PEB20571F [ETC]

?DSP Embedded Line and Port Interface Controller ? ; ? DSP嵌入式线和港口接口控制器?\n
PEB20571F
型号: PEB20571F
厂家: ETC    ETC
描述:

?DSP Embedded Line and Port Interface Controller ?
? DSP嵌入式线和港口接口控制器?\n

控制器
文件: 总63页 (文件大小:1518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, DS4, March 2001  
VIP, VIP-8  
Versatile ISDN Port  
PEB 20590 Version 2.1  
PEB 20591 Version 2.1  
Wired  
Communications  
N e v e r s t o p t h i n k i n g .  
Edition 2001-03-01  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2001.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, DS4, March 2001  
VIP, VIP-8  
Versatile ISDN Port  
PEB 20590 Version 2.1  
PEB 20591 Version 2.1  
Wired  
Communications  
N e v e r s t o p t h i n k i n g .  
PEB 20590, PEB 20591  
PRELIMINARY  
Revision History:  
2001-03-01  
DS4  
Previous Version:  
01.00  
Page  
Subjects (major changes since last revision)  
Pull-ups for the signals TMS, TDI, TRST  
ID-Code for TAP controller  
Page 15  
Page 34  
Page 29  
Page 35  
Page 46  
Page 46  
Maximum wander tolerance  
VIP version register  
Primary inductance for recommended S/T transformer  
External S/T Receiver Circuitry  
Page 38-  
Electrical Characteristics  
Page 45  
Note: This revision history is not 100% complete.  
For questions on technology, delivery and prices please contact the Infineon  
Technologies Offices in Germany or the Infineon Technologies Companies and  
Representatives worldwide: see our webpage at http://www.infineon.com  
ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56,  
FALC®-E1, FALC®-LH, IDEC®, IOM®, IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE,  
ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC,  
SLICOFI® are registered trademarks of Infineon Technologies AG.  
ACE, ASM, ASP, POTSWIRE, QuadFALC, SCOUTare trademarks of Infineon Technologies AG.  
PEB 20590  
PEB 20591  
Table of Contents  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Logic Symbol Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
1.2  
1.3  
2
2.1  
2.2  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
3.1  
3.2  
Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Overview of Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
UPN Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
UPN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Receive PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Receive Signal Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
S/T Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
S/T Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Receive Clock Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reference Clock Selection in LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . 28  
Receive Signal Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Elastic Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
IOM-2000 Interface Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
IOM-2000 Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
JTAG Boundary Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
TAP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.3.1  
3.3.3.2  
3.3.4  
3.3.5  
3.3.6  
3.4  
3.4.1  
3.4.1.1  
3.5  
3.5.1  
4
Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Analog Test Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Monitoring of Code Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.1  
4.2  
4.3  
4.4  
4.5  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Recommended 15.36-MHz Crystal Parameters . . . . . . . . . . . . . . . . . . . . 41  
5.1  
5.2  
5.3  
5.4  
5.5  
Data Sheet  
2001-03-01  
PEB 20590  
PEB 20591  
Table of Contents  
Page  
5.6  
5.7  
5.8  
5.9  
5.10  
5.11  
5.12  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Upn Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
IOM-2000 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
JTAG Boundary Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
UPN Transmitter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
S/T Transmitter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6
6.1  
6.1.1  
6.1.2  
6.1.3  
6.2  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
VIP External Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Recommended Line Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
UPN Interface External Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
S/T Interface External Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wiring Configurations in LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Loop Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.3  
7
8
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Data Sheet  
2001-03-01  
PEB 20590  
PEB 20591  
List of Figures  
Page  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Top-Level Block Diagram of the VIP . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Logic Symbol PEB 20590 (72 of 80 Pins used). . . . . . . . . . . . . . . . . . . 6  
Logic Symbol PEB 20591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
VIP in Mixed S/T and UPN Line Cards (e.g. 8 S/T and 16 UPN). . . . . . . 7  
VIP in a Small PBX Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DELIC-PB and VIP in a PC Card for 8/16 S/T Interfaces . . . . . . . . . . . 8  
Pin Diagram, PEB 20590. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Diagram, PEB 20591. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
UPN Interface Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
AMI Coding on the UPN Interface in VIP . . . . . . . . . . . . . . . . . . . . . . . 19  
Transceiver Functional Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Equalizer Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Receive Signal Oversampling on UPN Interface . . . . . . . . . . . . . . . . . 22  
Frame Structure at Reference Points S and T (ITU-T I.430) . . . . . . . . 23  
S/T Interface Line Code (without Code Violation) . . . . . . . . . . . . . . . . 24  
Receiver Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock Recovery in LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
LT-T Reference Clock Channel Selection for Cascaded VIPs. . . . . . . 28  
Receive Signal Oversampling in S/T Receiver . . . . . . . . . . . . . . . . . . 29  
Overview of IOM-2000 Interface Structure (Example with One VIP). . 30  
IOM-2000 Data Sequence (1 VIP with 8 Channels) . . . . . . . . . . . . . . 32  
IOM-2000 Data Order (3 VIPs with 24 Channels) . . . . . . . . . . . . . . . . 33  
Recommended Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Input/Output Wave Form for AC Tests. . . . . . . . . . . . . . . . . . . . . . . . . 42  
IOM-2000 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
JTAG Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
1:1 Transformer Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
External Transceiver Circuitry of the VIP in UPN Mode . . . . . . . . . . . . 47  
Overview of External Circuitry of the VIP in S/T Mode . . . . . . . . . . . . 47  
External S/T Transmitter Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
External S/T Receiver Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Wiring Configurations in User Premises (LT-S Mode). . . . . . . . . . . . . 49  
Internal and External Loop-Back Modes . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Data Sheet  
2001-03-01  
PEB 20590  
PEB 20591  
List of Tables  
Page  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
VIP Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
PEB 20590: UPN and S/T Line Interface . . . . . . . . . . . . . . . . . . . . . . . 11  
PEB 20591: UPN and S/T Line Interface . . . . . . . . . . . . . . . . . . . . . . . 12  
IOM-2000 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Clock Signals and Dedicated Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Supply and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
JTAG Boundary Scan Test Interface (IEEE 1149.1) . . . . . . . . . . . . . . 15  
Control Bits in S/T Mode on DR Line. . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Control Bits in S/T Mode on DX Line . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
TAP Controller Instruction Codes Overview . . . . . . . . . . . . . . . . . . . . 34  
DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
I/O Capacitances (except line interfaces and clocks) . . . . . . . . . . . . . 41  
Recommended Crystal Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IOM-2000 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
JTAG Boundary Scan Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Data Sheet  
2001-03-01  
PEB 20590  
PEB 20591  
Preface  
This document provides reference information on VIP1) (Versatile ISDN Port).  
Organization of this Document  
This Data Sheet is divided into 9 chapters. It is organized as follows:  
Chapter 1, Introduction  
Gives a general description of the VIP, lists the key features, and presents some  
typical applications.  
Chapter 2, Pin Description  
Lists pin locations with associated signals, categorizes signals according to function,  
and describes signals.  
Chapter 3, Interface Description  
Describes the VIP external interfaces.  
Chapter 4, Operational Description  
Describes the VIP operations reset, initialization, analog test loops and the monitoring  
of illegal code violations.  
Chapter 5, Electrical Characteristics  
Contains the DC and AC specification and timing diagrams.  
Chapter 6, Application Hints  
Provides information on external line interface circuitry in UPN and S/T mode, such as  
transformers and line protection.  
Chapter 7, Package Outlines  
Chapter 8, Glossary  
Chapter 9, Index  
1)  
Throughout this document the name VIP will be used to refer to both chip versions PEB 20590 and PEB 20591.  
Data Sheet  
1
2001-03-01  
PEB 20590  
PEB 20591  
PRELIMINARY  
Your Comments  
We welcome your comments on this document. We are continuously trying to improve  
our documentation. Please send your remarks and suggestions by e-mail to  
sc.docu_comments@infineon.com  
Please provide in the subject of your e-mail:  
device name (VIP), device number (PEB 20590), device version (Version 2.1),  
and in the body of your e-mail:  
document type (Data Sheet), issue date (2001-03-01) and document revision number  
(DS4).  
Related Documentation  
Data Sheet for DELIC Version 2.3 or higher (PEB 20570, PEB 20571)  
Data Sheet  
2
2001-03-01  
PEB 20590  
PEB 20591  
Introduction  
PRELIMINARY  
1
Introduction  
This chapter gives a general overview of the VIP including a top-level block diagram and  
the logic symbol diagram, it lists the key features, and presents some typical  
applications.  
1.1  
Overview  
VIP (Versatile ISDN Port) is a highly-integrated multiple layer-1 transceiver IC  
connecting to  
UPN subscriber line interfaces (2-wire) and  
S/T subscriber or trunk line interfaces (4-wire).  
VIP integrates the complete analog line interface circuitry as well as the transceiver logic  
required for eight full-duplex channels.  
Typical VIP applications include PBX line cards (UPN, S/T or mixed), and small PBXs.  
VIP must be operated in combination with DELIC1), which is required for configuration  
and control/activation of VIPs layer-1 transceivers. The communication path between  
the DELIC and the VIP is the serial IOM-2000 interface with a data rate of up to 12.288  
Mbit/s. DELIC also processes the signaling information of each VIP channel by providing  
a dedicated HDLC controller per subscriber. For more information on DELIC and the  
IOM-2000 interface, please refer to the DELIC-LC/-PB Data Sheet.  
1)  
Infineon Technologies DELIC: DSP Embedded Line and Port Interface Controller. The DELIC is available in  
two versions: PEB 20570 and PEB 20571.  
Data Sheet  
3
2001-03-01  
PEB 20590  
PEB 20591  
Introduction  
PRELIMINARY  
The VIP is available in two different versions, which differ in the possible interface  
combinations:  
Table 1  
Device  
VIP  
VIP Product Family  
Available Interfaces  
PEB 20590 Four channels are programmable to either S/T or UPN mode, and  
the other four channels can be operated in UPN mode only.  
Maximum Number of UPN and S/T channels  
UPN  
S/T  
8
0
7
1
6
2
5
3
4
4
3
4
2
4
1
4
0
4
VIP-8 PEB 20591 All eight channels are programmable to either S/T or UPN mode.  
Maximum Number of UPN and S/T channels  
UPN  
S/T  
8
0
7
1
6
2
5
3
4
4
3
5
2
6
1
7
0
8
IOM-2000  
S/T or  
UPN  
UPN and S/T  
Transceiver  
IOM-2000  
Interface  
Analog Line  
Interface  
DELIC  
Clock  
JTAG  
Central Biasing  
vip_0002_block_diagram  
Figure 1  
Top-Level Block Diagram of the VIP  
Data Sheet  
4
2001-03-01  
PRELIMINARY  
Versatile ISDN Port  
VIP, VIP-8  
PEB 20590  
PEB 20591  
Version 2.1  
CMOS  
1.2  
VIP Key Features  
VIP is a universal ISDN transceiver IC for different  
interface modes (S/T or UPN).  
Eight 2B+D line interfaces with full duplex  
transceivers  
S/T interfaces at 192 kbit/s with line transceivers  
according to ITU-T I.430, ETSI 300.012 and ANSI  
T1.605  
P-MQFP-80-1  
UPN interfaces at 384 kbit/s with line transceivers according to ZVEI standard  
Receive timing recovery  
Conversion between pseudo-ternary and binary codes  
Conversion between UPN or S/T frames and IOM-2000 frame structures  
Execution of test loops  
Frame alignment in trunk applications with maximum wander correction of ± 25 µs  
UPN interface compatible to OCTAT-P (PEB 2096)1)  
S/T interface compatible to QUAT-S (PEB 2084)2)  
IOM-2000 interface to DELIC supporting up to three VIPs (24 channels)  
Transceiver initialization and configuration  
Control of layer-1 activation/deactivation  
Exchange of command and status information  
Signaling control for all VIP channels by dedicated HDLC controllers in DELIC  
Single 3.3 V power supply  
JTAG IEEE1149.1-compliant test interface with dedicated reset input  
Note: UPN refers to a version of the UP0 interface (meeting the ZVEI standard) with a  
reduced loop length of up to 1.3 km, depending on the type of cable.  
1)  
Infineon Technologies OCTAT-P (PEB 2096): Octal Transceiver for UPN-Interfaces.  
Infineon Technologies QUAT-S (PEB 2084): Quadruple Transceiver for S/T-Interface.  
2)  
Type  
Package  
PEB 20590, PEB 20591  
P-MQFP-80-1  
Data Sheet  
5
2001-03-01  
PEB 20590  
PEB 20591  
Introduction  
PRELIMINARY  
1.3  
Logic Symbol Diagrams  
Power Supply Analog / Digital,  
Reset  
27  
24  
S/T and UPN  
Line Interface  
7
IOM-2000  
Interface  
VIP  
PEB 20590  
6
Dedicated  
Pins  
5
3
Clock  
Signals  
JTAG  
vip_0003_logic_symbol  
Test Interface  
Figure 2  
Logic Symbol PEB 20590 (72 of 80 Pins used)  
Power Supply Analog / Digital,  
Reset  
27  
32  
S/T and UPN  
Line Interface  
7
IOM-2000  
Interface  
VIP-8  
PEB 20591  
6
Dedicated  
Pins  
5
3
Clock  
Signals  
JTAG  
vip_0006_8logic_symbol  
Test Interface  
Figure 3  
Logic Symbol PEB 20591  
Data Sheet  
6
2001-03-01  
PEB 20590  
PEB 20591  
Introduction  
PRELIMINARY  
1.4  
Typical Applications  
Typical VIP applications are PBX line cards (UPN, S/T or mixed), and small PBXs.  
The following figures illustrate sample configurations in which the VIP shows its  
flexibility.  
up to  
4 x  
IOM-2000  
S/T  
VIP  
PEB 20590  
PCM  
4 x  
4 x 32 TS  
UPN  
DELIC  
up to  
4 x  
PEB 20570  
(PEB 20571)  
S/T  
VIP  
PEB 20590  
4 x  
UPN  
Signaling  
up to 2.048 Mbit/s  
8 x  
VIP  
UPN  
PEB 20590  
µP  
Memory  
Infineon  
C166  
vip_0004_line_card  
Figure 4  
VIP in Mixed S/T and UPN Line Cards (e.g. 8 S/T and 16 UPN)  
IOM-2  
HV-SLIC  
SLICOFI-2  
PCM  
HV-SLIC  
up to 32 TS  
32 x t/r  
HV-SLIC  
HV-SLIC  
SLICOFI-2  
DELIC-PB  
PEB 20571  
4 x  
UPN  
IOM-2000  
VIP  
2 x S  
2 x T  
LNC  
PEB 20590  
Central  
Office  
2 Mbit/s  
for service  
µP  
Power  
Memory  
Infineon  
C166  
Supply  
vip_0007_pbx  
Figure 5  
VIP in a Small PBX Solution  
Data Sheet  
7
2001-03-01  
PEB 20590  
PEB 20591  
Introduction  
PRELIMINARY  
VIP-8  
H.100/  
H.110  
PCM  
8 x S  
PEB 20591  
(optional)  
SWITI  
(optional)  
DELIC-PB  
PEB 20571  
6 x S  
2 x T  
VIP-8  
IOM-2000  
PEB 20591  
Central  
Office  
PCI  
PITA  
µP  
Memory  
Infineon  
C166  
vip_0008_pc_card  
Figure 6  
DELIC-PB and VIP in a PC Card for 8/16 S/T Interfaces  
Data Sheet  
8
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
2
Pin Description  
The VIP is available in an 80-pin Plastic Metric Quad Flat Package (P-MQFP-80-1). This  
chapter presents a simple layout of the 80-pin MQFP package with pin and signal  
callouts and a table of signal definitions.  
2.1  
Pin Configuration  
(top view)  
P-MQFP-80-1  
60  
61  
56  
52  
48  
41  
44  
40  
36  
32  
28  
SR5b/LI5b  
SR5a/LI5a  
VDDA  
SR3b/Ll3b  
SR3a/Ll3a  
VDDA  
VSSA  
SX3b  
64  
68  
72  
76  
80  
VSSA  
SX5b  
SX5a  
VDDA  
VSSA  
n.c.  
n.c.  
VSSA  
VDDA  
LI6a  
SX3a  
VIP_ADD1  
VIP_ADD0  
n.c.  
n.c.  
VSSA  
VDDA  
Ll2a  
Ll2b  
SR1b/Ll1b  
SR1a/Ll1a  
VDDA  
VSSA  
SX1b  
VIP  
PEB 20590  
LI6b  
SR7b/LI7b  
SR7a/LI7a  
VDDA  
24  
21  
VSSA  
SX7b  
SX7a  
SX1a  
1
4
8
12  
16  
20  
vip_0001_pinout  
Figure 7  
Pin Diagram, PEB 20590  
Data Sheet  
9
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
(top view)  
P-MQFP-80-1  
60  
61  
56  
52  
48  
41  
44  
40  
36  
32  
28  
SR5b/LI5b  
SR5a/LI5a  
VDDA  
SR3b/Ll3b  
SR3a/Ll3a  
VDDA  
VSSA  
SX3b  
64  
68  
72  
76  
80  
VSSA  
SX5b  
SX5a  
VDDA  
VSSA  
SX6a  
SX6b  
VSSA  
SX3a  
VIP_ADD1  
VIP_ADD0  
SX2a  
SX2b  
VSSA  
VIP-8  
PEB 20591  
VDDA  
VDDA  
SR6a/LI6a  
SR6b/LI6b  
SR7b/LI7b  
SR7a/LI7a  
VDDA  
SR2a/Ll2a  
SR2b/Ll2b  
SR1b/Ll1b  
SR1a/Ll1a  
VDDA  
VSSA  
SX1b  
SX1a  
24  
21  
VSSA  
SX7b  
SX7a  
1
4
8
12  
16  
20  
vip_0005_vip8_pinout  
Figure 8  
Pin Diagram, PEB 20591  
Data Sheet  
10  
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
2.2  
Pin Descriptions  
Table 2  
PEB 20590: UPN and S/T Line Interface  
In (I) During Function  
Out(O) Reset  
Pin Symbol  
No.  
25  
26  
39  
40  
62  
61  
76  
75  
SR1a/LI1a  
SR1b/LI1b  
SR3a/LI3a  
SR3b/LI3b  
SR5a/LI5a  
SR5b/LI5b  
SR7a/LI7a  
SR7b/LI7b  
I / I/O  
I/O  
O
I
S/T Receive Channel 1, 3, 5, 7  
UPN Transmit/Receive Channel 1, 3, 5, 7  
/
12  
13  
28  
27  
48  
47  
73  
74  
LI0a  
LI0b  
LI2a  
LI2b  
LI4a  
LI4b  
LI6a  
LI6b  
I
UPN Transmit/Receive Channel 0, 2, 4, 6  
S/T Transmit Channel 1, 3, 5, 7  
not connected  
21  
22  
35  
36  
66  
65  
80  
79  
SX1a  
SX1b  
SX3a  
SX3b  
SX5a  
SX5b  
SX7a  
SX7b  
O
8, 9, n.c.  
31,  
-
-
32,  
51,  
52,  
69,  
70  
Data Sheet  
11  
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
Table 3  
PEB 20591: UPN and S/T Line Interface  
In (I) During Function  
Out(O) Reset  
Pin Symbol  
No.  
12  
13  
25  
26  
27  
28  
39  
40  
48  
47  
62  
61  
73  
74  
76  
75  
SR0a/LI0a  
SR0b/LI0b  
SR1a/LI1a  
SR1b/LI1b  
SR2a/LI2a  
SR2b/LI2b  
SR3a/LI3a  
SR3b/LI3b  
SR4a/LI4a  
SR4b/LI4b  
SR5a/LI5a  
SR5b/LI5b  
SR6a/LI6a  
SR6b/LI6b  
SR7a/LI7a  
SR7b/LI7b  
I / I/O  
I
S/T Receive Channel /  
UPN Transmit/Receive Channel  
8
9
SX0a  
SX0b  
SX1a  
SX1b  
SX2a  
SX2b  
SX3a  
SX3b  
SX4a  
SX4b  
SX5a  
SX5b  
SX6a  
SX6b  
SX7a  
SX7b  
O
O
S/T Transmit Channel  
21  
22  
32  
31  
35  
36  
52  
51  
66  
65  
69  
70  
80  
79  
Data Sheet  
12  
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
Table 4  
IOM-2000 Interface  
Pin  
No.  
Symbol  
In (I)  
Out (O) Reset  
During  
Function  
18  
FSC  
I
I
I
I
IOM-2000 Frame SynChronization  
8 kHz signal for IOM-2000 frames  
19  
DCL_2000  
IOM-2000 Data CLock  
Data Clock from DELIC (3.072, 6.144 or  
12.288 MHz in case of 1, 2 or 3 VIPs)  
1
DR  
O
I
O
I
IOM-2000 Data Receive  
Data received on the line interface is  
sent to the DELIC  
20  
2
DX  
IOM-2000 Data Transmit  
Data to be transmitted on the line  
interface is received from the DELIC.  
CMD  
STAT  
REFCLK  
I
I
IOM-2000 ComManD  
Receives the commands from the  
DELIC.  
3
O
O
O
O
IOM-2000 STATus  
Transmits the VIP status information to  
the DELIC.  
4
IOM-2000 REFerence CLocK  
Provides a 1.536 MHz reference clock  
(e.g. derived from Central Office in LT-T  
applications) to the DELIC  
Data Sheet  
13  
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
Table 5  
Clock Signals and Dedicated Pins  
Pin  
No.  
Symbol  
In (I)  
Out (O) Reset  
During Function  
42  
43  
CLK15-I  
CLK15-O  
I
O
I
O
15.36-MHz External Crystal Input  
15.36-MHz External Crystal Output  
17  
INCLK  
I
I
I
External Reference CLocK INput  
Reference clock from VIP or Central Office  
33  
34  
VIP_ADD0 I  
VIP_ADD1  
VIP ADDress Pins  
Determines the sequential order of up to  
3 VIPs in the IOM-2000 frame for the 12-  
MHz case:  
VIP_ADD(1:0)  
00= VIP in 1st quarter of IOM-2000 frame  
01= VIP in 2nd quarter of IOM-2000 frame  
10= VIP in 3rd quarter of IOM-2000 frame  
11= Reserved for future connection of VIP  
in 4th quarter of IOM-2000 frame. Currently  
only the lower addresses are available.  
(refer to IOM-2000 description in DELIC-LC/  
-PB Data Sheet)  
16  
41  
IDDQ  
I
I
I
I
IDDQ Test Mode  
Forces the Line Interface Unit into power  
down mode for IDDQ testing.  
POWDN  
Oscillator POWer DowN  
Switches the internal oscillator into power  
down mode (in case that 15.36-MHz input  
clock is provided by the DELIC)  
5
DIR  
O
I
O
I
DIRection of Transfer on UPN Line Interface  
Indicates the direction of the data transfer  
(Tx or Rx) in UPN ping-pong mode (required  
for driving electronic transformers).  
60  
SCANEN  
SCAN ENable  
If driven to 1during device tests, a full scan  
of the VIP is enabled.  
Data Sheet  
14  
2001-03-01  
PEB 20590  
PEB 20591  
Pin Description  
PRELIMINARY  
Table 6  
Power Supply and Reset  
Symbol In (I) During Function  
Out (O) Reset  
Pin  
No.  
11, 24, V  
29, 38,  
49, 63,  
67, 72,  
77  
I
I
Power Supply 3.3 V Analog  
Used for VIP analog logic  
DDA  
6, 14,  
45, 53  
V
I
I
I
I
Power Supply 3.3 V Digital  
Used for VIP digital logic  
Reference Ground (0 V) Analog  
DDD  
SSA  
10, 23, V  
30, 37,  
50, 64,  
68, 71,  
78  
7, 15,  
46, 54  
V
I
I
Reference Ground (0 V) Digital  
SSD  
44  
RESET I  
low’  
System Reset  
VIP is forced to go into reset state.  
Table 7  
JTAG Boundary Scan Test Interface (IEEE 1149.1)  
Symbol In (I) During Function  
Out (O) Reset  
Pin  
No.  
58  
TCK  
I
I
Test ClocK  
Provides a clock for JTAG test logic.  
57  
TMS  
I
I
Test Mode Select (internal pull-up)  
A ’0’ to ’1’ transition on this pin is required to step  
through the TAP controller state machine.  
56  
59  
55  
TDI  
I
I
Test Data Input (internal pull-up)  
In the appropriate TAP controller state, test data  
or a instruction is shifted in via this line.  
TDO  
TRST  
O
I
O
I
Test Data Output  
In the appropriate TAP controller state, test data  
or a instruction is shifted out via this line.  
Test ReSeT (internal pull-up)  
Provides an asynchronous reset to the TAP  
controller state machine.  
Data Sheet  
15  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3
Interface Description  
The VIP provides four types of external interfaces: UPN line interfaces, S/T line  
interfaces, an IOM-2000 interface and a JTAG boundary scan test interface. These  
interfaces are described in the following sections:  
3.1  
Overview of Interfaces  
The VIP provides the following system interfaces:  
UPN line interfaces  
The VIP provides up to 8 independent UPN line interfaces for connection of ISDN  
terminals or DECT base stations.  
S/T line interfaces  
The PEB 20590 provides up to 4 independent S/T line interfaces (up to 8 for PEB  
20591). They can be operated in subscriber mode (LT-S) or trunk mode (LT-T).  
IOM-2000 interface  
Up to three VIPs can be connected to one DELIC via the IOM-2000 interface.  
VIPs transceivers are initialized and controlled by the DELIC.  
JTAG boundary scan test interface  
The VIP provides a standard test interface according to IEEE 1149.1.  
User-specific instructions are implemented to generate periodic test patterns on the  
line.  
The TAP controller has an own reset input.  
3.2  
UPN Line Interface  
The functionality is compatible to OCTAT-P (PEB 2096). 1:1 transformers are required.  
3.2.1  
Frame Structure  
The UPN interface uses a ping-pong technique for 2B+D data transmission over the line.  
UPN is always point-to-point.  
The frame structure of the data transfer between the exchange (PBX, LT) and the  
terminal (TE) is depicted in Figure 9.  
The PBX starts a transmission every 250 µs (burst repetition period).  
A frame transmitted by the exchange (PBX) is received by the terminal (TE) after a  
given propagation delay td.  
The terminal waits a minimum guard time (tg = 5.2 µs) while the line clears. Then a  
frame is transmitted from the terminal to the PBX.  
Data Sheet  
16  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
The time between the end of reception of a frame from the TE and the beginning of  
transmission of the next frame by the LT must be greater than the minimum guard  
time. The guard time in TE is always defined with respect to the M-bit.  
tr  
LT  
TE/PT  
td  
tg  
td  
)
LF  
B1  
8
B2  
8
D
4
B1  
8
B2  
8
M1 DC 2)  
1
1
#Bits  
99  
µ
s
LF-Framing Bit  
1)  
CV  
T
S
T
CV  
T
S
T
CV  
M Channel Superframe  
ITD00823  
CV = Code Violation: for Superframe synchronization  
T = Transparent Channel (2 kbit/s)  
S = Service Channel (1 kbit/s)  
2)  
DC balancing bit, only sent after a code violation in the  
M-bit position and in special configurations.  
Timings: tr = burst repetition period = 250  
µs  
td = ine delay = 20.8  
tg = guard time = 5.2  
µ
s maximum  
s minimum  
µ
Figure 9  
UPN Interface Frame Structure  
Data Rates  
Within a burst, the UPN data rate is 384 kbit/s using a 38-bit frame structure. During the  
250-µs burst repetition period, 4 D-bits, 16 B1-bits and 16 B2-bits are transferred in each  
direction, resulting in a full-duplex user data rate of 144 kbit/s.  
Data Sheet  
17  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
Control and Maintenance Bits  
Bit Description  
LF Framing Bit  
Always logical ‘1’.  
M
M-Bit  
Final bit of the frame. Four successive M-bits compose a superframe. Three  
signals are carried in this superframe:  
CV Code Violation Bit  
First bit of the superframe. Used for superframe synchronization.  
S
Service Bit  
Third bit of the superframe. Accessible via DELIC’s command/status interface.  
Conveys test loop control information from the PBX to the TE and reports  
transmission errors from the TE to the PBX (far-end code violation).  
T
T-Bit  
2nd and 4th bit of the superframe. Accessible via DELIC’s command/status  
interface. Carries the D-channel "available/blocked" information for the terminal  
and the DECT synchronization information.  
DC DC Balancing Bit  
May be added to the burst to decrease DC offset voltage on the line after  
transmission of a CV in the M-bit position. VIP issues this DC balancing bit when  
transmitting INFO 4 (line activated and synchronized), and when line  
characteristics indicate a potential decrease in performance. DELIC is able to  
enable or disable this feature (via the DELIC BBC command bit).  
UPN Coding  
The coding technique used in the VIP transceiver is half-bauded AMI code with a 50 %  
pulse width (refer to Figure 10).  
Binary Value  
Logical 0’  
AMI Code with 50 % Pulse Width  
Neutral level  
Logical 1’  
Alternate positive and negative pulses  
A Code Violation (CV) is caused by two successive pulses with the same polarity.  
Data Sheet  
18  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
Figure 10  
AMI Coding on the UPN Interface in VIP  
Scrambling / Descrambling  
B-channel data on the UPN interface is scrambled to ensure that the receiver at the  
subscriber terminal gets enough pulses for a reliable clock extraction (flat continuous  
power density spectrum), and to avoid periodical patterns on the line. The scrambler/  
descrambler polynomial implemented in DELIC complies with ITU-T V.27 and  
OCTAT-P.  
Data Sheet  
19  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.2.2  
UPN Transceiver  
The receiver input stages consist of an amplifier/equalizer, followed by a peak detector  
adaptively controlling the thresholds of the comparators and a digital oversampling unit.  
Receive  
Data  
Receive  
Clock  
CLK15-I  
RxPLL and Oversampling  
Comparators  
LIa  
LIb  
Peak  
Detector  
Up_TRANS.vsd  
Transmit  
Data  
Figure 11  
Transceiver Functional Blocks  
Amplitude  
Cable  
Frequency  
equi_up.vsd  
Figure 12  
Equalizer Effect  
The equalizer compensates the loss of Amplitude of higher frequencies (see Figure 12).  
In order to reach the best performance and range of the UPN transceiver, it is  
recommended to use the equalizer with automatic adaptation.  
Data Sheet  
20  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
To enable the filter of equalizer inside the VIP, set bit TICCMR:FIL to 1(please refer to  
VIP channel config description in DELIC-LC/-PB SW Users Manual). The adaptive  
amplifier control of the equalizer should be set to automatic. Set bit TICCMR:AAC (1:0)  
to 00(please refer to VIP channel config description in DELIC-LC/-PB SW Users  
Manual).  
3.2.3  
Receive PLL  
The receive PLL (RxPLL) recovers bit timing from a comparator output signal.  
Note: The recommended setting for the receive PLL is integral behaviour. This is  
enabled by setting bit TICCMR:PLLINT=’1’ (please refer to VIP channel  
config description in DELIC-LC/-PB SW User’s Manual).  
Comparator threshold.  
The comparator has a threshold of 80 % with respect to the signal stored by the peak  
detector.  
Phase adjustment.  
The RxPLL performs tracking after detecting phase shifts of the same polarity in four  
consecutive pulses. A phase adjustment is done by adding or subtracting 65 ns or  
32.5 ns (one UPN oscillator period), programmable by the DELIC command bit PLLS’  
(default TICCMR:PLLS 0), to or from the 384 kHz receive data clock.  
3.2.4  
Receive Signal Oversampling  
In order to further reduce the bit error rate in severe conditions, the VIP performs  
oversampling of the received signal and uses majority decision logic. The process of  
receive signal oversampling is illustrated in Figure 13:  
Each received bit is sampled 6 times at 15.36-MHz clock intervals inside the estimated  
bit window.  
The samples obtained are compared to a threshold of 50 % with respect to the signal  
stored by the peak detector.  
If at least nsamples have an amplitude exceeding the 50 % threshold, a logical 1is  
detected; otherwise a logical 0(no signal) is assumed.  
The parameter nis programmed in steps of 2 in bits OWIN(2:0) of IOM-2000 CMD  
register.  
Note: The recommended setting for signal oversampling is TICCMR:OWIN =’011’.  
For detailed description please refer to DELIC-LC/-PB Data Sheet.  
Data Sheet  
21  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
.
Figure 13  
3.3  
Receive Signal Oversampling on UPN Interface  
S/T Line Interface  
The functionality is compatible with that of QUAT-S (PEB 2084). External protection  
circuitry is reduced, and 1:1 transformers are required.  
Data Sheet  
22  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.3.1  
Frame Structure  
The S/T interface uses two pairs of copper wires (dedicated to transmit and receive) for  
2B+D data transfer. It builds a direct link between the VIP and connected subscriber  
terminals or the Central Office. It supports point-to-point or point-to-multipoint modes.  
Data and maintenance information is accessible by DELIC via the IOM-2000 interface.  
Figure 14  
Frame Structure at Reference Points S and T (ITU-T I.430)  
Bit  
Description  
Framing Bit  
F
F = (0b) code violation, identifies a new frame (always positive pulse)  
L.  
D
E
DC Balancing Bit  
L. = (0b) number of binary ZEROs sent after the previous L. bit was odd  
D-Channel Data  
Signaling data specified by user  
D-Channel Echo Bit  
E = D if D-channel is not blocked, otherwise E = D. (ZEROs always overwrite  
ONEs)  
FA  
Auxiliary Framing Bit  
See section 6.3 in ITU I.430  
N
N = FA  
B1  
B1-Channel Data  
User data  
B2  
B2-Channel Data  
User data  
Data Sheet  
23  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
Bit  
Description  
A
Activation Bit  
A = (0b) INFO 2 transmitted  
A = (1b) INFO 4 transmitted  
S
S-Channel Data Bit  
S1 and S2 channel data  
M
Multiframing Bit  
M = (1b) Start of new multi-frame  
Data Rates  
The S/T transmission rate is 192 kbit/s (36 bits user data and 12 bits control and  
maintenance). Frames are transmitted with a 2-bit offset in TE/LT-T LT-S direction.  
S/T Coding  
The coding technique used on the S/T interface is a full-bauded AMI code with 100 %  
pulse width (refer to Figure 15).  
Binary Value  
AMI Code with 100 % Pulse Width  
Logical 0’  
Alternate positive and negative pulses.  
There are two exceptions:  
The first binary 0following the first DC balancing bit is  
of the same polarity as the DC bit,  
The F-bit is always at positive level (required code  
violations).  
Logical 1’  
No line signal (0 V)  
Figure 15  
S/T Interface Line Code (without Code Violation)  
Data Sheet  
24  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.3.2  
S/T Transceiver  
Receiver Characteristics  
The receiver input stages consist of a differential amplifier, followed by a peak detector  
and a set of comparators. Additional noise immunity is achieved by digital oversampling  
after the comparators, meaning that the sampling of the received bit is controlled digitally  
and dependent on the mode (Command Register).  
The peak detector requires at most 2 µs to reach the peak value while storing the peak  
level for at least 250 µs. The data detection thresholds are set to 35 % of the peak  
voltage to increase the performance in extended passive bus configurations. However,  
they are never lower than 85 mV with respect to the line signal level in order to increase  
noise immunity.  
The level detector monitors the line input signals to detect whether an INFO signal is  
present. It is possible to indicate an incoming signal during activated analog loop.  
1.65 V  
Figure 16  
3.3.3  
Receiver Functional Blocks  
Receive Clock Recovery  
The VIP generates the internal clocks with a PLL, that receives a 15.36-MHz signal via  
an on-chip oscillator either from an external crystal or from the DELIC.  
VIP Operating Mode  
All Clocks Synchronized to  
LT-S or UPN mode  
IOM-2000 interface data clock provided by the DELIC on  
DCL_2000 pin  
LT-T mode  
Data Sheet  
Data clock provided by the Central Office  
25  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.3.3.1 LT-S Mode  
In the LT-S mode, the DELIC is the clock master to all terminals connected to the VIP.  
In receive direction, two cases are distinguished, depending on the bus configuration:  
Point-to-point or extended passive bus  
Short passive bus.  
Point-to-Point or Extended Passive Bus  
Programmed by DELIC IOM-2000 Command bits:  
MOSEL(1:0) = 00MODE(2:0) = 011’  
The 192-kHz receive bit clock is recovered (via PLL) from the receive data stream on  
the S interface.  
Shift between receive and transmit frame:  
According to ITU-T I.430, the receive frame may be shifted by 2 to 8 bits with respect  
to the transmit frame. VIP supports also other frame shifts, including 0.  
Note: The recommended setting for point-to-point and extended passive bus in  
LT-S mode is TICCMR:OWIN=’101’ and TICCMR:PD=’0’. For detailed  
description please refer to VIP channel config command in the DELIC-LC/-  
PB SW User’s Manual.  
Short Passive Bus  
Programmed by DELIC IOM-2000 Command bits:  
MOSEL(1:0) = 00, MODE(2:0) = 111’  
The 192-kHz receive bit clock is identical to the transmit bit clock generated by division  
of the incoming IOM-2000 data clock.  
Shift between receive and transmit frame:  
The sampling instant for the receive bits is shifted by 4.6 µs with respect to the  
transmit bit clock. According to ITU-T I.430, the receive frame must be shifted  
(delayed) by two bits with respect to the transmit frame.  
Note: If one VIP has channels working in LT-S and UPN mode, then the F-bits appear on  
the S interface 6 UPN clocks (nominal case) later than the F-bits on the UPN lines  
(within the same sync frame).  
Note: The recommended setting for short passive bus in LT-S mode is  
TICCMR:OWIN=’001’ and TICCMR:PD=’0’. For detailed description please  
refer to VIP channel config command in the DELIC-LC/-PB SW User’s  
Manual.  
Data Sheet  
26  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.3.3.2 LT-T Mode  
Programmed by DELIC IOM-2000 Command bits:  
MOSEL (1:0) = 00, MODE(2:0) = 001’  
In LT-T applications, the VIP/DELIC system operates as slave to the central office  
clock.  
The 192-kHz receive bit timing is recovered (via RxPLL) from the receive data stream  
on the trunk line interface that was selected as clock source.  
The RxPLL also provides a 1.536-MHz clock synchronous to the Central Office clock  
(adaptive timing recovery), which in LT-T applications is used to synchronize the  
DELIC clock generator via the IOM-2000 REFCLK line; refer to Figure 17.  
The RxPLL tracks every 250 µs after detecting the phase between the framing bit  
transition (F/L-bit in S/T frame) of the receive signal and the recovered clock. A phase  
adjustment is done by adding or subtracting 65 ns or 130 ns to or from the 15.36-MHz  
clock depending on PLLS.  
If several VIP or several S/T lines are operated in LT-T mode, only one trunk line may  
be selected to deliver the reference clock. The selection of this trunk line is  
programmed by the DELIC via IOM-2000 Command bits REFSEL(2:0) and EXREF.  
Note: In LT-T mode, the transmit clock is identical to the recovered receive clock.  
Note: The recommended setting for short passive bus in LT-T mode is  
TICCMR:OWIN=’101’ and TICCMR:PD=’1’. For detailed description please  
refer to VIP channel config command in the DELIC-LC/-PB SW User’s  
Manual.  
15.36 MHz  
15.36 MHz  
VIP  
DELIC  
OSC  
DCL_2000  
3.072/6.144/12.288  
MHz  
clock = 192 kHz  
(up to 4 or 8 ch.)  
CO  
192 kHz  
RxPLL  
FIFO  
MUX  
REFCLK  
1.536 MHz  
192 kHz  
CO  
clock = 192 kHz  
Data  
DR  
RxPLL  
FIFO  
VIP-LTT-Ref.vsd  
Figure 17  
Clock Recovery in LT-T Mode  
Data Sheet  
27  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
Jitter Requirements  
In LT-T mode, ITU-T I.430 specifies a maximum jitter in transmit direction of 7 % to  
+ 7 %, resulting in 730 ns peak-to-peak.  
This specification will be met by the VIP provided that the master clock source is  
accurate within 100 ppm.  
3.3.4  
Reference Clock Selection in LT-T Mode  
In LT-T configurations, the DELIC receives the CO reference clock via the XCLK input  
pin, which is connected to VIPs REFCLK output.  
The VIP reference clock channel is programmed by the DELIC. The source may be  
either one of the 8 VIP channels operated in LT-T mode or VIPs INCLK pin, when  
several VIPs are connected to the IOM-2000 interface (see Figure 18).  
REFCLK  
XCLK  
Ch_0  
CH_7  
VIP_0  
DELIC  
DR  
INCLK  
VIP_n  
REFSEL  
REFCLK  
VIP_1  
Ch_0  
Reference Clock  
Trunk (LT-T)  
Ch_0  
EXREF  
INCLK  
Ch_7  
REFCLK  
VIP_2  
Ch_0  
Ch_7  
Ch_7  
INCLK  
Figure 18  
LT-T Reference Clock Channel Selection for Cascaded VIPs  
Data Sheet  
28  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.3.5  
Receive Signal Oversampling  
The receive signal is oversampled within the receive clock period, and a majority logic is  
used to reduce the bit error rate in severe conditions.  
As illustrated in Figure 19, each received bit is sampled 29 times at 7.68-MHz clock  
intervals inside the estimated bit window.  
The samples obtained are compared against a threshold of 35% with respect to the  
signal stored by the peak detector.  
If at least a number of nsamples have an amplitude exceeding the threshold, a  
logical 0is detected; otherwise a logical 1(no signal) is assumed. The parameter n’  
is programmed by the OWIN command bits.  
Figure 19  
3.3.6  
Receive Signal Oversampling in S/T Receiver  
Elastic Buffer  
A buffer in the VIP is designed as a wander-tolerant system, required in LT-T and LT-S  
modes. In LT-T mode, the VIP is clock slave to the CO, and the data clocks of the S/T  
interface and the IOM-2000 interface have a time dependent phase relationship. The  
buffer compensates a maximum phase wander of ± 20 µs.  
A slip detector indicates when this limit is exceeded. The SLIPbit in VIP Status Register  
issues a warning to the DELIC when a slip of 20 µs in either direction was detected. The  
VIP buffers are reset to their default positions automatically.  
Note: In case of frame slip, the phase relationship between the IOM-2000 interface and  
the S/T interface is arbitrary. A re-alignment of the wander buffer after a slip may  
result in loss of data.  
Data Sheet  
29  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.4  
IOM-2000 Interface Overview  
The IOM-2000 interface connects up to three VIPs to DELIC.  
DELIC as the communication controller performs parts of the layer-1 protocol, which  
enables flexible and efficient operation of the VIP.  
Note: For detailed description of IOM-2000, including the command and data interface,  
please refer to the DELIC Data Sheet.  
IOM-2000  
Description  
Frame synchronization  
Data interface  
IOM-2000 uses an 8-kHz FSC.  
Data is transmitted via DX line from DELIC to VIP with  
DCL_2000 rising edge. Data is received via DR line from  
VIP to DELIC, sampled with DCL_2000 falling edge.  
Command/Status  
interface  
Configuration and control information of VIP’s layer-1  
transceivers is exchanged via CMD and STAT lines.  
Data/Command Clock  
Data and commands for one VIP are transmitted at  
3.072 MHz. When DELIC drives 2 or 3 VIPs, the  
transmission rate is increased.  
Reference clock  
In LT-T mode, the VIP provides a reference clock  
synchronized to the exchange. In LT-S or UPN mode,  
DELIC is always the clock master to VIP.  
bit 1 bit 0  
data ctrl  
Data Transmit / Receive in S/T mode  
f=3.072 MHz (2 x 8 x 192 kbit/s)  
S/T:  
DX / DR:  
bit 0  
data  
Data Transmit / Receive for UPN mode  
f=3.072 MHz (8 x 384 kbit/s)  
UPN:  
FSC  
DCL_2000  
Channel_0  
DX  
DR  
.
.
.
DELIC  
VIP  
STAT  
CMD  
Channel_7  
Figure 20  
Overview of IOM-2000 Interface Structure (Example with One VIP)  
Data Sheet  
30  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.4.1  
IOM-2000 Frame Structure  
3.4.1.1 Data Interface  
On the ISDN line side of the VIP, data is ternary coded. Since the VIP contains logic to  
detect the level of the signal, only the data value is transferred via IOM-2000 to DELIC.  
UPN Mode  
In UPN mode, only data is sent via the IOM-2000 data interface.  
S/T Mode  
In S/T mode, data and control information is sent via IOM-2000 data interface. Every  
data bit has a control bit associated with it. Thus, for each S/T line signal, 2 bits are  
transferred via DX and DR. Bit0 is assigned to the user data, and bit1 carries control  
information.  
Table 8  
Control Bits in S/T Mode on DR Line  
ctrl (bit1) data (bit0) Function  
0
0
1
1
0
1
0
1
Logical 0received on line interface  
Logical 1received on line interface  
Received E-bit = inverted transmitted D-bit (E=D) (LT-T only)  
F-bit (Framing) received; indicates the start of the S frame  
Table 9  
Control Bits in S/T Mode on DX Line  
ctrl (bit1) data (bit0) Function  
0
0
1
1
0
1
0
1
Logical 0transmitted on line interface  
Logical 1transmitted on line interface  
not used  
F-bit (Framing) transmitted; indicates the start of the S frame  
Note: ’data’ is always transmitted prior to ’ctrl’ via DX/DR lines (refer to Figure 21).  
Data Sheet  
31  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
125 µs  
FSC  
DCL  
3.072 MHz  
F-bit  
data ctrl  
data  
LT-S mode:  
UPN mode:  
Ch0 bit0  
Ch1 bit0 (data)  
Ch2 bit0  
Ch7 bit0 (data)  
DX/DR  
Ch0 bit1  
Ch1 bit0 (ctrl)  
Ch2 bit1  
Ch7 bit0 (ctrl)  
Ch0 bit2  
Ch1 bit1 (data)  
Ch2 bit2  
Ch1,3,5,7 in S mode (LT-S)  
Ch0,2,4,6 in UPN mode  
Ch7 bit1 (data)  
last bit of UPN frame  
last bit of LT-S frame  
Ch6 bit37  
Ch7 bit 23 (ctrl)  
Figure 21  
IOM-2000 Data Sequence (1 VIP with 8 Channels)  
Note: 1. Data transfer on IOM-2000 interface always starts with the MSB (related to B  
channels), whereas CMD and STAT bits transfer always starts with LSB (bit 0)  
of any register  
2. All registers follow the Intel structure (LSB=20, MSB=231)  
3. Unused bits are don’t care (’x’)  
4. The order of reception or transmission of each VIP channel is always  
channel 0 to channel 7. A freely programmable channel assignment of multiple  
VIPs on IOM-2000 (e.g., ch0 of VIP_0, ch1 of VIP_0, ch0 of VIP_1, ch2 of  
VIP_0,...) is not possible.  
Data Sheet  
32  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
125 µs  
FSC  
DCL  
12.288 MHz  
F-bit  
Ch0 bit0  
Ch23 bit0  
Ch24 bit0  
not used (don’t care)  
DX/DR  
Ch31 bit0  
Ch0 bit1  
Ch23 bit1  
Ch24 bit1  
not used (don’t care)  
Ch31 bit1  
Ch0 bit37  
(example for 24 channels in UPN mode)  
Ch23 bit37  
Ch24 bit37  
not used  
Ch31 bit37  
Figure 22  
IOM-2000 Data Order (3 VIPs with 24 Channels)  
Receive Data Channel Shift  
In receive direction (DR), data of all IOM-2000 channels (ch0...7 if one VIP is used,  
ch0 ... ch23 if three VIPs are used) is shifted by 2 channels with respect to the  
transmitted data channels (DX), assuming a start of transmission of ch0 bit0 with the  
FSC signal. DELIC is transmitting ch0, while receiving ch2 via DR the same time, etc.  
DX  
DR  
ch0  
ch2  
ch1  
ch3  
ch2  
ch4  
ch3  
ch5  
ch4  
ch6  
ch5  
ch7  
ch6  
ch0  
ch7  
ch1  
ch0  
ch2  
Data Sheet  
33  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
3.5  
JTAG Boundary Scan Test Interface  
The VIP provides IEEE 1149.1-compatible boundary scan support to allow cost-effective  
board testing. It consists of:  
Complete boundary scan test  
Test access port (TAP) controller  
Five dedicated pins: TCK, TMS, TDI, TDO (according to JTAG) and an additional  
TRST pin to enable asynchronous resets to the TAP controller  
One 32-bit IDCODE register  
Specific functions for the analog line interface pins LIna, b and SXna, b  
3.5.1  
TAP Controller  
The TAP controller implements the state machine defined in the JTAG standard IEEE  
1149.1. Transitions on the pin TMS cause the TAP controller to perform a state change.  
The TAP controller supports 7 instructions:  
5 standard instructions  
2 additional user-specific instructions for transmitting continuous pulses at the line  
interfaces LIna/b (60 kHz) and SXna/b (120 kHz)  
Table 10  
Code  
0000  
TAP Controller Instruction Codes Overview  
Instruction  
EXTEST  
Function  
External testing  
0001  
INTEST  
Internal testing  
0010  
SAMPLE/PRELOAD  
IDCODE  
Snap-shot testing  
0011  
Reading ID code register  
Bypass operation  
1111  
BYPASS  
1000  
User specific  
User specific  
Continuous pulses on LIna and LInb  
Continuous pulses on SXna and SXnb  
1001  
TAP Controller Instructions  
EXTEST. EXTEST is used to verify the board interconnections.  
When the TAP controller is in the state update DR, all output pins are updated with the  
falling edge of TCK. When it has entered state capture DRthe levels of all input pins  
are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically  
done using the instruction SAMPLE/PRELOAD.  
Data Sheet  
34  
2001-03-01  
PEB 20590  
PEB 20591  
Interface Description  
PRELIMINARY  
INTEST . INTEST supports internal chip testing.  
When the TAP controller is in the state update DR, all inputs are updated internally with  
the falling edge of TCK. When it has entered state capture DRthe levels of all outputs  
are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically  
done using the instruction SAMPLE/PRELOAD.  
Note: 0011 (IDCODE) is the default value of the instruction register.  
SAMPLE/PRELOAD. SAMPLE/PRELOAD provides a snap-shot of the pin level during  
normal operation or is used to either preload (TDI) or shift out (TDO) the boundary scan  
test vector. Both activities are transparent to the system functionality.  
Note: The input pin CLK15-I should not be evaluated.  
The input frequency (15.36 MHz) is not synchronous with TCK (6.25 MHz); this  
may cause unpredictable snap-shots on the pin CLK15-I.  
IDCODE. The 32-bit identification register is read out serially via TDO. It contains the  
version number (4 bits), the device code (16 bits) and the manufacturer code (11 bits).  
The LSB is fixed to 1.  
The code for VIP version 2.1 is 0010.  
Version  
0010  
Device Code  
Manufacturer Code  
0000 1000 001  
Output  
0000 0000 0100 1111  
1
--> TDO  
Note: In the state test logic reset, the code 0011is loaded into the instruction code  
register.  
BYPASS. A bit entering TDI is shifted to TDO after one TCK clock cycle, e.g. to skip  
testing of selected ICs on a printed circuit board.  
User-Specific Instructions. Symmetric continuous pulses can be generated at pins  
LIna/b (60 kHz) and SXna/b (120 kHz) to test the analog line interfaces.  
Note: A 15.36 MHz crystal or an external 15.36 MHz clock signal on CLK15-I is required  
for test pulse generation.  
Data Sheet  
35  
2001-03-01  
PEB 20590  
PEB 20591  
Operational Description  
PRELIMINARY  
4
Operational Description  
After some general remarks on the operation of the DELIC & VIP chipset, the reset and  
the initialization procedure are described. The operation of analog test loops as well as  
the monitoring of illegal code violations are also part of this chapter.  
4.1  
General  
The DELIC & VIP chipset provides all functionality required for data transmission over  
the UPN and the S/T interface, e.g., initialization and configuration, activation and  
deactivation, frame and multiframe synchronization.  
The UPN and S/T layer-1 state machines run on DELICs DSP, performing activation/  
deactivation, switching of loops and transmission of test pulse patterns. Such actions  
can be initiated by INFO signals on the UPN and S/T lines, or by C/I codes sent by the µP  
to DELIC, and transferred to VIP via the IOM-2000 Command and Status interface. All  
options and register settings are described in the DELIC Data Sheet.  
4.2  
Reset  
At power-up, a reset pulse (RESET = low active) of at least 1 µs must be applied to  
reset the line interfaces of the VIP.  
The source of the reset can be either the microprocessor, or the DELIC RESIND pin,  
which is a delayed reset signal. This assures that the VIP is always reset  
simultaneously with the DELIC, and receives stable clock signals by the DELIC after  
reset.  
4.3  
Initialization  
After hardware reset, each VIP must be initialized and configured by IOM-2000  
commands. The following steps are required to initialize the VIP:  
1. DELIC: Hardware Reset (to synchronize the state machines, counters etc.)  
2. VIP: Hardware Reset  
3. Release resets  
4. Read version register from VIP-CMD register (optional) (available from VIP version  
V2.1 and higher)  
5. Program the VIP if required, e.g. LT-T clock source  
6. DELIC: Program VIP channel mode: UPN, LT-S or LT-T, closing test loops  
7. DELIC: Configure each VIP receiver if required, e.g. oversampling, D-channel  
handling.  
Data Sheet  
36  
2001-03-01  
PEB 20590  
PEB 20591  
Operational Description  
PRELIMINARY  
4.4  
Analog Test Loops  
Different analog test loops may be switched in the VIP near to the S/T or UPN line  
interfaces. No external UPN or S/T interface circuitry is required to close these loops:  
Transparent analog loop, data forward path enabled  
Non-transparent analog loop, data forward path blocked  
External transparent analog loop, for board testing.  
Initialization of Test Loops  
Unlike the LT-T state machine, the LT-S and UPN state machines in the DELIC do not  
support loops. Consequently neither the C/I commands nor indications are provided by  
the mailbox protocol. A loop can be programmed by setting bits TICCMR:LOOP and  
TICCMR:EXLP for the respective channel.  
Note: For detailed description please refer also to the Application Note Test loops in the  
VIP.  
Transparency  
In UPN or LT-S mode, the user may output the loop-back data also transparently onto the  
line interface. The selection is performed via IOM-2000 TX_EN command. External  
analog loops are activated by EXLP Command bit (refer to Chapter 6.3).  
Note: In order to guaranty that the loop is closed TX_EN must be set to one for the UPN  
Interface  
4.5  
Monitoring of Code Violations  
Any code violation on the S/T interface (according to ANSI T1.605), or code violations at  
positions other than the F-bit or M-bit in the UPN frame result in VIP Status bit FECV being  
sent to DELIC. The check is performed once in every multiframe (every 20th 4-kHz S/T  
frame). To synchronize the checking, DELIC must issue the SH_FSC bit every 40th IOM  
frame.  
Data Sheet  
37  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
5
Electrical Characteristics  
This chapter contains the DC and AC specifications (as far as available) and timing  
diagrams.  
5.1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Tstg  
Limit Values  
– 65 to 150  
– 0.3 to 4.6  
Unit  
°C  
V
Storage temperature  
IC supply voltage  
VDD  
VI  
DC input voltage (except I/Os)  
– 0.3 to 6.0  
V
DC output voltage (including I/Os);  
output in high or low state  
VO  
– 0.3 to VDD + 0.3  
V
DC output voltage (including I/Os);  
output in tri-state  
ESD robustness1)  
VI, VO  
– 0.3 to 6.0  
V
V
VESD,HBM 2000  
HBM: 1.5 k, 100 pF  
1)  
According to MIL-Std 883D, method 3015.7 and ESD Ass. Standard EOS/ESD-5.1-1993. The SX pins are not  
protected against voltage stress > 1500 V (versus VS or GND).  
Note: Stresses above those listed here may cause permanent damage to the  
device. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these values  
may cause irreversible damage to the integrated circuit.  
5.2  
Operating Range  
Parameter  
Symbol  
Limit Values  
min. max.  
3.47 V  
Unit  
Power supply voltage ±5%  
Ground  
VDD  
VSS  
VIN  
TA  
3.13  
0
0
0
0 V  
DD + 0.3 V  
70 °C  
Voltage applied to input pins  
Operating temperature  
V
Note: In the operating range the functions given in the circuit description are fulfilled.  
Data Sheet  
38  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
5.3  
DC Characteristics  
VDD = 3.3 V ± 0.17 V, TA = 0 to 70°C  
Table 11  
DC Characteristics  
Symbol  
Parameter  
Limit Values  
min. max.  
Unit Test Condition  
All digital pins except LIna,b; SXna,b; SRna,b; CLK15-I,-O  
L-input voltage  
VIL  
VIH  
VOL  
VOH  
ILI  
0.8  
V
H-input voltage  
2.0  
2.4  
VDD + 0.3  
0.45  
V
L-output voltage  
H-output voltage  
Input leakage current  
V
Iout = 2mA  
Iout = 2 mA  
V
± 1  
µA  
0 V VIN VDD;  
not specified for pins  
DIR and REFCLK.  
TDI; TMS; TRST  
Input leakage current  
high  
ILIH  
ILIL  
1
µA  
µA  
VIN = VDD  
Input leakage current  
low  
10  
300  
VIN = 0 V; internal  
pull-up resistor  
LIna,b  
Transmitter output  
amplitude  
2.24  
10  
3.08  
V
Upn-Transmitter  
output amplitude  
VX  
ZR  
Receiver input  
impedance  
kΩ  
Receiver input  
impedance,  
transmitter inactive  
SXna,b  
Absolute value of  
output pulse amplitude  
VX  
1.05  
1.05  
1.16  
1.23  
V
V
RL = 50 Ω  
RL = 400 Ω  
(VSXna VSXnb  
)
Data Sheet  
39  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
Table 11  
DC Characteristics (contd)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Transmitter output  
current  
IX  
21.0 1)  
mA  
26.8 2)  
RL = 5.6 Ω  
Transmitter output  
impedance  
ZX  
acc. to  
ITU-T  
I.430  
kΩ  
Inactive or during  
binary one,  
0 V VIN VDD  
0
during binary zero  
1) Nominal value determined by fuses  
2) Absolute current limit resulting from the S interface specification  
CLK15-I  
H-input voltage  
L-input voltage  
VIH  
VIL  
1.2  
2.4  
VDD + 0.3  
V
V
0.4  
CLK15-O  
H-output voltage  
L-output voltage  
VOH  
VOL  
V
V
f = 0  
f = 0  
0.45  
30  
Supply Current  
Operational supply  
current, Peak value  
ICC  
mA Peak supply current,  
VDD = 3.3 V  
+ n × 27.5  
+ m × 47.5  
n = number of S/T  
interfaces activated  
m = number of UPN  
interfaces activated  
Operational supply  
current, Mean (typical)  
value  
ICC  
18  
mA Mean supply current,  
VDD = 3.3 V  
+ n × 8.5  
+ m × 6.5  
n = number of S/T  
interfaces activated  
m = number of UPN  
interfaces activated  
Data Sheet  
40  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
5.4  
Capacitances  
TA = 25 °C; VDD = 3.3 V ± 0.17 V, VSS = 0 V, fC = 1 MHz, unmeasured pins grounded  
Table 12  
I/O Capacitances (except line interfaces and clocks)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Pin capacitance  
CI/O  
7
pF  
5.5  
Recommended 15.36-MHz Crystal Parameters  
The user has two options to supply the VIP 15.36-MHz input clock:  
via a standard 15.36-MHz crystal or  
via an external source, e.g. connecting the DELIC output pin L1_CLK (duty cycle of  
40:60 or better is required). The on-chip oscillator must be powered-down via pin  
POWDN.  
Note: It is recommended to supply the VIP 15.36-MHz input clock via the DELIC.  
In case a crystal (serial resonance) is connected, it should meet the requirements shown  
in Table 13.  
Table 13  
Recommended Crystal Parameters  
Symbol Typical Unit Test Condition  
Values  
20  
Parameter  
Motional Capacitance  
C1  
C0  
CL  
Rr  
fF  
Shunt Capacitance  
7
pF  
pF  
External Load Capacitance  
Resonance Resistance  
Frequency Calibration Tolerance  
30  
65  
100  
ppm  
CLD  
External  
Oscillator  
Signal  
CLK-15  
Ι
CLK-15Ι  
15.36 MHz  
±100 ppm  
CLD  
N.C.  
CLK-15O  
CLK-15O  
Crystal Oscillator Mode  
CLD = 2 CL - CI/O  
Driving from External Source  
.
ITS11110  
Figure 23  
Recommended Oscillator Circuit  
Data Sheet  
41  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
5.6  
AC Characteristics  
TA = 0 to 70°C; VDD = 3.3 V ± 0.17 V  
Note: Timing measurements are made at 2.0 V for a logical 1and at 0.8 V for a  
logical 0.  
50 pF  
Figure 24  
Input/Output Wave Form for AC Tests  
5.7  
REFCLK  
Parameter  
Symbol  
Limit Values  
Unit Comment  
min.  
max.  
High phase of clock  
Low phase of clock  
Clock period  
tWH  
40  
ns  
ns  
ns  
Delay of falling  
edge after falling  
edge of INCLK  
tWL  
40  
Delay of rising  
edge after rising  
edge of INCLK  
TP  
651  
During PLL  
adjustment this  
value could  
change  
5.8  
Upn Interface  
Parameter  
Symbol  
Limit Values  
Unit Comment  
min.  
max.  
DIR delay from DCL_2000 tDIR  
60  
ns  
rising edge  
Data Sheet  
42  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
5.9  
IOM-2000 Interface  
FSC  
tFS CS  
DC L_2000  
DX  
tDX S  
tDX H  
ch2  
ch3  
ch0  
ch1  
tDR  
DR  
ch4  
ch2  
ch3  
ch5  
tCM DS  
tCM D H  
CM D  
tS TAT  
STAT  
IOM_2000.vsd  
Figure 25  
IOM-2000 Timing  
Table 14  
IOM-2000 Interface Timing  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
38  
Unit Notes  
DR delay from  
DCL_2000 rising edge  
tDR  
ns  
ns  
ns  
ns  
STAT delay from  
DCL_2000 rising edge  
tSTAT  
tCMDS  
tCMDH  
38  
CMD setup time to  
DCL_2000 falling edge  
10  
10  
CMD hold time to  
DCL_2000 falling edge  
Data Sheet  
43  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
Table 14  
IOM-2000 Interface Timing  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min. typ. max.  
FSC setup time before  
DCL_2000 rising edge  
tFSCS  
tFSCH  
tDXS  
-2  
10  
ns  
FSC hold time after  
DCL_2000 falling edge  
70  
10  
10  
ns  
ns  
ns  
not shown in  
Figure 25  
DX setup time before  
DCL_2000 falling edge  
DX hold time after  
tDXH  
DCL_2000 falling edge  
5.10  
JTAG Boundary Scan Test Interface  
Figure 26  
JTAG Timing  
Data Sheet  
44  
2001-03-01  
PEB 20590  
PEB 20591  
Electrical Characteristics  
PRELIMINARY  
Table 15  
JTAG Boundary Scan Timing Values  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
100  
50  
max.  
Test clock period  
tTCP  
tTCPL  
tTCPH  
tMSS  
tMSH  
tDIS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test clock period low  
Test clock period high  
TMS setup time to TCK  
TMS hold time from TCK  
TDI setup time to TCK  
TDI hold time from TCK  
TDO valid delay from TCK  
50  
10  
10  
10  
tDIH  
10  
tDOD  
30  
5.11  
UPN Transmitter Performance  
The VIP fulfills the electrical requirements of the UPN interface for loop lengths,  
depending on the cable quality:  
Adaptive Equalizer Switching is Enabled  
AAC(1:0) = 0xand FIL = 1 in DELIC IOM-2000 Command Register  
Cable  
Loop Length  
up to 1 km  
J-Y (ST) Y 2 × 2 × 0.6  
AWG 26  
up to 1.3 km  
5.12  
S/T Transmitter Performance  
Cable 0.6 mm, 120 nF/km  
Configuration  
Condition  
Distance TE-TE Distance TE-LT  
Point-to-point  
no noise  
1000  
950  
200 / 2000 kHz  
100 mVpp  
Ext. passive bus  
no noise  
120m  
120m  
750m  
550m  
(Roundtrip < 2 µs) 200 / 2000 kHz  
100 mVpp  
Data Sheet  
45  
2001-03-01  
PEB 20590  
PEB 20591  
Application Hints  
PRELIMINARY  
6
Application Hints  
This chapter provides some additional information on how to use the VIP. The first  
section describes some external circuitry: Recommended line transformers, resistors  
and capacitors. Different wiring configurations in user premises are depicted for the LT-  
S mode, and the different loops that can be closed in the VIP via the DELIC are also  
presented in the following sections.  
6.1  
VIP External Circuitry  
6.1.1  
Recommended Line Transformers  
The VIP is connected to the UPN or S/T lines via 1:1 transformers. The line side (primary  
side) of the transformer could be center-tapped for the phantom power supply.  
Reference model parameters of the transformers are shown below.  
UPN Transformer  
Primary to secondary transformer ratio:  
Primary total DC resistance:  
1:1  
R 4..8 Ω  
Primary inductance:  
Primary inductance with secondary short circuited:  
Coupling capacitance:  
LM > 2.1 mH ±=20 %  
LP < 22 µH  
CK < 150 pF  
S/T Transformer  
Primary to secondary transformer ratio:  
Primary total DC resistance:  
Primary inductance:  
Primary inductance with secondary short circuited:  
Coupling capacitance:  
1:1  
R 2 =  
LM > 30 mH  
LP < 6 µH  
CK < 80 pF  
CK  
LP  
R
Line Side  
LM  
1:1  
Ideal Transformer  
vip-trafo-model.vsd  
Figure 27  
1:1 Transformer Model  
Data Sheet  
46  
2001-03-01  
PEB 20590  
PEB 20591  
Application Hints  
PRELIMINARY  
6.1.2  
UPN Interface External Circuitry  
A transformer, external resistors and two capacitors (100 nF and 0.33 µF) are connected  
externally to the line interface pins LIna,b. Voltage overload protection is achieved by  
adding clamping diodes (see Figure 28).  
1:1  
10  
50  
VIP  
100 nF  
Vdd  
UPN  
UPN  
0.33 F  
µ
Transceiver  
50  
ext_u_tr.vsd  
10  
Figure 28  
External Transceiver Circuitry of the VIP in UPN Mode  
Note: The resistor values in Figure 28 are optimized for an ideal transformer (RCu = 0).  
The 0.33-µF capacitance will be verified during system tests.  
6.1.3  
S/T Interface External Circuitry  
The VIP needs some external circuitry to achieve impedance matching, overvoltage  
protection and ElectroMagnetic Compatibility (EMC) for its connection to the 4-wire S/T  
interface. The configuration is shown in Figure 29.  
Imax= 26.8 mA (Spec.)  
Imax= 21 mA (typ.)  
1:1  
1:1  
Zw = 100  
S/T  
S/T  
External  
Circuitry  
External  
Circuitry  
RT = 100  
RT = 100  
0,75 V  
±10%  
1,1 V  
0,75 V  
Transmitter  
Receiver  
ext_s  
Figure 29  
Overview of External Circuitry of the VIP in S/T Mode  
Note: The actual values of the external resistors depend on the transformer selected.  
The resistor values are optimal for an ideal transformer (RCu = 0).  
Line termination (RT) is usually applied to the NT and last wall outlet on the S bus  
only.  
Data Sheet  
47  
2001-03-01  
PEB 20590  
PEB 20591  
Application Hints  
PRELIMINARY  
Transmitter. Dedicated external resistors (10 12.5 ) are required for the transmitter  
in order to  
Adjust the output voltage to the pulse mask (nominal 750 mV according to ITU-T  
I.430),  
Meet the output impedance of a minimum of 20 (transmission of a binary 0’  
according to ITU-T I.430).  
10...12.5  
VDD  
1:1  
SXna  
S-Interface  
Connector  
S/T  
Overvoltage  
Protection  
Transmitter  
GND  
SXnb  
10...12.5  
DC Point  
Diodes: 1N4151  
EXT_S_TR.vsd  
(or similar)  
Figure 30  
External S/T Transmitter Circuitry  
Receiver. At the receiver, 8 koverall resistance is needed in each receive path. It is  
recommended to use two resistors per line, as shown in Figure 31. This makes it  
possible to place a high resistance between the transformer and the diode protection  
circuit (required to pass 96-kHz input impedance test of ITU-T I.430). The remaining  
resistor protects the VIP receiver from input current peaks.  
1:1  
1.2 k  
6.8 k  
SRna  
*)  
*)  
S/T  
S-Interface  
Connector  
Overvoltage  
Protection  
VDD  
GND  
6.8 k  
Receiver  
1.2 k  
SRnb  
Diodes: 1N4151  
(or similar)  
DC Point  
*) Up to 47 pF (for additional noise reduction if required)  
EXT_S_RE.vsd  
Figure 31  
External S/T Receiver Circuitry  
Data Sheet  
48  
2001-03-01  
PEB 20590  
PEB 20591  
Application Hints  
PRELIMINARY  
6.2  
Wiring Configurations in LT-S Mode  
< 1000 m  
Point-to-Point  
Configurations  
VIP  
SCOUT-S  
TE1  
TR  
TR  
LT-S  
< 100-200 m *  
TR  
TR  
VIP  
Short Passive Bus  
< 10m  
LT-S  
SCOUT-S  
SCOUT-S  
...  
TE1  
TE8  
500 m  
< 25-50 m *  
Extended Passive Bus  
TR  
TR  
VIP  
< 10m  
LT-S  
SCOUT-S  
SCOUT-S  
...  
TE1  
TE8  
TR: Terminating Resistor  
* see ITU I.430  
VIP_0009_busconf_lts  
Figure 32  
Wiring Configurations in User Premises (LT-S Mode)  
Data Sheet  
49  
2001-03-01  
PEB 20590  
PEB 20591  
Application Hints  
PRELIMINARY  
6.3  
Loop Modes  
The following figure shows the different loops that can be closed in the VIP. Loops are  
programmed by the DELIC using the command bits LOOP, EXLP and TX_EN.  
VIP  
External  
Circuitry  
Internal analog loop  
Analog  
Analog  
DX  
Line  
TX  
Transmitter  
Driver  
LOOP  
IOM-2000  
DR  
TX_EN  
EXLP  
1
0
Analog  
Receiver  
RX  
MUX  
Figure 33  
Internal and External Loop-Back Modes  
Data Sheet  
50  
2001-03-01  
PEB 20590  
PEB 20591  
Package Outlines  
7
Package Outlines  
P-MQFP-80-1  
(Plastic Metric Quad Flat Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book Package Information.  
Dimensions in mm  
2001-03-01  
SMD = Surface Mounted Device  
Data Sheet  
51  
PEB 20590  
PEB 20591  
Glossary  
PRELIMINARY  
8
Glossary  
AMI  
Alternate Mark Inversion  
ANSI  
CMOS  
CO  
American National Standardization Institute  
Complementary Metal Oxide Semiconductor  
Central Office  
DC  
Direct Current  
DECT  
DELIC  
Digital European Cordless Telecommunication  
DSP Embedded Line and Port Interface Controller  
(PEB 20570, PEB 20571)  
EMC  
ETSI  
HDLC  
IEEE  
INFO  
I/O  
ElectroMagnetic Compatibility  
European Telephone Standards Institute  
High-level Data Link Control  
Institute of Electrical and Electronic Engineers  
U- and S-interface signal as specified by ANSI/ETSI  
Input/Output  
IOM-2  
IOM-2000  
ISDN  
ITU  
ISDN-Oriented Modular 2nd generation  
Proprietary ISDN inferface for connection of VIP to DELIC  
Integrated services Digital Network  
International Telecommunications Union  
OCTAl Transceiver for UPN-Interfaces (PEB 2096)  
Line Termination-Subscriber  
OCTAT-P  
LT-S  
LT-T  
Line Termination-Trunk  
PLL  
Phase-Locked Loop  
PBX  
Private Branch Exchange  
QUAT-S  
S/T  
QUAdrupleTransceiver for S/T-Interface (PEB 2084)  
Two-wire pair interface  
TAP  
Test Access Port  
UPN  
Two-wire interface  
ZVEI  
Zentralverband Elektrotechnik und Elektroindustrie e.V.  
Data Sheet  
52  
2001-03-01  
PEB 20590  
PEB 20591  
Index  
PRELIMINARY  
42  
9
Index  
L
A
Logic symbol  
PEB 20590 6  
PEB 20591 6  
Loop modes 50  
AC characteristics 42  
Analog test loops 37  
Application hints 46  
Applications  
7
O
B
Operating modes 25  
Operating range 38  
Operational description 36  
Oscillator circuit 41  
Block diagram 4  
C
Capacitances 41  
Clock synchronization 25  
Crystal parameters 41  
P
Package 51  
Pin descriptions  
9
D
Clock signals and dedicated pins  
14  
DC characteristics 39  
IOM-2000 interface 13  
JTAG boundary scan test inter-  
face 15  
Power supply and reset 15  
UPN and S/T line interface 12  
UPN and S/T line interface 11  
E
Extended passive bus 26  
External circuitry 46  
F
Features (VIP)  
5
Pin diagram  
PEB 20590 9  
PEB 20591 10  
P-MQFP-80-1 51  
I
Initialization 36  
Interface  
Product family (VIP)  
4
IOM-2000 interface 30  
JTAG boundary scan test inter-  
face 34  
Overview 16  
S/T line interface 22  
UPN line interface 16  
R
Reference clock selection 28  
Reset 36  
S
IOM-2000 Frame Structure 31  
S/T coding 24  
S/T line interface 22  
Data rates 24  
Elastic buffer 29  
External circuitry 47  
Frame structure 23  
IOM-2000 interface 30  
J
Jitter requirements 28  
JTAG boundary scan test interface 34  
JTAG boundary scan test interface timing  
Receive signal oversampling 29  
Data Sheet  
53  
2001-03-01  
PEB 20590  
PEB 20591  
Index  
PRELIMINARY  
S/T transceiver 25  
Receive clock recovery 25  
Receiver characteristics 25  
S/T transformer 46  
S/T transmitter performance 45  
Short passive bus 26  
System integration 7  
T
TAP controller 34  
U
UPN coding 18  
UPN line interface 16  
Control and maintenance bits  
18  
External circuitry 47  
Frame structure 16  
UPN scrambling/descrambling 19  
UPN transceiver 20  
Receive PLL 21  
Receive signal oversampling 21  
UPN transformer 46  
UPN transmitter performance 45  
W
Wiring configurations in LT-S mode 49  
Data Sheet  
54  
2001-03-01  
Infineon goes for Business Excellence  
Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

PEB20571V1.1

Telecommunication IC
ETC

PEB20590

VIP, VIP-8 VERSATILE ISDN PORT
INFINEON

PEB20590.

?Versatile ISDN Port (VIP)?
ETC

PEB20590V1.1

Telecommunication IC
ETC

PEB20591

VIP, VIP-8 VERSATILE ISDN PORT
INFINEON

PEB20591.

?Versatile ISDN Port (VIP-8)?
ETC

PEB2060

PCM Codec, A/MU-Law, 1-Func, CMOS,
INFINEON

PEB2060-N

PCM Codec, A/MU-Law, 1-Func, CMOS, PQCC28, PLASTIC, LCC-28
INFINEON

PEB2070

Telecom IC, CMOS, PDIP24,
INFINEON

PEB2070-C

ISDN, Other/Special/Miscellaneous
ETC

PEB2070-N

?ISDN Communication Controller?
ETC

PEB2070-P

?ISDN Communication Controller?
ETC