the PHY. Both the transmit  
and receive data streams are segmented into boundaries delimited by the SYNC pulses. This  
interface is expected to operate up to 6 inches of trace lengths.  
2.3.4.2  
Source Synchronous Interface  
The new revision to the SMII interface, SS-SMII, allows for a longer trace length and helps to  
relieve timing constraints, requiring the addition of four new signals, TxCLK, TxSYNC, RxCLK,  
and RxSYNC. The transmit TxClk and TxSync are sourced from the MAC to the PHY and  
referenced to the RefCLK input. The receive RxCLK and RxSync are sourced by the PHY to the  
MAC and in reference to the RefCLK.  
2.3.5  
2.3.6  
Configuration Management Interface  
The LXT9785 provides an MDIO Management Interface and a Hardware Control Interface (via the  
CFG pins) for device configuration and management. Mode control selection is provided via the  
MDDIS pin as shown in Table 8 on page 43. When sectionalization (2x4) is selected, separate  
MDIO interfaces are enabled (see Figure 14 on page 60).  
MII Isolate  
In applications where the MII needs to be isolated from the bus, the RMII and the SMII/SS-SMII  
configurations can be tri-stated using Register 0.10. Ports 0 and 1 control RxClk0, RxClk1,  
RxSync0, and RxSync1. When 2x4 sectionalization is selected, ports 1-3 and 5-7 can be  
individually port isolated. For global shut down, Ports 0 and 1 must be isolated to control the  
RxClkn and RxSyncn synchronization pins. If ports 0 and 1 are individually set to isolate, the  
remaining associated quad sectionalization ports must also be set to isolate.  
2.3.6.1  
MDIO Management Interface  
The LXT9785 supports the IEEE 802.3 MII Management Interface, also known as the  
Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to  
monitor and control the state of the LXT9785. The MDIO interface consists of a physical  
connection, a specific protocol that runs across the connection, and an internal set of addressable  
registers. Some registers are required and their functions are defined by the IEEE 802.3  
specification. Additional registers allow for expanded functionality. Specific bits in the registers  
are referenced using an X.Ynotation, where X is the register number (0-32) and Y is the bit  
number (0-15).  
The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this  
interface is controlled by the MDDIS input pin. When MDDIS is High, all the MDIOs are  
completely disabled. The Hardware Control Interface provides primary configuration control.  
When MDDIS is Low, the MDIO port is enabled for both read and write operations and the  
Hardware Control Interface is not used. The timing for the MDIO Interface is shown in Table 53  
on page 117. MDIO read and (write) cycles are shown in Figure 10 (read) and Figure 11 (write)  
on page 56.  
Datasheet  
55  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 10. Management Interface Read Frame Structure  
MDC  
MDIO  
(Read)  
D0  
A4  
A3  
A0  
R4  
R3  
R0  
D14 D1  
D15  
Z
0
32 "1"s  
0
1
1
0
Turn  
Around  
Data  
Read  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
High Z  
Write  
Figure 11. Management Interface Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Data  
Idle  
Write  
The protocol allows one controller to communicate with multiple LXT9785 chips. Pins  
ADD_<4:0> determine the base address. Each port adds its port number to the base address to  
obtain its port address as shown in Figure 12.  
Figure 12. Port Address Scheme  
BASE ADD_<4:0>  
(example ADD_<4:0> = 4)  
LXT9785  
PHY ADD_<4:0> (BASE+0)  
ex. 4  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
PHY ADD_<4:0> (BASE+1)  
ex. 5  
PHY ADD_<4:0> (BASE+2)  
ex. 6  
PHY ADD_<4:0> (BASE+3)  
ex. 7  
PHY ADD_<4:0> (BASE+4)  
ex. 8  
PHY ADD_<4:0> (BASE+5)  
ex. 9  
PHY ADD_<4:0> (BASE+7)  
ex. 11  
Port 7  
56  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
2.3.6.2  
MII Sectionalization  
When sectionalized into two quad sections, the MDIO bus splits into two separate PHY access  
ports. Ports 0-3 of the MDIO section operate independently of ports 4-7. The MII isolate function  
is unaffected and operates normally. Sectionalization is selected by pulling pin 176 High on the  
initial power-up sequence (refer to Figure 14 on page 60). In applications that need  
sectionalization, such as 1x8 and 2x4 and have a single MDIO bus structure, it is necessary that the  
addressing scheme be contiguous. For example, the first eight ports are addressed 0-7, so the next  
four ports must be addressed 8-11.  
2.3.6.3  
MII Interrupts  
The LXT9785 provides a single per-section interrupt pin that is available to all ports. Interrupt  
logic is shown in Figure 13. The LXT9785 also provides two dedicated interrupt registers for each  
port. Register 18 provides interrupt enable and mask functions and Register 19 provides interrupt  
status. Setting bit 18.1 to 1 enables a port to request interrupt via the MDINT pin. An active Low  
on this pin indicates a status change on the device. Because it is a shared interrupt, there is no  
indication which port is requesting interrupt service (see Figure 13).  
There are five conditions that may cause an interrupt:  
Auto-negotiation complete.  
Speed status change.  
Duplex status change.  
Link status change.  
Isolate status change.  
Figure 13. Interrupt Logic  
Event X Enable Reg  
AND  
Event X Status Reg  
OR  
Port  
Combine  
Logic  
Interrupt Pin  
AND  
.
.
.
.
.
Per Event  
.
Per port  
Force Interrupt  
Interrupt Enable  
Interrupt (Event) Status Register is cleared on read.  
X = Any Interrupt capability  
2.3.6.4  
Hardware Control Interface  
The LXT9785 provides a Hardware Control Interface for applications where the MDIO is not  
desired. Refer to Initializationon page 59 for additional details.  
Datasheet  
57  
LXT9785 Advanced 10/100 8-Port PHY  
2.4  
Operating Requirements  
2.4.1  
Power Requirements  
The LXT9785 requires four power supply inputs: VCCD, VCCA, VCCPECL and VCCIO. The  
digital and analog circuits require 2.5V supplies (VCCD, VCCR, and VCCT). These inputs may be  
supplied from a single source although decoupling is required to each respective ground. The fiber  
VCCPECL supply can be connected to either 2.5V or 3.3V.  
A separate power supply may be used for the MII, JTAG and MDIO (VCCIO) interfaces. The  
power supply may be either +2.5V or +3.3V. VCCIO should be supplied from the same power  
source used to supply the controller on the other side of the interface. Refer to Table 27 on page 94  
for I/O characteristics.  
As a matter of good practice, these supplies should be as clean as possible. Typical filtering and  
decoupling are shown in Figure 33 on page 92.  
2.4.2  
Clock/SYNC Requirements  
Reference Clock  
2.4.2.1  
The LXT9785 requires a constant enabled reference clock (REFCLK). REFCLKs frequency must  
be 50 MHz for RMII or 125 MHz for SMII/SS-SMII. The reference clock is used to generate  
transmit signals and recover receive signals. A crystal-based clock is recommended over a derived  
clock (i.e., PLL-based) to minimize transmit jitter. Refer to Table 30 on page 96 for clock timing  
requirements.  
For applications that use a single 8-port sectionalization, RefClk0 and RefClk1 must always be tied  
together and to the source.  
2.4.2.2  
2.4.2.3  
2.4.2.4  
2.4.2.5  
TxClk Signal (SS-SMII only)  
The LXT9785 requires a 125 MHz input transmit clock synchronous with TxDatan. See Figure 23  
on page 73.  
TxSYNC Signal (SMII/SS-SMII)  
The LXT9785 requires a 12.5 MHz input pulse for SMII synchronization. See Figure 23 on page  
73.  
RxSYNC Signal (SS-SMII only)  
The LXT9785 provides a 12.5 MHz output pulse synchronous with the RxDATAn outputs. See  
Figure 24 on page 73.  
RxCLK Signal (SS-SMII only)  
In SMII mode, the LXT9785 provides a 125 MHz clock output in reference to the output  
RxDATAn. Rx Clk is referenced and synchronized to the RefCLK. See Figure 24 on page 73.  
58  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
2.5  
Initialization  
When the LXT9785 is first powered on, reset, or encounters a link failure state, it checks the MDIO  
register configuration bits to determine the line speed and operating conditions to use for the  
network link. The configuration bits may be set by the Hardware Control or MDIO interface as  
shown in Figure 14 on page 60.  
2.5.1  
2.5.2  
MDIO Control Mode  
In the MDIO Control mode, the LXT9785 reads the Hardware Control Interface pins to set the  
initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts to  
the MDIO interface.  
Hardware Control Mode  
In the Hardware Control Mode, the LXT9785 disables direct write operations to the MDIO  
registers via the MDIO Interface. On power-up or hardware reset, the LXT9785 reads the  
Hardware Control Interface pins and sets the MDIO registers accordingly.  
The following modes are available using either Hardware Control or MDIO Control:  
Force network link to 100BASE-FX (Fiber).  
Force network link operation to:  
100BASE-TX, Full-Duplex  
100BASE-TX, Half-Duplex  
10BASE-T, Full-Duplex  
10BASE-T, Half-Duplex  
Allow auto-negotiation/parallel-detection.  
Auto/Manual MDIX enable/disable.  
Pause for full duplex links operation.  
Global Output Slew Rate Control.  
When the network link is forced to a specific configuration, the LXT9785 immediately begins  
operating the network interface as commanded. When auto-negotiation is enabled, the LXT9785  
begins the auto-negotiation/ parallel-detection operation.  
Datasheet  
59  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 14. Initialization Sequence  
Power-up or Reset  
Read H/W Control  
Interface  
Initialize MDIO Registers  
MDIO Control  
Mode  
Hardware Control  
Mode  
MDDIS Voltage  
Level?  
Low  
High  
Pass Control to MDIO  
Interface  
Disable MDIO Writes  
Software  
Reset?  
Hardware  
Reset?  
Yes  
Yes  
Reset MDIO Registers to  
values read at H/W  
Control Interface at last  
Hardware Reset  
2.5.3  
Power-Down Mode  
The LXT9785 incorporates numerous features to maintain the lowest power possible. The device  
can be put into a low-power state via register 0 as well as a near-zero power state with the power  
down pin. When in power-down mode, the device is not capable of receiving or transmitting  
packets.  
The lowest power operation is achieved using the Global power-down pin. This pin powers down  
every circuit in the device, including all clocks. This power-down pin is active High. All registers  
are unaltered and maintained when the Global PWRDWN pin is released.  
Individual ports (software power down) can be powered down using Control Register 0, bit 1. This  
bit powers down a significant portion of the port, but clocks to the register section remain active.  
This allows the management interface to remain active during register power-down. The power-  
down bit is active High.  
2.5.3.1  
Global (Hardware) Power Down  
The global power-down mode is controlled by the PWRDWN pin. When PWRDWN is High, the  
following conditions are true:  
All LXT9785 ports and the clock are shut down.  
60  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
All outputs are tri-stated.  
All weak pad pull-up and pull-down resistors are disabled.  
The MDIO registers are not accessible.  
Configuration pins are not read upon release of the PWRDWN pin, and registers are reloaded  
with the value of the last Hardware reset.  
2.5.3.2  
Port (Software) Power Down  
Individual port power-down control is provided by bit 0.11 in the respective port Control Registers  
(refer to Table 57 on page 120). During individual port power-down, the following conditions are  
true:  
The individual port is shut down.  
The MDIO registers remain accessible.  
Pull-up and pull-down resisters are not affected and the outputs are not tri-stated.  
The register remains unchanged.  
2.5.4  
Reset  
The LXT9785 provides both hardware and software resets. Configuration control of Auto-  
Negotiation, speed, and duplex mode selection is handled differently for each. During a hardware  
reset, settings for bits 0.13, 0.12, and 0.8 are read in from the pins (refer to Table 18 for pin settings  
and Table 57 on page 120 for register bit definitions).  
During a software reset (0.15 = 1), the bit settings are not re-read from the pins, and revert back to  
the values that were read in during the last hardware reset. Any changes to pin values from the last  
hardware reset is not detected during a software reset.  
During a hardware reset, register information is unavailable for 1 ms after deassertion of the reset.  
All MII interface pins are disabled during a hardware reset and released to the bus on deassertion  
of reset.  
During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be  
polled to see when the part has completed reset (0.15 = 0). Pull up and pull down resisters are not  
affected.  
Datasheet  
61  
LXT9785 Advanced 10/100 8-Port PHY  
2.5.5  
Hardware Configuration Settings  
The LXT9785 provides a hardware option to set the initial device configuration. The hardware  
option uses three Global CFG pins that provide control for all ports (see Table 18).  
Table 18. Global Hardware Configuration Settings  
CFG  
Desired Mode  
Resulting Register Bit Values  
Pin Settings1  
AutoNeg  
Speed  
Duplex  
1
2
3
0.12  
0.13  
0.8  
4.8  
4.7  
4.6  
4.5  
Half  
Full  
Half  
Full  
Half  
Full  
Half  
Full  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
0
1
0
1
0
1
0
1
10  
0
N/A  
Auto-Negotiation Advertisement  
Disabled  
0
100  
100  
1
1
1
1
1
0
1
0
1
1
1
1
1
N/A  
0
Enabled  
1
0
1
1
1
10/100  
1. Refer to for CFG pin assignments.  
2.6  
Link Establishment  
2.6.1  
Auto-Negotiation  
The LXT9785 attempts to auto-negotiate with its link partner by sending Fast Link Pulse (FLP)  
bursts. Each burst consists of 33 link pulses spaced 62.5 µs apart. Odd link pulses (clock pulses)  
are always present. Link pulses (data pulses) may also be present or absent to indicate a 1or a  
0. Each FLP burst exchanges 16 bits of data, referred to as a page. All devices that support  
auto-negotiation must implement the Base Page, defined by IEEE 802.3 (registers 4 and 5). The  
LXT9785 also supports the optional Next Pagefunction (registers 7 and 8).  
2.6.1.1  
2.6.1.2  
Base Page Exchange  
By exchanging Base Pages, the LXT9785 and its link partner communicate their capabilities to  
each other. Both sides must receive at least three identical base pages for negotiation to proceed.  
Each side finds their highest common capabilities, exchange more pages, and agree on the  
operating state of the line.  
Next Page Exchange  
Additional information, exceeding that required by base page exchange, is also sent via Next  
Pages. The LXT9785 fully supports the IEEE 802.3 method of negotiation via Next Page  
exchange. The Next Page exchange uses register 7 to send information and register 8 to receive it.  
Next Page exchange occurs only if both ends of the link advertise their ability to exchange Next  
Pages. A special mode has been added to make next page exchange easier for software. When  
register 6 pageis received, it stays set until read. This bit should be cleared whenever a new  
negotiation occurs, preventing the user from reading an old value in register 6 and assuming there  
is valid information in registers 5 and 8. Additionally, register 6 contains a new bit that indicates  
62  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
when the current received page is the base page. This information is useful for recognizing when  
next pages must be re-sent due to the start of a new negotiation process. Bit 16.1 and the page  
received bit are also cleared upon reading register 6.  
2.6.1.3  
Controlling Auto-Negotiation  
When auto-negotiation is controlled by software, the following steps are recommended:  
After power-up, power-down, or reset, the power-down recovery time, as specified in Table 54  
on page 118, must be exhausted before proceeding.  
Set the auto-negotiation advertisement register bits.  
Enable auto-negotiation (set MDIO bit 0.12 = 1).  
2.6.1.4  
Link Criteria  
In 100Mbps mode, link is established when the scrambler becomes locked and remains locked for  
approximately 50ms. Link remains up unless the descrambler receives less than 12 consecutive idle  
symbols in any 2 ms period. This provides a very robust operation, filtering out any small noise hits  
that may disrupt the link.  
In 10Mbps mode, link is established based on the link state machine found in IEEE 802.3, 14.X.  
Receiving 100Mbps idle patterns does not bring up a 10Mbps link.  
2.6.1.5  
Parallel Detection  
In parallel with auto-negotiation, the LXT9785 also monitors for 10Mbps Normal Link Pulses  
(NLP) or 100Mbps Idle symbols. If either symbol is detected, the device automatically reverts to  
the corresponding operating mode. Parallel detection allows the LXT9785 to communicate with  
devices that do not support auto-negotiation.  
Figure 15. Auto-Negotiation Operation  
Power-Up, Reset,  
Link Failure  
Start  
Disable  
Auto-Negotiation  
Enable  
0.12 = 0  
0.12 = 1  
Auto-Neg/Parallel Detection  
Check Value  
0.12  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Set?  
Datasheet  
63  
LXT9785 Advanced 10/100 8-Port PHY  
2.7  
Serial MII Operation  
The LXT9785 exchanges transmit and receive data with the controller via the Serial MII (SMII).  
The SMII performs the following functions:  
Conveys complete MII information between a 10/100 PHY and MAC with two pins per port.  
Allows a multi-port MAC/PHY communication with one system clock.  
Operates in both half and full duplex.  
Supports per-packet switching between 10Mbps and 100Mbps data rates.  
The Serial MII operates at 125 MHz using a global reference clock and frame synchronization  
signal (REFCLK and SYNC). Each port has an individual two-line data interface (TXDn and  
RXDn). All signals are synchronous to REFCLK. Table 19 summarizes the SMII signals.  
Data is exchanged in 10-bit serial words. Each word contains one data byte (two nibbles of 4B  
coded data) and two status bits. When the port is operating at 100Mbps, each word contains a new  
data byte. When the port is operating at 10Mbps, each data byte is repeated 10 times.  
Table 19. SMII Signal Summary  
Signal  
TXD  
To  
PHY  
From  
MAC  
Purpose  
Transmit data & control  
Synchronization  
SYNC  
RXD  
PHY  
MAC  
MAC  
PHY  
Receive data & control  
MAC &  
PHY  
REFCLK  
System  
Synchronization  
1. Refer to Table 5 on page 41 for detailed signal descriptions.  
64  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 16. Typical SMII Interface Diagram  
Typical SMII Interface  
in a 16-Port System  
SECTION  
8
8
TxDatan  
SYNC0  
n
RxData  
MDIO0  
MDC0  
MDINT0  
RefCLK0 RefCLK1  
125 MHz Sourced  
Externally or from  
Switch ASIC  
SYSTEM CLK  
RefCLK0 RefCLK1  
8
8
TxDatan  
SYNC0  
RxDatan  
MDIO0  
MDC0  
MDINT0  
SECTION  
Datasheet  
65  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 17. Typical SMII Quad Sectionalization Diagram  
Typical SMII Interface in a  
24-Port System  
RefClk0 RefClk1  
8
8
TxDatan  
SYNC0  
RxDatan  
MDIO0  
MDC0  
MDINT0  
SECTION  
n
TxData  
4
SYNC0  
n
RxData  
4
MDIO0  
MDC0  
MDINT0  
RefClk0  
125 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
TxDatan  
4
SYNC1  
4
n
RxData  
VCC  
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
TxDatan  
SYNC0  
8
RxDatan  
SECTION  
RefClk0 RefClk1  
66  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 18. 100Mbps Serial MII Data Flow  
Strip  
Serial Data Stream  
To/From  
TX_EN &  
TX_ER  
Status  
Bits  
2 Nibbles Tx/Rx Data  
2 Symbols Tx/Rx Data  
S0 S1 S2 S3 S4  
MAC  
S0 S1 D0 D1 D2  
D0 D1 D2 D3  
D0 D1 D2 D3  
4B/5B  
To/From  
PMD  
Sublayer  
Insert  
CRS &  
RX_DV  
Status  
Bits  
D3 D4 D5 D6 D7  
S0 S1 S2 S3 S4  
2.7.1  
2.7.2  
2.7.3  
SMII Reference Clock  
The REFCLK operates at 125 MHz. The transmit and receive data and control streams must always  
be synchronized to the REFCLK by the MAC and PHY. The LXT9785 samples these signals on  
the rising edge of the REFCLK.  
TxSYNC Pulse (SMII/SS-SMII)  
The TxSYNC pulse delimits segment boundaries and synchronizes with REFCLK. The MAC must  
continuously generate a TxSYNC pulse once every 10 REFCLK cycles. The TxSYNC pulse  
signals the start of each new segment (see Figure 22 on page 72).  
Transmit Data Stream  
Transmit data and control information are signaled in ten- bit segments. In 100Mbps mode, each  
segment contains a new byte of data. In 10Mbps mode, the MAC must repeat a 10M serial word  
ten times on TXD. The LXT9785 may sample that serial word at any point.  
The TxSYNC pulse signals the start of a new segment as shown in Figure 19 on page 68.  
2.7.3.1  
2.7.3.2  
Transmit Enable  
The MAC must assert the TX_EN bit in each segment of TXData, and de-assert TX_ENn after the  
last segment of the packet.  
Transmit Error  
When the MAC asserts the TX_ER bit in 100BASE-X mode, the LXT9785 drives Hsymbols  
onto the network interface. TX_ER does not have any function in 10M operation.  
Datasheet  
67  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 19. Serial MII Transmit Synchronization  
CLOCK  
TxSYNC  
TX  
TX_ER TX_EN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TX_ER  
2.7.4  
Receive Data Stream  
Receive data and control information are signalled in ten- bit segments. In 100Mbps mode, each  
segment contains a new byte of data. In 10Mbps mode, each segment is repeated ten times (except  
for the CRS bit), and the MAC can sample any of the ten segments.  
2.7.4.1  
2.7.4.2  
Carrier Sense  
The CRS bit (slot 0) is generated when a packet is received from the network interface. The CRS  
bit is set in real time, even in 10Mbps mode (all other bits are repeated in 10 sequential segments).  
Receive Data Valid  
The LXT9785 asserts the RX_DV bit (slot 1) when it receives a valid packet. The assertion timing  
changes depending on line operating speed:  
For 100 TX and 100 FX links, the RX_DV bit is asserted from the first nibble of preamble to  
the last nibble of the data packet.  
For 10 BT links, the entire preamble is truncated. The RX_DV bit is asserted with the first  
nibble of the Start-of-Frame Delimiter (SFD) 5Dand remains asserted until the end of the  
packet.  
2.7.4.3  
2.7.4.4  
Receive Error  
When the LXT9785 receives an invalid symbol from the network in 100BASE-TX mode, it drives  
1110on the associated RXD pin.  
Receive Status Encoding  
The LXT9785 encodes status information onto the RXD line during IPG as seen in Table 20 on  
page 69. Status bit RXD<5> indicates the validity of the upper nibble (RXD<7:4> of the last byte  
of the previous frame). RXD and RX_DV are passed through the internal elasticity FIFO to smooth  
any clock rate differences between the recovered clock and the 125 MHz reference clock.  
2.7.5  
Collision  
The SMII interface does not provide a collision output and relies on the MAC to interpret COL  
conditions using CRS and TX_EN. CRS is unaffected by the transmit path.  
68  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 20. Serial MII Receive Synchronization  
CLOCK  
RxSYNC  
RXD0  
RXER  
RXD1  
Speed  
RXD2  
Duplex  
RXD3  
Link  
RXD4  
Jabber  
RXD5  
Valid  
RXD6  
FCE  
RXD7  
RXD7  
RX  
CRS  
CRS  
RX_DV  
Table 20. RX Status Encoding Bit Definitions  
Signal  
Definition  
Carrier Sense - identical to MII, except that it is not an asynchronous signal.  
CRS  
Receive Data Valid - identical to MII. When RX_DV = 0, status information is  
transmitted to the MAC. When RX_DV = 1, received data is transmitted to the  
MAC.  
0 = Status Byte  
1 = Valid Data Byte  
RX_DV  
RX_ER  
(RXD0)  
Inter-frame status bit RXD0 indicates whether or not the PHY detected an error  
somewhere in the previous frame.  
0 = No Error  
1 = Error  
SPEED  
(RXD1)  
0 = 10Mbps  
1 = 100Mbps  
Inter-frame status bit RXD1 indicates port operating speed.  
Inter-frame status bit RXD2 indicates port duplex condition.  
Inter-frame status bit RXD3 indicates port link status.  
Inter-frame status bit RXD4 indicates port jabber status.  
DUPLEX  
(RXD2)  
0 = Half  
1 = Full  
LINK  
(RXD3)  
0 = Down  
1 = Up  
JABBER  
(RXD4)  
0 = OK  
1 = Error  
VALID  
(RXD5)  
Inter-frame status bit RXD5 conveys the validity of the upper nibble of the last byte 0 = Invalid  
of the previous frame. 1 = Valid  
False Carrier  
(RXD6)  
Inter-frame status bit RXD6 indicates whether or not the PHY has detected a false 0 = No FC detected  
carrier event.  
1 = FC detected  
RXD7  
This bit is set to 1.  
Always = 1  
1. Both RXD0 and RXD5 bits are valid in the segment immediately following a frame, and remain valid until the first data  
segment of the next frame begins.  
Datasheet  
69  
LXT9785 Advanced 10/100 8-Port PHY  
2.7.5.1  
Source Synchronous SMII  
Some system designs require the PHY to be placed between 3 to 12 inches away from the MAC. A  
new source synchronous SMII definition has been added because of this requirement. To provide a  
source synchronous interface between the PHY and MAC, the PHY must drive the RxClk and the  
RxSYNC signals to the MAC. Also, the MAC must drive the TxClk and the TxSYNC signal to the  
PHY. The RefClk is also needed to synchronize the data to the PHYs core clock domain. TxData is  
clocked in using TxClk and then synchronized to RefClk and transmitted to the twisted-pair. The  
RxData is synchronized to the RxClk. See Figure 24 on page 73.  
Table 21. Source Synchronous SMII  
Signal  
TxData  
To  
PHY  
From  
MAC  
Purpose  
Transmit data & control  
Transmit clock  
TxCLK  
PHY  
PHY  
MAC  
MAC  
MAC  
MAC  
MAC  
MAC  
PHY  
TxSYNC  
RxData  
RxCLK  
RxSYNC  
RefClk  
Synchronization pulses  
Receive data & control  
Receive clock  
PHY  
PHY  
Receive Synchronization  
Synchronization  
System  
70  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 21. Typical SS-SMII Interface Diagram  
Typical SS-SMII Interface in  
a 16-Port System  
SECTION  
8
TxDatan  
TxSYNC0  
TxCLK0  
8
RxDatan  
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
RefCLK0,1  
125 MHz Sourced  
Externally or from  
Switch ASIC  
SYS_CLK  
RefCLK0,1  
TxDatan  
TxSYNC0  
8
8
TxCLK0  
RxData  
n
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
SECTION  
Note: For SMII operation TxCLK1, RxSYNCn and RxCLKn pins are ignored  
Datasheet  
71  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 22. Typical SS-SMII Quad Sectionalization Diagram  
Typical SS-SMII Interface  
in a 24-Port System  
RefClk0 RefClk1  
8
TxDatan  
TxSYNC0  
TxCLK0  
RxDatan  
8
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
SECTION  
TxDatan  
4
TxSYNC0  
TxCLK0  
RxData  
n
4
RxSYNC0  
RxCLK0  
MDIO0  
MDC0  
MDINT0  
RefClk0  
125 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
TxData  
n
4
TxSYNC1  
TxCLK1  
4
RxData  
n
RxSYNC1  
RxCLK1  
VCC  
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
TxData  
n
TxSYNC0  
TxCLK0  
8
RxData n  
RxSYNC1  
RxCLK1  
SECTION  
RefClk0 RefClk1  
72  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 23. Source Synchronous Transmit Timing  
SS-SMII Transmit Timing  
TxCLK  
TxSYNC  
TxData  
TXER  
TXEN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TXER  
TxCLK  
TxSYNC  
TxData  
TXER  
Frcerr Speed  
Dplx LINK Jabr  
TXEN  
TXER  
All signals are  
synchronous to the clock  
Figure 24. Source Synchronous Receive Timing  
SS-SMII Receive Timing  
RxCLK  
RxSYNC  
RxData  
CRS  
RXDV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 CRS  
RxCLK  
RxSYNC  
RxData  
CRS  
RXERSpeed  
CRS  
RXDV  
Dplx LINK Jabr UPnib FlsCar  
All signals are  
synchronous to the clock  
Datasheet  
73  
LXT9785 Advanced 10/100 8-Port PHY  
2.8  
RMII Operation  
The LXT9785 provides an independent Reduced MII port for each network port. Each RMII uses  
four signals to pass received data to the MAC: RXDn<1:0>, RXERn, and CRS_DVn (where n  
reflects the port number). Three signals are used to transmit data from the MAC: TXDn_<1:0> and  
TXENn. Both receive and transmit signals are clocked by REFCLK. Data transmission across the  
RMII is implemented in di-bit pairs which equal a 4-bit wide nibble.  
2.8.1  
2.8.2  
RMII Reference Clock  
The LXT9785 requires a 50 MHz reference clock (REFCLK). The device samples the RMII input  
signals on the rising edge of REFCLK and drives RMII output signals on the falling edge.  
Transmit Enable  
TXENn must be asserted and de-asserted synchronously with REFCLK. The MAC must assert  
TXENn at the same time as the first nibble of preamble. TXENn must be de-asserted after the last  
bit of the packet.  
2.8.3  
2.8.4  
Carrier Sense & Data Valid  
The LXT9785 asserts CRS_DVn when it detects activity on the line. However, RXDn outputs  
zeros until the received data is decoded and available for transfer to the controller.  
Receive Error  
Whenever the LXT9785 receives an errored symbol from the network, it asserts RXERn. When it  
detects a bad Start-of-Stream Delimiter (SSD) it drives a 10jam pattern on the RXD pins to  
indicate a false carrier event.  
2.8.5  
2.8.6  
Out-of-Band Signalling  
The LXT9785 has the capability of encoding status information in the RXData stream during IPG.  
See Monitoring Operationson page 84 for details.  
4B/5B Coding Operations  
The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However,  
data is normally transmitted across the RMII interface in 2-bit nibblets or di-bits. The LXT9785  
incorporates a parallel/serial converter that translates between di-bit pairs and 4-bit nibbles, and a  
4B/5B encoder/decoder circuit that translates between 4-bit nibbles and 5-bit symbols for the  
100BASE-X connection. Figure 25 on page 75 shows the data conversion flow from nibbles to  
symbols. Table 22 on page 80 shows 4B/5B symbol coding (not all symbols are valid).  
74  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 25. RMII Data Flow  
Reduced MII Mode Data Flow  
+1  
Parallel  
to  
Serial  
0
0
0
Scramble  
D0 D2  
D1 D3  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
di-bit  
pairs  
4-bit  
nibbles  
5-bit  
symbols  
Datasheet  
75  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 26. Typical RMII Interface Diagram  
Typical RMII Interface  
in a 16-Port System  
SECTION  
TxD0n  
8
8
TxD1n  
8
8
TxENn  
RxD0n  
8
8
8
RxD1n  
CRS_DVn  
RxERn  
MDIO0  
MDC0  
MDINT0  
RefClk0  
RefClk1  
50 Mhz Sourced  
Externally or from  
Switch ASIC  
RefClk0  
MDINT0  
RefClk1  
MDIO0  
MDC0  
8
8
TxD0  
TxD1  
n
n
8
8
TxEN  
RxD0  
n
n
8
RxD1  
CRS_DV  
RxER  
n
8
8
n
n
SECTION  
76  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 27. Typical RMII Quad Sectionalization Diagram  
Typical RMII Interface  
in a 24-Port System  
RefClk0 RefClk1  
8
8
TxD0n  
TxD1n  
8
8
TxENn  
RxD0n  
8
8
8
RxD1n  
CRS_DVn  
RxERn  
MDIO0  
MDC0  
MDINT0  
SECTION  
4
TxD0n  
TxD1n  
TxENn  
RxD0n  
RxD1n  
4
4
4
4
4
CRS_DVn  
RxERn  
4
MDIO0  
MDC0  
MDINT0  
RefClk0  
50 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
4
TxD0  
TxD1  
n
n
4
4
4
4
4
4
n
n
n
TxEN  
RxD0  
RxD1  
n
CRS_DV  
VCC  
RxER  
n
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
8
8
TxD0  
TxD1  
n
n
TxEN  
n
n
8
8
8
8
RxD0  
RxD1  
CRS_DV  
RxER  
n
n
n
SECTION  
RefClk0 RefClk1  
Datasheet  
77  
LXT9785 Advanced 10/100 8-Port PHY  
2.9  
100Mbps Operation  
2.9.1  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT9785 transmits and receives 5-bit symbols across the  
network link. Figure 28 shows the structure of a standard frame packet. When the MAC is not  
actively transmitting data, the LXT9785 sends out Idle symbols on the line.  
In 100BASE-TX mode, the device scrambles the data and transmits it to the network using MLT-3  
line code. The MLT-3 signals received from the network are descrambled and decoded, and sent  
across the RMII to the MAC.  
In 100BASE-FX mode, the LXT9785 transmits and receives NRZI signals across the PECL  
interface. An external 100FX transceiver module is required to complete the fiber connection.  
As shown in Figure 28, the MAC starts each transmission with a preamble pattern. As soon as the  
LXT9785 detects the start of preamble, it transmits a J/K Start-of-Stream Delimiter (SSD) symbol  
to the network. It then encodes and transmits the rest of the packet, including the balance of the  
preamble, the Start-of-Frame Delimiter (SFD), packet data, and CRC. Once the packet ends, the  
LXT9785 transmits the T/R End-of-Stream Delimiter (ESD) symbol and then returns to  
transmitting Idle symbols.  
Figure 28. 100BASE-X Frame Format  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
SFD  
P0 P1 P6  
DA DA SA SA L1  
L2  
D0 D1 Dn  
I0  
Replaced by  
/T/R/ code-groups  
End-of-Stream Delimiter (ESD)  
Replaced by  
Start-of-Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start-of-Stream  
Delimiter (SSD)  
2.9.2  
100BASE-X Protocol Sublayer Operations  
In a 7-layer communications model, the LXT9785 is a Physical Layer 1 (PHY) device. The  
LXT9785 implements the Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA),  
and Physical Medium Dependent (PMD) sublayers of the reference model defined by the IEEE  
802.3u specification. The following paragraphs discuss the LXT9785 operation from the reference  
model point of view.  
2.9.2.1  
PCS Sublayer  
The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B encoding/  
decoding function. For 100TX and 100FX operation, the PCS layer provides IDLE symbols to the  
PMD-layer line driver as long as TXEN is de-asserted. For 10T operation, the PCS layer merely  
provides a bus interface and serialization/de-serialization function. 10T operation does not use the  
4B/5B encoder.  
78  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Preamble Handling  
When the MAC asserts TXEN, the PCS substitutes a /J/K/ symbol pair, also known as the Start-of-  
Stream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS layer  
continues to encode the remaining RMII data until TXEN is de-asserted (see Table 22 on page 80).  
It then returns to supplying IDLE symbols to the line driver.  
The PCS layer performs the opposite function in the receive direction by substituting two preamble  
nibbles for the SSD.  
Dribble Bits  
The LXT9785 handles dribbles bits in all modes. If one through four dribble bits are received, the  
nibble is passed across the RMII, padded with ones if necessary. If five through seven dribble bits  
are received, the second nibble is not sent to the RMII bus.  
Figure 29. Protocol Sublayers  
MII Interface  
LXT9785  
PCS  
Encoder/Decoder  
Serializer/De-serializer  
Sublayer  
PMA  
Sublayer  
Link/Carrier Detect  
PECL Interface  
PMD  
Sublayer  
Scrambler/  
De-scrambler  
Fiber Transceiver  
100BASE-TX  
100BASE-FX  
Datasheet  
79  
LXT9785 Advanced 10/100 8-Port PHY  
2.9.3  
PMA Sublayer  
Table 22. 4B/5B Coding  
4B Code  
Code Type  
5B Code  
4 3 2 1 0  
Name  
Interpretation  
3 2 1 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 11  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
1
2
3
4
5
6
DATA  
0 1 1 1  
1 0 0 0  
7
8
1 0 0 1  
9
1 0 1 0  
A
1 0 1 1  
B
1 1 0 0  
C
1 1 0 1  
D
1 1 1 0  
E
1 1 1 1  
F
I 1  
J 2  
K 2  
T 3  
R 3  
H 4  
IDLE  
undefined  
0 1 0 1  
Idle. Used as inter stream fill code.  
Start-of-Stream Delimiter (SSD), part 1 of 2.  
CONTROL  
0 1 0 1  
Start-of-Stream Delimiter (SSD), part 2 of 2.  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
End-of-Stream Delimiter (ESD), part 1 of 2.  
End-of-Stream Delimiter (ESD), part 2 of 2.  
Transmit Error. Used to force signalling errors.  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
80  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Link  
In 100Mbps mode, the LXT9785 establishes a link whenever the scrambler becomes locked and  
remains locked for approximately 50 ms. Whenever the scrambler loses lock (<12 consecutive idle  
symbols during a 2 ms window), the link is taken down. This provides a robust link, filtering out  
any small noise hits that may otherwise disrupt the link. Furthermore, 100Mbps idle patterns will  
not bring up a 10Mbps link.  
The LXT9785 reports link failure via the RMII status bits (1.2, 17.10, and 19.4) and interrupt  
functions. If auto-negotiate is enabled, link failure causes the device to re-negotiate.  
Link Failure Override  
The LXT9785 normally transmits 100Mbps data packets or Idle symbols only if it detects the link  
is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1 overrides this  
function, allowing the LXT9785 to transmit data packets even when the link is down. This feature  
is provided as a diagnostic tool.  
Note: Auto-negotiation must be disabled to transmit data packets in the absence of link. If auto-  
negotiation is enabled, the LXT9785 automatically begins transmitting FLP bursts if the link goes  
down.  
Carrier Sense/Data Valid (RMII)  
The LXT9785 asserts CRS_DV whenever the respective port receiver is in a non-idle state (as  
defined by the RMII Specification Revision 1.2), including false carrier events. Assertion of  
CRS_DV is asynchronous with respect to REFCLK. In the event that signal decoding is not  
complete when CRS_DV is asserted, the LXT9785 outputs 00 on the RXD1:0 lines until the  
decoded data are available.  
When the line returns to an idle state, CRS_DV is de-asserted asynchronously with respect to  
REFCLK. If the FIFO still contains data to be passed to the MAC via the RMII when CRS is de-  
asserted, CRS_DV toggles on nibble boundaries until the FIFO is empty. For 100BASE-X signals,  
CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles at 2.5 MHz.  
Carrier Sense (SMII)  
For 100TX and 100FX links, a Start-of-Stream Delimiter (SSD) or /J/K/ symbol pair causes  
assertion of carrier sense (CRS). An End-of-Stream Delimiter (ESD), or /T/R/ symbol pair causes  
de-assertion of CRS. The PMA layer also de-asserts CRS if IDLE symbols are received without /T/  
R/. In this event, the RX_ER bit in the RX Status Frame is asserted for one clock cycle when CRS  
is de-asserted.  
For 10T links, CRS assertion is based on receipt of valid preamble, and de-assertion on receipt of  
an End-of-Frame (EOF) marker.  
Receive Data Valid (SMII)  
The LXT9785 asserts the RX_DV bit when it receives a valid packet. However, RXD outputs zeros  
until the received data are decoded and available for transfer to the controller.  
Datasheet  
81  
LXT9785 Advanced 10/100 8-Port PHY  
2.9.3.1  
Twisted-Pair PMD Sublayer  
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for 100TX, Manchester for 10T), as well as  
receiving, polarity correction, and baseline wander correction functions.  
Scrambler/Descrambler (100TX Only)  
The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using  
an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial  
whenever IDLE symbols are received.  
The scrambler/descrambler can be bypassed by setting bit 16.12 = 1. The scrambler is  
automatically bypassed when the fiber port is enabled. Scrambler bypass is provided for diagnostic  
and test support.  
Baseline Wander Correction  
The LXT9785 provides a baseline wander correction function which makes the device robust  
under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is, by  
definition, unbalanced. This means that the DC average value of the signal voltage can wander”  
significantly over short time intervals (tenths of seconds). This wander may cause receiver errors,  
particularly in less robust designs, at long line lengths (100 meters). The exact characteristics of the  
wander are completely data dependent.  
The LXT9785 baseline wander correction characteristics allow the device to recover error-free data  
while receiving worst-case killerpackets over all cable lengths.  
Polarity Correction  
The LXT9785 automatically detects and corrects for the condition where the receive signal  
(TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link pulses or four inverted  
End-of-Frame (EOF) markers are received consecutively. If link pulses or data are not received by  
the maximum receive time-out period, the polarity state is reset to a non-inverted state.  
2.9.3.2  
Fiber PMD Sublayer  
The LXT9785 provides a PECL interface for connection to an external fiber-optic transceiver. (The  
external transceiver provides the PMD function for fiber media.) The device uses an NRZI format  
for the fiber interface. The fiber interface operates at 100Mbps and does not support 10FL  
applications.  
Far End Fault Indications  
The LXT9785 Signal Detect pins independently detect signal faults from the local fiber  
transceivers via the SD pins. The device also uses bit 1.4 to report Remote Fault indications  
received from its link partner. The device ORsboth fault conditions to set bit 1.4. Bit 1.4 is set  
once and clears when read.  
Either fault condition causes the LXT9785 to drop the link unless Forced Link Pass is selected  
(16.14 = 1). Link down condition is then reported via interrupts and status bits.  
82  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
In response to locally detected signal faults (SD activated by the local fiber transceiver), the  
affected port can transmit the far end fault code if fault code transmission is enabled by bit 16.2.  
When bit 16.2 = 1, transmission of the far end fault code is enabled. The LXT9785 transmits  
far end fault code if fault conditions are detected by the Signal Detect pins.  
When bit 16.2 = 0, the LXT9785 does not transmit far end fault code. It continues to transmit  
idle code and may or may not drop link depending on the setting for bit 16.14.  
The occurrence of a Far End Fault causes all transmission of data from the Reconciliation Sublayer  
to stop and the Far End fault code to begin. The Far End Fault code consists of 84 oness followed  
by a single 0and is repeated until the Far End Fault condition is removed.  
2.10  
10Mbps Operation  
The LXT9785 operates as a standard 10BASE-T transceiver and supports all the standard 10Mbps  
functions. During 10BASE-T (10T) operation, the LXT9785 transmits and receives Manchester-  
encoded data across the network link. When the MAC is not actively transmitting data, the device  
sends out link pulses on the line.  
In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals  
received from the network are decoded by the LXT9785 and sent across the RMII to the MAC.  
Note: The LXT9785 does not support fiber connections at 10Mbps.  
2.10.1  
Preamble Handling  
The LXT9785 offers two options for preamble handling, selected by bit 16.5. In 10T Mode when  
bit 16.5 = 0, the device strips the entire preamble off the received packets. CRS_DV is asserted  
simultaneously with SFD. CRS_DV is held Low for the duration of the preamble. When CRS_DV  
is asserted, the very first two nibbles driven by the LXT9785 are the SFD 5Dhex followed by the  
body of the packet.  
When bit 16.5 = 1 in 10T mode, the LXT9785 passes the preamble through the RMII and asserts  
CRS_DV simultaneously.  
2.10.2  
2.10.3  
Dribble Bits  
The LXT9785 device handles dribble bits in all modes. If one through four dribble bits are  
received, the nibble is passed across the RMII. If five through seven dribble bits are received, the  
second nibble is not sent onto the RMII bus.  
Link Test  
The LXT9785 always transmits link pulses in 10T mode. When enabled, the link test function  
monitors the connection for link pulses. Once link pulses are detected, data transmission is enabled  
and remains enabled as long as either the link pulses or data transmission continue. If link pulses  
stop, the data transmission is disabled.  
If the link test function is disabled, the LXT9785 transmits to the connection regardless of detected  
link pulses. The link test function is disabled by setting bit 16.14 = 1.  
Datasheet  
83  
LXT9785 Advanced 10/100 8-Port PHY  
2.10.3.1  
2.10.4  
Link Failure  
Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this  
condition occurs, the LXT9785 returns to the auto-negotiation phase if auto-negotiation is enabled.  
Jabber  
If a transmission exceeds the jabber timer, the LXT9785 disables the transmit and loopback  
functions. The RMII does not include a Jabber pin, but the MAC may read Register 1 or 25 to  
determine Jabber status. The LXT9785 automatically exits jabber mode after the unjab time has  
expired. This function is disabled by setting bit 16.10 = 1.  
2.11  
Monitoring Operations  
2.11.1  
Monitoring Auto-Negotiation  
Auto-negotiation may be monitored as follows:  
Bits 1.2 and 17.10 = 1 once the link is established.  
Additional bits in Register 1 (refer to Table 58 on page 121) and Register 17 (refer to Table 67  
on page 128) can be used to determine the link operating conditions and status.  
2.11.2  
Per-Port LED Driver Functions  
The LXT9785 incorporates three direct drive LEDs per port (LEDn_1, LEDn_2, and LEDn_3). On  
power up, all the LEDs lights up for approximately one second after reset de-asserts. Each LED  
may be programmed to one of several different display modes using the LED Configuration  
Register. Each per-port LED may be programmed (refer to Table 70 on page 131) to indicate one of  
the following conditions:  
Operating Speed  
Transmit Activity  
Receive Activity  
Collision Condition  
Link Status  
Duplex Mode  
Isolate Condition  
The LEDs can also be programmed to display various combined status conditions. For example,  
setting bits 20.15:12 = 1101 produces the following combination of Link and Activity indications:  
If Link is down, LED is off.  
If Link is up, LED is on.  
If Link is up AND activity is detected, the LED blinks at the stretch interval selected by bits  
20.3:2 and continues to blink as long as activity is present.  
84  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
The LED driver pins are open drain circuits (10mA max current rating). Refer to LED Circuiton  
page 90 under the Application Information Section for LED circuit design details. The LED  
Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms. If during  
this pulse stretch period, the event occurs again, the pulse stretch time is further extended (see  
Table 70 on page 131).  
When an event such as receiving a packet occurs, it is edge detected and starts the stretch timer.  
The LED driver remains asserted until the stretch timer expires. If another event occurs before the  
stretch timer expires, the stretch timer is reset and the stretch time extended.  
When a long event (such as duplex status) occurs, it is edge detected and starts the stretch timer.  
When the stretch timer expires, the edge detector is reset so that a long event causes another pulse  
to be generated from the edge detector. The edge detector resets the stretch timer, causing the LED  
driver to remain asserted. Figure 30 shows how the stretch operation functions.  
Figure 30. LED Pulse Stretching  
Event  
LED  
stretch  
stretch  
stretch  
Note: The direct drive LED outputs in this diagram are shown as active Low.  
2.11.3  
Out-of-Band Signalling  
The LXT9785 provides an out-of-band signalling option to transfer status information across the  
RMII receive interface. This feature is enabled when register 25.0 = 1 and uses the RXD(1:0) data  
bus during the Inter-Packet Gap (IPG) time as shown in Figure 31.  
The two status bits transferred across the RXD bus are software selectable via Register 25 (see  
Table 72 on page 133).  
In normal operation, the LXT9785 stuffs the RXD bus with zeros during the IPG. A software-  
selectable bit enables the RMII out-of-band signalling feature. Once this bit is set, the LXT9785  
replaces the zeros with selected status bits during the IPG.  
Datasheet  
85  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 31. RMII Programmable Out-of-Bank Signaling  
REFCLK  
CRS_DV  
status 1  
status 0  
status 1  
status 0  
data  
data  
data  
data  
data  
data  
data  
data  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
RX D(1)  
RX D(0)  
0s  
0s  
status 1  
status 0  
1. When network activity is detected, the LXT9785 asserts CRS_DV asynchronously with respect to REFCLK.  
2. After CRS_DV is asserted, the LXT9785 will zero-stuff the RXData bits until the received data has been processed through  
the FIFO.  
3. When network activity ceases, the LXT9785 de-asserts CRS_DV synchronously with respect to REFCLK. CRS_DV will  
toggle until all data in the FIFO has been processed through the RMII. Once the FIFO is empty, LXT9785 will drive the status  
bits selected by the Out-of-Band Signalling Register (refer to Table 72 on page 133) on the RXD outputs.  
The LXT9785 includes an IEEE 1149.1 boundary scan test port for board level testing. All digital  
input, output, and input/output pins are accessible.  
2.11.4  
Boundary Scan Interface  
This interface consists of five pins (TMS, TDI, TDO, TCK and TRST). It includes a state machine,  
data register array, and instruction register. The TMS and TDI pins are internally pulled up and the  
TCK pin is internally pulled down. TDO does not have an internal pull-up or pull-down.  
2.11.5  
2.11.6  
State Machine  
The TAP controller is a 16-state machine driven by the TCK and TMS pins. Upon reset, the  
TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI are  
High for five TCK periods.  
Instruction Register  
The IDCODE instruction is always invoked after the state machine resets. The decode logic  
ensures the correct data flow to the Data registers according to the current instruction. Valid  
instructions are listed in Table 24 on page 87.  
86  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
2.11.7  
Boundary Scan Register  
Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the  
serial shift stage and the parallel output stage. There are four modes of operation as listed in Table  
23.  
Table 23. BSR Mode of Operation  
Mode  
Description  
Capture  
1
2
3
4
Shift  
Update  
System Function  
Table 24. Supported JTAG Instructions  
Data  
Register  
Name  
Code  
Description  
External Test  
EXTEST  
IDCODE  
SAMPLE  
High Z  
0000000000000000  
1111111111111110  
1111111111111000  
1111111111001111  
1111111111101111  
1111111111111111  
BSR  
ID Code Inspection  
Sample Boundary  
Force Float  
ID REG  
BSR  
Bypass  
BSR  
Clamp  
Clamp  
BYPASS  
Bypass Scan  
Bypass  
Datasheet  
87  
LXT9785 Advanced 10/100 8-Port PHY  
3.0  
Application Information  
3.1  
Design Recommendations  
The LXT9785 is designed to comply with IEEE 802.3 requirements to provide outstanding receive  
Bit Error Rate (BER), and long-line-length performance. To achieve maximum performance from  
the LXT9785, attention to detail and good design practices are required. Refer to the LXT9785  
Design and Layout Guide application note for detailed design and layout information.  
3.2  
General Design Guidelines  
Adherence to generally accepted design practices is essential to minimize noise levels on power  
and ground planes. Up to 50 mV maximum of noise is considered acceptable. High-frequency  
switching noise can be reduced, and its effects eliminated, by following these simple guidelines  
throughout the design:  
Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC  
or ground plane that is not located adjacent to the signal layer.  
Use ample bulk and decoupling capacitors throughout the design (a value of 0.01 µF is  
recommended for decoupling caps).  
Provide ample power and ground planes.  
Provide termination on all high-speed switching signals and clock lines.  
Provide impedance matching on long traces to prevent reflections.  
Route high-speed signals next to a continuous, unbroken ground plane.  
Filter and shield DC-DC converters, oscillators, etc.  
Do not route any digital signals between the LXT9785 and the RJ-45 connectors at the edge of  
the board.  
Do not extend any circuit power and ground plane past the center of the magnetics or to the  
edge of the board. Use this area for chassis ground, or leave it void.  
3.2.1  
Power Supply Filtering  
Power supply ripple and digital switching noise on the VCC plane may cause EMI problems and  
degrade line performance. The best approach to this problem is to minimize ground noise as much  
as possible using good general techniques and by filtering the VCC plane. It is generally difficult  
to predict in advance the performance of any design, although certain factors greatly increase the  
risk of having problems:  
Poorly-regulated or over-burdened power supplies.  
Wide data busses (32-bits+) running at a high clock rate.  
DC-to-DC converters.  
88  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Intel recommends filtering the power supply to the analog VCC pins of the LXT9785. This has two  
benefits. First, it keeps digital switching noise out of the analog circuitry inside the LXT9785,  
helping with line performance. Second, if the VCC planes are laid out correctly, digital switching  
noise is kept away from external connectors, reducing EMI problems.  
The recommended implementation is to break the VCC plane into two sections. The digital section  
supplies power to the VCCD and VCCIO pins of the LXT9785. The analog section supplies power  
to the VCCA pins. The break between the two planes should run underneath the device. In designs  
with more than one the LXT9785, a single continuous analog VCC plane can be used to supply  
them all.  
The digital and analog VCC planes should be joined at one or more points by ferrite beads. The  
beads should produce at least a 100impedance at 100 MHz. Beads should be placed so that  
current flow is evenly distributed. The maximum current rating of the beads should be at least  
150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10 uF) should  
be placed on each side of each bead.  
In addition, a high-frequency bypass cap (0.01uF) should be placed near each analog VCC pin.  
3.2.2  
Power and Ground Plane Layout Considerations  
Great care needs to be taken when laying out the power and ground planes.  
Follow the guidelines in the LXT9785 Design and Layout Guide (Application Note 151) for  
locating the split between the digital and analog VCC planes.  
Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, the magnetics, and  
the RJ-45 connectors.  
Place the layers so that the TPFOP/N and TFPIP/N signals can be routed near or next to the  
ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N.  
3.2.2.1  
Chassis Ground  
For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the  
board and is isolated via moats and keep-out areas from all circuit-ground planes and active  
signals. Chassis ground should extend from the RJ-45 connectors to the magnetics, and can be used  
to terminate unused signal pairs (Bob Smith termination). In single-point grounding applications,  
provide a single connection between chassis and circuit grounds with a 2 kV isolation capacitor. In  
multi-point grounding schemes (chassis and circuit grounds joined at multiple points), provide  
2 kV isolation to the Bob Smith termination.  
3.2.3  
MII Terminations  
Series termination resistors are required on all the SS-SMII output signals driven by the LXT9785.  
Special trace layout consideration should be used when using the SMII interface. Keep all traces  
orthogonal and as short as possible. Whenever possible, route the clock and sync traces evenly  
between the longest and shortest data routes. This minimizes round-trip, clock-to-data delays and  
allows a larger margin to the setup and hold requirements.  
Datasheet  
89  
LXT9785 Advanced 10/100 8-Port PHY  
3.2.4  
Twisted-Pair Interface  
Use the following standard guidelines for a twisted-pair interface:  
Place the magnetics as close as possible to the LXT9785.  
Keep transmit pair traces as short as possible; both traces should have the same length.  
Avoid vias and layer changes as much as possible.  
Keep the transmit and receive pairs apart to avoid cross-talk.  
Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the  
transmit traces two to three layers from the ground plane, with no intervening signals.  
Improve EMI performance by filtering the TPO center tap. A single ferrite bead rated at 400  
mA may be used to supply center tap current to all ports.  
3.2.4.1  
Magnetics Information  
The LXT9785 requires a 1:1 ratio for the receive transformers and a 1:1 ratio for the transmit  
transformers. The transformer isolation voltage should be rated at 2 kV to protect the circuitry from  
static voltages across the connectors and cables. Refer to Table 25 on page 91 for transformer  
requirements. Before committing to a specific component, designers should contact the  
manufacturer for current product specifications, and validate the magnetics for the specific  
application.  
3.2.5  
3.2.6  
The Fiber Interface  
The fiber interface consists of a PECL transmit and receive pair to an external fiber-optic  
transceiver. The transmit and receive pair should be DC-coupled to the transceiver, and biased  
appropriately. Refer to the fiber transceiver manufacturers recommendations for termination  
circuitry. Figure 35 on page 93 shows a typical example.  
LED Circuit  
Each Direct Drive LED has a corresponding open-drain pin. The LEDs are connected via a current-  
limiting resistor to a positive-voltage rail. The LEDs are turned on when the output pin drives Low.  
The open-drain LED pins are 5V tolerant, allowing use of either a 3.3V or 5V rail. A 5V rail eases  
LED component selection by allowing more common, high-forward voltage LEDs to be used.  
Refer to Figure 32 for a circuit illustration.  
90  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 32. LED Circuit  
VLED  
R
LEDn_m  
Outside  
IC  
Inside  
IC  
VLED = 3.3 to 5 Volts +/- 5%  
Table 25. Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx turns ratio  
1:1  
1:1  
0.6  
Tx turns ratio  
Insertion loss  
0.0  
350  
1.1  
dB  
µH  
kV  
Primary inductance  
Transformer isolation  
2
Differential to common mode  
rejection  
40  
dB  
.1 to 60 MHz  
35  
-16  
-10  
dB  
dB  
dB  
60 to 100 MHz  
30 MHz  
Return Loss  
80 MHz  
Datasheet  
91  
LXT9785 Advanced 10/100 8-Port PHY  
3.3  
Typical Application Circuits  
Figure 33 through Figure 35 show typical application circuits for the LXT9785.  
Figure 33. Power and Ground Supply Connections  
SGND  
GNDR/GNDT  
0.01µF  
VCCR/VCCT  
10µF  
+
Analog Supply Plane  
Ferrite  
Bead  
LXT9785  
Digital Supply Plane  
10µF  
+2.5V  
VCCD  
GNDD  
VCCIO  
0.01µF  
0.01µF  
+ 2.5V  
or +3.3V  
+2.5V  
or +3.3V  
VCCPECL  
GNDPECL  
0.1µF  
92  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 34. Typical Twisted-Pair Interface  
TPFOP  
RJ-45  
1:1  
1
1
2
3
TPFON  
TPFIP  
50  
50  
50  
4
5
6
7
8
1:1  
LXT9785  
50  
50  
2
50  
TPFIN  
.01 µF  
* = 0.001  
µ
F /  
* = 0.001  
µF /  
2.0 kV  
2.0 kV  
VCCT  
.01µF  
0.1µF  
GNDA  
1. The 100transmit load termination resistor typically required is integrated in the LXT9785.  
2. The 100receive load termination resistor typically required is integrated in the LXT9785.  
Figure 35. Typical Fiber Interface  
VCCPECL  
+3.3V  
+3.3V  
27  
0.01- 0.1uF  
50  
50  
TPFONn  
TPFOPn  
TD-  
TD+  
VCCPECL  
+3.3V  
LXT9785  
Fiber Txcvr  
130  
SD/TPn  
SD  
82  
1
GNDS  
TPFINn  
TPFIPn  
RD-  
RD+  
2D_2P5V  
130  
130  
GNDS  
GNDPECL  
3.3V  
VCCPECL  
1. The SD_2P5V pin must be connected to the VCCPECL supply.  
Datasheet  
93  
LXT9785 Advanced 10/100 8-Port PHY  
4.0  
Test Specifications  
Note: Table 26 through Table 55 and Figure 36 through Figure 59 represent the target specifications of  
the LXT9785. These specifications are not guaranteed and are subject to change without notice.  
Minimum and maximum values listed in Table 28 through Table 55 apply over the recommended  
operating conditions specified in Table 27.  
Table 26. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Units  
Supply voltage  
Operating temperature  
VCC  
TOPA  
TOPC  
TST  
-0.3  
0
3.46  
+85  
V
Ambient  
Case  
ºC  
ºC  
ºC  
+120  
+150  
Storage temperature  
-65  
Caution: Exceeding these values may cause permanent damage. Functional operation under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 27. Operating Conditions  
1
1
Typ  
Typ  
Parameter  
Sym  
Min  
Max  
Units  
(2.5 VCCIO)  
(3.3 VCCIO)  
Ambient  
TOPA  
TOPC  
0
0
70  
108  
2.63  
3.46  
3.46  
2.63  
810  
160  
410  
200  
765  
90  
ºC  
ºC  
Operating temperature  
Supply voltage2  
Case  
Analog & Digital  
I/O  
Vcca, Vccd  
Vccio  
2.38  
2.38  
3.14  
2.38  
2.5  
2.5  
N/A  
2.5  
2.5  
3.3  
3.3  
N/A  
V
V
I/O (SD_2P5V = 0)  
I/O (SD_2P5V = 1)  
V
VCCPECL  
V
ICC  
ICCIO  
ICC  
780  
380  
710  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100BASE-TX  
100BASE-FX  
60  
90  
30  
2
130  
170  
70  
3
ICCIO  
ICC  
Operating Current - RMII 10BASE-T  
ICCIO  
ICC  
20  
Power-Down Mode  
Hardware  
ICCIO  
ICC  
4
500  
540  
4
Auto-Negotiation  
ICCIO  
2
4
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
94  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 27. Operating Conditions (Continued)  
1
1
Typ  
Typ  
Parameter  
Sym  
Min  
Max  
Units  
(2.5 VCCIO)  
(3.3 VCCIO)  
ICC  
800  
380  
740  
50  
830  
160  
410  
200  
770  
130  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100BASE-TX  
100BASE-FX  
10BASE-T  
ICCIO  
ICC  
70  
90  
60  
3
130  
170  
110  
5
ICCIO  
ICC  
Operating Current - SMII  
ICCIO  
ICC  
Power-Down Mode  
Hardware  
ICCIO  
ICC  
5
520  
800  
380  
740  
30  
570  
30  
Auto-Negotiation  
100BASE-TX  
100BASE-FX  
10BASE-T  
ICCIO  
ICC  
20  
90  
90  
90  
3
30  
835  
200  
410  
200  
770  
180  
40  
ICCIO  
ICC  
170  
170  
150  
5
ICCIO  
ICC  
Operating Current -  
SS-SMII  
ICCIO  
ICC  
Power-Down Mode  
Hardware  
ICCIO  
ICC  
5
530  
570  
80  
Auto-Negotiation  
ICCIO  
50  
70  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
Table 28. Digital I/O Characteristics (VCCIO = 2.5V +/- 5%)  
1
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
1.75  
-100  
0.75  
V
V
Input High voltage  
Input current  
II  
100  
0.2  
0.5  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
IOL = 10 mA  
IOH = -4 mA  
Output Low voltage  
VOL  
Output Low voltage (LEDm_n pins)  
Output High voltage  
VOL-LED  
VOH  
V
2.07  
V
Input Low voltage SD pins  
Input High voltage SD pins  
VIL-SD  
VIH-SD  
0.755  
V
1.58  
V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
95  
LXT9785 Advanced 10/100 8-Port PHY  
Table 29. Digital I/O Characteristics (VCCIO = 3.3V +/- 5%)  
1
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
2.0  
-100  
0.8  
V
V
Input High voltage  
Input current  
II  
100  
0.2  
0.4  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
IOL = 10 mA  
IOH = -4 mA  
Output Low voltage  
VOL  
Output Low voltage (LEDm_n pins)  
Output High voltage  
VOL-LED  
VOH  
V
2.4  
V
Input Low voltage SD pins  
Input High voltage SD pins  
VIL-SD  
VIH-SD  
1.515  
V
2.42  
V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 30. Required Clock Characteristics  
2
Parameter  
SMII Input frequency  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
125  
50  
MHz  
MHz  
ppm  
%
RMII Input frequency  
F
Input clock frequency tolerance1  
Input clock duty cycle1  
f  
± 50  
65  
60  
55  
Tdc  
Tdc  
Tdc  
35  
40  
45  
50  
50  
50  
RMII selection  
SMII/SS-SMII selection  
SS-SMII only  
Input clock duty cycle - RefClk,TxCLK1  
%
Output RxClk duty cycle  
%
1. Parameter is guaranteed by design; not subject to production testing.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 31. 100BASE-TX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak differential output voltage  
Signal amplitude symmetry  
Signal rise/fall time  
VP  
0.95  
98  
3
1.05  
102  
5
V
Note 2  
Note 2  
Note 2  
Note 2  
Vss  
%
ns  
ns  
t
rf  
Rise/fall time symmetry  
t
0.5  
rfs  
Offset from 16 ns pulse width at  
50% of pulse peak  
Duty cycle distortion  
Overshoot  
+/- 0.5  
ns  
%
VO  
5
Jitter magnitude (measured  
differentially)  
t
14  
ns  
tx-jit  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
96  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 32. 100BASE-FX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
(single ended)  
VOP  
0.6  
1.44  
V
Signal rise/fall time  
t
1.6  
1.4  
ns  
ns  
10 to 90%, 2.0 pF load  
rf  
Jitter magnitude (measured  
differentially)  
t
tx-jit  
Receiver  
Peak differential input voltage  
Common mode input range  
VIP  
0.55  
V
V
VCMIR  
VCC - 0.5  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 33. 10BASE-T Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
Link transmit period  
VOP  
2.2  
8
2.5  
2.8  
V
Note 2  
24  
11  
ms  
Jitter magnitude added by the  
MAU and PLS sections 3, 4  
t
ns  
tx-jit  
Receiver  
Receive input impedance3  
Link min receive timer  
ZIN  
2
100  
7
ms  
Between TPFIP and TPFIN  
TLRmin  
TLRmax  
VDS  
Link max receive timer  
50  
150  
ms  
Differential squelch threshold  
475  
mV Peak  
5 MHz square wave input  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
3. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns from the MAU.  
4. After line model specified by IEEE 802.3 for 10BASE-T MAU.  
Datasheet  
97  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 36. SMII - 100BASE-TX Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RXD  
t
1
t2  
t
3
t4  
TPFI  
Table 34. SMII - 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min Typ  
Max Units  
Test Conditions  
RXD output delay from REFCLK rising  
edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
t1  
t2  
t3  
1.5  
5
ns  
ns  
RXD Rise/Fall Time  
1.0  
21  
Synchronous sampling of  
SMII  
Receive start of /J/ to CRS asserted  
29  
BT2  
Receive start of /T/ to CRS de-  
asserted  
Synchronous sampling of  
SMII  
t4  
25  
30  
BT2  
SYNC setup to REFCLK rising edge  
SYNC hold from REFCLK rising edge  
t5  
t6  
1.5  
1.0  
ns  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
98  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 37. SMII - 100BASE-TX Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
TXD  
t
1
t
2
t
3
TPFO  
Table 35. SMII - 100BASE-TX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to REFCLK rising edge and  
TXD setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge and  
TXD hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TXEN sampled to start of /J/  
11  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
99  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 38. SMII - 100BASE-FX Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RXD  
t
1
t2  
t
3
t4  
TPFI  
Table 36. SMII - 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RXD output delay from REFCLK rising  
edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
t1  
t2  
t3  
1.5  
1
5
ns  
ns  
RXD Rise/Fall Time  
Synchronous  
sampling of SMII  
Receive start of /J/ to CRS asserted  
18  
26  
BT2  
Receive start of /T/ to CRS de-  
asserted  
Synchronous  
sampling of SMII  
t4  
23  
27  
BT2  
SYNC setup to REFCLK rising edge  
SYNC hold from REFCLK rising edge  
t5  
t6  
1.5  
1.0  
ns  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
100  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 39. SMII - 100BASE-FX Transmit Timing  
REFCLK  
t
1
t2  
SYNC  
TXD  
t
1
t
2
t
3
TPFO  
Table 37. SMII - 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
SYNC setup to REFCLK rising edge and  
TXD setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge  
and TXD hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TXEN sampled to start of /J/  
10  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
101  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 40. SMII - 10BASE-T Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RXD  
t1  
t2  
t
3
t4  
TPFI  
Table 38. SMII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Minimum CL = 5 pF  
RXD output delay from  
REFCLK rising edge  
t1  
t2  
t3  
1.5  
1
5
ns  
ns  
Maximum CL = 20 pF  
RXD Rise/Fall Time  
Receive Start-of-Frame to CRS  
asserted  
17  
18  
BT3  
Synchronous sampling of SMII2  
Receive Start-of-Idle to CRS  
de-asserted  
t4  
t5  
t6  
17  
18  
BT3  
ns  
Synchronous sampling of SMII2  
SYNC setup to REFCLK rising  
edge  
1.5  
1.0  
SYNC hold from REFCLK rising  
edge  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Assumes each SMII segment is sampled for CRS.  
3. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
102  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 41. SMII - 10BASE-T Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
TXD  
t
1
t
2
t
3
TPFO  
Table 39. SMII-10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to REFCLK rising edge and  
TXD setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold to REFCLK rising edge and  
TXD hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TXEN sampled to start-of-frame  
10  
12.5  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
103  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 42. Source Synchronous SMII 100BASE-TX Receive Timing  
REFCLK  
t
1
RX_CLK  
t2  
RX_SYNC  
RXD  
t
3
t3  
t
3
t
4
t5  
TPFI  
Table 40. Source Synchronous SMII 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RX_CLK  
rising edge  
t1  
1.5  
ns  
RXD/RX_SYNC output delay from  
RX_CLK rising edge  
Minimum CL = 5 pF  
Maximum CL = 40 pF  
t2  
t3  
t4  
1.5  
5
ns  
ns  
RXD/RX_SYNC Rise/Fall time  
1.0  
21  
Receive start of /J/ to CRS  
asserted  
25  
BT2  
Receive start of /T/ to CRS  
deasserted  
t5  
25  
30  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
104  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 43. Source Synchronous SMII 100BASE-TX Transmit Timing  
TX_CLK  
t1  
t2  
TX_SYNC  
TXD  
t1  
t
2
t3  
TPFO  
Table 41. Source Synchronous SMII 100BASE-TX Transmit Timing  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to TX_CLK rising edge and  
TXD setup to TX_CLK rising edge  
t1  
1.5  
ns  
SYNC hold from TX_CLK rising edge and  
TXD hold to TX_CLK rising edge  
t2  
t3  
1.0  
ns  
TXEN sampled to start of /J/  
11  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
105  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 44. Source Synchronous SMII - 100BASE-FX Receive Timing  
REFCLK  
t
1
RX_CLK  
t2  
RX_SYNC  
RXD  
t
3
t3  
t
3
t
4
t5  
TPFI  
Table 42. Source Synchronous SMII - 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RxCLK rising edge  
t1  
1.5  
ns  
RXD/RX_SYNC output delay from  
RX_CLK rising edge  
Minimum CL = 5 pF  
Maximum CL = 40 pF  
t2  
1.5  
5
ns  
RXD/RX_SYNC Rise/Fall time  
t3  
t4  
t5  
1
ns  
Receive start of /J/ to CRS asserted  
Receive start of /T/ to CRS deasserted  
18  
21  
23  
26  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
106  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 45. Source Synchronous SMII - 100BASE-FX Transmit Timing  
TX_CLK  
t1  
t2  
TX_SYNC  
TXD  
t1  
t2  
t3  
TPFO  
Table 43. Source Synchronous SMII - 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
SYNC setup to REFCLK rising edge and  
TXD setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge and  
TXD hold to REFCLK rising edge  
t2  
t3  
1.0  
ns  
TXD to TPFO Latency  
11  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
107  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 46. Source Synchronous SMII - 10BASE-T Receive Timing  
REFCLK  
t1  
RX_CLK  
t2  
RX_SYNC  
RXD  
t
3
t4  
t
5
TPFI  
Table 44. Source Synchronous SMII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min Typ  
Max Units  
Test Conditions  
REFCLK rising edge to RX_CLK rising  
edge  
t1  
1.5  
ns  
RXD/RX_SYNC output delay from  
RX_CLK rising edge  
Minimum CL = 5 pF  
Maximum CL = 40 pF  
t2  
t3  
t4  
1.5  
1
5
ns  
ns  
RXD/RX_SYNC Rise/Fall time  
Synchronous sampling of  
SMII2  
Receive Start-of-Frame to CRS asserted  
10  
11  
BT3  
Synchronous sampling of  
SMII2  
Receive Start-of-Idle to CRS de-asserted  
t5  
18  
19  
BT3  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Assumes each SMII segment is sampled for CRS.  
3. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
108  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 47. Source Synchronous SMII - 10BASE-T Transmit Timing  
TX_CLK  
t
1
t2  
TX_SYNC  
TXD  
t1  
t
2
t
3
TPFO  
Table 45. Source Synchronous SMII - 10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TX_SYNC setup to TX_CLK rising edge and  
TXD setup to TX_CLK rising edge  
t1  
1.5  
ns  
TX_SYNC hold to TX_CLK rising edge and  
TXD hold from TX_CLK rising edge  
t2  
t3  
1.0  
ns  
TXD to TPFO Latency  
10  
12.5  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
109  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 48. RMII - 100BASE-TX Receive Timing  
REFCLK  
t1  
t2  
t
5
t6  
RXD(1:0)  
TPFI  
t3  
t
4
CRS_DV  
Table 46. RMII - 100BASE-TX Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RXD<1:0>/CRS_DV output delay from REFCLK  
rising edge3  
t1  
2
14  
ns  
Receive start of /J/ to CRS_DV asserted  
Receive start of /T/ to CRS_DV de-asserted  
t2  
t3  
20  
20  
27  
27  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
110  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 49. RMII - 100BASE-TX Transmit Timing  
REFCLK  
t
1
t2  
TXD(1:0)  
TPFO  
t1  
t3  
t
2
TX_EN  
Table 47. RMII - 100BASE-TX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TXD<1:0>/TX_EN setup to REFCLK rising edge  
t1  
t2  
t3  
4
2
ns  
ns  
TXD<1:0>/TX_EN hold from REFCLK rising  
edge  
TX_EN sampled to TPFO out (Tx latency)  
12  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
111  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 50. RMII - 100BASE-FX Receive Timing  
REFCLK  
t
1
t1  
RXD(1:0)  
TPFI  
t2  
t3  
CRS_DV  
Table 48. RMII - 100BASE-FX Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RXD<1:0>/CRS_DV output delay from REFCLK  
rising edge3  
t1  
2
14  
ns  
Receive start of /J/ to CRS_DV asserted  
Receive start of /T/ to CRS_DV de-asserted  
t2  
t3  
18  
18  
25  
25  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
112  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 51. RMII - 100BASE-FX Transmit Timing  
REFCLK  
t1  
t2  
TXD(1:0)  
TPFO  
t1  
t3  
t2  
TX_EN  
Table 49. RMII - 100BASE-FX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TXD<1:0>/TX_EN setup to REFCLK rising edge  
TXD<1:0>/TX-EN hold from REFCLK rising edge  
TX_EN sampled to TPFO out (Tx latency)  
t1  
t2  
t3  
4
2
ns  
ns  
10  
12  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
113  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 52. RMII - 10BASE-T Receive Timing  
REFCLK  
t
1
t1  
RXD(1:0)  
TPFI  
t
2
t
3
CRS_DV  
Table 50. RMII - 10BASE-T Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RXD<1:0>/CRS_DV output delay from REFCLK  
rising edge3  
t1  
2
14  
ns  
TPFI in to CRS_DV asserted  
t2  
t3  
1.5  
14  
3
4
BT2  
BT2  
TPFI quiet to CRS_DV de-asserted  
15  
16  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
114  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 53. RMII - 10BASE-T Transmit Timing  
REFCLK  
t
1
t2  
TXD(1:0)  
TPFO  
t1  
t3  
t2  
TX_EN  
Table 51. RMII - 10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TXD<1:0>/TX_EN setup to REFCLK rising edge  
t1  
t2  
t3  
4
2
ns  
ns  
TXD<1:0>/TX_EN hold from REFCLK rising  
edge  
TX_EN sampled to TPFO out (Tx latency)  
8.5  
10.5  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
115  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 54. Auto-Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPFOP  
t1  
t1  
t3  
t2  
Figure 55. Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPFOP  
t4  
t5  
Table 52. Auto-Negotiation and Fast Link Pulse Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
111  
100  
69.5  
139  
ns  
µs  
µs  
ms  
ms  
ea  
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
116  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 56. MDIO Write Timing (MDIO Sourced by MAC)  
MDC  
t2  
t1  
MDIO  
Figure 57. MDIO Read Timing (MDIO Sourced by PHY)  
MDC  
t3  
MDIO  
Table 53. MDIO Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
MDIO setup before MDC, sourced by  
STA  
t1  
10  
ns  
MDIO hold after MDC,  
sourced by STA  
t2  
t3  
10  
0
ns  
ns  
MDC to MDIO output delay, sourced  
by PHY  
40  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
Datasheet  
117  
LXT9785 Advanced 10/100 8-Port PHY  
Figure 58. Power-Up Timing  
v1  
VCC  
tPDR  
MDIO,etc  
Table 54. Power-Up Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Voltage Threshold  
v1  
2.1  
V
Power-Up recovery time  
tPDR  
100  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
Figure 59. Reset Recovery Timing  
tPW  
RESET  
tRcdly  
MDIO,etc  
Table 55. Reset Recovery Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Reset pulse width  
tPW  
10  
ns  
Reset recovery delay  
tRcdly  
0.4  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
118  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
5.0  
Register Definitions  
The LXT9785 register set includes multiple 16-bit registers, 17 registers per port. Table 56 presents  
a complete register listing. Table 57 through Table 72 define individual registers and Table 74  
provides a consolidated memory map of all registers.  
Base registers (0 through 8) are defined in accordance with the Reconciliation Sublayer and  
Media Independent Interfaceand Physical Layer Link Signalling for 10/100Mbps Auto-  
Negotiationsections of the IEEE 802.3 standard.  
Additional registers (16 through 20) are defined in accordance with the IEEE 802.3 standard for  
adding unique chip functions.  
Table 56. Register Set  
Address  
Register Name  
Bit Assignments  
0
1
Control Register  
Status Register  
Refer to Table 57 on page 120  
Refer to Table 58 on page 121  
Refer to Table 59 on page 122  
Refer to Table 60 on page 122  
Refer to Table 61 on page 123  
Refer to Table 62 on page 124  
Refer to Table 63 on page 125  
Refer to Table 64 on page 125  
2
PHY Identification Register 1  
3
PHY Identification Register 2  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Base Page Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Transmit Register  
5
6
7
8
Auto-Negotiation Link Partner Next Page Receive Register Refer to Table 65 on page 126  
9
1000BASE-T/100BASE-T2 Control Register  
1000BASE-T/100BASE-T2 Status Register  
Extended Status Register  
Port Configuration Register  
Quick Status Register  
Not Implemented  
10  
15  
16  
17  
18  
19  
20  
21  
22  
23 - 24  
25  
26  
27  
28-31  
Not Implemented  
Not Implemented  
Refer to Table 66 on page 127  
Refer to Table 67 on page 128  
Refer to Table 68 on page 128  
Refer to Table 69 on page 130  
Refer to Table 70 on page 131  
Refer to Table 71 on page 132  
Interrupt Enable Register  
Interrupt Status Register  
LED Configuration Register  
Receive Error Count Register  
Reserved  
Reserved  
RMII Out-of-Band Signalling Register  
Reserved  
Refer to Table 72 on page 133  
Refer to Table 73 on page 133  
Trim Enable Register  
Reserved  
Datasheet  
119  
LXT9785 Advanced 10/100 8-Port PHY  
Table 57. Control Register (Address 0)  
Bit  
Name  
Description  
Type 2  
Default  
1 = PHY reset  
R/W  
SC  
0.15  
Reset  
01  
0 = normal operation  
1 = Enable loopback mode  
0 = Disable loopback mode  
0.14  
Loopback  
R/W  
0
0.6 0.13  
1
1
0
0
1 = Reserved  
0 = 1000Mbps (not allowed)  
1 = 100Mbps  
0.134 Speed Selection  
R/W  
LHR3  
0 = 10Mbps  
1 = Enable Auto-Negotiation Process  
0 = Disable Auto-Negotiation Process  
Auto-Negotiation  
Enable  
0.124  
R/W  
LHR3  
1 = power-down  
0 = normal operation  
0.11  
0.10  
Power-Down  
Isolate  
R/W  
R/W  
0
0
1 = Electrically isolate PHY from RMII or SMII interface  
0 = normal operation  
Restart  
R/W  
SC  
1 = Restart Auto-Negotiation Process  
0 = normal operation  
0.9  
01  
Auto-Negotiation  
1 = Full Duplex  
0 = Half Duplex  
0.84  
Duplex Mode  
Collision Test  
R/W  
R/W  
LHR3  
This bit is ignored by the LXT9785  
0.7  
0
1 = Enable COL signal test  
0 = Disable COL signal test  
0.6 0.13  
1
1
0
0
1 = Reserved  
0 = 1000Mbps (not allowed)  
1 = 100Mbps  
Speed Selection  
1000 Mb/s  
0.6  
R/W  
R/W  
00  
0 = 10Mbps  
0.5:0  
Reserved  
Write as 0, ignore on Read  
00000  
1. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the  
LHR information is not re-read from the pins. This information reverts back to the information that was read  
in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after de-  
assertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit  
should be polled to see when the part has completed reset.  
2. R/W = Read/Write, RO = Read Only, SC = Self Clearing when read.  
3. LHR = Latched on Hardware Reset. Bits 0.12, 0.13, and 0.8 are initialized based on the pin configuration  
value.  
4. Default value of bits 0.12, 0.13, and 0.8 are determined by hardware pins.  
120  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 58. Status Register (Address 1)  
Bit  
Name  
Description  
Type 1  
Default  
1 = PHY able to perform 100BASE-T4  
0 = PHY not able to perform 100BASE-T4  
1.15 100BASE-T4  
RO  
0
100BASE-X Full  
Duplex  
1 = PHY able to perform full-duplex 100BASE-X  
0 = PHY not able to perform full-duplex 100BASE-X  
1.14  
RO  
RO  
1
1
100BASE-X Half  
Duplex  
1 = PHY able to perform half-duplex 100BASE-X  
0 = PHY not able to perform half-duplex 100BASE-X  
1.13  
1 = PHY able to operate at 10Mbps in full-duplex mode  
0 = PHY not able to operate at 10Mbps full-duplex  
mode  
1.12 10Mbps Full Duplex  
1.11 10Mbps Half Duplex  
RO  
1
1 = PHY able to operate at 10Mbps in half-duplex mode  
0 = PHY not able to operate at 10Mbps in half-duplex  
RO  
RO  
RO  
1
0
0
100BASE-T2 Full  
Duplex  
1 = PHY able to perform full-duplex 100BASE-T2  
0 = PHY not able to perform full-duplex 100BASE-T2  
1.10  
100BASE-T2 Half  
Duplex  
1 = PHY able to perform half duplex 100BASE-T2  
0 = PHY not able to perform half-duplex 100BASE-T2  
1.9  
1 = Extended status information in register 15  
0 = No extended status information in register 15  
1.8  
1.7  
Extended Status  
Reserved  
RO  
RO  
0
0
1 = Ignore on read  
1 = PHY accepts management frames with preamble  
suppressed  
0 = PHY will not accept management frames with  
preamble suppressed  
MF Preamble  
Suppression  
1.6  
RO  
0
Auto-Negotiation  
complete  
1 = Auto-negotiation complete  
0 = Auto-negotiation not complete  
1.5  
1.4  
1.3  
1.2  
RO  
0
0
1
0
RO/LH  
Note 2  
1 = Remote fault condition detected  
0 = No remote fault condition detected  
Remote Fault  
Auto-Negotiation  
Ability  
1 = PHY is able to perform Auto-Negotiation  
0 = PHY is not able to perform Auto-Negotiation  
RO  
RO/LL  
Note 2  
1 = Link is up  
0 = Link is down  
Link Status  
RO/LH  
Note 2  
1 = Jabber condition detected  
0 = Jabber condition not detected  
1.1  
1.0  
Jabber Detect  
0
1
1 = Extended register capabilities  
0 = Basic register capabilities  
Extended Capability  
RO  
1. RO = Read Only  
2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read.  
Datasheet  
121  
LXT9785 Advanced 10/100 8-Port PHY  
Table 59. PHY Identification Register 1 (Address 2)  
Bit  
Name  
Description  
Type 1  
Default  
The PHY identifier composed of bits 3 through 18 of the  
OUI  
2.15:0 PHY ID Number  
1. RO = Read Only  
RO  
0013 hex  
Table 60. PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type 1  
Default  
011110  
001111  
XXXX  
The PHY identifier composed of bits 19  
through 24 of the OUI  
3.15:10 PHY ID Number  
RO  
Manufacturers  
3.9:4  
6 bits containing manufacturers part number  
RO  
RO  
Model Number  
Manufacturers  
Revision  
Number  
4 bits containing manufacturers revision  
(See Table 3 in  
Specification  
Update)  
3.3:0  
number  
1. RO = Read Only  
Figure 60. PHY Identifier Bit Mapping  
a
r
s
x
b
2
c
Organizationally Unique Identifier  
1
18 19  
24  
3
0
0
1
3
9
3
I/G  
0
15  
0
0
1
15  
0
10  
4
0
PHY ID Register #1 (Address 2)  
PHY ID Register #2 (Address 3)  
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
1
1
0
X
X
X
X
X
X
X
X
X
X
0
0
0
2
B
7
5
0
3
0
00  
20  
7B  
Manufacturers  
Model Number  
Revision  
Number  
The Level One OUI is 00207B hex.  
122  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 61. Auto-Negotiation Advertisement Register (Address 4)4  
Bit  
Name  
Description  
Type 1  
Default  
1 = Port has ability to send multiple pages  
0 = Port has no ability to send multiple pages  
4.15  
4.14  
4.13  
4.12  
4.11  
Next Page  
Reserved  
R/W  
RO  
0
0
0
0
0
Ignore on read  
1 = Remote fault  
0 = No remote fault  
Remote Fault  
Reserved  
R/W  
R/W  
R/W  
Ignore  
Asymmetric  
Pause  
Pause operation defined in Clause 40 and 27  
1 = Pause operation enabled for full-duplex links  
0 = Pause operation disabled  
Note 2 &  
Note 3  
4.10  
Pause  
R/W  
1 = 100BASE-T4 capability is available  
0 = 100BASE-T4 capability is not available  
(The LXT9785 does not support 100BASE-T4 but allows this  
bit to be set to advertise in the Auto-Negotiation sequence for  
100BASE-T4 operation. An external 100BASE-T4 transceiver  
could be switched in if this capability is desired.)  
4.9  
100BASE-T4  
R/W  
0
100BASE-TX 1 = Port is 100BASE-TX full duplex capable  
4.8  
4.7  
R/W  
R/W  
Note 3  
Note 3  
full duplex  
0 = Port is not 100BASE-TX full duplex capable.  
1 = Port is 100BASE-TX capable  
0 = Port is not 100BASE-TX capable  
100BASE-TX  
1 = Port is 10BASE-T full duplex capable  
0 = Port is not 10BASE-T full duplex capable  
10BASE-T  
full duplex  
4.6  
4.5  
R/W  
R/W  
Note 3  
Note 3  
1 = Port is 10BASE-T capable  
10BASE-T  
0 = Port is not 10BASE-T capable  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector  
4.4:0 Field,  
S<4:0>  
<00000> = Reserved for future Auto-Negotiation development  
<11111> = Reserved for future Auto-Negotiation development  
Unspecified or reserved combinations should not be  
transmitted  
R/W  
00001  
1. R/W = Read/Write, RO = Read Only  
2. The default setting of bit 4.10 (PAUSE) is determined by pin 50. Pause operation is only valid for full-duplex  
modes.  
3. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 18 on page 62.  
4. Restart Auto-Negotiation process whenever Reg 4. is written/modified.  
Datasheet  
123  
LXT9785 Advanced 10/100 8-Port PHY  
Table 62. Auto-Negotiation Link Partner Base Page Ability Register (Address 5)  
Bit  
Name  
Description  
Type 1  
Default  
1 = Link Partner has ability to send multiple pages  
0 = Link Partner has no ability to send multiple pages  
5.15 Next Page  
RO  
0
1 = Link Partner has received Link Code Word from the  
LXT9785.  
5.14 Acknowledge  
RO  
0
0 = Link Partner has not received Link Code Word from the  
the LXT9785  
1 = Remote fault  
0 = No remote fault  
5.13 Remote Fault  
5.12 Reserved  
RO  
RO  
0
0
Ignore on read  
Pause operation defined in Clause 40 and 27  
Asymmetric  
Pause  
5.11  
RO  
0
1 = Link Partner is Pause capable  
0 = Link Partner is not Pause capable  
1 = Link Partner is Pause capable  
0 = Link Partner is not Pause capable  
5.10 Pause  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Link Partner is 100BASE-T4 capable  
0 = Link Partner is not 100BASE-T4 capable  
5.9  
5.8  
5.7  
100BASE-T4  
100BASE-TX  
full duplex  
1 = Link Partner is 100BASE-TX full duplex capable  
0 = Link Partner is not 100BASE-TX full duplex capable  
1 = Link Partner is 100BASE-TX capable  
0 = Link Partner is not 100BASE-TX capable  
100BASE-TX  
10BASE-T  
full duplex  
1 = Link Partner is 10BASE-T full duplex capable  
0 = Link Partner is not 10BASE-T full duplex capable  
5.6  
5.5  
RO  
RO  
0
0
1 = Link Partner is 10BASE-T capable  
0 = Link Partner is not 10BASE-T capable  
10BASE-T  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector Field  
S<4:0>  
5.4:0  
<00000> = Reserved for future Auto-Negotiation development  
<11111> = Reserved for future Auto-Negotiation development  
Unspecified or reserved combinations shall not be transmitted  
RO  
00000  
1. RO = Read Only  
124  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 63. Auto-Negotiation Expansion (Address 6)  
Bit  
Name  
Description  
Type 1  
Default  
6.15:6 Reserved  
Ignore on read  
RO  
0
This bit indicates the status of the Auto-Negotiation  
variable, base page. It flags synchronization with the Auto-  
Negotiation state diagram allowing detection of interrupted  
links. This bit is only used if bit 16.1 (Alternate NP feature)  
is set.  
RO/  
LH  
6.5  
Base Page  
Parallel  
0
1 = base_page = true  
0 = base_page = false  
1 = Parallel detection fault has occurred.  
Detection Fault 0 = Parallel detection fault has not occurred.  
RO/  
LH  
6.4  
6.3  
6.2  
0
0
1
Link Partner 1 = Link partner is next page able  
Next Page Able 0 = Link partner is not next page able  
RO  
RO  
1 = Local device is next page able  
Next Page Able  
0 = Local device is not next page able  
Indicates that a new page has been received and the  
received code word has been loaded into register 5 or  
register 8 as specified in clause 28 of 802.3.  
RO  
LH  
6.1  
Page Received 1 = Three identical and consecutive link code words have  
been received from link partner  
0
0
0 = Three identical and consecutive link code words have  
not been received from link partner  
Link Partner A/ 1 = Link partner is auto-negotiation able  
6.0  
RO  
N Able  
0 = Link partner is not auto-negotiation able  
1. RO = Read Only, LH = Latching High cleared when read  
Table 64. Auto-Negotiation Next Page Transmit Register (Address 7)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
(NP)  
1 = Additional next pages follow  
0 = Last page  
7.15  
R/W  
RO  
0
0
1
7.14 Reserved  
Write as 0, ignore on read  
Message Page 1 = Message page  
7.13  
7.12  
R/W  
(MP)  
0 = Unformatted page  
Acknowledge 2 1 = Complies with message  
R/W  
R/W  
0
0
(ACK2)  
0 = Cannot comply with message  
1 = Previous value of the transmitted Link Code Word  
equalled logic zero  
0 = Previous value of the transmitted Link Code Word  
equalled logic one  
Toggle  
(T)  
7.11  
Message/  
7.10:0 Unformatted  
Code Field  
MP = 1: Code interpreted as message page”  
MP = 0: Code interpreted as unformatted page”  
R/W  
00000000001  
1. R/W = Read Write, RO = Read Only  
Datasheet  
125  
Advanced 10/100 8-Port PHY LXT9785  
Table 65. Auto-Negotiation Link Partner Next Page Receive Register (Address 8)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
(NP)  
1 = Link Partner has additional next pages to send  
0 = Link Partner has no additional next pages to send  
8.15  
RO  
0
1 = Link Partner has received Link Code Word from  
the LXT9785  
Acknowledge  
(ACK)  
8.14  
RO  
0
0 = Link Partner has not received Link Code Word  
from the LXT9785  
1 = Page sent by the Link Partner is a Message Page  
Message Page  
(MP)  
8.13  
8.12  
RO  
RO  
0
0
0 = Page sent by the Link Partner is an Unformatted  
Page  
Acknowledge 2  
(ACK2)  
1 = Link Partner will comply with the message  
0 = Link Partner cannot comply with the message  
1 = Previous value of the transmitted Link Code Word  
equalled logic zero  
0 = Previous value of the transmitted Link Code Word  
equalled logic one  
Toggle  
(T)  
8.11  
RO  
RO  
0
Message/  
8.10:0 Unformatted  
Code Field  
MP = 1: Code interpreted as message page”  
MP = 0: Code interpreted as unformatted page”  
00000000000  
1. RO = Read Only  
Product Specification  
126  
Advanced 10/100 8-Port PHY LXT9785  
Table 66. Port Configuration Register (Address 16, Hex 10)  
Bit  
Name  
Reserved  
Description  
Write as 0, ignore on read  
Type 1  
Default  
16.15  
R/W  
0
0
1 = Force Link pass. Sets appropriate registers and LEDs  
to Pass.  
16.14  
Link Disable  
R/W  
0 = Normal operation  
1 = Disable Twisted-Pair transmitter  
0 = Normal Operation  
0
0
0
0
0
16.13  
16.12  
16.11  
16.10  
Transmit Disable  
R/W  
R/W  
R/W  
R/W  
Bypass Scramble 1 = Bypass Scrambler and Descrambler  
(100BASE-TX)  
0 = Normal Operation  
Bypass 4B5B  
(100BASE-TX)  
1 = Bypass 4B5B encoder and decoder  
0 = Normal Operation  
Jabber  
(10BASE-T)  
1 = Disable Jabber  
0 = Normal operation  
This bit is ignored by the LXT9785  
SQE  
(10BASE-T)  
16.9  
R/W  
1 = Enable Heart Beat  
0 = Disable Heart Beat  
TP Loopback  
(10BASE-T)  
1 = Disable TP loopback during half duplex operation  
0 = Normal Operation  
1
16.8  
16.7  
R/W  
R/W  
Reserved  
Write as one. Ignore on read  
1
0
0 = FIFO allows packets up to 2 KBytes  
1 = FIFO allows packets up to 9 KBytes  
16.6  
16.5  
FIFO Size  
R/W  
R/W  
Packet sizes assume a 100 ppm difference between the  
reference clock and the recovered clock.  
Preamble Enable. The implementation of this bit is  
10BASE-T only.  
0
PRE_EN  
0 = Set RX_DV high coincident with SFD  
1 = Set RX_DV high and RXD=preamble when CRS is  
asserted.  
16.4  
16.3  
Reserved  
Reserved  
Write as zero. Ignore on read  
Write as zero. Ignore on read  
R/W  
R/W  
0
0
1
Far End Fault  
Transmission  
Enable  
1 = Enable Far End Fault Transmission  
0 = Disable Far End Fault Transmission  
16.2  
R/W  
Alternate NP  
Feature  
1 = Enable alternate auto-negotiate next page feature  
0 = Disable alternate auto-negotiate next page feature  
0
16.1  
16.0  
R/W  
R/W  
1 = Select fiber mode for this port  
0 = Select TP mode for this port  
Note 2  
Fiber Select  
1. R/W = Read/Write  
2. The default value of bit 16.0 is determined by the G_FX/TP pin for the respective port.  
If G_FX/TPn is tied Low, the default value of bit 16.0 = 0. If G_FX/TPn is not tied Low, the default value of  
bit 16.0 = 1.  
Datasheet  
127  
Table 67. Quick Status Register (Address 17, Hex 11)  
Bit  
Name  
Description  
Type 1  
Default  
17.15 Reserved  
Always 0  
RO  
0
1 = The LXT9785 is operating in 100BASE-TX mode.  
0 = The LXT9785 is not operating 100BASE-TX mode.  
17.14 10/100 Mode  
RO  
0
0
0
0
0
0
0
1 = The LXT9785 is transmitting a packet  
0 = The LXT9785 is not transmitting a packet  
RO  
LH  
17.13 Transmit Status  
17.12 Receive Status  
17.11 Collision Status  
17.10 Link  
1 = The LXT9785 is receiving a packet  
0 = The LXT9785 is not receiving a packet  
RO  
LH  
1 = Collision is occurring  
0 = No collision  
RO  
LH  
1 = Link is up  
0 = Link is down  
RO  
RO  
RO  
1 = Full duplex  
0 = Half duplex  
17.9  
17.8  
Duplex Mode  
1 = The LXT9785 is in Auto-Negotiation Mode  
0 = The LXT9785 is in manual mode  
Auto-Negotiation  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
Auto-Negotiation  
Complete  
17.7  
17.6  
RO  
0
0
This bit is only valid when auto-negotiate is enabled, and is  
equivalent to bit 1.5.  
1 = FIFO error has occurred (Overflow or Underflow)  
0 = No FIFO error has occurred  
RO  
LH  
FIFO Error  
1 = Polarity is reversed  
0 = Polarity is not reversed  
17.5  
17.4  
Polarity  
Pause  
RO  
RO  
0
0
1 = The LXT9785 is Pause capable  
0 = The LXT9785 is Not Pause capable  
1 = Error Occurred (Remote Fault, RxERCntFUL, FIFO  
error, Jabber, Parallel Detect Fault)  
0 = No error occurred  
RO  
LH  
17:3  
Error  
0
17:2  
17:1  
17.0  
Reserved  
Reserved  
Reserved  
Reserved  
Ignore  
RO  
RO  
RO  
0
0
0
Always 0  
1. RO = Read Only, LH = Latching High cleared when read.  
Table 68. Interrupt Enable Register (Address 18, Hex 12)  
Bit  
Name  
Description  
Write as 0, ignore on read  
Type 1  
Default  
18.15:9 Reserved  
R/W  
0
Mask for Counter Full  
18.8  
18.7  
CNTRMSK  
ANMSK  
R/W  
0
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Auto-Negotiate Complete  
R/W  
0
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
1. R/W = Read/Write  
Advanced 10/100 8-Port PHY LXT9785  
Table 68. Interrupt Enable Register (Address 18, Hex 12) (Continued)  
Bit  
Name  
Description  
Type 1  
Default  
Mask for Speed Interrupt  
18.6  
SPEEDMSK  
R/W  
0
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Duplex Interrupt  
18.5  
18.4  
18.3  
DUPLEXMSK  
LINKMSK  
R/W  
R/W  
R/W  
0
0
0
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Link Status Interrupt  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Isolate Interrupt  
ISOLMSK  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
18.2  
18.1  
Reserved  
INTEN  
Write as 0, ignore on read  
R/W  
R/W  
0
0
1 = Enable interrupts on this port  
0 = Disable interrupts on this port  
1 = Test Force interrupt on MDINT  
0 = Normal operation  
18.0  
TINT  
R/W  
0
1. R/W = Read/Write  
Datasheet  
129  
LXT9785 Advanced 10/100 8-Port PHY  
Table 69. Interrupt Status Register (Address 19, Hex 13)  
Bit  
Name  
Description  
Type 1  
Default  
19.15:9 Reserved  
Ignore on read  
RO  
0
RxER Counter Full Status  
0
N/A  
0
1 = One of the internal counters has reached its maximum  
value  
0 = The internal counters have not reached maximum values  
19.8  
19.7  
RxERCntFUL  
RO/SC  
RO/SC  
Auto-Negotiation Status  
ANDONE  
1= Auto-Negotiation has completed  
0= Auto-Negotiation has not completed  
Speed Change Status  
1 = A Speed Change has occurred since last reading this  
register  
19.6  
19.5  
19.4  
SPEEDCHG  
RO/SC  
RO/SC  
RO/SC  
0 = A Speed Change has not occurred since last reading this  
register  
Duplex Change Status  
1 = A Duplex Change has occurred since last reading this  
DUPLEXCHG register  
0
0
0 = A Duplex Change has not occurred since last reading  
this register  
Link Status Change Status  
1 = A Link Change has occurred since last reading this  
register  
LINKCHG  
0 = A Link Change has not occurred since last reading this  
register  
MII Isolate Change Status  
1 = A Isolate change has occurred since last reading this  
register  
19.3  
19.2  
Isolate  
MDINT  
RO/SC  
RO/SC  
0
0
0 = A Isolate change has not occurred since last reading this  
register  
1 = RMII/SMII/SS-SMII interrupt pending  
0 = No RMII/SMII/SS-SMII interrupt pending  
19.1  
19.0  
Reserved  
Reserved  
Ignore on read  
Ignore on read  
RO/SC  
RO  
0
0
1. R/W = Read/Write, RO = Read Only, SC = Self Clearing - cleared when read  
130  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 70. LED Configuration Register (Address 20, Hex 14)  
Bit  
Name  
Description  
Type 1 Default  
0000 = Display Speed Status (Continuous, Default)  
0001 = Display Transmit Status (Stretched)  
0010 = Display Receive Status (Stretched)  
0011 = Display Collision Status (Stretched)  
0100 = Display Link Status (Continuous)  
0101 = Display Duplex Status (Continuous)  
0110 = Display Isolate Status (Continuous)  
0111 = Display Receive or Transmit Activity (Stretched)  
1000 = Test mode- turn LED on (Continuous)  
1001 = Test mode- turn LED off (Continuous)  
1010 = Test mode- blink LED fast (Continuous)  
1011 = Test mode- blink LED slow (Continuous)  
1100 = Display Link and Receive Status combined 2  
(Stretched)3  
LED1  
20.15:12  
R/W  
0000  
Programming  
bits  
1101 = Display Link and Activity Status combined 2  
(Stretched)3  
1110 = Display Duplex and Collision Status combined 4  
(Stretched)3  
1111 = Display Link and Rx_ERR Status combined 2 (Blink)  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Display Isolate Status  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2  
(Stretched)3  
LED2  
20.11:8  
R/W  
1101  
Programming  
bits  
1101 = Display Link and Activity Status combined 2  
(Default)(Stretched)3  
1110 = Display Duplex and Collision Status combined 4  
(Stretched)3  
1111 = Display Link and Rx_ERR Status combined 2 (Blink)  
1. R/W = Read/Write, RO = Read Only, LH = Latching High.  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are  
stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
Datasheet  
131  
LXT9785 Advanced 10/100 8-Port PHY  
Table 70. LED Configuration Register (Address 20, Hex 14) (Continued)  
Bit  
Name  
Description  
Type 1 Default  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Display Isolate Status  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2  
(Stretched)3  
LED3  
20.7:4  
R/W  
1110  
Programming  
bits  
1101 = Display Link and Activity Status combined 2  
(Stretched)3  
1110 = Display Duplex and Collision Status combined 4  
(Default) (Blink)3  
1111 = Display Link and Rx_ERR Status combined 2 (Blink)  
00 = Stretch LED events to 30 ms  
01 = Stretch LED events to 60 ms  
10 = Stretch LED events to 100 ms  
11 = Reserved  
20.3:2  
LEDFREQ  
R/W  
00  
PULSE-  
STRETCH  
1 = Enable pulse stretching of all LEDs  
0 = Disable pulse stretching of all LEDs 2  
20.1  
20.0  
R/W  
R/W  
1
0
Reserved  
Reserved  
1. R/W = Read/Write, RO = Read Only, LH = Latching High.  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are  
stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
Table 71. Receive Error Count Register (Address 21)  
Bit  
Name  
Description  
Type 1  
Default  
A 16-bit counter value indicating the number of times a  
receive packet with errors occurred. Only one event gets  
Receive Error counted per packet. When maximum count is reached, the  
RO/  
SC  
21.15:0  
0
Count  
16-bit counter remains full until cleared. Refer to the  
discussion of Out-of-Band Signallingon page 74 for  
details.  
1. RO = Read Only  
S/C = Self Clearing when read  
132  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Table 72. RMII Out-of-Band Signalling Register (Address 25)  
Bit  
Name  
Description  
Type 1  
Default  
25:15:7 Reserved  
Reserved  
R/W  
0
These three bits select which status information is  
available on the RXD(1) bit of the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
25:6:4  
BIT1  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Isolate  
These three bits select which status information is  
available on the RXD(0) bit of the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
25.3:1  
BIT0  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Isolate  
1 = Enable programmable RMII Out-of-Band  
signalling. When enabled, bits 6:1 specify which  
status bits are available on the RMII RXD data bus.  
25.0  
PROGRMII  
R/W  
0
0 = Disable Out-of-Band signalling.  
1. R/W = Read/Write  
RO = Read Only  
Table 73. Trim Enable Register (Address 27)  
00 = 3.3 ns (default is pins SLEWCTRL<1:0>  
Per-Port  
27.11:10 Rise Time  
Control  
01 = 3.6 ns  
10 = 3.9 ns  
11 = 4.2 ns  
R/W  
00  
0 = Disable auto MDIX (default is pin auto_mdix_en)  
1 = Enable auto MDIX  
27.9  
27.8  
27.7  
AMDIX_EN  
MDIX  
R/W  
R/W  
R/W  
0
Note 2  
0
Manual MDI/MDIX selection:  
0 = MDI, transmit on pair A and receive on pair B  
1 = MDIX transmit on pair B and receive on pair A  
1 = Enable analog loop back (transmits on twisted-pair)  
0 = Disable analog loop back  
Analog  
Loop back  
1. The default setting of register bit 27.8 is determined by pin 59.  
Datasheet  
133  
Table 74. Register Bit Map  
Bit Fields  
Reg Title  
Addr  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Control Register  
Speed  
Select  
A/N  
Power  
Down  
Re-start  
A/N  
Duplex  
Mode  
Speed  
Select  
Reset  
Loopback  
Isolate  
COL Test  
Reserved  
Control  
Status  
0
1
Enable  
Status Register  
100Base-  
X Full  
Duplex  
10Mbps  
Full  
Duplex  
10Mbps  
Half  
Duplex  
100Base-  
T2 Full  
Duplex  
MF  
Preamble  
Suppress  
Extended  
Capability  
100Base-X  
Half Duplex  
100Base-T2  
Half Duplex  
Extended  
Status  
A/N  
Complete  
Remote  
Fault  
Jabber  
Detect  
100Base-T4  
Reserved  
A/N Ability  
Link Status  
PHY ID Registers  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PHY ID 1  
PHY ID2  
2
3
PHY ID No  
MFR Model No  
MFR Rev No  
Auto-Negotiation Advertisement Register  
100Base-  
TX Full  
Duplex  
A/N  
Advertise  
Remote  
Fault  
Asymm  
Pause  
100Base-  
TX  
10Base-T  
Full Duplex  
Next Page  
Reserved  
Reserved  
Reserved  
Pause  
100Base-T4  
10Base-T  
IEEE Selector Field  
4
5
6
Auto-Negotiation Link Partner Base Page Ability Register  
100Base-  
TX Full  
Duplex  
A/N Link  
Ability  
Remote  
Fault  
Asymm  
Pause  
100Base-  
TX  
10Base-T  
Full Duplex  
Next Page  
Ack  
Pause  
100Base-T4  
10Base-T  
IEEE Selector Field  
Auto-Negotiation Expansion Register  
Parallel  
Detect  
Fault  
LinkPartner  
Next Page  
Able  
Link  
Partner  
A/N Able  
A/N  
Expansion  
Next Page  
Able  
Page  
Received  
Reserved  
Base Page  
Auto-Negotiation Next Page Transmit Register  
A/N Next  
Page  
Txmit  
Message  
Page  
Next Page  
Reserved  
Ack 2  
Toggle  
Message / Unformatted Code Field  
7
8
Auto-Negotiation Link Partner Next Page Ability Register  
A/N Link  
Next Page  
Next Page  
Ack  
Message Page  
Ack 2  
Toggle  
Message / Unformatted Code Field  
Table 74. Register Bit Map (Continued)  
Bit Fields  
B8 B7  
Reg Title  
Addr  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Port Configuration Register  
Bypass  
Scrambler  
Bypass  
4B/5B  
TP  
Loopback  
Remote  
Fault  
Enable  
Port  
Config  
Jabber  
(10T)  
SQE  
Link  
Disable  
Txmit  
Disable  
Alternate  
Next Page  
Fiber  
Select  
Reserved  
Reserved  
FIFO Size  
PRE_EN  
Reserved  
Reserved  
16  
17  
18  
19  
20  
(10T)  
(100TX)  
(100TX)  
(10T)  
Quick Status Register  
Quick  
Status  
10/100  
Mode  
Transmit  
Status  
Receiver  
Status  
Collision  
Status  
Duplex  
Mode  
Auto-Neg  
Complete  
Reserved  
Link  
Auto-Neg  
FIFO Error  
Polarity  
Pause  
Error  
Reserved  
Reserved  
Reserved  
Reserved  
Interrupt Enable Register  
Interrupt  
Enable  
Counter  
Mask  
Auto-Neg  
Mask  
Speed  
Mask  
Duplex  
Mask  
Isolate  
Mask  
Interrupt  
Enable  
Test  
Interrupt  
Reserved  
Reserved  
Link Mask  
Interrupt Status Register  
Rx_ER  
Auto-Neg  
Counter  
Done  
Interrupt  
Status  
Speed  
Change  
Duplex  
Change  
Link  
Change  
Isolate  
Change  
MD Interrupt  
Reserved  
Reserved  
Reserved  
Full  
LED Configuration Register  
LED  
Config  
Pulse  
Stretch  
LED1  
LED2  
LED3  
LED Freq  
Receive Error Count Register  
Rcv Error  
Count  
Receive Error Count  
21  
22  
25  
False Carrier Counter Register  
Reserved  
Reserved  
Programmable RMII Out-of-Band Signalling Register  
RMII OOB  
Signalling  
Program  
RMII  
Reserved  
Bit 1  
Bit 0  
Programmable RMII Out-of-Band Signalling Register  
Per Port Slew  
Control  
Auto-MDIX  
Manual  
MDIX  
Analog  
Loop  
Trim  
Enable  
Reserved  
Reserved  
27  
LXT9785 Advanced 10/100 8-Port PHY  
6.0  
Package Specifications  
Figure 61. LXT9785 208-Pin PQFP Plastic Package Specification  
208-Pin Plastic Quad Flat Package  
Part Number LXT9785HC  
Commercial Temperature Range (0°C to 70°C)  
Millimeters  
Max  
Dim  
Min  
D
D1  
A
-
4.10  
-
A1  
A2  
0.25  
3.20  
3.60  
0.27  
30.90  
28.30  
30.90  
28.30  
b
0.17  
e
E1  
D
30.30  
27.70  
30.30  
27.70  
E
D
1
e
/
E
2
E
1
e
L
.50 BASIC  
0.50  
0.75  
θ2  
L
1.30 REF  
1
L1  
q
0°  
5°  
5°  
7°  
θ
A2  
16°  
16°  
A
2
3
θ
θ
A1  
θ3  
b
L
136  
Datasheet  
Advanced 10/100 8-Port PHY LXT9785  
Figure 62. LXT9785 241-Ball PBGA Package Specification (LXT9785BC)  
Datasheet  
137  

相关型号:

LXT9785HC

LAN TRANSCEIVER|OCTAL|QFP|208PIN|PLASTIC
ETC

LXT980AHC

LAN HUB CONTROLLER
ETC

LXT980QC

LAN HUB CONTROLLER
ETC

LXT981QC

Ethernet Transceiver, CMOS, PQFP208, QFP-208
LevelOne

LXT981QC

Ethernet Transceiver, CMOS, PQFP208, PLASTIC, QFP-208
INTEL

LXT983AHC

Ethernet Transceiver, PQFP208, PLASTIC, QFP-208
INTEL

LXT983AHC

Ethernet Transceiver, PQFP208, PLASTIC, QFP-208
LevelOne

LXT983QC

Ethernet Transceiver, PQFP208, PLASTIC, QFP-208
INTEL

LXT9860

Advanced 10/100 Repeater with Intergrated Management
INTEL

LXT9860AHC

Controller Miscellaneous - Datasheet Reference
ETC

LXT9860HC

Controller Miscellaneous - Datasheet Reference
ETC

LXT9863

Advanced 10/100 Umnmanaged Repeater
INTEL