PC900V0NSZ [ETC]

PHOTOCOUPLER ; 光电耦合器\n
PC900V0NSZ
型号: PC900V0NSZ
厂家: ETC    ETC
描述:

PHOTOCOUPLER
光电耦合器\n

光电
文件: 总10页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PC900V0NSZX/PC900V0YSZX  
Digital Output Type OPIC  
Photocoupler  
PC900V0NSZX/  
PC900V0YSZX  
Outline Dimensions  
Features  
(Unit : mm)  
1. Normal OFF operation, open collector output  
2. TTL and LSTTL compatible output  
3. Operating supply voltage VCC:3 to 15V  
4. Isolation voltage (Viso (rms):5kV)  
5. Recognized by UL, file No.E64380  
Approved by TÜV (VDE0884) (PC900V0YSZX)  
6. 6-pin DIP package  
Internal connection  
diagram  
Voltage regulator  
6
1
5
4
6
4
5
Anode  
mark  
PC900V  
Amp  
1
2
3
0.6±0.2  
1.2±0.3  
2
3
Applications  
1. Programmable controllers  
7.12±0.3  
7.62±0.3  
2. PC peripherals  
3. Electronic musical instruments  
Model Line-up  
0.26±0.1  
* Safty Standard  
Approval  
0.5±0.1  
θ
θ=0 to 13˚  
θ
2.54±0.25  
Package Packing  
Model No.  
TÜV  
(VDE0884)  
UL  
1
4
5
6
Anode  
Vo  
2
3
Cathode  
NC  
GND  
VCC  
PC900V0NSZX  
PC900V0YSZX  
Sleeve  
DIP  
* Application Model No. PC900V  
OPIC(Optical IC) is a trademark of the SHARP Corporation.  
An OPIC consists of a light-detecting element and signal-  
processing circuit integrated onto a single chip.  
Absolute Maximum Ratings  
(Ta=25°C)  
Parameter  
Symbol  
Rating  
Unit  
mA  
A
50  
1
Forward current  
*1 Peak forward current  
Reverse voltage  
IF  
IFM  
Input  
VR  
6
V
Power dissipation  
Supply voltage  
mW  
P
VCC  
VOH  
IOL  
70  
16  
V
V
mA  
High level output voltage  
Low level output current  
Power dissipation  
Total power dissipation  
*2 Isolation voltage  
Operating temperature  
Storage temperature  
16  
Output  
50  
150  
PO  
mW  
mW  
kV  
°C  
Ptot  
170  
Viso (rms)  
Topr  
Tstg  
5
25 to +85  
40 to +125  
°C  
*3  
260  
Soldering temperature  
°C  
Tsol  
*1 Pulse width100µs, Duty ratio=0.001  
*2 40 to 60%RH, AC for 1 min  
*3 For 10 s  
Notice  
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP  
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.  
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/  
PC900V0NSZX/PC900V0YSZX  
Electro-optical Characteristics  
(Ta=0 to 70°C unless spesified)  
Parameter  
Symbol  
VF  
Conditions  
IF=4mA  
MIN.  
TYP. MAX.  
Unit  
1.1  
1.0  
1.4  
V
Forward voltage  
IF=0.3mA  
0.7  
Input  
Reverse current  
IR  
Ta=25˚C, VR=3V  
Ta=25˚C, V=0, f=1kHz  
10  
µA  
pF  
Terminal capacitance  
Ct  
30  
250  
15  
Operating supply voltage  
Low level output voltage  
High level output current  
Low level supply current  
High level supply current  
3
V
VCC  
VOL  
IOH  
IOL=16mA, VCC=5V, IF=4mA  
VO=VCC=15V, IF=250µA  
VCC=5.5V, IF=0  
0.2  
0.4  
100  
5.0  
5.0  
V
µA  
mA  
mA  
ICCL  
ICCH  
2.5  
1.0  
VCC=5V, IF=0  
*4 "HighLow" threshold  
input current  
*5 "LowHigh" threshold  
input current  
Output  
Ta=25˚C, VCC=5V, RL=280Ω  
VCC=5V, RL=280Ω  
1.1  
2.0  
4.0  
IFHL  
IFLH  
mA  
Ta=25˚C, VCC=5V, RL=280Ω  
VCC=5V, RL=280Ω  
0.4  
0.8  
mA  
0.3  
0.5  
0.7  
1011  
1
0.9  
*6 Hysteresis  
IFLH/IFHL  
RISO  
VCC=5V, RL=280Ω  
Ta=25˚C, DC=500V, 40 to 60%RH 5×1010  
Isolation resistance  
"HighLow" propagation delay time  
tPHL  
3
Transfer  
charac-  
teristics  
Ta=25˚C  
VCC=5V, IF=4mA  
"LowHigh" propagation delay time  
tPLH  
2
6
µs  
Fall time  
tf  
tr  
0.05  
0.1  
0.5  
0.5  
RL=280Ω  
Rise time  
*4 IFHL represents forward current when output goes from high to low.  
*5 IFLH represents forward current when output goes from low to high.  
*6 Hysteresis stands for IFLH/IFHL.  
*7 Test circuit for response time is shown below.  
Fig.1 Test Circuit for Response Time  
Voltage  
regulator  
50%  
VIN  
5V  
tPHL  
tPLH  
280Ω  
tr=tf=0.01µs  
Amp  
Z
O=50Ω  
VO  
VIN  
VOH  
90%  
0.1µF  
VO  
47Ω  
1.5V  
VOL  
10%  
tr  
tf  
PC900V0NSZX/PC900V0YSZX  
Fig.2 Forward Current vs. Ambient  
Fig.3 Power Dissipation vs. Ambient  
Temperature  
Temperature  
60  
200  
Ptot  
170  
50  
40  
30  
20  
PO  
150  
100  
50  
0
10  
0
25  
0
25  
50  
75 85 100  
25  
0
25  
50  
75 85 100  
Ambient temperature Ta (˚C)  
Ambient temperature Ta (˚C)  
Fig.4 Forward Current vs. Forward Voltage  
Fig.5 Relative Threshold Input Current vs.  
Supply Voltage  
500  
1.4  
Ta=25˚C  
Ta=75˚C  
IFHL=1 at VCC=5V  
50˚C  
200  
1.2  
25˚C  
0˚C  
25˚C  
IFHL  
100  
50  
1.0  
IFLH  
0.8  
20  
10  
5
0.6  
0.4  
0.2  
2
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
5
10  
15  
20  
Forward voltage VF (V)  
Supply voltage VCC (V)  
Fig.7 Low Level Output Voltage vs. Low  
Fig.6 Relative Threshold Input Current vs.  
Ambient Temperature  
Level Output Current  
1.6  
1.0  
VCC=5V  
1.4  
VCC=5V  
0.5  
Ta=25˚C  
1.2  
0.2  
0.1  
IFHL  
1.0  
0.8  
IFLH  
0.6  
0.05  
0.4  
0.02  
0.01  
I
FHL=1 at Ta=25˚C  
25 50  
Ambient temperature Ta (˚C)  
0.2  
25  
0
75  
100  
1
2
5
10  
20  
50  
100  
Low level output current IOL (mA)  
PC900V0NSZX/PC900V0YSZX  
Fig.9 Supply Current vs. Supply Voltage  
Fig.8 Low Level Output Voltage vs. Ambient  
Temperature  
9
0.5  
Ta= −25˚C  
IOL=30mA  
VCC=5V  
8
25˚C  
0.4  
0.3  
0.2  
7
6
5
4
16mA  
Ta= −25˚C  
85˚C  
3
5mA  
25˚C  
2
0.1  
0
ICCL  
{
85˚C  
1
0
ICCH  
{
1
3
5
7
9
11  
13  
15  
17  
25  
0
25  
50  
75  
100  
Supply voltage VCC (V)  
Ambient temperature Ta (˚C)  
Fig.11 Rise Time, Fall Time vs. Load  
Resistance  
Fig.10 Propagation Delay Time vs. Forward  
Current  
5
0.5  
VCC=5V  
VCC=5V  
RL=280Ω  
IF=4mA  
Ta=25˚C  
Ta=25˚C  
4
0.4  
tPLH  
3
0.3  
2
0.2  
tr  
1
0.1  
tf  
tPHL  
0
0
0
10  
20  
30  
40  
50  
60  
0.1 0.2  
0.5  
1
2
5
10  
20  
Forward current IF (mA)  
Load resistance RL (k)  
Precautions for Use  
1. It is recommended that a by-pass capacitor of more than 0.01µF is added between VCC and GND near the device in order to  
stabilize power supply line.  
2. Handle this product the same as with other integrated circuits against static electricity.  
Application Circuits  
NOTICE  
The circuit application examples in this publication are provided to explain representative applications of  
SHARP devices and are not intended to guarantee any circuit design or license any intellectual property  
rights. SHARP takes no responsibility for any problems related to any intellectual property right of a  
third party resulting from the use of SHARP's devices.  
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.  
SHARP reserves the right to make changes in the specifications, characteristics, data, materials,  
structure, and other contents described herein at any time without notice in order to improve design or  
reliability. Manufacturing locations are also subject to change without notice.  
Observe the following points when using any devices in this publication. SHARP takes no responsibility  
for damage caused by improper use of the devices which does not meet the conditions and absolute  
maximum ratings to be used specified in the relevant specification sheet nor meet the following  
conditions:  
(i) The devices in this publication are designed for use in general electronic equipment designs such as:  
--- Personal computers  
--- Office automation equipment  
--- Telecommunication equipment [terminal]  
--- Test and measurement equipment  
--- Industrial control  
--- Audio visual equipment  
--- Consumer electronics  
(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and  
safety when SHARP devices are used for or in connection with equipment that requires higher  
reliability such as:  
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)  
--- Traffic signals  
--- Gas leakage sensor breakers  
--- Alarm equipment  
--- Various safety devices, etc.  
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely  
high level of reliability and safety such as:  
--- Space applications  
--- Telecommunication equipment [trunk lines]  
--- Nuclear power control equipment  
--- Medical and other life support equipment (e.g., scuba).  
Contact a SHARP representative in advance when intending to use SHARP devices for any "specific"  
applications other than those recommended by SHARP or when it is unclear which category mentioned  
above controls the intended use.  
If the SHARP devices listed in this publication fall within the scope of strategic products described in the  
Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export  
such SHARP devices.  
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under  
the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any  
means, electronic or mechanical, for any purpose, in whole or in part, without the express written  
permission of SHARP. Express written permission is also required before any use of this publication  
may be made by a third party.  
Contact and consult with a SHARP representative if there are any questions about the contents of this  
publication.  
115  
PC900V0NIZX/PC900V0NIPX  
Digital Output Type OPIC  
Photocoupler  
PC900V0NIZX/  
PC900V0NIPX  
Outline Dimensions  
Features  
(Unit : mm)  
1. Normal OFF operation, open collector output  
2. TTL and LSTTL compatible output  
3. Operating supply voltage VCC:3 to 15V  
4. Isolation voltage (Viso (rms):5kV)  
5. Recognized by UL, file No.E64380  
6. 6-pin DIP package (Lead forming type)  
Internal connection  
diagram  
2.54±0.25  
Voltage regulator  
6
4
5
Anode  
PC900V  
mark  
Amp  
1
2
3
Applications  
1. Programmable controllers  
1
2
3
0.6±0.2  
1.2±0.3  
2. PC peripherals  
3. Electronic musical instruments  
7.12±0.3  
7.62±0.3  
Model Line-up  
* Safty Standard  
Approval  
Package Packing  
Model No.  
TÜV  
+0.4  
0  
+0.4  
1.0  
1.0  
0  
UL  
(VDE0884)  
+0  
10  
0.5  
Sleeve  
Taping  
PC900V0NIZX  
PC900V0NIPX  
Surface  
Mount  
1
2
3
4
5
6
Anode  
Cathode  
NC  
Vo  
* Application Model No. PC900V  
GND  
VCC  
Absolute Maximum Ratings  
(Ta=25°C)  
“OPIC”(Optical IC) is a trademark of the SHARP Corporation.  
An OPIC consists of a light-detecting element and signal-  
processing circuit integrated onto a single chip.  
Parameter  
Symbol  
Rating  
Unit  
mA  
A
50  
1
Forward current  
*1 Peak forward current  
Reverse voltage  
IF  
IFM  
Input  
VR  
6
V
Power dissipation  
Supply voltage  
mW  
P
VCC  
VOH  
IOL  
70  
16  
V
V
mA  
High level output voltage  
Low level output current  
Power dissipation  
Total power dissipation  
*2 Isolation voltage  
Operating temperature  
Storage temperature  
16  
Output  
50  
150  
PO  
mW  
mW  
kV  
°C  
Ptot  
170  
Viso (rms)  
Topr  
Tstg  
5
25 to +85  
40 to +125  
°C  
*3  
260  
Soldering temperature  
°C  
Tsol  
*1 Pulse width100µs, Duty ratio=0.001  
*2 40 to 60%RH, AC for 1 min  
*3 For 10 s  
Notice  
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP  
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.  
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/  
PC900V0NIZX/PC900V0NIPX  
Electro-optical Characteristics  
(Ta=0 to 70°C unless spesified)  
Parameter  
Symbol  
VF  
Conditions  
IF=4mA  
MIN.  
TYP. MAX.  
Unit  
1.1  
1.0  
1.4  
V
Forward voltage  
IF=0.3mA  
0.7  
Input  
Reverse current  
IR  
Ta=25˚C, VR=3V  
Ta=25˚C, V=0, f=1kHz  
10  
µA  
pF  
Terminal capacitance  
Ct  
30  
250  
15  
Operating supply voltage  
Low level output voltage  
High level output current  
Low level supply current  
High level supply current  
3
V
VCC  
VOL  
IOH  
IOL=16mA, VCC=5V, IF=4mA  
VO=VCC=15V, IF=250µA  
VCC=5.5V, IF=0  
0.2  
0.4  
100  
5.0  
5.0  
V
µA  
mA  
mA  
ICCL  
ICCH  
2.5  
1.0  
VCC=5V, IF=0  
*4 "HighLow" threshold  
input current  
*5 "LowHigh" threshold  
input current  
Output  
Ta=25˚C, VCC=5V, RL=280Ω  
VCC=5V, RL=280Ω  
1.1  
2.0  
4.0  
IFHL  
IFLH  
mA  
Ta=25˚C, VCC=5V, RL=280Ω  
VCC=5V, RL=280Ω  
0.4  
0.8  
mA  
0.3  
0.5  
0.7  
1011  
1
0.9  
*6 Hysteresis  
IFLH/IFHL  
RISO  
VCC=5V, RL=280Ω  
Ta=25˚C, DC=500V, 40 to 60%RH 5×1010  
Isolation resistance  
"HighLow" propagation delay time  
tPHL  
3
Transfer  
charac-  
teristics  
Ta=25˚C  
VCC=5V, IF=4mA  
"LowHigh" propagation delay time  
tPLH  
2
6
µs  
Fall time  
tf  
tr  
0.05  
0.1  
0.5  
0.5  
RL=280Ω  
Rise time  
*4 IFHL represents forward current when output goes from high to low.  
*5 IFLH represents forward current when output goes from low to high.  
*6 Hysteresis stands for IFLH/IFHL.  
*7 Test circuit for response time is shown below.  
Fig.1 Test Circuit for Response Time  
Voltage  
regulator  
50%  
VIN  
5V  
tPHL  
tPLH  
280Ω  
tr=tf=0.01µs  
Amp  
ZO=50Ω  
VO  
VIN  
VOH  
90%  
0.1µF  
VO  
47Ω  
1.5V  
VOL  
10%  
tr  
tf  
PC900V0NIZX/PC900V0NIPX  
Fig.3 Power Dissipation vs. Ambient  
Fig.2 Forward Current vs. Ambient  
Temperature  
Temperature  
60  
200  
Ptot  
170  
50  
40  
30  
20  
PO  
150  
100  
50  
0
10  
0
25  
0
25  
50  
75 85 100  
25  
0
25  
50  
75 85 100  
Ambient temperature Ta (˚C)  
Ambient temperature Ta (˚C)  
Fig.4 Forward Current vs. Forward Voltage  
Fig.5 Relative Threshold Input Current vs.  
Supply Voltage  
500  
1.4  
Ta=25˚C  
Ta=75˚C  
IFHL=1 at VCC=5V  
50˚C  
200  
1.2  
25˚C  
0˚C  
25˚C  
IFHL  
100  
50  
1.0  
IFLH  
0.8  
20  
10  
5
0.6  
0.4  
0.2  
2
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
5
10  
15  
20  
Forward voltage VF (V)  
Supply voltage VCC (V)  
Fig.7 Low Level Output Voltage vs. Low  
Fig.6 Relative Threshold Input Current vs.  
Ambient Temperature  
Level Output Current  
1.6  
1.0  
VCC=5V  
1.4  
VCC=5V  
0.5  
Ta=25˚C  
1.2  
0.2  
0.1  
IFHL  
1.0  
0.8  
IFLH  
0.6  
0.05  
0.4  
0.02  
0.01  
I
FHL=1 at Ta=25˚C  
25 50  
Ambient temperature Ta (˚C)  
0.2  
25  
0
75  
100  
1
2
5
10  
20  
50  
100  
Low level output current IOL (mA)  
PC900V0NIZX/PC900V0NIPX  
Fig.9 Supply Current vs. Supply Voltage  
Fig.8 Low Level Output Voltage vs. Ambient  
Temperature  
9
0.5  
Ta= −25˚C  
IOL=30mA  
VCC=5V  
8
25˚C  
0.4  
0.3  
0.2  
7
6
5
4
16mA  
Ta= −25˚C  
85˚C  
3
5mA  
25˚C  
2
0.1  
0
ICCL  
{
85˚C  
1
0
ICCH  
{
1
3
5
7
9
11  
13  
15  
17  
25  
0
25  
50  
75  
100  
Supply voltage VCC (V)  
Ambient temperature Ta (˚C)  
Fig.11 Rise Time, Fall Time vs. Load  
Resistance  
Fig.10 Propagation Delay Time vs. Forward  
Current  
5
0.5  
VCC=5V  
VCC=5V  
RL=280Ω  
IF=4mA  
Ta=25˚C  
Ta=25˚C  
4
0.4  
tPLH  
3
0.3  
2
0.2  
tr  
1
0.1  
tf  
tPHL  
0
0
0
10  
20  
30  
40  
50  
60  
0.1 0.2  
0.5  
1
2
5
10  
20  
Forward current IF (mA)  
Load resistance RL (k)  
Precautions for Use  
1. It is recommended that a by-pass capacitor of more than 0.01µF is added between VCC and GND near the device in order to  
stabilize power supply line.  
2. Handle this product the same as with other integrated circuits against static electricity.  
Application Circuits  
NOTICE  
The circuit application examples in this publication are provided to explain representative applications of  
SHARP devices and are not intended to guarantee any circuit design or license any intellectual property  
rights. SHARP takes no responsibility for any problems related to any intellectual property right of a  
third party resulting from the use of SHARP's devices.  
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.  
SHARP reserves the right to make changes in the specifications, characteristics, data, materials,  
structure, and other contents described herein at any time without notice in order to improve design or  
reliability. Manufacturing locations are also subject to change without notice.  
Observe the following points when using any devices in this publication. SHARP takes no responsibility  
for damage caused by improper use of the devices which does not meet the conditions and absolute  
maximum ratings to be used specified in the relevant specification sheet nor meet the following  
conditions:  
(i) The devices in this publication are designed for use in general electronic equipment designs such as:  
--- Personal computers  
--- Office automation equipment  
--- Telecommunication equipment [terminal]  
--- Test and measurement equipment  
--- Industrial control  
--- Audio visual equipment  
--- Consumer electronics  
(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and  
safety when SHARP devices are used for or in connection with equipment that requires higher  
reliability such as:  
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)  
--- Traffic signals  
--- Gas leakage sensor breakers  
--- Alarm equipment  
--- Various safety devices, etc.  
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely  
high level of reliability and safety such as:  
--- Space applications  
--- Telecommunication equipment [trunk lines]  
--- Nuclear power control equipment  
--- Medical and other life support equipment (e.g., scuba).  
Contact a SHARP representative in advance when intending to use SHARP devices for any "specific"  
applications other than those recommended by SHARP or when it is unclear which category mentioned  
above controls the intended use.  
If the SHARP devices listed in this publication fall within the scope of strategic products described in the  
Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export  
such SHARP devices.  
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under  
the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any  
means, electronic or mechanical, for any purpose, in whole or in part, without the express written  
permission of SHARP. Express written permission is also required before any use of this publication  
may be made by a third party.  
Contact and consult with a SHARP representative if there are any questions about the contents of this  
publication.  
115  

相关型号:

PC900V0NSZX

DEVICE SPECIFICATION FOR PHOTOCOUPLER
SHARP

PC900V0YIPX

Digital Output, Normal OFF Operation DIP 6 pin ∗OPIC Photocoupler
SHARP

PC900V0YIPXF

暂无描述
SHARP

PC900V0YIZX

Logic IC Output Optocoupler, 1-Element, 5000V Isolation, PLASTIC, SMT, DIP-6
SHARP

PC900V0YIZXF

Logic IC Output Optocoupler, 1-Element, 5000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, DIP-6
SHARP

PC900V0YSZX

Digital Output, Normal OFF Operation DIP 6 pin ∗OPIC Photocoupler
SHARP

PC900V0YUPX

Logic IC Output Optocoupler, 1-Element, 5000V Isolation, PLASTIC, SMT, DIP-6
SHARP

PC900V0YUPXF

暂无描述
SHARP

PC900VI

Logic IC Output Optocoupler, 1-Element, 5000V Isolation,
SHARP

PC900VP

Logic IC Output Optocoupler, 1-Element, 5000V Isolation,
SHARP

PC900VQ

Digital Output Type OPIC Photocoupler
SHARP