NCP4586SN2.5T1TR [ETC]

Analog IC ; 模拟IC\n
NCP4586SN2.5T1TR
型号: NCP4586SN2.5T1TR
厂家: ETC    ETC
描述:

Analog IC
模拟IC\n

模拟IC
文件: 总12页 (文件大小:117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP4555, NCP4586  
100 mA and 150 mA CMOS  
LDOs with Shutdown and  
Error Output  
The NCP4555 and NCP4586 are high accuracy (typically "0.5%)  
CMOS upgrades for older (bipolar) low dropout regulators. Designed  
specifically for battery–operated systems, the devices’ CMOS  
construction eliminates wasted ground current, significantly  
extending battery life. Total supply current is typically 50 µA at full  
load (20 to 60 times lower than in bipolar regulators).  
The devices’ key features include ultra low noise operation, very  
low dropout voltage – typically 180 mV (NCP4555) and 270 mV  
(NCP4586) at full load – and fast response to step changes in load. An  
error output (ERROR) is asserted when the devices are  
out–of–regulation (due to a low input voltage or excessive output  
current). ERROR can be used as a low battery warning or as a  
processor RESET signal (with the addition of an external RC  
http://onsemi.com  
5
SOT–23  
SN SUFFIX  
CASE 1212  
4
1
2
3
PIN CONNECTIONS  
1
2
3
5
4
V
V
OUT  
IN  
network). Supply current is reduced to 0.5 µA (max) and both V  
OUT  
GND  
SHDN  
and ERROR are disabled when the shutdown input is low. The devices  
incorporate both over–temperature and over–current protection.  
The NCP4555 and NCP4586 are stable with an output capacitor of  
only 1.0 µF and have a maximum output current of 100 mA and  
150 mA, respectively. For higher output current regulators, please see  
ERROR  
(Top View)  
the NCP4569 (I  
= 300 mA) data sheet.  
OUT  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 11 of this data sheet.  
Features  
Zero Ground Current for Longer Battery Life  
Very Low Dropout Voltage  
Guaranteed 100 mA and 150 mA Output  
(NCP4555 and NCP4586 Respectively)  
High Output Voltage Accuracy  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 11 of this data sheet.  
Standard or Custom Output Voltages  
Power–Saving Shutdown Mode  
ERROR Output Can Be Used as a Low Battery Detector, or  
Processor Reset Generator  
Over–Current and Over–Temperature Protection  
Space–Saving 5–Pin SOT–23A Package  
Pin Compatible Upgrades for Bipolar Regulators  
Applications  
Battery–Operated Systems  
Portable Computers  
Medical Instruments  
Instrumentation  
Cellular/GSMS/PHS Phones  
Linear Post–Regulators for SMPS  
Pagers  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
February, 2001 – Rev. 0  
NCP4555/D  
NCP4555, NCP4586  
5
1
2
3
V
IN  
V
V
V
OUT  
IN  
OUT  
+
1 µF  
NCP4555  
NCP4586  
GND  
1 M  
4
SHDN  
ERROR  
ERROR  
Shutdown Control (from Power Control Logic)  
Figure 1. Typical Application  
ABSOLUTE MAXIMUM RATINGS*  
Rating  
Symbol  
Value  
6.5  
Unit  
V
Input Voltage  
Output Voltage  
–0.3 to V + 0.3  
V
IN  
Power Dissipation  
Internally Limited  
Operating Temperature Range  
Storage Temperature  
T
–40 t T t 125  
°C  
°C  
V
A
J
T
stg  
–65 to +150  
Maximum Voltage on any Pin  
Lead Temperature (Soldering, 10 Sec.)  
ESD Withstand Voltage  
Latch–Up Performance (Note 2.)  
V
IN  
+ 0.3 to – 0.3  
+260  
°C  
V
Human Body Model (Note 1.)  
V
ESD  
u2000  
I
mA  
LATCH–UP  
Positive  
250  
Negative  
u500  
*Stresses above those listed under “Absolute Maximum Ratings’’ may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications  
is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
1. Tested to EIA/JESD22–A114–A  
2. Tested to EIA/JESD78  
http://onsemi.com  
2
NCP4555, NCP4586  
ELECTRICAL CHARACTERISTICS (V = V  
+ 1.0 V, I = 100 µA, C = 3.3 µF, SHDN u V , T = 25°C, unless otherwise  
IN  
OUT  
L
L
IH  
A
noted. Boldface type specifications apply for junction temperatures of –40°C to +125°C.)  
Characteristics  
Test Conditions  
Symbol  
Min  
Typ  
Max  
6.0  
Unit  
V
Input Operating Voltage  
V
IN  
Maximum Output Current  
NCP4555  
NCP4586  
I
mA  
OUTMAX  
100  
150  
Output Voltage  
Note 3.  
Note 4.  
V
V
R
– 2.5%  
V
R
" 0.5%  
V + 2.5%  
R
V
OUT  
V
OUT  
Temperature Coefficient  
TCV  
20  
40  
ppm/°C  
OUT  
Line Regulation  
(V + 1.0 V) v V v 6.0 V DV  
/DV  
IN  
0.05  
0.35  
%
%
R
IN  
OUT  
Load Regulation  
NCP4555  
NCP4586  
DV  
/V  
OUT OUT  
I = 0.1 mA to I  
0.5  
0.5  
2.0  
3.0  
L
OUTMAX  
I = 0.1 mA to I  
L
OUTMAX  
Note 5.  
Dropout Voltage  
I = 100 µA  
V
IN  
– V  
OUT  
2.0  
65  
85  
180  
270  
120  
250  
400  
mV  
L
I = 20 mA  
L
I = 50 mA  
L
NCP4555, NCP4586  
NCP4586  
I = 100 mA  
L
I = 150 mA  
L
Note 6.  
Supply Current (Note 10.)  
Shutdown Supply Current  
Power Supply Rejection Ratio  
Output Short Circuit Current  
Thermal Regulation  
SHDN = V , I = 0  
I
IN  
50  
0.05  
64  
80  
0.5  
µA  
µA  
IH  
L
SHDN = 0 V  
I
INSD  
F
RE  
v 1.0 kHz  
PSRR  
dB  
V
OUT  
= 0 V  
I
300  
0.04  
160  
450  
mA  
V/W  
°C  
OUTSC  
Notes 7., 8.  
DV  
/DP  
OUT D  
Thermal Shutdown Die  
Temperature  
T
SD  
Thermal Shutdown Hysteresis  
Output Noise  
DT  
10  
°C  
SD  
I = I  
L
eN  
260  
Ǹ
OUTMAX  
470 pF from Bypass to GND  
nVń Hz  
SHDN Input  
SHDN Input High Threshold  
V
V
= 2.5 V to 6.5 V  
= 2.5 V to 6.5 V  
V
45  
%V  
%V  
IN  
IH  
IN  
SHDN Input Low Threshold  
V
15  
IN  
IL  
IN  
ERROR Output  
Minimum V Operating Voltage  
V
1.0  
400  
V
IN  
INMIN  
Output Logic Low Voltage  
ERROR Threshold Voltage  
ERROR Positive Hysteresis  
1.0 mA Flows to ERROR  
See Figure 3  
V
mV  
OL  
TH  
V
0.95 x V  
50  
V
R
Note 9.  
V
mV  
HYS  
3. V is the regulator output voltage setting. For example: V = 2.5 V, 2.7 V, 2.85 V, 3.0 V, 3.3 V, 3.6 V, 4.0 V, 5.0 V.  
R
C
R
4. T  
V =  
(V  
OUT  
)
6
  10  
* V  
OUTMAX  
V
OUTMIN  
  DT  
OUT  
5. Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
6. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.  
7. Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load  
or line regulation effects. Specifications are for a current pulse equal to I  
at V = 6.0 V for T = 10 msec.  
IN  
LMAX  
8. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the  
thermal resistance from junction–to–air (i.e. T , T , q ). Exceeding the maximum allowable power dissipation causes the device to initiate  
A
J
JA  
thermal shutdown. Please see Thermal Considerations section of this data sheet for more details.  
9. Hysteresis voltage is referenced by V .  
R
10.Apply for Junction Temperatures of –40°C to +85°C.  
http://onsemi.com  
3
NCP4555, NCP4586  
PIN DESCRIPTION  
Pin  
Number  
Symbol  
Description  
1
2
3
V
Unregulated supply input.  
Ground terminal.  
IN  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is applied to this input. The  
regulator enters shutdown when a logic low is applied to this input. During shutdown, output voltage  
falls to zero, ERROR is open circuited and supply current is reduced to 0.5 µA (max).  
4
5
ERROR  
Out–of–Regulation Flag. (Open drain output). This output goes low when V  
approximately –5.0%.  
is out–of–tolerance by  
OUT  
V
OUT  
Regulated voltage output.  
DETAILED DESCRIPTION  
Figure 2 shows a typical application circuit. The regulator  
is enabled any time the shutdown input (SHDN) is at or  
The NCP4555 and NCP4586 are precision fixed output  
voltage regulators. Unlike bipolar regulators, the NCP4555  
and NCP4586 supply current does not increase with load  
above V , and shutdown (disabled) when SHDN is at or  
IH  
below V . SHDN may be controlled by a CMOS logic gate,  
IL  
or I/O port of a microcontroller. If the SHDN input is not  
required, it should be connected directly to the input supply.  
While in shutdown, supply current decreases to 0.05 µA  
current. In addition, V  
remains stable and within  
OUT  
regulation at very low load currents (an important  
consideration in RTC and CMOS RAM battery back–up  
applications).  
(typical), V  
falls to zero volts, and ERROR is  
OUT  
open–circuited.  
V
IN  
V
OUT  
V
OUT  
+
+
1 µF  
C1  
+
1 µF  
NCP4555  
NCP4586  
GND  
BATTERY  
+
V
SHDN  
ERROR  
R1  
1 M  
C2 Required Only  
Shutdown Control  
(to CMOS Logic or Tie  
to V if unused)  
if ERROR is used as a  
Processor RESET Signal  
(See Text)  
BATTLOW  
or RESET  
IN  
+
C2  
0.2 µF  
Figure 2. Typical Application Circuit  
ERROR Open Drain Output  
ERROR is driven low whenever V  
Note that ERROR is active when V  
falls to V , and  
OUT TH  
falls out of  
inactive when V  
rises above V by V  
.
OUT  
OUT  
TH  
HYS  
regulation by more than –5.0% (typical). This condition may  
be caused by low input voltage, output current limiting, or  
thermal limiting. The ERROR threshold is 5.0% below rated  
As shown in Figure 2, ERROR can be used as a battery  
low flag, or as a processor RESET signal (with the addition  
of timing capacitor C2). R1 x C2 should be chosen to  
V
OUT  
regardless of the programmed output voltage value  
maintain ERROR below V of the processor RESET input  
IH  
(e.g. ERROR = V at 4.75 V (typ.) for a 5.0 V regulator and  
for at least 200 msec to allow time for the system to stabilize.  
OL  
2.85 V (typ.) for a 3.0 V regulator). ERROR output  
operation is shown in Figure 3.  
Pull–up resistor R1 can be tied to V  
, V or any other  
OUT IN  
voltage less than (V + 0.3 V).  
IN  
http://onsemi.com  
4
NCP4555, NCP4586  
The maximum allowable power dissipation (Equation 2)  
is a function of the maximum ambient temperature  
(T ), the maximum allowable die temperature (125°C),  
V
OUT  
HYSTERESIS (V  
)
HYS  
V
TH  
AMAX  
and the thermal resistance from junction–to–air (q ). The  
JA  
5–Pin SOT–23 package has a q  
of approximately  
JA  
2005C/Watt when mounted on a single layer FR4 dielectric  
ERROR  
copper clad PC board.  
V
IH  
(T  
* T  
)
AMAX  
JMAX  
P
+
DMAX  
V
OL  
q
JA  
Where all terms are previously defined.  
(eq. 2)  
Figure 3. ERROR Output Operation  
Equation 1 can be used in conjunction with Equation 2 to  
ensure regulator thermal operation is within limits. For  
example:  
Output Capacitor  
A 1.0 µF (min) capacitor from V  
recommended. The output capacitor should have an  
effective series resistance of 5.0 or less, and a resonant  
frequency above 1.0 MHz. A 1.0 µF capacitor should be  
to ground is  
OUT  
GIVEN :  
V
+ 3.0 V " 5.0%  
+ 2.7 V * 2.5%  
+ 40 mA  
INMAX  
V
OUTMIN  
I
LOAD  
55°C  
+
T
AMAX  
connected from V to GND if there is more than 10 inches  
IN  
of wire between the regulator and the AC filter capacitor, or  
if a battery is used as the power source. Aluminum  
electrolytic or tantalum capacitor types can be used. (Since  
many aluminum electrolytic capacitors freeze at  
approximately –30°C, solid tantalums are recommended for  
applications operating below –25°C.) When operating from  
sources other than batteries, supply–noise rejection and  
transient response can be improved by increasing the value  
of the input and output capacitors and employing passive  
filtering techniques.  
FIND : 1. Actual power dissipation.  
2. Maximum allowable dissipation.  
Actual power dissipation :  
P
[ (V  
* V  
INMAX  
)I  
OUTMIN LOADMAX  
D
* 3  
[
]
+ (3.0   1.05) * (2.7   .975) 40   10  
+ 20.7 mW  
Maximum allowable power dissipation :  
(T * T  
)
AMAX  
JMAX  
Thermal Considerations  
P
+
DMAX  
q
JA  
Thermal Shutdown  
+ (125 * 55)  
Integrated thermal protection circuitry shuts the regulator  
off when die temperature exceeds 160°C. The regulator  
remains off until the die temperature drops to approximately  
150°C.  
220  
+ 318 mW  
In this example, the NCP4555 dissipates a maximum of  
only 20.7 mW; far below the allowable limit of 318 mW. In  
a similar manner, Equation 1 and Equation 2 can be used to  
calculate maximum current and/or input voltage limits.  
Power Dissipation  
The amount of power the regulator dissipates is primarily  
a function of input and output voltage, and output current.  
The following equation is used to calculate worst case actual  
power dissipation:  
Layout Considerations  
The primary path of heat conduction out of the package is  
via the package leads. Therefore, layouts having a ground  
plane, wide traces at the pads, and wide power supply bus  
P
[ (V  
* V  
INMAX  
)I  
OUTMIN LOADMAX  
D
Where :  
P
+ worst case actual power dissipation  
D
lines combine to lower q and, therefore, increase the  
V
+ maximum voltage on V  
JA  
INMAX  
IN  
V
+ minimum regulator output voltage  
+ maximum output (load) current  
maximum allowable power dissipation limit.  
OUTMIN  
I
LOADMAX  
(eq. 1)  
http://onsemi.com  
5
NCP4555, NCP4586  
TYPICAL CHARACTERISTICS  
(Unless otherwise specified, all parts are measured at Temperature = 25°C)  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
0.100  
I
= 10 mA  
I
= 50 mA  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
LOAD  
LOAD  
C
C
= 1 µF  
C
C
= 1 µF  
= 1 µF  
IN  
OUT  
IN  
= 1 µF  
OUT  
–40  
–20  
0
20  
50  
70  
125  
–40  
–20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. Dropout Voltage vs. Temperature  
(VOUT = 3.3 V)  
Figure 5. Dropout Voltage vs. Temperature  
(VOUT = 3.3 V)  
0.200  
0.180  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
0.300  
0.250  
I
= 150 mA  
LOAD  
I
= 100 mA  
LOAD  
0.200  
0.150  
0.100  
0.050  
0.000  
C
C
= 1 µF  
= 1 µF  
IN  
C
C
= 1 µF  
= 1 µF  
IN  
OUT  
OUT  
–40  
–20  
0
20  
50  
70  
125  
–40  
–20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Dropout Voltage vs. Temperature  
(VOUT = 3.3 V)  
Figure 7. Dropout Voltage vs. Temperature  
(VOUT = 3.3 V)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 10 mA  
I
= 100 mA  
LOAD  
LOAD  
C
C
= 1 µF  
= 1 µF  
C
C
= 1 µF  
IN  
= 1 µF  
OUT  
IN  
OUT  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5  
(V)  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5  
(V)  
V
IN  
V
IN  
Figure 8. Ground Current vs. VIN (VOUT = 3.3 V)  
Figure 9. Ground Current vs. VIN (VOUT = 3.3 V)  
http://onsemi.com  
6
NCP4555, NCP4586  
TYPICAL CHARACTERISTICS  
(Unless otherwise specified, all parts are measured at Temperature = 25°C)  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
I
= 150 mA  
I
= 0 mA  
LOAD  
LOAD  
3
2.5  
2
1.5  
1
C
C
= 1 µF  
= 1 µF  
IN  
OUT  
C
C
= 1 µF  
= 1 µF  
IN  
OUT  
0.5  
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5  
(V)  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5  
(V)  
6
6.5 7  
V
IN  
V
IN  
Figure 10. Ground Current vs. VIN (VOUT = 3.3 V)  
Figure 11. VOUT vs. VIN (VOUT = 3.3 V)  
3.5  
3.0  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
I
= 10 mA  
LOAD  
I
= 100 mA  
LOAD  
2.5  
2.0  
1.5  
1.0  
0.5  
C
C
V
= 1 µF  
= 1 µF  
= 4.3 V  
IN  
C
C
= 1 µF  
= 1 µF  
IN  
OUT  
OUT  
IN  
0.0  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5  
(V)  
6
6.5 7  
–40  
–20  
–10  
0
20  
40  
85  
125  
V
IN  
TEMPERATURE (°C)  
Figure 12. VOUT vs. VIN (VOUT = 3.3 V)  
Figure 13. Output Voltage vs. Temperature  
(VOUT = 3.3 V)  
3.290  
3.288  
3.286  
3.284  
3.282  
3.280  
3.278  
3.276  
3.274  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
I
= 150 mA  
I
= 10 mA  
LOAD  
LOAD  
C
C
V
= 1 µF  
= 1 µF  
= 4.3 V  
V
C
C
= 6 V  
IN  
IN  
= 1 µF  
OUT  
= 1 µF  
IN  
4.990  
4.985  
OUT  
IN  
–40  
–20 –10  
0
20  
40  
85  
125  
–40  
–20 –10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Output Voltage vs. Temperature  
(VOUT = 3.3 V)  
Figure 15. Output Voltage vs. Temperature  
(VOUT = 5 V)  
http://onsemi.com  
7
NCP4555, NCP4586  
TYPICAL CHARACTERISTICS  
(Unless otherwise specified, all parts are measured at Temperature = 25°C)  
70  
4.994  
4.992  
I
= 150 mA  
LOAD  
I
= 10 mA  
LOAD  
60  
50  
40  
30  
20  
10  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
V
C
C
= 6 V  
IN  
V
C
C
= 6 V  
IN  
= 1 µF  
OUT  
= 1 µF  
OUT  
= 1 µF  
IN  
= 1 µF  
IN  
0
–40  
–20 –10  
0
20  
40  
85  
125  
–40 –20 –10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Output Voltage vs. Temperature  
(VOUT = 5 V)  
Figure 17. Temperature vs. Quiescent Current  
(VOUT = 5 V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
10.0  
1.0  
0.1  
0.0  
I
= 150 mA  
LOAD  
R
C
C
= 50 Ω  
= 1 µF  
= 1 µF  
LOAD  
V
C
C
= 6 V  
= 1 µF  
= 1 µF  
IN  
OUT  
OUT  
IN  
IN  
–40  
–20 –10  
0
20  
40  
85  
125  
0.01 k  
0.1 k  
1 k  
10 k  
100 k 1000 k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 18. Temperature vs. Quiescent Current  
(VOUT = 5 V)  
Figure 19. Output Noise vs. Frequency  
1000  
–30  
–35  
I
= 10 mA  
C
= 1 µF to 10 µF  
OUT  
OUT  
V
V
V
C
C
= 4 V  
= 100 mV p–p  
= 3 V  
INDC  
INAC  
OUT  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
100  
10  
= 0  
IN  
= 1 µF  
OUT  
Stable Region  
1
0.1  
0.01  
0
10  
20 30  
40  
50 60  
70 80 90 100  
0.01 k  
0.1 k  
1 k  
10 k  
100 k 1000 k  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 20. Stability Region vs. Load Current  
Figure 21. Power Supply Rejection Ratio  
http://onsemi.com  
8
NCP4555, NCP4586  
Conditions:  
Conditions:  
C
V
= 1 µF, C  
= 1 µF, I  
= 100 mA,  
C
V
= 1 µF, C  
= 1 µF, I  
= 100 mA  
IN  
IN  
OUT  
LOAD  
IN  
IN  
OUT  
LOAD  
= 4.3 V, Temp = 25°C, Rise Time = 184 µS  
= 6 V, Temp = 25°C, Rise Time = 192 µS  
Figure 22. Measure Rise Time of 3.3 V LDO  
Figure 23. Measure Rise Time of 5.0 V LDO  
Conditions:  
Conditions:  
C
V
= 1 µF, C  
= 1 µF, I  
= 100 mA  
C
V
= 1 µF, C  
= 1 µF, I  
= 100 mA  
IN  
IN  
OUT  
LOAD  
IN  
IN  
OUT  
LOAD  
= 4.3 V, Temp = 25°C, Fall Time = 52 µS  
= 6 V, Temp = 25°C, Fall Time = 88 µS  
Figure 24. Measure Fall Time of 3.3 V LDO  
Figure 25. Measure Fall Time of 5.0 V LDO  
http://onsemi.com  
9
NCP4555, NCP4586  
I
was increased until temperature of die reached about  
LOAD  
160°C, at which time integrated thermal protection circuitry  
shuts the regulator off when die temperature exceeds  
approximately 160°C. The regulator remains off until die  
temperature drops to approximately 150°C.  
Conditions:  
= 6 V, C = 0 µF, C = 1 µF  
OUT  
V
IN  
IN  
Figure 26. Thermal Shutdown Response of 5.0 V  
LDO  
Component Taping Orientation for 5–Pin SOT–23 Devices  
USER DIRECTION OF FEED  
DEVICE  
MARKING  
PIN 1  
Standard Reel Component Orientation  
TR Suffix Device  
(Mark Right Side Up)  
PIN 1  
USER DIRECTION OF FEED  
M A R K I N G  
D E V I C E  
W
P
Reverse Reel Component Orientation  
RT Suffix Device  
(Mark Upside Down)  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
SOT–23  
8 mm  
4 mm  
3000  
7 inches  
http://onsemi.com  
10  
NCP4555, NCP4586  
MARKING DIAGRAM  
1
2
3
4
1
2
and  
= Two Letter Part Number Codes  
+ Temperature Range and Voltage  
3
4
= Year and Quarter Code  
= Lot ID Number  
ORDERING INFORMATION  
Marking  
Voltage  
Option*  
Junction  
Temperature Range  
and  
1
2
Device  
Package  
Shipping  
NCP4555SNxxT1  
1.8  
2.8  
2.85  
3.0  
DY  
DZ  
D8  
D3  
D5  
3.3  
NCP4586SNxxT1  
2.5  
2.7  
2.8  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
P1  
P2  
PZ  
P8  
P3  
P5  
P9  
P0  
P7  
SOT–23  
–40°C to + 125°C  
3000 Tape & Reel  
xx Indicates Output Voltages  
*Other output voltages are available. Please contact ON Semiconductor for details.  
http://onsemi.com  
11  
NCP4555, NCP4586  
PACKAGE DIMENSIONS  
SOT–23  
SN SUFFIX  
CASE 1212–01  
ISSUE O  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
A2  
B
A
D
S
0.05  
3. DATUM C IS A SEATING PLANE.  
A1  
L
MILLIMETERS  
5
1
4
3
DIM MIN  
MAX  
0.10  
1.30  
0.50  
0.25  
3.00  
3.10  
1.80  
E
A1  
A2  
B
0.00  
1.00  
0.30  
0.10  
2.80  
2.50  
1.50  
2
E1  
C
C
L1  
B
5X  
D
E
C
M
S
S
0.10  
C B  
A
E1  
e
e
0.95 BSC  
1.90 BSC  
e1  
L
e1  
0.20  
0.45  
---  
L1  
0.75  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
NCP4555/D  

相关型号:

NCP4586SN2.7T1RT

NCP4586SN2.7T1RT
ONSEMI

NCP4586SN2.7T1TR

NCP4586SN2.7T1TR
ONSEMI

NCP4586SN2.85T1RT

NCP4586SN2.85T1RT
ONSEMI

NCP4586SN2.85T1TR

NCP4586SN2.85T1TR
ONSEMI
ETC

NCP4586SN2.8T1TR

NCP4586SN2.8T1TR
ONSEMI

NCP4586SN3.0T1RT

NCP4586SN3.0T1RT
ONSEMI

NCP4586SN3.0T1TR

NCP4586SN3.0T1TR
ONSEMI

NCP4586SN3.3T1RT

NCP4586SN3.3T1RT
ONSEMI
ETC

NCP4586SN3.6T1

NCP4586SN3.6T1RT
ONSEMI
ETC