NCP802/D [ETC]

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs ; 高度集成的锂电池保护电路一节电池组\n
NCP802/D
型号: NCP802/D
厂家: ETC    ETC
描述:

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
高度集成的锂电池保护电路一节电池组\n

电池
文件: 总20页 (文件大小:126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP802  
Highly Integrated Lithium  
Battery Protection Circuit  
for One Cell Battery Packs  
The NCP802 resides in a lithium battery pack where the battery cell  
continuously powers it. This circuit senses cell voltage, charge  
current, and discharge current, and correspondingly controls the state  
of two, N−channel MOSFET switches. These switches reside in series  
with the negative terminal of the cell and the negative terminal of the  
battery pack. During a fault condition, the NCP802 open circuits the  
pack by turning off one of these MOSFET switches, which  
disconnects the current path. Internal delay circuitry minimizes  
external component count.  
http://onsemi.com  
MARKING  
DIAGRAMS  
SOT23−6  
SUFFIX  
6
KNxx  
CASE 1262  
1
Features  
Highly Accurate Overvoltage Detector  
"25 mV at Room Temperature  
"30 mV from −5 to 55°C  
KN  
xx  
SON−6  
SAN SUFFIX  
CASE 494  
6
Fault Detection Thresholds  
Overvoltage Threshold: SN1/SAN1=4.35 V, SAN5=4.275 V  
Undervoltage Threshold: SN1/SAN1=2.4 V, SAN5=2.3 V  
Discharge Current Threshold: SN1/SAN1=0.2 V, SAN5=0.1 V  
Charge Current Threshold: 0.1 V  
1
KN = Specific Device Code  
xx = Date Code  
Internal Output Delays  
PIN CONNECTIONS  
Overvoltage Output Delay: SN1/SAN1=250 ms, SAN5=1 ms  
Undervoltage Output Delay: 20 ms  
DO  
P−  
1
2
6
5
Gnd  
Discharge Current Output Delay: SN1/SAN1=12 ms, SAN5=6 ms  
Charge Current Output Delay: SN1/SAN1=16 ms, SAN5=8 ms  
Absolute Maximum Rating of 28 V for the Charger Input  
V
cell  
Low Quiescent Current  
CO  
3
4
DS  
Normal Operating Current: 3.0 mA  
Standby Current when Cells are Discharged: 0.1 mA  
SOT23−6  
(Top View)  
Zero Volt Charging  
Available in a Low Profile Surface Mount Package  
Pb−Free Package May be Available.* The G−Suffix Denotes a  
Pb−Free Lead Finish  
DO  
1
6
5
4
P−  
V
cell  
2
3
CO  
DS  
Gnd  
SON−6  
(Top View)  
V
cell  
ORDERING INFORMATION  
NCP802  
Device  
Package  
Shipping  
Gnd  
DO  
CO  
P−  
NCP802SN1T1  
NCP802SAN1T1  
SOT23−6 3000 Tape & Reel  
SON−6  
3000 Tape & Reel  
3000 Tape & Reel  
NCP802SAN1T1G SON−6  
(Pb−Free)  
NCP802SAN5T1  
SON−6  
3000 Tape & Reel  
Figure 1. Typical One Cell Lithium Ion Battery Pack  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
*For additional information on our Pb−Free strategy and soldering details,  
please download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
January, 2004 − Rev. 8  
NCP802/D  
NCP802  
V
cell  
DS  
5
4
Oscillator  
Counter  
Logic  
Circuit  
Level  
Shift  
VD1  
VD2  
Short  
Detector  
Delay  
VD4  
Logic  
Circuit  
VD3  
6
1
3
2
Gnd  
DO  
CO  
P−  
Figure 2. Detailed Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin #  
Pin #  
SOT23−6  
SON−6  
Symbol  
Description  
1
2
3
1
6
5
DO  
This output connects to the gate of the discharge MOSFET allowing it to enable or disable  
battery pack discharging.  
P−  
This is the charger negative input pin. It connects to the excess current detectors and serves as  
the common node for the CO pin during turn−off.  
CO  
DS  
This output connects to the gate of the charge MOSFET switch allowing it to enable or disable  
battery pack charging.  
4
5
4
2
This is the delay time reduction pin.  
V
cell  
This input connects to the positive terminal of the cell for voltage monitoring and provides  
operating bias for the integrated circuit.  
6
3
Gnd  
This is the ground pin of the IC.  
http://onsemi.com  
2
NCP802  
EXCESS  
CHARGE  
CURRENT CONNECT LOAD  
DISCONNECT  
CHARGER +  
CONNECT  
CHARGER  
CONNECT  
LOAD  
CONNECT  
CHARGER  
CONNECT  
LOAD  
V
DET1  
VCELL  
t
V
DD  
V
V
DET3  
−P  
Gnd  
DET4  
t
t
t
t
DET4  
DET1  
DET1  
V
DD  
CO  
t
t
t
REL4  
REL1  
REL1  
P−  
t
CHARGE  
CURRENT  
CHARGE/  
DISCHARGE  
CURRENT  
0
t
DISCHARGE  
CURRENT  
Figure 3. Overvoltage/Excess Charge Current Timing Chart  
http://onsemi.com  
3
NCP802  
EXCESS  
DISCHARGE  
CURRENT  
CONNECT  
CHARGER  
CONNECT  
LOAD  
CONNECT  
LOAD  
CONNECT  
CHARGER  
SHORT  
OPEN  
OPEN  
VCELL  
V
DET2  
t
V
DD  
V
short  
V
−P  
DET3  
Gnd  
DET4  
V
t
t
short  
t
t
t
DET3  
DET2  
DET2  
V
DD  
t
t
t
t
REL3  
REL3  
REL2  
REL2  
Gnd  
DO  
t
CHARGE  
CURRENT  
CHARGE/  
DISCHARGE  
CURRENT  
0
t
DISCHARGE  
CURRENT  
Figure 4. Undervoltage/Excess Discharge Current Timing Chart  
http://onsemi.com  
4
NCP802  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Supply Voltage (Pin 5 to Pin 6)  
V
DD  
−0.3 to 12  
V
Input Voltage  
P− Pin Voltage (Pin 5 to Pin 2)  
DS Pin Voltage (Pin 4 to Pin 6)  
V
V
V
+ 0.3 to V − 28  
−0.3 to 12  
V
V
P−  
DD  
DD  
V
DS  
Output Voltage  
CO Pin Voltage (Pin 3 to Pin 2)  
DO Pin Voltage (Pin 1 to Pin 6)  
V
V
+ 0.3 to V − 28  
V
V
CO  
DD  
DD  
−0.3 to 12  
DO  
Power Dissipation  
P
150  
mW  
°C  
D
Operating Junction Temperature  
Storage Temperature  
T
−40 to 85  
−55 to 125  
J
T
stg  
°C  
ATTRIBUTES  
Characteristics  
Value  
ESD Protection  
Human Body Model (HBM)  
Machine Model (MM)  
(C = 100 pF, R = 1.5 kW)  
(C = 200 pF, R = 0 W)  
1 kV  
150 V  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Latch−up Current Maximum Rating per JEDEC standard JESD78  
Level 1  
150 mA  
1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.  
http://onsemi.com  
5
 
NCP802  
ELECTRICAL CHARACTERISTICS  
(T = 25°C, for min/max values T is the operating junction temperature that applies, unless otherwise noted.)  
A
A
NCP802SN1/SAN1T1  
NCP802SAN5T1  
Min  
Typ  
Max  
Min  
Typ  
Max  
Characteristic  
VOLTAGE SENSING  
Cell Charging Cutoff (Pin 5 to Pin 6)  
Symbol  
Unit Note 2  
V
DET1  
Overvoltage Threshold, V Increasing  
DD  
(R1 = 330W)  
T = 25°C  
T = −5°C to 55°C  
A
4.325  
4.32  
4.35  
4.35  
4.375  
4.38  
4.25  
4.275  
4.30  
V
V
A
4.245 4.275 4.305  
A
A
Overvoltage Delay Time (V = 3.6 V to 4.4 V)  
t
0.175  
11  
0.250  
16  
0.325  
21  
0.7  
11  
1
1.3  
21  
s
DD  
DET1  
Overvoltage Release Time (V = 4.0 V, V = 0 V  
t
REL1  
16  
ms  
V
B
DD  
P−  
to 1.0 V)  
Cell Discharging Cutoff (Pin 5 to Pin 6)  
V
2.34  
2.4  
2.46  
2.24  
2.3  
2.36  
C
DET2  
Undervoltage Threshold, V Decreasing  
DD  
Undervoltage Time (V = 3.6 V to 2.2 V)  
t
14  
20  
26  
14  
20  
26  
ms  
ms  
C
D
DD  
DET2  
Undervoltage Release Delay Time (V = 3.0 V,  
t
0.7  
1.2  
1.7  
0.7  
1.2  
1.7  
DD  
REL2  
V
P−  
= 3.0 V to 0 V)  
CURRENT SENSING  
Excess Discharge Current Threshold, V  
Increasing  
V
0.180  
8
0.200  
12  
0.220  
16  
0.080 0.100 0.120  
V
K
K
K
E
E
E
K
K
K
P−  
DET3  
Excess Discharge Current Delay Time (V = 3.0  
t
4
6
8
ms  
ms  
V
DD  
DET3  
V, V = 0 V to 1.0 V)  
P−  
Excess Discharge Current Release Time (V = 3.0  
t
0.7  
1.2  
1.7  
0.7  
1.2  
1.7  
DD  
REL3  
V, V = 3.0 V to 0 V)  
P−  
Excess Charge Current Threshold, V  
Decreasing  
V
DET4  
−0.13  
11  
−0.1  
16  
−0.07  
21  
−0.13 −0.1 −0.07  
P−  
Excess Charge Current Delay Time (V = 3.0 V,  
t
5
8
11  
ms  
ms  
V
DD  
DET4  
V
P−  
= 0 V to −1.0 V)  
Excess Charge Current Release Time (V = 3.0  
t
0.7  
1.2  
1.7  
0.7  
1.2  
1.7  
DD  
REL4  
V, V − = −1.0 V to 0 V)  
P
Short Protection Voltage (V = 3.0 V)  
V
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
DD  
SHORT  
−1.4  
−1.1  
−0.8  
−1.4  
−1.1  
−0.8  
Short Protection Delay Time (V = 3.0 V, V = 0  
t
250  
400  
600  
250  
400  
600  
ms  
kW  
DD  
P−  
SHORT  
V to 3.0 V)  
Reset Resistance (V = 3.6 V, V = 1.0 V)  
R
SHORT  
15  
30  
45  
15  
30  
45  
DD  
P−  
2. Indicates test circuits shown on pages 15 and 16.  
http://onsemi.com  
6
 
NCP802  
ELECTRICAL CHARACTERISTICS  
(T = 25°C, for min/max values T is the operating junction temperature that applies, unless otherwise noted.)  
A
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit Note 3  
OUTPUTS  
Charge Gate Drive Output Low (Pin 3 to Pin 2) (V = 4.5 V, I = 50 mA)  
V
ol1  
3.4  
0.4  
3.7  
0.2  
0.5  
V
V
V
G
H
I
DD  
o
Charge Gate Drive Output High (Pin 5 to Pin 3) (V = 3.9 V, I = −50 mA)  
V
oh1  
DD  
o
Discharge Gate Drive Output Low (Pin 1 to Pin 6)  
(V = 2.0 V, I = 50 mA)  
V
ol2  
0.5  
DD  
o
Discharge Gate Drive Output High (Pin 5 to Pin 1)  
(V = 3.9 V, I = −50 mA)  
V
oh2  
3.4  
3.7  
V
J
DD  
o
DELAY SHORTENING (DS PIN)  
DS Pin High Input Voltage  
V
V
−0.5  
V
DD  
+0.3  
V
V
F
F
F
IH  
DD  
DS Pin Middle Input Voltage (V = 3.6 to 4.4 V)  
V
IM  
1.05  
V
DD  
−1.1  
DD  
DS Pin Pull−down Resistance (V = 3.6 V)  
RDS  
0.5  
1.3  
2.5  
MW  
DD  
TOTAL DEVICE  
Supply Current  
I
L
cell  
Operating (V = 3.9 V, V = 0 V)  
3.0  
6.0  
0.1  
µA  
µA  
DD  
P−  
Standby (V = 2.0 V)  
DD  
Operating Voltage  
V
1.5  
5.0  
1.5  
V
V
DD  
Minimum Operating Cell Voltage for Zero Volt Charging  
V
M
ST  
(Pin 5 to Pin 2) (V − Gnd = 0 V)  
DD  
3. Indicates test circuits shown on pages 15 and 16.  
http://onsemi.com  
7
 
NCP802  
4.37  
4.36  
4.35  
4.34  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
4.33  
4.32  
4.31  
4.30  
−50  
0
50  
100  
−50  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. Overvoltage Threshold vs.  
Temperature  
Figure 6. Overvoltage Delay Time vs.  
Temperature  
2.43  
2.42  
2.41  
2.40  
30  
25  
20  
15  
10  
5
2.39  
2.38  
2.37  
2.36  
0
−50  
0
50  
100  
−60 −40 −20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Overvoltage Release Time vs.  
Temperature  
Figure 8. Undervoltage Threshold vs.  
Temperature  
1.8  
1.6  
1.4  
1.2  
1
35  
30  
25  
20  
0.8  
15  
10  
5
0.6  
0.4  
0.2  
0
−50  
0
0
50  
100  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 9. Undervoltage Delay Time vs.  
Temperature  
Figure 10. Undervoltage Release Time vs.  
Temperature  
http://onsemi.com  
8
NCP802  
0.210  
0.205  
18  
16  
14  
12  
10  
0.200  
0.195  
0.190  
8
6
4
2
0
−60 −40  
−20  
0
20  
40  
60  
80  
100  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 11. Excess Discharge Current  
Threshold vs. Temperature  
Figure 12. Excess Discharge Current Delay  
Time vs. Temperature  
50  
1.8  
1.6  
1.4  
40  
30  
20  
V
DD  
= 3.6 V  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
10  
0
−60 −40  
−20  
0
20  
40  
60  
80  
100  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 13. Excess Discharge Current Release  
Time vs. Temperature  
Figure 14. Reset Resistance vs. Temperature  
30  
−0.110  
−0.105  
25  
20  
15  
10  
5
−0.100  
−0.095  
−0.090  
0
−50  
0
50  
100  
−60 −40  
−20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 15. Excess Charge Current Threshold  
vs. Temperature  
Figure 16. Excess Charge Current Delay Time  
vs. Temperature  
http://onsemi.com  
9
NCP802  
1.8  
1.6  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.4  
1.2  
1
V
DD  
= 3.0 V  
0.8  
0.6  
0.4  
0.2  
0
−60 −40 −20  
0
20  
40  
60  
80  
100  
−50  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 17. Excess Charge Current Release  
Time vs. Temperature  
Figure 18. Short Protection Threshold vs.  
Temperature  
3
700  
600  
500  
400  
300  
200  
100  
0
2.5  
2
1.5  
1
V
DD  
= 3.0 V  
0.5  
0
−50  
−50  
0
50  
100  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 19. Short Protection Delay Time vs.  
Temperature  
Figure 20. DS Pin High Input Minimum Voltage  
vs. Temperature  
2.5  
3
2.5  
2
1.5  
1
V
DD  
= 3.6 V  
2
1.5  
1
V
DD  
= 3.6 V to 4.4 V  
0.5  
0.5  
0
−50  
0
−50  
0
50  
100  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 21. DS Pin Middle Input Minimum  
Voltage vs. Temperature  
Figure 22. DS Pin Pull−Down Resistance vs.  
Temperature  
http://onsemi.com  
10  
NCP802  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.9  
3.8  
3.7  
3.6  
3.5  
−60 −40 −20  
0
20  
40  
60  
80  
100  
−50  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 23. CO NCH Driver Output vs.  
Temperature  
Figure 24. CO PCH Driver Output vs.  
Temperature  
3.9  
0.4  
0.3  
0.2  
0.1  
0
3.8  
3.7  
3.6  
3.5  
−50  
0
50  
100  
−60 −40 −20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 25. DO NCH Driver Output vs.  
Temperature  
Figure 26. DO PCH Driver Output vs.  
Temperature  
0.1  
6
5
0.08  
0.06  
0.04  
0.02  
4
3
2
1
0
−50  
0
−50  
0
50  
100  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 27. Operating Current vs. Temperature  
Figure 28. Standby Current vs. Temperature  
http://onsemi.com  
11  
NCP802  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
18  
16  
14  
12  
10  
8
6
4
2
0
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0  
4.5  
V
DD  
, OPERATING VOLTAGE (V)  
V
DD  
, OPERATING VOLTAGE (V)  
Figure 29. Overvoltage Delay Time vs.  
Operating Voltage  
Figure 30. Overvoltage Release Time vs.  
Operating Voltage  
1.4  
1.2  
1
22  
20  
18  
16  
14  
12  
10  
8
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
1.0  
1.5  
2.0  
2.5  
2.0  
2.5  
3.0  
, OPERATING VOLTAGE (V)  
DD  
3.5  
4.0  
4.5  
V
DD  
, OPERATING VOLTAGE (V)  
V
Figure 31. Undervoltage Delay Time vs.  
Operating Voltage  
Figure 32. Undervoltage Release Time vs.  
Operating Voltage  
1.4  
1.2  
1
14  
12  
10  
8
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
2.0  
2.5  
3.0  
, OPERATING VOLTAGE (V)  
DD  
3.5  
4.0  
4.5  
V
DD  
, OPERATING VOLTAGE (V)  
V
Figure 33. Excess Discharge Current Delay  
Time vs. Operating Voltage  
Figure 34. Excess Discharge Current Release  
Time vs. Operating Voltage  
http://onsemi.com  
12  
NCP802  
18  
16  
1.4  
1.2  
1
14  
12  
10  
0.8  
0.6  
0.4  
0.2  
0
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
DD  
, OPERATING VOLTAGE (V)  
V
DD  
, OPERATING VOLTAGE (V)  
Figure 35. Excess Charge Current Delay Time  
vs. Operating Voltage  
Figure 36. Excess Charge Current Release  
Time vs. Operating Voltage  
2.427  
2.426  
2.425  
2.424  
2.423  
2.422  
2.421  
2.420  
2.419  
2.418  
2.417  
2.416  
700  
600  
500  
400  
300  
200  
100  
0
Undervoltage  
Release  
Threshold  
Undervoltage  
Threshold  
0
100 200 300 400 500 600 700 800 900 1000  
2
2.5  
3
3.5  
4
4.5  
V
DD  
, OPERATING VOLTAGE (V)  
R1 ()  
Figure 37. Short Protection Delay Time vs.  
Operating Voltage  
Figure 38. Undervoltage Thresholds vs. R1  
2.5  
4.294  
4.293  
4.292  
4.291  
4.29  
2
1.5  
1
V
DD  
= 4.25 V  
Overvoltage  
Threshold  
Overvoltage  
Release  
Threshold  
0.5  
4.289  
4.288  
0
0
100 200 300 400 500 600 700 800 900 1000  
0
50  
100  
150  
R2 (k)  
200  
250  
300  
R1 ()  
Figure 39. Overvoltage Thresholds vs. R1  
Figure 40. Charger Voltage to Release from  
Undervoltage vs. R2  
http://onsemi.com  
13  
NCP802  
2
1.8  
1.6  
1.4  
1.2  
1
V
DD  
− GND = 0  
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 41. Minimum Operating Voltage for 0 V  
Charging vs. Temperature  
http://onsemi.com  
14  
NCP802  
A
E
VCELL  
P−  
VCELL  
P−  
CO  
CO  
DO  
DO  
CO  
V
V
GND  
GND  
B
F
VCELL  
P−  
VCELL  
P−  
DS  
DO  
A
V
GND  
GND  
G
C
VCELL  
VCELL  
A
P−  
P−  
CO  
V
V
GND  
GND  
D
H
A
VCELL  
VCELL CO  
P−  
P−  
V
GND  
GND  
Figure 42. Test Circuits  
http://onsemi.com  
15  
NCP802  
I
K
VCELL  
VCELL  
P−  
DO  
A
P−  
DO  
A
V
V
GND  
GND  
J
L
VCELL  
A
VCELL DO  
A
P−  
V
P−  
GND  
GND  
M
VCELL  
V
DO  
P−  
V
CO  
GND  
Figure 43. Test Circuits  
Overvoltage Detection  
reset from an overvoltage fault as long as a charger is  
connected to the battery. Rather, the excess−discharge  
current detector (VD3) signals the IC to reset from an  
overvoltage condition by detecting a load while in an  
overvoltage condition. When the P− pin voltage becomes  
equal to or greater than than the excess discharge−current  
detector threshold (VDET3) during an overvoltage fault, the  
NCP802 senses the voltage drop across the charge  
MOSFET’s body diode induced by the load current. It then  
resets from the overvoltage state.  
There are internal, fixed delay times for both the detection  
and release from an overvoltage condition. If the fault or  
reset conditions are shorter than their respective delay times,  
the NCP802 ignores that condition and stays in its previous  
state.  
The overvoltage detector (VD1) monitors the VCELL pin  
voltage. When the VCELL voltage crosses the overvoltage  
detector threshold (VDET1) from a low value to a value  
higher than VDET1, VD1 detects an over−charging  
condition. The NCP802 then turns off an external, charge  
control, N−channel, MOSFET by driving the CO pin to its  
low level. A level shifter, incorporated in a buffer driver for  
the CO pin, drives the low level of the CO pin to the P− pin  
voltage, which is connected to the source of the charge  
control MOSFET by a resistor. The high level of the CO pin  
is driven to the VCELL voltage with a CMOS buffer.  
To reset the CO pin to its high level, the voltage at the  
VCELL pin must decrease to a level lower than VDET1. The  
overvoltage detector does not reset after the battery voltage  
falls below some hysteresis voltage. The NCP802 will not  
http://onsemi.com  
16  
NCP802  
Undervoltage Detection  
short circuit detector has activated; removing the cause of  
that activation turns the discharge MOSFET back on. This  
occurs because RSHORT pulls the P− pin, voltage level  
down to the GND pin, voltage level. The NCP802 internally  
disconnects RSHORT during a normal, fault−free, state. The  
NCP802 only connects RSHORT if it has detected an excess  
discharge−current or short circuit fault. In other words, VD3  
is automatically released from excess discharge−current and  
short circuit faults when the user removes the load.  
The undervoltage detector (VD2) monitors the VCELL  
pin voltage. When the VCELL voltage crosses the  
undervoltage threshold (VDET2) from a high value to a  
value lower than VDET2, VD2 senses an undervoltage  
condition, and an external, discharge control, N−channel  
MOSFET turns off by driving the DO pin to its low level.  
The low level of DO is set to GND and the high level to  
VCELL.  
To reset the DO pin to its high level, one must connect a  
charger to the battery pack. While the VCELL voltage  
remains under VDET2, charge−current can flow through the  
parasitic diode of the external discharge control MOSFET.  
Once the VCELL voltage rises above VDET2, the NCP802  
drives DO high. Connecting a charger to the battery pack  
drives the DO level high instantaneously when the VCELL  
voltage is higher than VDET2. VD2 has no hysteresis.  
After VD2 detects an undervoltage condition, the  
NCP802 enters a low supply current, standby mode.  
Maximum standby current equals 0.1 mA at VCELL equal  
to 2.0 V. An internal pull−up disables all the device functions  
and thus drastically lowers quiescent current. When the  
charger connects to the battery, it pulls small levels of  
current from the P− pin. This overcomes the internal pull−up  
and allows the NCP802 to reset.  
The output delay time of excess discharge−current  
detection is set shorter than the delay time for undervoltage  
detection. Therefore, if VCELL voltage drops below  
VDET2 during an excess discharge−current or short circuit  
fault, the NCP802 detects the current fault first. This  
prevents large discharge current faults from activating the  
undervoltage detector and putting the NCP802 into standby  
mode. Standby mode requires the charger to reset the  
NCP802, while excess discharge−current and short circuit  
faults only require that the fault be removed.  
Excess Charge−Current Detection  
When the battery pack is chargeable and discharge is also  
possible, VD4 senses the P− pin voltage. For example, if the  
user connects the battery to an inappropriate charger, excess  
current can flow. Then, the P− voltage drops below the  
excess charge−current threshold (VDET4). Next, the output  
of CO becomes low. This prevents excess current flow into  
the circuit by turning off the external MOSFET.  
The output delay of the excess charge−current detector is  
internally fixed. If the fault condition is within the delay time  
window, the detector will not sense it and the MOSFET will  
not change state. VD4 can be released by disconnecting a  
charger and applying a load.  
There are internal, fixed delay times for both the detection  
and release from an undervoltage condition. If the fault or  
reset conditions are shorter than their respective delay times,  
the NCP802 ignores that condition and stays in its previous  
state.  
Excess Discharge−Current/Short Circuit Detection  
The excess discharge−current detector (VD3) and the  
short circuit detector can function when the control  
MOSFET’s are on. When the P− pin voltage is below the  
short circuit detection voltage (VSHORT) and above the  
excess discharge−current threshold (VDET3), VD3  
operates. When the P− pin voltage rises higher than  
VSHORT, the NCP802 enables the short circuit detector.  
When either detector activates, the NCP802 turns off an  
external, discharge control, N−channel, MOSFET by  
driving the DO pin to its low level.  
The output delay time for the excess discharge−current  
detector is internally fixed. If the P− pin, voltage level  
recovers from a level between VSHORT and VDET3 within  
the delay time, the discharge MOSFET stays in its high state.  
Output delay time for release from excess discharge−current  
detection is typically 1.2 ms. When the short circuit detector  
activates, DO transitions to its low state after a delay time of  
approximately 400 ms.  
Delay Shortening Function  
The output delay time of over−charge, over−discharge,  
excess discharge−current, excess charge−current, and the  
release from those detecting modes can be made shorter than  
the pre−set value by forcing the VCELL voltage to the DS  
pin. When one forces the specified middle range voltage to  
the DS pin, the output delay circuit becomes disabled.  
Therefore, under this condition, when over−charge or excess  
charge current is detected, output level can be checked  
without waiting for the delay.  
A 1.3 MW pull−down resistor is connected between DS  
pin and GND internally. For normal operation, the DS pin  
should be at no connection state.  
Zero Battery Voltage Charging  
If the charger voltage is equal or higher than the zero−volt  
charge, minimum voltage (VST), the NCP802 drives the CO  
pin high. Therefore, it allows charging for batteries as low  
as zero volts.  
There is an integrated pull−down resistor (RSHORT)  
connected between the P− and GND pins. After VD3 or the  
http://onsemi.com  
17  
NCP802  
+
R1  
330 W  
VCELL  
DS  
C1  
0.1 µF  
NCP802  
P−  
GND  
DO  
CO  
R2  
1 kW  
Figure 44. Typical Application Circuit  
Technical Notes  
R1 and C1 will stabilize a supply voltage to the NCP802. A recommended R1 value is less than 1.0 kW A larger value of R1  
leads to higher detection voltages. There may also be voltage detector errors from shoot through current into the NCP802.  
R1 and R2 can also help current limit the circuit against reverse charge or a charger with excess charging voltage applied to  
the NCP802 battery pack. Smaller R1 and R2 values may cause excessive power consumption over the specified power  
dissipation rating. Therefore, the total value of R1 ) R2 should be equal to or more than 1.0 kW. However, if one uses a very  
large value of R2, it might not be possible to release from undervoltage by connecting a charger. The recommended R2 value  
is equal to or less than 30 kW.  
http://onsemi.com  
18  
NCP802  
PACKAGE DIMENSIONS  
SOT23−6  
SN SUFFIX  
PLASTIC PACKAGE  
CASE 1262−01  
ISSUE A  
E
M
M
C B  
0.05  
0.20  
PIN 1  
IDENTIFIER  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSION D DOES NOT INCLUDE FLASH OR  
PROTRUSIONS. FLASH OR PROTRUSIONS  
SHALL NOT EXCEED 0.23 PER SIDE.  
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
C
1
2
6
5
A
A
5. DIMENSIONS D AND E1 ARE TO BE DETERMINED  
AT DATUM PLANE H.  
3
4
MILLIMETERS  
A1  
A
DIM MIN  
MAX  
1.45  
0.15  
0.50  
0.45  
0.20  
0.15  
3.00  
3.00  
1.75  
E1  
A
A1  
b
0.90  
0.00  
0.35  
0.35  
0.09  
0.09  
2.80  
2.60  
1.50  
B
A
b1  
c
c1  
D
b
E
E1  
e
0.95  
1.90  
q
e1  
L
0.25  
0
0.55  
10  
q
_
_
H
L
b1  
SECTION A−A  
SON−6  
SAN SUFFIX  
PLASTIC PACKAGE  
CASE 494−01  
ISSUE 0  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
6
5
4
MILLIMETERS  
INCHES  
MIN  
K
DIM MIN  
MAX  
1.80  
2.80  
0.90  
0.30  
1.44  
MAX  
0.071  
0.110  
0.035  
0.012  
0.057  
E
B
L
A
B
C
D
E
G
J
1.40  
2.40  
−−−  
0.055  
0.094  
−−−  
0.10  
1.24  
0.004  
0.049  
1
2
3
0.50 BSC  
0.020 BSC  
0.08  
0.18  
0.003  
0.007  
K
L
0.30 BSC  
0.012 BSC  
0.112  
0.124  
C
2.85  
3.15  
0.10 (0.004)  
J
−T−  
SEATING PLANE  
D 6 PL  
M
0.15 (0.010)  
T X Y  
G
http://onsemi.com  
19  
NCP802  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP802/D  

相关型号:

NCP802SAN1T1

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

NCP802SAN1T1G

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

NCP802SAN1T1G

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, LEAD FREE, PLASTIC, SON-6
ROCHESTER

NCP802SAN5T1

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

NCP802SAN5T1G

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, LEAD FREE, PLASTIC, SON-6
ROCHESTER

NCP802SAN6T1

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

NCP802SAN6T1G

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

NCP802SN1T1

Highly Integrated Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

NCP802SN1T1G

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, LEAD FREE, PLASTIC, SOT-23, 6 PIN
ROCHESTER

NCP803

Very Low Supply Current 3-Pin Microprocessor Reset Monitor
ONSEMI

NCP803/D

Very Low Supply Current 3-Pin Microprocessor Reset Monitor
ONSEMI

NCP803SN120T1G

Very Low Supply Current 3-Pin Microprocessor Reset Monitor
ONSEMI