MLX90316LDC-SPI [ETC]

Rotary Position Sensor IC; 旋转位置传感器IC
MLX90316LDC-SPI
型号: MLX90316LDC-SPI
厂家: ETC    ETC
描述:

Rotary Position Sensor IC
旋转位置传感器IC

传感器 换能器 旋转位置传感器 输出元件
文件: 总41页 (文件大小:674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX90316  
Rotary Position Sensor IC  
Features and Benefits  
Absolute Rotary Position Sensor IC  
Simple & Robust Magnetic Design  
TriaisHall Technology  
Programmable Angular Range up to 360 Degrees  
Programmable Linear Transfer Characteristic  
Selectable Analog (Ratiometric), PWM, Serial Protocol  
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy  
40 bit ID Number  
Single Die – SO8 Package RoHS Compliant  
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant  
Applications  
Absolute Rotary Position Sensor  
Pedal Position Sensor  
Throttle Position Sensor  
Steering Wheel Position Sensor  
Motor-shaft Position Sensor  
Float-Level Sensor  
Ride Height Position Sensor  
Non-Contacting Potentiometer  
Ordering Information1  
Part No.  
Temperature Suffix  
Package Code  
Option code  
2
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
S (20°C to + 85°C)  
E (40°C to + 85°C)  
K (40°C to + 125°C)  
L (40°C to + 150°C)  
S (20°C to + 85°C)  
E (40°C to + 85°C)  
K (40°C to + 125°C)  
L (40°C to + 150°C)  
E (40°C to + 85°C)  
K (40°C to + 125°C)  
L (40°C to + 150°C)  
E (40°C to + 85°C)  
K (40°C to + 125°C)  
L (40°C to + 150°C)  
K (40°C to + 125°C)  
K (40°C to + 125°C)  
K (40°C to + 125°C)  
K (40°C to + 125°C)  
DC [SOIC-8]  
DC [SOIC-8]  
DC [SOIC-8]  
-
2
-
2
-
-
-
-
2
DC [SOIC-8]  
2
GO [TSSOP-16]  
GO [TSSOP-16]  
GO [TSSOP-16]  
GO [TSSOP-16]  
DC [SOIC-8]  
2
2
-
2
-
SPI3  
SPI3  
SPI3  
SPI3  
SPI3  
SPI3  
PPA4  
PPA4  
PPD5  
PPD5  
DC [SOIC-8]  
DC [SOIC-8]  
GO [TSSOP-16]  
GO [TSSOP-16]  
GO [TSSOP-16]  
DC [SOIC-8]  
GO [TSSOP-16]  
DC [SOIC-8]  
GO [TSSOP-16]  
1 Example: MLX90316KDC-PPA  
2 Fully end-user programmable version through the Melexis Programming Unit PTC-04  
3 SPI Version pre-programmed and locked for 360deg rotary position application in SPI mode (High Speed). The standard version  
can also be programmed in SPI but the application diagram described in section 17.4.3 is recommended.  
4 Pre-Programmed Analog – 360deg angular span for an analog output between 0.5V and 4.5V, Low Speed Mode (Locked)  
5 Pre-Programmed PWM – 360deg angular span, 10-90% at 1 kHz, High Speed Mode (Locked)  
3901090316  
Rev. 003  
Page 1 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
1. Functional Diagram  
Rev.Pol.  
3V3  
Reg  
&
VDD  
DSP  
OverVolt.  
Tria9is™  
Vx  
A
D
x 1  
G
μC  
D
A
OUT  
Vy  
(Analog/PWM)  
RAM  
EEP  
ROM  
SWITCH OUT  
VSS  
Figure 1 - Block Diagram (Analog & PWM)  
3V3  
Reg  
Rev.Pol.  
VDD  
DSP  
Tria9is™  
Vx  
Vy  
A
/SS  
G
μC  
D
SERIAL PROTOCOL  
SCLK  
MOSI/MISO  
RAM  
EEP  
ROM  
VSS  
Figure 2 - Block Diagram (Serial Protocol)  
3901090316  
Rev. 003  
Page 2 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
2. Description  
The MLX90316 is a monolithic sensor IC featuring the TriaisHall technology. Conventional planar Hall  
technology is only sensitive to the flux density applied orthogonally to the IC surface. The TriaisHall  
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an  
Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end  
step).  
The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the  
MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360  
Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are  
frequently required for both automotive and industrial applications.  
In combination with the appropriate signal processing, the magnetic flux density of a small magnet  
(diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 3). The  
angular information is computed from both vectorial components of the flux density (i.e. BX and BY).  
MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between  
Analog, PWM and Serial Protocol.  
α
Figure 3 - Typical application of MLX90316  
3901090316  
Rev. 003  
Page 3 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
TABLE of CONTENTS  
FEATURES AND BENEFITS ....................................................................................................................... 1  
APPLICATIONS............................................................................................................................................ 1  
ORDERING INFORMATION......................................................................................................................... 1  
1. FUNCTIONAL DIAGRAM...................................................................................................................... 2  
2. DESCRIPTION....................................................................................................................................... 3  
3. GLOSSARY OF TERMS ABBREVIATIONS ACRONYMS ............................................................ 6  
4. PINOUT.................................................................................................................................................. 6  
5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7  
6. DETAILED DESCRIPTION.................................................................................................................... 7  
7. MLX90316 ELECTRICAL SPECIFICATION....................................................................................... 10  
8. MLX90316 ISOLATION SPECIFICATION.......................................................................................... 12  
9. MLX90316 TIMING SPECIFICATION................................................................................................. 12  
10. MLX90316 ACCURACY SPECIFICATION......................................................................................... 13  
11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 14  
12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 14  
13. MLX90316 END-USER PROGRAMMABLE ITEMS........................................................................... 15  
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 16  
14.1.  
OUTPUT MODE..........................................................................................................................................16  
14.1.1. Analog Output Mode ............................................................................................................................16  
14.1.2. PWM Output Mode...............................................................................................................................16  
14.1.3. Serial Protocol Output Mode ...............................................................................................................16  
14.1.4. Switch Out ............................................................................................................................................17  
14.2.  
OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................18  
14.2.1. CLOCKWISE Parameter......................................................................................................................18  
14.2.2. Discontinuity Point (or Zero Degree Point).........................................................................................18  
14.2.3. LNR Parameters...................................................................................................................................19  
14.2.4. CLAMPING Parameters ......................................................................................................................19  
14.2.5. DEADZONE Parameter.......................................................................................................................19  
14.3.  
14.4.  
IDENTIFICATION ........................................................................................................................................19  
SENSOR FRONT-END .................................................................................................................................20  
14.4.1. HIGHSPEED Parameter......................................................................................................................20  
14.4.2. ARGC, AUTO_RG, RoughGain Parameters........................................................................................20  
14.4.3. RGThresL, RGThresH Parameters ......................................................................................................21  
14.5.  
FILTER ....................................................................................................................................................21  
14.5.1. Hysteresis Filter ...................................................................................................................................21  
14.5.2. FIR Filters............................................................................................................................................21  
14.5.3. IIR Filters.............................................................................................................................................23  
3901090316  
Rev. 003  
Page 4 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.6.  
PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................24  
14.6.1. RESONFAULT Parameter ...................................................................................................................24  
14.6.2. EEHAMHOLE Parameter....................................................................................................................24  
14.7.  
LOCK.........................................................................................................................................................24  
14.7.1. MLXLOCK Parameter .........................................................................................................................24  
14.7.2. LOCK Parameter .................................................................................................................................24  
15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 25  
16. SERIAL PROTOCOL........................................................................................................................... 27  
16.1.  
16.2.  
16.3.  
16.4.  
16.5.  
16.6.  
16.7.  
16.8.  
16.9.  
INTRODUCTION .........................................................................................................................................27  
SERIAL PROTOCOL MODE ...................................................................................................................27  
MOSI (MASTER OUT SLAVE IN)...............................................................................................................27  
MISO (MASTER IN SLAVE OUT)...............................................................................................................27  
/SS (SLAVE SELECT) .................................................................................................................................27  
MASTER START-UP...................................................................................................................................27  
SLAVE START-UP......................................................................................................................................27  
TIMING......................................................................................................................................................28  
SLAVE RESET ............................................................................................................................................29  
16.10. FRAME LAYER ..........................................................................................................................................29  
16.10.1.  
16.10.2.  
16.10.3.  
16.10.4.  
16.10.5.  
16.10.6.  
Command Device Mechanism ..........................................................................................................29  
Data Frame Structure ......................................................................................................................29  
Timing ..............................................................................................................................................29  
Data Structure..................................................................................................................................30  
Angle Calculation.............................................................................................................................30  
Error Handling.................................................................................................................................30  
17. RECOMMENDED APPLICATION DIAGRAMS.................................................................................. 31  
17.1.  
17.2.  
17.3.  
17.4.  
ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE.......................................................31  
ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE....................................................31  
PWM LOW SIDE OUTPUT WIRING ............................................................................................................32  
SERIAL PROTOCOL ....................................................................................................................................32  
17.4.1. SPI Version – Single Die......................................................................................................................32  
17.4.2. SPI Version – Dual Die........................................................................................................................33  
17.4.3. Non SPI Version (Standard Version)....................................................................................................34  
18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS  
WITH DIFFERENT SOLDERING PROCESSES........................................................................................ 35  
19. ESD PRECAUTIONS........................................................................................................................... 35  
20. PACKAGE INFORMATION................................................................................................................. 36  
20.1.  
20.2.  
20.3.  
20.4.  
20.5.  
20.6.  
SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................36  
SOIC8 - PINOUT AND MARKING ...............................................................................................................36  
SOIC8 - IMC POSITIONNING.....................................................................................................................37  
TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................38  
TSSOP16 - PINOUT AND MARKING ..........................................................................................................39  
TSSOP16 - IMC POSITIONNING................................................................................................................39  
21. DISCLAIMER....................................................................................................................................... 41  
3901090316  
Rev. 003  
Page 5 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
3. Glossary of Terms Abbreviations Acronyms  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
Gauss (G), Tesla (T): Units for the magnetic flux density 1 mT = 10 G  
TC: Temperature Coefficient (in ppm/Deg.C.)  
NC: Not Connected  
PWM: Pulse Width Modulation  
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF  
ADC: Analog-to-Digital Converter  
DAC: Digital-to-Analog Converter  
LSB: Least Significant Bit  
)
MSB: Most Significant Bit  
DNL: Differential Non-Linearity  
INL: Integral Non-Linearity  
RISC: Reduced Instruction Set Computer  
ASP: Analog Signal Processing  
DSP: Digital Signal Processing  
ATAN: trigonometric function: arctangent (or inverse tangent)  
IMC: Integrated Magneto-Concentrator (IMC®)  
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)  
EMC: Electro-Magnetic Compatibility  
4. Pinout  
SOIC-8  
TSSOP-16  
Pin #  
Analog / PWM  
VDD  
Serial Protocol  
VDD  
Analog / PWM  
Serial Protocol  
1
2
VDIG  
VDIG  
1
1
Test 0  
Test 0  
VSS (Ground1)  
VSS (Ground1)  
1
1
3
Switch Out  
Not Used  
Out  
/SS  
VDD  
VDD  
1
1
4
SCLK  
Test 01  
Switch Out2  
Not Used2  
Out2  
Test 01  
/SS2  
5
MOSI / MISO  
Test 1  
6
Test 1  
SCLK2  
7
VDIG  
VDIG  
MOSI2 / MISO2  
Test 12  
8
VSS (Ground)  
VSS (Ground)  
Test 12  
9
VDIG  
VDIG  
2
2
10  
11  
12  
13  
14  
15  
16  
VSS (Ground2)  
VSS (Ground2)  
2
2
VDD  
VDD  
2
2
Test 02  
Switch Out1  
Not Used1  
Out1  
Test 02  
/SS1  
SCLK1  
MOSI1 / MISO1  
Test 11  
Test 11  
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the  
Ground (see section 17).  
3901090316  
Rev. 003  
Page 6 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
5. Absolute Maximum Ratings  
Parameter  
Supply Voltage, VDD (overvoltage)  
Reverse Voltage Protection  
Value  
+ 20 V  
10 V  
+ 10 V  
Positive Output Voltage – Standard Version  
(Analog or PWM)  
+ 14 V (200 s max TA = + 25°C)  
Positive Output Voltage – SPI Version  
Positive Output Voltage (Switch Out)  
VDD + 0.3V  
+ 10 V  
+ 14 V (200 s max TA = + 25°C)  
± 30 mA  
Output Current (IOUT  
)
Reverse Output Voltage  
0.3 V  
Reverse Output Current  
50 mA  
Operating Ambient Temperature Range, TA  
Storage Temperature Range, TS  
Magnetic Flux Density  
40°C … + 150°C  
40°C … + 150°C  
± 700 mT  
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
6. Detailed Description  
As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density parallel to the IC  
surface (i.e. B//) is sensed through the Triaissensor front-end. This front-end consists into two  
orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional  
planar Hall plates (blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on  
Figure 4).  
Hall Plates  
Figure 4 - Triaissensor front-end (4 Hall plates + IMC® disk)  
3901090316  
Rev. 003  
Page 7 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal  
components (respectively BXand BY) proportional to the parallel components (respectively BX// and BY//)  
are induced through the IMC and can be measured by both respective pairs of conventional planar Hall  
plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.  
While a magnet (diametrically magnetized) rotates above the IC as described on Figure 3, the sensing  
stage provides two differential signals in quadrature (sine and cosine Figure 5 and Figure 6)  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
0
90  
180  
BX  
270  
360  
450  
540  
630  
720  
Alpha (Degree)  
BY  
Figure 5 – Magnetic Flux Density – BX cos(α) & BY sin(α)  
2000  
1500  
1000  
500  
0
-500  
-1000  
-1500  
-2000  
0
90  
180  
VX  
270  
360  
450  
540  
630  
720  
Alpha (Degree)  
VY  
Figure 6 – Triaissensor front-end Output signals VX BX cos(α) & VY BY sin(α)  
3901090316  
Rev. 003  
Page 8 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
Those Hall signals are processed through a fully differential analog chain featuring the classic offset  
cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).  
The conditioned analog signals are converted through an ADC (configurable 14 or 15 bits) and provided  
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose  
primary function is the extraction of the angular position from the two raw signals (after so-called front-end  
compensation steps) through the following operation:  
VY  
α = ATAN  
VX  
The DSP functionality is governed by the micro-code (firmware F/W) of the micro-controller which is  
stored into the ROM (mask programmable). In addition to the ATANfunction, the F/W controls the whole  
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also  
the self-diagnostic modes.  
In the MLX90316, the ATANfunction is computed via a look-up table (i.e. it is not obtained through a  
CoRDiC algorithm).  
Due to the fact that the ATANoperation is performed on the ratio VY/VX, the angular information is  
intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects)  
affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position  
sensor based on conventional linear Hall sensors.  
In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a  
complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical  
manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).  
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the  
target transfer characteristic and it is provided at the output(s) as:  
an analog output level through a 12 bit DAC followed by a buffer  
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz 1 kHz)  
a digital Serial Protocol (SP 14 bits computed angular information available)  
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary  
position sensor output transfer characteristic:  
Vout(α) = ClampLo  
for α ≤ αmin  
Vout(α) = Voffset + Gain × α  
Vout(α) = ClampHi  
for αmin ≤ α ≤ αmax  
for α ≥ αmax  
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.  
The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration  
depending on the linearity requirement.  
A digital output is also available and used as a programmable angular switch.  
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).  
The programming steps do not require any dedicated pins. The operation is done using the supply and  
output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and  
production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316  
daughterboard and software tools (DLL User Interface).  
3901090316  
Rev. 003  
Page 9 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
7. MLX90316 Electrical Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E, K or L).  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Nominal Supply Voltage  
VDD  
4.5  
5
5.5  
11  
16  
3
V
mA  
mA  
V
Slow mode(7)  
Fast mode(7)  
8.5  
13.5  
2.7  
Supply Current(6)  
POR Level  
Idd  
VDD POR Supply Under Voltage  
2
Analog Output mode  
Iout  
-8  
8
mA  
mA  
mA  
mA  
mA  
kΩ  
kΩ  
%VDD  
Output Current  
PWM Output mode  
-20  
20  
15  
15  
45  
Vout = 0 V  
12  
12  
24  
10  
10  
Output Short Circuit Current  
Ishort  
Vout = 5 V  
Vout = 14 V (TA = 25°C)  
Pull-down to Ground  
Pull-up to 5V(8)  
(9)  
1
1
Output Load  
RL  
(9)  
3
Vsat_lo  
Vsat_hi  
Pull-up load RL 10 k  
Analog Saturation Output Level  
96  
97  
%VDD  
%VDD  
%VDD  
%VDD  
Pull-down load RL 10 kΩ  
Pull-up Low Side RL 10 kΩ  
Push-Pull (IOUT = -20mV)  
VsatD_lo  
1.5  
Digital Saturation Output Level  
Active Diagnostic Output Level  
VsatD_hi Push-Pull (IOUT = 20mV)  
1
Pull-down load RL 10 kΩ  
Diag_lo  
1.5  
Pull-up load RL 10 kΩ  
97  
98  
Pull-down load RL 10 kΩ  
Diag_hi  
%VDD  
%VDD  
%VDD  
%VDD  
%VDD  
Pull-up load RL 10 kΩ  
(11)  
Broken VSS  
&
BVSSPD  
BVSSPU  
BVDDPD  
BVDDPU  
4(10)  
Pull-down load RL 10 kΩ  
(11)  
Broken VSS  
&
99  
100  
0
Passive Diagnostic Output Level  
(Broken Track Diagnostic) (10)  
Pull-up load RL 1kΩ  
(11)  
Broken VDD  
&
1
Pull-down load RL 1kΩ  
Broken VDD &  
No Broken Track diagnostic  
Pull-up load to 5V  
MLX 90316 Electrical Specification continues…  
6 For the dual version, the supply current is multiplied by 2  
7 See section 14.4.1 for details concerning Slow and Fast mode  
8 Applicable for output in Analog and PWM (Open-Drain) modes  
9 RL < for output in PWM mode  
10 For detailed information, see also section 15  
11 Not Valid for the SPI Version  
3901090316  
Rev. 003  
Page 10 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
…MLX 90316 Electrical Specification  
(12)  
Clamp_lo Programmable  
Clamp_hi Programmable  
0
100  
100  
1.1  
%VDD  
%VDD  
V
Clamped Output Level  
Switch Out(13)  
(12)  
0
Sw_lo  
Sw_hi  
Pull-up Load 1.5k to 5V  
Pull-up Load 1.5k to 5V  
0.55  
3.65  
4.35  
V
As an illustration of the previous table, the MLX90316 fits the typical classification of the output span  
described on the Figure 7.  
100 %  
Diagnostic Band (High)  
96 %  
92 %  
88 %  
90 %  
80 %  
70 %  
60 %  
50 %  
40 %  
30 %  
20 %  
10 %  
0 %  
Clamping High  
Linear Range  
12 %  
8 %  
4 %  
Clamping Low  
Diagnostic Band (Low)  
Figure 7 - Output Span Classification  
12 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)  
13 See section 14.1.4 for the application diagram  
3901090316  
Rev. 003  
Page 11 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
8. MLX90316 Isolation Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E, K or L). Only valid for the package code GO i.e. dual die version.  
Parameter  
Symbol  
Test Conditions  
Between 2 dies  
Min  
Typ  
Max  
Units  
Isolation Resistance  
4
Mꢀ  
9. MLX90316 Timing Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E, K or L).  
Parameter  
Symbol  
Test Conditions  
Slow mode(14)  
Fast mode(14)  
Slow mode(15)  
Fast mode(15)  
Min  
Typ  
Max  
Units  
Main Clock Frequency  
Ck  
7
MHz  
MHz  
μs  
20  
Sampling Rate  
600  
200  
μs  
Step Response Time  
Ts  
Slow mode(14), Filter=5(15)  
Fast mode(14), Filter=0(15)  
See Section 15  
4
600  
5
ms  
μs  
400  
Watchdog  
Wd  
ms  
ms  
Start-up Cycle  
Tsu  
Slow and Fast mode(14)  
15  
Analog Output Slew Rate  
COUT = 42 nF  
200  
100  
V/ms  
C
OUT = 100 nF  
PWM Frequency  
FPWM  
PWM Output Enabled  
100  
1000  
Hz  
μs  
μs  
μs  
μs  
Digital Output Rise Time  
Mode 5 – 10nF, RL = 10 kꢀ  
Mode 7 – 10nF, RL = 10 kꢀ  
Mode 5 – 10nF, RL = 10 kꢀ  
Mode 7 – 10nF, RL = 10 kꢀ  
120  
2.2  
1.8  
1.9  
Digital Output Fall Time  
14 See section 14.4.1 for details concerning Slow and Fast mode  
15 See section 14.5 for details concerning Filter parameter  
3901090316  
Rev. 003  
Page 12 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
10. MLX90316 Accuracy Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E, K or L).  
Parameter  
Symbol  
Test Conditions  
Slow Mode(16)  
Fast Mode(16)  
Min  
Typ  
Max  
Units  
ADC Resolution on the raw  
signals sine and cosine  
RADC  
15  
14  
bits  
bits  
Thermal Offset Drift #1(17)  
Thermal Offset Drift at the DSP  
input (excl. DAC and output stage)  
Temperature suffix S, E and K  
Temperature suffix L  
Thermal Offset Drift of the DAC  
and Output Stage  
-60  
-90  
+60  
+90  
LSB15  
LSB15  
Thermal Offset Drift #2  
(to be considered only for the  
analog output mode)  
Temperature suffix S, E and K  
Temperature suffix L  
Temperature suffix S, E and K  
Temperature suffix L  
TA = 25°C  
- 0.3  
- 0.4  
- 0.3  
- 0.5  
-1  
+ 0.3  
+ 0.4  
+ 0.3  
+ 0.5  
1
%VDD  
%VDD  
%
Thermal Drift of Sensitivity  
Mismatch(18)  
%
Intrinsic Linearity Error(19)  
Analog Output Resolution  
Le  
Deg  
RDAC  
12 bits DAC  
0.025  
%VDD/LSB  
(Theoretical – Noise free)  
INL  
-4  
+4  
2
LSB  
LSB  
DNL  
0.05  
1
0.05  
0.03  
0.1  
Output stage Noise  
Noise pk-pk(20)  
Clamped Output  
%VDD  
Deg  
RG = 9, Slow mode, Filter=5  
RG = 9, Fast mode, Filter=0  
0.06  
0.2  
Deg  
Ratiometry Error  
-0.1  
0
0.1  
%VDD  
%DC/LSB  
PWM Output Resolution  
RPWM  
12 bits  
0.025  
(Theoretical – Jitter free)  
RG = 6, FPWM = 250 Hz – 800Hz  
14 bits – 360 Deg. mapping  
(Theoretical – Jitter free)  
PWM Jitter(21)  
JPWM  
RSP  
0.2  
%DC  
Serial Protocol Output  
Resolution  
0.022  
Deg/LSB  
16 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to  
0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed.  
17 For instance, Thermal Offset Drift #1 equal ± 60LSB15 yields to max. ± 0.3 Deg. angular error for the computed angular  
information (output of the DSP). See Front End Application Note for more details. This is only valid if automatic gain is set (See  
Section 14.4.2)  
18 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. angular error for the computed  
angular information (output of the DSP). See Front End Application Note for more details.  
19 The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal  
rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the  
output linearity error increases. However, it can be improved with the multi point end-user calibration that is available on the  
MLX90316.  
20  
The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in  
application mode (Section 14.5).  
21 Jitter is defined by ± 3 σ for 1000 successive acquisitions and the slope of the transfer curve is 100%DC/360 Deg.  
3901090316  
Rev. 003  
Page 13 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
11. MLX90316 Magnetic Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E, K or L).  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Magnetic Flux Density  
B
20  
50  
70(23)  
0
mT  
Magnet Temperature Coefficient  
TCm  
-2400  
ppm/°C  
12. MLX90316 CPU & Memory Specification  
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
ROM  
RAM  
10  
kB  
B
256  
128  
EEPROM  
B
23 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.  
3901090316  
Rev. 003  
Page 14 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
13. MLX90316 End-User Programmable Items  
Default Values  
Parameter  
Output Mode  
Comments  
-
SPI  
PPA  
4
PPD  
7
# bit  
3
Define the output stage mode  
PWM Polarity  
4
N/A  
N/A  
N/A  
0
PWMPOL1  
PWM_Freq  
CLOCKWISE  
DP  
0
N/A  
N/A  
0
1
1
PWM Frequency  
1000h  
1kHz  
1
16  
1
0
0h  
Discontinuity Point  
Initial Slope  
0h  
0h  
0h  
15  
16  
16  
16  
LNR_S0  
0h  
N/A  
0
N/A  
0
N/A  
0
LNR_A_X  
LNR_A_Y  
LNR_A_S  
LNR_B_X  
LNR_B_Y  
LNR_B_S  
LNR_C_X  
LNR_C_Y  
LNR_C_S  
CLAMP_HIGH  
CLAMP_LOW  
KD  
AX Coordinate  
AY Coordinate  
AS Coordinate  
BX Coordinate  
BY Coordinate  
BS Coordinate  
CX Coordinate  
CY Coordinate  
CS Coordinate  
Clamping High  
Clamping Low  
Switch Out  
8000h  
0h  
0%  
10%  
10%  
0h  
100%/360d 80%/360d 80%/360d 16  
FFFFh  
FFFFh  
0h  
FFFFh  
FFFFh  
N/A  
FFFFh  
FFFFh  
N/A  
0%  
100%  
FFFFh  
N/A  
0
FFFFh  
FFFFh  
N/A  
FFFFh  
FFFFh  
N/A  
10%  
90%  
FFFFh  
N/A  
0
FFFFh  
FFFFh  
N/A  
FFFFh  
FFFFh  
N/A  
10%  
90%  
FFFFh  
N/A  
0
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
FFFFh  
FFFFh  
0h  
8%  
8%  
FFFFh  
0
KDHYST  
Hysteresis on the Switch Out  
DEADZONE  
FHYST  
0
8
4
0
0
0
8
MELEXISID1  
MELEXISID2  
MELEXISID3  
CUSTUMERID1  
CUSTUMERID2  
CUSTUMERID3  
HIGHSPEED  
FSWAP  
MLX  
MLX  
MLX  
1
MLX  
MLX  
MLX  
1
MLX  
MLX  
MLX  
1
MLX  
MLX  
MLX  
1
16  
16  
16  
8
6
19  
16  
20  
16  
16  
1
MLX  
0
MLX  
1
MLX  
0
MLX  
1
1
1
0
1
1
FILTER  
5
0
2
5
8
FILTER A1  
FILTER A2  
ARGC  
Filter coefficient A1 for FILTER=6  
Filter coefficient A2 for FILTER=6  
Auto Gain at Start Up  
6600h  
2A00h  
0
N/A  
N/A  
1
N/A  
N/A  
1
N/A  
N/A  
1
16  
16  
1
AUTO_RG  
RoughGain  
RGThresL  
RGThresH  
EEHAMHOLE  
RESONFAULT  
MLXLOCK  
LOCK  
Automatic Rough Gain Selection  
0
1
1
1
1
9
0
3
0
8
0
0
0
0
4
15  
15  
15  
15  
4
3131h  
0
0
0
0
16  
2
1
1
1
0
1
1
1
1
0
1
1
1
1
3901090316  
Rev. 003  
Page 15 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14. Description of End-User Programmable Items  
14.1. Output Mode  
The MLX90316 output type is defined by the Output Mode parameter.  
Parameter  
Value  
Description  
Analog Rail-to-Rail  
2, 4  
Analog Output Mode  
5
7
Low Side (NMOS)  
Push-Pull  
PWM Output Mode  
Serial  
N/A  
Low Side (NMOS)  
14.1.1. Analog Output Mode  
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration  
allows the use of a pull-up or pull-down resistor.  
14.1.2. PWM Output Mode  
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width  
Modulation (PWM).  
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor  
to VDD.  
In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up  
resistor to VDD.  
The PWM polarity is selected by the PWMPOL1 parameter:  
PWMPOL1 = 0 for a low level at 100%  
PWMPOL1 = 1 for a high level at 100%  
The PWM frequency is selected by the PWM_Freq parameter.  
PWM Frequency Code  
Pulse-Width Modulation Frequency (Hz)  
Oscillator Mode  
100  
35000  
-
200  
500  
7000  
1000  
3500  
Low Speed  
High Speed  
17500  
50000  
20000  
10000  
For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz.  
14.1.3. Serial Protocol Output Mode  
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.  
See the dedicated Serial Protocol section for a full description (Section 16).  
3901090316  
Rev. 003  
Page 16 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.1.4. Switch Out  
Parameter  
KD  
Value  
0…359.9999  
0 1.4  
Unit  
deg  
deg  
KDHYST  
The switch is activated (Sw_lo) when the digital angle is greater than the value stored in the KD  
parameter. This angle refers to the internal angular reference linked to the parameter DP and not to the  
absolute physical 0° angle.  
The KDHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if  
the digital angle is greater than KD+KDHYST. It is deactivated if the digital angle is less than  
KD-KDHYST.  
The mandatory application diagram to use this feature is depicted in the Figure 8. See section 7 for the  
electrical characteristic.  
If the Switch feature is not used in the application, the output pin needs to be connected to the ground.  
5 V  
MLX90316  
1k5  
SWITCH  
OUT  
to uC  
I/O  
175 Ω  
Port  
ECU  
Figure 8 – Application Diagram for the Switch Out  
3901090316  
Rev. 003  
Page 17 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.2. Output Transfer Characteristic  
Parameter  
CLOCKWISE  
DP  
Value  
Unit  
0 Æ CCW  
1 Æ CW  
deg  
deg  
0 359.9999  
LNR_A_X  
LNR_B_X  
LNR_C_X  
0 359.9999  
LNR_A_Y  
LNR_B_Y  
LNR_C_Y  
%
0 100  
0 17  
LNR_S0  
LNR_A_S  
LNR_B_S  
%/deg  
LNR_C_S  
CLAMP_LOW  
CLAMP_HIGH  
DEADZONE  
-17 … 0 … 17  
0 100  
%/deg  
%
%
0 100  
deg  
0 359.9999  
14.2.1. CLOCKWISE Parameter  
The CLOCKWISE parameter defines the magnet rotation direction.  
CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin  
order direction for the TSSOP16 package.  
CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin  
order direction for the TSSOP16 package.  
Refer to the drawing in the IMC positioning sections (Section 20.3 and 20.6).  
14.2.2. Discontinuity Point (or Zero Degree Point)  
The Discontinuity Point defines the 0° point on the circle. The discontinuity point places the origin at any  
location of the trigonometric circle. The DP is used as reference for all the angular measurements.  
360°  
0°  
The placement of the discontinuity  
point (0 point) is programmable.  
Figure 9 - Discontinuity Point Positioning  
Page 18 of 41  
3901090316  
Rev. 003  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.2.3. LNR Parameters  
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)  
between the digital angle and the output signal.  
The shape of the MLX90316 transfer function from the digital angle value to the output voltage is  
described by the drawing below. Six segments can be programmed but the clamping levels are  
necessarily flat.  
Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by  
almost an order of magnitude each time. Three or five point calibration will be preferred by customers  
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for  
a cheaper calibration set-up and shorter calibration time.  
100 %  
Clamping High  
CLAMPHIGH  
C
Slope LNR_C_S  
LNR_C_Y  
B
Slope LNR_B_S  
LNR_B_Y  
A
Slope LNR_A_S  
LNR_A_Y  
Slope LNR_S0  
Clamping Low  
CLAMPLOW  
0 %  
LNR_A_X  
LNR_B_X  
LNR_C_X  
360  
(Deg.)  
0
14.2.4. CLAMPING Parameters  
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW  
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum  
output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be  
limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In  
SPI mode, the resolution is 14bits or 0.022deg over 360deg.  
14.2.5. DEADZONE Parameter  
The dead zone is defined as the angle window between 0 and 359.9999.  
When the digital angle lies in this zone, the IC is in fault mode (RESONFAULT must be set to “1” – See  
14.6.1).  
14.3. Identification  
Parameter  
Value  
Unit  
0 65535  
0 65535  
0 65535  
0 255  
0 65535  
0 65535  
MELEXSID1  
MELEXSID2  
MELEXSID3  
CUSTUMERID1  
CUSTUMERID2  
CUSTUMERID3  
Identification number: 40 bits freely useable by Customer for traceability purpose.  
3901090316  
Rev. 003  
Page 19 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.4. Sensor Front-End  
Parameter  
Value  
Unit  
0 = Slow mode  
1 = Fast mode  
0 = disable  
HIGHSPEED  
ARGC  
1 = enable  
0 = disable  
1 = enable  
AUTO_RG  
RoughGain  
RGThresL  
RGThresH  
0 15  
0 15  
0 15  
14.4.1. HIGHSPEED Parameter  
The HIGHSPEED parameter defines the main frequency for the DSP.  
HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.  
HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.  
For better noise performance, the Slow Mode must be enabled.  
14.4.2. ARGC, AUTO_RG, RoughGain Parameters  
AUTO_RG and ARGC parameters enable the automatic gain control (AGC) of the analog chain. The AGC  
loop is based on  
(VX)²+ (VY)² = (Amplitude)² = (Radius)²  
and it targets an amplitude of 90% of the ADC input span.  
At Start-Up phase, the gain stored in the parameter RoughGain is always used. Depending of the  
AUTO_RG and ARGC settings, the AGC regulation acts as follow:  
If ARGC is set, the regulation proceeds by jump to reach the target gain. Note that this regulation  
is only valid if the starting gain does not saturate the ADC. Melexis recommendation is to use  
RoughGain 3 if ARGC=1.  
If ARGC is “0” and AUTO_RG is set to “1”, the regulation adapts every cycle by one gain code the  
current gain to reach the 90% ADC span target. Note that if the value of RoughGain is too far  
from the actual gain, the chip will enter the normal operating mode (after the Start-Up phase) with  
an incorrect gain which will cause the device to go in diagnostic low (field too low/field too high –  
See section 15).  
If ARGC and AUTO_RG are “0”, the AGC regulation is off and the gain used is the value stored in  
the parameter RoughGain. Melexis does not advise the use of this mode.  
The parameter AUTO_RG activates the automatic regulation during normal operation of the device as  
background task.  
Melexis strongly recommend to set ARGC = “1”, AUTO_RG = “1” and RoughGain 3 for all types of  
application. If the magnetic specifications of the application are well known and under control, the  
appropriate RoughGain can also be programmed with ARGC set to “0” and AUTO_RG to “1”.  
Please note that the angular errors listed in the section 10 are only valid if the AUTO_RG is activated.  
AUTO_RG avoids also the saturation of the analog chain and the associated linearity error.  
The current gain (RG) can be read out with the PTC-04 and gives a rough indication of the applied  
magnetic flux density (Amplitude).  
3901090316  
Rev. 003  
Page 20 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.4.3. RGThresL, RGThresH Parameters  
RGThresL & RGThresH define the boundaries within the gain setting (Rough Gain) is allowed to vary.  
Outside this range, the output is set in diagnostic low.  
14.5. FILTER  
Parameter  
FHYST  
Value  
0 11 ; step 0.04  
0… 6  
Unit  
deg  
FILTER  
0
1
FSWAP  
The MLX90316 includes 3 types of filters:  
Hysteresis Filter: programmable by the FHYST parameter  
Low Pass FIR Filters controlled with the Filter parameter  
Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and  
FILTER A2  
Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the  
filtering is active on the output transfer function.  
14.5.1. Hysteresis Filter  
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step  
is smaller than the programmed FHYST parameter value. The output value is modified when the  
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level  
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the  
noise level.  
Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not  
wish this feature, please set it to “0”.  
14.5.2. FIR Filters  
The MLX90316 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described  
below:  
j
1
yn =  
a x  
i ni  
j
i=0  
a
i
i=0  
3901090316  
Rev. 003  
Page 21 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
The characteristics of the filters no 0 to 5 is given in the Table 1.  
Filter No (j)  
Type  
0
1
2
3
4
5
Disable  
Finite Impulse Response  
133100  
Coefficients a0… a5  
Title  
N/A  
110000  
121000  
111100  
Light  
4
122210  
No Filter  
Extra Light  
90% Response Time  
99% Response Time  
Efficiency RMS (dB)  
Efficiency P2P (dB)  
1
1
0
0
2
3
4
5
2
3
4
4
5
2.9  
2.9  
4.0  
3.6  
4.7  
5.0  
5.6  
6.2  
7.0  
6.1  
Table 1 - FIR Filters Selection Table  
FIR and HYST Filters : Step response Comparative Plot  
40000  
x(n)  
38000  
36000  
34000  
32000  
30000  
fir(n)  
hyst(n)  
0
5
10  
15  
Milliseconds  
20  
25  
30  
FIR and HYST Filter : Gaussian white noise response  
40200  
40150  
40100  
40050  
40000  
39950  
39900  
39850  
39800  
x(n)  
fir(n)  
hyst(n)  
0
50  
100  
150  
Milliseconds  
Figure 10 - Step Response and Noise Response for FIR (No 3) and FHYST=10  
3901090316  
Rev. 003  
Page 22 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.5.3. IIR Filters  
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90316 is  
given in Figure 11. Only the parameter A1 and A2 are configurable (See Table 2).  
b0 = 1  
x(n)  
y(n)  
Z-1  
Z-1  
b1 = 2  
-a1  
-a2  
Z-1  
Z-1  
b2 = 1  
Figure 11 - IIR Diagram  
Filter No  
Type  
6
2nd Order Infinite Impulse Response (IIR)  
Title  
Medium & Strong  
90% Response Time  
Efficiency RMS (dB)  
Efficiency P2P (dB)  
Coefficient A1  
Coefficient A2  
11  
16  
26  
40  
52  
16.2  
20  
100  
9.9  
11.4  
13.6  
15.3  
>20  
>20  
12.9  
14.6  
17.1  
18.8  
26112  
10752  
28160  
12288  
29120  
12992  
30208  
13952  
31296  
14976  
31784  
15412  
Table 2 - IIR Filter Selection Table  
The Figure 12 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.  
IIR Filter - Gaussian White Noise Response  
40200  
40150  
x(n)  
y(n)  
40100  
40050  
40000  
39950  
39900  
39850  
39800  
0
50  
100  
150  
Time  
Figure 12 - Noise Response for the IIR Filter  
Page 23 of 41  
3901090316  
Rev. 003  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
14.6. Programmable Diagnostic Settings  
Parameter  
Value  
Unit  
0
1
RESONFAULT  
0
EEHAMHOLE  
3131h  
14.6.1. RESONFAULT Parameter  
This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the  
parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to  
activate the self diagnostic modes (See section 15).  
Note that in the User Interface (MLX90316UI), the RESONFAULT is split in two bits:  
DRESONFAULT: disable the reset in case of a fault.  
DOUTINFAULT: disable output in diagnostic low in case of fault.  
14.6.2. EEHAMHOLE Parameter  
The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is  
detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory  
recovery).  
14.7. Lock  
Parameter  
Value  
Unit  
0
1
0
1
MLXLOCK  
LOCK  
14.7.1. MLXLOCK Parameter  
MLXLOCK locks all the parameters set by Melexis.  
14.7.2. LOCK Parameter  
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the  
EEPROM values anymore.  
Note that the lock bit should be set by the solver function “MemLock”.  
3901090316  
Rev. 003  
Page 24 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
15. MLX90316 Self Diagnostic  
The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC  
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure  
modes (“fail-safe”).  
Action  
Effect on Outputs  
Diagnostic low(25)  
Remark  
All the outputs are already  
in Diagnostic low - (start-up)  
ROM CRC Error at start up  
(64 words including Intelligent  
Watch Dog - IWD)  
CPU Reset (24)  
ROM CRC Error (Operation -  
Background task)  
Enter Endless Loop:  
- Progress (watchdog  
Acknowledge)  
- Set Outputs in Diagnostic low  
CPU Reset  
Immediate Diagnostic low  
Diagnostic low  
RAM Test Fail (Start up)  
All the outputs are already  
in Diagnostic low (start-up)  
Start-Up Time is increased  
by 3 ms if successful  
recovery  
Calibration Data CRC Error  
(Start-Up)  
Hamming Code Recovery  
Hamming Code Recovery Error CPU Reset  
(Start-Up)  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
See 14.6.2  
Calibration Data CRC Error  
(Operation - Background)  
Dead Zone  
CPU Reset  
Set Outputs in Diagnostic low.  
Normal Operation until the “dead  
zone” is left.  
Immediate recovery if the  
“dead zone” is left  
ADC Clipping  
(ADC Output is 0000h or  
7FFFh)  
Radius Overflow ( > 100% ) or  
Radius Underflow  
( < 50 % )  
Fine Gain Clipping  
(FG < 0d or > 63d)  
Set Outputs in Diagnostic low  
Normal mode and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
(50 % - 100 %)  
No magnet / field too high  
See also 14.4.2  
Rough Offset Clipping  
(RO is < 0d or > 127d)  
Rough Gain Clipping  
(RG < RGTHRESLOW or RG >  
RGTHRESHIGH)  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
See also 14.4.2  
Immediate Diagnostic low  
DAC Monitor (Digital to Analog Set Outputs in Diagnostic low.  
converter)  
Normal Mode with immediate  
recovery without CPU Reset  
MLX90316 Fault Mode continues…  
24 CPU reset means  
1.  
Core Reset (same as Power-On-Reset). It induces a typical start up time.  
2.  
3.  
4.  
Periphery Reset (same as Power-On-Reset)  
Fault Flag/Status Lost  
The reset can be disabled by clearing the RESONFAULT bit (See 14.6.1)  
25 Refer to section 7 for the Diagnostic Output Level specifications  
3901090316  
Rev. 003  
Page 25 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
…MLX90316 Fault Mode  
Fault Mode  
Action  
Effect on Outputs  
Remark  
Immediate Diagnostic low  
ADC Monitor (Analog to Digital Set Outputs in Diagnostic low.  
ADC Inputs are Shorted  
Converter)  
Normal Mode with immediate  
recovery without CPU Reset  
- VDD < POR level =>  
Outputs high impedance  
Undervoltage Mode  
At Start-Up, wait Until VDD > 3V.  
During operation, CPU Reset after  
3 ms debouncing  
- POR level < VDD < 3 V =>  
Outputs in Diagnostic low.  
Firmware Flow Error  
CPU Reset  
CPU Reset  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Intelligent Watchdog  
(Observer)  
100% Hardware detection  
Read/Write Access out of  
physical memory  
Write Access to protected area CPU Reset  
(IO and RAM Words)  
Unauthorized entry in  
“SYSTEM” Mode  
VDD > 7 V  
100% Hardware detection  
100% Hardware detection  
100% Hardware detection  
CPU Reset  
Set Output High Impedance  
(Analog)  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High(25)  
VDD > 9.4 V  
IC is switched off (internal supply)  
CPU Reset on recovery  
Pull down resistive load =>  
Diag. Low  
100% Hardware detection  
Pull up resistive load =>  
Diag. High  
(26)  
Broken VSS  
CPU Reset on recovery  
100% Hardware detection.  
Pull down load 10 kto  
meet Diag Low spec:  
- < 2% VDD (temperature  
suffix S and E)  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
- < 4% VDD ( temperature  
suffix K)  
- contact Melexis for  
temperature suffix L  
No valid diagnostic for  
VPULLUP = VDD.  
(26)  
Broken VDD  
CPU Reset on recovery  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
Pull up load (10k) to  
VPULLUP > 8 V to meet Diag  
Hi spec > 96% Vdd.  
26 Not Valid for SPI Version  
3901090316  
Rev. 003  
Page 26 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
16. Serial Protocol  
16.1. Introduction  
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.  
The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO):  
/SS pin is a 5 V tolerant digital input  
SCLK pin is a 5 V tolerant digital input  
MOSI-MISO pin is a 5 V tolerant open drain digital input/output  
The basic knowledge of the standard SPI specification is required for the good understanding of the  
present section.  
16.2. SERIAL PROTOCOL Mode  
CPHA = 1 Æ even clock changes are used to sample the data  
CPOL = 0 Æ active-Hi clock  
The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the  
bit at the Master’s input stage.  
16.3. MOSI (Master Out Slave In)  
The Master sends a command to the Slave to get the angle information.  
16.4. MISO (Master In Slave Out)  
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is  
used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of  
the MLX90316.  
16.5. /SS (Slave Select)  
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and  
Master in case of communication error.  
16.6. Master Start-Up  
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized  
before the first frame transfer.  
16.7. Slave Start-Up  
The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is  
ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance)  
until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while  
starting up.  
3901090316  
Rev. 003  
Page 27 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
16.8. Timing  
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the  
Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle  
of a byte transfer.  
Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not  
have seen /SS inactive.  
t4  
t9  
t6 t1  
t1 t7 t1  
t1  
t5  
t1  
t2  
SCLK  
MOSI/  
MISO  
/SS  
2 Startbytes  
Byte 0  
Byte 1  
Byte 2  
Byte 7  
Timings  
Min(27)  
Max  
Remarks  
No capacitive load on MISO.  
t1  
2.3 μs / 6.9 μs  
-
t1 is the minimum clock period for any  
bits within a byte.  
t2 the minimum time between any other  
byte  
Time between last clock and  
/SS=high=chip de-selection  
t2  
t4  
12.5 μs / 37.5 μs  
2.3 μs / 6.9 μs  
-
-
Minimum /SS = Hi time where it’s  
t5  
t5  
300 μs / 1500 μs  
0μs  
-
guaranteed  
synchronizations will be started.  
that  
a
frame  
re-  
Maximum /SS = Hi time where it’s  
guaranteed that NO frame re-  
synchronizations will be started.  
The time t6 defines the minimum time  
between /SS = Lo and the first clock edge  
t7 is the minimum time between the  
StartByte and the Byte0  
-
-
-
t6  
t7  
2.3 μs / 6.9 μs  
15 μs / 45 μs  
Maximum time between /SS = Hi and  
MISO Bus High-Impedance  
Minimum time between reset-inactive  
and any master signal change  
t9  
-
-
<1 μs  
< 10 ms / 16 ms  
TStartUp  
27 Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode)  
3901090316  
Rev. 003  
Page 28 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
16.9. Slave Reset  
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard  
failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is  
enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).  
16.10. Frame Layer  
16.10.1. Command Device Mechanism  
Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer.  
The latch point for the angle measurement is at the last clock before the first data frame byte.  
Latch point  
/SS  
SCLK  
A
A
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
A
F
F
F
F
MOSI  
MISO  
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
D
A
T
A
D
Timing diagram  
16.10.2. Data Frame Structure  
A data frame consists of 10 bytes:  
2 start bytes (AAh followed by FFh)  
2 data bytes (DATA16 – most significant byte first)  
2 inverted data bytes (/DATA16 - most significant byte first)  
4 all-Hi bytes  
The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will  
answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh.  
16.10.3. Timing  
There are no timing limits for frames: a frame transmission could be initiated at any time. There is no inter-  
frame time defined.  
3901090316  
Rev. 003  
Page 29 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
16.10.4. Data Structure  
The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the  
LSB.  
DATA16: Angle A[13:0] with (Angle Span)/214  
Most Significant Byte  
Less Significant Byte  
MSB  
LSB MSB  
LSB  
1
A13 A12 A11 A10 A9 A8 A7 A6  
A5  
A4 A3 A2 A1 A0  
0
DATA16: Error  
MSB  
Most Significant Byte  
Less Significant Byte  
LSB MSB  
LSB  
E15 E14 E13 E12 E11 E10 E9 E8  
E7  
E6 E5 E4 E3 E2 E1 E0  
BIT  
E0  
E1  
E2  
E3  
E4  
NAME  
0
1
F_ADCMONITOR  
F_ADCSATURA  
F_RGTOOLOW  
ADC Failure  
ADC Saturation (Electrical failure or field too strong)  
Analog Gain Below Trimmed Threshold  
(Likely reason : field too weak)  
E5  
E6  
E7  
F_MAGTOOLOW  
F_MAGTOOHIGH  
F_RGTOOHIGH  
Magnetic Field Too Weak  
Magnetic Field Too Strong  
Analog Gain Above Trimmed Threshold  
(Likely reason : field too strong)  
E8  
E9  
E10  
E11  
E12  
E13  
F_FGCLAMP  
F_ROCLAMP  
F_MT7V  
-
-
-
Never occurring in serial protocol  
Analog Chain Rough Offset Compensation : Clipping  
Device Supply VDD Greater than 7V  
E14 F_DACMONITOR  
E15  
Never occurring in serial protocol  
-
16.10.5. Angle Calculation  
All communication timing is independent (asynchronous) of the angle data processing. The angle is  
calculated continuously by the Slave:  
Slow Mode: every 1.5 ms at most.  
Fast Mode: every 350 μs at most.  
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by  
the Slave, because any internal failure of the Slave will lead to a soft reset.  
16.10.6. Error Handling  
In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition  
can be read by the master. The slave will perform a soft reset once the error frame is sent.  
In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog  
error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error  
frames are sent).  
3901090316  
Rev. 003  
Page 30 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
17. Recommended Application Diagrams  
17.1. Analog Output Wiring with the MLX90316 in SOIC Package  
ECU  
5 V  
Vdd  
C1  
100nF  
GND  
Vdd  
Vss  
MLX90316  
ADC  
C2  
100nF  
Test 1  
Vdig  
C3  
100nF  
Switch Out Test 2  
Out1  
Output  
NotUsed  
R1  
10K  
C4  
4.7nF  
Figure 13 – Recommended wiring for the MLX90316 in SOIC8 package(28)  
.
17.2. Analog Output Wiring with the MLX90316 in TSSOP Package  
ECU  
VDD1  
Vdd1  
GND1  
GND1  
GND1  
C2  
100nF  
C3  
100nF  
C7  
4.7nF  
R1  
10K  
C1  
100nF  
Vdig1  
Vss1  
Vdd1  
Output1  
Out1  
C4  
100nF  
MLX90316  
VDD2  
Vdd2  
GND2  
Vdd2  
Vss2  
Vdig2  
ADC  
Out2  
GND2  
C5  
100nF  
C8  
4.7nF  
R2  
10K  
C6  
100nF  
GND2  
Output2  
Figure 14 – Recommended wiring for the MLX90316 in TSSOP16 package (dual die).  
28 See section 14.1.4 if the Switch Output feature is used.  
3901090316  
Rev. 003  
Page 31 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
17.3. PWM Low Side Output Wiring  
ECU  
5 V  
Vdd  
C1  
100nF  
GND  
Vdd  
Vss  
MLX90316  
TIMER  
C2  
100nF  
Test 1  
Vdig  
5 V  
C3  
4.7nF  
Switch Out Test 2  
PWM  
R1  
1K  
Output  
NotUsed  
C4  
4.7nF  
Figure 15 – Recommended wiring for a PWM Low Side Output configuration(29)  
.
17.4. Serial Protocol  
Generic schematics for single slave and dual slave applications are described.  
17.4.1. SPI Version – Single Die  
C1  
100nF  
SPI Master  
GND  
Vdd  
5 V  
Vdd  
Vss  
MLX90316  
C2  
100nF  
Test 0  
Vdig  
_SS  
SCLK  
MOSI  
_SS  
/SS  
Test 1  
MOSI  
SCLK  
MISO  
SCLK  
R2  
1K  
MOSI  
3.3V/5V  
Figure 16 – MLX90316 SPI Version – Single Die – Application Diagram  
29 See section 14.1.4 if the Switch Output feature is used.  
3901090316  
Rev. 003  
Page 32 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
17.4.2. SPI Version – Dual Die  
C1  
100nF  
SPI Master  
GND  
Vdd  
5 V  
Vdd  
Vss  
C2  
100nF  
MLX90316  
Test 0  
Vdig  
#1  
_SS1  
_SS1  
/SS  
Test 1  
MOSI  
SCLK1  
MOSI  
SCLK1  
MISO  
SCLK  
R2  
1K  
MOSI  
3.3V/5V  
C1  
100nF  
_SS2  
SCLK2  
Vdd  
Vss  
C2  
100nF  
MLX90316  
Test 0 Vdig  
#2  
_SS2  
/SS  
Test 1  
MOSI  
SCLK2  
SCLK  
Figure 17 – MLX90316 SPI Version – Dual Die – Application Diagram  
3901090316  
Rev. 003  
Page 33 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
17.4.3. Non SPI Version (Standard Version)  
SPI Master  
C1  
100nF  
GND  
Vdd  
_SS  
5 V  
Vdd  
Vss  
MLX90316  
C2  
100nF  
_SS  
Test 0  
Vdig  
R4  
R1  
SCLK  
/SS  
Test 1  
MOSI  
R5  
SCLK  
R3  
R2  
MISO  
MOSI  
MOSI  
3.3V/5V  
Figure 18 – MLX90316 Single Die Serial Protocol Mode  
μCtrl  
Supply  
(V)  
5V  
5V  
3.3V  
5V  
3.3V  
Pull-up  
90316  
MOS  
Type  
Application Type  
Supply Supply R1 () R2 () R3 () R4 () R5 ()  
(V)  
5V  
3.3V  
3.3V  
5V  
(V)  
5V  
5V  
5V  
5V  
5V  
5V μCtrl w/o O.D. w/o 3.3V  
5V μCtrl w/o O.D. w/ 3.3V  
3.3V μCtrl w/o O.D. (30)  
5V μCtrl w/ O.D. w/o 3.3V (31)  
3.3V μCtrl w/ O.D.  
100  
150  
150  
100  
150  
1000  
1000  
1000  
1000  
1000  
20,000  
N/A  
N/A  
20,000  
N/A  
1000  
1000  
N/A  
1000  
N/A  
20,000  
20,000  
N/A  
20,000  
N/A  
BS170  
BS170  
BS170  
N/A  
3.3V  
N/A  
Table 3 - Resistor Values for Common Specific Applications  
30 μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series)  
31 μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR )  
3901090316  
Rev. 003  
Page 34 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
18. Standard information regarding manufacturability of Melexis  
products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture  
sensitivity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(Classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(Reflow profiles according to table 2)  
Melexis Working Instruction 341901308  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Melexis Working Instruction 341901309  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Melexis Working Instruction 341901309  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
Melexis Working Instruction 3304312  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance  
of adhesive strength between device and board.  
For more information on the lead free topic please see quality page at our website:  
http://www.melexis.com/quality.aspx  
19. ESD Precautions  
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).  
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.  
3901090316  
Rev. 003  
Page 35 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
20. Package Information  
20.1. SOIC8 - Package Dimensions  
1.27 TYP  
NOTES:  
All dimensions are in millimeters (anlges in degrees).  
* Dimension does not include mold flash, protrusions or  
gate burrs (shall not exceed 0.15 per side).  
** Dimension does not include interleads flash or protrusion  
(shall not exceed 0.25 per side).  
*** Dimension does not include dambar protrusion.  
Allowable dambar protrusion shall be 0.08 mm total in  
excess of the dimension at maximum material condition.  
Dambar cannot be located on the lower radius of the foot.  
3.81  
3.99** 6.20**  
5.80  
4.80  
4.98*  
1.37  
1.57  
0.19  
0.25  
1.52  
1.72  
0°  
8°  
0.100  
0.250  
0.41  
1.27  
0.36  
0.46***  
20.2. SOIC8 - Pinout and Marking  
Marking :  
Part Number MLX90316 (3 digits)  
Die Version (3 digits)  
8
5
Standard  
BCG  
BDG  
316  
316BxG  
123456  
SPI Version  
TOP  
123456  
YY  
Lot number (6 digits)  
WW  
Bottom  
Week Date code (2 digits)  
Year Date code (2 digits)  
1
4
3901090316  
Rev. 003  
Page 36 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
20.3. SOIC8 - IMC Positionning  
CW  
8
7
6
5
CCW  
0.46 +/- 0.06  
COS  
1.25  
1.65  
1
2
3
4
1.96  
2.26  
SIN  
Angle detection MLX90316 SOIC8  
~ 0 Deg.*  
~ 90 Deg.*  
8
7
6
5
8
7
6
5
N
S
1
2
3
4
1
2
3
4
~ 180 Deg.*  
~ 270 Deg.*  
8
7
6
5
8
7
6
5
S
N
1
2
4
1
2
4
* No absolute reference for the angular information.  
The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does  
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through  
the discontinuity point – See 14.2.2).  
3901090316  
Rev. 003  
Page 37 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
20.4. TSSOP16 - Package Dimensions  
0.65 TYP  
12O TYP  
0.20 TYP  
0.09 MIN  
1.0 DIA  
4.30  
4.50**  
6.4 TYP  
0.09 MIN  
1.0  
0O  
8O  
0.50  
0.75  
12O TYP  
1.0  
1.0 TYP  
0.85  
0.95  
4.90  
5.10*  
0.09  
0.20  
1.1 MAX  
0.05  
0.15  
0.19  
0.30***  
NOTES:  
All dimensions are in millimeters (anlges in degrees).  
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).  
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).  
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at  
maximum material condition. Dambar cannot be located on the lower radius of the foot.  
3901090316  
Rev. 003  
Page 38 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
20.5. TSSOP16 - Pinout and Marking  
Vdig_1  
Vss_1  
Test1_1  
Out_1/MOSI/MISO_1  
SCLK_1  
Vdd_1  
Test0_1  
_SS_1/ Switch_1  
Test0_2  
_SS_2/Switch_2  
SCLK_2  
Vdd_2  
Marking :  
Vss_2  
Out_2/MOSI/MISO_2  
Test1_2  
Part Number MLX90316 (3 digits)  
Die Version (3 digits)  
Vdig_2  
Standard  
BCG  
BDG  
316  
SPI Version  
Top  
123456  
Lot number (6 digits)  
YY  
WW  
Bottom  
Week Date code (2 digits)  
Year Date code (2 digits)  
20.6. TSSOP16 - IMC Positionning  
CW  
COS 2  
16  
9
Die 1  
Die 2  
SIN 2  
SIN 1  
0.30 +/- 0.06  
CCW  
1.95  
2.45  
1
8
1.84  
2.04  
COS 1  
2.76  
2.96  
3901090316  
Rev. 003  
Page 39 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
Angle detection MLX90316 TSSOP16  
~ 0 Deg.* ~ 180 Deg.*  
~ 90 Deg.* ~ 270 Deg.*  
16  
9
16  
9
Die 1  
Die 2  
Die 1  
Die 2  
N
S
1
8
9
1
8
~ 180 Deg.* ~ 0 Deg.*  
~ 270 Deg.* ~ 90 Deg.*  
16  
16  
9
Die 1  
Die 2  
Die 1  
Die 2  
S
N
1
8
1
8
* No absolute reference for the angular information.  
The MLX90316 is an absolute angular position sensor but the linearity error (Le – See Section 10) does  
not include the error linked to the absolute reference 0 Deg (which can be fixed in the application through  
the discontinuity point – See 14.2.2).  
3901090316  
Rev. 003  
Page 40 of 41  
Data Sheet  
April 07  
MLX90316  
Rotary Position Sensor IC  
21. Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in  
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the  
information set forth herein or regarding the freedom of the described devices from patent infringement.  
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,  
prior to designing this product into a system, it is necessary to check with Melexis for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or high reliability applications, such as military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional  
processing by Melexis for each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not  
be liable to recipient or any third party for any damages, including but not limited to personal injury,  
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or  
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow  
out of Melexis’ rendering of technical or other services.  
© 2007 Melexis N.V. All rights reserved.  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
Phone: +32 1367 0495  
E-mail: sales_europe@melexis.com  
America:  
Phone: +1 603 223 2362  
E-mail: sales_usa@melexis.com  
ISO/TS 16949 and ISO14001 Certified  
3901090316  
Rev. 003  
Page 41 of 41  
Data Sheet  
April 07  

相关型号:

MLX90316LDCBCG-000RE

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBCG-000TU

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBCS-000RE

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBCS-000TU

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBDG-100RE

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBDG-100TU

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBDG-102RE

Rotary Position Sensor IC
MELEXIS

MLX90316LDCBDG-102TU

Rotary Position Sensor IC
MELEXIS

MLX90316LGOBCG-000RE

Rotary Position Sensor IC
MELEXIS

MLX90316LGOBCG-000TU

Rotary Position Sensor IC
MELEXIS

MLX90316LGOBDG-100RE

Rotary Position Sensor IC
MELEXIS

MLX90316LGOBDG-100TU

Rotary Position Sensor IC
MELEXIS