NRF9E5-EVKIT868 [ETC]

433/868/915MHz RF Transceiver with Embedded 8051 Compatible Microcontroller and 4 Input, 10 Bit ADC; 868分之433 / 915MHz频段射频收发器与嵌入式8051兼容微控制器和4输入, 10位ADC
NRF9E5-EVKIT868
型号: NRF9E5-EVKIT868
厂家: ETC    ETC
描述:

433/868/915MHz RF Transceiver with Embedded 8051 Compatible Microcontroller and 4 Input, 10 Bit ADC
868分之433 / 915MHz频段射频收发器与嵌入式8051兼容微控制器和4输入, 10位ADC

微控制器 射频
文件: 总104页 (文件大小:1540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT SPECIFICATION  
433/868/915MHz RF Transceiver with  
Embedded 8051 Compatible  
Microcontroller and 4 Input, 10 Bit ADC  
nRF9E5  
FEATURES  
APPLICATIONS  
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
nRF905 433/868/915 MHz transceiver  
8051 compatible microcontroller  
4 input, 10bit 80ksps ADC  
Single 1.9V to 3.6V supply  
·
Sports and leisure  
equipment  
·
Alarm and security  
system  
Small 32 pin QFN (5x5 mm) package  
Extremely low cost Bill of Material (BOM)  
Internal VDD monitoring  
2.5mA standby with wakeup on timer or external pin  
Adjustable output power up to 10dBm  
Channel switching time less than 650ms  
Low TX supply current, typical 11mA @-10dBm  
Low RX supply current typical 12.5mA peak  
Low MCU supply current, typ. 1mA at 4MHz @3volt  
Suitable for frequency hopping  
·
·
·
·
·
·
·
Industrial sensors  
Remote control  
Surveillance  
Automotive  
Telemetry  
Keyless entry  
Toys  
Carrier Detect for “listen before transmit protocol”  
GENERAL DESCRIPTION  
nRF9E5 is a true single chip system with fully integrated RF transceiver, 8051  
compatible microcontroller and a 4 input 10bit 80ksps AD converter. The transceiver of  
the system supports all the features available in the nRF905 chip including  
ShockburstTM, which automatically handles preamble, address and CRC. The circuit has  
embedded voltage regulators, which provides maximum noise immunity and allows  
operation on a single 1.9V to 3.6V supply. nRF9E5 is compatible with FCC standard  
CFR47 part 15 and ETSI EN 300 220-1.  
QUICK REFERENCE DATA  
Parameter  
Value  
1.9  
-40 to +85  
11  
Unit  
V
Minimum supply voltage  
Temperature range  
Supply current in transmit @ -10dBm output power  
Supply current in receive mode  
°C  
mA  
mA  
mA  
mA  
12.5  
1
0.9  
Supply current for m-controller 4MHz @ 3volt  
Supply current for ADC  
Maximum transmit output power  
Transmitted data rate (Manchester-encoder embedded)  
Sensitivity  
10  
100  
-100  
2.5  
dBm  
kbps  
dBm  
mA  
Supply current in power down mode  
Table 1 nRF9E5 quick reference data.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 1 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
ORDERING INFORMATION  
Type number  
nRF9E5 IC  
Description  
32L QFN 5x5 mm  
Version  
-
nRF9E5-EVKIT 433  
nRF9E5-EVKIT 868/915  
Evaluation kit 433MHz  
Evaluation kit 868/915MHz  
1.0  
1.0  
Table 2 nRF9E5 ordering information.  
BLOCK DIAGRAM  
AIN3 (26)  
AIN2 (27)  
AIN1 (28)  
AIN0 (29)  
4k byte  
RAM  
Boot  
loader  
256 byte  
RAM  
ANT1 (20)  
7-channel interrupt  
UART0  
ANT2 (21)  
VDD_PA (19)  
nRF905  
433/868/  
915 MHz  
Radio  
AREF (30)  
Timer 0  
A/D  
converter  
Timer 1  
IREF (23)  
Timer 2  
BIAS  
Tranceiver  
CPU  
8051  
XC2 (15)  
compatible  
XTAL  
oscillator  
Microcontroller  
XC1 (14)  
VSS (5)  
VSS (16)  
VSS (18)  
Low power  
RC  
Oscillator  
WATCH-  
DOG  
RTC  
timer  
PWM  
SPI  
Power mgmt  
Reset  
Regulators  
VSS (22)  
VSS (24)  
VDD (4)  
VDD (17)  
VDD (25)  
8. Ch programmable  
Wakeup  
Port logic  
25320 EEPROM  
Figure 1 nRF9E5 block diagram.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 2 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
TABLE OF CONTENTS  
1
Architectural Overview................................................................................................. 5  
1.1 Microcontroller......................................................................................................... 5  
1.2 PWM....................................................................................................................... 6  
1.3 SPI.......................................................................................................................... 6  
1.4 Port Logic ................................................................................................................ 6  
1.5 Power Management.................................................................................................. 7  
1.6 LF Clock, RTC Wakeup Timer, GPIO Wakeup and Watchdog.................................... 7  
1.7 XTAL Oscillator....................................................................................................... 7  
1.8 AD Converter .......................................................................................................... 8  
1.9 Radio Transceiver..................................................................................................... 8  
Eletrical Specification................................................................................................... 9  
2.1 Detailed Current Information................................................................................... 10  
Pin Assignment........................................................................................................... 11  
Pin Function............................................................................................................... 12  
System Clock............................................................................................................. 13  
Digital I/O Ports......................................................................................................... 14  
6.1 I/O Port Behavior During RESET............................................................................ 14  
6.2 Port 0 (P0) ............................................................................................................. 14  
6.3 Port 1 (P1 or SPI port) ............................................................................................ 15  
Analog Interface......................................................................................................... 17  
7.1 Crystal Specification............................................................................................... 17  
7.2 Antenna Output...................................................................................................... 17  
7.3 ADC Inputs............................................................................................................ 17  
7.4 Current Reference .................................................................................................. 17  
7.5 Digital Power De-Coupling ..................................................................................... 18  
Internal Interface AD Converter and Transceiver.......................................................... 19  
8.1 P2 - Radio General Purpose IO Port......................................................................... 19  
Tranceiver Subsystem (nRF905).................................................................................. 21  
9.1 RF Modes of Operation........................................................................................... 21  
9.2 nRF ShockBurst™ Mode ........................................................................................ 21  
9.3 Standby Mode ........................................................................................................ 26  
9.4 Output Power Adjustment ....................................................................................... 26  
9.5 Modulation............................................................................................................. 26  
9.6 Output Frequency................................................................................................... 27  
9.7 Carrier Detect......................................................................................................... 27  
9.8 Address Match....................................................................................................... 28  
9.9 Data Ready ............................................................................................................ 28  
2
3
4
5
6
7
8
9
9.10  
9.11  
Auto Retransmit ................................................................................................. 28  
RX Reduced Power Mode................................................................................... 28  
10 AD Converter subsystem............................................................................................ 29  
10.1 AD Converter .................................................................................................... 29  
10.2 AD Converter Usage .......................................................................................... 30  
10.3 AD Converter Sampling and Timing.................................................................... 31  
11 Tranceiver and AD Converter Configuration................................................................ 33  
11.1 Internal SPI Register Configuration...................................................................... 33  
11.2 SPI – Instruction Set........................................................................................... 35  
11.3 SPI Timing......................................................................................................... 36  
11.4 RF Configuration – Register Description.............................................................. 37  
11.5 ADC - Configuration Register Description ........................................................... 38  
11.6 Status-Register Description................................................................................. 38  
11.7 RF - Register Contents........................................................................................ 39  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 3 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.8 ADC Configuration Register Contents ................................................................. 40  
11.9 ADC Data Register Contents............................................................................... 40  
11.10 Status Register Contents ..................................................................................... 40  
12 Tranceiver Subsytem Timing....................................................................................... 41  
12.1 Device Switching Times ..................................................................................... 41  
12.2 ShockBurstTM TX Timing.................................................................................... 41  
12.3 ShockBurstTM RX Timing.................................................................................... 42  
13 SPI............................................................................................................................ 43  
14 PWM......................................................................................................................... 44  
15 Interrupts ................................................................................................................... 45  
15.1 Interrupt SFRs.................................................................................................... 45  
15.2 Interrupt Processing............................................................................................ 48  
15.3 Interrupt Masking ............................................................................................... 48  
15.4 Interrupt Priorities .............................................................................................. 48  
15.5 Interrupt Sampling.............................................................................................. 49  
15.6 Interrupt Latency................................................................................................ 50  
15.7 Interrupt Latency from Power Down State. .......................................................... 50  
15.8 Single-Step Operation......................................................................................... 50  
16 LF Clock Wakeup Functions and Watchdog................................................................. 51  
16.1 The LF Clock..................................................................................................... 51  
16.2 Tick Calibration.................................................................................................. 51  
16.3 RTC Wakeup Timer............................................................................................ 52  
16.4 Programmable GPIO Wakeup Function................................................................ 52  
16.5 Watchdog........................................................................................................... 53  
16.6 Programming Interface to Watchdog and Wakeup Functions ................................. 53  
16.7 Reset................................................................................................................. 55  
17 Power Saving Modes .................................................................................................. 57  
17.1 Standard 8051 Power Saving Modes.................................................................... 57  
17.2 Additional Power Down Modes........................................................................... 58  
18 Microcontroller........................................................................................................... 60  
18.1 Memory Organization......................................................................................... 60  
18.2 Program Format in External EEPROM................................................................ 61  
18.3 Instruction Set.................................................................................................... 62  
18.4 Instruction Timing .............................................................................................. 68  
18.5 Dual Data Pointers.............................................................................................. 68  
18.6 Special Function Registers .................................................................................. 69  
18.7 SFR Registers Unique to nRF9E5........................................................................ 73  
18.8 Timers/Counters................................................................................................. 74  
18.9 Serial Interface................................................................................................... 81  
19 Package Outline.......................................................................................................... 92  
20 PCB Layout and Decoupling Guidelines ...................................................................... 93  
21 Application Examples................................................................................................. 94  
21.1 Differential Connection to a Loop Antenna .......................................................... 94  
21.2 PCB Layout Example, Differential Connection to a Loop Antenna ........................ 96  
21.3 Single Ended Connection to 50W Antenna............................................................ 97  
21.4 PCB Layout Example, Single Ended Connection to 50W Antenna ......................... 99  
21.5 Configure the Chip as nRF905............................................................................. 99  
22 Absolute Maximum Ratings .......................................................................................100  
23 Glossery of Terms .....................................................................................................101  
24 Definitions ................................................................................................................102  
25 Your Notes ...............................................................................................................103  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 4 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
1 ARCHITECTURAL OVERVIEW  
This section will give a brief overview of each of the blocks in the block diagram in  
Figure 1.  
1.1 Microcontroller  
The nRF9E5 microcontroller is instruction set compatible with the industry standard  
8051. Instruction timing is slightly different from the industry standard, typically each  
instruction will use from 4 to 20 clock cycles, compared with 12 to 48 for the  
“standard”. The interrupt controller is extended to support 5 additional interrupt sources;  
ADC, SPI, 2 for the radio and a wakeup function. There are also 3 timers that are 8052  
compatible, plus some extensions, in the microcontroller core. An 8051 compatible  
UART that can use timer1 or timer2 for baud rate generation in the traditional  
asynchronous modes is included. The CPU is equipped with 2 data pointers to facilitate  
easier moving of data in the XRAM area, which is a common 8051 extension. The  
microcontroller clock is derived from the crystal oscillator.  
1.1.1 Memory Configuration  
The microcontroller has a 256-byte data ram (8052 compatible, with the upper half only  
addressable by register indirect addressing). A small ROM of 512 bytes contains a  
bootstrap loader that is executed automatically after power on reset or if initiated by  
software later. The user program is normally loaded into a 4k byte RAM1 from an  
external serial EEPROM by the bootstrap loader. The 4k byte RAM may also (partially)  
be used for data storage in some applications.  
1.1.2 Boot EEPROM/FLASH  
The program code for the device must be loaded from an external non-volatile memory.  
The default boot loader expects this to be a “generic 25320” EEPROM with SPI  
interface. These memories are available from several vendors with supply ranges down  
to 1.8V. The SPI interface uses the pins MISO (from EEPROM SDO), SCK (to  
EEPROM SCK), MOSI (to EEPROM SDI) and EECSN (to EEPROM CSN). When the  
boot is completed, the MISO (P1.2), MOSI (P1.0) and SCK (P1.1) pins may be used for  
other purposes such as other SPI devices or GPIO (General Purpose Input Output).  
1.1.3 Register Map  
The SFR (Special Function Registers) control several of the features of the nRF9E5.  
Most of the nRF9E5 SFRs are identical to the standard 8051 SFRs. However, there are  
additional SFRs that control features that are not available in the standard 8051.  
The SFR map is shown in Table 3. The registers with grey background are registers with  
industry standard 8051 behavior. Note that the function of P0, P1 and P2 are somewhat  
different from the “standard” even if the conventional addresses (0x80, 0x90 and 0xA0)  
are used.  
1
Optionally this 4k block of memory can be configured as 2k mask ROM and 2k RAM or 4 k mask ROM  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 5 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
X000  
EIP  
X001  
X010  
X011  
X100  
X101  
X110  
HWREV  
X111  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
B
EIE  
ACC  
EICON  
PSW  
T2CON  
RCAP2L RCAP2H  
TL2  
TH2  
IP  
CKLF  
CON  
RSTREA  
S
PWM  
CON  
SPI  
_DATA  
PWM  
DUTY  
SPI  
SPI  
CLK  
REGX  
_LSB  
TICK_  
DV  
REGX  
_CTRL  
CK_  
CTRL  
TEST_  
MODE  
B0  
A8  
_CTRL  
REGX  
_MSB  
IE  
P2  
SCON  
P1  
A0  
98  
90  
88  
80  
SBUF  
EXIF  
TMOD  
SP  
MPAGE P0_DRV  
P0_DIR  
TH0  
P0_ALT  
TH1  
P1_DIR  
P1_ALT  
TCON  
P0  
TL0  
TL1  
CKCON SPC_FNC  
DPS PCON  
DPL0  
DPH0  
DPL1  
DPH1  
Table 3 SFR Register map.  
1.2 PWM  
The nRF9E5 has one programmable PWM (Pulse-Width Modulation) output, which is  
the alternate function of P0.7. The resolution of the PWM is software programmable to  
6, 7 or 8 bits. The frequency of the PWM signal is programmable via a 6 bit prescaler  
from the XTAL oscillator. The duty cycle is programmable between 0% and 100% via  
one 8-bit register.  
1.3 SPI  
nRF9E5 features a simple single buffered SPI (Serial Programmable Interface) master.  
The 3 data lines of the SPI bus (MISO, SCK and MOSI) are multiplexed (by writing to  
register SPI_CTRL) between the GPIO pins (lower 3 bits of P1) and the RF transceiver  
and AD subsystems. The SPI hardware does not generate any chip select signal. The  
programmer will typically use GPIO bits (from port P0) to act as chip selects for one or  
more external SPI devices. The EECSN pin is a general purpose IO dedicated as chip  
select for the boot EEPROM. When the SPI interfaces the RF transceiver, the chip  
selects are available in an internal GPIO port, P2.  
1.4 Port Logic  
The device has 8 general-purpose bi-directional pins (the P0 port). Additionally the 4  
SPI data pins may be used as general purpose IO (the P1). Most of the GPIO pins can  
be used for multiple purposes under program control. The alternate functions include  
two external interrupts, UART RXD and TXD, a SPI master port, three enable/count  
signals for the timers and the PWM output and a slow programmable timer. Each pin in  
the P0 port can be programmed for high sink or source current.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 6 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
1.5 Power Management  
The nRF9E5 can be placed into several low power modes under program control, and  
also the ADC and RF subsystems can be turned on or off under program control. The  
CPU will stop, but all RAM’s and registers maintain their values. The watchdog, RTC  
(Real Time Clock) wakeup timer and the GPIO wakeup function are always active  
during power down. The current consumption is typically 2.5µA when running with the  
crystal oscillator off.  
The device can exit the power down modes by an external pin, an event on any of the P0  
GPIO pins, by the wakeup timer if enabled or by a watchdog reset.  
1.6 LF Clock, RTC Wakeup Timer, GPIO Wakeup and Watchdog  
The nRF9E5 contains an internal low frequency clock CKLF that is always on. When  
the crystal oscillator clocks the circuit, the CKLF is a 4kHz clock derived from the  
crystal oscillator. When no crystal oscillator clock is available, the CKLF is a low power  
RC oscillator that cannot be disabled, so it will run continuously as long as VDD =  
1.8V. The RTC Wakeup timer, the GPIO wakeup and watchdog all run on the CKLF to  
ensure these vital functions will work during all power down modes.  
RTC Wakeup timer is a 24 bit programmable down counter and the Watchdog is a 16 bit  
programmable down counter. The resolution of the watchdog and wakeup timer is  
programmable (with prescaler TICK_DV) from approximately 300µs to approximately  
80ms. By default the resolution is 1ms. The wakeup timer can be started and stopped by  
user software. The watchdog is disabled after a reset, but if activated it cannot be  
disabled again, except by another reset. An RTC Wakeup timer timeout also provides a  
programmable pulse (GTIMER) that can be an output on a GPIO pin.  
The GPIO wakeup function lets the software enable wakeup on one or more pins from  
the P0 GPIO port. The edge sensitivity (rising, falling or both) and de-bouncing filter is  
individually programmable for each pin.  
1.7 XTAL Oscillator  
The microcontroller, AD converter and transceiver run on the same crystal oscillator  
generated clock. A range of crystals frequencies from 4 to 20 MHz may be utilized. For  
details, please see chapter 7.1 on page 17. The oscillator may be started and stopped as  
requested by software.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 7 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
1.8 AD Converter  
The nRF9E5 AD converter has up to 10-bit dynamic range and linearity with a  
conversion rate of 80 ksps used at the Nyquist rate. The reference for the AD converter  
is software selectable between the AREF input and an internal 1.22V bandgap reference.  
The converter has 5 inputs selectable by software. Selecting one of the inputs 0 to 3 will  
convert the voltage on the respective AIN0 to AIN3 pin. Input 4 enables software to  
monitor the nRF9E5 supply voltage by converting an internal input that is VDD/3 with  
the 1.22V internal reference selected. The AD converter is typically used in a start/stop  
mode. The sampling time is then under software control. The converter is by default  
configured as 10 bits. For special requirements, the AD converter can be configured by  
software to perform 6, 8 or 12 bit conversions. The converter may also be used in  
differential mode with AIN0 used as negative input and one of the other 3 external  
inputs used as noninverting input.  
1.9 Radio Transceiver  
The transceiver part of the circuit has identical functionality to the nRF905 single chip  
RF transceiver. It is accessed through an internal parallel port and / or an internal SPI.  
The data ready, carrier-detect and address match signals can be programmed as  
interrupts to the microcontroller or polled via a GPIO port.  
The nRF905 is a radio transceiver for the 433/868/915 MHz ISM bands. The transceiver  
consists of a fully integrated frequency synthesizer, a power amplifier, a modulator and  
a receiver unit. Output power and frequency channels and other RF parameters are easily  
programmable by use of the on chip SPI interface to the nRF905 core. RF current  
consumption is only 11 mA in TX mode (output power -10dBm) and 12.5 mA in RX  
mode. For power saving the transceiver can be turned on / off under software control.  
This document should be read in conjunction with the nRF905 datasheet.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 8 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
2 ELETRICAL SPECIFICATION  
Symbol  
Parameter (condition)  
Notes  
Min.  
Typ.  
Max.  
Units  
Operating conditions  
Supply voltage  
Operating temperature  
VDD  
TEMP  
1.9  
-40  
3.0  
27  
3.6  
85  
V
ºC  
Digital input pin  
HIGH level input voltage  
LOW level input voltage  
VIH  
VIL  
VDD-0.3  
VSS  
VDD  
0.3  
V
V
Digital output pin  
HIGH level output voltage (IOH=-0.5mA)  
LOW level output voltage (IOL=0.5mA)  
VOH  
VOL  
VDD-0.3  
VSS  
VDD  
0.3  
V
V
General electrical specification  
IPD  
Supply current in power down mode  
2.5  
1
mA  
General microcontroller conditions  
Supply current @4MHz @3V  
High drive sink current for P06, P04, P02 and  
P00 @ VOL = 0.4V  
High drive source current for P07, P05, P03  
and P01 @ VOH = VDD-0.4V  
Low power RC oscillator frequency  
IVDD_MCU  
IOL_HD  
mA  
mA  
1)  
1)  
10  
IOH_HD  
fLP_OSC  
10  
5.5  
mA  
KHz  
1
General RF conditions  
fOP  
fXTAL  
Df  
RGFSK  
fCH_433  
fCH_868  
Operating frequency  
Crystal frequency  
2)  
3)  
430  
4
±42  
928  
20  
±58  
MHz  
MHz  
kHz  
kbps  
kHz  
kHz  
Frequency deviation  
GFSK data rate, Manchester-encoded  
Channel spacing @ 433MHz  
±50  
100  
100  
200  
Channel spacing @ 868 and 915 MHz  
Transmitter operation  
PRF10  
PRF6  
PRF-2  
PRF-10  
PBW  
Output power 10dBm setting  
4)  
4)  
4)  
4)  
7
3
-6  
-14  
10  
6
-2  
-10  
190  
-27  
-54  
30  
11  
9
2
dBm  
dBm  
dBm  
dBm  
kHz  
dBc  
dBc  
mA  
Output power 6dBm setting  
Output power –2dBm setting  
Output power -10dBm setting  
20dB bandwidth for modulated carrier  
1st adjacent channel transmit power  
2nd adjacent channel transmit power  
-6  
PRF1  
PRF2  
5)  
5)  
ITX10dBm Supply current @ 10dBm output power  
ITX-14dBm Supply current @ -10dBm output power  
11  
mA  
Receiver operation  
IRX  
Supply current in receive mode  
12.5  
-100  
mA  
dBm  
dBm  
dB  
dB  
dB  
RXSENS Sensitivity at 0.1%BER  
RXMAX Maximum received signal  
0
C/ICO  
C/I1ST  
C/I2ND  
C/IIM  
C/I Co-channel  
6)  
6)  
6)  
6)  
13  
-7  
-16  
-30  
1st adjacent channel selectivity C/I 200kHz  
2nd adjacent channel selectivity C/I 400kHz  
Image rejection  
dB  
Table 4 nRF9E5 electrical specification.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 9 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Symbol Parameter (condition)  
ADC operation  
Notes  
Min.  
Typ.  
Max.  
Units  
DNL  
Differential Nonlinearity fIN = 0.9991 kHz  
Integral Nonlinearity fIN = 0.9991 kHz  
Signal to Noise Ratio (DC input)  
Midscale offset  
LSB  
LSB  
dBFS  
%FS  
%FS  
dBFS  
±0.5  
±0.75  
59  
± 1  
±1  
58  
INL  
SNR  
VOS  
Gain Error  
eG  
SNR  
Signal to Noise Ratio (without harmonics)  
fIN = 10 kHz  
53  
SFDR  
VBG  
Spurious Free Dynamic Range fIN = 10 kHz  
Internal reference  
Internal reference voltage drift  
Reference voltage input (external ref)  
Conversion rate  
65  
1.22  
100  
dB  
V
ppm/°C  
V
ksps  
mA  
ms  
1.1  
0.8  
1.3  
VFS  
FS  
IADC  
tNPD  
1.5  
125  
7)  
Supply current ADC operation  
Start-up time from ADC Power down  
1
15  
Table 5 nRF9E5 AD converter electrical specifications.  
1) Higher sink/source current is possible if increased voltage changes on ports are accepted.  
2) Operates in the 433, 868 and 915 MHz ISM band.  
3) The crystal frequency may be chosen from 5 different values (4, 8, 12, 16, and 20MHz) which are specified in  
the configuration word. Please see Table 22 on page 37.  
4) Optimum Load Impedance.  
5) Channel width and channel spacing is 200kHz.  
6) Channel Level +3dB over sensitivity, interfering signal a standard carrier wave, Image 2 MHz above wanted.  
7) Conversion rate is dependant on resolution, Please see chapter 10.3 page 31.  
2.1 Detailed Current Information  
MODE  
Light power down  
Moderate Power down  
Standby mode  
TYPICAL CURRENT  
0.4 mA  
125 uA  
25 uA  
Deep Power Down  
MCU @0.5M 3 volt  
MCU @1M 3 volt  
MCU @2M 3 volt  
MCU @4M 3 volt  
MCU @8M 3 volt  
MCU @12M 3 volt  
MCU @16M 3 volt  
MCU @20M 3 volt  
Rx @ 433  
Rx @ 868/915  
Reduced Rx  
Tx @ 10dBm  
Tx @ 6dBm  
Tx @ -2dBm  
Tx @ -10dBm  
2.5 uA  
0.125 mA  
0.25 mA  
0.5 mA  
1
2
3
4
5
mA  
mA  
mA  
mA  
mA  
12.2 mA  
12.8 mA  
10.5 mA  
30 mA  
20 mA  
14 mA  
11 mA  
Table 6 Detailed current information  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 10 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
3 PIN ASSIGNMENT  
P00  
AIN0  
AIN1  
AIN2  
DVDD_1V2 AREF  
AIN3  
VDD  
32 31 30 29 28  
26 25  
27  
VSS  
P01  
P02  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
IREF  
nRF9E5  
P03  
VSS  
32L QFN 5x5  
VDD  
ANT2  
ANT1  
VSS  
VDD_PA  
P04  
P05  
VSS  
P06  
VDD  
9
P07  
12 13 14  
SCK  
10 11  
15 16  
EECSN  
XC1  
XC2  
VSS  
MOSI  
MISO  
Figure 2 Pin assignment nRF9E5.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 11 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
4 PIN FUNCTION  
Pin  
1
2
3
4
Name  
P01  
P02  
P03  
VDD  
VSS  
Pin function  
Digital IN/OUT  
Digital IN/OUT  
Digital IN/OUT  
Power  
Description  
uP Bi-directional digital pin  
uP Bi-directional digital pin  
uP Bi-directional digital pin  
Power supply (+3V DC)  
Ground (0V)  
5
Power  
6
7
8
9
P04  
P05  
P06  
P07  
MOSI  
MISO  
SCK  
EECSN  
XC1  
Digital IN/OUT  
Digital IN/OUT  
Digital IN/OUT  
Digital IN/OUT  
SPI-Interface  
SPI-Interface  
SPI-clock  
uP Bi-directional digital pin  
uP Bi-directional digital pin  
uP Bi-directional digital pin  
uP Bi-directional digital pin  
SPI output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
SPI input  
SPI clock  
SPI-enable  
SPI enable, active low  
Crystal Pin 1/ External clock reference pin  
Crystal Pin 2  
Ground (0V)  
Power supply (+3V DC)  
Ground (0V)  
Regulated positive supply (1.8V) to nRF905 power amplifier  
Antenna interface 1  
Antenna interface 2  
Ground (0V)  
Reference current  
Ground (0V)  
Power supply (+3V DC)  
ADC Input 3  
ADC Input 2  
ADC Input 1  
Analog Input  
Analog Output  
Power  
Power  
Power  
Power Output  
RF – port  
RF – port  
Power  
Analog Input  
Power  
XC2  
VSS  
VDD  
VSS  
VDD_PA  
ANT1  
ANT2  
VSS  
IREF  
VSS  
VDD  
AIN3  
AIN2  
AIN1  
AIN0  
AREF  
DVDD_1V2  
P00  
Power  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Power Output  
Digital IN/OUT  
ADC Input 0  
ADC Reference Voltage  
Low voltage positive digital supply output for de-coupling  
uP Bi-directional digital pin  
Table 7 nRF9E5 pin function.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 12 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
5 SYSTEM CLOCK  
The Microcontroller clock, CPU_CLK, is generated from the on chip crystal oscillator.  
CPU_CLK frequency is configured in the RF-configuration register (see chapter 11) and  
could be set to 0.5, 1, 2 or 4MHz. CPU_CLK could in addition be set equal to the crystal  
oscillator frequency itself. The CPU_CLK generation is illustrated in Figure 3.  
It is important to always set XOF equal to the actual crystal selected for the application.  
fCPU_CLK  
0.5 to 20MHz  
UP_CLK_FREQ  
0.5 - 4MHz  
MUX  
f
XO  
4MHz  
Divide 1 to 5  
Divide 1 to 4  
XO  
UP_CLK_EN  
UP_CLK  
_FREQ  
XOF  
Figure 3 CPU_CLK generation in nRF9E5.  
The chip has an internal low frequency clock that is always active. This clock ensure  
proper operation of vital function when the chip is in power down mode and the crystal  
oscillator is turned off, please see chapter 16 on page 51.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 13 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
6 DIGITAL I/O PORTS  
The nRF9E5 has two IO ports located at the default locations for P0 and P1 in standard  
8051, but the ports are fully bi-directional CMOS and the direction of each pin is  
controlled by a _DIR and an _ALT bit for each bit as shown in the table below.  
Pin  
EECSN  
MISO  
SCK  
MOSI  
P00  
P01  
P02  
P03  
P04  
Default function  
P1.3  
Alternate=1  
SPI_CTRL != 01  
P1.3  
P1.2  
P1.0  
P1.1  
SPI.datain  
SPI.clock  
SPI.dataout  
P0.0  
T2 (timer2 input)  
GTIMER  
RXD (UART)  
TXD (UART)  
INT0_N (interrupt)  
INT1_N (interrupt)  
T0 (timer0 input)  
T1 (timer1 input)  
PWM  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P05  
P06  
P07  
Table 8 Port functions.  
6.1 I/O Port Behavior During RESET  
During this period the internal reset is active (regardless of whether or not the clock is  
running), all the port pins related to P0 are configured as inputs, whereas the inputs  
related to P1 are configured as required for an SPI master. When program execution  
starts, all ports are still configured as during reset, and the program will need to set the  
_ALT and/or the _DIR register for the pins that need another direction.  
6.2 Port 0 (P0)  
P0_ALT and P0_DIR control the P0 port function in that order of priority. If the  
alternate function for port P0.n is set (by P0_ALT.n = 1) the pin will be input or output  
as required by the alternate function (UART, external interrupt, timer inputs or PWM  
output), except that the UART RXD direction will still depend on P0_DIR.1.  
To use INT0_N or INT1_N as interrupts, the corresponding alternate function must be  
activated, P0_ALT.3 / P0_ALT.4. When the P0_ALT.n is not set, bit ‘n’ of the port is a  
GPIO function with the direction controlled by P0_DIR.n.  
Pin  
Data in P0_ALT.n,P0_DIR.n  
11 00  
GTIMER  
10  
GTIMER  
RXD  
TXD  
INT0_N  
INT1_N  
T0  
01  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
Out  
Out  
Out  
In  
In  
In  
Out  
In  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
In  
In  
In  
In  
In  
In  
In  
In  
RXD  
TXD  
INT0_N  
INT1_N  
T0  
Out  
In  
In  
In  
T1  
PWM  
In  
Out  
T1  
In  
PWM  
Out  
Table 9 Port 0 (P0) functions.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 14 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Port 0 is controlled by SFR-registers 0x80, 0x93, 0x94 and 0x95 listed in the table  
below.  
Addr  
SFR  
(hex)  
R/W  
#bit  
Init  
value  
(hex)  
Name  
Function  
80  
93  
R/W  
R/W  
8
8
FF  
00  
P0  
P0_DRV  
Port 0, pins P07 to P00  
High drive strength for each bit of Port 0  
0: Enable, 1: Disable  
(See 6.2.1 belowfor a description)  
94  
95  
R/W  
R/W  
8
8
FF  
00  
P0_DIR  
P0_ALT  
Direction for each bit of Port 0  
0: Output, 1: Input  
Direction is overridden if alternate function is  
selected for a pin.  
Select alternate functions for each pin of P0, if  
corresponding bit in P0_ALT is set, as listed in  
Table 9 Port 0 (P0) functions.  
Table 10 Port 0 control and data SFR-registers.  
6.2.1 High Current Drive Capability  
Odd numbered bits will source high current when the corresponding bit in P0_DRV is  
set, where as even number bits will sink high current when the corresponding bit in  
P0_DRV is set.  
6.3 Port 1 (P1 or SPI port)  
The P1 port consists of 4 pins, one of which is a hardwired input. The primary function  
of the P1 port (when SPI_CTRL is 01) is a SPI master port. The pin EECSN is used as a  
chip select for the boot EEPROM, the GPIO bits in port P0 may be used as chip select(s)  
for other SPI devices.  
When not used as SPI port, P1_ALT.0 will force SCK (P1.0) to be the timer T2 input;  
MOSI (P1.1) is now a GPIO. When P0_ALT.0 is 0, also SCK (P1.0) is a GPIO.  
MISO (P1.2) is always an input. That is P1_DIR.2 and P1_ALT.2 are ignored.  
EECSN (P1.3) is always a GPIO. It will be activated by the default boot loader after  
reset and should be connected to the CSN of the boot flash.  
Pin  
SPI_CTRL = 01  
SPI_CTRL != 01  
P1_ALT.n = 0  
P1_DIR.n = 0 P1_DIR.n = 1  
P1_ALT.n = 1  
SCK  
SPI.clock  
SPI.dataout  
SPI.datain  
P1.3  
Out  
Out  
In  
T2  
In  
P1.0  
P1.1  
P1.2  
P1.3  
In  
In  
In  
In  
P1.0  
P1.1  
P1.2  
P1.3  
Out  
Out  
In  
MOSI  
MISO  
EECSN  
P1.1  
P1.2  
P1.3  
I/O2  
In  
Out  
I/O2  
Out  
Table 11 Port 1 (P1) functions.  
2
P1.1 and P1.3 are actually under control of P1_DIR.1 and P1_DIR.3 even when P1_ALT.1 or P1_ALT.3  
are 1, since there are no alternate functions for these pins.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 15 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Port 1 is controlled by SFR-registers 0x90, 0x96 and 0x97, and only the 4 lower bits of  
the registers are used.  
Addr R/W  
SFR  
(hex)  
#bit  
Init  
value  
(hex)  
Name  
Function  
90  
R/W  
R/W  
4
4
F
P1  
Port 1, pins SPI_SCK, SPI_MOSI, SPI_MISO and  
SPI_CSN  
96  
4
P1_DIR Direction for each bit of Port 1  
0: Output, 1: Input  
Direction is overridden if alternate function is selected  
for a pin, or if SPI_CTRL=01.  
SPI_MISO is always input.  
97  
R/W  
4
0
P1_ALT Select alternate functions for each pin of P1  
if corresponding bit in P1_ALT is set, as listed in Table  
11 Port 1 (P1) functions  
Table 12 Port 1 control and data SFR-registers.  
P1 is by default configured as a SPI master port. In this case, it is then controlled by the  
3 SFR registers 0xB2, 0xB3 and 0xB4 as shown in Table 33 on page 43.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 16 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
7 ANALOG INTERFACE  
7.1 Crystal Specification  
Tolerance includes initially accuracy and tolerance over temperature and aging.  
Frequency  
CL  
ESR  
C0max  
Tolerance @  
868/915 MHz  
Tolerance @  
433 MHz  
4MHz  
8MHz  
12MHz  
16MHz  
20MHz  
12pF  
12pF  
12pF  
12pF  
12pF  
7.0pF  
7.0pF  
7.0pF  
7.0pF  
7.0pF  
150W  
100W  
100W  
100W  
100W  
±30ppm  
±30ppm  
±30ppm  
±30ppm  
±30ppm  
±60ppm  
±60ppm  
±60ppm  
±60ppm  
±60ppm  
Table 13 Crystal specification of nRF9E5.  
To achieve a crystal oscillator solution with low power consumption and fast start-up  
time, it is recommended to specify the crystal with a low value of crystal load  
capacitance. Specifying CL =12pF is acceptable, but it is possible to use up to 16pF.  
Specifying a lower value of crystal parallel equivalent capacitance, Co=1.5pF is also  
good, but this can increase the price of the crystal itself. Typically Co=1.5pF at a crystal  
specified for Co_max=7.0pF.  
7.2 Antenna Output  
The “ANT1 & ANT2” output pins provide a balanced RF output to the antenna. The  
pins must have a DC path to VDD_PA, either via a RF choke or via the center point in a  
dipole antenna. The load impedance seen between the ANT1/ANT2 outputs should be in  
the range 200-700W. The optimum differential load impedance at the antenna ports is  
given as:  
900MHz  
430MHz  
225W+j210  
300W+j100  
A low load impedance (for instance 50W) can be obtained by fitting a simple matching  
network or a RF transformer (balun). Further information regarding balun structures and  
matching networks may be found in the Application Examples chapter.  
7.3 ADC Inputs  
The Analog to digital converter has four analog input channels and one reference  
voltage input. Analog input is selected with CHSEL in the ADC_CONFIG_REG.  
7.4 Current Reference  
To get accurate internal biasing, an external low tolerance resistor is used. A resistor of  
22kW and 1% accuracy should be connected between the pin IREF and ground for  
proper operation of nRF9E5.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 17 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
7.5 Digital Power De-Coupling  
nRF9E5 has internal regulator used for optimum performance and minimum power  
dissipation in digital part of the system. De-coupling of the regulated power is needed  
for proper operation of the chip. A capacitor of 10nF should be connected between  
DVDD_1V2 and ground as close to the chip as possible. Please see PCB layout and de-  
coupling guidelines for further information regarding layout.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 18 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
8 INTERNAL INTERFACE AD CONVERTER AND  
TRANSCEIVER  
8.1 P2 - Radio General Purpose IO Port  
The P2 port controls the transceiver. The P2 port uses the address normally used by port  
P2 in standard 8051. However since the radio transceiver is on chip, the port is not bi-  
directional. The power on default values in the port “latch” also differs from traditional  
8051 to match the requirements of the radio transceiver subsystem.  
Operation of the transceiver is controlled by SFR registers P2 and SPI_CTRL:  
Addr  
SFR  
(hex)  
R/W  
R/W  
R/W  
#bit  
8
Init  
value  
(hex)  
Name  
Function  
A0  
04  
P2  
General purpose IO for interface to  
nRF905 radio transceiver and AD  
converter subsystems  
B3  
2
0
SPI_CTRL 00 -> SPI not used  
01 -> SPI connected to port P1 (boot)  
1x -> SPI connected to nRF905/AD  
Table 14 nRF905 433/868/915 MHz transceiver subsystem control registers - SFR 0xA0  
and 0xB3.  
The bits of the P2 register correspond to similar pins of the nRF905 single chip, as  
shown in Table 15 P2 (RADIO) register . In the documentation the pin names are used,  
so please note that setting or reading any of these nRF905 pins, means to write or read  
the P2 SFR register accordingly.  
P2 register bit: Function  
Corresponding nRF905  
Transceiver pin name  
Read :  
7: nRF905 Transceiver address match  
6: nRF905 Transceiver carrier detect  
5: nRF905 Transceiver data ready  
4: ADC end of conversion  
3: 0 (not used)  
AM  
CD  
DR  
EOC  
2: nrF905 Transceiver and ADC SPI data out (SBMISO)  
1: 0 (not used)  
MISO  
0: 0 (not used)  
Write :  
7: Not used  
6: Not used  
5: nRF905 Transceiver enable receiver function  
4: nRF905 Transceiver transmit/receive selection  
TRX_CE  
TX_EN  
3: nrF905 Transceiver and ADC SPI Chip select (RACSN) CSN  
2: Not used  
1: nrF905 Transceiver and ADC SPI data in (SBMOSI)  
0: nrF905 Transceiver and ADC SPI clock (SBSCK)  
MOSI  
SCK  
Table 15 P2 (RADIO) register - SFR 0xA0, default initial data value is 0x08.  
Note : Some of the pins are overridden when SPI_CTRL=1x, see Table 14.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 19 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
8.1.1 Controlling the Transceiver via SPI Interface.  
Normally the SPI hardware interface rather than GPIO programming will do the data  
transfers to the transceiver. Please see Table 33 SPI control and data SFR-registers for  
use of SPI interface. When SPI_CTRL is ‘0x’, all radio pins are connected directly to  
their respective port pins and the SPI functionality may be implemented in software.  
P2 register  
SPI_CTRL==1x  
nRF905/AD  
Read  
AM  
bit  
7
Write  
EOC  
AM  
CD  
CD  
6
DR  
5
TRX_CE  
TX_EN  
SBCSN  
TRX_CE  
TX_EN  
CSN  
DR  
EOC  
4
3
SBMISO  
2
1 MUX  
1
SBMOSI  
SBSCK  
MOSI  
SCK  
0
0
1
MUX  
0
SPI Hardware  
dataout  
clock  
datain  
MISO  
0
1
from IO-pin  
MUX  
Figure 4 Transceiver interface.  
8.1.2 P2 Port Behavior During RESET  
During the period the internal reset is active (regardless of whether or not the clock is  
running), the P2 outputs that control the nRF905 transceiver subsystem are forced to  
their respective default values. When program execution starts, these ports will remain at  
those default levels until the programmer actively changes them by writing to the P2  
register.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 20 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
9 TRANCEIVER SUBSYSTEM (nRF905)  
9.1 RF Modes of Operation  
The Transceiver has two active (RX/TX) modes and one power-saving mode when the  
microcontroller is running.  
9.1.1 Active Modes  
·
·
ShockBurst™ RX  
ShockBurst™ TX  
9.1.2 Power Saving Mode  
·
Standby and SPI - programming  
The transceiver mode is decided by the settings of TRX_CE, TX_EN  
TRX_CE  
TX_EN  
Operating Mode  
0
1
1
X
0
1
Standby and SPI – programming  
Radio Enabled - ShockBurstTM RX  
Radio Enabled - ShockBurstTM TX  
Table 16 transceiver operational modes.  
9.2 nRF ShockBurst™ Mode  
The nRF9E5 uses the Nordic Semiconductor ShockBurst™ feature. ShockBurstTM  
makes it possible to use the high data rate offered by the nRF905. By embedding all  
high speed signal processing related to RF protocol in the transceiver, the nRF905 offers  
the micro controller a simple SPI interface. Data rate is decided by the interface-speed  
the micro controller itself sets up. By allowing the digital part of the application to run at  
low speed, while maximizing the data rate on the RF link, the nRF905 ShockBurst™  
mode reduces the average current consumption in applications. In ShockBurstTM RX,  
Address Match (AM) and Data Ready (DR) notifies the MCU when a valid address and  
payload is received respectively. In ShockBurstTM TX, the nRF905 automatically  
generates preamble and CRC. Data Ready (DR) notifies the MCU that the transmission  
is completed. All together, this means reduced memory demand and more available  
resources in the MCU, as well as reduced software development time.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 21 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Typical ShockBurstTM TX:  
1. When the application MCU has data for a remote node, the address of the  
receiving node (TX-address) and payload data (TX-payload) are clocked into  
nRF905 via the SPI interface. The application protocol or MCU sets the  
speed of the interface.  
2. MCU sets TRX_CE and TX_EN high, this activates a nRF905 ShockBurst™  
transmission.  
3. nRF905 ShockBurst™:  
·
·
·
·
Radio is automatically powered up.  
Data package is completed (preamble added, CRC calculated).  
Data package is transmitted (100kbps, GFSK, Manchester-encoded).  
Data Ready is set high when transmission is completed.  
4. If AUTO_RETRAN is set high, the nRF905 continuously retransmits the  
package until TRX_CE is set low.  
5. When TRX_CE is set low, the nRF905 finishes transmitting the outgoing  
package and then sets itself into standby mode.  
The ShockBurstTM mode ensures that a transmitted package that has started always  
finishes regardless of what TRX_EN and TX_EN is set to during transmission. The new  
mode is activated when the transmission is completed. Please see subsequent chapters  
for detailed timing  
For test purposes such as antenna tuning and measuring output power it is possible to set  
the transmitter so that a constant carrier is produced. To do this TRX_CE must be  
maintained high instead of being pulsed. In addition Auto Retransmit should be  
switched off. After the burst of data has been sent then the device will continue to send  
the unmodulated carrier.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 22 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Radio in Standby  
TX_EN = HI  
PWR_UP = HI  
TRX_CE = LO  
Data Package  
SPI - programming  
uController loading ADDR  
and PAYLOAD data  
ADDR  
PAYLOAD  
(Configuration register if  
changes since last TX/RX)  
TRX_CE  
= HI ?  
NO  
YES  
Transmitter  
is powered  
up  
nRF ShockBurst TX  
DR is  
set low  
after pre-  
amble  
Generate CRC and preamble  
Sending package  
DR is set high when completed  
Pre-  
amble  
ADDR  
PAYLOAD  
CRC  
NO  
AUTO_  
RETRAN  
= HI ?  
YES  
TRX_CE  
= HI ?  
NO  
Bit in configuration  
register  
YES  
NB: DR is set low under the following conditions after it has been set high:  
·
If TX_EN is set low  
Figure 5 Flowchart ShockBurstTM transmit of nRF905.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 23 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Typical ShockBurstTM RX:  
1. ShockBurstTM RX is selected by setting TRX_CE high and TX_EN low.  
2. After 650ms nRF905 is monitoring the air for incoming communication.  
3. When the nRF905 senses a carrier at the receiving frequency, Carrier Detect  
(CD) pin is set high.  
4. When a valid address is received, Address Match (AM) pin is set high.  
5. When a valid package has been received (correct CRC found), nRF905  
removes the preamble, address and CRC bits, and the Data Ready (DR) pin is  
set high.  
6. MCU sets the TRX_CE low to enter standby mode (low current mode).  
7. MCU can clock out the payload data at a suitable rate via the SPI interface.  
8. When all payload data is retrieved, nRF905 sets Data Ready (DR) and  
Address Match (AM) low again.  
9. The chip is now ready for entering ShockBurstTM RX, ShockBurstTM TX or  
power down mode.  
If TRX_CE or TX_EN is changed during an incoming package, the nRF905 changes  
mode immediately and the package is lost. However, if the MCU is sensing the Address  
Match (AM) pin, it knows when the chip is receiving an incoming package and can  
therefore decide whether to wait for the Data Ready (DR) signal or enter a different  
mode.  
To avoid spurious address matches it is recommended that the address length be 24 bits  
or higher in length. Small addresses such as 8 or 16 bits can often lead to statistical  
failures due to the address being repeated as part of the data packet. This can be avoided  
by using a longer address.  
Each byte within the address should be unique. Repeating bytes within the address  
reduces the effectiveness of the address and increases its susceptibility to noise hence  
increasing the packet error rate. The address should also have several level shifts (i.e.  
10101100) to reduce the statistical effect of noise and hence reduce the packet error rate.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 24 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Radio in Standby  
TX_EN = LO  
PWR_UP = HI  
NO  
TRX_CE  
= HI ?  
YES  
Receiver is  
powered up  
Receiver  
Sensing for incomming data  
CD is set high if carrier  
Data Package  
NO  
Correct  
ADDR?  
Pre-  
amble  
ADDR  
PAYLOAD  
CRC  
YES  
AM is set  
high  
Receiving  
data  
Correct  
CRC?  
NO  
AM is set low  
DR and AM are  
set low  
DR and AM are  
set low  
YES  
DR high is  
set high  
MCU clocks out payload via  
the SPI interface  
MCU clocks out payload via  
the SPI interface  
PAYLOAD  
TRX_CE  
= HI ?  
Radio enters  
STBY  
RX Remains  
On  
NO  
YES  
Figure 6 Flowchart ShockBurstTM receive of nRF905.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 25 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
9.3 Standby Mode  
Standby mode is used to minimize average current consumption while not transmitting  
or receiving and still maintaining short start up times to ShockBurstTM RX and  
ShockBurstTM TX. In this mode the crystal oscillator have to be active. The  
configuration word content is maintained during standby.  
9.4 Output Power Adjustment  
The power amplifier in nRF905 can be programmed to four different output power  
settings by the configuration register. By reducing output power, the total TX current is  
reduced.  
Power setting  
RF output power  
DC current consumption  
00  
01  
10  
11  
-10 dBm  
-2 dBm  
6 dBm  
11.0 mA  
14.0 mA  
20.0 mA  
30.0 mA  
10 dBm  
Conditions: VDD = 3.0V, VSS = 0V, TA = 27ºC, Load impedance = 400 W.  
Table 17 RF output power setting for the nRF905.  
9.5 Modulation  
The modulation of nRF905 is Gaussian Frequency Shift Keying (GFSK) with a data-rate  
of 100kbps. Deviation is ±50kHz. GFSK modulation results in a more bandwidth  
effective transmission-link compared with ordinary FSK modulation.  
The data is internally Manchester encoded (TX) and Manchester decoded (RX). That is,  
the effective symbol-rate of the link is 50kbps. By using internally Manchester  
encoding, no scrambling in the u-controller is needed.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 26 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
9.6 Output Frequency  
The operating RF-frequency of nRF905 is set in the configuration register by CH_NO  
and HFREQ_PLL. The operating frequency is given by:  
fOP = (422.4 + (CH _ NO/10)) × (1+ HFREQ _ PLL) MHz  
When HFREQ_PLL is ‘0’ the frequency resolution is 100kHz and when it is ‘1’ the  
resolution is 200kHz.  
The application operating frequency has to be chosen to apply with the Short Range  
Devise regulation in the area of operation.  
Operating frequency  
430.0 MHz  
HFREQ_PLL  
CH_NO  
[0]  
[0]  
[0]  
[0]  
[001001100]  
[001101011]  
[001101100]  
[001111011]  
433.1 MHz  
433.2 MHz  
434.7 MHz  
862.0 MHz  
868.2 MHz  
868.4 MHz  
869.8 MHz  
[1]  
[1]  
[1]  
[1]  
[001010110]  
[001110101]  
[001110110]  
[001111101]  
902.2 MHz  
902.4 MHz  
927.8 MHz  
[1]  
[1]  
[1]  
[100011111]  
[100100000]  
[110011111]  
Table 18 Examples of real operating frequencies.  
9.7 Carrier Detect.  
When the nRF905 is in ShockBurst  
TM  
RX, the Carrier Detect (CD) pin is set high if a  
RF carrier is present at the channel the device is programmed to. This feature is very  
effective to avoid collision of packages from different transmitters operating at the same  
frequency. Whenever a device is ready to transmit it could first be set into receive mode  
and sense whether or not the wanted channel is available for outgoing data. This forms a  
very simple listen before transmit protocol. Operating Carrier Detect (CD) with Reduced  
RX Power mode is an extremely power efficient RF system. Typical Carrier Detect level  
(CD) is typically 5dB lower than sensitivity, i.e. if sensitivity is –100dBm then the  
Carrier Detect function will sense a carrier wave as low as –105dBm. Below –105dBm  
the Carrier Detect signal will be low, i.e. 0V. Above –95dBm the Carrier Detect signal  
will be high, i.e. Vdd. Between approximately -95 to -105 the Carrier Detect Signal will  
toggle.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 27 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
9.8 Address Match  
TM  
When the nRF905 is in ShockBurst  
RX mode, the Address Match (AM) pin is set  
high as soon as an incoming package with an address that is identical with the device’s  
own identity is received. With the Address Match pin the controller is alerted that the  
nRF905 is receiving data actually before the Data Ready (DR) signal is set high. If the  
Data Ready (DR) pin is not set high i.e. the CRC is incorrect then the Address Match  
(AM) pin is reset to low at the end of the received data packet. This function can be very  
useful for an MCU. If Address Match (AM) is high then the MCU can make a decision  
to wait and see if Data Ready (DR) will be set high indicating a valid data package has  
been received or ignore that a possible package is being received and switch modes.  
9.9 Data Ready  
The Data Ready (DR) signal makes it possible to largely reduce the complexity of the  
MCU software program.  
In ShockBurst TM TX, the Data Ready (DR) signal is set high when a complete package  
is transmitted, telling the MCU that the nRF905 is ready for new actions. It is reset to  
low at the start of a new package transmission or when switched to a different mode i.e.  
receive mode or standby mode.  
TM  
In ShockBurst  
TX Auto Retransmit the Data Ready (DR) signal is set high at the  
beginning of the pre-amble and is set low at the end of the preamble. The Data Ready  
(DR) signal therefore pulses at the beginning of each transmitted data packet.  
In ShockBurst TM RX, the signal is set high when nRF905 has received a valid package,  
i.e. a valid address, package length and correct CRC. The MCU can then retrieve the  
payload via the SPI interface. The Data Ready (DR) pin is reset to low once the data has  
been clocked out of the data buffer or the device is switched to transmit mode.  
9.10 Auto Retransmit  
One way to increase system reliability in a noisy environment or in a system without  
collision control is to transmit a package several times. This is easily accomplished with  
the Auto Retransmit feature in nRF905. By setting the AUTO_RETRAN bit to “1” in  
the configuration register, the circuit keeps sending the same data package as long as  
TRX_CE and TX_EN is high. As soon as TRX_CE is set low the device will finish  
sending the packet it is currently transmitting and then return to standby mode.  
9.11 RX Reduced Power Mode  
To maximize battery lifetime in application where the nRF905 high sensitivity is not  
necessary; nRF905 offers a built in reduced power mode. In this mode, the receive  
current consumption reduces from 12.5mA to only 10.5mA. The sensitivity is reduced to  
typical –85dBm, ±10dB. Some degradation of the nRF905 blocking performance should  
be expected in this mode. The reduced power mode is an excellent option when using  
Carrier Detect to sense if the wanted channel is available for outgoing data.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 28 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
10 AD CONVERTER SUBSYSTEM  
10.1 AD Converter  
The nRFE5 AD converter has 10 bit dynamic range and linearity when used at the  
Nyquist rate. With lower signal frequencies and post filtering, up to 12 bits resolution is  
possible. The reference for the AD converter is selectable between the AREF input and  
an internal 1.22V bandgap reference.  
The converter default SPI setting is 10 bits. For special requirements, the AD converter  
can be configured to perform 6, 8, 10 or 12 bit conversions. The converter may also be  
used in differential mode with AIN0 used as inverting input and one of the other 3  
external inputs used as noninverting input.  
Two registers interface the AD converter, ADC_CONFIG_REG and  
ADC_DATA_REG. AD converter status bit are available in the STATUS_REGISTER.  
Registers are described in detail in chapter 11.  
Selection of input channel is directly embedded in the START_ADC_CONV command,  
alternatively it is set by CHSEL in the ADC_CONFIG_REG. Values of CHSEL from 0  
to 3 would select AIN0 to AIN3 respectively. Setting CHSEL to [1xxx] will monitor the  
nRF9E5 supply voltage by converting an internal input that is VDD/3 with the 1.22V  
internal reference.  
The AD conversion result is available as ADCDATA in ADC_DATA_REG at the end  
of conversion. The data in ADC_DATA_REG is stored according to Table 19 with left  
or right justified data selected by ADC_RL_JUST.  
ADC_  
RL_JUST  
ADC  
_RESCTRL  
# bit  
ADC_DATA_REG[15:0]  
High byte [15:8]  
Low byte [7:0]  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
6
8
10  
12  
6
8
10  
12  
ADCDATA[5:0]  
ADCDATA[7:0]  
ADCDATA[9:0]  
ADCDATA[11:0]  
‘0’  
ADCDATA[5:0]  
ADCDATA[7:0]  
ADCDATA[9:0]  
ADCDATA[11:0]  
‘0’  
Table 19 ADC_DATA_REGISTER justified data.  
Overflow status is stored as ADC_RFLAG in the STATUS_REGISTER after each  
conversion.  
The complete subsystem is switched off by clearing bit ADC_PWR_UP.  
Instructions for the AD converter are given in Table 21 on page 35.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 29 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
10.2 AD Converter Usage  
10.2.1 Measurements with External Reference  
When VFSSEL is set to 1 and CHSEL selects an input AINi(i.e. AIN0 to AIN3), the  
result in ADCDATA is directly proportional to the ratio between the voltage on the  
selected input, and the voltage on pin AREF:  
ADCDATA  
VAINi =VAREF  
×
2 N  
and for differential measurements a similar equation apply:  
ADCDATA - 2(N -1)  
V AINi - V AIN0 = V AREF  
×
2N  
Where N is the number of bits set in RESCTRL  
This mode of operation is normally selected for sources where the voltage is depending  
on the supply voltage (or another variable voltage), as shown in Figure 7 below. The  
resistor R1 is selected to keep AREF = 1.5V for the maximum VDD voltage.  
SUPPLY  
R1  
VDD  
AREF  
nRF9E5  
R2  
AIN0  
AIN1  
R3  
Figure 7 Typical use of AD with 2 ratiometric inputs.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 30 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
10.2.2 Measurements with Internal Reference  
When VFSSEL is set to 0 and CHSEL selects an input AINI (i.e. AIN0 to AIN3), the  
result in ADCDATA is directly proportional to the ratio between the voltage on the  
selected input and the internal bandgap reference (nominally 1.22V):  
ADCDATA  
VAINi =1.22 ×  
2N  
and for differential measurements a similar equation apply:  
ADCDATA - 2(N -1)  
V AINi - V AIN0 = 1.22 ×  
2N  
Where N is the number of bits set in RESCTRL  
This mode of operation is normally selected for sources where the voltage is not  
depending on the supply voltage.  
10.2.3 Supply Voltage Measurement  
When CHSEL is set to [1xxx], the ADC will use the internal bandgap reference  
(nominally 1.22V). The input to the converter is 1/3 of the voltage on the VDD pins.  
The result in ADCDATA is thus directly proportional to the VDD voltage.  
ADCDATA  
VVDD = 3.66 ×  
2N  
Where N is the number of bits set in RESCTRL  
10.3 AD Converter Sampling and Timing  
An AD conversion is initialized after a low to high transition on CSTASRT in  
ADC_CONFIG_REG or by using the instruction START_ADC_CONV. In both cases  
the conversion itself would start at the first positive edge of ADCCLK after RACSN is  
set high after instruction is issued.  
When ADCRUN is low, a single conversion would be performed and a pulse on EOC is  
generated when the converted value is available in ADC_DATA_REG. If CSTARTN is  
set low or a new START_ADC_CONV command is issued, the previous conversion  
will be aborted. Conversion time, tconv, depends on resolution.  
N
tconv  
=
+ 3 ADCCLK cycles  
2
Where N is the number of resolution bit. In Figure 8 a 10-bit conversion is shown.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 31 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
ADCCLK  
SBCSN  
analog  
sampled  
tCONV  
EOC  
ADCDATA  
Figure 8 Timing diagram single step conversion.  
When ADCRUN is high the ADC is running continuously. Cycle time t  
is the time  
cycle  
between each conversion. EOC indicates every time a new conversion value is stored in  
ADC_DATA_REG.  
N
tcycle  
=
+ 1 ADCCLK cycles  
2
where N is number of resolution bits. Figure 9 shows 10-bit conversion where  
ADCRUN is set high.  
n
n+1  
n+2  
analog sample  
ADCCLK  
tConv  
EOC  
tCycle  
sample n-1  
sample n  
ADCDATA  
Figure 9 Timing diagram continuous mode conversion.  
A 500 kHz clock (ADCCLK) clocks the ADC converter. Table 20 shows t  
as  
cycles  
function of resolution.  
Resolution  
[Number of bits]  
tcycles  
[ms]  
8
10  
12  
Sampling rate  
[kspls]  
6
8
10  
12  
125  
100  
83.3  
71.4  
14  
Table 20 ADC resolution and maximum sampling rate.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 32 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11 TRANCEIVER AND AD CONVERTER CONFIGURATION  
All configuration of the transceiver and AD converter subsystem is done via an internal  
SPI -interface of the two systems. The interface consists of 7 registers, a SPI instructions  
set is used to decide which operation shall be performed. The SPI-interface can only be  
activated when the transceiver is in standby mode. All references to the SPI interface in  
this chapter refer to the internal SPI interface of the transceiver and AD converter  
subsystem.  
11.1 Internal SPI Register Configuration  
The SPI-interface consists of seven internal registers. A register read-back mode is  
implemented to allow verification of the register contents  
MISO  
MOSI  
EN  
SCK  
I/O-reg  
STATUS-REGISTER  
CSN  
CLK  
EN  
ADC-CONFIGURATION-  
DTA  
REGISTER  
CLK  
EN  
ADC-DATA-  
REGISTER  
DTA  
CLK  
EN  
RF-CONFIGURATION-  
DTA  
REGISTER  
CLK  
EN  
DTA  
CLK  
TX-ADDRESS  
EN  
DTA  
CLK  
TX-PAYLOAD  
RX-PAYLOAD  
EN  
CLK  
Figure 10 SPI – interface composed of seven internal registers.  
Status – Register  
Register contains status of Data Ready (DR), Address Match (AM),  
ADC_End_Of_Conversion and ADC_Ready_Flag  
ADC- Configuration – Register  
Register contains information of ADC setup such as resolution control, channel select,  
differential or single ended mode, continuous or single conversion mode etc.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 33 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
ADC- Data – Register  
Register contains AD converter results.  
RF - Configuration Register  
Register contains transceiver setup information such as frequency and output power ext.  
TX – Address  
Register contains address of target device. How many bytes used is set in the  
configuration register.  
TX – Payload  
Register containing the payload information to be sent in a ShockBurst TM package. How  
many bytes used is set in the configuration register.  
RX – Payload  
Register containing the payload information derived from a received valid ShockBurst  
TM  
package. How many bytes used is set in the configuration register. Valid data in the  
RX-Payload register is indicated with a high Date Ready (DR) signal.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 34 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.2 SPI – Instruction Set  
The available commands to be used on the SPI-interface are given in Table 21.  
Whenever CSN is set low the interface would expect an instruction. Every new  
instruction has to be presided by a high to low transaction on CSN.  
Instruction set for the Transceiver and AD converter subsystem  
Instruction Name  
Instruction  
Format  
Operation  
W_RF_CONFIG  
(WRC)  
0000 AAAA  
Write Configuration-register. AAAA indicates which byte  
the write operation is to be started from. Number of bytes  
depending on start address AAAA.  
R__RF_CONFIG  
(RRC)  
0001 AAAA  
Read Configuration-register. AAAA indicates which byte  
the read operation is to be started from. Number of bytes  
depending on start address AAAA.  
W_TX_PAYLOAD  
(WTP)  
R_TX_PAYLOAD  
(RTP)  
W_TX_ADDRESS  
(WTA)  
R_TX_ADDRESS  
(RTA)  
R_RX_PAYLOAD  
(RRP)  
R_ADC_DATA  
(RAD)  
W_ADC_CONFIG  
(WAC)  
R_ADC_CONFIG  
(RAC)  
0010 0000  
0010 0001  
0010 0010  
0010 0011  
0010 0100  
0100 000A  
0100 0100  
0100 0110  
Write TX-payload: 1 – 32 bytes. A write operation will  
always start at byte 0.  
Read TX-payload: 1 – 32 bytes. A read operation will  
always start at byte 0.  
Write TX-address: 1 – 4 bytes. A write operation will  
always start at byte 0.  
Read TX-address: 1 – 4 bytes. A read operation will  
always start at byte 0.  
Read RX-payload: 1 – 32 bytes. A read operation will  
always start at byte 0.  
Read ADC data. A indicates which byte the read  
operation is to be started from.  
Write ADC configuration register: 1 – 3 bytes.  
A write operation will always start at byte 0.  
Read ADC configuration register: 1 – 3 bytes.  
A read operation will always start at byte 0.  
Special command for fast setting of CH_NO,  
HFREQ_PLL and PA_PWR in the CONFIGURATION  
REGISTER. CH_NO= ccccccccc, HFREQ_PLL = h  
PA_PWR = pp  
CHANNEL_CONFIG 1000 pphc  
(CC) cccc cccc  
START_ADC_CONV 1100 ssss  
(SAV)  
Special command for start of an ADC conversion for a  
given source – ssss = CHSEL.  
Table 21 Instruction set for the Transceiver AD converter subsystem.  
A read or a write operation may operate on a single byte or on a set of succeeding bytes  
from a given start address defined by the instruction. When accessing succeeding bytes  
one will read or write MSB of the byte with the smallest byte number first. The content  
of the status-register will always be read to MISO after a high to low transition on CSN.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 35 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.3 SPI Timing  
Data is clocked into or out of the device on the rising edge of the clock pulse. The clock  
speed is determined by the MCU and may be from 1Hz to 10MHz depending on the  
MCU. The device must be in one of the power saving modes for the configuration  
registers to be read or written to.  
CSN  
0
1
2
3
7
8
15  
SCK  
Command 8 bits, MSB = C7  
C
7
C
6
C
5
C
4
C
3
C
2
C
1
C
0
MOSI  
MISO  
Status byte as output, MSB = S7  
Addressed byte as output, MSB = O7  
S
7
S
6
S
5
S
4
S
3
S
2
S
1
S
0
O
7
O
6
O
5
O
4
O
3
O
2
O
1
O
0
Succeeding bytes to addressed byte  
as output  
Figure 11 Internal SPI read operation.  
CSN  
0
1
2
3
7
8
15  
SCK  
Command 8 bits, MSB = C7  
First data byte as input, MSB = D7  
C
7
C
6
C
5
C
4
C
3
C
2
C
1
C
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Succeeding data bytes as input  
MOSI  
MISO  
Status byte as output, MSB = S7  
S
7
S
6
S
5
S
4
S
3
S
2
S
1
S
0
Figure 12 Internal SPI write operation.  
The transceiver and AD converter SPI interface is controlled by P2 in the micro  
controller. That is, SCK, MOSI, MISO and CSN are P2.0, P2.1, P2.2 and P2.3  
respectively. Detailed information of mapping is found in chapter 8.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 36 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.4 RF Configuration – Register Description  
Parameter  
Bitwidth  
Description  
CH_NO  
9
Sets center frequency together with HFREQ_PLL (default value = 001101100b = 108d).  
fRF = ( 422.4 + CH_NOd /10)*(1+HFREQ_PLLd) MHz  
Sets PLL in 433 or 868/915 MHz mode (default value = 0).  
'0' – Chip operating in 433MHz band  
HFREQ_  
PLL  
1
'1' – Chip operating in 868 or 915 MHz band  
PA_PWR  
2
Output power (default value = 00).  
'00' -10dBm  
'01' -2dBm  
'10' +6dBm  
'11' +10dBm  
RX_RED_  
PWR  
1
1
3
Reduces current in RX mode by 1.6mA. Sensitivity is reduced (default value = 0).  
'0' – Normal operation  
'1' – Reduced power  
AUTO_  
RETRAN  
Retransmit contents in TX – register as long TRX_CE and TXEN is high (default value = 0).  
'0' – No retransmission  
'1' – Retransmission of data package  
RX_AFW  
TX_AFW  
RX_PW  
RX-address width (default value = 100).  
'001' – 1 byte RX address field width  
.
'100' – 4 byte RX address field width  
3
6
TX-address width (default value = 100).  
'001' – 1 byte TX address field width  
.
'100' – 4 byte TX address field width  
RX-payload width (default value = 100000).  
'000001' – 1 byte RX payload field width  
'000010' – 2 byte RX payload field width  
.
'100000' – 32 byte RX payload field width  
TX_PW  
6
TX-payload width (default value = 100000).  
'000001' – 1 byte TX payload field width  
'000010' – 2 byte TX payload field width  
.
'100000' – 32 byte TX payload field width  
RX_  
ADDRESS  
UP_CLK_  
FREQ  
32  
2
RX address identity. Used bytes depend on RX_AFW (default value = E7E7E7E7h).  
CPU clock frequency (default value = 11).  
'00' – 4MHz  
'01' – 2MHz  
'10' – 1MHz  
'11' – 500kHz  
UP_CLK_  
EN  
1
3
CPU clock enable (default value = 1).  
'0' – CPU using UP_CLK_FREQ frequency  
'1' – CPU using XOF frequency  
XOF  
Crystal oscillator frequency. Must be set according to external crystal resonant-frequency.  
'000' – 4MHz  
'001' – 8MHz  
'010' – 12MHz  
'011' – 16MHz  
'100' – 20MHz  
(default value = 100)  
CRC_EN  
1
1
CRC – check enable (default value = 1).  
'0' – Disable  
'1' – Enable  
CRC – mode (default value = 1).  
'0' – 8 CRC check bit  
CRC_  
MODE  
'1' – 16 CRC check bit  
Table 22 RF configuration-register description.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 37 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.5 ADC - Configuration Register Description  
Parameter  
Bitwidth  
Description  
1
Positive edge of this signal will start one AD conversion when ADCRUN is  
inactive. This bit is internally synchronized to the ADC clock  
ADC running continuously when active.  
CSTARTN is ignored in this case  
CSTARTN  
1
1
ADCRUN  
Enable ADC  
ADC_PWR_  
UP  
1
4
Select reference for AD converter  
0: Use internal band gap reference (nominally 1.22V)  
1: Use external pin AREF for reference (ignored if CHSEL=[1xxx]).  
Cannel select input  
0000: AIN0  
VFSSEL  
CHSEL  
0001: AIN1  
0010: AIN2  
0011: AIN3  
1xxx: internal VDD/3.  
2
RESCTRL  
Set A/D converter resolution:  
00: 6 bit  
01: 8 bit  
10: 10 bit  
11: 12 bit  
1
1
Enable differential measurements, AIN0 must be used as inverting input and one of  
the other inputs AIN1 to AIN3, as selected by ADCSEL, must be used as  
noninverting input.  
Select left or right justified data format:  
0: Data will be left justified in ADC_DATA_REG  
1: Data will be right justified in ADC_DATA_REG  
DIFFMODE,  
ADC_  
RL_JUST  
Table 23 ADC Configuration-register description.  
11.6 Status-Register Description  
Parameter  
Bitwidth  
Description  
AM  
1
Address Match, indicate that the receiver has received an address equal to its own  
identity.  
Detailed description in chapter 9.8.  
CD  
DR  
1
1
1
3
Carrier Detect, indicates that a carrier is found on the receiving channel. Detailed  
description in chapter 9.7  
Data Ready, indicate that the receiver has received a data package with correct  
address and CRC. Detailed description in chapter 9.9.  
End Of Conversion, indicates that an AD conversion is completed and that data is  
placed in ADC_DATA_REG.  
Overflow indication in ADC  
EOC  
ADC_  
RFLAG  
RFLAG[2]: Underflow (ADCDATA = 0)  
RFLAG[1]: Overflow (ADCDATA = 2N-1)  
RFLAG[0]: Over range = RFLAG[1] or RFLAG[2]  
Table 24 Status-register description.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 38 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.7 RF - Register Contents  
RF-CONFIG_REGISTER (R/W)  
Byte #  
Content bit[7:0], MSB = bit[7]  
Init value  
0110_1100  
0000_0000  
0
1
CH_NO[7:0]  
bit[7:6] not used, AUTO_RETRAN, RX_RED_PWR, PA_PWR[1:0],  
HFREQ_PLL, CH_NO[8]  
0100_0100  
0010_0000  
0010_0000  
E7  
2
3
4
5
6
7
8
9
bit[7] not used, TX_AFW[2:0] , bit[3] not used, RX_AFW[2:0]  
bit[7:6] not used, RX_PW[5:0]  
bit[7:6] not used, TX_PW[5:0]  
RX_ADDRESS (device identity) byte 0  
RX_ADDRESS (device identity) byte 1  
RX_ADDRESS (device identity) byte 2  
E7  
E7  
E7  
RX_ADDRESS (device identity) byte 3  
1110_0111  
CRC_MODE,CRC_EN, XOF[2:0], UP_CLK_EN, UP_CLK_FREQ[1:0]  
Table 25 RF config register contents.  
TX_PAYLOAD (R/W)  
Content bit[7:0], MSB = bit[7]  
TX_PAYLOAD[7:0]  
TX_PAYLOAD[15:8]  
-
Byte #  
Init value  
X
X
X
X
X
X
0
1
-
-
30  
31  
-
TX_PAYLOAD[247:240]  
TX_PAYLOAD[255:248]  
Table 26 TX payload register contents.  
TX_ADDRESS (R/W)  
Content bit[7:0], MSB = bit[7]  
TX_ADDRESS[7:0]  
Byte #  
Init value  
E7  
E7  
0
1
2
3
TX_ADDRESS[15:8]  
TX_ADDRESS[23:16]  
TX_ADDRESS[31:24]  
E7  
E7  
Table 27 TX address register contents.  
RX_PAYLOAD (R)  
Content bit[7:0], MSB = bit[7]  
RX_PAYLOAD[7:0]  
RX_PAYLOAD[15:8]  
-
Byte #  
Init value  
X
X
X
0
1
X
X
X
-
30  
31  
RX_PAYLOAD[247:240]  
RX_PAYLOAD[255:248]  
Table 28 RX payload register contents.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 39 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
11.8 ADC Configuration Register Contents  
ADC_CONFIG_REG (R/W)  
Byte #  
Content bit[7:0], MSB = bit[7]  
Control: CHSEL[7:4], VFSSEL, PWR_UP, ADCRUN, CSTARTN  
Static: bit[7:4] not used, ADC_RL_JUST, DIFFMODE, RESCTRL[1:0]  
Init value  
0000_0001  
0000_0010  
0
1
Table 29 ADC Configuration Register contents.  
11.9 ADC Data Register Contents  
ADC_DATA_REG (R)  
Byte #  
Content bit[7:0], MSB = bit[7]  
Left or right justified data from ADC  
Left or right justified data from ADC  
Init value  
0
1
X
X
Table 30 ADC DATA Register contents.  
11.10Status Register Contents  
STATUS_REGISTER (R)  
Byte #  
Content bit[7:0], MSB = bit[7]  
Init value  
0
AM, CD, DR, EOC, ADC_RFLAG[2:0], Even parity  
X
Table 31 Status Register contents.  
The length of all registers is fixed. However, the bytes in TX_PAYLOAD,  
TM  
RX_PAYLOAD, TX_ADDRESS and RX_ADDRESS used in ShockBurst  
RX/TX  
are set in the configuration register. Register content is not lost when the device enters  
one of the power saving modes.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 40 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
12 TRANCEIVER SUBSYTEM TIMING  
The following timing must be obeyed during nRF905 operation.  
12.1 Device Switching Times  
nRF905 timing  
STBY è TX Shock Burst™  
STBY è RX Shock Burst™  
Max.  
650 ms  
650 ms  
550 1ms  
550 1ms  
RX Shock Burst™ è TX Shock Burst™  
TX Shock Burst™ è RX Shock Burst™  
Notes to table:  
1)  
RX to TX or TX to RX switching is available without re-programming of the RF  
configuration register. The same frequency channel is maintained.  
Table 32 Switching times for nRF905.  
12.2 ShockBurstTM TX Timing  
MOSI  
CSN  
PWR_UP  
TX_EN  
TRX_CE  
TX DATA  
TIME  
Programming of  
Configuration Register  
and TX Data Register  
T0 T1  
T2  
T3  
Transmitted Data 100kbps  
Manchester Encoded  
T0 = Radio Enabled  
T1 = T0+10uS Minimum TRX_CE pulse  
T2 = T0 + 650uS.Start of TX Data transmission  
T3 = End of Data Packet, enter Standby mode  
Figure 13 Timing diagram for standby to transmit.  
After a data packet has finished transmitting the device will automatically enter Standby  
mode and wait for the next pulse of TRX_CE. If the Auto Re-Transmit function is  
enabled the data packet will continue re-sending the same data packet until TRX_CE is  
set low.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 41 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
12.3 ShockBurstTM RX Timing  
PWR_UP  
TX_EN  
TRX_CE  
RX DATA  
CD  
AM  
DR  
650uS  
TIME  
650uS to enter RX  
T0  
T1  
T2  
T3  
mode from  
TRX_CE being set  
high.  
T0 = Receiver Enabled -Listening for Data  
T1 = Carrier Detect finds a carrier  
T2 = AM - Correct Address Found  
T3 = DR - Data packet with correct Address/CRC  
Figure 14 Timing diagram for standby to receiving.  
After the Data Ready (DR) has been set high a valid data packet is available in the RX  
data register. This may be clocked out in Standby mode. After the data has been clocked  
out via the SPI interface the Data Ready (DR) and Address Match (AM) signals are reset  
to low.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 42 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
13 SPI  
nRF9E5 SPI is a simple single buffered master. The 3 data lines of the SPI bus (MISO,  
SCK and MOSI) are multiplexed (by writing to register SPI_CTRL) between the GPIO  
pins (lower 3 bits of P1) and the RF transceiver and AD converter subsystems. The SPI  
hardware does not generate any chip select signal. The bootstrap loader uses EECSN  
(GPIO P0.3) as chip select for the boot EEPROM. On-chip GPIO P2.3 is dedicated as  
chip select for the RF transceiver and AD converter subsystems. GPIO pins from port 0  
may be used as chip selects for other external SPI slaves.  
The SPI hardware is controlled by SFR’s SPI_DATA (0xb2), SPI_CTRL (0xb3) and  
SPICLK (0xb4) as explained in Table 33 below.  
Addr  
SFR  
R/W #bit  
Init  
(hex)  
Name  
Function  
(hex)  
B2  
B3  
R/W  
R/W  
8
2
0
0
SPI_DATA  
SPI_CTRL  
SPI data input/output  
00 -> SPI not used no clock generated  
01 -> SPI connected to port P1 (as for booting)  
(see also Table 11 Port 1 (P1) functions)  
10 -> SPI connected to the nRF905 transceiver  
(see Table 15 P2 (RADIO) register )  
Divider factor from CPU clock to SPI clock  
0000: 1/2 of CPU clock frequency  
0001: 1/2 of CPU clock frequency  
0010: 1/4 of CPU clock frequency  
0011: 1/8 of CPU clock frequency  
0100: 1/16 of CPU clock frequency  
0101: 1/32 of CPU clock frequency  
0110: 1/64 of CPU clock frequency  
other: 1/64 of CPU clock frequency  
B4  
R/W  
4
0
SPICLK  
Table 33 SPI control and data SFR-registers.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 43 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
14 PWM  
The nRF9E5 PWM output is a one-channel PWM with a 2 register interface. The first  
register, PWMCON, enables PWM function and PWM period length, which is the  
number of clock cycles for one PWM period, as shown in the table below. The other  
register, PWMDUTY, controls the duty cycle of the PWM output signal. When this  
register is written, the PWM signal will change immediately to the new value. This can  
result in 4 transitions within one PWM period, but the transition period will always have  
a “DC value” between the “old” sample and the “new” sample.  
The table shows how PWM frequency (or period length) and PWM duty cycle are  
controlled by the settings in the two PWM SFR-registers. For a crystal frequency of 16  
MHz, PWM frequency range will be about 1-253 kHz.  
PWMCON[7:6]  
(Number of bits)  
PWM frequency  
PWMDUTY  
(duty cycle)  
00 (0)  
01 (6)  
10 (7)  
11 (8)  
0 (PWM module inactive)  
1
0
PWMDUTY  
63  
[
5 : 0  
]
f XO  
×
(
[
]
)
63 × PWMCON 5 : 0 + 1  
1
PWMDUTY  
127  
[
6 : 0  
]
f XO  
×
(
[
]
)
127 × PWMCON 5 : 0 + 1  
PWMDUTY  
1
f XO  
×
(
[
]
)
255  
255 × PWMCON 5 : 0 + 1  
Table 34 PWM frequency and duty-cucle.  
PWM is controlled by SFR 0xA9 and 0xAA.  
Addr  
SFR  
R/W  
#bit  
Init  
(hex)  
Name  
Function  
(hex)  
A9  
R/W  
8
0
PWMCON  
PWM control register  
7-6: Enable / period length select  
00: Disable PWM  
01: Period length is 6 bit  
10: Period length is 7 bit  
11: Period length is 8 bit  
5-0: PWM frequency prescale factor  
(see table above)  
AA  
R/W  
8
0
PWMDUTY  
PWM duty cycle (6 to 8 bits according to  
period length)  
Table 35 PWM control registers - SFR 0xA9 and 0xAA.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 44 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
15 INTERRUPTS  
nRF9E5 supports the following interrupt sources:  
Interrupt  
signal  
INT0_N  
Natural  
Priority  
1
Interupt  
Vector  
0x03  
Flag  
Enable  
Control  
Description  
TCON.1  
IE.0  
IP.0  
External interrupt, active  
low, configurable as edge-  
sensitive or level-sensitive,  
at Port P0.3  
TF0  
INT1_N  
2
3
0x0B  
0x13  
TCON.5  
TCON.3  
IE.1  
IE.2  
IP.1  
IP.2  
Timer 0 interrupt  
External interrupt, active  
low, configurable as edge-  
sensitive or level-sensitive,  
at Port P0.4  
TF1  
TI or RI  
4
5
0x1B  
0x23  
TCON.7  
SCON.0  
(RI),  
IE.3  
IE.4  
IP.3  
IP.4  
Timer 1 interrupt  
Receive/transmit interrupt  
from Serial Port  
SCON.1 (TI)  
T2CON.7  
(TF2),  
TF2 or  
EXF2  
6
0x2B  
IE.5  
IP.5  
Timer 2 interrupt  
T2CON.6  
(EXF2)  
int2  
int3  
int4  
int5  
wdti  
8
0x43  
0x4B  
0x53  
0x5B  
0x63  
EXIF.4  
EXIF.5  
EXIF.6  
EXIF.7  
EICON.3  
EIE.0  
EIE.1  
EIE.2  
EIE.3  
EIE.4  
EIP.0  
EIP.1  
EIP.2  
EIP.3  
EIP.4  
Internal ADC EOC (end of  
AD conversion) interrupt  
Internal SPI READY  
interrupt  
Internal Radio Data Ready  
(DR) interrupt  
Internal Radio Address  
Match (AM) interrupt  
Internal Wakeup (GPIO  
wakeup and RTC timer)  
interrupt  
9
10  
11  
12  
Table 36 nRF9E5 interrupt sources.  
15.1 Interrupt SFRs  
The following SFRs are associated with interrupt control:  
- IE – SFR 0xA8 (Table 37)  
- IP – SFR 0xB8 (Table 38)  
- EXIF – SFR 0x91 (Table 39)  
- EICON – SFR 0xD8 (Table 40)  
- EIE – SFR 0xE8 (Table 41)  
- EIP – SFR 0xF8 (Table 42)  
The IE and IP SFRs provide interrupt enable and priority control for the standard  
interrupt unit, as with industry standard 8051. The EXIF, EICON, EIE, and EIP registers  
provide flags, enable control, and priority control for the extended interrupt unit.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 45 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Table 37 explains the bit functions of the IE register.  
Bit  
Function  
IE.7  
EA • Global interrupt enable. Controls masking of all interrupts. EA = 0 disables all  
interrupts (EA overrides individual interrupt enable bits). When EA = 1, each interrupt  
is enabled or masked by its individual enable bit.  
IE.6  
IE.5  
Reserved. Read as 0.  
ET2 • Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2 = 1  
enables interrupts generated by the TF2 or EXF2 flag.  
IE.4  
IE.3  
IE.2  
IE.1  
IE.0  
ES • Enable Serial Port interrupt. ES = 0 disables Serial Port interrupts (TI and RI). ES  
= 1 enables interrupts generated by the TI or RI flag.  
ET1 • Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1 = 1  
enables interrupts generated by the TF1 flag.  
EX1 • Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (INT1_N). EX1  
= 1 enables interrupts generated by the INT1_N pin.  
ET0 • Enable Timer 0 interrupt. ET0 = 0 disables Timer 0 interrupt (TF0). ET0 = 1  
enables interrupts generated by the TF0 flag.  
EX0 • Enable external interrupt 0. EX0 = 0 disables external interrupt 0 (INT0_N). EX0  
= 1 enables interrupts generated by the INT0_N pin.  
Table 37 IE Register – SFR 0xA8.  
Table 38 explains the bit functions of the IP register.  
Bit  
Function  
IP.7  
IP.6  
IP.5  
Reserved. Read as 1.  
Reserved. Read as 0.  
PT2 • Timer 2 interrupt priority control. PT2 = 0 sets Timer 2 interrupt (TF2) to low  
priority. PT2 = 1 sets Timer 2 interrupt to high priority.  
IP.4  
IP.3  
IP.2  
IP.1  
IP.0  
PS • Serial Port interrupt priority control. PS = 0 sets Serial Port interrupt (TI or RI) to  
low priority. PS = 1 sets Serial Port interrupt to high priority.  
PT1 • Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low  
priority. PT1 = 1 sets Timer 1 interrupt to high priority.  
PX1 • External interrupt 1 priority control. PX1 = 0 sets external interrupt 1 (INT1_N)  
to low priority. PT1 = 1 sets external interrupt 1 to high priority.  
PT0 • Timer 0 interrupt priority control. PT0 = 0 sets Timer 0 interrupt (TF0) to low  
priority. PT0 = 1 sets Timer 0 interrupt to high priority.  
PX0 • External interrupt 0 priority control. PX0 = 0 sets external interrupt 0 (INT0_N)  
to low priority. PT0 = 1 sets external interrupt 0 to high priority.  
Table 38 IP Register – SFR 0xB8.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 46 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Table 39 explains the bit functions of the EXIF register.  
Bit  
Function  
EXIF.7  
IE5 • Interrupt 5 flag. IE5 = 1 indicates that a rising edge was detected on the radio AM  
signal (see P2). IE5 must be cleared by software. Setting IE5 in software generates an  
interrupt, if enabled.  
EXIF.6  
EXIF.5  
EXIF.4  
IE4 • Interrupt 4 flag. IE4 = 1 indicates that a rising edge was detected on the radio DR  
signal (see P2). IE4 must be cleared by software. Setting IE4 in software generates an  
interrupt, if enabled.  
IE3 • Interrupt 3 flag. IE3 = 1 indicates that the internal SPI module has sent or received  
8 bits, and is ready for a new command. IE3 must be cleared by software. Setting IE3 in  
software generates an interrupt, if enabled.  
IE2 • Interrupt 2 flag. IE2 = 1 indicates that a rising edge was detected on the ADC’s  
EOC signal (see chapter 10 ). IE2 must be cleared by software. Setting IE2 in software  
generates an interrupt, if enabled.  
EXIF.3  
Reserved. Read as 1.  
EXIF.2•0  
Reserved. Read as 0.  
Table 39 EXIF Register – SFR 0x91.  
Table 40 explains the bit functions of the EICON register.  
Bit  
Function  
EICON.7  
EICON.6  
EICON.5  
EICON.4  
EICON.3  
Not used.  
Reserved. Read as 1.  
Reserved. Read as 0.  
Reserved. Read as 0.  
WDTI • Wakeup (GPIO wakeup and RTC timer) interrupt flag. WDTI = 1 indicates a  
wakeup event interrupt was detected. WDTI must be cleared by software before  
exiting the interrupt service routine. Otherwise, the interrupt occurs again. Setting  
WDTI in software generates a wakeup event interrupt, if enabled.  
EICON.2•0  
Reserved. Read as 0.  
Table 40 EICON Register – SFR 0xD8.  
Table 41 explains the bit functions of the EIE register.  
Bit  
Function  
EIE.7•5  
EIE.4  
Reserved. Read as 1.  
EWDI • Enable RTC wakeup timer interrupt. EWDI = 0 disables wakeup timer  
interrupt (wdti). EWDI = 1 enables interrupts generated by wakeup.  
EX5 • Enable interrupt 5. EX5 = 0 disables interrupt 5 (radio AM (address match)).  
EX5 = 1 enables interrupts generated by the radio AM signal.  
EX4 • Enable interrupt 4. EX4 = 0 disables interrupt 4 (radio DR (data ready)). EX4 = 1  
enables interrupts generated by the radio DR signal.  
EX3 • Enable interrupt 3. EX3 = 0 disables interrupt 3 (SPI READY). EX3 = 1 enables  
interrupts generated by the SPI READY signal.  
EX2 • Enable interrupt 2. EX2 = 0 disables interrupt 2 (ADC EOC). EX2 = 1 enables  
interrupts generated by the ADC EOC signal.  
EIE.3  
EIE.2  
EIE.1  
EIE.0  
Table 41 EIE Register – SFR 0xE8.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 47 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Table 42 explains the bit functions of the EIP register.  
Bit  
Function  
EIP.7•5  
EIP.4  
Reserved. Read as 1.  
PWDI • Wakeup interrupt priority control. WDPI = 0 sets the wakeup interrupt (wdti)  
to low priority. PS = 1 sets wakeup timer interrupt to high priority.  
PX5 • interrupt 5 priority control. PX5 = 0 sets interrupt 5 (radio AM) to low priority.  
PX5 = 1 sets interrupt 5 to high priority.  
PX4 • interrupt 4 priority control. PX4 = 0 sets interrupt 4 (radio DR) to low priority.  
PX4 = 1 sets interrupt 4 to high priority.  
PX3 • interrupt 3 priority control. PX3 = 0 sets interrupt 3 (SPI READY) to low  
priority. PX3 = 1 sets interrupt 3 to high priority.  
PX2 • interrupt 2 priority control. PX2 = 0 sets interrupt 2 (ADC EOC) to low priority.  
PX2 = 1 sets interrupt 2 to high priority.  
EIP.3  
EIP.2  
EIP.1  
EIP.0  
Table 42 EIP Register – SFR 0xF8.  
15.2 Interrupt Processing  
When an enabled interrupt occurs, the CPU vectors to the address of the interrupt  
service routine (ISR) associated with that interrupt, as listed in Table 36. The CPU  
executes the ISR to completion unless another interrupt of higher priority occurs. Each  
ISR ends with an RETI (return from interrupt) instruction. After executing the RETI, the  
CPU returns to the next instruction that would have been executed if the interrupt had  
not occurred.  
An ISR can only be interrupted by a higher priority interrupt. That is, an ISR for a low-  
level interrupt can be interrupted only by a high-level interrupt. The CPU always  
completes the instruction in progress before servicing an interrupt. If the instruction in  
progress is RETI, or a write access to any of the IP, IE, EIP, or EIE SFRs, the CPU  
completes one additional instruction before servicing the interrupt.  
15.3 Interrupt Masking  
The EA bit in the IE SFR (IE.7) is a global enable for all interrupts. When EA = 1, each  
interrupt is enabled/masked by its individual enable bit. When EA = 0, all interrupts are  
masked. Table 36 provides a summary of interrupt sources, flags, enables, and priorities.  
15.4 Interrupt Priorities  
There are two stages of interrupt priority assignment: interrupt level and natural priority.  
The interrupt level (high, or low) takes precedence over natural priority. All interrupts  
can be assigned either high or low priority. In addition to an assigned priority level (high  
or low), each interrupt has a natural priority, as listed in Table 36. Simultaneous  
interrupts with the same priority level (for example, both high) are resolved according to  
their natural priority. For example, if INT0_N and int2 are both programmed as high  
priority, INT0_N takes precedence. Once an interrupt is being serviced, only an interrupt  
of higher priority level can interrupt the service routine of the interrupt currently being  
serviced.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 48 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
15.5 Interrupt Sampling  
The internal timers and serial port generate interrupts by setting their respective SFR  
interrupt flag bits. The CPU samples external interrupts once per instruction cycle, at the  
rising edge of CPU_clk at the end of cycle C4.  
The INT0_N and INT1_N signals are both active low and can be programmed through  
the IT0 and IT1 bits in the TCON SFR to be either edge-sensitive or level-sensitive. For  
example, when IT0 = 0, INT0_N is level-sensitive and the CPU sets the IE0 flag when  
the INT0_N pin is sampled low. When IT0 = 1, INT0_N is edge-sensitive and the CPU  
sets the IE0 flag when the INT0_N pin is sampled high then low on consecutive  
samples. To ensure that edge-sensitive interrupts are detected, the corresponding ports  
should be held high for four clock cycles and then low for four clock cycles. Level-  
sensitive interrupts are not latched and must remain active until serviced.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 49 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
15.6 Interrupt Latency  
Interrupt response time depends on the current state of the CPU. The fastest response  
time is five instruction cycles: one to detect the interrupt, and four to perform the  
LCALL to the ISR. The maximum latency (thirteen instruction cycles) occurs when the  
CPU is currently executing an RETI instruction followed by a MUL or DIV instruction.  
The thirteen instruction cycles in this case are: one to detect the interrupt, three to  
complete the RETI, five to execute the DIV or MUL, and four to execute the LCALL to  
the ISR.  
For the maximum latency case, the response time is 13 x 4 = 52clock cycles.  
15.7 Interrupt Latency from Power Down State.  
The nRF9E5 may be set into Power Down state by writing a non zero value to SFR  
0xB6, register CK_CTRL. The CPU will then perform a controlled shutdown of clock  
and power regulator depending on what mode was selected. The system can only be  
restarted from an RTC wakeup, a GPIO wakeup or a Watchdog reset. If a wakeup  
interrupt is enabled, the startup time for regulators and clocks will be added to the  
interrupt latency. See 17.2.1 Startup Time From Reset  
15.8 Single-Step Operation  
The nRF9E5 interrupt structure provides a way to perform single-step program  
execution. When exiting an ISR with an RETI instruction, the CPU will always execute  
at least one instruction of the task program. Therefore, once an ISR is entered, it cannot  
be re-entered until at least one program instruction is executed. To perform single-step  
execution, program one of the external interrupts (for example, INT0_N) to be level  
sensitive and write an ISR for that interrupt that terminates as follows:  
JNB TCON.1,$ ;  
JB TCON.1,$ ;  
RETI ;  
wait for high on INT0_N  
wait for low on INT0_N  
return for ISR  
The CPU enters the ISR when INT0_N goes low, then waits for a pulse on INT0_N.  
Each time INT0_N is pulsed, the CPU exits the ISR, executes one program instruction,  
then re-enters the ISR.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 50 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
16 LF CLOCK WAKEUP FUNCTIONS AND WATCHDOG  
16.1 The LF Clock  
The nRF9E5 contains has an internal low frequency clock CKLF that is always active.  
When the crystal oscillator clocks the circuit, the CKLF is a 4kHz clock derived from  
the crystal oscillator (provided the CKLFCON register is set according to crystal  
frequency and prescaler. XOF and UP_CLK_FREQ respectively, see Table 22). When  
no crystal oscillator clock is available, the CKLF is a low power RC oscillator  
(LP_OSC) that cannot be disabled, so it will run continuously as long as VDD = 1.8V.  
The microprocessor can determine the phase of the CKLF clock by reading CK_CTRL  
SFR 0xB6, see Table 50.  
16.2 Tick Calibration  
The “TICK” is an interval (in CKLF periods) that determines the resolution of the  
watchdog and the RTC wakeup timer. The tick is nominally 1ms (4 CKLF cycles).  
When the CPU is active and in power down modes where the chip still has crystal clock,  
the “TICK” will be as accurate as the crystal oscillator. When the CKLF switches to the  
RC oscillator (LP_OSC) in deep power down modes, the tick will no longer be accurate.  
The LP_OSC clock source is very inaccurate, and may vary from 0.5ms to 3ms  
depending production lot, temperature and supply voltage. That means that Watchdog  
and RTC wakeup may not be used for any accurate timing functions if these power  
down modes are used.  
The accuracy can be improved by calibrating the TICK value at regular intervals. The  
register TICK_DV controls how many LP_OSC periods elapse between each TICK. The  
frequency of the LP_OSC (between 1 kHz and 5 kHz) can be measured by timer2 in  
capture mode with t2ex enabled (EXEN2=1). The signal connected to t2ex has exactly  
half the frequency of LP_OSC. The 16-bit difference between two consecutive captures  
in SFR-registers{RCAP2H,RCAP2L} is proportional to the LP_OSC period. For details  
about timer2 see ch. 18.8.3 and Figure 21 Timer 2 – Timer/Counter with Capture  
TICK is controlled by SFRs 0xB5 and 0xBF  
Addr  
SFR  
R/W #bit  
Init  
Hex  
Name  
Function  
B5  
R/W  
R/W  
8
6
03  
TICK_DV  
Divider that’s used in generating TICK from CKLF  
frequency.  
TTICK = (1 + TICK_DV) / fCKLF  
The default value gives a TICK of 1ms nominal as  
default (with CKLF derived from crystal oscillator).  
BF  
27  
CKLFCON Configure CKLF generation with crystal frequency  
and prescaler value. Note this register only controls the  
generation of CKLF, not the actual prescaler values.  
5-3: Should be set equal to XOF, Table 22  
2: Should be set equal to UP_CLK_EN, Table 22  
1-0: Should be set equal to UP_CLK_FREQ, Table 22  
Table 43 TICK control register - SFR 0xB5.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 51 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
16.3 RTC Wakeup Timer  
The RTC is a simple 24 bit down counter that produces an optional interrupt and reloads  
automatically when the count reaches zero. This process is initially disabled, and will be  
enabled with the first write to the lower 16 bit of the timer latch. Writing the lower 16  
bits of the timer latch will always be followed by a reload of the counter. Writing the  
upper 8 bit of the timer latch should only be done when the timer is disabled. The  
counter may be disabled again by writing a disable opcode to the control register. Both  
the latch and the counter value may be read by giving the respective codes in the control  
register, see description in Table 45.  
This counter is used for a wakeup sometime in the future (a relative time wakeup call).  
If ‘N’ is written to the counter, the first wakeup will happen from somewhere between  
‘N+1’ and ‘N+2’ “TICK” from the completion of the write, thereafter a new wakeup is  
issued every “N+1” "TICK" until the unit is disabled or another value is written to the  
latch.  
The wakeup timer is one of the sources that can generate a WDTI interrupt to the CPU.  
The programmer may poll the EICON.3 flag or enable the interrupt. If the device is in a  
power down state, the wakeup will force the device to exit power down regardless of the  
state of EIE.4 interrupt enable.  
The nRF9E5 do not provide any “absolute time functions”. Absolute time functions in  
nRF9E5 can well be handled in software since the RAM is continuously powered even  
when in sleep mode.  
16.4 Programmable GPIO Wakeup Function  
Any number of the pins in port 0 may be used as wakeup signals for the nRF9E5. The  
device may be programmed to react on either rising or falling or both edges of each pin  
individually. Additionally each pin is equipped with a programmable “filter” that can be  
used for glitch suppression.  
CKLF  
P0x  
Wakeup P0x  
DEBOUNCE  
[1:0]  
EDGE  
[3:2]  
WWCON  
Figure 15 Wakeup filter, each pin for GPIO wakeup function.  
The debounce act as a low pass filter. The input has to be stable for a number of clock  
pulses given for the corresponding change to appear on the output. Edge triggers on  
either positive, negative or both edges. The edge delay is 2 clock cycles. Please see  
Table 44 and Table 47 for filter configuration.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 52 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Filter selection Debounce  
WCON [1:0] Number of clock pulses  
Edge detector selection  
WCON [3:2]  
pos / neg trigger  
00  
01  
10  
11  
0
2
8
00  
01  
10  
11  
Off  
Pos  
Neg  
Both  
64  
Table 44 GPIO wakeup filter configuration.  
16.5 Watchdog  
The watchdog is activated on the first write to its control register SFR 0xAD. It can not  
be disabled by any other means than a reset. The watchdog register is loaded by writing  
a 16-bit value to the two 8-bit data registers (SFR 0xAB and 0xAC) and then the writing  
the correct opcode to the control register. The watchdog will then count down towards 0  
and when 0 is reached the complete microcontroller will be reset To avoid the reset, the  
software must load new values into the watchdog register sufficiently often.  
16.6 Programming Interface to Watchdog and Wakeup Functions  
Figure 16 shows how the blocks that are always active are connected to the CPU. RTC  
timer GPIO wakeup and Watchdog are controlled via SFRs 0xAB, 0xAC and 0xAD.  
These 3 registers REGX_MSB, REGX_LSB and REGX_CTRL are used to interface the  
blocks running on the slow CKLF clock. The 16-bit register {REGX_MSB,  
REGX_LSB} can be written or read as two bytes from the CPU.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 53 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Typical sequences are:  
Write: Wait until REGX_CRTL.4 == 0 (i.e. not busy)  
Write REGX_MSB, Write REGX_LSB, Write REGX_CTRL  
Read: Wait until REGX_CRTL.4 == 0 (i.e. not busy)  
Write REGX_CTRL, Wait until REGX_CRTL.4 == 0 (i.e. not busy)  
Read REGX_MSB, Read REGX_LSB  
Note : Please wait until not busy before accessing SFR 0xB6 CK_CTRL (page 58)  
8-bit CPU  
register  
REGX_CTRL  
8-bit CPU  
register  
REGX_MSB  
8-bit CPU  
register  
REGX_LSB  
Clocked on CPU clock  
16-BIT BUS  
Clocked  
on CKLF  
8+16-BIT  
REGISTER  
Load  
TIMER_LATCH  
Load  
CE  
Load  
CE  
Load  
16-BIT  
DOWN  
24-BIT  
DOWN  
GPIO  
WAKEUP  
P1 GPIO  
IO  
COUNTER  
COUNTER  
RTC  
INT  
Zero  
Zero  
WAKEUP INT  
TICK  
WATCHDOG_RESET  
Figure 16 Block diagram of wakeup and watchdog function.  
Table 45 below describe the functions of the SFR registers that control these blocks, and  
Table 46 and Table 47 explains the contents of the individual control registers for  
watchdog and wakeup functions.  
Addr  
SFR  
(hex)  
R/W  
R/W  
R/W  
R/W  
#bit  
8
Init  
Hex  
Name  
Function  
AB  
AC  
AD  
00  
REGX_MSB  
REGX_LSB  
REGX_CTRL  
Most significant part of 16 bit register for  
interface to Watchdog, RTC timer and GPIO  
wakeup  
Least significant part of 16 bit register for  
interface to Watchdog, RTC timer and GPIO  
wakeup  
8
00  
00  
5
Control for 16 bit register for transfers to and  
from Watchdog, RTC timer and GPIO wakeup.  
4: REGX interface busy (read only).  
3: Read (0) / Write (1)  
2-0: Indirect address, see leftmost column in  
Table 46  
Table 45 Wakeup, RTC timer and Watchdog SFR-registers.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 54 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Addr  
Ctrl  
[2:0]  
R/W  
Ctrl  
[3]  
#bit  
Init  
Hex  
Name  
Function  
0
1
16  
16  
0000  
0000  
RWD  
Watchdog register (count)  
Watchdog register (count)  
0
1
WWD  
0
16  
0000  
RGTIMER  
15-8: MSB part of RTC counter  
7-0: MSB part of RTC latch  
1
0
12  
16  
000  
WGTIMER  
RRTCLAT  
11-8: GTIMER latch  
7-0: MSB part of RTC latch  
Least significant part of RTC latch  
0000  
2
3
1
0
1
16  
16  
0
0000  
0000  
-
WRTCLAT  
RRTC  
Least significant part of RTC latch  
RTC counter value  
WRTCDIS  
Disable RTC (data not used)  
0
9
000  
RWSTA0  
Wakeup status  
Bit 8: RTC timer status  
7-0: Wakeup status for pins P07-P00  
4
5
1
16  
0000  
WWCON0  
GPIO wakeup configuration for  
P03-P00. See Table 47.  
Wakeup status (Identical to WSTA0)  
GPIO wakeup configuration for  
P07-P04. See Table 47.  
0
1
9
16  
000  
0000  
RWSTA1  
WWCON1  
Table 46 Indirect addresses and functions.  
Bits  
WWCON1 function  
WWCON0 unction  
Edge selection for P03  
Edge filter for P03  
Edge selection for P02  
Edge filter for P02  
Edge selection for P01  
Edge filter for P01  
Edge selection for P00  
Edge filter for P00  
15:14 Edge selection for P07  
13:12 Edge filter for P07  
11:10 Edge selection for P06  
9:8  
7:6  
5:4  
3:2  
1:0  
Edge filter for P06  
Edge selection for P05  
Edge filter for P05  
Edge selection for P04  
Edge filter for P04  
Table 47 Bit fields in register WWCON1 and WWCON0.  
16.7 Reset  
The nRF9E5 can be reset either by the on-chip power-on reset circuitry or by the on-  
chip watchdog counter.  
16.7.1 Power-on Reset  
The power-on reset circuitry keeps the chip in power-on-reset state until the supply  
voltage reaches VDDmin (a voltage, less than 1.9V sufficiently high for digital  
operation). At this point the internal voltage generators and oscillators start up, the SFRs  
are initialized to their reset values, as listed in Table 62, and thereafter the CPU begins  
program execution at the standard reset vector address 0x0000. The startup time from  
power-on reset is normally determined by both the crystal oscillator startup time and the  
frequency of the low power oscillator (LP_OSC). This total may vary from 1 to 3 ms  
depending on processing, temperature and supply voltage.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 55 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
16.7.2 Watchdog Reset  
If the Watchdog reset signal goes active, nRF9E5 enters the same reset sequence as for  
power-on reset. That is, the internal voltage generators and oscillators start up, the SFRs  
are initialized to their reset values, as listed in Table 62, and thereafter the CPU begins  
program execution at the standard reset vector address 0x0000. The startup time from  
watchdog reset is somewhat shorter; expect a variation from 0.4 to 2ms depending on  
processing, temperature and supply voltage.  
16.7.3 Program Reset Address  
The program reset address is controlled by the RSTREAS register, SFR 0xB1, see Table  
48This register shows which reset source that caused the last reset, and provides a  
choice of two different program start addresses. The default value is power-on reset,  
which starts the boot loader, while a watchdog reset does not reboot and restarts at  
address 0 of the already loaded program.  
Addr  
SFR  
R/W  
#bit  
Init  
(hex)  
Name  
Function  
(hex)  
B1  
R/W  
2
02  
RSTREAS  
bit 0: Reason for last reset  
0: POR  
1: Any other reset source  
Clear this bit in software to force a  
reboot after jump to zero (boot loader  
will load code RAM if this bit is 0)  
bit 1: Use IROM for reset vector  
0: Reset vectors to 0x0000.  
1: Reset vectors to 0x8000.  
Table 48 Reset control register - SFR 0xB1.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 56 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
17 POWER SAVING MODES  
nRF9E5 provides the two industry standard 8051 power saving modes: idle mode and  
stop mode. To Achieve more power saving several additional power-down modes are  
provided, where both oscillator and internal power regulators may be turned off.  
The bits that control entry into idle and stop modes are in the PCON register at SFR  
address 0x87, listed in Table 49. The bits that control entry into power down mode are in  
the CK_CTRL register at SFR address 0xB6, listed in Table 51.  
Bit  
Function  
PCON.7  
SMOD – Serial Port baud-rate doubler enable. When SMOD = 1, the baud rate for  
Serial Port is doubled.  
PCON.6–4  
PCON.3  
Reserved.  
GF1 – General purpose flag 1. Bit-addressable, general purpose flag for software  
control.  
PCON.2  
GF0 – General purpose flag 0. Bit-addressable, general purpose flag for software  
control.  
PCON.1  
PCON.0  
STOP – Stop mode select. Setting the STOP bit places the nRF9E5 in stop mode.  
IDLE – Idle mode select. Setting the IDLE bit places the nRF9E5 in idle mode.  
Table 49 PCON Register – SFR 0x87.  
17.1 Standard 8051 Power Saving Modes  
17.1.1 Idle Mode  
An instruction that sets the IDLE bit (PCON.0) causes the nRF9E5 to enter idle mode  
when that instruction completes. In idle mode, CPU processing is suspended and internal  
registers and memory maintain their current data. However, unlike the standard 8051,  
the CPU clock is not disabled internally, thus not much power is saved.  
There are two ways to exit idle mode: activate any enabled interrupt or watchdog reset.  
Activation of any enabled interrupt causes the hardware to clear the IDLE bit and  
terminate idle mode. The CPU executes the ISR associated with the received interrupt.  
The RETI instruction at the end of the ISR returns the CPU to the instruction following  
the one that put the nRF9E5 into idle mode. A watchdog reset causes the nRF9E5 to exit  
idle mode, reset internal registers, execute its reset sequence and begin program  
execution at the standard reset vector address 0x0000.  
17.1.2 Stop Mode  
An instruction that sets the STOP bit (PCON.1) causes the nRF9E5 to enter stop mode  
when that instruction completes. Stop mode is identical to idle mode, except that the  
only way to exit stop mode is by watchdog reset Since there is little power saving, stop  
mode is not recommended, as it is more efficient to use power down mode.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 57 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
17.2 Additional Power Down Modes  
An instruction that sets the CK_CTRL (SFR 0xB6) to a non zero value causes the  
nRF9E5 to enter power down mode when that instruction completes. In power down  
mode, CPU processing is suspended, while internal registers and memories maintain  
their current data. The CPU will perform a controlled shutdown of clock and power  
regulators as requested by CK_CTRL.  
The device can only be restarted from an event on a P0 GPIO pin, an RTC wakeup or a  
Watchdog reset. Activation of any enabled wakeup source causes the hardware to clear  
the CK_CTRL bit and terminate power down mode. If there is an enabled interrupt  
associated with the wakeup even, the CPU executes the ISR associated with that  
interrupt immediately after power and clocks are restored. The RETI instruction at the  
end of the ISR returns the CPU to the instruction following the one that put the nRF9E5  
into power down mode. A watchdog reset causes the nRF9E5 to exit power down mode,  
reset internal registers, execute its reset sequence and begin program execution at the  
standard reset vector address 0x0000.  
Addr  
SFR  
R/W #bit  
Init  
Hex  
Name  
Function  
B6  
W
R
3
1
0
-
CK_CTRL  
CK_CTRL  
Set power down according to Table 51.  
Read LFCK clock in LSB. Other bits are  
unpredictable.  
Table 50 CK_CTRL register – SFR 0xB6.  
Note: Before writing the CK_CTRL register, make sure that the busy bit of  
RTC/Watchdog SFR 0xAD, bit 4 (page 54) is not set  
Note: When using power down modes where the CKLF source is LP_OSC, the startup  
time may be so long that the CPU may loose the corresponding interrupt.  
CK_CTRL  
(write)  
Function  
CKLF  
source  
XTAL Typical  
Osc Current Startup  
On  
Typical  
000  
001  
010  
011  
1--  
Normal operation, active  
Light power down  
Moderate power down  
Standby mode  
XTAL  
XTAL  
XTAL  
LP_OSC  
LP_OSC  
1 mA  
0.4 mA  
125 µA  
25 µA  
-
On  
On  
On  
Off  
2.5 µs  
7 µs  
150 µs  
1000 µs  
Deep power down  
2.5 µA  
Table 51 Power down modes.  
The table above shows typical startup time from interrupt. For GPIO the debounce time  
must be added, but during debounce the device is still in power down.  
17.2.1 Startup Time From Reset  
Startup time consists of a number of LP_OSC cycles + a number of XTAL clock  
cycles. fLP_OSC may vary from 1 to 5.5kHz over voltage and temperature.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 58 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Startup times are summarized in the table below:  
Reason of startup  
Power on  
Phase I  
(power and Clock)  
Phase II  
(Initialization and  
synchronization)  
The longest of:  
XO start-up time (3ms max)  
2500 fXTAL cycles  
0-1 LP_OSC cycles  
The longest of:  
2500 fCPU cycles  
0-1 LP_OSC cycles  
Watchdog  
XO start-up time if  
not already running  
Table 52 Startup times from Power down mode.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 59 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18 MICROCONTROLLER  
The embedded microcontroller is the DW8051 MacroCell from Synopsys which is  
similar to the Dallas DS80C320 in terms of hardware features and instruction-cycle  
timing.  
18.1 Memory Organization  
FFFFh  
81FFh  
Boot loader  
8000h  
IRAM  
SFR  
FFh  
Upper  
128  
FFh  
80h  
Accessible by  
indirect  
addressing only.  
Accessible by  
direct addressing  
only.  
bytes.  
80h  
7Fh  
0FFFh  
0000h  
Program/data memory.  
Accessible with movc and  
movx.  
Accessible by  
direct and indirect  
addressing.  
Lower  
128  
bytes.  
Special  
Function  
Registers  
00h  
Program memory/Data  
Memory (ERAM)  
Internal Data Memory  
Figure 17 Memory Map and Organization.  
18.1.1 Program Memory/Data Memory  
The nRF9E5 has 4KB of program memory available for user programs located at the  
bottom of the address space as shown in Figure 17. This memory also function as a  
random access memory and can be accessed with the movx and movc instructions.  
After power on reset the boot loader loads the user program from the external serial  
EEPROM and stores it from address 0 in this memory.  
18.1.2 Internal Data Memory  
The Internal Data Memory, illustrated in Figure 17, consists of:  
·
·
·
128 bytes of registers and scratchpad memory accessible through direct or indirect  
addressing (addresses 0x00–0x7F).  
128 bytes of scratchpad memory accessible through indirect addressing (0x80–  
0xFF).  
128 special function registers (SFRs) accessible through direct addressing.  
The lower 32 bytes form four banks of eight registers (R0–R7). Two bits on the program  
status word (PSW) select which bank is in use. The next sixteen bytes form a block of  
bit-addressable memory space at bit addresses 0x00–0x7F. All of the bytes in the lower  
128 bytes are accessible through direct or indirect addressing. The SFRs and the upper  
128 bytes of RAM share the same address range (0x80-0xFF). However, the actual  
address space is separate and is differentiated by the type of addressing. Direct  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 60 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
addressing accesses the SFRs, while indirect addressing accesses the upper 128 bytes of  
RAM. Most SFRs are reserved for specific functions, as described in 18.6 Special  
Function Registers on page 69. SFR addresses ending in 0h or 8h are bit-addressable.  
18.2 Program Format in External EEPROM  
The table below shows the layout of the first few bytes of the EEPROM image.  
7
6
5
4
3
2
1
0
0:  
Version  
(now 00)  
Reserved  
(now 00)  
SPEED  
XO_FREQ  
1:  
Offset to start of user program (N)  
2:  
Number of 256 byte blocks in user program (includes block 0 that is not full)  
N:  
Optional User data, not interpreted by boot loader  
First byte of user program, goes into ERAM at 0x0000  
N+1:  
Second byte of user program, goes into ERAM at 0x0001  
Table 53 EEPROM layout.  
The contents of the 4 lowest bits in the first byte is used by the boot loader to set the  
correct SPI frequency. These fields are encoded as shown below:  
SPEED (bit 3): EEPROM max speed  
0 = 1MHz  
1 = 0.5MHz  
XO_FREQ (bits 2,1 and 0): Crystal oscillator frequency  
000 = 4MHz,  
001 = 8MHz,  
010 = 12MHz,  
011 = 16MHz,  
100 = 20MHz  
The program eeprep1 can be used to add this header to a program file.  
Command format: eeprep [options] <infile> <outfile>  
<infile> is the output file of an assembler or compiler  
<outfile> is a file suitable for programming the EEPROM (above format with no user  
data).  
Both files are “Intelhex” format.  
The options available for eeprep are:  
-c n  
-i  
Set crystal frequency in MHz.  
Ignore checksums  
-p n Set program memory size (default 4096 bytes)  
-s Select slow EEPROM clock (500KHz)  
1
Available on www.nordicsemi.no  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 61 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.3 Instruction Set  
All nRF9E5 instructions are binary-code–compatible and perform the same functions  
that they do in the industry standard 8051. The effects of these instructions on bits, flags,  
and other status functions is identical to the industry-standard 8051. However, the timing  
of the instructions is different, both in terms of number of clock cycles per instruction  
cycle and timing within the instruction cycle.  
Table 55 to Table 60 lists the nRF9E5 instruction set and the number of instruction  
cycles required to complete each instruction.  
Symbol  
Function  
A
Accumulator  
Rn  
Register R0–R7  
direct  
@Ri  
rel  
Internal register address  
Internal register pointed to by R0 or R1 (except MOVX)  
Two’s complement offset byte  
Direct bit address  
bit  
#data  
#data 16  
addr 16  
addr 11  
8-bit constant  
16-bit constant  
16-bit destination address  
11-bit destination address  
Table 54 Legend for Instruction Set Table.  
Table 55 to Table 60 define the symbols and mnemonics used in Table 54.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 62 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Arithmetic Instructions  
Mnemonic  
Description  
Byte  
Instr.  
Hex  
Cycles  
Code  
ADD A, Rn  
Add register to A  
Add direct byte to A  
Add data memory to A  
Add immediate to A  
Add register to A with carry  
Add direct byte to A with carry  
Add data memory to A with carry  
Add immediate to A with carry  
Subtract register from  
borrow  
1
2
1
2
1
2
1
2
1
1
2
1
2
1
2
1
2
1
28–2F  
25  
26–27  
24  
38–3F  
35  
36–37  
34  
ADD A, direct  
ADD A, @Ri  
ADD A, #data  
ADDC A, Rn  
ADDC A, direct  
ADDC A, @Ri  
ADDC A, #data  
SUBB A, Rn  
A
with  
98–9F  
SUBB A, direct  
SUBB A, @Ri  
SUBB A, #data  
Subtract direct byte from A with  
borrow  
Subtract data memory from A with  
borrow  
Subtract immediate from A with  
borrow  
2
1
2
2
1
2
95  
96–97  
94  
INC A  
INC Rn  
Increment A  
Increment register  
1
1
2
1
1
1
2
1
1
1
1
1
1
1
2
1
1
1
2
1
3
5
5
1
04  
08–0F  
05  
06–07  
14  
18–1F  
15  
16–17  
A3  
A4  
84  
D4  
INC direct  
INC @Ri  
DEC A  
DEC Rn  
DEC direct  
DEC @Ri  
INC DPTR  
MUL AB  
DIV AB  
DA A  
Increment direct byte  
Increment data memory  
Decrement A  
Decrement register  
Decrement direct byte  
Decrement data memory  
Increment data pointer  
Multiply A by B  
Divide A by B  
Decimal adjust A  
All mnemonics are copyright © Intel Corporation 1980.  
Table 55 nRF9E5 Instruction Set, Arithmetic Instructions.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 63 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Logical Instructions  
Mnemonic  
Description  
Byte  
Instr.  
Hex  
Cycles  
Code  
ANL A, Rn  
AND register to A  
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
58–5F  
55  
56–57  
54  
52  
53  
48–4F  
45  
46–47  
44  
42  
43  
68–6F  
65  
66–67  
64  
62  
63  
ANL A, direct  
ANL A, @Ri  
ANL A, #data  
ANL direct, A  
ANL direct, #data  
ORL A, Rn  
ORL A, direct  
ORL A, @Ri  
ORL A, #data  
ORL direct, A  
ORL direct, #data  
XRL A, Rn  
XRL A, direct  
XRL A, @Ri  
XRL A, #data  
XRL direct, A  
XRL direct, #data  
AND direct byte to A  
AND data memory to A  
AND immediate to A  
AND A to direct byte  
AND immediate data to direct byte  
OR register to A  
OR direct byte to A  
OR data memory to A  
OR immediate to A  
OR A to direct byte  
OR immediate data to direct byte  
Exclusive-OR register to A  
Exclusive-OR direct byte to A  
Exclusive-OR data memory to A  
Exclusive-OR immediate to A  
Exclusive-OR A to direct byte  
Exclusive-OR immediate to direct  
byte  
CLR A  
CPL A  
SWAP A  
RL A  
RLC A  
RR A  
Clear A  
Complement A  
Swap nibbles of A  
Rotate A left  
Rotate A left through carry  
Rotate A right  
Rotate A right through carry  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
E4  
F4  
C4  
23  
33  
03  
13  
RRC A  
All mnemonics are copyright © Intel Corporation 1980.  
Table 56 nRF9E5 Instruction Set, Logical Instructions.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 64 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Boolean Instructions  
Mnemonic  
Description  
Byte  
Instr.  
Hex  
Cycles  
Code  
CLR C  
CLR bit  
SETB C  
SETB bit  
CPL C  
Clear carry  
Clear direct bit  
Set carry  
Set direct bit  
Complement carry  
Complement direct bit  
AND direct bit to carry  
AND direct bit inverse to carry  
OR direct bit to carry  
OR direct bit inverse to carry  
Move direct bit to carry  
Move carry to direct bit  
1
2
1
2
1
2
2
2
2
2
2
2
1
2
1
2
1
2
2
2
2
2
2
2
C3  
C2  
D3  
D2  
B3  
B2  
82  
B0  
72  
A0  
A2  
92  
CPL bit  
ANL C, bit  
ANL C, /bit  
ORL C, bit  
ORL C, /bit  
MOV C, bit  
MOV bit, C  
All mnemonics are copyright © Intel Corporation 1980.  
Table 57 nRF9E5 Instruction Set, Boolean Instructions.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 65 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Data Transfer Instructions  
Mnemonic  
Description  
Byte  
Instr.  
Hex  
Cycles  
Code  
MOV A, Rn  
Move register to A  
1
2
1
2
1
2
2
2
2
3
2
3
1
2
2
3
1
1
2
1
2
1
2
2
2
2
3
2
3
1
2
2
3
3
E8–EF  
E5  
E6–E7  
74  
F8–FF  
A8–AF  
78–7F  
F5  
88–8F  
85  
86–87  
75  
F6–F7  
A6–A7  
76–77  
90  
MOV A, direct  
MOV A, @Ri  
MOV A, #data  
MOV Rn, A  
MOV Rn, direct  
MOV Rn, #data  
MOV direct, A  
MOV direct, Rn  
Move direct byte to A  
Move data memory to A  
Move immediate to A  
Move A to register  
Move direct byte to register  
Move immediate to register  
Move A to direct byte  
Move register to direct byte  
MOV direct, direct Move direct byte to direct byte  
MOV direct, @Ri  
MOV direct, #data  
MOV @Ri, A  
MOV @Ri, direct  
MOV @Ri, #data  
Move data memory to direct byte  
Move immediate to direct byte  
Move A to data memory  
Move direct byte to data memory  
Move immediate to data memory  
MOV DPTR, #data Move immediate to data pointer  
MOVC  
A, Move code byte relative DPTR to A  
93  
@A+DPTR  
MOVC A, @A+PC Move code byte relative PC to A  
1
1
1
3
2–9*  
2–9*  
83  
E2–E3  
E0  
MOVX A, @Ri  
MOVX  
Move external data (A8) to A  
A, Move external data (A16) to A  
@DPTR  
MOVX @Ri, A  
MOVX @DPTR, Move A to external data (A16)  
A
Move A to external data (A8)  
1
1
2–9*  
2–9*  
F2–F3  
F0  
PUSH direct  
POP direct  
XCH A, Rn  
XCH A, direct  
XCH A, @Ri  
XCHD A, @Ri  
Push direct byte onto stack  
Pop direct byte from stack  
Exchange A and register  
Exchange A and direct byte  
Exchange A and data memory  
2
2
1
2
1
1
2
2
1
2
1
1
C0  
D0  
C8–CF  
C5  
C6–C7  
D6–D7  
Exchange  
nibble  
A and data memory  
All mnemonics are copyright © Intel Corporation 1980.  
Table 58 nRF9E5 Instruction Set, Data Transfer Instructions.  
* Number of cycles is 2 + CKCON.2-0. (CKCON.2-0 is the integer value of the 3LSB  
of SFR 0x8E CKCON). Default is 3 cycles.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 66 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Branching Instructions  
Mnemonic  
Description  
Byte  
Instr.  
Hex  
Cycles  
Code  
ACALL addr 11  
LCALL addr 16  
RET  
Absolute call to subroutine  
Long call to subroutine  
Return from subroutine  
Return from interrupt  
Absolute jump unconditional  
Long jump unconditional  
Short jump (relative address)  
Jump on carry = 1  
Jump on carry = 0  
Jump on direct bit = 1  
Jump on direct bit = 0  
Jump on direct bit = 1 and clear  
Jump indirect relative DPTR  
Jump on accumulator = 0  
Jump on accumulator /= 0  
2
3
1
1
2
3
2
2
2
3
3
3
1
2
2
3
3
3
4
4
4
3
4
3
3
3
4
4
4
3
3
3
4
4
11–F1  
12  
22  
32  
01–E1  
02  
80  
40  
50  
20  
30  
10  
73  
60  
70  
B5  
B4  
RETI  
AJMP addr 11  
LJMP addr 16  
SJMP rel  
JC rel  
JNC rel  
JB bit, rel  
JNB bit, rel  
JBC bit, rel  
JMP @A+DPTR  
JZ rel  
JNZ rel  
CJNE A, direct, rel Compare A, direct JNE relative  
CJNE A, #d, rel  
Compare A, immediate JNE  
relative  
CJNE Rn, #d, rel  
Compare reg, immediate JNE  
relative  
3
3
4
4
B8–BF  
B6–B7  
CJNE @Ri, #d, rel Compare ind, immediate JNE  
relative  
DJNZ Rn, rel  
DJNZ direct, rel  
Decrement register, JNZ relative  
Decrement direct byte, JNZ relative  
2
3
3
4
D8–DF  
D5  
All mnemonics are copyright © Intel Corporation 1980.  
Table 59 nRF9E5 Instruction Set, Branching Instructions.  
Miscellaneous Instructions  
Mnemonic  
Description  
Byte  
Instr.  
Hex  
Cycles  
Code  
NOP  
No operation  
1
1
00  
There is an additional reserved opcode (A5) that will also act as a NOP.  
All mnemonics are copyright © Intel Corporation 1980.  
Table 60 nRF9E5 Instruction Set, Miscellaneous Instructions.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 67 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.4 Instruction Timing  
Instruction cycles in the nRF9E5 are four clock cycles in length, as opposed to twelve  
clock cycles per instruction cycle in the standard 8051. This translates to a 3X  
improvement in execution time for most instructions. However, some instructions  
require a different number of instruction cycles on the nRF9E5 than they do on the  
standard 8051. In the standard 8051, all instructions except for MUL and DIV take one  
or two instruction cycles to complete. In the nRF9E5 architecture, instructions can take  
between one and five instruction cycles to complete. For example, in the standard 8051,  
the instructions MOVX A, @DPTR and MOV direct, direct each take two instruction  
cycles (twenty-four clock cycles) to execute. In the nRF9E5 architecture, MOVX A,  
@DPTR takes two instruction cycles (eight clock cycles) and MOV direct, direct takes  
three instruction cycles (twelve clock cycles). Both instructions execute faster on the  
nRF9E5 than they do on the standard 8051, but require different numbers of clock  
cycles.  
For timing of real-time events, use the numbers of instruction cycles from Table 55 to  
Table 60 to calculate the timing of software loops. The bytes column of these table  
indicates the number of memory accesses (bytes) needed to execute the instruction. In  
most cases, the number of bytes is equal to the number of instruction cycles required to  
complete the instruction. However, as indicated in Table 55, there are some instructions  
(for example, DIV and MUL) that require a greater number of instruction cycles than  
memory accesses.By default, the nRF9E5 timer/counters run at twelve clock cycles per  
increment so that timer-based events have the same timing as with the standard 8051.  
The timers can be configured to run at four clock cycles per increment to take advantage  
of the higher speed of the nRF9E5.  
18.5 Dual Data Pointers  
The nRF9E5 employs dual data pointers to accelerate data memory block moves. The  
standard 8051 data pointer (DPTR) is a 16-bit value used to address external data RAM  
or peripherals. The nRF9E5 maintains the standard data pointer as DPTR0 at SFR  
locations 0x82 and 0x83. It is not necessary to modify code to use DPTR0. The nRF9E5  
adds a second data pointer (DPTR1) at SFR locations 0x84 and 0x85. The SEL bit in the  
DPTR Select register, DPS (SFR 0x86), selects the active pointer. When SEL = 0,  
instructions that use the DPTR will use DPL0 and DPH0. When SEL = 1, instructions  
that use the DPTR will use DPL1 and DPH1. SEL is the bit 0 of SFR location 0x86. No  
other bits of SFR location 0x86 are used. All DPTR-related instructions use the  
currently selected data pointer. To switch the active pointer, toggle the SEL bit. The  
fastest way to do so is to use the increment instruction (INC DPS). This requires only  
one instruction to switch from a source address to a destination address, saving  
application code from having to save source and destination addresses when doing a  
block move. Using dual data pointers provides significantly increased efficiency when  
moving large blocks of data.  
The SFR locations related to the dual data pointers are:  
- 0x82 DPL0 DPTR0 low byte  
- 0x83 DPH0 DPTR0 high byte  
- 0x84 DPL1 DPTR1 low byte  
- 0x85 DPH1 DPTR1 high byte  
- 0x86 DPS  
DPTR Select (LSB)  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 68 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.6 Special Function Registers  
The Special Function Registers (SFRs) control several of the features of the nRF9E5.  
Most of the nRF9E5 SFRs are identical to the standard 8051 SFRs. However, there are  
additional SFRs that control features that are not available in the standard 8051. Table  
61 lists the nRF9E5 SFRs and indicates which SFRs are not included in the standard  
8051 SFR space. When writing software for the nRF9E5, use equate statements to  
define the SFRs that are specific to the nRF9E5 and custom peripherals. In Table 61,  
SFR bit positions that contain a 0 or a 1 cannot be written to and, when read, always  
return the value shown (0 or 1). SFR bit positions that contain “–” are available but not  
used. Table 62 shows the value of each SFR, after power-on reset or a watchdog reset,  
together with a pointer to a detailled description of each register. Please note that any  
unused address in the SFR address space is reserved and should not be written to.  
Notes to Table 61 on next page :  
(1)  
(2)  
(3)  
Not part of standard 8051 architecture.  
Registers unique to nRF9E5  
P0, P1 and P3 differ from standard 8051  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 69 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Addr  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0xA0  
P0(3)  
SP  
DPL0  
DPH0  
DPL1(1)  
DPH1(1)  
DPS(1)  
PCON  
TCON  
TMOD  
TL0  
TL1  
TH0  
TH1  
CKCON(1)  
SPC_FNC(1)  
P1(3)  
EXIF(1)  
MPAGE(1)  
P0_DRV(2)  
P0_DIR(2)  
P0_ALT(2)  
P1_DIR(2)  
P1_ALT(2)  
SCON  
Port 0  
Stack pointer  
Data pointer 0, low byte  
Data pointer 0, high byte  
Data pointer 1, low byte  
Data pointer 1, high byte  
0
0
TR1  
C/T  
0
1
TF0  
M1  
0
1
TR0  
M0  
0
GF1  
IE1  
GATE  
0
0
SEL  
IDLE  
IT0  
SMOD  
TF1  
GATE  
GF0  
IT1  
C/T  
STOP  
IE0  
M1  
M0  
Timer/counter 0 value, low byte  
Timer/counter 1 value, low byte  
Timer/counter 0 value, high byte  
Timer/counter 1 value, high byte  
0
IE5  
0
IE4  
T2M  
0
IE3  
T1M  
0
IE2  
T0M  
0
MD2  
0
MD1  
0
Port 1 bit 3:0  
MD0  
WRS  
1
0
0
0
Drive Strength of port 0  
Direction of Port 0  
Alternate functions of Port 0  
Direction of Port 1  
Alt.funct.of Port 1  
RB8  
SM0  
SM1  
SM2  
REN  
TB8  
TI  
RI  
SBUF  
P2(3)  
Serial port data buffer  
EOC/  
TX_EN  
AM  
CD  
DR/  
TRX_CE  
ET2  
SBMISO  
SBMOSI  
ET0  
SBSCK  
EX0  
RACSN  
ET1  
0xA8  
0xA9  
IE  
EA  
0
ES  
EX1  
PWMCON(2)  
PWM_LENGTH  
PWM_PRESCALE  
PWM_DUTY_CYCLE  
High byte of Watchdog/RTC register  
Low byte of Watchdog/RTC register  
0xAA PWMDUTY(2)  
0xAB REGX_MSB(2)  
0xAC REGX_LSB(2)  
0xAD REGX_CTRL(2)  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB8  
0xBF  
Control of REGX_MSB and REGX_LSB  
RSTREAS(2)  
SPI_DATA(2)  
SPI_CTRL(2)  
SPICLK(2)  
TICK_DV(2)  
CK_CTRL(2)  
IP  
RFLR  
SPI_DATA input/output bits  
SPI_CTRL  
SPICLK  
TICK_DV  
1
-
0
-
PS  
CK_CTRL  
PT0  
UP_CLK_FREQ  
PT2  
PT1  
PX1  
UP_CLK  
_EN  
PX0  
CKLFCON (2)  
XOF  
0xC8  
T2CON  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
0xCA RCAP2L  
0xCB RCAP2H  
0xCC TL2  
Timer/counter 2 capture or reload, low byte  
Timer/counter 2 capture or reload, high byte  
Timer/counter 2 value, low byte  
0xCD TH2  
Timer/counter 2 value, high byte  
0xD0  
0xD8  
0xE0  
0xE8  
0xF0  
0xF8  
0xFE  
0xFF  
PSW  
EICON(1)  
ACC  
EIE(1)  
B
EIP(1)  
HWREV (2)  
-----  
CY  
-
AC  
1
F0  
0
RS1  
0
RS0  
WDTI  
OV  
0
F1  
0
P
0
Accumulator register  
EWDI  
B-register  
PWDI  
1
1
1
1
1
1
EX5  
EX4  
EX3  
PX3  
EX2  
PX2  
PX5  
PX4  
Device hardware revision number  
Reserved, do not use  
Table 61 Special Function Registers summary.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 70 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Register  
Addr  
Reset value  
Description  
ACC  
B
CK_CTRL  
CKCON  
CKLFCON  
DPH0  
DPH1  
DPL0  
DPL1  
DPS  
EICON  
EIE  
EIP  
EXIF  
HWREV  
IE  
0xE0  
0xF0  
0xB6  
0x8E  
0xBF  
0x83  
0x85  
0x82  
0x84  
0x86  
0xD8  
0xE8  
0xF8  
0x91  
0xFE  
0xA8  
0xB8  
0x92  
0x80  
0x95  
0x94  
0x93  
0x90  
0x97  
0x96  
0xA0  
0x87  
0xD0  
0xA9  
0xAA  
0xCB  
0xCA  
0xAD  
0xAC  
0xAB  
0xB1  
0x99  
0x98  
0x81  
0x8F  
0xB3  
0xB2  
0xB4  
0xC8  
0x88  
0x8C  
0x8D  
0xCD  
0xB5  
0x8A  
0x8B  
0xCC  
0x89  
0x00  
0x00  
0x00  
0x01  
0x27  
0x00  
0x00  
0x00  
0x00  
0x00  
0x40  
0xE0  
0xE0  
0x08  
0x00,read only  
0x00  
0x80  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xF4  
0x08  
0x30  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x02  
0x00  
0x00  
0x07  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1D  
0x00  
0x00  
0x00  
0x00  
Accumulator register  
B-register  
Table 51, page 58  
Table 67, page 78  
Table 43 on page 51  
ch.18.5, page 68  
ch.18.5, page 68  
ch.18.5, page 68  
ch.18.5, page 68  
ch.18.5, page 68  
Table 40, page 47  
Table 41, page 47  
Table 42, page 48  
Table 39, page 47  
hardware revision no  
Table 37, page 46  
Table 38, page 46  
do not use  
Table 10, page 15  
Table 10, page 15  
Table 10, page 15  
Table 10, page 15  
Table 12, page 16  
Table 12, page 16  
Table 12, page 16  
Table 15, page 19  
Table 49, page 57  
Table 63, page 72  
Table 35, page 44  
Table 35, page 44  
ch.18.8.3.3, page 80  
ch.18.8.3.3, page 80  
Table 45, page 54  
Table 45, page 54  
Table 45, page 54  
Table 48, page 56  
ch.18.9, page 81  
Table 71, page 82  
Stack pointer  
IP  
MPAGE  
P0  
P0_ALT  
P0_DIR  
P0_DRV  
P1  
P1_ALT  
P1_DIR  
P2  
PCON  
PSW  
PWMCON  
PWMDUTY  
RCAP2H  
RCAP2L  
REGX_CTRL  
REGX_LSB  
REGX_MSB  
RSTREAS  
SBUF  
SCON  
SP  
SPC_FNC  
SPI_CTRL  
SPI_DATA  
SPICLK  
T2CON  
TCON  
TH0  
TH1  
TH2  
TICK_DV  
TL0  
TL1  
do not use  
Table 33, page 43  
Table 33, page 43  
Table 33, page 43  
Table 68, page 79  
Table 66, page 75  
ch.18.8, page 74  
ch.18.8, page 74  
ch.18.8, page 74  
Table 43, page 51  
ch.18.8, page 74  
ch.18.8, page 74  
ch.18.8, page 74  
Table 65, page 74  
TL2  
TMOD  
Table 62 Special Function Register reset values and description, alphabetically.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 71 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Table 63 lists the functions of the bits in the PSW register.  
Bit  
Function  
PSW.7  
CY • Carry flag. Set to 1 when last arithmetic operation resulted in a carry (during  
addition) or borrow (during subtraction); otherwise cleared to 0 by all arithmetic  
operations.  
PSW.6  
AC • Auxiliary carry flag. Set to 1 when last arithmetic operation resulted in a carry into  
(during addition) or borrow from (during subtraction) the high-order nibble; otherwise  
cleared to 0 by all arithmetic operations.  
PSW.5  
PSW.4  
F0 • User flag 0. Bit-addressable, general purpose flag for software control.  
RS1 • Register bank select bit 1. Used with RS0 to select a register blank in internal  
RAM.  
PSW.3  
RS0 • Register bank select bit 0, decoded as:  
RS1 RS0 Bank selected  
0
0
1
1
0
1
0
1
Register bank 0, addresses 0x00•0x07  
Register bank 1, addresses 0x08•0x0F  
Register bank 2, addresses 0x10•0x17  
Register bank 3, addresses 0x18•0x1F  
PSW.2  
OV • Overflow flag. Set to 1 when last arithmetic operation resulted in a carry (addition),  
borrow (subtraction), or overflow (multiply or divide); otherwise cleared to 0 by all  
arithmetic operations.  
PSW.1  
PSW.0  
F1 • User flag 1. Bit-addressable, general purpose flag for software control.  
P • Parity flag. Set to 1 when modulo-2 sum of 8 bits in accumulator is 1 (odd parity);  
cleared to 0 on even parity.  
Table 63 PSW Register – SFR 0xD0.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 72 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.7 SFR Registers Unique to nRF9E5  
The table below lists the SFR registers that are unique to nRF9E5 (not part of standard  
8051 register map) The registers P0, P1 and P2 (radio) use the addresses for the ports  
P0, P1 and P2 in a standard 8051. Whereas the functionality of these ports is similar to  
that of the corresponding ports in standard 8051, it is not identical.  
Addr  
SFR  
R/W  
#bit  
Init  
hex  
FF  
FF  
Name  
Function  
80*  
R/W  
R/W  
8
8(4)  
P0  
P1**  
Port 0, pins P07 to P00  
Port 1, pins SPI_CSN, SPI_MISO, SPI_MOSI  
and SPI_SCK  
90*  
94  
95  
96  
97  
A0*  
R/W  
R/W  
R/W  
R/W  
R/W  
8
8
8(4)  
8(4)  
8
FF  
00  
F4  
00  
08  
P0_DIR  
P0_ALT  
P1_DIR  
P1_ALT  
P2  
Direction of each GPIO bit of port 0  
Select alternate functions for each pin of port 0  
Direction for each GPIO bit of port 1  
Select alternate functions for each pin of port 1  
General purpose IO for interface to nRF905 radio,  
for details see chapter 8.1  
A9  
AA  
AB  
R/W  
R/W  
R/W  
8
8
8
0
0
0
PWMCON  
PWMDUTY  
REGX_MSB  
PWM control register  
PWM duty cycle  
High part of 16 bit register for interface to  
Watchdog and RTC  
AC  
R/W  
8
0
REGX_LSB  
Low part of 16 bit register for interface to  
Watchdog and RTC  
AD  
B1  
B2  
B3  
R/W  
R/W  
R/W  
R/W  
5
2
8
2
0
02  
0
REGX_CTRL  
RSTREAS  
SPI_DATA  
SPI_CTRL  
Control of interface to Watchdog and RTC.  
Reset status and control  
SPI data input/output  
00 -> SPI not used 01 -> connect to P1  
10 or 11 -> connect to RADIO  
Divider from CPU clock to SPI clock  
TICK Divider.  
0
B4  
B5  
B6  
B7  
R/W  
R/W  
W
2
8
3
4
0
1D  
0
SPICLK  
TICK_DV  
CK_CTRL  
TEST_MODE  
Clock control  
Test mode register.  
R
0
This register must always be 0 in normal mode.  
BF  
FE  
R/W  
R
6
8
27  
00  
CKLFCON  
HWREV  
Control generation of 4 kHz CKLF  
Silicon stepping  
Table 64 SFR registers unique to nRF9E5.  
*
This bit addressable register differs in usage from “standard 8051  
**  
Only 4 lower bits are meaningful in P1 and corresponding P1_DIR and P1_ALT  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 73 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.8 Timers/Counters  
The nRF9E5 includes three timer/counters (Timer 0, Timer 1 and Timer 2). Each  
timer/counter can operate as either a timer with a clock rate based on the CPU clock , or  
as an event counter clocked by the t0 pin (Timer 0), t1 pin (Timer 1), or the t2 pin  
(Timer 2). These pins are alternate function bits of Port 0 and 1 as this : t0 is P0.5, t1 is  
P0.6 and t2 is P1.0, for details please see ch. 6.3 on page 15.  
Each timer/counter consists of a 16-bit register that is accessible to software as three  
SFRs: (Table 61)  
Timer 0 • TL0 and TH0  
Timer 1 • TL1 and TH1  
Timer 2 • TL2 and TH2  
18.8.1 Timers 0 and 1  
Timers 0 and 1 each operate in four modes, as controlled through the TMOD SFR  
(Table 65) and the TCON SFR (Table 66). The four modes are:  
-
-
-
-
13-bit timer/counter (mode 0)  
16-bit timer/counter (mode 1)  
8-bit counter with auto-reload (mode 2)  
Two 8-bit counters (mode 3, Timer 0 only)  
Bit  
Function  
TMOD.7  
GATE • Timer 1 gate control. When GATE = 1, Timer 1 will clock only when external  
interrupt INT1_N = 1 and TR1 (TCON.6) = 1. When GATE = 0, Timer 1 will clock only  
when TR1 = 1, regardless of the state of INT1_N.  
TMOD.6  
C/T • Counter/Timer select. When C/T = 0, Timer 1 is clocked by CPU_clk/4 or  
CPU_clk/12, depending on the state of T1M (CKCON.4). When C/T = 1, Timer 1 is clocked  
by the t1 pin.  
TMOD.5  
TMOD.4  
M1 • Timer 1 mode select bit 1.  
M0 • Timer 1 mode select bit 0, decoded as:  
M1 M0 Mode  
00 Mode 0 : 13-bit counter  
01 Mode 1 : 16-bit counter  
10 Mode 2 : 8-bit counter with auto-reload  
11 Mode 3 : Two 8-bit counters  
TMOD.3  
TMOD.2  
GATE • Timer 0 gate control. When GATE = 1, Timer 0 will clock only when external  
interrupt INT0_N = 1 and TR0 (TCON.4) = 1. When GATE = 0, Timer 0 will clock only  
when TR0 = 1, regardless of the state of INT0_N.  
C/T • Counter/Timer select. When C/T = 0, Timer 0 is clocked by CPU_clk/4 or  
CPU_clk/12, depending on the state of T0M (CKCON.3). When C/T = 1, Timer 0 is clocked  
by the t0 pin.  
TMOD.1  
TMOD.0  
M1 • Timer 0 mode select bit 1.  
M0 • Timer 0 mode select bit 0, decoded as:  
M1 M0 Mode  
00 Mode 0 : 13-bit counter  
01 Mode 1 : 16-bit counter  
10 Mode 2 : 8-bit counter with auto-reload  
11 Mode 3 : Two 8-bit counters  
Table 65 TMOD Register – SFR 0x89.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 74 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Bit  
Function  
TCON.7  
TF1 • Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows and cleared when  
the CPU vectors to the interrupt service routine.  
TCON.6  
TCON.5  
TR1 • Timer 1 run control. Set to 1 to enable counting on Timer 1.  
TF0 • Timer 0 overflow flag. Set to 1 when the Timer 0 count overflows and cleared when  
the CPU vectors to the interrupt service routine.  
TCON.4  
TCON.3  
TR0 • Timer 0 run control. Set to 1 to enable counting on Timer 0.  
IE1 • Interrupt 1 edge detect. If external interrupt 1 is configured to be edge-sensitive (IT1  
= 1), IE1 is set by hardware when a negative edge is detected on the INT1_N external  
interrupt pin and is automatically cleared when the CPU vectors to the corresponding  
interrupt service routine. In edge-sensitive mode, IE1 can also be cleared by software.  
If external interrupt 1 is configured to be level-sensitive (IT1 = 0), IE1 is set when the  
INT1_N pin is low and cleared when the INT1_N pin is high. In level-sensitive mode,  
software cannot write to IE1.  
TCON.2  
TCON.1  
IT1 • Interrupt 1 type select. When IT1 = 1, the nRF9E5 detects external interrupt pin  
INT1_N on the falling edge (edge-sensitive). When IT1 = 0, the nRF9E5 detects INT1_N  
as a low level (level-sensitive).  
IE0 • Interrupt 0 edge detect. If external interrupt 0 is configured to be edge-sensitive (IT0  
= 1), IE0 is set by hardware when a negative edge is detected on the INT0_N external  
interrupt pin and is automatically cleared when the CPU vectors to the corresponding  
interrupt service routine. In edge-sensitive mode, IE0 can also be cleared by software.  
If external interrupt 0 is configured to be level-sensitive (IT0 = 0), IE0 is set when the  
INT0_N pin is low and cleared when the INT0_N pin is high. In level-sensitive mode,  
software cannot write to IE0.  
TCON.0  
IT0 • Interrupt 0 type select. When IT1 = 1, the nRF9E5 detects external interrupt INT0_N  
on the falling edge (edge-sensitive). When IT1 = 0, the nRF9E5 detects INT0_N as a low  
level (level-sensitive).  
Table 66 TCON Register – SFR 0x88.  
18.8.1.1 Mode 0  
Mode 0 operation, illustrated in Figure 18, is the same for Timer 0 and Timer 1. In mode  
0, the timer is configured as a 13-bit counter that uses bits 0–4 of TL0 (or TL1) and all  
eight bits of TH0 (or TH1). The timer enable bit (TR0/TR1) in the TCON SFR starts the  
timer. The C/T bit selects the timer/counter clock source, CPU_clk or T0/T1. The timer  
counts transitions from the selected source as long as the GATE bit is 0, or the GATE bit  
is 1 and the corresponding interrupt pin (INT0_N or INT1_N) is deasserted. INT0_N  
and INT1_N are alternate function bits of Port0, please see Table 8 Port functions. When  
the 13-bit count increments from 0x1FFF (all ones), the counter rolls over to all zeros,  
the TF0 (or TF1) bit is set in the TCON SFR, and the t0_out (or t1_out) pin goes high  
for one clock cycle. The upper three bits of TL0 (or TL1) are indeterminate in mode 0  
and must be masked when the software evaluates the register.  
18.8.1.2 Mode 1  
Mode 1 operation is the same for Timer 0 and Timer 1. In mode 1, the timer is  
configured as a 16-bit counter. As illustrated in, all eight bits of the LSB register (TL0 or  
TL1) are used. The counter rolls over to all zeros when the count increments from  
0xFFFF. Otherwise, mode 1 operation is the same as mode 0.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 75 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
T0M (T1M)  
Divide by 12  
0
CPU_CLK  
C/T  
0
TL0 (TL1)  
1
clk  
0
1
2
3
4
5
6
7
Divide by 4  
1
P05/T0 (P06/T1)  
Mode 0  
Mode 1  
TH0 (TH1)  
TR0 (TR1)  
GATE  
0
1
2
3
4
5
6
7
P03/INT0_N (P04/INT1_N)  
P0_ALT.3 (P0_ALT.4)  
INT  
TF0 (TF1)  
To serial port  
(timer 1 only)  
Figure 18 Timer 0/1 – Modes 0 and 1.  
18.8.1.3 Mode 2  
Mode 2 operation is the same for Timer 0 and Timer 1. In mode 2, the timer is  
configured as an 8-bit counter, with automatic reload of the start value. The LSB register  
(TL0 or TL1) is the counter, and the MSB register (TH0 or TH1) stores the reload value.  
As illustrated in Figure 19 Timer 0/1 – Mode 2, mode 2 counter control is the same as  
for mode 0 and mode 1. However, in mode 2, when TLn increments from 0xFF, the  
value stored in THn is reloaded into TLn.  
T0M (T1M)  
Divide by 12  
0
CPU_CLK  
C/T  
0
TL0 (TL1)  
1
clk  
0
0
1
2
3
4
4
5
5
6
6
7
7
Divide by 4  
1
P05/T0 (P06/T1)  
1
2
3
TR0 (TR1)  
GATE  
TH0 (TH1)  
P03/INT0_N (P04/INT1_N)  
P0_ALT.3 (P0_ALT.4)  
INT  
TF0 (TF1)  
To serial port  
(timer 1 only)  
Figure 19 Timer 0/1 – Mode 2.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 76 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.8.1.4 Mode 3  
In mode 3, Timer 0 operates as two 8-bit counters, and Timer 1 stops counting and holds  
its value. As shown in Figure 20 Timer 0 – Mode 3, TL0 is configured as an 8-bit  
counter controlled by the normal Timer 0 control bits. TL0 can count either CPU clock  
cycles (divided by 4 or by 12) or high-to-low transitions on t0, as determined by the C/T  
bit. The GATE function can be used to give counter enable control to the INT0_N  
signal.  
T0M  
0
Divide by 12  
CPU_CLK  
C/T  
0
TL0  
1
1
clk  
0
2
3
4
5
6
7
Divide by 4  
1
P05/T0  
INT  
INT  
TF0  
TF1  
TR0  
GATE  
P03/INT0_N  
clk  
0
1
2
3
4
5
6
7
P0_ALT.3  
TR1  
TH0  
Figure 20 Timer 0 – Mode 3.  
TH0 functions as an independent 8-bit counter. However, TH0 can count only CPU  
clock cycles (divided by 4 or by 12). The Timer 1 control and flag bits (TR1 and TF1)  
are used as the control and flag bits for TH0.  
When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 0 uses the Timer  
1 control bit (TR1) and interrupt flag (TF1). Timer 1 can still be used for baud rate  
generation and the Timer 1 count values are still available in the TL1 and TH1  
registers.Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 mode  
bits. To turn Timer 1 on, set Timer 1 to mode 0, 1, or 2. To turn Timer 1 off, set it to  
mode 3. The Timer 1 C/T bit and T1M bit are still available to Timer 1. Therefore,  
Timer 1 can count CPU_clk/4, CPU_clk/12, or high-to-low transitions on the t1 pin. The  
Timer 1 GATE function is also available when Timer 0 is in mode 3.  
18.8.2 Timer Rate Control  
The default timer clock scheme for the nRF9E5 timers is twelve CPU clock cycles per  
increment, the same as in the standard 8051. However, in the nRF9E5, the instruction  
cycle is four clock cycles.  
Using the default rate (twelve clocks per timer increment) allows existing application  
code with real-time dependencies, such as baud rate, to operate properly. However,  
applications that require fast timing can set the timers to increment every four clock  
cycles by setting bits in the Clock Control register (CKCON) at SFR location 0x8E,  
described in Table 67 CKCON Register – SFR 0x.  
The CKCON bits that control the timer clock rates are:  
CKCON bit Counter/Timer  
5
4
3
Timer 2  
Timer 1  
Timer 0  
When a CKCON register bit is set to 1, the associated counter increments at four-clock  
intervals. When a CKCON bit is cleared, the associated counter increments at twelve-  
clock intervals. The timer controls are independent of each other. The default setting for  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 77 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
all three timers is 0; that is, twelve-clock intervals. These bits have no effect in counter  
mode.  
Bit  
Function  
CKCON.7,6  
CKCON.5  
Reserved  
T2M – Timer 2 clock select. When T2M = 0, Timer 2 uses CPU_clk/12 (for  
compatibility with 80C32); when T2M = 1, Timer 2 uses CPU_clk/4. This bit has  
no effect when Timer 2 is configured for baud rate generation.  
CKCON.4  
CKCON.3  
T1M – Timer 1 clock select. When T1M = 0, Timer 1 uses CPU_clk/12 (for  
compatibility with 80C32); when T1M = 1, Timer 1 uses CPU_clk/4.  
T0M – Timer 0 clock select. When T0M = 0, Timer 0 uses CPU_clk/12 (for  
compatibility with 80C32); when T0M = 1, Timer 0 uses CPU_clk/4.  
CKCON.2–  
0
MD2, MD1, MD0 – Control the number of cycles to be used for external MOVX  
instructions; number of cycles is 2 + { MD2, MD1, MD0}  
Table 67 CKCON Register – SFR 0x8E.  
default initial data value is 0x01, i.e. MOVX takes 3 cycles.  
18.8.3 Timer 2  
Timer 2 runs only in 16-bit mode and offers several capabilities not available with  
Timers 0 and 1. The modes available with Timer 2 are:  
- 16-bit timer/counter  
- 16-bit timer with capture  
- 16-bit auto-reload timer/counter  
- Baud-rate generator  
The SFRs associated with Timer 2 are:  
- T2CON – SFR 0xC8; refer to Table 68 T2CON Register – SFR 0x  
- RCAP2L – SFR 0xCA – Used to capture the TL2 value when Timer 2 is configured  
for capture mode, or as the LSB of the 16-bit reload value when Timer 2 is configured  
for auto-reload mode.  
- RCAP2H – SFR 0xCB – Used to capture the TH2 value when Timer 2 is configured  
for capture mode, or as the MSB of the 16-bit reload value when Timer 2 is configured  
for auto-reload mode.  
TL2 – SFR 0xCC – Lower eight bits of the 16-bit count.  
TH2 – SFR 0xCD – Upper eight bits of the 16-bit count.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 78 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Bit  
T2CON.7  
Function  
TF2 • Timer 2 overflow flag. Hardware will set TF2 when Timer 2 overflows from  
0xFFFF. TF2 must be cleared to 0 by the software. TF2 will only be set to a 1 if RCLK and  
TCLK are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.  
EXF2 • Timer 2 external flag. Hardware will set EXF2 when a reload or capture is caused  
by a high-to-low transition on the t2ex pin, and EXEN2 is set. EXF2 must be cleared to 0  
by the software. Writing a 1 to EXF2 forces a Timer 2 interrupt if enabled.  
T2CON.6  
T2CON.5 RCLK • Receive clock flag. Determines whether Timer 1 or Timer 2 is used for Serial port  
timing of received data in serial mode 1 or 3. RCLK = 1 selects Timer 2 overflow as the  
receive clock. RCLK = 0 selects Timer 1 overflow as the receive clock.  
T2CON.4 TCLK • Transmit clock flag. Determines whether Timer 1 or Timer 2 is used for Serial port  
timing of transmit data in serial mode 1 or 3. TCLK =1 selects Timer 2 overflow as the  
transmit clock. TCLK = 0 selects Timer 1 overflow as the transmit clock.  
T2CON.3 EXEN2 • Timer 2 external enable. EXEN2 = 1 enables capture or reload to occur as a result  
of a high-to-low transition on t2ex, if Timer 2 is not generating baud rates for the serial  
port. EXEN2 = 0 causes Timer 2 to ignore all external events at t2ex.  
T2CON.2 TR2 • Timer 2 run control flag. TR2 = 1 starts Timer 2. TR2 = 0 stops Timer 2.  
T2CON.1 C/T2 • Counter/timer select. C/T2 = 0 selects a timer function for Timer 2. C/T2 = 1 selects  
a counter of falling transitions on the t2 pin. When used as a timer, Timer 2 runs at four  
clocks per increment or twelve clocks per increment as programmed by CKCON.5, in all  
modes except baud-rate generator mode. When used in baud-rate generator mode, Timer 2  
runs at two clocks per increment, independent of the state of CKCON.5.  
T2CON.0 CP/RL2 • Capture/reload flag. When CP/RL2 = 1, Timer 2 captures occur on high-to-low  
transitions of t2ex, if EXEN2 = 1. When CP/RL2 = 0, auto-reloads occur when Timer 2  
overflows or when high-to-low transitions occur on t2ex, if EXEN2 = 1. If either RCLK or  
TCLK is set to 1, CP/RL2 will not function, and Timer 2 will operate in auto-reload mode  
following each overflow.  
Table 68 T2CON Register – SFR 0xC8.  
18.8.3.1 Timer 2 Mode Control  
Table 69 summarizes how the SFR bits determine the Timer 2 mode.  
RCLK  
TCLK  
CP/RL2  
TR2  
Mode  
0
0
1
X
X
0
0
X
1
X
1
0
X
X
X
1
1
1
1
0
16-bit timer/counter with capture  
16-bit timer/counter with auto-reload  
Baud-rate generator  
Baud-rate generator  
Off  
Table 69 Timer 2 Mode Control Summary.  
18.8.3.2 16-Bit Timer/Counter Mode  
Figure 21 Timer 2 – Timer/Counter with Capture illustrates how Timer 2 operates in  
timer/counter mode with the optional capture feature. The C/T2 bit determines whether  
the 16-bit counter counts clock cycles (divided by 4 or 12), or high-to-low transitions on  
the t2 pin. The TR2 bit enables the counter. When the count increments from 0xFFFF,  
the TF2 flag is set, and t2_out goes high for one clock cycle.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 79 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
T2M  
Divide by 12  
Divide by 4  
0
CPU_CLK  
C/T2  
0
1
0
7
8
15  
clk  
TL2  
TH2  
1
SCK/T2  
capture  
TR2  
0
7
8
15  
RCAP2L RCAP2H  
EXEN2  
TF2  
LP_OSC  
Divide by 2  
INT  
EXF2  
Figure 21 Timer 2 – Timer/Counter with Capture.  
18.8.3.3 16-Bit Timer/Counter Mode with Capture  
The Timer 2 capture mode, illustrated in Figure 21 Timer 2 – Timer/Counter with  
Capture, is the same as the 16-bit timer/counter mode, with the addition of the capture  
registers and control signals. The CP/RL2 bit in the T2CON SFR enables the capture  
feature. When CP/RL2 = 1, a high-to-low transition on t2ex when EXEN2 = 1 causes  
the Timer 2 value to be loaded into the capture registers (RCAP2L and RCAP2H).  
18.8.3.4 16-Bit Timer/Counter Mode with Auto-Reload  
When CP/RL2 = 0, Timer 2 is configured for the auto-reload mode illustrated in Figure  
22 Timer 2 – Timer/Counter with Auto-Reload. Control of counter input is the same as  
for the other 16-bit counter modes. When the count increments from 0xFFFF, Timer 2  
sets the TF2 flag and the starting value is reloaded into TL2 and TH2. The software  
must preload the starting value into the RCAP2L and RCAP2H registers.  
When Timer 2 is in auto-reload mode, a reload can be forced by a high-to-low transition  
on the t2ex pin, if enabled by EXEN2 = 1.  
T2M  
0
Divide by 12  
CPU_CLK  
C/T2  
0
0
7 8  
15  
1
clk  
Divide by 4  
TL2  
TH2  
1
SCK/T2  
reload  
TR2  
0
7 8  
15  
RCAP2L RCAP2H  
EXEN2  
TF2  
LP_OSC  
Divide by 2  
INT  
EXF2  
Figure 22 Timer 2 – Timer/Counter with Auto-Reload.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 80 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.8.3.5 Baud Rate Generator Mode  
Setting either RCLK or TCLK to 1 configures Timer 2 to generate baud rates for Serial  
port in serial mode 1 or 3. In baud-rate generator mode, Timer 2 functions in auto-reload  
mode. However, instead of setting the TF2 flag, the counter overflow generates a shift  
clock for the serial port function. As in normal auto-reload mode, the overflow also  
causes the preloaded start value in the RCAP2L and RCAP2H registers to be reloaded  
into the TL2 and TH2 registers.  
When either TCLK = 1 or RCLK = 1, Timer 2 is forced into auto-reload operation,  
regardless of the state of the CP/RL2 bit.  
When operating as a baud rate generator, Timer 2 does not set the TF2 bit. In this mode,  
a Timer 2 interrupt can be generated only by a high-to-low transition on the t2ex pin  
setting the EXF2 bit, and only if enabled by EXEN2 = 1.The counter time base in baud-  
rate generator mode is CPU_clk/2. To use an external clock source, set C/T2 to 1 and  
apply the desired clock source to the t2 pin.  
Timer 1 overflow  
SMOD0  
Divide by 2  
0
1
CPU_CLK  
C/T2  
0
Divide by 2  
RCLK  
0
0
7
8
15  
clk  
RX  
clock  
TL2  
TH2  
1
Divide by 16  
1
SCK/T2  
TCLK  
0
TR2  
0
7
8
15  
Divide by 16  
RCAP2L RCAP2H  
1
TX  
clock  
EXEN2  
INT  
LP_OSC  
EXF2  
Divide by 2  
Figure 23 Timer 2 – Baud Rate Generator Mode.  
18.9 Serial Interface  
The nRF9E5 is configured with one serial port, which is identical in operation to the  
standard 8051 serial port. The two serial port pins rxd and txd are available as alternate  
functions of P0.1 and P0.2, for details please see ch. 6.3 on page 15.  
The serial port can operate in synchronous or asynchronous mode. In synchronous  
mode, the nRF9E5 generates the serial clock and the serial port operates in half-duplex  
mode. In asynchronous mode, the serial port operates in full-duplex mode. In all modes,  
the nRF9E5 buffers receive data in a holding register, enabling the UART to receive an  
incoming word before the software has read the previous value.  
The serial port can operate in one of four modes, as outlined in Table 70.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 81 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Mode Sync/As  
ync  
Baud Clock  
Data Bits  
Start/ Stop  
9th Bit Function  
None  
0
1
2
3
Sync  
CPU_clk/4  
CPU_clk/12  
or  
8
8
9
9
None  
Async  
Async  
Async  
Timer 1 or Timer  
2
CPU_clk/32 or  
CPU_clk/64  
Timer 1 or Timer  
2
1 start,  
1 stop  
1 start,  
1 stop  
1 start,  
1 stop  
None  
0, 1, parity  
0, 1, parity  
Table 70 Serial Port Modes.  
The SFRs associated with the serial port are:  
- SCON – SFR 0x98 – Serial port control (Table 71)  
- SBUF – SFR 0x99 – Serial port buffer  
Bit  
Function  
SCON.7  
SCON.6  
SM0 • Serial port mode bit 0.  
SM1 • Serial port mode bit 1, decoded as:  
SM0 SM1 Mode  
0
0
1
1
0
1
0
1
0
1
2
3
SCON.5  
SM2 • Multiprocessor communication enable. In modes 2 and 3, SM2 enables the  
multiprocessor communication feature. If SM2 = 1 in mode 2 or 3, RI will not be  
activated if the received 9th bit is 0. If SM2 = 1 in mode 1, RI will be activated only  
if a valid stop is received. In mode 0, SM2 establishes the baud rate: when SM2 =  
0, the baud rate is CPU_clk/12; when  
SM2 = 1, the baud rate is CPU_clk/4.  
SCON.4  
SCON.3  
SCON.2  
REN • Receive enable. When REN = 1, reception is enabled.  
TB8 • Defines the state of the 9th data bit transmitted in modes 2 and 3.  
th  
RB8 • In modes 2 and 3, RB8 indicates the state of the 9 bit received. In mode 1,  
RB8 indicates the state of the received stop bit. In mode 0, RB8 is  
not used.  
SCON.1  
TI • Transmit interrupt flag. Indicates that the transmit data word has been shifted  
out. In mode 0, TI is set at the end of the 8 data bit. In all other modes, TI is set  
th  
when the stop bit is placed on the txd pin. TI must be cleared by the software.  
Table 71 SCON Register – SFR 0x98.  
18.9.1 Mode 0  
Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port  
0, both serial data input and output occur on rxd pin, and txd provides the shift clock  
for both transmit and receive. The rxd and txd pins are alternate function bits of Port 0,  
please also see Table 9 Port 0 (P0) functions for port and pin configuration. The lack of  
open drain ports on nRF9E5 makes it a programmer responsibility to control the  
direction of the rxd pin.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 82 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
The serial mode 0 baud rate is either CPU_clk/12 or CPU_clk/4, depending on the state  
of the SM2. When SM2 = 0, the baud rate is CPU_clk/12; when SM2 = 1, the baud rate  
is CPU_clk/4.  
Mode 0 operation is identical to the standard 8051. Data transmission begins when an  
instruction writes to the SBUF SFR. The UART shifts the data out, LSB first, at the  
selected baud rate, until the 8-bit value has been shifted out.  
Mode 0 data reception begins when the REN bit is set and the RI bit is cleared in the  
corresponding SCON SFR. The shift clock is activated and the UART shifts data in on  
each rising edge of the shift clock until eight bits have been received. One machine cycle  
after the 8th bit is shifted in, the RI bit is set and reception stops until the software clears  
the RI bit.  
Figure 24 Serial Port Mode 0 receive timing for low-speed (CPU_clk/12) operation.  
Figure 25 Serial Port Mode 0 receive timing for high-speed (CPU_clk/4) operation.  
:
Figure 26 Serial Port Mode 0 transmit timing for high-speed (CPU_clk/4) operation.  
:
Figure 27 Serial Port Mode 0 transmit timing for high-speed (CPU_clk/4) operation.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 83 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.9.2 Mode 1  
Mode 1 provides standard asynchronous, full-duplex communication, using a total of ten  
bits: one start bit, eight data bits, and one stop bit. For receive operations, the stop bit is  
stored in RB8. Data bits are received and transmitted LSB first.  
18.9.2.1 Mode 1 Baud Rate  
The mode 1 baud rate is a function of timer overflow. Serial port can use either Timer 1  
or Timer 2 to generate baud rates. Each time the timer increments from its maximum  
count (0xFF for Timer 1 or 0xFFFF for Timer 2), a clock is sent to the baud-rate circuit.  
The clock is then divided by 16 to generate the baud rate. When using Timer 1, the  
SMOD bit selects whether or not to divide the Timer 1 rollover rate by 2. Therefore,  
when using Timer 1, the baud rate is determinedby the equation:  
2SMOD  
Baud Rate =  
SMOD is SFR bit PCON.7  
x Timer 1 Overflow  
32  
When using Timer 2, the baud rate is determined by the equation:  
Timer 2 Overflow  
Baud Rate =  
16  
To use Timer 1 as the baud-rate generator, it is best to use Timer 1 mode 2 (8-bit counter  
with auto-reload), although any counter mode can be used. The Timer 1 reload value is  
stored in the TH1 register, which makes the complete formula for Timer 1:  
2SMOD  
32  
clk  
Baud Rate =  
x
4 x (256 - TH1)  
The 4 in the denominator in the above equation can be obtained by setting the T1M bit  
in the CKCON SFR. To derive the required TH1 value from a known baud rate (when  
TM1 = 0), use the equation:  
2SMOD *clk  
TH1 = 256 -  
128*Baud Rate  
You can also achieve very low serial port baud rates from Timer 1 by enabling the  
Timer 1 interrupt, configuring Timer 1 to mode 1, and using the Timer 1 interrupt to  
initiate a 16-bit software reload. Table Table 72 lists sample reload values for a variety  
of common serial port baud rates.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 84 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Desired  
Baud Rate  
SMOD  
C/T  
Timer 1  
Mode  
TH1  
Value TH1  
Value  
8 MHz  
for 16 MHz for  
CPU clk  
0xF3  
CPU clk  
19.2 Kb/s  
9.6 Kb/s  
4.8 Kb/s  
0.4 Kb/s  
1.2 Kb/s  
1
1
1
1
1
0
0
0
0
0
2
2
2
2
2
-
0xE6  
0XcC  
0x98  
0x30  
0xF3  
0xE6  
0xCC  
0x98  
Table 72 Timer 1 Reload Values for Serial Port Mode 1 Baud Rates.  
To use Timer 2 as the baud-rate generator, configure Timer 2 in auto-reload mode and  
set the TCLK and/or RCLK bits in the T2CON SFR. TCLK selects Timer 2 as the baud-  
rate generator for the transmitter; RCLK selects Timer 2 as the baud-rate generator for  
the receiver. The 16-bit reload value for Timer 2 is stored in the RCAP2L and RCA2H  
SFRs, which makes the equation for the Timer 2 baud rate:  
clk  
Baud Rate =  
32 x (65536 -{RCAP2H, RCAP2L})  
where RCAP2H,RCAP2L is the content of RCAP2H and RCAP2L taken as a 16-bit  
unsigned number. The 32 in the denominator is the result of the CPU_clk signal being  
divided by 2 and the Timer 2 overflow being divided by 16. Setting TCLK or RCLK to  
1 automatically causes the CPU_clk signal to be divided by 2, as shown in Figure 23  
Timer 2 – Baud Rate Generator Mode, instead of the 4 or 12 determined by the T2M bit  
in the CKCON SFR.  
To derive the required RCAP2H and RCAP2L values from a known baud rate, use the  
equation:  
clk  
RCAP2H,RCAP2L = 65536 –  
32 x Baud Rate  
Table Table 73 lists sample values of RCAP2L and RCAP2H for a variety of  
desired baud rates.  
Baud Rate  
C/T 16 MHz CPU clk  
2
RCAP2H  
0xFF  
RCAP2L  
0xF7  
57.6 Kb/s  
19.2 Kb/s  
9.6 Kb/s  
4.8 Kb/s  
0.4 Kb/s  
1.2 Kb/s  
0
0
0
0
0
0
0xFF  
0xFF  
0xFF  
0xFF  
0xE6  
0xCC  
0x98  
0x30  
0x5F  
0xFE  
Table 73 Timer 2 Reload Values for Serial Port Mode 1 Baud Rates.  
When either RCLK or TCLK is set, the TF2 flag will not be set on a Timer 2  
rollover, and the t2ex reload trigger is disabled.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 85 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.9.2.2 Mode 1 Transmit  
Figure 28 illustrates the mode 1 transmit timing. In mode 1, the UART begins  
transmitting after the first rollover of the divide-by-16 counter after the software writes  
to the SBUF register. The UART transmits data on the txd pin in the following order:  
start bit, eight data bits (LSB first), stop bit. The TI bit is set two clock cycles after the  
stop bit is transmitted.  
Figure 28 Serial port Mode 1 Transmit Timing.  
18.9.2.3 Mode 1 Receive  
Figure 29 illustrates the mode 1 receive timing. Reception begins at the falling edge of a  
start bit received on rxd_in, when enabled by the REN bit. For this purpose, rxd_in is  
sampled sixteen times per bit for any baud rate. When a falling edge of a start bit is  
detected, the divide-by-16 counter used to generate the receive clock is reset to align the  
counter rollover to the bit boundaries.  
Figure 29 Serial port Mode 1 Receive Timing.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 86 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
For noise rejection, the serial port establishes the content of each received bit by a  
majority decision of three consecutive samples in the middle of each bit time. This is  
especially true for the start bit. If the falling edge on rxd_in is not verified by a majority  
decision of three consecutive samples (low), then the serial port stops reception and  
waits for another falling edge on rxd_in.  
At the middle of the stop bit time, the serial port checks for the following conditions:  
-?RI = 0  
- If SM2 = 1, the state of the stop bit is 1  
(if SM2 = 0, the state of the stop bit does not matter)  
If the above conditions are met, the serial port then writes the received byte to the SBUF  
register, loads the stop bit into RB8, and sets the RI bit. If the above conditions are not  
met, the received data is lost, the SBUF register and RB8 bit are not loaded, and the RI  
bit is not set. After the middle of the stop bit time, the serial port waits for another high-  
to-low transition on the rxd_in pin.  
Mode 1 operation is identical to that of the standard 8051 when Timers 1 and 2 use  
CPU_clk/12 (the default).  
18.9.3 Mode 2  
Mode 2 provides asynchronous, full-duplex communication, using a total of eleven bits:  
- One start bit  
- Eight data bits  
- One programmable 9th bit  
- One stop bit  
The data bits are transmitted and received LSB first. For transmission, the 9th bit is  
determined by the value in TB8. To use the 9th bit as a parity bit, move the value of the  
P bit (SFR PSW.0) to TB8.  
The mode 2 baud rate is either CPU_clk/32 or CPU_clk/64, as determined by the SMOD  
bit. The formula for the mode 2 baud rate is:  
2SMOD * clk  
Baud Rate =  
64  
Mode 2 operation is identical to the standard 8051.  
18.9.3.1 Mode 2 Transmit  
Figure 30 illustrates the mode 2 transmit timing. Transmission begins after the first  
rollover of the divide-by-16 counter following a software write to SBUF . The UART  
shifts data out on the txd pin in the following order: start bit, data bits (LSB first), 9th  
bit, stop bit. The TI bit is set when the stop bit is placed on the txd pin.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 87 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Figure 30 Serial port Mode 2 Transmit Timing.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 88 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.9.3.2 Mode 2 Receive  
Figure 31 illustrates the mode 2 receive timing. Reception begins at the falling edge of a  
start bit received on rxd_in, when enabled by the REN bit. For this purpose, rxd_in is  
sampled sixteen times per bit for any baud rate. When a falling edge of a start bit is  
detected, the divide-by-16 counter used to generate the receive clock is reset to align the  
counter rollover to the bit boundaries.  
Figure 31 Serial port Mode 2 Receive Timing.  
For noise rejection, the serial port establishes the content of each received bit by a  
majority decision of three consecutive samples in the middle of each bit time. This is  
especially true for the start bit. If the falling edge on rxd_in is not verified by a majority  
decision of three consecutive samples (low), then the serial port stops reception and  
waits for another falling edge on rxd_in.  
At the middle of the stop bit time, the serial port checks for the following conditions:  
- RI = 0  
- If SM2 = 1, the state of the stop bit is 1  
(if SM2 = 0, the state of the stop bit does not matter)  
If the above conditions are met, the serial port then writes the received byte to the SBUF  
register, loads the 9th received bit into RB8, and sets the RI bit. If the above conditions  
are not met, the received data is lost, the SBUF register and RB8 bit are not loaded, and  
the RI bit is not set. After the middle of the stop bit time, the serial port waits for another  
high-to-low transition on the rxd_in.  
18.9.4 Mode 3  
Mode 3 provides asynchronous, full-duplex communication, using a total of eleven bits:  
- One start bit  
- Eight data bits  
- One programmable 9th bit  
- One stop bit; the data bits are transmitted and received LSB first  
The mode 3 transmit and receive operations are identical to mode 2. The mode 3 baud  
rate generation is identical to mode 1. That is, mode 3 is a combination of mode 2  
protocol and mode 1 baud rate. Figure 32 illustrates the mode 3 transmit timing. Mode 3  
operation is identical to that of the standard 8051 when Timers 1 and 2 use CPU_clk/12  
(the default).  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 89 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Figure 32 Serial port Mode 3 Transmit Timing.  
Figure 33 illustrates the mode 3 receive timing.  
Figure 33 Serial port Mode 3 Receive Timing.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 90 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
18.9.5 Multiprocessor Communications  
The multiprocessor communication feature is enabled in modes 2 and 3 when the SM2  
bit is set in the SCON SFR for a serial port. In multiprocessor communication mode, the  
9th bit received is stored in RB8 and, after the stop bit is received, the serial port  
interrupt is activated only if RB8 = 1. A typical use for the multiprocessor  
communication feature is when a master wants to send a block of data to one of several  
slaves. The master first transmits an address byte that identifies the target slave. When  
th  
transmitting an address byte, the master sets the 9 bit to 1; for data bytes, the 9th bit is  
0.  
When SM2 = 1, no slave will be interrupted by a data byte. However, an address byte  
interrupts all slaves so that each slave can examine the received address byte to  
determine whether that slave is being addressed. Address decoding must be done by  
software during the interrupt service routine. The addressed slave clears its SM2 bit and  
prepares to receive the data bytes. The slaves that are not being addressed leave the SM2  
bit set and ignore the incoming data bytes.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 91 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
19 PACKAGE OUTLINE  
nRF9E5 uses the QFN 32L 5x5 green package with a mat tin finish. Dimensions are in  
mm. Recommended soldering reflow profile can be found in application note nAN400-  
08, QFN soldering reflow guidelines, www.nordicsemi.no.  
+
A
A1  
A2  
b
D
E
e
J
K
L
Package  
Type  
QFN32  
(5x5 mm)  
Min  
typ.  
Max  
0.8  
0.9  
0.0  
0.65  
0.69  
0.18  
0.23  
0.3  
3.2  
3.3  
3.4  
3.2  
3.3  
3.4  
0.3  
0.4  
0.5  
5 BSC  
5 BSC  
0.5 BSC  
0.05  
Figure 34 nRF9E5 package outline.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 92 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
20 PCB LAYOUT AND DECOUPLING GUIDELINES  
nRF9E5 is an extremely robust RF device due to internal voltage regulators and requires  
the minimum of RF layout protocols. However the following design rules should still be  
incorporated into the layout design.  
A PCB with a minimum of two layers including a ground plane is recommended for  
optimum performance. The nRF9E5 DC supply voltage should be decoupled as close as  
possible to the VDD pins with high performance RF capacitors. It is preferable to mount  
a large surface mount capacitor (e.g. 4.7mF tantalum) in parallel with the smaller value  
capacitors. The nRF9E5 supply voltage should be filtered and routed separately from the  
supply voltages of any digital circuitry.  
Long power supply lines on the PCB should be avoided. All device grounds, VDD  
connections and VDD bypass capacitors must be connected as close as possible to the  
nRF9E5 IC. For a PCB with a topside RF ground plane, the VSS pins should be  
connected directly to the ground plane. For a PCB with a bottom ground plane, the best  
technique is to place via holes as close as possible to the VSS pins. A minimum of one  
via hole should be used for each VSS pin.  
Full swing digital data or control signals should not be routed close to the crystal or the  
power supply lines.  
A fully qualified RF-layout for the nRF9E5 and its surrounding components, including  
antennas and matching networks, can be downloaded from www.nordicsemi.no.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 93 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
21 APPLICATION EXAMPLES  
21.1 Differential Connection to a Loop Antenna  
aaaaaaaa  
R3  
AREF  
1K  
C9  
1nF  
C10  
100nF  
AIN3  
AIN2  
AIN1  
AIN0  
VDD  
C7  
10nF  
C5  
33pF  
C6  
4.7nF  
J1  
Loop Antenna  
9.5x9.5mm  
R2  
22K  
C12  
3.9pF  
P00  
1
24  
23  
22  
21  
20  
19  
18  
17  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
MOSI (P1.1)  
MISO (P1.2)  
P01  
P02  
P03  
VDD  
VSS  
P04  
P05  
P06  
VSS  
IREF  
VSS  
2
3
4
5
6
7
8
nRF9E5  
R6  
18K  
VDD  
ANT2  
C13  
4.7pF  
ANT1  
VDD_PA  
VSS  
C3  
33pF  
VDD  
VDD  
C14  
5.6pF  
SCK (P1.0)  
EECSN (P1.3)  
VDD  
U1  
nRF9E5  
R4  
10K  
C8  
33pF  
U2  
CS  
SO  
WP  
VSS  
VDD  
1
8
C4  
3.3nF  
0603  
VCC  
2
3
4
7
6
5
HOLD  
SCK  
SI  
X1  
R5  
100K  
C11  
10nF  
25XX320  
16 MHz  
R1  
1M  
C1  
22pF  
C2  
22pF  
aaaaaaaa  
Figure 35 nRF9E5 application schematic, differential connection to a loop antenna  
(868MHz).  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 94 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Component  
Description  
Size  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
Value  
22  
22  
33  
3.3  
33  
4.7  
10  
33  
1
100  
10  
3.9  
4.7  
5.6  
1
22  
1
10  
100  
18  
Tol.  
±5%  
±5%  
±5%  
Units  
pF  
pF  
pF  
nF  
pF  
nF  
nF  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
R1  
R2  
R3  
R4  
R5  
R6  
U1  
NP0 ceramic chip capacitor, (Crystal oscillator)  
NP0 ceramic chip capacitor, (Crystal oscillator)  
NP0 ceramic chip capacitor, (PA supply decoupling)  
X7R ceramic chip capacitor, (PA supply decoupling)  
NP0 ceramic chip capacitor, (Supply decoupling)  
X7R ceramic chip capacitor, (Supply decoupling)  
X7R ceramic chip capacitor, (Supply decoupling)  
NP0 ceramic chip capacitor, (Supply decoupling)  
X7R ceramic chip capacitor, (AREF filtering)  
X7R ceramic chip capacitor, (AREF filtering)  
X7R ceramic chip capacitor  
NP0 ceramic chip capacitor, (Antenna tuning)  
NP0 ceramic chip capacitor, (Antenna tuning)  
NP0 ceramic chip capacitor, (Antenna tuning)  
0.1W chip resistor, (Crystal oscillator bias)  
0.1W chip resistor, (Reference bias)  
0.1W chip resistor  
±10%  
±5%  
±10%  
±10%  
±5%  
±10%  
±10%  
±10%  
±0.1  
±0.1  
±0.1  
±1%  
±1%  
±1%  
±1%  
±1%  
±1%  
pF  
nF  
nF  
nF  
pF  
pF  
pF  
MW  
kW  
kW  
kW  
kW  
kW  
0.1W chip resistor  
0.1W chip resistor  
0603  
0603  
0603  
0.1W chip resistor, (Antenna Q reduction)  
nRF9E5 Transceiver  
QFN32L/5x5  
U2  
X1  
4 kbyte serial EEPROM with SPI interface  
Crystal (see chapter 7.1)  
SO8  
LxWxH =  
2XX320  
16  
MHz  
±30ppm  
4.0x2.5x0.8  
Table 74 Recommended External Components, differential connection to a loop antenna  
(868MHz).  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 95 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
21.2 PCB Layout Example, Differential Connection to a Loop Antenna  
Figure 36 shows a PCB layout example for the application schematic in Figure 35.  
A double-sided FR-4 board of 1.6mm thickness is used. This PCB has a ground plane on  
the bottom layer. Additionally, there are ground areas on the component side of the  
board to ensure sufficient grounding of critical components. A large number of via holes  
connect the top layer ground areas to the bottom layer ground plane. There is no ground  
plane beneath the antenna.  
No components in bottom layer  
b) Bottom silk screen  
a) Top silk screen  
c) Top view  
d) Bottom view  
Figure 36 PCB layout example for nRF9E5, differential connection to a loop antenna.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 96 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
21.3 Single Ended Connection to 50W Antenna  
aaaaaaaa  
868/915MHz  
433MHz  
C3 33pF, ±5%  
180pF, ±5%  
R3  
1K  
C12 3.9pF, ±0.25pF18pF, ±5%  
C13 3.9pF, ±0.25pF18pF, ±5%  
AREF  
C9  
1nF  
C10  
100nF  
AIN3  
AIN2  
AIN1  
AIN0  
C14  
Not fitted  
Not fitted  
6.8pF, ±5%  
Not fitted  
C15 33pF, ±5%  
C16 Not fitted  
VDD  
L1 12nH, 5%  
L2 12nH, 5%  
12nH, 5%  
39nH, 5%  
C7  
10nF  
C5  
33pF  
C6  
4.7nF  
L3 12nH, 5%  
39nH, 5%  
C12  
R2  
C16  
22K  
C15  
L2  
L3  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
1
2
3
4
5
6
24  
23  
22  
21  
20  
19  
50 ohm RF I/O  
P01  
P02  
P03  
VDD  
VSS  
P04  
P05  
P06  
VSS  
IREF  
VSS  
ANT2  
ANT1  
VDD_PA  
VSS  
VDD  
nRF9E5  
L1  
VDD  
C14  
Not fitted  
7
8
18  
17  
C3  
MOSI (P1.1)  
VDD  
MISO (P1.2)  
SCK (P1.0)  
EECSN (P1.3)  
C13  
VDD  
U1  
nRF9E5  
R4  
C8  
10K  
33pF  
U2  
CS  
SO  
WP  
VSS  
VDD  
1
2
3
4
8
7
6
5
C4  
3.3nF  
VCC  
HOLD  
SCK  
SI  
X1  
R5  
100K  
C11  
10nF  
25XX320  
16 MHz  
R1  
1M  
C1  
22pF  
C2  
22pF  
a a a a a a a a  
Figure 37 nRF9E5 application schematic, single ended connection to 50W antenna by  
using a differential to single ended matching network.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 97 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Component  
Description  
NP0 ceramic chip capacitor, (Crystal oscillator)  
NP0 ceramic chip capacitor, (Crystal oscillator)  
NP0 ceramic chip capacitor, (PA supply decoupling)  
@ 433MHz  
Size  
0603  
0603  
0603  
Value  
22  
22  
Tol.  
Units  
pF  
pF  
C1  
C2  
C3  
±5%  
±5%  
±5%  
pF  
180  
33  
@ 868  
@ 915MHz  
33  
C4  
C5  
C6  
C7  
C8  
X7R ceramic chip capacitor, (PA supply decoupling)  
NP0 ceramic chip capacitor, (Supply decoupling)  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
3.3  
33  
4.7  
10  
33  
1
±10%  
±5%  
±10%  
±10%  
±5%  
±10%  
±10%  
±10%  
nF  
pF  
nF  
nF  
pF  
nF  
nF  
nF  
pF  
X7R ceramic chip capacitor, (Supply decoupling)  
X7R ceramic chip capacitor, (Supply decoupling)  
NP0 ceramic chip capacitor, (Supply decoupling)  
X7R ceramic chip capacitor, (AREF filtering)  
X7R ceramic chip capacitor, (AREF filtering)  
X7R ceramic chip capacitor  
C9  
C10  
C11  
C12  
100  
10  
NP0 ceramic chip capacitor, (Impedance matching)  
@ 433MHz  
@ 868  
@ 915MHz  
18  
3.9  
3.9  
±5%  
<±0.25pF  
<±0.25pF  
C13  
NP0 ceramic chip capacitor, (Impedance matching)  
0603  
pF  
@ 433MHz  
@ 868  
@ 915MHz  
18  
3.9  
3.9  
±5%  
<±0.25pF  
<±0.25pF  
C14  
C15  
NP0 ceramic chip capacitor, (Impedance matching)  
NP0 ceramic chip capacitor, (Impedance matching)  
0603  
0603  
Not fitted  
pF  
pF  
@ 433MHz  
@ 868  
@ 915MHz  
6.8  
33  
33  
±5%  
±5%  
±5%  
C16  
L1  
NP0 ceramic chip capacitor, (Impedance matching)  
0603  
0603  
0603  
pF  
nH  
nH  
@ 433MHz  
@ 868  
@ 915MHz  
Not fitted  
Not fitted  
Not fitted  
Chip inductor, (Impedance matching)  
@ 433MHz: SRF> 433MHz  
@ 868MHz: SRF> 868MHz  
@ 915MHz: SRF> 915MHz  
Chip inductor, (Impedance matching)  
@ 433MHz: SRF> 433MHz  
@ 868MHz: SRF> 868MHz  
@ 915MHz: SRF> 915MHz  
±5%  
12  
12  
12  
L2  
39  
12  
12  
±5%  
±5%  
±5%  
L3  
Chip inductor, (Impedance matching)  
@ 433MHz: SRF> 433MHz  
@ 868MHz: SRF> 868MHz  
@ 915MHz: SRF> 915MHz  
0603  
nH  
39  
12  
12  
±5%  
±5%  
±5%  
R1  
R2  
R3  
R4  
R5  
U1  
0.1W chip resistor, (Crystal oscillator bias)  
0.1W chip resistor, (Reference bias)  
0.1W chip resistor  
0.1W chip resistor  
0.1W chip resistor  
0603  
0603  
0603  
0603  
0603  
1
22  
1
10  
100  
±1%  
±1%  
±1%  
±1%  
±1%  
MW  
kW  
kW  
kW  
kW  
nRF9E5 Transceiver  
QFN32L/5x5  
U2  
X1  
4 kbyte serial EEPROM with SPI interface  
Crystal (see chapter 7.1)  
SO8  
LxWxH =  
2XX320  
16  
MHz  
±30ppm  
4.0x2.5x0.8  
Table 75 Recommended External Components, single ended connection to 50W antenna.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 98 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
21.4 PCB Layout Example, Single Ended Connection to 50W Antenna  
Figure 38 shows a PCB layout example for the application schematic in Figure 37.  
A double-sided FR-4 board of 1.6mm thickness is used. This PCB has a ground plane on  
the bottom layer. Additionally, there are ground areas on the component side of the  
board to ensure sufficient grounding of critical components. A large number of via holes  
connect the top layer ground areas to the bottom layer ground plane.  
No components in bottom layer  
b) Bottom silk screen  
a) Top silk screen  
c) Top view  
d) Bottom view  
Figure 38 PCB layout example for nRF9E5, single ended connection to 50W antenna by  
using a differential to single ended matching network.  
21.5 Configure the Chip as nRF905.  
nRF9E5 is easily configurable as nRF905. Upon power up the boot loader is run. If  
MISO is set to low value during the first 10ms, the microcontroller configures itself to  
nRF905 mode. All pins are then defined as for the nRF905 chip.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 99 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
22 ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
VDD...............................- 0.3V to + 3.6V  
VSS .....................................................0V  
Input Voltage  
VI..........................- 0.3V to VDD + 0.3V  
Output Voltage  
VO.........................- 0.3V to VDD + 0.3V  
Total Power Dissipation  
PD (TA=85°C)................................ 230mW  
Temperatures  
Operating temperature............................................ - 40°C to + 85°C  
Storage temperature...............................................- 40°C to + 125°C  
Note: Stress exceeding one or more of the limiting values may cause permanent damage  
to the device.  
ATTENTION!  
Electrostatic sensitive device.  
Observe precaution for handling.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 100 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
23 GLOSSERY OF TERMS  
Term  
ADC  
AM  
Description  
Analog to Digital Converter  
Address Match  
BOM  
CD  
Bill Of Material  
Carrier Detect  
CLK  
Clock  
CRC  
CSN  
DR  
Cyclic Redundancy Check  
SPI Chip Select Not  
Data Ready  
GFSK  
GPIO  
ISM  
Gaussian Frequency Shift Keying  
General Purpose Input Output  
Industrial-Scientific-Medical  
kilo Samples per Second  
Micro Controller Unit  
SPI Master In Slave Out  
SPI Master Out Slave In  
Pulse-Width Modulation  
Power Down  
ksps  
MCU  
MISO  
MOSI  
PWM  
PWR_DWN  
PWR_UP  
RAM  
ROM  
RTC  
Power Up  
Random Access Memory  
Read Only Memory  
Real Time Clock  
RX  
Receive  
SCK  
SPI Serial Clock  
SPI  
Serial Programmable Interface  
Standby  
Transmit/Receive Enable  
Transmit  
STBY  
TRX_EN  
TX  
TX_EN  
UART  
XTAL  
Transmit Enable  
Universal Asynchronous Receiver Transmitter  
Crystal  
Table 76 Glossary of terms.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 101 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
24 DEFINITIONS  
Data sheet status  
Objective product specification This datasheet contains target specifications for product development.  
Preliminary  
specification  
product This datasheet contains preliminary data; supplementary data may be  
published from Nordic Semiconductor ASA later.  
Product specification  
This datasheet contains final product specifications. Nordic Semiconductor  
ASA reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Limiting values  
Stress above one or more of the limiting values may cause permanent damage to the device. These are stress  
ratings only and operation of the device at these or at any other conditions above those given in the  
Specifications sections of the specification is not implied. Exposure to limiting values for extended periods may  
affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
Table 77 Definitions.  
Nordic Semiconductor ASA reserves the right to make changes without further notice to  
the product to improve reliability, function or design. Nordic Semiconductor does not  
assume any liability arising out of the application or use of any product or circuits  
described herein.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems  
where malfunction of these products can reasonably be expected to result in personal  
injury. Nordic Semiconductor ASA customers using or selling these products for use in  
such applications do so at their own risk and agree to fully indemnify Nordic  
SemiconductorSemiconductor ASA for any damages resulting from such improper use  
or sale.  
Product specification revision date: 8.06.2004  
Datasheet order code: 080604nRF9E5  
All rights reserved ®. Reproduction in whole or in part is prohibited without the prior  
written permission of the copyright holder.  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 102 of 104  
-
Fax +4772898989  
June 2004  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
25 YOUR NOTES  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
-
Fax +4772898989  
June 2004  
Revision: 1.1  
Page 103 of 104  
PRODUCT SPECIFICATION  
nRF9E5 Single Chip Transceiver with Embedded Microcontroller and ADC  
Nordic Semiconductor ASA – World Wide Distributors  
For Your nearest dealer, please see http://www.nordicsemi.no  
Main Office:  
Vestre Rosten 81, N-7075 Tiller, Norway  
Phone: +47 72 89 89 00, Fax: +47 72 89 89 89  
Visit the Nordic Semiconductor ASA website at http://www.nordicsemi.no  
Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway -Phone +4772898900  
Revision: 1.1 Page 104 of 104  
-
Fax +4772898989  
June 2004  

相关型号:

NRF9E5-EVKIT915

433/868/915MHz RF Transceiver with Embedded 8051 Compatible Microcontroller and 4 Input, 10 Bit ADC
ETC

NRF9E5IC

433/868/915MHz RF Transceiver with Embedded 8051 Compatible Microcontroller and 4 Input, 10 Bit ADC
ETC

NRG4026T100M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T150M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T1R2N

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T220M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T2R3N

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T330M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T3R5M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T470M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T4R7M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN

NRG4026T6R6M

SMD INDUCTORS LOW PROFILE TYPE
TAIYO YUDEN