NTMD3P03R2/D [ETC]

Power MOSFET -3.05 Amps, -30 Volts ; 功率MOSFET -3.05安培,伏特-30\n
NTMD3P03R2/D
型号: NTMD3P03R2/D
厂家: ETC    ETC
描述:

Power MOSFET -3.05 Amps, -30 Volts
功率MOSFET -3.05安培,伏特-30\n

文件: 总12页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTMD3P03R2  
Product Preview  
Power MOSFET  
-3.05 Amps, -30 Volts  
Dual P–Channel SO–8  
Features  
http://onsemi.com  
High Efficiency Components in a Dual SO–8 Package  
High Density Power MOSFET with Low R  
Miniature SO–8 Surface Mount Package – Saves Board Space  
Diode Exhibits High Speed with Soft Recovery  
DS(on)  
–3.05 AMPERES  
–30 VOLTS  
I  
Specified at Elevated Temperature  
Avalanche Energy Specified  
DSS  
0.085 W @ V  
= –10 V  
GS  
Mounting Information for the SO–8 Package is Provided  
P–Channel  
Applications  
DC–DC Converters  
D
Low Voltage Motor Control  
Power Management in Portable and Battery–Powered Products, i.e.:  
Computers, Printers, PCMCIA Cards, Cellular & Cordless Telephones  
G
MOSFET MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
Symbol  
Value  
Unit  
S
Drain–to–Source Voltage  
V
–30  
V
V
DSS  
MARKING  
DIAGRAM  
Gate–to–Source Voltage – Continuous  
V
±20  
GS  
Thermal Resistance –  
Junction–to–Ambient (Note 1.)  
R
P
D
I
I
171  
0.73  
–2.34  
–1.87  
–8.0  
°C/W  
W
A
A
A
θJA  
Total Power Dissipation @ T = 25°C  
A
SO–8  
CASE 751  
STYLE 11  
ED3P03  
LYWW  
Continuous Drain Current @ 25°C  
Continuous Drain Current @ 70°C  
Pulsed Drain Current (Note 4.)  
D
D
8
I
DM  
1
Thermal Resistance –  
Junction–to–Ambient (Note 2.)  
R
P
D
I
I
100  
1.25  
–3.05  
–2.44  
–12  
°C/W  
W
A
A
A
θJA  
Total Power Dissipation @ T = 25°C  
A
ED3P03 = Device Code  
Continuous Drain Current @ 25°C  
Continuous Drain Current @ 70°C  
Pulsed Drain Current (Note 4.)  
D
D
L
= Assembly Location  
Y
= Year  
I
DM  
WW  
= Work Week  
Thermal Resistance –  
Junction–to–Ambient (Note 3.)  
R
P
I
I
62.5  
2.0  
–3.86  
–3.1  
–15  
°C/W  
W
A
A
A
θJA  
D
D
D
PIN ASSIGNMENT  
Total Power Dissipation @ T = 25°C  
A
Continuous Drain Current @ 25°C  
Continuous Drain Current @ 70°C  
Pulsed Drain Current (Note 4.)  
1
2
3
4
8
7
6
5
Drain–1  
Drain–1  
Drain–2  
Drain–2  
Source–1  
Gate–1  
I
DM  
Operating and Storage  
Temperature Range  
T , T  
J
–55 to  
+150  
°C  
stg  
Source–2  
Gate–2  
Single Pulse Drain–to–Source Avalanche  
E
140  
mJ  
AS  
Top View  
Energy – Starting T = 25°C  
J
GS  
(V  
= –30 Vdc, V  
= –4.5 Vdc, Peak  
= –7.5 Apk, L = 5 mH, R = 25 )  
DD  
I
L
G
ORDERING INFORMATION  
Maximum Lead Temperature for Soldering  
Purposes, 1/8from case for 10 seconds  
T
260  
°C  
L
Device  
Package  
Shipping  
2500/Tape & Reel  
1. Minimum FR–4 or G–10 PCB, t = Steady State.  
2. Mounted onto a 2square FR–4 Board (1sq. 2 oz Cu 0.06thick single  
sided), t = steady state.  
NTMD3P03R2  
SO–8  
3. Mounted onto a 2square FR–4 Board (1sq. 2 oz Cu 0.06thick single  
sided), t 10 seconds.  
4. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%.  
This document contains information on a product under  
development. ON Semiconductor reserves the right to  
change or discontinue this product without notice.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
January, 2001 – Rev. 0  
NTMD3P03R2/D  
NTMD3P03R2  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) *  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
V
Vdc  
(BR)DSS  
(V  
GS  
= 0 Vdc, I = –250 µAdc)  
Temperature Coefficient (Positive)  
–30  
–30  
D
mV/°C  
µAdc  
Zero Gate Voltage Drain Current  
I
DSS  
(V  
DS  
(V  
DS  
(V  
DS  
= –24 Vdc, V  
= –24 Vdc, V  
= –30 Vdc, V  
= 0 Vdc, T = 25°C)  
–1.0  
–20  
–2.0  
GS  
GS  
GS  
J
= 0 Vdc, T = 125°C)  
J
= 0 Vdc, T = 25°C)  
J
Gate–Body Leakage Current  
(V = –20 Vdc, V = 0 Vdc)  
I
I
nAdc  
nAdc  
GSS  
–100  
100  
GS  
Gate–Body Leakage Current  
(V = +20 Vdc, V = 0 Vdc)  
DS  
GSS  
GS  
DS  
ON CHARACTERISTICS  
Gate Threshold Voltage  
V
Vdc  
GS(th)  
(V  
DS  
= V , I = –250 µAdc)  
–1.0  
–1.7  
3.6  
–2.5  
GS  
D
Temperature Coefficient (Negative)  
Static Drain–to–Source On–State Resistance  
R
DS(on)  
(V  
GS  
(V  
GS  
= –10 Vdc, I = –3.05 Adc)  
0.063  
0.090  
0.085  
0.125  
D
= –4.5 Vdc, I = –1.5 Adc)  
D
Forward Transconductance (V  
DS  
= –15 Vdc, I = –3.05 Adc)  
g
5.0  
Mhos  
pF  
D
FS  
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
520  
170  
70  
750  
325  
135  
iss  
(V  
DS  
= –24 Vdc, V  
= 0 Vdc,  
GS  
f = 1.0 MHz)  
Output Capacitance  
C
oss  
Reverse Transfer Capacitance  
C
rss  
SWITCHING CHARACTERISTICS (Notes 5. and 6.)  
Turn–On Delay Time  
t
12  
16  
45  
45  
16  
42  
32  
35  
16  
2.0  
4.5  
22  
30  
80  
80  
ns  
ns  
d(on)  
(V  
DD  
= –24 Vdc, I = –3.05 Adc,  
D
Rise Time  
t
r
V
= –10 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
t
t
d(off)  
R
= 6.0 )  
t
f
Turn–On Delay Time  
Rise Time  
d(on)  
(V  
DD  
= –24 Vdc, I = –1.5 Adc,  
D
t
r
V
= –4.5 Vdc,  
GS  
Turn–Off Delay Time  
Fall Time  
d(off)  
R
= 6.0 )  
G
t
f
Total Gate Charge  
Gate–Source Charge  
Gate–Drain Charge  
Q
tot  
Q
gs  
Q
gd  
25  
nC  
(V  
V
= –24 Vdc,  
= –10 Vdc,  
= –3.05 Adc)  
DS  
GS  
I
D
BODY–DRAIN DIODE RATINGS (Note 5.)  
Diode Forward On–Voltage  
(I = –3.05 Adc, V  
= 0 V)  
V
–0.96  
–0.78  
–1.25  
Vdc  
ns  
S
GS  
= 0 V, T = 125°C)  
SD  
(I = –3.05 Adc, V  
S
GS  
J
Reverse Recovery Time  
t
34  
18  
rr  
(I = –3.05 Adc, V  
= 0 Vdc,  
S
GS  
dI /dt = 100 A/µs)  
t
a
S
t
16  
b
Reverse Recovery Stored Charge  
Q
0.03  
µC  
RR  
5. Indicates Pulse Test: Pulse Width = 300 µs max, Duty Cycle = 2%.  
6. Switching characteristics are independent of operating junction temperature.  
* Handling precautions to protect against electrostatic discharge is mandatory.  
http://onsemi.com  
2
NTMD3P03R2  
TYPICAL ELECTRICAL CHARACTERISTICS  
6
5
4
3
2
1
0
6
V
= –10 V  
GS  
V > = –10 V  
DS  
V
= –4.4 V  
GS  
V
= –8 V  
GS  
= –6 V  
5
4
3
2
1
0
V
= –4 V  
GS  
= –4.6 V  
V
GS  
V
GS  
V
= –4.8 V  
GS  
T = 25°C  
T = 100°C  
J
J
V
= –3.6 V  
= –3.2 V  
GS  
= –2.8 V  
V
GS  
= –5 V  
T = 25°C  
J
V
GS  
V
GS  
V
GS  
= –3 V  
T = –55°C  
V
= –2.6 V  
J
GS  
0
0.25 0.5  
0.75  
1
1.25  
1.5  
1.75  
2
1
2
3
4
5
–V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
–V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= –3.05 A  
I
= –1.5 A  
D
J
D
J
T = 25°C  
T = 25°C  
3
4
5
6
7
8
2
3
4
5
6
7
–V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
–V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
Figure 3. On–Resistance vs. Gate–to–Source  
Voltage  
Figure 4. On–Resistance vs. Gate–to–Source  
Voltage  
1.6  
1.4  
0.25  
0.2  
I
V
= –3.05 A  
= –10 V  
D
GS  
T = 25°C  
J
V
GS  
= –4.5 V  
= –10 V  
1.2  
0.15  
0.1  
1
0.8  
0.6  
V
GS  
0.05  
1
2
3
4
5
6
–50  
–25  
0
25  
50  
75  
100  
125 150  
–I , DRAIN CURRENT (AMPS)  
D
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. On–Resistance vs. Drain Current and  
Gate Voltage  
Figure 6. On Resistance Variation with  
Temperature  
http://onsemi.com  
3
NTMD3P03R2  
10000  
1000  
V
= 0 V  
V
= 0 V  
GS  
V
GS  
= 0 V  
DS  
1200  
C
iss  
1000  
800  
T = 150°C  
J
C
iss  
C
600  
rss  
T = 125°C  
J
100  
10  
400  
200  
C
oss  
C
rss  
T = 25°C  
J
0
10  
6
10  
14  
18  
22  
26  
30  
5
0
5
10  
15  
20  
25  
30  
–V  
–V  
GS  
DS  
–V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE  
VOLTAGE (VOLTS)  
Figure 7. Drain–to–Source Leakage Current  
vs. Voltage  
Figure 8. Capacitance Variation  
12  
10  
8
30  
1000  
100  
10  
V
I
= –24 V  
DS  
= –3.05 A  
Q
T
D
25  
20  
V
GS  
= –10 V  
V
DS  
t
t
d(off)  
V
GS  
6
4
2
15  
10  
5
t
f
t
r
Q
1
Q
2
d(on)  
I
= –3.05 A  
T = 25°C  
D
J
0
0
16  
1
0
2
4
6
8
10  
12  
14  
1
10  
R , GATE RESISTANCE ()  
G
100  
Q , TOTAL GATE CHARGE (nC)  
g
Figure 9. Gate–to–Source and  
Drain–to–Source Voltage vs. Total Charge  
Figure 10. Resistive Switching Time Variation  
vs. Gate Resistance  
1000  
3
V = 0 V  
GS  
J
V
= –24 V  
DS  
= –1.5 A  
T = 25°C  
I
V
D
2.5  
2
= –4.5 V  
GS  
1.5  
1
100  
t
r
t
d(off)  
t
f
t
d(on)  
0.5  
0
10  
1
10  
, GATE RESISTANCE ()  
100  
0.2  
0.4  
0.6  
0.8  
1
1.2  
R
–V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
SD  
G
Figure 11. Resistive Switching Time Variation  
vs. Gate Resistance  
Figure 12. Diode Forward Voltage vs. Current  
http://onsemi.com  
4
NTMD3P03R2  
100  
10  
V
= 12 V  
GS  
SINGLE PULSE  
= 25°C  
1.0 ms  
T
C
di/dt  
10 ms  
I
S
dc  
1.0  
t
rr  
t
a
t
b
TIME  
0.1  
R
LIMIT  
DS(on)  
0.25 I  
THERMAL LIMIT  
PACKAGE LIMIT  
t
p
S
I
S
0.01  
1
1.0  
10  
100  
–V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
Figure 13. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 14. Diode Reverse Recovery Waveform  
1.0  
D = 0.5  
0.2  
0.1  
0.1  
Normalized to R  
at Steady State (1pad)  
0.05  
0.02  
θJA  
50.9 Ω  
Chip  
Junction  
2.32 Ω  
18.5 Ω  
37.1 Ω  
56.8 Ω  
24.4 Ω  
0.0014 F 0.0073 F 0.022 F  
0.105 F  
0.484 F  
1E+02  
3.68 F  
0.01  
Ambient  
Single Pulse  
1E–02  
0.01  
1E–03  
1E–01  
1E+00  
1E+01  
1E+03  
t, TIME (s)  
Figure 15. FET Thermal Response  
http://onsemi.com  
5
NTMD3P03R2  
INFORMATION FOR USING THE SO–8 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to ensure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self–align when  
subjected to a solder reflow process.  
0.060  
1.52  
0.275  
7.0  
0.155  
4.0  
0.024  
0.6  
0.050  
1.270  
inches  
mm  
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
6
NTMD3P03R2  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of  
temperature versus time. The line on the graph shows the  
actual temperature that might be experienced on the surface  
of a test board at or near a central solder joint. The two  
profiles are based on a high density and a low density  
board. The Vitronics SMD310 convection/infrared reflow  
soldering system was used to generate this profile. The type  
of solder used was 62/36/2 Tin Lead Silver with a melting  
point between 177–189°C. When this type of furnace is  
used for solder reflow work, the circuit boards and solder  
joints tend to heat first. The components on the board are  
then heated by conduction. The circuit board, because it has  
a large surface area, absorbs the thermal energy more  
efficiently, then distributes this energy to the components.  
Because of this effect, the main body of a component may  
be up to 30 degrees cooler than the adjacent solder joints.  
control settings that will give the desired heat pattern. The  
operator must set temperatures for several heating zones  
and a figure for belt speed. Taken together, these control  
settings make up a heating “profile” for that particular  
circuit board. On machines controlled by a computer, the  
computer remembers these profiles from one operating  
session to the next. Figure 16 shows a typical heating  
profile for use when soldering a surface mount device to a  
printed circuit board. This profile will vary among  
soldering systems, but it is a good starting point. Factors  
that can affect the profile include the type of soldering  
system in use, density and types of components on the  
board, type of solder used, and the type of board or  
substrate material being used. This profile shows  
STEP 1  
PREHEAT  
ZONE 1  
“RAMP”  
STEP 2  
VENT  
“SOAK” ZONES 2 & 5  
“RAMP”  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
“SOAK”  
STEP 5  
HEATING  
ZONES 4 & 7  
“SPIKE”  
STEP 6  
VENT  
STEP 7  
COOLING  
205° TO 219°C  
PEAK AT  
SOLDER  
JOINT  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
200°C  
150°C  
100°C  
5°C  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
100°C  
140°C  
MASS OF ASSEMBLY)  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 16. Typical Solder Heating Profile  
http://onsemi.com  
7
NTMD3P03R2  
PACKAGE DIMENSIONS  
SO–8  
CASE 751–07  
ISSUE W  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
–Y–  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
M
J
H
D
K
M
N
S
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
http://onsemi.com  
8
NTMD3P03R2  
Notes  
http://onsemi.com  
9
NTMD3P03R2  
Notes  
http://onsemi.com  
10  
NTMD3P03R2  
Notes  
http://onsemi.com  
11  
NTMD3P03R2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
NTMD3P03R2/D  

相关型号:

NTMD3P03R2G

Power MOSFET -3.05 Amps, -30 Volts
ONSEMI

NTMD3P03R2_06

Power MOSFET -3.05 Amps, -30 Volts
ONSEMI

NTMD4102PR2G

6.5A, 20V, 0.019ohm, 2 CHANNEL, P-CHANNEL, Si, POWER, MOSFET, CASE 751-07, SOIC-8
ONSEMI

NTMD4184PF

Power MOSFET and Schottky Diode -30 V, -4.0 A, Single P-Channel with 20 V, 2.2 A, Schottky Barrier Diode
ONSEMI

NTMD4184PFR2G

Power MOSFET and Schottky Diode -30 V, -4.0 A, Single P-Channel with 20 V, 2.2 A, Schottky Barrier Diode
ONSEMI

NTMD4820N

Power MOSFET
ONSEMI

NTMD4820NR2G

Power MOSFET
ONSEMI

NTMD4840N

Power MOSFET 30 V, 7.5 A, Dual N−Channel, SOIC−8
ONSEMI

NTMD4840NR2G

Power MOSFET 30 V, 7.5 A, Dual N−Channel, SOIC−8
ONSEMI

NTMD4884NF

Power MOSFET and Schottky Diode
ONSEMI

NTMD4884NFR2G

Power MOSFET and Schottky Diode
ONSEMI

NTMD4N03

Power MOSFET 4 A, 30 V, N−Channel SO−8 Dual
ONSEMI