NT56V6620C0T-75B [ETC]

x16 SDRAM ; X16 SDRAM\n
NT56V6620C0T-75B
型号: NT56V6620C0T-75B
厂家: ETC    ETC
描述:

x16 SDRAM
X16 SDRAM\n

动态存储器
文件: 总66页 (文件大小:1687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
NT56V6610C0T (8Mx8)  
NT56V6620C0T (4Mx16)  
64Mb Synchronous DRAM  
Data Sheet  
REV 1.1 June, 2000  
1
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Revision Log  
Rev Date  
Sep / 1999  
June / 2000  
Version  
1.0  
Content of Modification  
1 st Revision  
1.1  
Added speed grade –75B (PC133@CL3 & PC100@CL2) to  
following items as :  
1. Product Family  
2. DC currents  
3. AC Timing Parameters  
REV 1.1 June, 2000  
2
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Contents  
Revision Log ................................................................................................................................................................02  
Table of Contents.........................................................................................................................................................03  
Description...................................................................................................................................................................05  
Features........................................................................................................................................................................06  
Product Family ............................................................................................................................................................07  
Pin Assignment............................................................................................................................................................07  
Pin Description.............................................................................................................................................................08  
Functional Block Diagram ...........................................................................................................................................09  
Ordering Information...................................................................................................................................................10  
DC Characteristics.......................................................................................................................................................11  
.......................................................................................................................................11  
Absolute Maximum Ratings  
.....................................................................................................................11  
Recommended DC Operating Conditions  
..........................................................................................................................................................11  
Capacitance  
.....................................................................................................................................11  
DC Electrical Characteristics  
............................................................................................................................................12  
DC Output Load Circuit  
...................................................................................................................13  
Operating, Standby, and Refresh Currents  
AC Characteristics.......................................................................................................................................................14  
...........................................................................................................................................14  
AC Output Load Circuits  
AC Timing Parameters.................................................................................................................................................15  
............................................................................................................................15  
Clock and Clock Enable Parameters  
...............................................................................................................................................15  
Common Parameters  
..........................................................................................................................................15  
Mode Register Set Cycle  
...........................................................................................................................................................16  
Read Cycle  
........................................................................................................................................................16  
Refresh Cycle  
...........................................................................................................................................................16  
Write Cycle  
....................................................................................................................................16  
Clock Frequency and Latency  
Command Truth Table.................................................................................................................................................18  
DEVICE OPERATIONS .................................................................................................................................................24  
........................................................................................................................................24  
Power On and Initialization  
................................................................................................................................24  
Programming the Mode Register  
..........................................................................................................................................24  
Mode Register Definition  
..............................................................................................................................................25  
Burst Mode Operation  
......................................................................................................................................25  
Burst Length and Sequence  
..........................................................................................................................................26  
Bank Activate Command  
...........................................................................................................................................................26  
Bank Select  
..................................................................................................................................27  
Read and Write Access Modes  
.............................................................................................................................................28  
Burst Read Command  
.......................................................................................................................................29  
......................................................................................................................................30  
Read Interrupted by a Read  
Read Interrupted by a Write  
.............................................................................................................................................30  
Burst Write Command  
......................................................................................................................................31  
......................................................................................................................................31  
Write Interrupted by a Write  
Write Interrupted by a Read  
..............................................................................................................................................32  
Burst Stop Command  
........................................................................................................................................33  
Auto-Precharge Operation  
...............................................................................................................................................37  
Precharge Command  
...............................................................................................................37  
Bank Selection for Precharge by Address Bits  
.............................................................................................................................................39  
Precharge Termination  
....................................................................................................................................40  
Automatic Refresh Command  
............................................................................................................................................40  
Self Refresh Command  
..................................................................................................................................................41  
Power Down Mode  
............................................................................................................................................................41  
Data Mask  
REV 1.1 June, 2000  
3
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
...........................................................................................................................................41  
No Operation Command  
.................................................................................................................................................41  
...............................................................................................................................................42  
Deselect Command  
Clock Suspend Mode  
Timing Diagrams .........................................................................................................................................................43  
................................................................................................................................43  
AC Parameters for Write Timing  
.......................................................................................................................44  
.......................................................................................................................45  
.......................................................................................................................46  
.......................................................................................................................47  
AC Parameters for Read Timing (3/3/3)  
AC Parameters for Read Timing (2/2/2)  
AC Parameters for Read Timing (3/2/2)  
AC Parameters for Read Timing (3/3/3)  
..................................................................................................................................................48  
Mode Register Set  
...............................................................................................................49  
..................................................................................................................50  
.................................................................................................................51  
Power On Sequence and Auto Refresh (CBR)  
Clock Suspension, DQM during Burst Read  
Clock Suspension, DQM during Burst Write  
........................................................................................................................52  
Power Down Mode and Clock Suspend  
................................................................................................................................................54  
Auto Refresh (CBR)  
.....................................................................................................................................54  
Self Refresh (Entry and Exit)  
..................................................................................................55  
Random Row Read (Interleaving Banks) with Precharge  
Random Row Read (Interleaving Banks) with Auto Precharge  
Random Row Write (Interleaving Banks) with Auto Precharge  
...........................................................................................56  
...........................................................................................57  
..................................................................................................58  
Random Row Write (Interleaving Banks) with Precharge  
...................................................................................................................................................59  
Read-Write Cycle  
..................................................................................................................................60  
...............................................................................................................................61  
................................................................................................................................62  
Interleaved Column Read Cycle  
Auto Precharge after Read Burst  
Auto Precharge after Write Burst  
........................................................................................................................63  
Burst Read and Single Write Operation  
Full Page Burst Read and Single Write Operation  
/CS Function (Only /CS signal needs to be asserted at minimum rate)  
...........................................................................................................64  
.................................................................................65  
Package Dimension .....................................................................................................................................................66  
REV 1.1 June, 2000  
4
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Description  
The NT56V6610C0T and NT56V6620C0T are four-bank Synchronous DRAMs organized as 2Mbit x 8 I/O x 4 Bank and 1Mbitx16I/Ox4Bank,  
respectively. These synchronous devices achieve high-speed data transfer rates of up to 133MHz by employing a pipeline chip architecture  
that synchronizes the output data to a system clock. The chip is fabricated with NANYA advanced 64Mbit single transistor CMOS DRAM  
process technology.  
The device is designed to comply with all JEDEC standards set for synchronous DRAM products, both electrically and mechanically. All of  
the control, address, and data input/output (I/O or DQ) circuits are synchronized with the positive edge of an externally supplied clock.  
/RAS, /CAS, /WE, and /CS are pulsed signals which are examined at the positive edge of each externally applied clock (CLK). Internal chip  
operating modes are defined by combinations of these signals and a command decoder initiates the necessary timings for each operation. A  
fourteen bit address bus accepts address data in the conventional /RAS /CAS multiplexing style. Twelve row addresses (A0-A11) and two  
bank select addresses (A12, A13) are strobed with /RAS. Ten column addresses (A0-A9) plus bank select addresses and A10 are strobed  
with /CAS. Column address A9 is dropped on the x8 device and column addresses A8 and A9 are dropped on the x16 device. Access to the  
lower or upper DRAM in a stacked device is controlled by /CS0 and /CS1, respectively.  
Prior to any access operation, the /CAS latency, burst length, and burst sequence must be programmed into the device by address inputs  
A0-A9 during a mode register set cycle. In addition, it is possible to program a multiple burst sequence with single write cycle for write  
through cache operation.  
Operating the four memory banks in an interleave fashion allows random access operation to occur at a higher rate than is possible with  
standard DRAMs. A sequential and gapless data rate of up to 133MHz is possible depending on burst length, /CAS latency, and speed  
grade of the device. Simultaneous operation of both decks of a stacked device is allowed, depending on the operation being done. Auto  
Refresh (CBR), Self Refresh, and Low Power operation are supported.  
Feature  
·
·
·
·
·
·
JEDEC standard 3.3V± 0.3V Power Supply  
LVTTL compatible inputs and outputs  
Four Banks controlled by Bank Selects(A12/A13)  
Single Pulsed /RAS Interface  
Fully Synchronous to Positive Clock Edge  
MRS cycle with address key programmability for :  
- CAS Latency ( 2, 3 )  
- Burst Length ( 1, 2, 4, 8 & Full-page )  
- Burst Type ( Sequential or Interleave )  
Multiple Burst Read with Single Write Option  
Automatic and Controlled Precharge Command  
Data Mask for Read/Write control (x8)  
Dual Data Mask for byte control (x16)  
Auto Refresh (CBR) and Self Refresh  
Suspend Mode and Power Down Mode  
Standard Power operation  
·
·
·
·
·
·
·
·
·
·
4096 refresh cycles/64ms  
Random Column Address every CLK (1-N Rule)  
Package:54-pin 400 mil TSOP-Type II  
REV 1.1 June, 2000  
5
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Product Family  
Speed  
( MHz@CL-tRP-tRCD)  
Part NO.  
Organization  
Interface  
Package  
NT56V6610C0T-75B  
NT56V6610C0T-75  
NT56V6610C0T-8B  
NT56V6610C0T-8A  
NT56V6620C0T-7  
NT56V6620C0T-75B  
NT56V6620C0T-75  
NT56V6620C0T-8B  
NT56V6620C0T-8A  
133 MHz @ 3-3-3  
100 MHz @ 2-2-2  
133 MHz @ 3-3-3  
125 MHz @ 3-3-3  
125 MHz @ 3-3-3  
143 MHz @ 3-3-3  
133 MHz @ 3-3-3  
133 MHz @ 3-3-3  
125 MHz @ 3-3-3  
125 MHz @ 3-3-3  
-
8M x 8  
100MHZ @ 2-2-2  
100MHz @ 3-2-2  
-
54pin  
LVTTL  
TSOP II  
100 MHz @ 2-2-2  
-
4M x 16  
100MHZ @ 2-2-2  
100MHz @ 3-2-2  
REV 1.1 June, 2000  
6
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Pin Assignment ( Top View )  
4M x 16  
8M x 8  
¡´  
1
VDD  
VDD  
DQ0  
VDDQ  
NC  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
Vss  
DQ7  
VssQ  
NC  
Vss  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
VDD  
2
DQ15  
VssQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
VSS  
3
4
DQ1  
VSSQ  
NC  
5
DQ6  
VDDQ  
NC  
6
7
DQ2  
VDDQ  
NC  
8
DQ5  
VSSQ  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DQ3  
VSSQ  
NC  
DQ4  
VDDQ  
NC  
VDD  
NC  
VSS  
NC  
LDQM  
WE  
NC  
WE  
DQM  
CLK  
CKE  
NC  
UDQM  
CLK  
CKE  
NC  
CAS  
RAS  
CS  
CAS  
RAS  
CS  
A13/BS0 A13/BS0  
A12/BS1 A12/BS1  
A11  
A9  
A11  
A9  
A10/AP  
A0  
A10/AP  
A0  
A8  
A8  
A7  
A7  
A1  
A1  
A6  
A6  
A2  
A2  
A5  
A5  
A3  
A3  
A4  
A4  
VDD  
VDD  
VSS  
VSS  
54-pin Plastic TSOP-II 400 mil  
REV 1.1 June, 2000  
7
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Pin Description  
CLK  
Clock Input  
Clock Enable  
DQ0-DQ15  
Data Input/Output  
Data Mask  
CKE  
DQM, LDQM, UDQM  
/CS (/CS0, /CS1 )  
/RAS  
Chip Select  
VDD  
VSS  
VDDQ  
VSSQ  
NC  
Power (+3.3V)  
Ground  
Row Address Strobe  
Column Address Strobe  
Write Enable  
/CAS  
Power for DQs (+3.3V)  
Ground for DQs  
No Connection  
--  
/WE  
BS1, BS0 (A12, A13)  
A0-A11  
Bank Select  
Address Inputs  
--  
Input / Output Functional Description  
Symbol  
Type  
Polarity  
Function  
The system clock input. All of the SDRAM inputs are sampled on the rising edge of  
the clock.  
CLK  
Input  
Positive Edge  
Activates the CLK signal when high and deactivates the CLK signal when low. By  
deactivating the clock, CKE low initiates the Power Down mode, Suspend mode, or  
the Self Refresh mode.  
CKE  
Input  
Input  
Active High  
Active Low  
/CS enables the command decoder when low and disables the command decoder  
when high. When the command decoder is disabled, new commands are ignored  
but previous operations continue.  
/CS  
When sampled at the positive rising edge of the clock, /CAS, /RAS, and /WE define  
the operation to be executed by the SDRAM.  
/RAS, /CAS /WE  
Input  
Input  
Active Low  
--  
BS1, BS0  
(A12, A13)  
Selects which bank is to be active.  
During a Bank Activate command cycle, A0-A11 defines the row address (RA0-  
RA11) when sampled at the rising clock edge.  
During a Read or Write command cycle, A0-A9 defines the column address (CA0-  
CA9) when sampled at the rising clock edge.  
A10 is used to invoke auto-precharge operation at the end of the burst read or write  
cycle. If A10 is high, auto-precharge is selected and BS0, BS1 defines the bank to  
be precharged. If A10 is low, autoprecharge is disabled.  
A0 - A11  
Input  
--  
During a Precharge command cycle, A10 is used in conjunction with BS0, BS1 to  
control which bank(s) to precharge. If A10 is high, all banks will be precharged  
regardless of the state of BS. If A10 is low, then BS0 and BS1 are used to define  
which bank to precharge.  
Input-  
DQ0-DQ15  
--  
Data Input/Output pins operate in the same manner as on conventional DRAMs  
Output  
The Data Input/Output mask places the DQ buffers in a high impedance state when  
sampled high. In x16 products, LDQM and UDQM control the lower and upper byte  
I/O buffers, respectively. In Read mode, DQM has a latency of two clock cycles and  
controls the output buffers like an output enable. DQM low turns the output buffers  
on and DQM high turns them off. In Write mode, DQM has a latency of zero and  
operates as a word mask by allowing input data to be written if it is low but blocks  
the write operation if DQM is high.  
DQM  
LDQM  
UDQM  
Input  
Active High  
VDD, VSS  
Supply  
Supply  
--  
--  
Power and ground for the input buffers and the core logic.  
Isolated power supply and ground for the output buffers to provide improved noise  
immunity.  
VDDQ, VSSQ  
REV 1.1 June, 2000  
8
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Functional Block Diagram  
CKE  
Buffer  
CKE  
CLK  
Column Decoder  
Column Decoder  
CLK  
Buffer  
Cell Array  
Cell Array  
Memory Bank 0  
Memory Bank 1  
Sense Amplifiers  
Sense Amplifiers  
A0  
A1  
A2  
A3  
DQ0  
A4  
A5  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A10  
DQX  
DQM  
Column Decoder  
Column Decoder  
Cell Array  
Cell Array  
Memory Bank 2  
Memory Bank 3  
CS  
RAS  
CAS  
WE  
Sense Amplifiers  
Sense Amplifiers  
Cell Array , per bank , for 2Mb x 8 DQ : 4096 Row x 512 Col x 8 DQ (DQ0-DQ7 ).  
Cell Array , per bank , for 1Mb x 16 DQ : 4096 Row x 256 Col x 16 DQ (DQ0-DQ15).  
REV 1.1 June, 2000  
9
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Part Number Guide  
NT 56  
V
6
6
10  
C
0
T - XX  
Speed*(10)  
Package*(9)  
NANYA Memory*(1)  
Device*(2)  
Interface*(8)  
Voltage*(3)  
Revision*(7)  
Density*(4)  
Configration*(6)  
Refresh Time*(5)  
(1) NANYA Memory  
(6) Configuration  
10 - - - - - - - - 4 bank, x 8  
20 - - - - - - - - 4 bank, x 16  
(2) Device  
56 - - - - - - - - SDRAM  
(7) Revision  
A - - - - - - - - 1st version  
B - - - - - - - - 2nd version  
C - - - - - - - - 3rd version  
D - - - - - - - - 4th version  
(3) Voltage  
V - - - - - - - - 3.3V  
(8) Interface  
0 - - - - - - - - LVTTL  
1 - - - - - - - - SSTL  
(4) Density  
1 - - - - - - - - 16M  
(9) Package  
T - - - - - - - -TSOP II  
F - - - - - - - -TQFP  
Q - - - - - - - -QFP  
6 - - - - - - - - 64M  
2 - - - - - - - - 128M  
(5) Refresh Time  
(10) Speed  
7 - - - - - - - - 2K/32ms  
6 - - - - - - - - 4K/64ms  
7 - - - - - - - -143MHz  
75 - - - - - - -133MHz  
8 - - - - - - - -125MHz  
10 - - - - - - -100MHz  
REV 1.1 June, 2000  
10  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
DC Characteristics  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
-0.3 to +4.6  
-0.3 to +4.6  
-0.3 to VDD+0.3  
-0.3 to VDD+0.3  
0 to +70  
Units  
V
Notes  
VDD  
Power Supply Voltage  
1
1
1
1
1
1
1
1
VDDQ  
VIN  
Power Supply Voltage for Output  
Input Voltage  
V
V
VOUT  
TA  
Output Voltage  
V
Operating Temperature (ambient)  
Storage Temperature  
Power Dissipation  
°C  
°C  
W
TSTG  
PD  
-55 to +125  
1.0  
IOUT  
Short Circuit Output Current  
50  
mA  
1.Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Recommended DC Operating Conditions (TA = 0 to 70 °C )  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
3.0  
Typ.  
3.3  
3.3  
-
Max.  
3.6  
VDD  
Power Voltage  
V
V
V
V
1
1
VDDQ  
VIH  
Power Voltage for Output  
Input High Voltage  
3.0  
3.6  
2.0  
VDD + 0.3  
0.8  
1,2  
1,3  
VIL  
Input Low Voltage  
-0.3  
-
1. All voltages referenced to VSS and VSSQ  
.
2. V IH (max) = V DD / V DDQ + 1.2V for pulse width £ 5ns  
3. VIL (min) = VSS /VSSQ - 1.2V for pulse width £ 5ns .  
Capacitance (T = 25 °C, f = 1MHz, VDD = 3.3V ± 0.3V)  
A
Symbol  
Parameter  
Min.  
Typ.  
3.0  
Max.  
3.8  
Units  
pF  
Notes  
1
Input Capacitance  
2.5  
(A0-A11, BS0, BS1, /CS, /RAS, /CAS, /WE, CKE, DQM)  
Input Capacitance (CLK)  
CI  
2.5  
4.0  
2.8  
4.5  
3.5  
6.5  
CO  
Output Capacitance (DQ0 – DQ15)  
1. Multiply given planar values by 2 for 2-High stacked device except /CS.  
REV 1.1 June, 2000  
11  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
DC Electrical Characteristics (TA = 0 to +70 °C , VDD = 3.3V ± 0.3V)  
Symbol  
Parameter  
Min.  
-1  
Max.  
+1  
Units  
uA  
Notes  
1
Input Leakage Current, any input  
II(L)  
(0.0V £ VIN £ VDD), All Other Pins Not Under Test = 0V  
Output Leakage Current  
IO(L)  
VOH  
VOL  
-1  
2.4  
-
+1  
-
uA  
V
1
-
(DOUT is disabled, 0.0V £ VOUT £ VDDQ  
)
Output Level (LVTTL )  
Output "H" Level Voltage (IOUT = -2.0mA)  
Output Level (LVTTL )  
0.4  
V
-
Output "L" Level Voltage (IOUT = +2.0mA)  
1. Multiply given planar values by 2 for 2-High stacked device.  
DC Output Load Circuit  
3.3 V  
1200 ohms  
VOH(DC) = 2.4V,IOH= -2mA  
VOL(DC) = 0.4V,IOL= -2mA  
Output  
50 pF  
870 ohms  
REV 1.1 June, 2000  
12  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Operating, Standby, and Refresh Currents (VDD =3.3V ± 10% , TA =0°C to 70°C)  
Version  
Parameter  
Symbol  
Test condition  
1 bank operation ,  
Unit  
Note  
- 7  
- 75(B)  
- 8B  
- 8A  
tRC = tRC(mim), tCK = min  
Active-Precharge  
Command cycling  
1,2,3  
mA  
Operating current  
ICC1  
75  
75  
70  
70  
without burst operation  
CKE <= VIL(max),  
Precharge  
standby current  
in power-down mode  
ICC2P  
ICC2PS  
ICC2N  
2
2
mA  
mA  
mA  
1
1
1
tCK = min, /CS = VIH(min),  
CKE <= VIL(max), tCK =oo,  
/CS = VIH(min)  
CKE >= VIH(min),  
/CS = VIH(min), tCK = min  
35  
35  
25  
25  
Precharge  
standby current in non  
power-down mode  
ICC2NS CKE >= VIH(min), tCK =oo  
5
3
mA  
1,5  
ICC3P  
ICC3N  
CKE<=VIL(max), tCK =min  
mA  
mA  
1,7  
1,5  
No Operating current  
( Active state : 4 bank)  
CKE >=VIH(min),  
40  
40  
30  
90  
30  
90  
/CS = VIH(min), tCK =min  
t CK =min , Read/ Write  
command cycling,  
Multiple banks active,  
gapless data, BL=4  
t RC = tRC(min) ; tCK =min  
CBR command cycling  
Operating current  
( Burst mode )  
ICC4  
120  
145  
120  
145  
mA  
1,6  
Auto(CBR)  
refresh current  
Self refresh current  
ICC5  
ICC6  
140  
140  
mA  
mA  
1,3,4  
1
CKE <= 0.2V  
1
Note :  
1. Currents given are valid for a single device. The total current for a stacked device depends on the operation being performed on the  
other deck.  
2. These parameters depend on the cycle rate and are measured with the cycle determined by the minimum value of  
t and t .Input signals are changed up to three times during t (min).  
3. The specified values are obtained with the output open.  
4. Input signals are changed once during t (min).  
5. Input signals are changed once during three clock cycles.  
6. Active Standby Current will be higher if Clock Suspend is entered during a burst read cycle (add 1mA per DQ).  
7. Input signals are stable.  
REV 1.1 June, 2000  
13  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
AC Characteristics (TA = 0 to +70 °C , VDD = 3.3V ± 0.3V)  
1. An initial pause of 200us,with DQM and CKE held high , is required after power-up. A precharge All Banks command  
must be given followed by a minimum of eight Auto (CBR) Refresh cycles before or after the Mode Register Set  
operation .  
2. The Transition time is measured between VIH and VIL (or between VIL and VIH).  
3. In addition to meeting the transition rate specification, the clock and CKE must transit between VIH and VIL (or between  
VIL and VIH) in a monotonic manner.  
4. Load Circuit A : AC timing tests have VIL = 0.4 V and VIH = 2.4 V with the timing referenced to the 1.40V crossover point  
5. Load Circuit A : AC measurements assume tT = 1.0ns.  
6. Load Circuit B : AC timing tests have VIL = 0.8 V and VIH = 2.0 V with the timing referenced to the 1.40V crossover point  
7. Load Circuit B : AC measurements assume tT = 1.2ns.  
AC Output Load Circuits  
tT  
Vtt = 1.4V  
50 ohm  
VIH  
tCKL  
tCKH  
1.4V  
VIL  
Output  
Clock  
Input  
Zo = 50 ohm  
50 pF  
50 pF  
tSETUP  
tHOLD  
AC Output Load Circuit ( A )  
1.4V  
Output  
tAC  
tOH  
1.4V  
Zo = 50 ohm  
tLZ  
Output  
AC Output Load Circuit ( B )  
REV 1.1 June, 2000  
14  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
AC Timing Parameters  
Clock and Clock Enable Parameters  
- 7  
- 75B  
- 75  
Max.  
- 8B  
Max.  
- 8A  
Max.  
Symbol  
Parameter  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
Min.  
7
Max.  
-
Min.  
Max.  
Min.  
7.5  
Min.  
8
Min.  
8
Clock Cycle Time,  
/CAS Latency = 3  
Clock Cycle Time,  
/CAS Latency = 2  
Clock Access Time,  
/CAS Latency = 3  
Clock Access Time,  
/CAS Latency = 2  
Clock Access Time,  
/CAS Latency = 3  
Clock Access Time,  
/CAS Latency = 2  
Clock High Pulse Width  
Clock Low Pulse Width  
Clock Enable Set-up Time  
Clock Enable Hold Time  
Power down mode  
Entry Time  
tCK3  
7.5  
10  
-
-
-
-
-
-
-
tCK2  
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
10  
-
12  
-
tAC3(A)  
tAC2(A)  
tAC3(B)  
tAC2(B)  
-
-
1
1
2
2
-
-
-
-
-
-
-
-
-
5.4  
-
5.4  
-
-
6
6
-
6
6
-
6
-
-
tCKH  
tCKL  
tCES  
tCEH  
3
3
2
1
-
-
-
-
2.5  
2.5  
1.5  
0.8  
-
-
-
-
2.5  
2.5  
1.5  
0.8  
-
-
-
-
3
3
2
1
-
-
-
-
3
3
2
1
-
-
-
-
ns  
ns  
ns  
ns  
tSB  
tT  
0
7
0
7.5  
10  
0
7.5  
10  
0
10  
10  
0
12  
10  
ns  
ns  
Transition Time  
0.5  
10  
0.5  
0.5  
0.5  
0.5  
(Rise and Fall)  
1.Access time is measured at 1.4V. See AC Characteristics: notes 1, 2, 3, 4, 5 and load circuit A  
2.Access time is measured at 1.4V. See AC Characteristics: notes 1, 2, 3, 6, 7 and load circuit B.  
Common Parameters  
- 7  
- 75B  
- 75  
Max.  
- 8B  
- 8A  
Symbol  
Parameter  
Unit  
Note  
Min.  
2
Max.  
Min.  
Max.  
Min.  
1.5  
Min.  
2
Max.  
Min.  
2
Max.  
tCS  
Command Setup Time  
Command Hold Time  
Address and Bank Select  
Set-up Time  
-
-
1.5  
0.8  
-
-
-
-
-
-
-
-
ns  
ns  
tCH  
tAS  
1
0.8  
1
1
2
1
-
-
1.5  
0.8  
-
-
1.5  
0.8  
-
-
2
1
-
-
2
1
-
-
ns  
ns  
Address and Bank Select  
Hold Time  
tAH  
tRCD  
tRC  
/RAS to /CAS Delay  
Bank Cycle Time  
21  
70  
49  
21  
14  
1
-
-
20  
65  
45  
20  
15  
1
-
-
20  
65  
45  
20  
15  
1
-
-
20  
70  
50  
20  
20  
1
-
-
20  
70  
50  
20  
20  
1
-
-
-
-
-
-
ns  
ns  
1
1
1
1
1
tRAS  
tRP  
Active Command Period  
Precharge Time  
ns  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
tRRD  
tCCD  
Bank to Bank Delay Time  
/CAS to /CAS Delay Time  
ns  
CLK  
1.These parameters account for the number of clock cycle and depend on the operating frequency of the clock, as follows: the number of  
clock cycles = specified value of timing / clock period (count fractions as a whole number).  
REV 1.1 June, 2000  
15  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Mode Register Set Cycle  
- 7  
- 75B  
- 75  
Max.  
- 8B  
Max.  
- 8A  
Max.  
Symbol  
Parameter  
Unit  
Note  
1
Min.  
2
Max.  
-
Min.  
Max.  
Min.  
2
Min.  
2
Min.  
2
Mode Register Set  
Cycle Time  
tRSC  
2
-
-
-
-
CLK  
1.These parameters account for the number of clock cycle and depend on the operating frequency of the clock, as follows: the number of  
clock cycles = specified value of timing / clock period (count fractions as a whole number).  
Read Cycle  
- 7  
- 75B  
- 75  
Max.  
- 8B  
Max.  
- 8A  
Max.  
Symbol  
Parameter  
Unit  
Note  
Min.  
2.5  
Max.  
-
Min.  
Max.  
Min.  
-
Min.  
2.5  
3
Min.  
2.5  
3
-
-
-
-
-
-
-
-
-
ns  
ns  
1
2
tOH  
Data Out Hold Time  
2.7  
2.7  
Data Out to Low Impedance  
Time  
tLZ  
0
-
0
-
0
-
0
-
0
-
ns  
tHZ3  
tHZ2  
Data Out to High  
Impedance Time  
3
-
6
-
3
-
5.4  
-
3
-
5.4  
-
3
3
6
6
3
3
6
8
ns  
ns  
3
3
DQM Data Out Disable  
Latency  
tDQZ  
2
-
2
-
2
-
2
-
2
-
CLK  
1.AC Output Load Circuit A.  
2.AC Output Load Circuit B.  
3.Referenced to the time at which the output achieves the open circuit condition, not to output voltage levels.  
Refresh Cycle  
- 7  
- 75B  
- 75  
Max.  
- 8B  
Max.  
- 8A  
Symbol  
Parameter  
Unit  
Note  
Note  
Min.  
-
Max.  
64  
-
Min.  
Max.  
64  
-
Min.  
-
Min.  
-
Min.  
-
Max.  
64  
-
tREF  
Refresh Period  
Self Refresh Exit Time  
-
64  
-
64  
-
ms  
ns  
tSREX  
10  
10  
10  
10  
10  
Write Cycle  
- 7  
- 75B  
- 75  
- 8B  
- 8A  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
Min.  
1.5  
0.8  
15  
Max.  
Min.  
1.5  
0.8  
15  
Max.  
Min.  
2
Max.  
Min.  
2
Max.  
tDS  
Data In Set-up Time  
Data In Hold Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
tDH  
tDPL  
1
1
1
Data input to Precharge  
Data In to Active Delay  
/CAS Latency = 3  
14  
15  
15  
tDAL3  
5
-
5
-
5
-
5
-
5
-
CLK  
Data In to Active Delay  
/CAS Latency = 2  
tDAL2  
tDQW  
-
-
-
-
-
-
-
-
-
4
0
-
-
3
0
-
-
CLK  
ns  
DQM Write Mask Latency  
0
0
0
REV 1.1 June, 2000  
16  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Clock Frequency and Latency  
Symbol  
Parameter  
- 7  
- 75B  
- 75  
- 8B  
- 8A  
Units  
tCK  
Clock Frequency  
143  
7
133  
7.5  
3
100  
10  
2
133  
7.5  
3
125  
8
100  
10  
2
125  
8
83  
12  
2
MHz  
ns  
tCK  
Clock Cycle Time  
tAA  
/CAS Latency  
3
3
3
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
tRP  
Precharge Time  
3
3
2
3
3
2
3
2
tRCD  
tRC  
/RAS to /CAS Delay  
Bank Cycle Time  
3
3
2
3
3
2
3
2
10  
7
9
7
9
9
7
9
6
tRAS  
tDPL  
tDAL  
tRRD  
tCCD  
tWL  
Minimum Bank Active Time  
Data In to Precharge  
Data In to Active/Refresh  
Bank to Bank Delay Time  
/CAS to /CAS Delay Time  
Write Latency  
6
5
6
6
5
6
4
2
2
2
2
2
2
2
2
5
5
4
5
5
4
5
4
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
tDQW  
tDQZ  
tCSL  
DQM Write Mask Latency  
DQM Data Disable Latency  
Clock Suspend Latency  
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
REV 1.1 June, 2000  
17  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Command Truth Table  
CKE  
Device  
A12,  
A13  
A11,  
A0-A9  
Function  
/CS  
/RAS /CAS  
/WE  
DQM  
A10  
Notes  
Previous  
Cycle  
Current  
Cycle  
State  
Mode Register  
Set  
Auto (CBR)  
Refresh  
Entry Self  
Refresh  
Exit Self  
Refresh  
Single Bank  
Precharge  
Precharge all  
Banks  
Bank Activate  
Write  
Write with  
Auto-  
Precharge  
Read  
Idle  
Idle  
Idle  
H
H
H
L
X
H
L
L
L
L
L
L
L
L
L
L
L
H
H
X
X
X
X
X
X
OP Code  
X
X
X
X
X
L
X
X
X
X
X
Idle(Self-  
Refresh)  
See Current  
State Table  
See Current  
State Table  
Idle  
H
L
X
H
X
H
X
H
H
X
X
X
H
H
L
L
L
L
H
H
L
L
BS  
X
2
H
H
H
X
X
L
L
L
H
H
L
H
L
X
X
BS  
BS  
Row address  
L
2
2
Active  
Column  
Column  
Column  
Column  
Active  
Active  
Active  
H
H
H
X
X
X
L
L
L
H
H
H
L
L
L
L
H
H
X
X
X
BS  
BS  
BS  
H
L
2
2
2
Read with  
Auto-  
H
Precharge  
Burst  
Active  
Any  
H
H
H
X
X
X
L
L
H
H
X
H
H
X
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
3,8  
Termination  
No Operation  
Device  
Deselect  
Clock  
Any  
H
Active  
Active  
Active  
H
L
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
X
Suspend  
Mode Entry  
Clock  
Suspend  
Mode Exit  
Data  
Write/Output  
Enable  
Data  
Mask/Output  
Disable  
Power Down  
Mode Entry  
4
5
H
Active  
H
H
L
X
L
H
X
X
X
X
X
X
X
X
X
X
X
H
L
X
H
X
H
X
H
Idle/Active  
6,7  
6,7  
Any  
(Power  
Down)  
H
L
X
H
X
H
X
H
Power Down  
Mode Exit  
H
1
All of the SDRAM operations are defined by states of /CS, /WE, /RAS, /CAS, and DQM at the positive rising edge of the clock.  
Operation of both decks of a stacked device at the same time is allowed, depending on the operation being performed on the other  
deck. Refer to the Current State Truth Table.  
2. Bank Select(BS0,BS1):BS0,BS1=0,0 selects bank0; BS0,BS1=0,1 selects bank1; BS0,BS1=1,0 selects bank2; BS0,BS1= 1,1  
selects bank 3.  
3. During a Burst Write cycle there is a zero clock delay; for a Burst Read cycle the delay is equal to the /CAS latency.  
4. During normal access mode, CKE is held high and CLK is enabled. When it is low, it freezes the internal clock and extends data  
Read and Write operations. One clock delay is required for mode entry and exit.  
5. The DQM has two functions for the data DQ Read and Write operations. During a Read cycle, when DQM goes high data clock  
timing the data outputs are disabled and become high impedance after a two-clock delay. DQM also provides a data mask function  
for Write cycles. When it activates, the Write operation at the clock is prohibited (zero clock latency).  
6. All banks must be precharged before entering the Power Down Mode. (If this command is issued during a burst operation, the  
device state will be Clock Suspend Mode.) The Power Down Mode does not perform any refresh operations; therefore the device  
can’t remain in this mode longer than the Refresh period (tREF) of the device. One clock delay is required for mode entry and exit.  
7. A No Operation or Device Deselect Command is required on the next clock edge following CKE going high.  
8. Device state is full page burst operation. Use of this command to terminate other burst length operations is illegal.  
REV 1.1 June, 2000  
18  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Clock Enable (CKE) Truth Table  
CKE  
Command  
Current  
State  
Action  
Notes  
Previous  
Cycle  
H
Current  
Cycle  
X
A12,  
A13  
X
A11–  
A10  
X
/CS  
X
/RAS  
X
/CAS  
X
/WE  
X
INVALID  
1
2
Exit Self Refresh with  
Device Deselect  
Exit Self Refresh with No  
Operation  
L
L
H
H
H
X
X
X
X
X
X
X
Self  
L
H
H
H
2
Fresh  
L
L
L
L
H
H
H
H
L
L
L
L
X
X
H
H
L
X
X
H
L
X
X
X
L
X
X
X
X
X
X
X
X
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
Maintain Self Refresh  
INVALID  
Power Down mode exit,  
all banks idle  
ILLEGAL  
Maintain Power Down  
Mode  
2
2
2
X
X
X
X
X
1
2
2
L
L
L
H
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Power  
Down  
X
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
X
X
H
L
L
L
X
H
L
L
L
X
X
H
L
X
X
X
H
L
X
X
X
H
L
Refer to the Idle State  
section of the Current  
State Truth Table  
CBR Refresh  
Mode Register Set  
Refer to the Idle State  
section of the Current  
State Truth Table  
Entry Self Refresh  
Mode Register Set  
Power Down  
3
3
3
X
X
All  
Banks  
Idle  
L
OP Code  
4
3
3
3
4
X
X
H
L
L
X
X
X
OP Code  
X
X
X
X
X
4
Refer to operations in the  
Current State Truth Table  
Begin Clock Suspend  
next cycle  
Exit Clock Suspend next  
cycle  
H
H
H
L
X
X
X
X
X
X
X
X
X
X
Any  
State  
other  
than  
listed  
above  
X
X
5
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
Maintain Clock Suspend  
1. For the given Current State CKE must be low in the previous cycle.  
2. When CKE has a low to high transition, the clock and other inputs are re-enabled asynchronously. The minimum setup time for  
CKE (tCES) must be satisfied. When exiting power down mode, a NOP command (or Device Deselect Command) is required on  
the first rising clock after CKE goes high .  
3. The address inputs (A13 - A0) depend on the command that is issued. See the Idle State section of the Current State Truth Table  
for more information.  
4. The Precharge Power Down Mode,the Self Refresh Mode,and the Mode Register Set can only be entered from the all banks idle  
state.  
5. Must be a legal command as defined in the Current State Truth Table.  
REV 1.1 June, 2000  
19  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Current State Truth Table (Part 1 of 3)(See note 1)  
Command  
Current  
State  
Action  
Notes  
A12,  
A13  
/CS  
/RAS  
/CAS  
/WE  
A11-A0  
OP Code  
Description  
L
L
L
L
L
L
L
L
H
L
H
L
Mode Register Set  
Auto or Self Refresh  
Precharge  
Set the Mode Register  
Start Auto or Self Refresh  
No Operation  
2
2,3  
X
BS  
X
X
Row  
Address  
Column  
Column  
X
Activate the specified bank  
and row  
ILLEGAL  
ILLEGAL  
No Operation  
No Operation  
No Operation or Power Down  
ILLEGAL  
ILLEGAL  
Precharge  
L
L
H
H
BS  
Bank Active  
Idle  
L
L
L
L
H
L
L
L
H
H
H
H
X
L
L
L
H
H
X
L
L
H
L
H
X
L
BS  
BS  
X
X
X
Write  
Read  
4
4
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
X
X
5
OP Code  
L
L
L
H
H
L
X
BS  
X
X
6
4
Row  
Address  
L
L
L
L
H
H
H
L
L
H
L
BS  
BS  
BS  
Bank Active  
Write  
ILLEGAL  
Row  
Active  
Start Write; Determine if Auto  
Precharge  
Start Read; Determine if Auto  
Precharge  
Column  
Column  
7,8  
7,8  
H
Read  
L
L
H
L
L
H
H
X
L
H
H
X
L
L
H
X
L
X
X
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
No Operation  
No Operation  
No Operation  
ILLEGAL  
OP Code  
L
L
H
X
X
ILLEGAL  
Terminate Burst; Start the  
Precharge  
L
L
L
L
L
L
H
H
L
L
H
L
BS  
X
Precharge  
Bank Active  
Write  
Row  
Address  
BS  
BS  
BS  
ILLEGAL  
4
Read  
Terminate Burst; Start the  
Write cycle  
Terminate Burst; Start a new  
Read cycle  
H
H
Column  
Column  
8,9  
8,9  
L
H
Read  
L
L
H
L
L
H
H
X
L
H
H
X
L
L
H
X
L
X
X
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
OP Code  
L
L
H
X
X
ILLEGAL  
Terminate Burst; Start the  
Precharge  
L
L
L
L
L
L
H
H
L
L
H
L
BS  
X
Precharge  
Bank Active  
Write  
Row  
Address  
BS  
BS  
BS  
ILLEGAL  
4
Write  
Terminate Burst; Start a new  
Write cycle  
Terminate Burst; Start the  
Read cycle  
H
H
Column  
Column  
8,9  
8,9  
L
H
Read  
L
L
H
H
H
X
H
H
X
L
H
X
X
X
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the  
Command is being applied to.  
2. All Banks must be idle; otherwise, it is an illegal action.  
3. If CKE is active (high) the SDRAM will start the Auto(CBR) Refresh operation, if CKE is inactive(low) than the Self Refresh mode is  
entered.  
4. The Current State refers to only one of the banks. If BS selects this bank then the action is illegal. If BS selects the bank not being  
referenced by the Current State then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low) then the Power Down mode is entered; otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
REV 1.1 June, 2000  
20  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Current State Truth Table (Part 2 of 3)(See note 1)  
Command  
A12,  
A13  
Current  
State  
Action  
Notes  
/CS  
/RAS  
/CAS  
/WE  
A11-A0  
Description  
L
L
L
L
L
L
L
L
H
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
ILLEGAL  
ILLEGAL  
X
BS  
X
X
4
4
Row  
Address  
Column  
Column  
X
L
L
H
H
BS  
Bank Active  
ILLEGAL  
Read with  
Auto  
Precharge  
L
L
L
L
H
L
L
L
H
H
H
H
X
L
L
L
H
H
X
L
L
H
L
H
X
L
BS  
BS  
X
X
X
Write  
Read  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Continue the Burst  
Continue the Burst  
ILLEGAL  
4
4
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
X
X
OP Code  
L
L
L
H
H
L
X
BS  
X
X
ILLEGAL  
ILLEGAL  
4
4
Row  
Address  
Column  
Column  
X
L
L
H
H
BS  
Bank Active  
ILLEGAL  
Write with  
Auto  
Precharge  
L
L
L
L
H
L
L
H
H
H
H
X
L
L
L
H
H
X
L
L
H
L
H
X
L
BS  
BS  
X
X
X
Write  
Read  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Continue the Burst  
Continue the Burst  
ILLEGAL  
4
4
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
X
X
OP Code  
L
L
H
X
X
ILLEGAL  
No Operation;  
Bank(s) idle after tRP  
L
L
L
L
H
H
L
BS  
X
Precharge  
Row  
H
BS  
Bank Active  
ILLEGAL  
4
Address  
Column  
Column  
L
L
H
H
L
L
L
H
BS  
BS  
Write  
Read  
ILLEGAL  
ILLEGAL  
4
4
Precharging  
No Operation;  
Bank(s) idle after tRP  
No Operation;  
Bank(s) idle after tRP  
No Operation;  
Bank(s) idle after tRP  
ILLEGAL  
L
L
H
H
X
H
H
X
L
H
X
X
X
X
X
X
X
Burst Termination  
No Operation  
H
Device Deselect  
L
L
L
L
L
L
L
L
H
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
X
BS  
X
X
ILLEGAL  
ILLEGAL  
4
Row  
L
L
H
H
BS  
Bank Active  
ILLEGAL  
4,10  
Address  
Column  
Column  
L
L
H
H
L
L
L
H
BS  
BS  
Write  
Read  
ILLEGAL  
ILLEGAL  
4
4
Row  
Activating  
No Operation;  
Row Active after tRCD  
No Operation;  
Row Active after tRCD  
No Operation;  
Row Active after tRCD  
L
L
H
H
X
H
H
X
L
H
X
X
X
X
X
X
X
Burst Termination  
No Operation  
H
Device Deselect  
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the  
Command is being applied to.  
2. All Banks must be idle; otherwise, it is an illegal action.  
3. If CKE is active (high) the SDRAM will start the Auto(CBR) Refresh operation, if CKE is inactive(low) than the Self Refresh mode is  
entered.  
4. The Current State refers to only one of the banks. If BS selects this bank then the action is illegal. If BS selects the bank not being  
referenced by the Current State then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low) then the Power Down mode is entered; otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
REV 1.1 June, 2000  
21  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Current State Truth Table (Part 3of 3)(See note 1)  
Command  
Current  
State  
Action  
Notes  
A12,  
A13  
/CS  
L
/RAS  
L
/CAS  
L
/WE  
L
A11-A0  
Description  
Mode Register  
Set  
OP Code  
ILLEGAL  
Auto or Self  
Refresh  
Precharge  
L
L
L
L
L
L
L
H
H
H
L
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
BS  
BS  
X
Row  
Address  
4
4
H
Bank Active  
Write  
Start Write; Determine if Auto  
Precharge  
Start Write; Determine if Auto  
Precharge  
Write  
Recovering  
L
L
L
L
H
L
H
H
H
H
X
L
L
L
L
H
L
BS  
BS  
X
Column  
9
9
Column  
Read  
Burst  
Termination  
No Operation;  
H
H
X
L
X
X
X
Row Active after tDPL  
No Operation;Row Active after  
tDPL  
No Operation;  
Row Active after tDPL  
H
X
L
X
No Operation  
X
Device Deselect  
Mode Register  
Set  
OP Code  
ILLEGAL  
Auto or Self  
Refresh  
Precharge  
L
L
L
L
L
L
L
H
H
H
L
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
BS  
BS  
X
Row  
Address  
Column  
Column  
4
4
Write  
H
Bank Active  
Recovering  
With Auto  
Precharge  
L
L
H
H
L
L
L
H
BS  
BS  
Write  
Read  
ILLEGAL  
ILLEGAL  
4,9  
4,9  
Burst  
Termination  
No Operation;  
Precharge Active after tDPL  
No Operation;  
Precharge Active after tDPL  
No Operation;  
L
L
H
H
X
L
H
H
X
L
L
H
X
L
X
X
X
X
X
X
No Operation  
H
L
Device Deselect  
Precharge Active after tDPL  
Mode Register  
Set  
OP Code  
ILLEGAL  
Auto or Self  
Refresh  
Precharge  
L
L
L
L
L
L
L
H
H
H
L
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
BS  
BS  
X
Row  
Address  
Column  
Column  
H
Bank Active  
Refreshing  
L
L
H
H
L
L
L
H
BS  
BS  
Write  
Read  
ILLEGAL  
ILLEGAL  
Burst  
Termination  
No Operation;  
Idle after tRC  
No Operation;  
Idle after tRC  
No Operation;  
Idle after tRC  
L
L
H
H
X
L
H
H
X
L
L
H
X
L
X
X
X
X
X
X
No Operation  
H
L
Device Deselect  
Mode Register  
Set  
OP Code  
ILLEGAL  
Auto or Self  
Refresh  
Precharge  
L
L
L
L
L
L
L
H
H
H
L
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
BS  
BS  
X
Row  
Address  
Column  
Column  
Mode  
Register  
Accessing  
H
Bank Active  
L
L
H
H
L
L
L
H
BS  
BS  
Write  
Read  
ILLEGAL  
ILLEGAL  
Burst  
L
H
H
L
X
X
ILLEGAL  
Termination  
No Operation  
Device Deselect  
L
H
H
X
H
X
H
X
X
X
X
X
REV 1.1 June, 2000  
22  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the  
Command is being applied to.  
2. All Banks must be idle; otherwise, it is an illegal action.  
3. If CKE is active (high) the SDRAM will start the Auto(CBR) Refresh operation, if CKE is inactive(low) than the Self Refresh mode is  
entered.  
4. The Current State refers to only one of the banks. If BS selects this bank then the action is illegal. If BS selects the bank not being  
referenced by the Current State then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low) then the Power Down mode is entered; otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
REV 1.1 June, 2000  
23  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
DEVICE OPERATIONS  
Power On and Initialization  
The default power on state of the mode register is supplier specific and may be undefined. The following power on and initialization  
sequence guarantees the device is preconditioned to each users specific needs.  
Like a conventional DRAM, the Synchronous DRAM must be powered up and initialized in a predefined manner. During power on, all VDD  
and VDDQ pins must be built up simultaneously to the specified voltage when the input signals are held in the "NOP" state. The power on  
voltage must not exceed VDD+0.3V on any of the input pins or VDD supplies. The CLK signal must be started at the same time. After power  
on, an initial pause of 200µs is required followed by a precharge of all banks using the precharge command. To prevent data contention on  
the DQ bus during power on, it is required that the DQM and CKE pins be held high during the initial pause period. Once all banks have  
been precharged, the Mode Register Set Command must be issued to initialize the Mode Register. A minimum of eight Auto Refresh cycles  
(CBR) are also required. These may be done before or after programming the Mode Register. Failure to follow these steps may lead to  
unpredictable start-up modes.  
Programming the Mode Register  
For application flexibility, /CAS latency, burst length, burst sequence, and operation type are user defined variables and must be  
programmed into the SDRAM Mode Register with a single Mode Register Set Command. Any content of the Mode Register can be altered  
by re-executing the Mode Register Set Command. If the user chooses to modify only a subset of the Mode Register variables, all four  
variables must be redefined when the Mode Register Set Command is issued.  
After initial power up, the Mode Register Set Command must be issued before read or write cycles may begin. All banks must be in a  
precharged state and CKE must be high at least one cycle before the Mode Register Set Command can be issued. The Mode Register Set  
Command is activated by the low signals of /RAS, /CAS, /CS, and /WE at the positive edge of the clock. The address input data during this  
cycle defines the parameters to be set as shown in the Mode Register Operation table. A new command may be issued following the mode  
register set command once a delay equal to tRSC has elapsed.  
/CAS Latency  
The /CAS latency is a parameter that is used to define the delay from when a Read Command is registered on a rising clock edge to when  
the data from that Read Command becomes available at the outputs. The /CAS latency is expressed in terms of clock cycles and can have  
a value of 2 or 3 cycles. The value of the /CAS latency is determined by the speed grade of the device and the clock frequency that is used  
in the application. A table showing the relationship between the /CAS latency, speed grade, and clock frequency appears in the Electrical  
Characteristics section of this document. Once the appropriate /CAS latency has been selected it must be programmed into the mode  
register after power up, for an explanation of this procedure see Programming the Mode Register in the previous section.  
REV 1.1 June, 2000  
24  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Mode Register Definition  
Mode Register set: (Programming mode)  
Address bus  
(Ax)  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
Mode Register  
(Mx)  
Operation Mode  
CAS Latency  
Burst Length  
CAS Latency  
Burst Type  
Burst Length  
M6  
M5  
M4  
0
Latency  
Reserved  
Reserved  
2
M3  
Type  
M2  
M1  
0
M0  
BT=0  
BT=1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
1
0
0
1
4
1
3
1
8
0
Reserved  
Reserved  
Reserved  
Reserved  
0
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
1
0
0
1
1
1
Operation Mode  
M13  
M12  
0
M11  
0
M10  
0
M9  
0
M8  
M7  
0
Mode  
Normal  
Multiple Burst with Single Write  
0
0
0
0
0
0
0
1
0
Burst Mode Operation  
Burst mode operation is used to provide a constant flow of data to memory locations (write cycle), or from memory locations (read cycle).  
Three parameters define how the burst mode will operate: burst sequence, burst length, and operation mode. The burst sequence and burst  
length are programmable and are determined by address bits A0 - A3 during the Mode Register Set command. Operation mode is also  
programmable and is set by address bits A7 - A13.  
Burst sequence defines the order in which the burst data will be delivered or stored to the SDRAM. The two types of burst sequence  
supported are sequential and interleaved. See the table below.  
The burst length controls the number of bits that will be output after a Read Command, or the number of bits to be input after a Write  
Command. The burst length can be programmed to have values of 1, 2, 4, 8 or full page (actual page length is dependent on organization:  
x4, x8, or x16). Full page burst operation is only possible using the sequential burst type.  
Burst operation mode can be normal operation or multiple burst with single write operation. Normal operation implies that the device will  
perform burst operations on both read and write cycles until the desired burst length is satisfied. Multiple burst with single write operation  
was added to support Write Through Cache operation. Here, the programmed burst length only applies to read cycles. All write cycles are  
single write operations when this mode is selected.  
REV 1.1 June, 2000  
25  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Length and Sequence  
Burst Length  
Starting Bit  
Interleave  
Sequential  
A0  
0
0-1  
1-0  
0-1  
1-0  
2
1
A1  
0
A0  
0
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0
1
4
1
0
1
1
A2  
0
A1  
0
A0  
0
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0
0
1
0
1
0
0
1
1
8
1
0
0
1
0
1
1
1
0
1
1
1
Full Page  
(Note)  
n
n
n
Not supported  
Cn, Cn+1,Cn+2…..  
Note : Page length is a function of I/O organization and column addressing.  
X 8 organization (CA0-CA8); Page Length = 512 bits  
X16 organization (CA0-CA7); Page Length = 256 bits  
Bank Activate Command  
In relation to the operation of a fast page mode DRAM, the Bank Activate command corresponds to a falling /RAS signal. The Bank Activate  
command is issued by holding /CAS and /WE high with /CS and /RAS low at the rising edge of the clock. The bank select address A12 -  
A13 is used to select the desired bank. The row address A0 - A11 is used to determine which row to activate in the selected bank. Activation  
of banks within both decks of a 2-high stacked device is allowed.  
The Bank Activate command must be applied before any Read or Write operation can be executed. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must meet or exceed the /RAS to /CAS delay time (tRCD). Once a  
bank has been activated, it must be precharged before another Bank Activate command can be applied to the same bank. The minimum  
time interval between successive Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC). The  
minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice versa) is the Bank to Bank delay time  
(tRRD). The maximum time that each bank can be held active is specified as tRAS(max).  
REV 1.1 June, 2000  
26  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Bank Activate Command Cycle  
CAS Latency = 3, tRCD = 3  
Tn+2 Tn+3  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
CLK  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank B  
Row Addr.  
Bank A  
Row Addr.  
ADDRESS  
RAS-CAS delay(tRCD)  
NOP  
RAS-RAS delay(tRCD)  
Write A  
with Aotu  
Precharge  
Bank A  
Activate  
Bank B  
Activate  
Bank A  
Activate  
NOP  
NOP  
COMMAND  
RAS Cycle time (tRC)  
: "H" or "L"  
Bank Select  
The Bank Select inputs, BS0 and BS1, determine the bank to be used during a Bank Activate, Precharge, Read, or Write operation.  
Bank Selection Bits  
BS0  
BS1  
0
Bank  
0
Bank 0  
Bank 1  
Bank 2  
Bank 3  
0
1
1
0
1
1
Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be executed. This is accomplished by setting /RAS high and /CAS low at the  
clock's rising edge after the necessary /RAS to /CAS delay (tRCD). /WE must also be defined at this time to determine whether the access  
cycle is a read operation (/WE high), or a write operation (/WE low). The address inputs determine the starting column address.  
The SDRAM provides a wide variety of fast access modes. A single Read or Write Command will initiate a serial read or write operation on  
successive clock cycles at data rates of up to 147 MHz. The number of serial data bits for each access is equal to the burst length, which is  
programmed into the Mode Register. If the burst length is full page, data is repeatedly read out or written until a Burst Stop or Precharge  
Command is issued.  
Similar to Page Mode of conventional DRAMs, a read or write cycle can not begin until the sense amplifiers latch the selected row address  
information. The refresh period (tREF) is what limits the number of random column accesses to an activated bank. A new burst access can  
be done even before the previous burst ends. The ability to interrupt a burst operation at every clock cycle is supported; this is referred to as  
the 1-N rule. When the previous burst is interrupted by another Read or Write Command, the remaining addresses are overridden by the  
new address.  
Precharging an active bank after each read or write operation is not necessary, providing the same row is to be accessed again. To perform  
a read or write cycle to a different row within an activated bank, the bank must be precharged and a new Bank Activate command must be  
issued. When more than one bank is activated, interleaved (ping pong) bank Read or Write operations are possible. By using the  
programmed burst length and alternating the access and precharge operations between multiple banks, fast and seamless data access  
operation among many different pages can be realized. When multiple banks are activated, column to column interleave operation can be  
done between different pages. Finally, Read or Write Commands can be issued to the same bank or between active banks on every clock  
cycle.  
REV 1.1 June, 2000  
27  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Read Command  
The Burst Read command is initiated by having /CS and /CAS low while holding /RAS and /WE high at the rising edge of the clock. The  
address inputs determine the starting column address for the burst. The Mode Register sets the type of burst (sequential or interleave) and  
the burst length (1, 2, 4, 8, full page). The delay from the start of the command to when the data from the first cell appears on the outputs is  
equal to the value of the /CAS latency that is set in the Mode Register.  
Burst Read Operation  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
tCK2, DQs  
DOU A0  
DOU A1  
DOU A0  
DOU A2  
DOU A3  
CAS latency = 3  
tCK3, DQs  
DOU A1  
DOU A2  
DOU A3  
Read Interrupted by a Read  
A Burst Read may be interrupted before completion of the burst by another Read Command, with the only restriction being that the interval  
that separates the commands must be at least one clock cycle. When the previous burst is interrupted, the remaining addresses are  
overridden by the new address with the full burst length. The data from the first Read Command continues to appear on the outputs until the  
/CAS latency from the interrupting Read Command is satisfied, at this point the data from the interrupting Read Command appears.  
Read Interrupted by a Read  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
tCK2, DQs  
DOU A0  
DOU B0  
DOU A0  
DOU B1  
DOU B2  
DOU B3  
CAS latency = 3  
tCK3, DQs  
DOU B0  
DOU B1  
DOU B2  
DOU B3  
REV 1.1 June, 2000  
28  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output drivers) in a high impedance state to avoid  
data contention on the DQ bus. If a Read Command will issue data on the first and second clocks cycles of the write operation, DQM is  
needed to insure the DQs are tri-stated. After that point the Write Command will have control of the DQ bus.  
Minimum Read to Write Interval  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
READ A  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
tCK2, DQs  
DIN A1  
DIN A1  
DIN A2  
DIN A2  
DIN A3  
DIN A3  
CAS latency = 3  
tCK3, DQs  
DIN A0  
: "H" or "L"  
Non-Minimum Read to Write Interval  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
READ A  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CL = 2 : DQM needed to mask first, second bit of READ data.  
DIN A1 DIN A2 DIN A3  
CL = 3 : DQM needed to mask first, second bit of READ data.  
DIN A1 DIN A2 DIN A3  
CAS latency = 2  
tCK2, DQs  
DIN A0  
DIN A0  
CAS latency = 3  
tCK3, DQs  
: DQM high for CAS latency = 2  
: DQM high for CAS latency = 3  
REV 1.1 June, 2000  
29  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Write Command  
The Burst Write command is initiated by having /CS, /CAS, and /WE low while holding /RAS high at the rising edge of the clock. The  
address inputs determine the starting column address. There is no /CAS latency required for burst write cycles. Data for the first burst write  
cycle must be applied on the DQ pins on the same clock cycle that the Write Command is issued. The remaining data inputs must be  
supplied on each subsequent rising clock edge until the burst length is completed. When the burst has finished, any additional data supplied  
to the DQ pins will be ignored.  
Burst Write Operation  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DOU A0  
DOU A1  
DOU A2  
DOU A3  
Don't care  
DQs  
The First data elemant and the Write are  
registered on the same clock edge.  
Extra data is masked  
Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the previous burst is interrupted, the  
remaining addresses are overridden by the new address and data will be written into the device until the programmed burst length is  
satisfied.  
Write Interrupted by a Write  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
1 Clk Interval  
DIN A0  
DIN B0  
DIN B1  
DIN B2  
DIN B3  
DQs  
REV 1.1 June, 2000  
30  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read Command is registered. The DQs must be in  
the high impedance state at least one cycle before the interrupting read data appears on the outputs to avoid data contention. When the  
Read Command is registered, any residual data from the burst write cycle will be ignored. Data that is presented on the DQ pins before the  
Read Command is initiated will actually be written to the memory.  
Minimum Write to Read Interval  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
DIN A0  
READ B  
don't care  
don't care  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
tCK2, DQs  
DOU B0  
DOU B1  
DOU B2  
DOU B3  
DOU B2  
CAS latency = 3  
tCK3, DQs  
DIN A0  
don't care  
DOU B0  
DOU B1  
DOU B3  
Input data must be removed from the DQs at least one clock cycle  
before the data appears on the outputs to avoid data contention.  
Input data for the write is masked  
Non-Minimum Write to Read Interval  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
DIN A0  
NOP  
READ B  
don't care  
don't care  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
tCK2, DQs  
DIN A1  
DIN A1  
DOUT B0  
DOUT B1  
DOUT B2  
DOUT B3  
CAS latency = 3  
tCK3, DQs  
DIN A0  
don't care  
DOUT B0  
DOUT B1  
DOUT B2  
DOUT B3  
Input data must be removed from the DQs at least one clock cycle  
before the data appears on the outputs to avoid data contention.  
Input data for the write is masked  
REV 1.1 June, 2000  
31  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Stop Command  
Once a burst read or write operation has been initiated, there exist several methods in which to terminate the burst operation prematurely.  
These methods include using another Read or Write Command to interrupt an existing burst operation or using a Precharge Command to  
interrupt a burst cycle and close the active bank. When interrupting a burst with another Read or Write Command care must be taken to  
avoid DQ contention.  
If the burst length is full page, the Burst Stop Command may also be used to terminate the existing burst operation but leave the bank open  
for future Read or Write Commands to the same page of the active bank. Use of the Burst Stop Command during other burst length  
operations is illegal. The Burst Stop Command is defined by having /RAS and /CAS high with /CS and /WE low at the rising edge of the  
clock.  
When using the Burst Stop Command during a burst read cycle, the data DQs go to a high impedance state after a delay which is equal to  
the /CAS Latency set in the Mode Register.  
Termination of a Burst Read Operation  
Burst Length = Full Page, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
The burst ends after a delay equal to the  
CAS latency.  
CAS latency = 2  
tCK2, DQs  
DOUT A0  
DOUT A1  
DOUT A0  
DOUT A2  
DOUT A3  
CAS latency = 3  
tCK3, DQs  
DOUT A1  
DOUT A2  
DOUT A3  
If a Burst Stop Command is issued during a full page burst write operation, then any residual data from the burst write cycle will be ignored.  
Data that is presented on the DQ pins before the Burst Stop Command is registered will be written to the memory.  
Termination of a Burst Write Operation  
Burst Length = Full Page, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
NOP  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency=2,3  
DQs  
DIN A1  
DIN A2  
don't care  
Input data for the Write is masked  
REV 1.1 June, 2000  
32  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Auto-Precharge Operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either the Precharge Command or the auto-  
precharge function. When a Read or a Write Command is given to the SDRAM, the /CAS timing accepts one extra address, column address  
A10, to allow the active bank to automatically begin precharge at the earliest possible moment during the burst read or write cycle. If A10 is  
low when the Read or Write Command is issued, then normal Read or Write burst operation is executed and the bank remains active at the  
completion of the burst sequence. If A10 is high when the Read or Write Command is issued, then the auto-precharge function is engaged.  
During auto-precharge, a Read Command will execute as normal with the exception that the active bank will begin to precharge before all  
burst read cycles have been completed. Regardless of burst length, the precharge will begin (/CAS latency - 1) clocks prior to the last data  
output. Auto-precharge can also be implemented during Write commands.  
A Read or Write Command without auto-precharge can be terminated in the midst of a burst operation. However, a Read or Write Command  
with auto-precharge can not be interrupted by a command to the same bank. Therefore use of a Read, Write, or Precharge Command to the  
same bank is prohibited during a read or write cycle with auto-precharge until the entire burst operation is completed. Once the precharge  
operation has started the bank cannot be reactivated until the Precharge time (tRP) has been satisfied. It should be noted that the device  
will not respond to the Auto-Precharge command if the device is programmed for full page burst read or write cycles, or full page burst read  
cycles with single write operation.  
When using the Auto-Precharge Command, the interval between the Bank Activate Command and the beginning of the internal precharge  
operation must satisfy tRAS(min). If this interval does not satisfy tRAS(min) then tRCD must be extended.  
Burst Read with Auto-Precharge  
Burst Length = 1, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
Auto-  
Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DOUT A0  
*
tRP#  
CAS latency = 3  
tCK3, DQs  
DOUT A0  
Begin Auto-Precharge  
Bank can be reactivated at completion of tRP.  
*
tRP is a function of clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
REV 1.1 June, 2000  
33  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Read with Auto-Precharge  
Burst Length = 2, CAS Latency = 2, 3  
T6 T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ A  
Auto-  
Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DOUT A0  
DOUT A1  
*
tRP#  
CAS latency = 3  
tCK3, DQs  
DOUT A0  
DOUT A1  
Begin Auto-Precharge  
Bank can be reactivated at completion of tRP.  
*
tRP is a function of clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
Burst Read with Auto-Precharge  
Burst Length = 4, CAS Latency = 2, 3  
T6 T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ A  
Auto-  
Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DOUT A0  
DOUT A1  
DOUT A0  
DOUT A2  
DOUT A3  
*
tRP#  
CAS latency = 3  
tCK3, DQs  
DOUT A1  
DOUT A2  
DOUT A3  
Begin Auto-Precharge  
Bank can be reactivated at completion of tRP.  
*
tRP is a function of clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
REV 1.1 June, 2000  
34  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Although a Read Command with auto-precharge cannot be interrupted by a command to the same bank, it can be interrupted by a Read or  
Write Command to a different bank. If the interrupting command is issued before auto-precharge begins then the precharge function will  
begin with the new command. The bank being auto-precharged may be reactivated after the delay tRP.  
Burst Read with Auto-Precharge Interrupted by Read  
Burst Length = 4, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
Auto-  
Precharge  
NOP  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DOUT A0  
DOUT A1  
DOUT B0  
DOUT B1  
DOUT B2  
DOUT B3  
tRP#  
*
CAS latency = 3  
tCK3, DQs  
DOUT  
B3  
DOUT A0  
DOUT A1  
DOUT B0  
DOUT B1  
DOUT B2  
Bank can be reactivated at completion of tRP.  
*
tRP is a function of clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
If interrupting a Read Command with auto-precharge with a Write Command, DQM must be used to avoid DQ contention.  
Burst Read with Auto-Precharge Interrupted by Write  
Burst Length = 8, CAS Latency = 2  
T6 T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ A  
Auto-  
Precharge  
NOP  
NOP  
NOP  
WRITE B  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DOUT A0  
DOUT B0  
DOUT B1  
DOUT B2  
DOUT B3  
DOUT B4  
DQM  
Bank can be reactivated at completion of tRP.  
*
tRP is a function of clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
If A10 is high when a Write Command is issued, the Write with Auto-Precharge function is initiated. The bank undergoing auto-precharge  
can not be reactivated until tDAL, Data-in to Active delay , is satisfied.  
REV 1.1 June, 2000  
35  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Write with Auto-Precharge  
Burst Length = 2, CAS Latency = 2, 3  
T6 T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ A  
Auto-  
Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
*
tDAL#  
CAS latency = 2  
tCK2, DQs  
DIN A0  
DIN A0  
DIN A1  
DIN A1  
*
tDAL#  
CAS latency = 3  
tCK3, DQs  
Bank can be reactivated at completion of tDAL.  
*
Number of clocks required depends on clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
Similar to the Read Command, a Write Command with auto-precharge can not be interrupted by a command to the same bank. It can be  
interrupted by a Read or Write Command to a different bank, however. The precharge function will begin with the new command. The bank  
may be reactivated after tRP is satisfied.  
Burst Write with Auto-Precharge Interrupted by Write  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
Auto-  
Precharge  
NOP  
WRITE B  
DIN B0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tDAL#  
*
CAS latency = 3  
tCK3, DQs  
DIN A0  
DIN A1  
DIN B1  
DIN B2  
DIN B3  
Bank can be reactivated at completion of tDAL.  
*
Number of clocks required depends on clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
REV 1.1 June, 2000  
36  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Write with Auto-Precharge Interrupted by Read  
Burst Length = 4, CAS Latency = 3  
T6 T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
WRITE A  
Auto-  
Precharge  
NOP  
NOP  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tDAL#  
*
CAS latency = 3  
tCK3, DQs  
DIN A0  
DIN A1  
DIN A2  
DOUT B0  
DOUT B1  
DOUT B2  
Bank A can be reactivated at completion of tDAL.  
*
Number of clocks required depends on clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The Precharge Command is  
triggered when /CS, /RAS, and /WE are low and /CAS is high at the rising edge of the clock. The Precharge Command can  
be used to precharge each bank separately or all banks simultaneously. Three address bits--A10, A12, and A13--are used to  
define which bank(s) is to be precharged when the command is issued.  
Bank Selection for Precharge by Address Bits  
A10  
LOW  
HIGH  
Bank Select  
Precharged Bank(s)  
Bank defined by BS0, BS1 only  
All Banks  
BS0, BS1  
DON'T CARE  
For read cycles, the Precharge Command may be applied (/CAS latency - 1) clocks prior to the last data output. For write cycles, a delay  
must be satisfied from the start of the last burst write cycle until the Precharge Command can be issued. This delay is known as tDPL, Data-  
in to Precharge delay.  
After the Precharge Command is issued, the precharged bank must be reactivated before a new read or write access can be executed. The  
delay between the Precharge Command and the Activate Command must be greater than or equal to the Precharge time (tRP).  
REV 1.1 June, 2000  
37  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Read followed by the Precharge Command  
Burst Length = 4, CAS Latency = 2  
T6 T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ Ax0  
NOP  
NOP  
NOP  
NOP  
Precharge A  
DOUT Ax2  
NOP  
NOP  
NOP  
COMMAND  
tRP  
*
CAS latency = 2  
tCK2, DQs  
DOUT Ax0  
DOUT Ax1  
DOUT Ax3  
Bank A can be reactivated at completion of tRP.  
*
Burst Write followed by the Precharge Command  
Burst Length = 2, CAS Latency = 2  
T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
Activate  
Bank Ax  
NOP  
NOP  
WRITE Ax0  
DIN Ax0  
NOP  
NOP  
Precharge A  
NOP  
NOP  
COMMAND  
tDPL#  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DIN Ax1  
Bank can be reactivated at completion of tRP.  
*
tDPL and tRP are functions of clock cycle time and  
speed sort.See the clock Frequency and Latency table.  
#
REV 1.1 June, 2000  
38  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Precharge Termination  
The Precharge Command may be used to terminate either a burst read or burst write operation. When the Precharge command is issued,  
the burst operation is terminated and bank precharge begins. For burst read operations, valid data will continue to appear on the data bus  
as a function of /CAS Latency.  
Burst Read Interrupted by Precharge  
Burst Length = 8, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax0  
NOP  
NOP  
NOP  
Precharge A  
DOUT Ax2  
DOUT Ax1  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP#  
*
CAS latency = 2  
tCK2, DQs  
DOUT Ax0  
DOUT Ax1  
DOUT Ax0  
DOUT Ax3  
*
tRP#  
CAS latency = 3  
tCK3, DQs  
DOUT Ax2  
DOUT Ax3  
Bank A can be reactivated at completion of tRP.  
*
tRP is a function of clock cycle time and speed sort.  
See the clock Frequency and Latency table.  
#
Burst write operations will be terminated by the Precharge command. The last write data that will be properly stored in the device is that  
write data that is presented to the device a number of clock cycles prior to the Precharge command equal to the Data-in to Precharge delay,  
tDPL.  
Precharge Termination of a Burst Write  
Burst Length = 8, CAS Latency = 2, 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
WRITE Ax0  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
COMMAND  
DQM  
tDPL#  
tDPL  
CAS latency = 2  
tCK2, DQs  
DIN Ax0  
DIN Ax0  
DIN Ax1  
DIN Ax1  
DIN Ax2  
DIN Ax2  
CAS latency = 3  
tCK3, DQs  
tDPL is an asynchronous timing and may be completed in one or two  
clock cycles depending on clock cycle time .  
#
REV 1.1 June, 2000  
39  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Automatic Refresh Command ( /CAS before /RAS Refresh)  
When /CS, /RAS, and /CAS are held low with CKE and /WE high at the rising edge of the clock, the chip enters the Automatic Refresh mode  
(CBR). All banks of the SDRAM must be precharged and idle for a minimum of the Precharge time (tRP) before the Auto Refresh Command  
(CBR) can be applied. For a stacked device, both decks may be refreshed at the same time using Automatic Refresh Mode. An address  
counter, internal to the device provides the address during the refresh cycle. No control of the external address pins is required once this  
cycle has started.  
When the refresh cycle has completed, all banks of the SDRAM will be in the precharged (idle) state. A delay between the Auto Refresh  
Command (CBR) and the next Activate Command or subsequent Auto Refresh Command must be greater than or equal to the /RAS cycle  
time (tRC).  
Self Refresh Command  
The SDRAM device has a built-in timer to accommodate Self Refresh operation. The Self Refresh Command is defined by having /CS,  
/RAS, /CAS, and CKE held low with /WE high at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh  
Command. Once the command is registered, CKE must be held low to keep the device in Self Refresh mode. When the SDRAM has  
entered Self Refresh mode all of the external control signals, except CKE, are disabled. The clock is internally disabled during Self Refresh  
Operation to save power. The user may halt the external clock while the device is in Self Refresh mode, however, the clock must be  
restarted before the device can exit Self Refresh operation. Once the clock is cycling, the device will exit Self Refresh operation after CKE is  
returned high. A minimum delay time is required when the device exits Self Refresh Operation and before the next command can be issued.  
This delay is equal to the /RAS cycle time (tRC) plus the Self Refresh exit time (tSREX). When using Self Refresh, both decks of a stacked  
device may be refreshed at the same time.  
Power Down Mode  
In order to reduce standby power consumption, two power down modes are available: Precharge and Active Power Down mode. To enter  
Precharge Power Down mode, all banks must be precharged and the necessary precharge delay (tRP) must occur before the SDRAM can  
enter the power down mode. If a bank is activated but not performing a Read or Write operation, Active Power Down mode will be entered.  
(Issuing a Power Down Mode Command when the device is performing a Read or Write operation causes the device to enter Clock  
Suspend mode. See the following section.) Once the Power Down mode is initiated by holding CKE low, all of the receiver circuits except  
CKE are gated off. The Power Down mode does not perform any refresh operations, therefore the device can't remain in Power Down mode  
longer than the Refresh period (tREF) of the device.  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation Command (or a Device Deselect Command)  
is required on the next rising clock edge.  
Power Down Mode Exit Timing  
Tm  
Tm+1  
Tm+2  
Tm+3  
Tm+4  
Tm+5  
Tm+6  
Tm+7  
Tm+8  
CLK  
CKE  
tCK  
tCES(min)  
NOP  
COMMAND  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
: "H" or "L"  
REV 1.1 June, 2000  
40  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Data Mask  
The SDRAM has a Data Mask function that can be used in conjunction with data read and write cycles. When the Data Mask is activated  
(DQM high) during a write cycle, the write operation is prohibited immediately (zero clock latency). If the Data Mask is activated during a  
read cycle, the data outputs are disabled and become high impedance after a two clock delay, independent of /CAS latency.  
Data Mask Activated During a Read Cycle  
( Burst Length = 4, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DQs  
DOUT A0  
DOUT A1  
A two-clock delay before the  
DQs become Hi-Z  
: "H" or "L"  
No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state. The purpose of the No Operation  
Command is to prevent the SDRAM from registering any unwanted commands between operations. A No Operation Command is registered  
when /CS is low with /RAS, /CAS, and /WE held high at the rising edge of the clock. A No Operation Command will not terminate a previous  
operation that is still executing, such as a burst read or write cycle.  
Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect Command occurs when /CS is brought high,  
the /RAS, /CAS, and /WE signals become don't cares.  
Clock Suspend Mode  
During normal access mode, CKE is held high enabling the clock. When CKE is registered low while at least one of the banks is active,  
Clock Suspend Mode is entered. The Clock Suspend mode deactivates the internal clock and suspends or "freezes" any clocked operation  
that was currently being executed. There is a one clock delay between the registration of CKE low and the time at which the SDRAM's  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are issued. The Clock Suspend mode is  
exited by bringing CKE high. There is a one clock cycle delay from when CKE returns high to when Clock Suspend mode is exited.  
When the operation of the SDRAM is suspended during the execution of a Burst Read operation, the last valid data output onto the DQ pins  
will be actively held valid until Clock Suspend mode is exited.  
REV 1.1 June, 2000  
41  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Clock Suspend During a Read Cycle  
( Burst Length = 4, CAS Latency = 2)  
T7 T8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
CKE  
A one clock delay to exit the  
Suspend command  
A one clock delay before  
suspend operaton starts  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DQs  
DOUT A0  
DOUT A1  
DOUT A2  
: "H" or "L"  
DOUT element at the DQs when the suspend operation  
starts is held valid  
If Clock Suspend mode is initiated during a burst write operation, then the input data is masked and ignored until the Clock Suspend mode  
is exited.  
Clock Suspend During a Write Cycle  
( Burst Length = 4, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
CKE  
A one clock delay to exit the  
Suspend command  
A one clock delay before  
suspend operaton starts  
NOP  
WRITE A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DQs  
DIN A1  
DIN A2  
DIN A3  
: "H" or "L"  
DIN is masked during the Clock Suspend Period  
REV 1.1 June, 2000  
42  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Timing Waveform Diagram  
AC Parameters for Write Timing  
REV 1.1 June, 2000  
43  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
AC Parameters for Read Timing (3/3/3)  
REV 1.1 June, 2000  
44  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
AC Parameters for Read Timing (2/2/2)  
REV 1.1 June, 2000  
45  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
AC Parameters for Read Timing (3/2/2)  
REV 1.1 June, 2000  
46  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
AC Parameters for Read Timing (3/3/3)  
REV 1.1 June, 2000  
47  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Mode Register Set  
REV 1.1 June, 2000  
48  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Power On Sequence and Auto Refresh (CBR)  
REV 1.1 June, 2000  
49  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Clock Suspension, DQM during Burst Read  
REV 1.1 June, 2000  
50  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Clock Suspension, DQM during Burst Write  
REV 1.1 June, 2000  
51  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Power Down Mode and Clock Suspend  
REV 1.1 June, 2000  
52  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Auto Refresh (CBR)  
REV 1.1 June, 2000  
53  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Self Refresh (Entry and Exit)  
REV 1.1 June, 2000  
54  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Random Row Read (Interleaving Banks) with Precharge  
REV 1.1 June, 2000  
55  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Random Row Read (Interleaving Banks) with Auto Precharge  
REV 1.1 June, 2000  
56  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Random Row Write (Interleaving Banks) with Auto Precharge  
REV 1.1 June, 2000  
57  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Random Row Write (Interleaving Banks) with Precharge  
REV 1.1 June, 2000  
58  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Read-Write Cycle  
REV 1.1 June, 2000  
59  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Interleaved Column Read Cycle  
REV 1.1 June, 2000  
60  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Auto Precharge after Read Burst  
REV 1.1 June, 2000  
61  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Auto Precharge after Write Burst  
REV 1.1 June, 2000  
62  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Burst Read and Single Write Operation  
REV 1.1 June, 2000  
63  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Full Page Burst Read and Single Write Operation  
REV 1.1 June, 2000  
64  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
/CS Function (Only /CS signal needs to be asserted at minimum rate)  
REV 1.1 June, 2000  
65  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  
NT56V6610C0T NT56V6620C0T  
64Mb : x8 x16  
PC133 / PC100 Synchronous DRAM  
Package Dimension  
( 400 mil; 54 pin; Thin Small Outline Package )  
MILLIMETER  
SYMBOL  
INCH  
NOM.  
MIN.  
NOM.  
MAX.  
1.20  
0.15  
1.05  
0.45  
0.21  
MIN.  
MAX.  
0.047  
0.006  
0.041  
0.018  
0.008  
A
A1  
A2  
B
0.05  
0.95  
0.30  
0.12  
0.10  
1.00  
0.35  
0.002  
0.037  
0.012  
0.005  
0.004  
0.039  
0.014  
c
D
HE  
E
e
L
22.22 BSC  
11.76  
0.875 BSC  
0.463  
11.56  
10.03  
0.80 BSC  
0.40  
11.96  
10.29  
0.460  
0.390  
0.031  
0.016  
0.470  
0.410  
10.16  
0.400  
0.50  
0.60  
0.020  
0.024  
L1  
S
0.80 REF  
0.71 REF  
0.031 REF  
0.028 REF  
0 °  
-
8 °  
0 °  
-
8 °  
q
Note:  
1. Dimension D odes not include mold protrusions or gate burrs.  
2. Mold protrusion and gate burrs shall exceed 0.15 mm per side.  
3. Dimension E1 does not include interlead mold protrusions.  
4. Interlead mold protrusions shall not exceed 0.25 mm per side.  
REV 1.1 June, 2000  
66  
©NANYA TECHNOLOGY CORP.  
NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.  

相关型号:

ETC
ETC
ETC
ETC
ETC
ETC

NT5AD1024M4D3

Commercial and Industrial DDR4 4Gb SDRAM
NANYA

NT5AD1024M4D3-HR

Commercial and Industrial DDR4 4Gb SDRAM
NANYA

NT5AD1024M4D3-HRI

Commercial and Industrial DDR4 4Gb SDRAM
NANYA

NT5AD1024M4D3-HRNA

Commercial and Industrial DDR4 4Gb SDRAM
NANYA

NT5AD1024M4D3-HRT

Commercial and Industrial DDR4 4Gb SDRAM
NANYA