MLX90316SDC [ETC]

Rotary Position Sensor IC; 旋转位置传感器IC
MLX90316SDC
型号: MLX90316SDC
厂家: ETC    ETC
描述:

Rotary Position Sensor IC
旋转位置传感器IC

传感器 旋转位置传感器
文件: 总34页 (文件大小:836K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX90316  
Rotary Position Sensor IC  
Features and Benefits  
Absolute Rotary Position Sensor IC  
Simple & Robust Magnetic Design  
TriaisHall Technology  
Programmable Angular Range up to 360 Degrees  
Programmable Linear Transfer Characteristic  
Selectable Analog (Ratiometric), PWM, Serial Protocol  
12 bit Angular Resolution  
10 bit Angular Accuracy  
40 bit ID Number  
Single Die - SO8 Package RoHS Compliant  
Dual Die (Full Redundant) - TSSOP16 Package RoHS Compliant  
Applications  
Absolute Rotary Position Sensor  
Pedal Position Sensor  
Steering Wheel Position Sensor  
Motor-shaft Position Sensor  
Float-Level Sensor  
Throttle Position Sensor  
Ride Height Position Sensor  
Non-Contacting Potentiometer  
Ordering Information  
Part No.  
Temperature Suffix  
Package Code  
Option code  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
MLX90316  
S (20°C to + 85°C)  
E (40°C to + 85°C)  
K (40°C to + 125°C)  
E (40°C to + 85°C)  
K (40°C to + 125°C)  
DC [SOIC-8]  
DC [SOIC-8]  
DC [SOIC-8]  
GO [TSSOP-16]  
GO [TSSOP-16]  
-
-
-
-
-
1. Functional Diagram  
Rev.Pol.  
3V3  
Reg  
&
Vdd  
DSP  
OverVolt.  
TriaVis™  
Vx  
Vy  
µC  
A
D
x 1  
G
D
A
Out  
(Analog/PWM)  
RAM  
EEP  
ROM  
3
Serial Protocol  
Vss  
Figure 1 Block Diagram  
3901090316  
Rev. 001  
Page 1 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
2. Description  
The MLX90316 is a monolithic sensor IC featuring the TriaisHall technology. Conventional planar Hall  
technology is only sensitive to the flux density applied orthogonally to the IC surface. The TriaisHall  
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an  
Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end  
step).  
The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the  
MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360  
Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are  
frequently required for both automotive and industrial applications.  
In combination with the appropriate signal processing, the magnetic flux density of a small magnet  
(diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 2). The  
angular information is computed from both vectorial components of the flux density (i.e. BX and BY)  
MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between  
Analog, PWM and Serial Protocol.  
α
Figure 2 Typical application of MLX90316  
3901090316  
Rev. 001  
Page 2 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
TABLE OF CONTENTS  
FEATURES AND BENEFITS ....................................................................................................................... 1  
APPLICATIONS............................................................................................................................................ 1  
ORDERING INFORMATION......................................................................................................................... 1  
1. FUNCTIONAL DIAGRAM...................................................................................................................... 1  
2. DESCRIPTION....................................................................................................................................... 2  
3. GLOSSARY OF TERMS ABBREVIATIONS ACRONYMS ............................................................ 5  
4. PINOUT.................................................................................................................................................. 5  
5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6  
6. DETAILED DESCRIPTION.................................................................................................................... 6  
7. MLX90316 ELECTRICAL SPECIFICATION......................................................................................... 9  
8. MLX90316 ISOLATION SPECIFICATION.......................................................................................... 10  
9. MLX90316 TIMING SPECIFICATION................................................................................................. 10  
10. MLX90316 ACCURACY SPECIFICATION......................................................................................... 11  
11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 12  
12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 12  
13. MLX90316 END-USER PROGRAMMABLE ITEMS........................................................................... 13  
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 14  
14.1.  
OUTPUT_MODE.........................................................................................................................................14  
14.1.1. Analog Output Mode ............................................................................................................................14  
14.1.2. PWM Output Mode...............................................................................................................................14  
14.1.3. Serial Protocol Output Mode ...............................................................................................................14  
14.2.  
OUTPUT TRANSFERT CHARACTERISTIC.....................................................................................................15  
14.2.1. CLOCKWISE Parameter......................................................................................................................15  
14.2.2. LNR Parameters...................................................................................................................................15  
14.2.3. CLAMPING Parameters ......................................................................................................................16  
14.2.4. DEADZONE Parameter.......................................................................................................................16  
14.2.5. FHYST Parameter................................................................................................................................16  
14.3.  
14.4.  
I
S
DENTIFICATION ........................................................................................................................................16  
RONT-END .................................................................................................................................17  
ENSOR F  
14.4.1. HIGHSPEED Parameter......................................................................................................................17  
14.4.2. FILTER Parameter...............................................................................................................................17  
14.4.3. AUTO_RG, RGThresL, RGThresH Parameters...................................................................................17  
14.5.  
DIAGNOSTIC..............................................................................................................................................18  
14.5.1. EEHAMHOLE Parameter....................................................................................................................18  
14.5.2. RESONFAULT Parameter ...................................................................................................................18  
14.5.3. DACTHRES Parameter........................................................................................................................18  
14.5.4. FORCERA75 Parameter ......................................................................................................................18  
3901090316  
Rev. 001  
Page 3 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
14.6.  
L
OCK.........................................................................................................................................................18  
14.6.1. MLXLOCK Parameter .........................................................................................................................18  
14.6.2. LOCK Parameter .................................................................................................................................18  
15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 19  
16. SERIAL PROTOCOL........................................................................................................................... 21  
16.1.  
16.2.  
16.3.  
16.4.  
16.5.  
16.6.  
16.7.  
16.8.  
16.9.  
16.10.  
I
NTRODUCTION .........................................................................................................................................21  
SERIAL PROTOCOL MODE ...................................................................................................................21  
MOSI (MASTER  
MISO (MASTER  
/SS (SLAVE  
M
S
T
S
F
O
UT )...............................................................................................................21  
S
LAVE  
I
N
I
N
S
LAVE OUT)...............................................................................................................21  
S
ELECT) .................................................................................................................................21  
UP ...................................................................................................................................21  
UP ......................................................................................................................................21  
IMING......................................................................................................................................................22  
ESET ............................................................................................................................................23  
AYER ..........................................................................................................................................23  
ASTER  
S
TART  
-
LAVE  
S
TART  
-
LAVE  
RAME  
R
L
16.10.1.  
Command Device Mechanism ..........................................................................................................23  
Data Frame Structure ......................................................................................................................23  
Timing ..............................................................................................................................................23  
Data Structure..................................................................................................................................24  
Angle Calculation.............................................................................................................................24  
Error Handling.................................................................................................................................24  
16.10.2.  
16.10.3.  
16.10.4.  
16.10.5.  
16.10.6.  
17. RECOMMENDED APPLICATION DIAGRAMS.................................................................................. 25  
17.1.  
17.2.  
17.3.  
17.4.  
A
A
NALOG  
NALOG  
O
O
UTPUT  
UTPUT  
W
W
IRING WITH THE MLX90316 IN SOIC PACKAGE.......................................................25  
IRING WITH THE MLX90316 IN TSSOP PACKAGE....................................................25  
PWM LOW  
SIDE OUTPUT WIRING ............................................................................................................26  
S
ERIAL P  
ROTOCOL ....................................................................................................................................26  
18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS  
WITH DIFFERENT SOLDERING PROCESSES........................................................................................ 28  
19. ESD PRECAUTIONS........................................................................................................................... 28  
20. PACKAGE INFORMATION................................................................................................................. 29  
20.1.  
20.2.  
20.3.  
20.4.  
20.5.  
20.6.  
SOIC8 - PACKAGE  
SOIC8 - PINOUT AND  
SOIC8 - IMC POSITIONNING.....................................................................................................................30  
TSSOP16 - PACKAGE IMENSIONS...........................................................................................................31  
TSSOP16 - PINOUT AND ARKING ..........................................................................................................32  
TSSOP16 - IMC POSITIONNING................................................................................................................32  
D
IMENSIONS ...............................................................................................................29  
M
ARKING ...............................................................................................................29  
D
M
21. DISCLAIMER....................................................................................................................................... 34  
3901090316  
Rev. 001  
Page 4 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
3. Glossary of Terms Abbreviations Acronyms  
Gauss (G), Tesla (T): Units for the magnetic flux density 1 mT = 10 G  
TC: Temperature Coefficient (in ppm/Deg.C.)  
NC: Not Connected  
PWM: Pulse Width Modulation  
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF)  
ADC: Analog-to-Digital Converter  
DAC: Digital-to-Analog Converter  
LSB: Least Significant Bit  
MSB: Most Significant Bit  
DNL: Differential Non-Linearity  
INL: Integral Non-Linearity  
RISC: Reduced Instruction Set Computer  
ASP: Analog Signal Processing  
DSP: Digital Signal Processing  
ATAN: trigonometric function: arctangent (or inverse tangent)  
IMC: Integrated Magneto-Concentrator (IMC)  
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)  
EMC: Electro-Magnetic Compatibility  
4. Pinout  
SOIC-8  
TSSOP-16  
Pin #  
Analog / PWM  
Vdd  
Serial Protocol  
Vdd  
Analog / PWM  
Serial Protocol  
Vdig_1  
1
2
Vdig_1  
Test 0  
Test 0  
Vss_1 (Ground_1)  
Vdd_1  
Vss_1 (Ground_1)  
Vdd_1  
3
Not Used  
Not Used  
Out  
/SS  
4
SCLK  
Test0_1  
Test 01  
5
MOSI / MISO  
Test 1  
Not Used_2  
Not Used_2  
Out_2  
/SS_2  
6
Test 1  
SCLK_2  
7
Vdig  
Vdig  
MOSI_2 / MISO_2  
Test 12  
8
Vss (Ground)  
Vss (Ground)  
Test1_2  
9
Vdig_2  
Vdig_2  
10  
11  
12  
13  
14  
15  
16  
Vss_2 (Ground_2)  
Vdd_2  
Vss_2 (Ground_2)  
Vdd_2  
Test0_2  
Test 02  
Not Used_1  
Not Used_1  
Out_1  
/SS_1  
SCLK_1  
MOSI_1 / MISO_1  
Test 11  
Test1_1  
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see  
section 16).  
3901090316  
Rev. 001  
Page 5 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
5. Absolute Maximum Ratings  
Parameter  
Value  
Supply Voltage, VDD (overvoltage)  
Reverse Voltage Protection  
Positive Output Voltage  
+ 20 V  
10 V  
+ 10 V  
+ 14 V (200 s max TA = + 25°C)  
± 30 mA  
Output Current (IOUT  
)
Reverse Output Voltage  
0.3 V  
Reverse Output Current  
50 mA  
Operating Ambient Temperature Range, TA  
Storage Temperature Range, TS  
Magnetic Flux Density  
40°C … + 150°C  
40°C … + 150°C  
± 700 mT  
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
6. Detailed Description  
As described on the block diagram (Figure 1), the magnetic flux density parallel to the IC surface (i.e. B//)  
is sensed through the Triaissensor front-end. This front-end consists into two orthogonal pairs (for  
each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue  
area on Figure 3) and an Integrated Magneto-Concentrator (IMC − yellow disk on Figure 3).  
Figure 3 Triaissensor front-end (4 Hall plates + IMCdisk)  
Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal  
components (respectively BXand BY) proportional to the parallel components (respectively BX// and BY//)  
are induced through the IMC and can be measured by both respective pairs of conventional planar Hall  
plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.  
While a magnet (diametrally magnetized) rotates above the IC as described on Figure 2, the sensing  
stage provides two differential signals in quadrature (sine and cosine Figures 4 & 5).  
3901090316  
Rev. 001  
Page 6 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
0
90  
180  
BX  
270  
360  
450  
540  
630  
720  
Alpha (Degree)  
BY  
Figure 4 Magnetic Flux Density BX cos(α) & BY sin(α)  
2000  
1500  
1000  
500  
0
-500  
-1000  
-1500  
-2000  
0
90  
180  
VX  
270  
360  
450  
540  
630  
720  
Alpha (Degree)  
VY  
Figure 5 Triaissensor front-end Output signals VX BX cos(α) & VY BY sin(α)  
Those Hall signals are processed through a fully differential analog chain featuring the classic offset  
cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).  
The conditioned analog signals are converted through an ADC (configurable 14 or 15 bits) and provided  
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose  
primary function is the extraction of the angular position from the two raw signals (after so-called front-end  
compensation steps) through the following operation:  
VY  
÷
÷
α = ATAN  
VX  
«
3901090316  
Rev. 001  
Page 7 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
The DSP functionality is governed by the micro-code (firmware F/W) of the micro-controller which is  
stored into the ROM (mask programmable). In addition to the ATANfunction, the F/W controls the whole  
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also  
the self-diagnostic modes.  
In the MLX90316, the ATANfunction is computed via a look-up table (i.e. it is not obtained through a  
CoRDiC algorithm).  
Due to the fact that the ATANoperation is performed on the ratio VY/VX, the angular information is  
intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects)  
affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position  
sensor based on conventional linear Hall sensors.  
In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a  
complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical  
manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).  
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the  
target transfer characteristic and it is provided at the output(s) as:  
an analog output level through a 12 bit DAC followed by a buffer  
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz 1 kHz)  
a digital Serial Protocol (SP 14 bits computed angular information available)  
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary  
position sensor output transfer characteristic:  
Vout(α) = ClampLo  
Vout(α) = Voffset + Gain × α  
Vout(α) = ClampHi  
for α ≤ αmin  
for αmin ≤ α ≤ αmax  
for α ≥ αmax  
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.  
The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration  
depending on the linearity requirement.  
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).  
The programming steps do not require any dedicated pins. The operation is done using the supply and  
output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and  
production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316  
daugtherboard and software tools (DLL User Interface).  
3901090316  
Rev. 001  
Page 8 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
7. MLX90316 Electrical Specification  
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E or K).  
Parameter  
Symbol  
Test Conditions  
Slow mode(2)  
Min  
Typ  
Max  
Units  
Nominal Supply Voltage  
Supply Current (1)  
Vdd  
Idd  
4.5  
5
5.5  
10  
16  
V
mA  
mA  
Fast mode(2)  
Output Current  
Iout  
Ishort  
Analog Output mode  
PWM Output mode  
Vout = 0 V  
-8  
8
mA  
mA  
mA  
mA  
mA  
kΩ  
kΩ  
-20  
20  
Output Short Circuit Current  
12  
12  
22  
10  
5.6  
Vout = 5 V  
15  
30  
Vout = 14 V (TA = 25°C)  
Pull-down to Ground (2)  
Pull-up to 5V (3)  
Output Load  
RL  
4
4
(4)  
Saturation Output Level  
Diagnostic Output Level  
Vsat_lo Pull-up load RL > 10 k  
Vsat_hi Pull-down load RL > 10 kꢀ  
Diag_lo Pull-down load RL > 10 kꢀ  
Pull-up load RL > 10 kꢀ  
3
%Vdd  
96  
%Vdd  
%Vdd  
1
1.5  
Diag_hi Pull-down load RL > 10 kꢀ  
Pull-up load RL > 10 kꢀ  
97  
98  
0
%Vdd  
Clamped Output Level  
Clamp_lo Programmable  
100  
100  
%Vdd (5)  
%Vdd (5)  
Clamp_hi Programmable  
0
(1) For the dual version, the supply current is multiplied by 2  
(2) See section 14.1 for details concerning Slow and Fast mode  
(3) Applicable for output in Analog and PWM (Open-Drain) modes  
(4) RL < for output in PWM mode  
(5) Clamping levels are limited by Vsat_lo and Vsat_hi  
3901090316  
Rev. 001  
Page 9 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
8. MLX90316 Isolation Specification  
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E or K). Only valid for the package code GO i.e. dual die version.  
Parameter  
Isolation Resistor  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Mꢀ  
Between 2 dies – TSSOP package  
4
9. MLX90316 Timing Specification  
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E or K).  
Parameter  
Symbol  
Test Conditions  
Slow mode (6)  
Fast mode (6)  
Min  
Typ  
Max  
Units  
Main Clock Frequency  
Ck  
7
MHz  
MHz  
20  
Slow mode (6)  
Fast mode (6)  
Sampling Rate  
600  
200  
s  
s  
Slow mode (6), Filter=5 (7)  
Fast mode (6), Filter=0 (7)  
Step Response Time  
Ts  
4
ms  
400  
200  
600  
s  
Watchdog  
Wd  
5
ms  
Slow and Fast mode (6)  
Start-up Cycle  
Tsu  
15  
ms  
Analog Output Slew Rate  
PWM Frequency  
Cout = 42 nF  
V/ms  
Hz  
FPWM  
100  
1000  
(6) See section 14.1 for details concerning Slow and Fast mode  
(7) See section 14.4 for details concerning Filter parameter  
3901090316  
Rev. 001  
Page 10 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
10. MLX90316 Accuracy Specification  
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E or K).  
All the errors expressed in Deg. Can be converted in %Vdd or %dc by using the following relationship:  
Err (%Vdd) = Err (Deg) × Output Span (%Vdd) / Angular Span (Deg) + Err_DAC + Err_OutBuf  
Err (%DC) = Err (Deg) × Output Span (%DC) / Angular Span (Deg)  
Err (Serial Protocol) = Err (Deg)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
ADC Resolution  
RADC  
Slow – 15 bits ADC (14 + sign)  
Fast – 14 bits ADC (13 + sign)  
0.005  
0.01  
Deg/LSB15  
Deg/LSB14  
LSB15 (9)  
Thermal Offset Drift #1  
Thermal Offset Drift #2  
Thermal Offset Drift at the DSP  
input (excl. DAC and output stage)  
-60  
+60  
Thermal Offset Drift of the DAC  
and Output Stage  
- 0.2  
+ 0.2  
%Vdd  
Only for the Analog Output  
Analog Output Resolution  
RDAC  
12 bits DAC  
0.025  
%Vdd/LSB  
(Theoretical – Noise free)  
INL  
-4  
+4  
2
LSB  
LSB  
% Vdd  
Deg  
Deg  
%
DNL  
0.05  
1
0.05  
0.03  
0.1  
Output stage Noise  
Noise pk-pk (10)  
RG = 9, Slow mode, Filter=5  
RG = 9, Fast mode, Filter=0  
0.06  
0.2  
Ratiometry Error  
-0.1  
0
0.1  
PWM Output Resolution  
RPWM  
12 bits  
0.025  
%DC/LSB  
(Theoretical – Jitter free)  
fPWM = 250 Hz  
PWM Jitter(11)  
JPWM  
RSP  
0.2  
2
%DC  
Serial Protocol Output  
Resolution  
14 bits – 360 Deg. mapping  
(Theoretical – Jitter free)  
360 Deg  
0.022  
Deg/LSB  
Intrinsic Linearity Error(12)  
Le  
-2  
Deg  
(9) Thermal Offset Drift #1 yields to max. ± 0.3 Deg. drift for the computed angular information (output of  
the DSP).  
(10) The application diagram used is described in the recommended wiring. For detailed information, refer  
to section filter in application mode.  
(11) Jitter is defined by ± 3 for 1000 acquisitions.  
(12) The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into  
account an ideal rotating field. Once associated to a practical magnetic construction and the associated  
mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved  
with the 2 point or 3 point end-user calibration that is available on the MLX90316.  
3901090316  
Rev. 001  
Page 11 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
11. MLX90316 Magnetic Specification  
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (S, E or K).  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Magnetic Flux Density  
B
20  
50  
70(13)  
mT  
Magnet Temperature Coefficient  
TCm  
-2400  
0
ppm/°C  
(13) Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.  
12. MLX90316 CPU & Memory Specification  
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
ROM  
RAM  
10  
KB  
B
256  
128  
EEPROM  
B
3901090316  
Rev. 001  
Page 12 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
13. MLX90316 End-User Programmable Items  
Parameter  
Comments  
# bit  
16  
1
16  
1
Output stage Mode  
PWMPOL1  
PWM_Freq  
CLOCKWISE  
DP  
LNR_S0  
LNR_A_X  
LNR_A_Y  
LNR_A_S  
LNR_B_X  
LNR_B_Y  
LNR_B_S  
LNR_C_X  
LNR_C_Y  
LNR_C_S  
CLAMP_HIGH  
CLAMP_LOW  
DEADZONE  
FHYST  
Define the output stage mode  
PWM Polarity  
PWM Frequncy  
15  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
Discontinuity Point  
Initial Slope  
AX Coordinate  
AY Coordinate  
AS Coordinate  
BX Coordinate  
BY Coordinate  
BS Coordinate  
CX Coordinate  
CY Coordinate  
CS Coordinate  
Clamping_High  
Clamping_Low  
8
16  
16  
16  
8
16  
16  
1
MELEXISID1  
MELEXISID2  
MELEXISID3  
CUSTUMERID1  
CUSTUMERID2  
CUSTUMERID3  
HIGHSPEED  
FILTER  
8
1
4
AUTO_RG  
RGThresL  
4
16  
1
8
1
RGThresH  
EEHAMHOLE  
RESONFAULT  
DACTHRES  
FORCERA75  
MLXLOCK  
LOCK  
1
1
CRC  
Automatically computed and programmed by the IC  
16  
3901090316  
Rev. 001  
Page 13 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
14. Description of End-User Programmable Items  
14.1. Output_Mode  
The MLX90316 output type is defined by the Ouput_Mode parameter.  
Parameter  
Value  
Unit  
Analog  
PWM NMOS  
Serial  
Output_Mode  
14.1.1. Analog Output Mode  
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration  
allowed the use of a pull-up or pull-down resistor.  
14.1.2. PWM Output Mode  
When PWM NMOS is selected, the output signal is a PWM modulation. The output stage is an open drain  
NMOS transistor, to be used with a pull-up resistor (low side).  
The PWM polarity is selected by the PWMPOL1 parameter:  
PWMPOL1 = 0 for a low level at 100%  
PWMPOL1 = 1 for a high level at 100%  
The PWM frequency is selected by the PWM_Freq parameter.  
Parameter  
Value  
Unit  
0
1
PWMPOL1  
PWM_Freq  
Hz  
100 1000  
14.1.3. Serial Protocol Output Mode  
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.  
See the dedicated Serial Protocol section for a full description (Section 17).  
3901090316  
Rev. 001  
Page 14 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
14.2. Output Transfert Characteristic  
Parameter  
Value  
CCW = 0  
CW = 1  
Unit  
CLOCKWISE  
DP  
Deg.  
Deg.  
0 359.9999  
LNR_A_X  
LNR_B_X  
LNR_C_X  
0 359.9999  
0 100  
LNR_A_Y  
LNR_B_Y  
LNR_C_Y  
%
LNR_S0  
LNR_A_S  
LNR_B_S  
LNR_C_S  
%/Deg.  
0 64  
CLAMP_LOW  
CLAMP_HIGH  
DEADZONE  
FHYST  
%
%
0 100  
0 100  
Deg.  
LSB  
0 359.9999  
0 255  
14.2.1. CLOCKWISE Parameter  
The CLOCKWISE parameter defines the magnet rotation direction.  
CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin  
order direction for the TSSOP16 package.  
CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin  
order direction for the TSSOP16 package.  
Refer to the drawing in the IMC positioning sections (Section 19.3 and 19.6).  
14.2.2. LNR Parameters  
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)  
between the digital angle and the output signal.  
The shape of the 90316 transfer function from the digital angle value to the output voltage is described by  
the drawing below. Six segments can be programmed but the clamping levels are necessarily flat.  
Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by  
almost an order of magnitude each time. Three or five point calibration will be preferred by customers  
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for  
a cheaper calibration set-up and shorter calibration time.  
3901090316  
Rev. 001  
Page 15 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
100 %  
CLAMPHIGH  
Clamping High  
C
Slope LNR_C_S  
LNR_C_Y  
B
Slope LNR_B_S  
LNR_B_Y  
LNR_A_Y  
A
Slope LNR_A_S  
Slope LNR_S0  
Clamping Low  
CLAMPLOW  
0 %  
LNR_A_X  
LNR_B_X  
LNR_C_X  
360  
(Deg.)  
0
14.2.3. CLAMPING Parameters  
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW  
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum  
output voltage level. Both parameters have 16 bits of adjustment with a resolution of approximately 0.076  
mV.  
14.2.4. DEADZONE Parameter  
The dead zone is defined as the angle window between 0 and 359.9999.  
When the digital angle lies in this zone, the IC is in fault mode.  
14.2.5. FHYST Parameter  
The FHYST parameter is an hysteresis filter. The output value of the IC is not updated when the digital  
step is smaller than the programmed FHYST parameter value. The output value is modified when the  
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level  
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the  
noise level.  
14.3. Identification  
Parameter  
Value  
0 65535  
0 65535  
0 65535  
Unit  
MELEXSID1  
MELEXSID2  
MELEXSID3  
0 255  
0 65535  
0 65535  
CUSTUMERID1  
CUSTUMERID2  
CUSTUMERID3  
Identification number: 40 bits freely useable by Customer for traceability purpose.  
3901090316  
Rev. 001  
Page 16 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
14.4. Sensor Front-End  
Parameter  
Value  
Unit  
0 = Slow mode  
1 = Fast mode  
HIGHSPEED  
FILTER  
0 5  
0 = disable  
1 = enable  
AUTO_RG  
RGThresL  
RGThresH  
0 15  
0 15  
14.4.1. HIGHSPEED Parameter  
The HIGHSPEED parameter defined the main frequency for the DSP.  
HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.  
HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.  
For a better accuracy, the Slow mode must be enable.  
14.4.2. FILTER Parameter  
The MLX90316 includes a programmable low-pass filter controlled with the Filter parameter. 6 values are  
possible described in the next table.  
Attenuation  
(dB)  
Speed  
Mode  
Response time  
(ms)  
Filter Value  
0
1
na  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
2.22  
0.75  
3
2.9  
2
3
4
5
3.6  
5
1
3.75  
1.25  
3.75  
1.25  
4.5  
6.1  
7
1.5  
14.4.3. AUTO_RG, RGThresL, RGThresH Parameters  
AUTO_RG parameter enables the automatic gain control to optimize the ADC span. RGThresL defines  
the minimum RG value while RGThresH defines the maximum RG value. When AUTO_RG is enabled,  
the optimized value for RGThresL is 0.  
3901090316  
Rev. 001  
Page 17 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
14.5. Diagnostic  
Parameter  
Value  
Unit  
0
EEHAMHOLE  
3131h  
0
1
RESONFAULT  
DACTHRES  
0 255  
0
1
FORCERA75  
14.5.1. EEHAMHOLE Parameter  
The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is  
detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory  
recovery)  
14.5.2. RESONFAULT Parameter  
This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the  
parameter is to 1. By default, the parameter is set to 0.  
14.5.3. DACTHRES Parameter  
The DACTHRES is the high threshold of the DAC monitor. The DAC monitor senses an output DAC  
voltage for one fixed code. The table hereafter highlights the effect of the DACTHRES on the output Vs  
supply voltage.  
14.5.4. FORCERA75 Parameter  
This parameter forces the circle radius adjustment to 75% instead of 90% when the parameter is set to 1.  
By default, the parameter is set to 0.  
14.6. Lock  
Parameter  
Value  
Unit  
0
1
MLXLOCK  
0
1
LOCK  
14.6.1. MLXLOCK Parameter  
MLXLOCK locks all the parameters set by Melexis.  
14.6.2. LOCK Parameter  
LOCK locks all the parameters set by the user.  
3901090316  
Rev. 001  
Page 18 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
15. MLX90316 Self Diagnostic  
The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC  
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure  
modes (“fail-safe”).  
Action  
CPU Reset (14)  
Effect on Outputs  
Diagnostic low (15)  
Remark  
All the outputs are already  
in Diagnostic low - (start-up)  
ROM CRC Error at start up  
(64 words including Intelligent  
Watch Dog - IWD)  
ROM CRC Error (Operation -  
Enter Endless Loop:  
- Progress (watchdog  
Acknowledge)  
- Set Outputs in Diagnostic low  
CPU Reset  
Immediate Diagnostic low  
Diagnostic low  
Background task)  
RAM Test Fail (Start up)  
All the outputs are already  
in Diagnostic low** ** (start-  
up)  
Start-Up Time is increased  
by 3 ms if successful  
recovery  
Calibration Data CRC Error  
(Start-Up)  
Hamming Code Recovery  
Hamming Code Recovery Error CPU Reset  
(Start-Up)  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Calibration Data CRC Error  
(Operation - Background)  
Dead Zone  
CPU Reset  
Set Outputs in Diagnostic low.  
Normal Operation until the “dead  
zone” is left.  
Immediate recovery if the  
“dead zone” is left  
ADC Clipping  
(ADC Output is 0000h or  
7FFFh)  
Radius Overflow ( > 100% ) or  
Radius Underflow  
( < 50 % )  
Set Outputs in Diagnostic low  
Normal mode and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
(50 % - 100 %)  
No magnet / field too high  
Fine Gain Clipping  
(FG < 0d or > 63d)  
Rough Offset Clipping  
(RO is < 0d or > 127d)  
Rough Gain Clipping  
(RG < RGTHRESLOW or RG >  
RGTHRESHIGH)  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Immediate Diagnostic low  
Immediate Diagnostic low  
DAC Monitor (Digital to Analog Set Outputs in Diagnostic low.  
converter)  
Normal Mode with immediate  
recovery without CPU Reset  
ADC Monitor (Analog to Digital Set Outputs in Diagnostic low.  
ADC Inputs are Shorted  
converter)  
Normal Mode with immediate  
recovery without CPU Reset  
MLX90316 Fault Mode continue…  
3901090316  
Rev. 001  
Page 19 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
…MLX90316 Fault Mode  
Fault Mode  
Action  
Effect on Outputs  
Remark  
- Vdd < POR level =>  
Outputs high impedance  
Undervoltage Mode  
At Start-Up, wait Until Vdd > 3V.  
During operation, CPU Reset after  
3 ms debouncing  
- POR level < Vdd < 3 V =>  
Outputs in Diagnostic low.  
Firmware Flow Error  
CPU Reset  
CPU Reset  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Intelligent Watchdog  
(Observer)  
100% Hardware detection.  
Read/Write Access out of  
physical memory  
Write Access to protected area CPU Reset  
(IO and RAM Words)  
Unauthorized entry in  
“SYSTEM” Mode  
Vdd > 7 V  
100% Hardware detection.  
100% Hardware detection.  
100% Hardware detection.  
CPU Reset  
Set Output High Impedant (Analog) Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High(15)  
Vdd > 9.4 V  
Broken Vss  
Broken Vdd  
IC is switched off (internal supply)  
CPU Reset on recovery  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
Pull down resistive load =>  
Diag. Low  
100% Hardware detection.  
CPU Reset on recovery  
CPU Reset on recovery  
100% Hardware detection.  
Pull down load < 10 kto  
meet Diag Lo spec < 2%  
Vdd  
100% Hardware detection.  
Pull up load to Vpullup> 8 V  
to meet Diag Hi spec > 96%  
Vdd  
Pull up resistive load =>  
Diag. High  
(14) CPU Reset means:  
1. Core Reset (same as Power-On-Reset). It induces a typical start up time.  
2. Periphery Reset (same as Power-On-Reset)  
3. Fault Flag/Status Lost  
(15) Refer to Section 7 for the Diagnostic Output Level specifications  
3901090316  
Rev. 001  
Page 20 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
16. Serial Protocol  
16.1. Introduction  
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.  
The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO):  
/SS pin is a 5 V tolerant digital input  
SCLK pin is a 5 V tolerant digital input  
MOSI-MISO pin is a 5 V tolerant open drain digital input/output  
The basic knowledge of the standard SPI specification is required for the good understanding of the  
present section.  
16.2. SERIAL PROTOCOL Mode  
CPHA = 1 even clock changes are used to sample the data  
CPOL = 0 active-Hi clock  
The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the  
bit at the Master’s input stage.  
16.3. MOSI (Master Out Slave In)  
The Master sends a command to the Slave to get the angle information.  
16.4. MISO (Master In Slave Out)  
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kpull-up is  
used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of  
the MLX90316.  
16.5. /SS (Slave Select)  
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronisation between Slave and  
Master in case of communication error.  
16.6. Master Start-up  
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized  
before the first frame transfer.  
16.7. Slave Start-up  
The slave start-up (after power-up, or an internal failure) takes 16 ms. Within this time /SS and SCLK is  
ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-impedant)  
until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while  
starting up.  
3901090316  
Rev. 001  
Page 21 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
16.8. Timing  
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the  
Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle  
of a byte transfer.  
Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not  
have seen /SS inactive.  
t6 t1  
t1  
t7 t1  
t1 t2  
t1  
t4 t9  
t5  
SCLK  
MOSI-  
MISO  
/SS  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 9  
Timings  
Min(15)  
Max  
Remarks  
No capacitive load on MISO.  
t1  
2.3 s / 6.9 s  
-
t1 is the minimum clock period for any  
bits within a byte.  
t2 the minimum time between any other  
byte  
Time between last clock and  
/SS=high=chip de-selection  
t2  
t4  
12.5 s / 37.5 s  
2.3 s / 6.9 s  
-
-
Minimum /SS = Hi time where it’s  
t5  
t5  
300 s / 1500 s  
0s  
-
guaranteed  
that  
a
frame  
re-  
synchronizations will be started.  
Maximum /SS = Hi time where it’s  
guaranteed that NO frame re-  
synchronizations will be started.  
The time t6 defines the minimum time  
between /SS = Lo and the first clock edge  
t7 is the minimum time between the  
StartByte and the Byte0  
-
-
-
t6  
t7  
2.3 s / 6.9 s  
15 s / 45 s  
the minimum time where SS is  
deactivated between a ID Byte and a  
StartByte  
t8  
0 s  
-
Maximum time between /SS = Hi and  
t9  
-
-
<1 s  
MISO Bus High-Impedance  
Minimum time between reset-inactive  
and any master signal change  
< 10 ms / 16 ms  
TStartUp  
(15) Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7MHz (Slow Mode).  
3901090316  
Rev. 001  
Page 22 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
16.9. Slave Reset  
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard  
failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is  
enable only after the completion of the first synchronization (the Master deactivates /SS for at least t5).  
16.10. Frame Layer  
16.10.1. Command Device Mechanism  
Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer.  
The latch point for the angle measurement is at the last clock of the first data frame byte.  
Latch point  
/SS  
SCLK  
A
A
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
A
F
F
F
F
MOSI  
MISO  
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
D
A
T
A
D
Timing diagram  
16.10.2. Data Frame Structure  
A data frame consists of 10 bytes:  
2 start bytes (AAh followed by FFh)  
2 data bytes (DATA16 – most significant byte first)  
2 inverted data bytes (/DATA16 - most significant byte first)  
4 all-Hi bytes  
The Master should send AAh followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed  
by 4 data bytes and 4 bytes FFh.  
16.10.3. Timing  
There are no timing limits for frames: a frame transmission could be initiated at any time. There is no inter-  
frame time defined.  
3901090316  
Rev. 001  
Page 23 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
16.10.4. Data Structure  
The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the  
LSB.  
DATA16: Angle A[13:0] with (Angle Span)/214  
Most Significant Byte  
Less Significant Byte  
MSB  
LSB MSB  
LSB  
1
A13 A12 A11 A10 A9 A8 A7 A6  
A5  
A4 A3 A2 A1 A0  
0
DATA16: Error  
MSB  
Most Significant Byte  
Less Significant Byte  
LSB MSB  
LSB  
E15 E14 E13 E12 E11 E10 E9 E8  
E7  
E6 E5 E4 E3 E2 E1 E0  
BIT  
E0  
E1  
E2  
E3  
E4  
NAME  
0
1
F_ADCMONITOR  
F_ADCSATURA  
F_RGTOOLOW  
ADC Failure  
ADC Saturation (Electrical failure or field too strong)  
Analog Gain Below Trimmed Threshold  
(Likely reason : field too weak)  
E5  
E6  
E7  
F_MAGTOOLOW  
F_MAGTOOHIGH  
F_RGTOOHIGH  
Magnetic Field Too Weak  
Magnetic Field Too Strong  
Analog Gain Above Trimmed Threshold  
(Likely reason : field too strong)  
E8  
E9  
E10  
E11  
E12  
E13  
F_FGCLAMP  
F_ROCLAMP  
F_MT7V  
-
-
-
Never occurring in serial protocol  
Analog Chain Rough Offset Compensation : Clipping  
Device Supply VDD Greater than 7V  
E14 F_DACMONITOR  
E15  
Never occurring in serial protocol  
-
16.10.5. Angle Calculation  
All communication timing is independent (asynchronous) of the angle data processing. The angle is  
calculated continuously by the Slave:  
Slow Mode: every 1.5 ms at most.  
Fast Mode: every 350 s at most.  
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by  
the Slave, because any internal failure of the Slave will lead to a soft reset.  
16.10.6. Error Handling  
In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition  
can be read by the master. The slave will perform a soft reset once the error frame is sent.  
In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog  
error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error  
frame are sent).  
3901090316  
Rev. 001  
Page 24 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
17. Recommended Application Diagrams  
17.1. Analog Output Wiring with the MLX90316 in SOIC Package  
ECU  
5 V  
Vdd  
C1  
100nF  
GND  
Vdd  
Vss  
MLX90316  
ADC  
C2  
100nF  
Test 1  
Vdig  
C3  
100nF  
NotUsed  
NotUsed  
Test 2  
Out1  
Output  
R1  
10K  
C4  
4.7nF  
Recommended wiring for the MLX90316 in SOIC8 package.  
17.2. Analog Output Wiring with the MLX90316 in TSSOP Package  
ECU  
VDD1  
Vdd1  
GND1  
GND1  
GND1  
C2  
100nF  
C3  
100nF  
C7  
4.7nF  
R1  
10K  
C1  
100nF  
Vdig1  
Vss1  
Vdd1  
Output1  
Out1  
C4  
100nF  
MLX90316  
VDD2  
Vdd2  
GND2  
Vdd2  
Vss2  
Vdig2  
ADC  
Out2  
GND2  
C5  
100nF  
C8  
4.7nF  
R2  
10K  
C6  
100nF  
GND2  
Output2  
Recommended wiring for the MLX90316 in TSSOP16 package (dual die).  
Page 25 of 34  
3901090316  
Rev. 001  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
17.3. PWM Low Side Output Wiring  
ECU  
5 V  
Vdd  
C1  
100nF  
GND  
Vdd  
Vss  
MLX90316  
5 V  
C2  
100nF  
Test 1  
Vdig  
TIMER  
C3  
4.7nF  
R1  
1K  
NotUsed  
NotUsed  
Test 2  
PWM  
Output  
PWM  
C4  
4.7nF  
Recommended wiring for a PWM Low Side Output configuration.  
17.4. Serial Protocol  
3.3V/5V  
SPI SLAVE INTERFACE  
CPU  
SPI MASTER  
90316  
OUT1  
MISO  
MOSI  
MOSI  
MISO  
SCLK  
/SS  
OUT2  
OUT3  
SCLK  
/SS  
MLX9031 Single Die Serial Protocol Mode  
3901090316  
Rev. 001  
Page 26 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
3.3V 5V  
SPI SLAVE INTERFACE  
CPU  
SPI MASTER  
90316 #1  
OUT1  
MISO  
LINE  
MOSI  
MOSI  
MISO  
SCLK1  
SCLK1  
OUT2  
OUT3  
SCLK  
/SS  
/SS1  
SCLK2  
/SS2  
/SS1  
SCLK2  
/SS2  
SPI SLAVE INTERFACE  
CPU  
90316 #2  
OUT1  
MOSI  
MISO  
OUT2  
OUT3  
SCLK  
/SS  
MLX90316 Dual Die Serial Protocol Mode (Dual Slave)  
3901090316  
Rev. 001  
Page 27 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
18. Standard information regarding manufacturability of Melexis  
products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture  
sensitivity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(reflow profiles according to table 2)  
Melexis Working Instruction 341901308  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Melexis Working Instruction 341901309  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Melexis Working Instruction 341901309  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
Melexis Working Instruction 3304312  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance  
of adhesive strength between device and board.  
For more information on the lead free topic please see quality page at our website:  
http://www.melexis.com/quality.asp  
19. ESD Precautions  
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).  
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.  
3901090316  
Rev. 001  
Page 28 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
20. Package Information  
20.1. SOIC8 - Package Dimensions  
1.27 TYP  
NOTES:  
All dimensions are in millimeters (anlges in degrees).  
* Dimension does not include mold flash, protrusions or  
gate burrs (shall not exceed 0.15 per side).  
** Dimension does not include interleads flash or protrusion  
(shall not exceed 0.25 per side).  
*** Dimension does not include dambar protrusion.  
Allowable dambar protrusion shall be 0.08 mm total in  
excess of the dimension at maximum material condition.  
Dambar cannot be located on the lower radius of the foot.  
3.81  
3.99** 6.20**  
5.84  
4.80  
4.98*  
1.40  
1.55  
0.19  
0.25  
1.55  
1.73  
0°  
8°  
0.127  
0.250  
0.41  
0.89  
0.35  
0.49***  
20.2. SOIC8 - Pinout and Marking  
Marking :  
Part Number MLX90316 (5 digits)  
Die Version (1 digit)  
8
5
90316  
B
90316B  
123456  
123456  
Lot number (6 digits)  
YYWW  
YY  
WW  
Week Date code (2 digits)  
Year Date code (2 digits)  
1
4
3901090316  
Rev. 001  
Page 29 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
20.3. SOIC8 - IMC Positionning  
CW  
8
7
6
5
CCW  
0.46 +/- 0.06  
COS  
1.25  
1.65  
1
2
3
4
1.96  
2.26  
SIN  
Angle detection MLX90316 SOIC8  
0 Deg.  
90 Deg.  
8
7
6
5
8
7
6
5
N
S
1
2
3
4
1
2
3
4
180 Deg.  
270 Deg.  
8
7
6
5
8
7
6
5
S
N
1
2
3
4
1
2
4
3901090316  
Rev. 001  
Page 30 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
20.4. TSSOP16 - Package Dimensions  
0.65 TYP  
12O TYP  
0.20 TYP  
0.09 MIN  
1.0 DIA  
4.30  
4.50**  
6.4 TYP  
0.09 MIN  
1.0  
0O  
8O  
0.50  
0.75  
12O TYP  
1.0  
1.0 TYP  
0.85  
0.95  
4.90  
5.10*  
0.09  
0.20  
1.1 MAX  
0.05  
0.15  
0.19  
0.30***  
NOTES:  
All dimensions are in millimeters (anlges in degrees).  
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).  
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).  
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at  
maximum material condition. Dambar cannot be located on the lower radius of the foot.  
3901090316  
Rev. 001  
Page 31 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
20.5. TSSOP16 - Pinout and Marking  
Vdig_1  
Vss_1  
Test1_1  
Out_1/MOSI/MISO_1  
NotUsed_1  
NotUsed_1  
Test0_2  
Vdd_1  
Test0_1  
NotUsed_2  
NotUsed_2  
Out_2/MOSI/MISO_2  
Test1_2  
Vdd_2  
Vss_2  
Marking :  
Vdig_2  
Part Number MLX90316 (5 digits)  
Die Version (1 digit)  
90316  
123456  
YY  
B
Lot number (6 digits)  
WW  
Week Date code (2 digits)  
Year Date code (2 digits)  
20.6. TSSOP16 - IMC Positionning  
CW  
COS 2  
16  
9
Die 1  
Die 2  
SIN 2  
SIN 1  
0.30 +/- 0.06  
CCW  
1.95  
2.45  
1
8
1.84  
2.04  
COS 1  
2.76  
2.96  
3901090316  
Rev. 001  
Page 32 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
Angle detection MLX90316 TSSOP16  
90 Deg.  
270 Deg.  
0 Deg.  
180 Deg.  
16  
9
16  
9
Die 1  
Die 2  
Die 1  
Die 2  
N
S
1
8
9
1
8
9
180 Deg.  
0 Deg.  
270 Deg.  
90 Deg.  
16  
16  
Die 1  
Die 2  
Die 1  
Die 2  
S
N
1
8
1
8
3901090316  
Rev. 001  
Page 33 of 34  
Data Sheet  
4 October 05  
MLX90316  
Rotary Position Sensor IC  
21. Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in  
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the  
information set forth herein or regarding the freedom of the described devices from patent infringement.  
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,  
prior to designing this product into a system, it is necessary to check with Melexis for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or high reliability applications, such as military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional  
processing by Melexis for each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not  
be liable to recipient or any third party for any damages, including but not limited to personal injury,  
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or  
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow  
out of Melexis’ rendering of technical or other services.  
© 2005 Melexis NV. All rights reserved.  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
America:  
Phone: +32 1367 0495  
Phone: +1 603 223 2362  
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com  
ISO/TS 16949 and ISO14001 Certified  
3901090316  
Rev. 001  
Page 34 of 34  
Data Sheet  
4 October 05  

相关型号:

MLX90316SDCBCG-000RE

Rotary Position Sensor IC
MELEXIS

MLX90316SDCBCG-000TU

Rotary Position Sensor IC
MELEXIS

MLX90316XDC

Evaluation Board
MELEXIS

MLX90316XGO

Evaluation Board
MELEXIS

MLX90316_05

Rotary Position Sensor IC
ETC

MLX90316_13

Rotary Position Sensor IC
MELEXIS

MLX90320

Automotive small sensor interface
MELEXIS

MLX90320LFRBBA-000RE

Automotive sensor interface
MELEXIS

MLX90320LFRBBA-000TU

Automotive sensor interface
MELEXIS

MLX90320LFRLFR

Automotive small sensor interface
MELEXIS

MLX90320_12

Automotive sensor interface
MELEXIS

MLX90323

4 – 20 mA Loop Sensor Interface with Signal Conditioning and EEPROM
MELEXIS