MX7841 [ETC]

Octal. 14-Bit Voltage-Output DAC with Parallel Interface ; 八。 14位电压输出DAC ,并行接口\n
MX7841
型号: MX7841
厂家: ETC    ETC
描述:

Octal. 14-Bit Voltage-Output DAC with Parallel Interface
八。 14位电压输出DAC ,并行接口\n

文件: 总14页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2953; Rev 0; 7/03  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
General Description  
Features  
The MX7841 contains eight 14-bit, voltage-output digi-  
tal-to-analog converters (DACs). On-chip precision out-  
put amplifiers provide the voltage outputs. The device  
operates from 1ꢀ5 supplies. ꢁts bipolar output voltage  
o Full 14-Bit Performance Without Adjustments  
o Eight DACs in a Single Package  
o Buffered Voltage Outputs  
swing ranges from (5 + 2.ꢀ5) to (5  
- 2.ꢀ5) and is  
DD  
SS  
o Unipolar or Bipolar Voltage Swing of (V + 2.5V)  
SS  
achieved with no external components. The MX7841  
has three pairs of differential reference inputs; two of  
these pairs are connected to two DACs each, and a  
third pair is connected to four DACs. The references  
are independently controlled, providing different full-  
scale output voltages to the respective DACs.  
to (V  
- 2.5V)  
DD  
o 31µs Output Settling Time  
o Low Power Consumption: 8mA (typ)  
o Small 44-Pin MQFP Package  
o Double-Buffered Digital Inputs  
The MX7841 features double-buffered interface logic  
with a 14-bit parallel data bus. Each DAC has an input  
latch and a DAC latch. Data in the DAC latch sets the  
output voltage. The eight input latches are addressed  
with three address lines. Data is loaded to the input  
latch with a single write instruction. An asynchronous  
load input (LDAC) transfers data from the input latch to  
the DAC latch. The LDAC input controls all DACs;  
therefore, all DACs can be updated simultaneously by  
asserting LDAC.  
o Asynchronous Load Updates All DACs  
Simultaneously  
o Asynchronous CLR Forces All DACs to  
DUTGND_ _ Potential  
Ordering Information  
An asynchronous CLR input sets the output of all eight  
DACs to the respective DUTGND input of the op amp.  
Note that CLR is a CMOS input, which is powered by  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
TEMP RANGE  
5 . All other logic inputs are TTL/CMOS compatible.  
DD  
MX7841BS  
MX7841AS  
-40°C to +8ꢀ°C  
-40°C to +8ꢀ°C  
44 MQFP  
44 MQFP  
2
4
The MX7841 is pin-for-pin compatible with AD7841.  
Pin Configuration  
Applications  
Automatic Test Equipment (ATE)  
ꢁndustrial Process Controls  
TOP VIEW  
Arbitrary Function Generators  
Avionics Equipment  
Minimum Component Count Analog Systems  
Digital Offset/Gain Adjustment  
SONET Applications  
DUTGNDAB  
OUTA  
1
33 DUTGNDGH  
32 OUTH  
2
3
4
5
6
7
8
9
REFAB-  
REFAB+  
31 REFGH-  
30 REFGH+  
29 CLR  
V
DD  
V
SS  
28 DB13  
MX7841  
LDAC  
A2  
27 DB12  
26 DB11  
25 DB10  
24 DB9  
23 DB8  
A1  
A0 10  
CS 11  
Functional Diagram appears at end of data sheet.  
MQFP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
ABSOLUTE MAXIMUM RATINGS  
5
5
5
to GND ...........................................................-0.35 to +175  
to GND ........................................................... -175 to +0.35  
to GND ............................................................ -0.35 to +65  
Maximum Current into Any Signal Pin .............................. ꢀ0mA  
OUT_ Short-Circuit Duration to 5 , 5 , and GND ................1s  
DD  
SS  
CC  
DD SS  
Continuous Power Dissipation (T = +70°C)  
A
A_, DB_, WR, CS, LDAC, CLR to GND .....+0.35 to (5  
REF_ _ _ _+, REF_ _ _ _-,  
+ 0.35)  
44-Pin MQFP (derate 11.1mW/°C above +70°C).........870mW  
Operating Temperature Range ...........................-40°C to +8ꢀ°C  
Junction Temperature......................................................+1ꢀ0°C  
Storage Temperature Range.............................-6ꢀ°C to +1ꢀ0°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
DUTGND_ _ .................................(5 - 0.35) to (5  
+ 0.35)  
SS  
DD  
OUT_ ..........................................................................5  
Maximum Current into REF_ _ _ _ _, DUTGND_ _ ........... 10mA  
to 5  
SS  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, R = ꢀk,  
REF REF L  
DD  
SS  
to T  
CC  
GND  
DUTGND_ _  
C = ꢀ0pF, T = T  
, unless otherwise noted. Typical values are at T = +2ꢀ°C.)  
L
A
MꢁN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (ANALOG SECTION)  
Resolution  
N
14  
Bits  
MX7841BS  
MX7841AS  
2
4
1
8
8
Relative Accuracy  
ꢁNL  
DNL  
LSB  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Error  
Gain Error  
Guaranteed monotonic  
LSB  
LSB  
LSB  
LSB  
2
2
2
ppm  
FSR/°C  
Gain Temperature Coefficient  
(Note 1)  
(Note 1)  
0.ꢀ  
7ꢀ  
10  
DC Crosstalk  
120  
µ5  
REFERENCE INPUTS  
ꢁnput Resistance  
100  
MΩ  
µA  
5
ꢁnput Current  
1
REF_ _ _ _+ ꢁnput Range  
REF_ _ _ _- ꢁnput Range  
0
-ꢀ  
0
5
(REF_ _ _ _+) - (REF_ _ _ _-)  
Range  
2
10  
5
A
NALOG OUTPUTS  
(5 + 2.ꢀ) to  
(5 - 2.ꢀ)  
DD  
SS  
Output 5oltage Swing  
5
Resistive Load to GND  
Capacitive Load to GND  
DC Output ꢁmpedance  
kΩ  
pF  
ꢀ0  
(Note 1)  
0.ꢀ  
2
_______________________________________________________________________________________  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
ELECTRICAL CHARACTERISTICS (continued)  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, R = ꢀk,  
REF REF L  
DD  
SS  
to T  
CC  
GND  
DUTGND_ _  
C = ꢀ0pF, T = T  
, unless otherwise noted. Typical values are at T = +2ꢀ°C.)  
L
A
MꢁN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DUTGND_ _ CHARACTERISTICS  
ꢁnput ꢁmpedance per DAC  
Maximum ꢁnput Current per DAC  
ꢁnput Range  
60  
kΩ  
µA  
5
300  
-2  
+2  
DIGITAL INPUTS  
ꢁnput 5oltage High  
5
2.4  
5
5
ꢁH  
ꢁnput 5oltage Low  
5
0.8  
10  
10  
ꢁL  
ꢁnput Capacitance  
C
(Note 1)  
pF  
µA  
ꢁN  
ꢁnput Current  
ꢁN  
Digital inputs = 05 or 5  
1
CC  
POWER SUPPLIES  
5
Analog Power-Supply  
DD  
5
13.ꢀ  
16.ꢀ  
5
5
DD  
Range  
5
SS  
Analog Power-Supply  
5
-16.7ꢀ  
4.7ꢀ  
-13.ꢀ  
SS  
Range  
5
CC  
Digital Power Supply  
5
CC  
ꢀ.2ꢀ  
10  
5
Positive Supply Current  
Negative Supply Current  
Digital Supply Current  
R = ∞  
8
8
mA  
mA  
mA  
dB  
dB  
DD  
L
SS  
R = ∞  
L
10  
(Note 2)  
0.ꢀ  
CC  
PSRR, 5  
PSRR, 5  
/ 5  
/ 5  
5
DD  
5
SS  
= +1ꢀ5 ꢀꢂ  
= -1ꢀ5 ꢀꢂ  
90  
90  
OUT  
OUT  
DD  
SS  
INTERFACE TIMING CHARACTERISTICS  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, Figure 2a,  
REF REF  
DD  
SS  
CC  
GND  
DUTGND_ _  
T
A
= T  
to T  
, unless otherwise noted.)  
MꢁN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
ꢀ0  
ꢀ0  
ꢀ0  
0
TYP  
MAX  
UNITS  
ns  
t
1
CS Pulse Width Low  
t
2
ns  
WR Pulse Width Low  
t
3
ns  
LDAC Pulse Width Low  
CS Low to WR Low  
t
4
ns  
t
0
ns  
CS High to WR High  
t
20  
0
ns  
Data 5alid to WR Setup  
Data 5alid to WR Hold  
Address 5alid to WR Setup  
Address 5alid to WR Hold  
CLR Pulse-Activation Time  
6
t
7
ns  
t
8
1ꢀ  
0
ns  
t
9
ns  
t
10  
(Figure 2b)  
300  
ns  
_______________________________________________________________________________________  
3
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
DYNAMIC CHARACTERISTICS  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, R = ꢀk,  
REF REF L  
DD  
SS  
to T  
CC  
GND  
DUTGND_ _  
C = ꢀ0pF, T = T  
, unless otherwise noted. Typical values are at T = +2ꢀ°C.)  
L
A
MꢁN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
To 0.ꢀ LSB of full scale  
MIN  
TYP  
MAX  
UNITS  
µs  
Output Settling Time  
Output Slew Rate  
Digital Feedthrough  
Digital Crosstalk  
31  
0.7  
0.1  
0.2  
230  
40  
5/µs  
n5-s  
n5-s  
n5-s  
n5-s  
dB  
(Note 3)  
(Note 4)  
Digital-to-Analog Glitch ꢁmpulse  
DAC-to-DAC Crosstalk  
Channel-to-Channel ꢁsolation  
Output Noise Spectral Density  
99  
5
REF+  
= 5  
= 0  
200  
n5/Hz  
REF-  
Note 1: Guaranteed by design. Not production tested.  
Note 2: All digital inputs (DB_, A_, WR, CS, LDAC, and CLR) at GND or 5  
potential.  
CC  
Note 3: All digital inputs (DB_, A_, WR, CS, LDAC, and CLR) at +0.85 or +2.45.  
Note 4: All digital inputs (DB0 to DB13) transition from GND to 5  
with WR = 5  
CC  
CC  
Typical Operating Characteristics  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5  
_ _ _ _- = -ꢀ5, T =  
DD  
SS  
CC  
GND  
DUTGND_ _  
REF  
REF A  
+2ꢀ°C, unless otherwise noted.)  
INL AND DNL ERROR  
vs. TEMPERATURE  
INL vs. CODE  
DNL vs. CODE  
0.4  
0.3  
0.2  
0.1  
0
0.500  
0.500  
0.400  
0.300  
0.200  
0.100  
0
0.400  
0.300  
0.200  
0.100  
0
INL  
-0.100  
-0.200  
-0.300  
-0.400  
-0.500  
-0.100  
-0.200  
-0.300  
-0.400  
-0.500  
-0.1  
-0.2  
-0.3  
-0.4  
DNL  
-40  
-20  
0
20  
40  
60  
80  
0
2048 4096 6144 8192 10240 12288 14336 16384  
CODE  
0
2048 4096 6144 8192 10240 12288 14336 16384  
CODE  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
Typical Operating Characteristics (continued)  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5  
_ _ _ _- = -ꢀ5, T  
=
DD  
SS  
CC  
GND  
DUTGND_ _  
REF  
REF  
A
+2ꢀ°C, unless otherwise noted.)  
ZERO-SCALE AND FULL-SCALE ERROR  
I
AND I  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
DD  
SS  
vs. TEMPERATURE  
vs. TEMPERATURE  
1.2  
8.0  
7.5  
7.0  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
1.0  
0.8  
I
DD  
0.6  
FULL SCALE  
I
SS  
0.4  
0.2  
6.5  
6.0  
5.5  
5.0  
0
ZERO SCALE  
-0.2  
-0.4  
-0.6  
-0.8  
-40  
-20  
0
20  
40  
60  
80  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SETTLING TIME  
vs. CAPACITIVE LOAD  
LARGE-SIGNAL STEP RESPONSE  
REFERENCE INPUT FREQUENCY RESPONSE  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
REF_ _ _ _ _ = 200mVp-p  
0
LDAC  
-5  
5V/div  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
OUT_  
5V/div  
10µs/div  
1k  
10k  
100k  
1M  
10M  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
NOISE VOLTAGE DENSITY  
vs. FREQUENCY  
NEGATIVE SETTLING TIME  
POSITIVE SETTLING TIME  
1000  
LDAC  
5V/div  
LDAC  
5V/div  
OUT_  
1mV/div  
OUT_  
1mV/div  
100  
10  
100  
1k  
10k  
10µs/div  
10µs/div  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
Typical Operating Characteristics (continued)  
(5  
= +1ꢀ5 10ꢂ, 5 = -1ꢀ5 10ꢂ, 5  
= +ꢀ5 ꢀꢂ, 5  
= 5  
= 0, 5  
_ _ _ _+ = +ꢀ5, 5  
_ _ _ _- = -ꢀ5, T =  
DD  
SS  
CC  
GND  
DUTGND_ _  
REF  
REF  
A
10  
10  
+2ꢀ°C, unless otherwise noted.)  
GAIN ERROR vs. V  
MAJOR CARRY GLITCH IMPULSE  
(0xFFFF–0x10000)  
MAJOR CARRY GLITCH IMPULSE  
REF  
(V  
- V  
)
(0x10000xFFF)  
REF+  
REF-  
MX7841 toc14  
MX7841 toc13  
1.1  
0.9  
LDAC  
LDAC  
5V/div  
5V/div  
0.7  
0.5  
0.3  
OUT  
OUT  
5mV/div  
0.1  
5mV/div  
-0.1  
-0.3  
-0.5  
0
2
4
6
8
2µs/div  
2µs/div  
V
REF  
(V)  
DNL (MAX, MIN)  
ZERO-SCALE ERROR  
FULL-SCALE ERROR  
vs. V  
(V  
- V  
)
vs. V  
(V  
- V  
)
vs. V  
(V  
- V  
)
REF REF+  
REF-  
REF REF+  
REF-  
REF REF+  
REF-  
0.4  
0.3  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
0
2
4
6
8
10  
0
2
4
6
8
10  
0
2
4
6
8
V
REF  
(V)  
V
REF  
(V)  
V
REF  
(V)  
INL (MAX, MIN)  
SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
vs. V  
(V  
- V  
)
REF REF+  
REF-  
0.5  
0.4  
30  
20  
10  
0
0.3  
ZERO-SCALE OUTPUT,  
SINKING CURRENT  
0.2  
0.1  
0
-10  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
FULL-SCALE OUTPUT,  
SOURCING CURRENT  
-20  
-30  
-40  
0
2
4
6
8
10  
-40 -25 -10  
5
20 35 50 65 80  
°
TEMPERATURE ( C)  
V
REF  
(V)  
6
_______________________________________________________________________________________  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
Device Sense Ground ꢁnput for OUTA and OUTB. ꢁn normal operation, OUTA and OUTB are referenced  
to DUTGNDAB. When CLR is low, OUTA and OUTB are forced to the potential on DUTGNDAB.  
1
DUTGNDAB  
2
3
4
OUTA  
REFAB-  
REFAB+  
DAC A Buffered Output 5oltage  
Negative Reference ꢁnput for DACs A and B  
Positive Reference ꢁnput for DACs A and B  
Positive Analog Power Supply. Normally set to +1ꢀ5. Connect both pins to the supply voltage. See the  
Power Supplies, Grounding, and Bypassing section for bypass requirements.  
ꢀ, 38  
6
5
DD  
Negative Analog Power Supply. Normally set to -1ꢀ5. See the Power Supplies, Grounding, and  
Bypassing section for bypass requirements.  
5
SS  
Load ꢁnput. Drive this asynchronous input low to transfer the contents of the input latches to their  
7
LDAC  
respective DAC latches. DAC latches are transparent when LDAC is low and latched when LDAC is  
high.  
8
9
A2  
A1  
A0  
CS  
Address Bit 2 (MSB)  
Address Bit 1  
10  
11  
Address Bit 0 (LSB)  
Chip Select. Active-low input.  
Write ꢁnput. Active-low strobe for conventional memory write sequence. ꢁnput data latches are transpar-  
ent when WR and CS are both low. WR latches data into the DAC input latch selected by A2, A1, A0 on  
the rising edge of CS.  
12  
13  
WR  
Digital Power Supply. Normally set to +ꢀ5. See the Power Supplies, Grounding, and Bypassing section  
for bypass requirements.  
5
CC  
14  
GND  
Ground  
1ꢀ–28  
DB0–DB13  
Data Bits 0–13. Offset binary coding.  
Clear ꢁnput. Drive CLR low to force all DAC outputs to the voltage on their respective DUTGND _ _.  
29  
CLR  
Does not affect the status of internal registers. All DACs return to their previous levels when CLR goes  
high.  
30  
31  
REFGH+  
REFGH-  
Positive Reference ꢁnput for DACs G and H  
Negative Reference ꢁnput for DACs G and H  
_______________________________________________________________________________________  
7
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
32  
OUTH  
DAC H Buffered Output 5oltage  
Device Sense Ground ꢁnput for OUTG and OUTH. ꢁn normal operation, OUTG and OUTH are referenced  
to DUTGNDGH. When CLR is low, OUTG and OUTH are forced to the potential on DUTGNDGH.  
33  
DUTGNDGH  
34  
3ꢀ  
OUTG  
OUTF  
DAC G Buffered Output 5oltage  
DAC F Buffered Output 5oltage  
Device Sense Ground ꢁnput for OUTE and OUTF. ꢁn normal operation, OUTE and OUTF are referenced  
to DUTGNDEF. When CLR is low, OUTE and OUTF are forced to the potential on DUTGNDEF.  
36  
DUTGNDEF  
37  
39  
40  
41  
OUTE  
REFCDEF+  
REFCDEF-  
OUTD  
DAC E Buffered Output 5oltage  
Positive Reference ꢁnput for DACs C, D, E, and F  
Negative Reference ꢁnput for DACs C, D, E, and F  
DAC D Buffered Output 5oltage  
Device Sense Ground ꢁnput for OUTC and OUTD. ꢁn normal operation, OUTC and OUTD are referenced  
to DUTGNDCD. When CLR is low, OUTC and OUTD are forced to the potential on DUTGNDCD.  
42  
DUTGNDCD  
43  
44  
OUTC  
OUTB  
DAC C Buffered Output 5oltage  
DAC B Buffered Output 5oltage  
8
_______________________________________________________________________________________  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
_______________Detailed Description  
CLR  
Analog Section  
R
R
The MX7841 contains eight 14-bit voltage-output DACs.  
OUT  
These DACs are inverted R-2R ladder networks that  
convert 14-bit digital inputs into equivalent analog out-  
2R  
2R  
2R  
2R  
2R  
2R  
put voltages, in proportion to the applied reference volt-  
ages (Figure 1). The MX7841 has three positive  
reference inputs (REF_ _ _ _+) and three negative refer-  
ence inputs (REF_ _ _ _-). The difference from  
REF_ _ _ _+ to REF_ _ _ _-, multiplied by two, sets the  
DAC output span.  
D0  
D12  
D13  
DUTGND  
REF-  
REF+  
ꢁn addition to the differential reference inputs, the  
MX7841 has four analog-ground input pins  
(DUTGND_ _). When CLR is high (unasserted), the volt-  
age on DUTGND_ _ offsets the DAC output voltage  
range. ꢁf CLR is asserted, the output amplifier is forced  
to the voltage present on DUTGND_ _.  
Figure 1. DAC Simplified Circuit  
Reference and DUTGND Inputs  
All of the MX7841’s reference inputs are buffered with  
precision amplifiers. This allows the flexibility of using  
resistive dividers to set the reference voltages. Because  
of the relatively high multiplying bandwidth of the refer-  
ence input (188kHz), any signal present on the reference  
pin within this bandwidth is replicated on the DAC output.  
t
1
CS  
WR  
t
4
t
5
The DUTGND pins of the MX7841 are connected to the  
negative source resistor (nominally 11ꢀk) of the out-  
put amplifier. The DUTGND pins are typically connect-  
ed directly to analog ground. Each of these pins has an  
input current that varies with the DAC digital code. ꢁf  
the DUTGND pins are driven by external circuitry, bud-  
get 200µA per DAC for load current.  
t
2
t
8
t
9
A0–A2  
Output-Buffer Amplifiers  
The MX7841’s voltage outputs are internally buffered by  
precision gain-of-two amplifiers with a typical slew rate  
of 15/µs. With a full-scale transition at its output, the  
typical settling time to 1/2 LSB is 31µs. This settling  
time does not significantly vary with capacitive loads  
less than 10,000pF.  
t
6
t
7
DB0–DB13  
t
t
3
(NOTE 3)  
3
Output Deglitching Circuit  
The MX7841’s internal connection from the DAC ladder  
to the output amplifier contains special deglitch circuitry.  
LDAC  
NOTES:  
1. ALL INPUT RISE AND FALL TIMES MEASURED FROM 10% TO 90% OF  
+5V. t = t = 5ns.  
CLR  
r
f
2. MEASUREMENT REFERENCE LEVEL IS (V + V ) / 2.  
INH  
INL  
3. IF LDAC IS ACTIVATED WHILE WR IS LOW, THEN LDAC MUST STAY LOW  
V
OUT_  
FOR t OR LONGER AFTER WR GOES HIGH.  
3
t
10  
t
10  
Figure 2b. Digital Timing Diagram  
Figure 2a. Digital Timing Diagram  
_______________________________________________________________________________________  
9
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
This glitch/deglitch circuitry is enabled on the falling  
edge of LDAC to remove the glitch from the R-2R DAC.  
This enables the MX7841 to exhibit a fraction of the glitch  
impulse energy of parts without the deglitching circuit.  
instantly. Transfer data from the input latches to the  
DAC latches by asserting the asynchronous LDAC sig-  
nal. Each DAC’s analog output reflects the data held in  
its DAC latch. All control inputs are level triggered.  
Table 2 is an interface truth table.  
Digital Inputs and Interface Logic  
All digital inputs are compatible with both TTL and  
CMOS logic. The MX7841 interfaces with microproces-  
sors using a data bus at least 14 bits wide. The inter-  
face is double buffered, allowing simultaneous  
updating of all DACs. There are two latches for each  
DAC (see the Functional Diagram): an input latch that  
receives data from the data bus, and a DAC latch that  
receives data from the input latch. Address lines A0,  
A1, and A2 select which DAC’s input latch receives  
data from the data bus as shown in Table 1. Both the  
input latches and the DAC latches are transparent  
when CS, WR, and LDAC are all low. Any change of  
DB0–DB13 during this condition appears at the output  
Input Write Cycle  
Data can be latched or transferred directly to the DAC.  
CS and WR control the input latch, and LDAC transfers  
information from the input latch to the DAC latch. The  
input latch is transparent when CS and WR are low,  
and the DAC latch is transparent when LDAC is low.  
The address lines (A0, A1, A2) must be valid for the  
duration that CS and WR are low (Figure 2a) to prevent  
data from being inadvertently written to the wrong DAC.  
Data is latched within the input latch when either CS or  
WR is high.  
Loading the DACs  
Taking LDAC high latches data into the DAC latches. ꢁf  
LDAC is brought low when WR and CS are low, the  
DAC addressed by A0, A1, and A2 is directly con-  
trolled by the data on DB0–DB13. This allows the maxi-  
mum digital update rate; however, it is sensitive to any  
glitches or skew in the input data stream.  
Table 1. MX7841 DAC Addressing  
A2  
A1  
A0  
FUNCTION  
0
0
0
DAC A input latch  
DAC B input latch  
DAC C input latch  
DAC D input latch  
DAC E input latch  
DAC F input latch  
DAC G input latch  
DAC H input latch  
0
0
1
Asynchronous Clear  
The MX7841 has an asynchronous clear pin (CLR) that,  
when asserted, sets all DAC outputs to the voltage pre-  
sent on their respective DUTGND pins. Deassert CLR to  
return the DAC output to its previous voltage. Note that  
CLR does not clear any of the internal digital registers.  
See Figure 2b.  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Applications Information  
Multiplying Operation  
The MX7841 can be used for multiplying applications.  
ꢁts reference accepts both DC and AC signals. Since  
the reference inputs are unipolar, multiplying operation  
is limited to two quadrants. See the graphs in the  
Typical Operating Characteristics for dynamic perfor-  
mance of the DACs and output buffers.  
Table 2. Interface Truth Table  
FUNCTION  
CLR  
X
LD  
X
WR  
0
CS  
0
ꢁnput register transparent  
ꢁnput register latched  
ꢁnput register latched  
DAC register transparent  
DAC register latched  
X
X
X
1
X
X
1
X
Digital Code and  
Analog Output Voltage  
X
0
X
X
X
1
X
X
The MX7841 uses offset binary coding. A 14-bit two’s  
complement code is converted to a 14-bit offset binary  
Outputs of DACs at  
DUTGND_ _  
0
1
X
1
X
X
X
X
13  
code by adding 2 = 8192.  
Outputs of DACs set to volt-  
age defined by the DAC  
register, the references,  
and the corresponding  
DUTGND_ _  
Output Voltage Range  
For typical operation, connect DUTGND to signal ground,  
5
+ to +ꢀ5, and 5  
- to -ꢀ5. Table 3 shows the rela-  
REF  
REF  
tionship between digital code and output voltage.  
X = Don’t care.  
10 ______________________________________________________________________________________  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
mum performance, drive LDAC low after the inputs are  
Table 3. Analog Voltage vs. Digital Code  
either latched or steady state. This is best accom-  
plished by having the falling edge of LDAC occur at  
least ꢀ0ns after the rising edge of CS.  
OUTPUT  
INPUT CODE  
VOLTAGE (V)  
11 1111 1111 1111  
10 0000 0000 0000  
01 0011 1011 0010  
00 0000 0000 0001  
00 0000 0000 0000  
+9.998779  
0
Power Supplies, Grounding,  
and Bypassing  
For optimum performance, use a multilayer PC board  
with an unbroken analog ground. For normal operation,  
connect the four DUTGND pins directly to the ground  
plane. Avoid sharing the connections of these sensitive  
pins with other ground traces.  
-3.845215  
-9.998779  
-10  
Note: Output voltage is based on REF+ = +5V, REF- = -5V, and  
DUTGND = 0.  
As with any sensitive data-acquisition system, connect  
the digital and analog ground planes together at a sin-  
gle point, preferably directly underneath the MX7841.  
Avoid routing digital signals underneath the MX7841 to  
minimize their coupling into the ꢁC.  
The DAC digital code controls each leg of the 14-bit  
R-2R ladder. A code of 0x0 connects all legs of the lad-  
der to REF-, corresponding to a DAC output voltage  
(5  
) equal to REF-. A code of 0x3FFF connects all  
DAC  
For normal operation, bypass 5  
and 5 with 0.1µF  
SS  
DD  
legs of the ladder to REF+, corresponding to a 5  
DAC  
ceramic chip capacitors to the analog ground plane. To  
enhance transient response and capacitive drive capa-  
bility, add 10µF tantalum capacitors in parallel with the  
ceramic capacitors. Note, however, that the MX7841  
does not require the additional capacitance for stability.  
approximately equal to REF+.  
The output amplifier multiplies 5  
by 2, yielding an out-  
DAC  
put voltage range of 2 REF- to 2 REF+ (Figure 1).  
Further manipulation of the output voltage span is accom-  
plished by offsetting DUTGND. The output voltage of the  
MX7841 is described by the following equation:  
Bypass 5  
with a 0.1µF ceramic chip capacitor to the  
digital ground plane.  
CC  
Power-Supply Sequencing  
To guarantee proper operation of the MX7841, ensure  
that power is applied to 5 before 5 and 5 . Also  
DATA  
5
= 2 5  
5  
+ 5  
REF−  
(
)
OUT  
REF+  
REF−  
14  
2
DD  
SS  
CC  
5  
ensure that 5  
is never more than 300m5 above  
SS  
DUTGND  
ground. To prevent this situation, connect a Schottky  
diode between 5 and the analog ground plane, as  
where DATA is the numeric value of the DAC’s binary  
input code, and DATA ranges from 0 to 16,383  
(2 - 1). The resolution of the MX7841, defined as  
1 LSB, is described by the following equation:  
SS  
shown in Figure 3. Do not power up the logic input pins  
14  
2 REF+ − REF−  
(
)
LSB =  
14  
2
V
SS  
V
SS  
V
SS  
Reference Selection  
Because the MX7841 has precision buffers on its refer-  
ence inputs, the requirements for interfacing to these  
inputs are minimal. Select a low-drift, low-noise refer-  
ence within the recommended REF+ and REF- voltage  
ranges. The MX7841 does not require bypass capaci-  
tors on its reference inputs. Add capacitors only if the  
reference voltage source requires them to meet system  
specifications.  
MX7839  
1N5817  
GND  
SYSTEM GND  
Minimizing Output Glitch  
The MX7841’s internal deglitch circuitry is enabled on  
the falling edge of LDAC. Therefore, to achieve opti-  
Figure 3. Schottky Diode Between V and GND  
SS  
______________________________________________________________________________________ 11  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
before establishing the supply voltages. If this is not  
possible and the digital lines can drive more than  
Chip Information  
TRANSISTOR COUNT: 13,225  
10mA, place current-limiting resistors (e.g., 470) in  
PROCESS: BiCMOS  
series with the logic pins.  
Driving Capacitive Loads  
The MX7841 typically drives capacitive loads up to  
0.01µF without a series output resistor. However, when-  
ever driving high capacitive loads, it is prudent to use a  
220series resistor between the MX7841 output and  
the capacitive load.  
12 ______________________________________________________________________________________  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
Functional Diagram  
REFAB-  
REFAB+  
REFCDEF-  
REFCDEF+  
REFGH-  
REFGH+  
______________________________________________________________________________________ 13  
Octal, 14-Bit Voltage-Output DAC  
with Parallel Interface  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
44L MQFP, 1.60 LEAD FORM  
1
21-0826  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MX7841AS

Octal, 14-Bit Voltage-Output DAC with Parallel Interface
MAXIM

MX7841BS

Octal, 14-Bit Voltage-Output DAC with Parallel Interface
MAXIM

MX7845

Complete, 12-Bit Multiplying DAC
MAXIM

MX7845AEWG

Complete, 12-Bit Multiplying DAC
MAXIM

MX7845AEWG+

D/A Converter, 1 Func, Parallel, Word Input Loading, 2.5us Settling Time, PDSO24, 0.300 INCH, SO-24
MAXIM

MX7845AEWG-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 2.5us Settling Time, PDSO24, 0.300 INCH, SO-24
MAXIM

MX7845AQ

Complete, 12-Bit Multiplying DAC
MAXIM

MX7845BEWG

Complete, 12-Bit Multiplying DAC
MAXIM

MX7845BEWG/GH9

D/A Converter, 1 Func, Parallel, Word Input Loading, 2.5us Settling Time, PDSO24, SOP-24
MAXIM

MX7845BEWG/GH9-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 2.5us Settling Time, PDSO24, SOP-24
MAXIM

MX7845BQ

Complete, 12-Bit Multiplying DAC
MAXIM

MX7845J/D

Complete, 12-Bit Multiplying DAC
MAXIM