PEF82912H [ETC]

?2B1Q Second Generation Modular ISDN NT (Intelligent)? ; ? 2B1Q第二代模块化ISDN新台币(智能) ?\n
PEF82912H
型号: PEF82912H
厂家: ETC    ETC
描述:

?2B1Q Second Generation Modular ISDN NT (Intelligent)?
? 2B1Q第二代模块化ISDN新台币(智能) ?\n

综合业务数字网
文件: 总240页 (文件大小:3068K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, DS 1, March 2001  
Q-SMINT®I  
2B1Q Second Gen. Modular ISDN NT  
(Intelligent)  
PEF 82912/82913 Version 1.3  
Wired  
Communications  
N e v e r s t o p t h i n k i n g .  
Edition March 2001  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2001.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, DS 1, March 2001  
Q-SMINT®I  
2B1Q Second Gen. Modular ISDN NT  
(Intelligent)  
PEF 82912/82913 Version 1.3  
Wired  
Communications  
N e v e r s t o p t h i n k i n g .  
PEF 82912/82913  
Revision History:  
March 2001  
DS 1  
Previous Version:  
Preliminary Data Sheet 10.00  
Page  
All  
Subjects (major changes since last revision)  
Editorial changes, addition of notes for clarification etc.  
Table 1,  
Introduced new version 82913 with extended performance of the U-interface  
Chapter 1.3  
Chapter  
2.1.1.1  
SCI: header description: added to sequences 43H, 41H and 49H: ’Generally, it can  
be used for any register access to the address range 20H-7DH.’  
Chapter  
2.3.2  
IOM-2 handler: removed ’U-transceiver (U)’ from listing of functional units with  
programmable time slot and data port.  
Figure 12  
Figure ’Data Access via CDAx0 and CDAx1 register pairs’ corrected: input swap has  
influence on the input enable (EN_I0,1), too  
Chapter  
2.5.5.2  
C/I commands: removed ’unconditional command’ from description C/I-command  
’DR’  
Chapter  
2.5.5.3  
LT-S state machine: C/I=command AIL removed (no valid input to the LT-S state  
machine)  
Chapter 4  
Detailed register description:  
• U-transceiver Mode Evaluation Timing: clarified description  
• register ID: reset value of version 1.3 is 01H (not 00H)  
• CIX1.CODX1: bits 5-0 of C/I-channel 1 (not 7-2)  
• IOM_CR:TIC_DIS: added for clarification: ’This means that the timeslots TIC, A/  
B, S/G and BAC are not available any more.’  
Chapter 5.1 Refined references for ESD requirements:’ ...(CDM), EIA/JESD22-A114B (HBM) ---’  
Chapter 5.2 Input/output leakage current set to 10µA (before: 1µA)  
Table 38  
U-transceiver characteristics: enhanced S/N+D for 82913 and threshold level for  
82912 and 82913 distinguished  
Chapter 5.1 Absolute Maximum Ratings: Maximum Voltage on VDD: 4.2V (before: 4.6V)  
Chapter  
5.6.2  
AC-Timing SCI/parallel µC interface: enhanced timing specifications  
Chapter  
5.6.3  
Chapter  
5.6.3  
Added restriction for control interval tRI  
Chapter  
5.6.5  
Parameters of the UVD/POR Circuit:  
defined reduced range of hysteresis: min. 30mV/max. 90mV  
relaxed upper limit of Detection Threshold to 2.92V (before: 2.9V)  
defined max. rising VDD for power-on  
Chapter  
7.2.5  
Register summary U-transceiver 4B3T:  
Reset value of MASKU is FFH (not 00H)  
Chapter 7.3 External circuitry for T-SMINT updated  
For questions on technology, delivery and prices please contact the Infineon  
Technologies Offices in Germany or the Infineon Technologies Companies and  
Representatives worldwide: see our webpage at http://www.infineon.com  
PEF 82912/82913  
Page  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Features PEF 82912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features PEF 82913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Not Supported are ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Specific Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.7.1  
1.8  
2
2.1  
2.1.1  
2.1.1.1  
2.1.2  
2.1.3  
2.2  
2.3  
2.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Microcontroller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Programming Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Parallel Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Microcontroller Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
IOM -2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
IOM‚-2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
IOM‚-2 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Controller Data Access (CDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Serial Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
IOM‚-2 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Error Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MONITOR Channel Programming as a Master Device . . . . . . . . . . . 48  
MONITOR Channel Programming as a Slave Device . . . . . . . . . . . . 48  
Monitor Time-Out Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
MONITOR Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
C/I Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Application Examples for D-Channel Access Control . . . . . . . . . . . . 52  
TIC Bus Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Stop/Go Bit Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
D-Channel Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
State Machine of the D-Channel Arbiter . . . . . . . . . . . . . . . . . . . . . . 56  
Activation/Deactivation of IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . 59  
U-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
2B1Q Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Maintenance Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Reporting to the µC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Access from the µC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
2.3.2  
2.3.2.1  
2.3.2.2  
2.3.3  
2.3.3.1  
2.3.3.2  
2.3.3.3  
2.3.3.4  
2.3.3.5  
2.3.3.6  
2.3.4  
2.3.5  
2.3.5.1  
2.3.5.2  
2.3.5.3  
2.3.5.4  
2.3.5.5  
2.3.6  
2.4  
2.4.1  
2.4.2  
2.4.2.1  
2.4.2.2  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
Table of Contents  
2.4.2.3  
2.4.2.4  
2.4.3  
2.4.3.1  
2.4.3.2  
2.4.3.3  
2.4.3.4  
2.4.4  
2.4.4.1  
2.4.4.2  
2.4.4.3  
2.4.4.4  
2.4.5  
Availability of Maintenance Channel Information . . . . . . . . . . . . . . . . 64  
M-Bit Register Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Processing of the EOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
EOC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
EOC Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
EOC Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Examples for different EOC modes . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Processing of the Overhead Bits M4, M5, M6 . . . . . . . . . . . . . . . . . . . . 75  
M4 Bit Reporting to the µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
M4 Bit Reporting to State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
M5, M6 Bit Reporting to the µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Summary of M4, M5, M6 Bit Reporting . . . . . . . . . . . . . . . . . . . . . . . 75  
M4, M5, M6 Bit Control Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Cyclic Redundancy Check / FEBE bit . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Block Error Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Near-End and Far-End Block Error Counter . . . . . . . . . . . . . . . . . . . 81  
Testing Block Error Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Scrambling/ Descrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
C/I Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
State Machines for Line Activation / Deactivation . . . . . . . . . . . . . . . . . 85  
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Standard NT State Machine (IEC-Q / NTC-Q Compatible) . . . . . . . . 87  
Inputs to the U-Transceiver: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Outputs of the U-Transceiver: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Description of the NT-States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Simplified NT State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Metallic Loop Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
U-Transceiver Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Line Coding, Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
S/Q Channels, Multiframing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Data Transfer between IOM‚-2 and S0 . . . . . . . . . . . . . . . . . . . . . . . . 106  
Loopback 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Control of S-Transceiver / State Machine . . . . . . . . . . . . . . . . . . . . . . 106  
C/I Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
State Machine NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
State Machine LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
S-Transceiver Enable / Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Interrupt Structure S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
2.4.6  
2.4.7  
2.4.7.1  
2.4.7.2  
2.4.8  
2.4.9  
2.4.10  
2.4.10.1  
2.4.10.2  
2.4.10.3  
2.4.10.4  
2.4.10.5  
2.4.10.6  
2.4.11  
2.4.12  
2.5  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.5.1  
2.5.5.2  
2.5.5.3  
2.5.6  
2.5.7  
3
3.1  
3.1.1  
Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Layer 1 Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Complete Activation Initiated by Exchange . . . . . . . . . . . . . . . . . . . . . 120  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
Table of Contents  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.3.1  
3.2.3.2  
3.2.4  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
Complete Activation Initiated by TE . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Complete Activation Initiated by NT . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Complete Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Loop 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Layer 1 Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Analog Loopback U-Transceiver (No. 3) . . . . . . . . . . . . . . . . . . . . . . . 125  
Analog Loop-Back S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Loopback No.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Complete Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Loopback No.2 - Single Channel Loopbacks . . . . . . . . . . . . . . . . . . 128  
Local Loopbacks Featured By the LOOP Register . . . . . . . . . . . . . . . 128  
External Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Power Supply Blocking Recommendation . . . . . . . . . . . . . . . . . . . . . . 130  
U-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Oscillator Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
4
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Reset of U-Transceiver Functions During Deactivation or with  
4.1  
4.2  
4.3  
4.4  
C/I-Code RESET 146  
4.5  
4.6  
U-Transceiver Mode Register Evaluation Timing . . . . . . . . . . . . . . . . . . 147  
Detailed C/I Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
MODEH - Mode Register IOM-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
CIR0 - Command/Indication Receive 0 . . . . . . . . . . . . . . . . . . . . . . . . 148  
CIX0 - Command/Indication Transmit 0 . . . . . . . . . . . . . . . . . . . . . . . . 150  
CIR1 - Command/Indication Receive 1 . . . . . . . . . . . . . . . . . . . . . . . . 151  
CIX1 - Command/Indication Transmit 1 . . . . . . . . . . . . . . . . . . . . . . . . 151  
Detailed S-Transceiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
S_CONF0 - S-Transceiver Configuration Register 0 . . . . . . . . . . . . . . 152  
S_CONF2 - S-Transmitter Configuration Register 2 . . . . . . . . . . . . . . 153  
S_STA - S-Transceiver Status Register . . . . . . . . . . . . . . . . . . . . . . . 154  
S_CMD - S-Transceiver Command Register . . . . . . . . . . . . . . . . . . . . 155  
SQRR - S/Q-Channel Receive Register . . . . . . . . . . . . . . . . . . . . . . . 156  
SQXR- S/Q-Channel Transmit Register . . . . . . . . . . . . . . . . . . . . . . . 156  
ISTAS - Interrupt Status Register S-Transceiver . . . . . . . . . . . . . . . . . 157  
MASKS - Mask S-Transceiver Interrupt . . . . . . . . . . . . . . . . . . . . . . . . 158  
S_MODE - S-Transceiver Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Interrupt and General Configuration Registers . . . . . . . . . . . . . . . . . . . . 160  
ISTA - Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
4.7  
4.7.1  
4.7.2  
4.7.3  
4.7.4  
4.7.5  
4.7.6  
4.7.7  
4.7.8  
4.7.9  
4.8  
4.8.1  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
Table of Contents  
4.8.2  
4.8.3  
4.8.4  
4.8.5  
4.8.6  
4.9  
4.9.1  
4.9.2  
4.9.3  
4.9.4  
4.9.5  
4.9.6  
4.9.7  
4.9.8  
4.9.9  
4.9.10  
4.9.11  
4.9.12  
4.9.13  
4.10  
4.10.1  
4.10.2  
4.10.3  
4.10.4  
4.10.5  
4.10.6  
4.11  
4.11.1  
4.11.2  
4.11.3  
4.11.4  
4.11.5  
4.11.6  
4.11.7  
4.11.8  
4.11.9  
4.11.10  
4.11.11  
4.11.12  
4.11.13  
4.11.14  
4.11.15  
MASK - Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
MODE1 - Mode1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
MODE2 - Mode2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
ID - Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
SRES - Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Detailed IOM®-2 Handler Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
CDAxy - Controller Data Access Register xy . . . . . . . . . . . . . . . . . . . . 165  
XXX_TSDPxy - Time Slot and Data Port Selection for CHxy . . . . . . . 166  
CDAx_CR - Control Register Controller Data Access CH1x . . . . . . . . 167  
S_CR - Control Register S-Transceiver Data . . . . . . . . . . . . . . . . . . . 168  
CI_CR - Control Register for CI1 Data . . . . . . . . . . . . . . . . . . . . . . . . 169  
MON_CR - Control Register Monitor Data . . . . . . . . . . . . . . . . . . . . . 170  
SDS1_CR - Control Register Serial Data Strobe 1 . . . . . . . . . . . . . . . 171  
SDS2_CR - Control Register Serial Data Strobe 2 . . . . . . . . . . . . . . . 172  
IOM_CR - Control Register IOM Data . . . . . . . . . . . . . . . . . . . . . . . . . 173  
MCDA - Monitoring CDA Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
STI - Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . 174  
ASTI - Acknowledge Synchronous Transfer Interrupt . . . . . . . . . . . . . 175  
MSTI - Mask Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . 175  
Detailed MONITOR Handler Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
MOR - MONITOR Receive Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
MOX - MONITOR Transmit Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
MOSR - MONITOR Interrupt Status Register . . . . . . . . . . . . . . . . . . . 177  
MOCR - MONITOR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
MSTA - MONITOR Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
MCONF - MONITOR Configuration Register . . . . . . . . . . . . . . . . . . . . 179  
Detailed U-Transceiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
OPMODE - Operation Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . 179  
MFILT - M Bit Filter Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
EOCR - EOC Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
EOCW - EOC Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
M4RMASK - M4 Read Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . 183  
M4WMASK - M4 Write Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . 183  
M4R - M4 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
M4W - M4 Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
M56R - M56 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
M56W - M56 Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
UCIR - C/I Code Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
UCIW - C/I Code Write Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
TEST - Test Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
LOOP - Loop Back Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
FEBE - Far End Block Error Counter Register . . . . . . . . . . . . . . . . . . 190  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
Table of Contents  
4.11.16  
4.11.17  
4.11.18  
4.11.19  
NEBE - Near End Block Error Counter Register . . . . . . . . . . . . . . . . . 191  
ISTAU - Interrupt Status Register U-Interface . . . . . . . . . . . . . . . . . . . 191  
MASKU - Mask Register U-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
FW_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Serial µP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Parallel µP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Undervoltage Detection Characteristics . . . . . . . . . . . . . . . . . . . . . . . 207  
6
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
7
7.1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.3  
Appendix: Differences between Q- and T-SMINT‚I . . . . . . . . . . . . . . . 211  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
U-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
U-Interface Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
U-Transceiver State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Command/Indication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Register Summary U-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
External Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
8
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Application Example Q-SMINT®I: High Feature Intelligent NT . . . . . . 14  
Control via µP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Control via IOM‚-2 Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Serial Command Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Direct/Indirect Register Address Mode . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reset Generation of the Q-SMINT®I . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
IOM -2 Frame Structure of the Q-SMINT‚I . . . . . . . . . . . . . . . . . . . . . 28  
Architecture of the IOM -2 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data Access via CDAx0 and CDAx1 register pairs . . . . . . . . . . . . . . . 32  
Examples for Data Access via CDAxy Registers. . . . . . . . . . . . . . . . . 33  
Data Access when Looping TSa from DU to DD . . . . . . . . . . . . . . . . . 34  
Data Access when Shifting TSa to TSb on DU (DD) . . . . . . . . . . . . . . 35  
Example for Monitoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Interrupt Structure of the Synchronous Data Transfer. . . . . . . . . . . . . 39  
Examples for the Synchronous Transfer Interrupt Control with  
one STIxy enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Data Strobe Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
MONITOR Channel Protocol (IOM®-2) . . . . . . . . . . . . . . . . . . . . . . . . 44  
Monitor Channel, Transmission Abort requested by the Receiver. . . . 47  
Monitor Channel, Transmission Abort requested by the Transmitter. . 47  
Monitor Channel, Normal End of Transmission . . . . . . . . . . . . . . . . . . 47  
MONITOR Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
CIC Interrupt Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
D-Channel Arbitration: µC with HDLC and Direct Access to TIC Bus . 52  
D-Channel Arbitration: µC with HDLC and no Access to TIC Bus. . . . 53  
Structure of Last Octet of Ch2 on DU . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Structure of Last Octet of Ch2 on DD . . . . . . . . . . . . . . . . . . . . . . . . . 55  
State Machine of the D-Channel Arbiter (Simplified View). . . . . . . . . . 57  
Deactivation of the IOM®-2 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
U-Superframe Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
U-Basic Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
U2B1Q Framer - Data Flow Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 63  
U2B1Q Deframer - Data Flow Scheme . . . . . . . . . . . . . . . . . . . . . . . . 63  
Write Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Read Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
EOC Message Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
EOC Command/Message Transmission . . . . . . . . . . . . . . . . . . . . . . . 70  
Maintenance Channel Filtering Options. . . . . . . . . . . . . . . . . . . . . . . . 76  
M4 Bit Report Timing (Statemachine vs. µC). . . . . . . . . . . . . . . . . . . . 76  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
List of Figures  
Figure 42  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
M4, M5, M6 Bit Control in Receive Direction . . . . . . . . . . . . . . . . . . . . 78  
M4, M5, M6 Bit Control in Transmit Direction . . . . . . . . . . . . . . . . . . . 78  
CRC-Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Block Error Counter Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Explanation of State Diagram Notation . . . . . . . . . . . . . . . . . . . . . . . . 86  
Standard NT State Machine (IEC-Q / NTC-Q Compatible)  
(Footnotes: see “Dependence of Outputs” on Page 92) . . . . . . . . . 87  
Simplified NT State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Pulse Streams Selecting Quiet Mode . . . . . . . . . . . . . . . . . . . . . . . . 100  
Interrupt Structure U-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
S/T -Interface Line Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Frame Structure at Reference Points S and T (ITU I.430). . . . . . . . . 104  
S-Transceiver Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
State Diagram Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
State Machine NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
State Machine LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Interrupt Structure S-Transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Complete Activation Initiated by Exchange . . . . . . . . . . . . . . . . . . . . 120  
Complete Activation Initiated by TE. . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Complete Activation Initiated by Q-SMINT®I . . . . . . . . . . . . . . . . . . . 122  
Complete Deactivation Initiated by Exchange . . . . . . . . . . . . . . . . . . 123  
Loop 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Test Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
External Loop at the S/T-Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Complete Loopback Options in NT-Mode . . . . . . . . . . . . . . . . . . . . . 127  
Loopbacks Featured by Register LOOP . . . . . . . . . . . . . . . . . . . . . . 129  
Power Supply Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
External Circuitry U-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
External Circuitry S-Interface Transmitter . . . . . . . . . . . . . . . . . . . . . 133  
External Circuitry S-Interface Receiver . . . . . . . . . . . . . . . . . . . . . . . 134  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Address Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Q-SMINT®I Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . 137  
Maximum Sinusoidal Ripple on Supply Voltage . . . . . . . . . . . . . . . 198  
Input/Output Waveform for AC Tests. . . . . . . . . . . . . . . . . . . . . . . . . 199  
IOM®-2 Interface - Bit Synchronization Timing . . . . . . . . . . . . . . . . . 200  
IOM®-2 Interface - Frame Synchronization Timing . . . . . . . . . . . . . . 200  
Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Microprocessor Read Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Microprocessor Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Multiplexed Address Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Non-Multiplexed Address Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
Figure 60  
Figure 61  
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
Figure 68  
Figure 69  
Figure 70  
Figure 71  
Figure 72  
Figure 73  
Figure 74  
Figure 75  
Figure 76  
Figure 77  
Figure 78  
Figure 79  
Figure 80  
Figure 81  
Figure 82  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
List of Figures  
Figure 83  
Figure 84  
Figure 85  
Figure 86  
Figure 87  
Figure 88  
Figure 89  
Figure 90  
Figure 91  
Figure 92  
Figure 93  
Microprocessor Read Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Microprocessor Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Non-Multiplexed Address Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Reset Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Undervoltage Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
INTC-Q Compatible State Machine Q-SMINT®I: 2B1Q. . . . . . . . . . . 213  
Simplified State Machine Q-SMINT®I: 2B1Q. . . . . . . . . . . . . . . . . . . 214  
IEC-T/NTC-T Compatible State Machine T-SMINT‚I: 4B3T. . . . . . . . 215  
Interrupt Structure U-Transceiver Q-SMINT®I: 2B1Q . . . . . . . . . . . . 217  
Interrupt Structure U-Transceiver T-SMINT‚I: 4B3T. . . . . . . . . . . . . . 218  
External Circuitry Q- and T-SMINT‚I . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
NT Products of the 2nd Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ACT States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Interface Selection for the Q-SMINT‚I . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Header Byte Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Bus Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
MCLK Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reset Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Examples for Synchronous Transfer Interrupts . . . . . . . . . . . . . . . . . . 38  
Transmit Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Receive Direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Q-SMINT®I Configuration Settings in Intelligent NT Applications . . . . 56  
Major Differences D-Channel Arbiter INTC-Q and Q-SMINT®I . . . . . . 57  
U-Superframe Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Enabling the Maintenance Channel (Receive Direction) . . . . . . . . . . . 64  
Coding of EOC-Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Usage of Supported EOC-Commands. . . . . . . . . . . . . . . . . . . . . . . . . 68  
EOC Auto Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Transparent mode 6 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Transparent mode ’@change’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Transparent mode TLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
U - Transceiver C/I Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Timers Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
U-Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Signal Output on Uk0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
C/I-Code Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Changes to achieve Simplified NT State Machine. . . . . . . . . . . . . . . . 96  
Appearance of the State Machine to the Software . . . . . . . . . . . . . . . 99  
ANSI Maintenance Controller States . . . . . . . . . . . . . . . . . . . . . . . . . 100  
S/Q-Bit Position Identification and Multi-Frame Structure . . . . . . . . . 105  
U-Transformer Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
S-Transformer Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Crystal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Reset of U-Transceiver Functions During Deactivation or with  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
C/I-Code RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Maximum Input Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
S-Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
U-Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Pin Capacitances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Reset Input Signal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Parameters of the UVD/POR Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Page  
List of Tables  
Table 43  
Table 44  
Table 45  
Related Documents to the U-Interface. . . . . . . . . . . . . . . . . . . . . . . . 212  
C/I Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Dimensions of External Components. . . . . . . . . . . . . . . . . . . . . . . . . 223  
Data Shee  
2001-03-30  
PEF 82912/82913  
Overview  
1
Overview  
The PEF 82912 / 82913 (Q-SMINT®I) offers U-transceiver, S-transceiver and an IOM-  
2 interface. A microcontroller interface provides access to both transceivers as well as  
the IOM-2 interface.  
However, as opposed to its bigger brother Q-SMINT®IX, the Q-SMINT®I does not have  
an HDLC controller. Main target applications of the Q-SMINT®I are intelligent NT  
applications where the HDLC controller(s) is (are) provided by the microcontroller or  
other additional components. An example for such a microcontroller is the Infineon  
UTAH chip which features four flexible HDLC controllers.  
Table 1 summarizes the 2nd generation NT products.  
Table 1  
NT Products of the 2nd Generation  
PEF80912 PEF80913 PEF81912 PEF81913 PEF82912 PEF82913  
Q-SMINT®O  
Q-SMINT®IX  
Q-SMINT®I  
Package  
P-MQFP-44  
P-MQFP-64  
P-TQFP-64  
P-MQFP-64  
P-TQFP-64  
Register  
access  
no  
n.a.  
no  
U+S+HDLC+ IOM-2  
U+S+ IOM-2  
Access via  
parallel (or SCI or  
IOM-2)  
parallel (or SCI or  
IOM-2)  
MCLK,  
yes  
yes  
watchdog  
timer, SDS,  
BCL, D-  
channel  
arbitration,  
IOM-2access  
and  
manipulation  
etc. provided  
HDLC  
controller  
no  
yes  
no  
no  
no  
NT1 mode  
available  
yes (only)  
Extended U-  
Performance  
20kft  
no  
yes  
no  
yes  
no  
yes  
Data Sheet  
1
2001-03-30  
PEF 82912/82913  
Overview  
1.1  
References  
[1]  
TS 102 080, Transmission and Multiplexing ; ISDN basic rate access; Digital  
transmission system on metallic local lines, ETSI, November 1998  
[2]  
T1.601-1998 (Revision of ANSI T1.601-1992), ISDN-Basic Access Interface  
for Use on Metallic Loops for Application on the Network Side of the NT  
(Layer 1 Specification), ANSI, 1998  
[3]  
[4]  
ST/LAA/ELR/DNP/822, CNET, France  
RC7355E, 2B1Q Generic Physical Layer Specification, British  
Telecommunications plc., 1997  
[5]  
FZA TS 0095/01:1997-10, Technische Spezifikationen für  
Netzabschlußgeräte für den ISDN Basisanschluß (NT-BA), Post & Telekom  
Austria, 1997  
[6]  
pr ETS 300 012 Draft, ISDN; Basic User Network Interface (UNI), ETSI,  
November 1996  
[7]  
T1.605-1991, ISDN-Basic Access Interface for S and T Reference Points  
(Layer 1 Specification), ANSI, 1991  
[8]  
I.430, ISDN User-Network Interfaces: Layer 1 Recommendations, ITU,  
November 1988  
[9]  
IEC-Q, ISDN Echocancellation Circuit, PEB 2091 V4.3, User’s Manual  
02.95, Siemens AG, 1995  
[10]  
[11]  
[12]  
SBCX, S/T Bus Interface Circuit Extended, PEB 2081 V3.4, User’s Manual  
11.96, Siemens AG, 1996  
NTC-Q, Network Termination Controller (2B1Q), PEB / PEF 8091 V1.1, Data  
Sheet 10.97, Siemens AG, 1997  
INTC-Q, Intelligent Network Termination Controller (2B1Q), PEB / PEF 8191  
V1.1, Data Sheet 10.97, Siemens AG, 1997  
[13]  
[14]  
IOM-2 Interface Reference Guide, Siemens AG, 03.91  
SCOUT-S(X), Siemens Codec with S/T-Transceiver, PSB 2138x V1.3,  
Preliminary Data Sheet 8.99, Infineon Technologies, 1999  
[15]  
[16]  
PITA, PCI Interface for Telephony/Data Applications V0.3, SICAN GmbH,  
September 1997  
Dual Channel SLICOFI-2, HV-SLIC; DUSLIC; PEB3265, 4265, 4266; Data  
Sheet DS2, Infineon Technologies, July 2000.  
Data Sheet  
2
2001-03-30  
PEF 82912/82913  
Overview  
2B1Q Second Gen. Modular ISDN NT (Intelligent)  
PEF 82912/82913  
Q-SMINT®I  
Version 1.3  
1.2  
Features PEF 82912  
Features known from the PEB/PEF 8191  
• U-transceiver and S-transceiver on one chip  
• Perfectly suited for high-end intelligent NTs that  
require multiple HDLC controllers (which are provided  
externally)  
P-MQFP-64-1,-2  
• U-interface (2B1Q) conform to ETSI [1], ANSI [2] and  
CNET [3]:  
P-MQFP-64  
– Meets all transmission requirements on all ETSI,  
ANSI and CNET loops with margin  
– Conform to British Telecom’s RC7355E [4]  
– Compliant with ETSI 10 ms micro interruptions  
– MLT input and decode logic (ANSI [2])  
• S/T-interface conform to ETSI [6], ANSI [7] and ITU  
[8]  
– Supports point-to-point and bus configurations  
– Meets and exceeds all transmission requirements  
• Activation status LED supported  
P-TQFP-64  
• BCL, SDS1, SDS2, programmable MCLK, watchdog timer,  
• Access to IOM-2 C/I and Monitor channels  
• Power-down and reset states (e.g. S-transceiver) for individual circuits  
• Automatic D-channel arbitration between S-bus and external HDLC controller  
• Parallel or serial µP-interface  
Type  
Package  
PEF 82912/82913  
PEF 82912/82913  
P-MQFP-64  
P-TQFP-64  
Data Sheet  
3
2001-03-30  
PEF 82912/82913  
Overview  
New Features  
• Reduced number of external components for external U-hybrid required  
• Optional use of up to 2x20 resistors on the line side of the transformer (e.g. PTCs)  
• Pin Uref and the according external capacitor removed  
• Improved ESD (2 kV instead of <850 V)  
• Inputs accept 3.3 V and 5 V  
• I/O (open drain) accepts pull-up to 3.3 V1)  
• LED signal is programmable but can also automatically indicate the activation status  
(mode select via 1 bit)  
• Pin compatible with T-SMINT®I (2nd Generation)  
• Priority setting (8/10) for off-chip HDLC controller  
• Enhanced IOM-2 timeslot access and manipulation (SCOUT)  
• MCLK can be disabled (SCOUT)  
• External Awake (EAW)  
• Optional: All registers can be read and written to via new Monitor channel concept  
• Optional: Implementation of S-transceiver statemachine in software  
• Indirect Addressing (SCOUT)  
• Programmable strobes SDS1/2 are more flexible, e.g. active during several timeslots  
• Power-on reset and Undervoltage Detection with no external components  
• Lowest power consumption due to:  
– Low power CMOS technology (0.35µ)  
– Newly optimized low-power libraries  
– High output swing on U- and S-line interface leads to minimized power  
consumption  
– Single 3.3 Volt power supply  
• 200 mW (INTC-Q: 295 mW) power consumption with random data over ETSI Loop  
2 (external loads on the S and U interface only and no additional external loads).  
• 15 mW typical power consumption in power down (INTC-Q: 28 mW)  
1.3  
Features PEF 82913  
The Q-SMINT®I PEF 82913 provides all features of the PEF 82912. Additionally, a  
significantly enhanced performance of the U-interface as compared to ETSI [1], ANSI  
[2] and CNET [3] requirements is guaranteed:  
Transparent transmission on 20kft AWG26 with a BER < 10-7 (without noise).  
1)  
Pull-ups to 5 V must be avoided. A so-called ’hot-electron-effect’ would lead to long term degradation.  
Data Sheet  
4
2001-03-30  
PEF 82912/82913  
Overview  
1.4  
Not Supported are ...  
• Integrated U-hybrid  
• On-chip HDLC controller  
• ’Self test request’ and ’Self test passed’ of U-transceiver  
• TE-mode of the S-transceiver  
• DECT-link capability  
• SRA (capacitive receiver coupling is not suited for S-feeding).  
• ’NT-Star’ with star point on the IOM®-2 bus (already not supported in INTC-Q).  
• No access to S2-5 channels. Access only to S1 and Q channel as in SCOUT. No  
selection between transparent and non-auto mode provided.  
• The oscillator architecture was changed with respect to the INTC-Q to reduce power  
consumption. As a consequence, the Q-SMINT®I always needs a crystal and pin XIN  
can not be connected to an external clock as it was possible for IEC-Q and NTC-Q.  
This does not limit the use of the Q-SMINT®I in NTs since all NT designs use crystals  
anyway.  
Data Sheet  
5
2001-03-30  
PEF 82912/82913  
Overview  
1.5  
Pin Configuration  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
32  
/VDDDET  
FSC  
DCL  
VSSD  
VDDD  
TP2  
31  
30  
29  
51  
52  
53  
VDDa_SR  
VSSa_SR  
A5  
A6  
Q-SMINT I  
AD7 or SDX  
28  
27  
54  
55  
AD6 or SDR  
AD5 or SCLK  
AD4  
PS1  
26  
25  
PEF 82912/  
PEF 82913  
56  
57  
24  
23  
22  
AD3  
AD2  
AD1  
AD0  
/EAW  
58  
59  
XOUT  
XIN  
BOUT  
60  
61  
21  
20  
19  
18  
17  
VDDa_UX  
VSSa_UX  
AOUT  
62  
63  
64  
MCLK  
/ACT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
pin_2.vsd  
Figure 1  
Pin Configuration  
Data Sheet  
6
2001-03-30  
PEF 82912/82913  
Overview  
1.6  
Block Diagram  
VDDDET  
XIN  
XOUT  
RST RSTO  
PS1  
PS2  
MTI  
SR1  
Clock Generation  
POR/UVD  
AOUT  
BOUT  
SR2  
SX1  
SX2  
S-Transceiver  
U-Tansceiver  
AIN  
BIN  
D-Channel  
Arbitration  
to µP IF  
to µP IF  
M
O
N
C
D
A
W
D
T
C/I  
TP1  
TP2  
Factory  
Tests  
TIC  
LED  
ACT  
µP Interface  
(e.g. Multiplexed Mode)  
IOM-2 Interface  
FSC DCL BCL DU DD SDS1 SDS2  
AD0-AD7  
ALE RD WR CS INT MCLK EAW  
block diagram.vsd  
Figure 2  
Block Diagram  
Data Sheet  
7
2001-03-30  
PEF 82912/82913  
Overview  
1.7  
Pin Definitions and Functions  
Pin Definitions and Functions  
Table 2  
Pin  
Symbol Type  
Function  
VDDa_UR  
2
Supply voltage for U-Receiver  
(3.3 V ± 5 %)  
VSSa_UR  
1
Analog ground (0 V) U-Receiver  
VDDa_UX  
62  
Supply voltage for U-Transmitter  
(3.3 V ± 5 %)  
VSSa_UX  
63  
51  
Analog ground (0 V) U-Transmitter  
VDDa_SR  
Supply voltage for S-Receiver  
(3.3 V ± 5 %)  
VSSa_SR  
52  
46  
Analog ground (0 V) S-Receiver  
VDDa_SX  
Supply voltage for S-Transmitter  
(3.3 V ± 5 %)  
VSSa_SX  
45  
29  
Analog ground (0 V) S-Transmitter  
VDDD  
Supply voltage digital circuits  
(3.3 V ± 5 %)  
VSSD  
30  
13  
Ground (0 V) digital circuits  
VDDD  
Supply voltage digital circuits  
(3.3 V ± 5 %)  
VSSD  
14  
Ground (0 V) digital circuits  
32  
31  
FSC  
DCL  
O
O
Frame Sync:  
8-kHz frame synchronization signal  
Data Clock:  
IOM-2 interface clock signal (double clock):  
1.536 MHz  
35  
BCL  
O
Bit Clock:  
The bit clock is identical to the IOM-2 data rate  
(768 kHz)  
33  
34  
DD  
DU  
I/O  
OD  
Data Downstream:  
Data on the IOM-2 interface  
I/O  
OD  
Data Upstream:  
Data on the IOM-2 interface  
Data Sheet  
8
2001-03-30  
PEF 82912/82913  
Overview  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin  
Symbol Type  
Function  
8
SDS1  
O
Serial Data Strobe1:  
Programmable strobe signal for time slot and/  
or D-channel indication on IOM-2  
7
SDS2  
O
Serial Data Strobe2:  
Programmable strobe signal for time slot and/  
or D-channel indication on IOM-2  
12  
CS  
I
Chip Select:  
A low level indicates a microcontroller access to  
the Q-SMINTI  
26  
26  
SCLK  
AD5  
I
Serial Clock:  
Clock signal of the SCI interface if a serial  
interface is selected  
Multiplexed Bus Mode:  
Address/data bus  
I/O  
Address/data line AD5 if the parallel interface is  
selected  
Non-Multiplexed Bus Mode:  
Data bus  
Data line D5 if the parallel interface is selected  
27  
27  
SDR  
AD6  
I
Serial Data Receive:  
Receive data line of the SCI interface if a serial  
interface is selected  
I/O  
Multiplexed Bus Mode:  
Address/data bus  
Address/data line AD6 if the parallel interface is  
selected  
Non-Multiplexed Bus Mode:  
Data bus  
Data line D6 if the parallel interface is selected  
Data Sheet  
9
2001-03-30  
PEF 82912/82913  
Overview  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin  
Symbol Type  
Function  
28  
SDX  
AD7  
OD,O Serial Data Transmit:  
Transmit data line of the SCI interface if a serial  
interface is selected  
28  
I/O  
Multiplexed Bus Mode:  
Address/data bus  
Address/data line AD7 if the parallel interface is  
selected  
Non-Multiplexed Bus Mode:  
Data bus  
Data line D7 if the parallel interface is selected  
21  
22  
23  
24  
25  
AD0  
AD1  
AD2  
AD3  
AD4  
I/O  
I/O  
I/O  
I/O  
I/O  
Multiplexed Bus Mode:  
Address/data bus  
Transfers addresses from the microcontroller to  
the Q-SMINTI and data between the  
microcontroller and the Q-SMINTI.  
Non-Multiplexed Bus Mode:  
Data bus.  
Transfers data between the microcontroller and  
the Q-SMINTI (data lines D0-D4).  
36  
37  
38  
39  
40  
53  
54  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
I
I
I
I
I
I
I
Non-Multiplexed Bus Mode:  
Address bus transfers addresses from the  
microcontroller to the Q-SMINTI. For indirect  
address mode only A0 is valid.  
Multiplexed Bus Mode  
Not used in multiplexed bus mode. In this case  
A0-A6 should directly be connected to VDD.  
11  
RD  
I
Read  
Indicates a read access to the registers (Intel  
bus mode).  
DS  
I
Data Strobe  
The rising edge marks the end of a valid read or  
write operation (Motorola bus mode).  
Data Sheet  
10  
2001-03-30  
PEF 82912/82913  
Overview  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin  
Symbol Type  
Function  
Write  
10  
WR  
I
I
Indicates a write access to the registers (Intel  
bus mode).  
Read/Write  
R/W  
A HIGH identifies a valid host access as a read  
operation and a LOW identifies a valid host  
access as a write operation (Motorola bus  
mode).  
9
5
ALE  
RST  
I
I
Address Latch Enable  
An address on the external address/data bus  
(multiplexed bus type only) is latched with the  
falling edge of ALE.  
ALE also selects the microcontroller interface  
type (multiplexed or non multiplexed).  
Reset:  
Low active reset input. Schmitt-Trigger input  
with hysteresis of typical 360 mV. Tie to ’1’ if not  
used.  
6
RSTO  
INT  
OD  
OD  
Reset Output:  
Low active reset output.  
15  
Interrupt Request:  
INT becomes active if the Q-SMINTI requests  
an interrupt.  
18  
MCLK  
EAW  
O
I
Microcontroller Clock:  
Clock output for the microcontroller  
19  
20  
Tie to ‘1‘  
External Awake:  
A low level on EAW during power down  
activates the clock generation of the Q-  
SMINTI, i.e. the IOM-2 interface provides  
FSC, DCL and BCL for read and write  
access.1)  
43  
44  
47  
SX1  
SX2  
SR1  
O
O
I
S-Bus Transmitter Output (positive)  
S-Bus Transmitter Output (negative)  
S-Bus Receiver Input  
Data Sheet  
11  
2001-03-30  
PEF 82912/82913  
Overview  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin  
Symbol Type  
Function  
48  
SR2  
I
S-Bus Receiver Input  
60  
59  
XIN  
I
Crystal 1:  
Connected to a 15.36 MHz crystal  
XOUT  
O
Crystal 2:  
Connected to a 15.36 MHz crystal  
64  
61  
3
AOUT  
BOUT  
AIN  
O
O
I
Differential U-interface Output  
Differential U-interface Output  
Differential U-interface Input  
Differential U-interface Input  
4
BIN  
I
VDDDET  
49  
I
VDD Detection:  
This pin selects if the VDD detection is active  
(’0’) and reset pulses are generated on pin  
RSTO or whether it is deactivated (’1’) and an  
external reset has to be applied on pin RST.  
16  
55  
MTI  
PS1  
I
I
Metallic Termination Input.  
Input to evaluate Metallic Termination pulses.  
Tie to ’1’ if not used.  
Power Status (primary).  
The pin status is passed to the overhead bit  
’PS1’ in the U frame to indicate the status of the  
primary power supply (’1’ = ok).  
41  
PS2  
I
Power Status (secondary).  
The pin status is passed to the overhead bit  
’PS2’ in the U frame to indicate the status of the  
secondary power supply (’1’ = ok).  
17  
42  
ACT  
TP1  
O
I
Activation LED.  
Indicates the activation status of U- and S-  
transceiver. Can directly drive a LED (4 mA).  
Test Pin 1.  
Used for factory device test.  
Tie to VSS  
Data Sheet  
12  
2001-03-30  
PEF 82912/82913  
Overview  
Table 2  
Pin Definitions and Functions (cont’d)  
Pin  
Symbol Type  
TP2  
Function  
50  
I
Test Pin 2.  
Used for factory device test.  
Tie to VSS  
56, 57, res  
Reserved  
58  
1)  
This function of pin EAW is different to that defined in Ref. [14]  
I: Input  
O: Output (Push-Pull)  
OD: Output (Open Drain)  
1.7.1  
Specific Pins  
LED Pin ACT  
A LED can be connected to pin ACT to display four different states (off, slow flashing,  
fast flashing, on). It displays the activation status of the U- and S-transceiver according  
to Table 3. or it is programmable via two bits (LED1 and LED2 in register MODE2).  
Table 3  
Pin ACT  
VDD  
ACT States  
LED  
off  
U_Deactivated  
U_Activated  
S_Activated  
1
0
0
0
x
0
1
1
x
x
0
1
8Hz  
8Hz  
1Hz  
on  
1Hz  
GND  
with:  
U_Deactivated: ’Deactivated State’ as defined in Chapter 2.4.10.5. If the ‘Simplified  
State Machine‘ is selected: ’Deactivated State’ and ‘IOM-2 Awaked‘.  
U_Activated: ’Synchronized 1’, ’Synchronized 2’, ’Wait for ACT’, ’Transparent’, ’Error S/  
T’, ’Pend. Deact. S/T’, ’Pend. Deact. U’ as defined in Chapter 2.4.10.5.  
S-Activated: ’Activated State’ as defined in Chapter 2.5.5.  
Note: Optionally, pin ACT can drive a second LED with inverse polarity (connect this  
additional LED to 3.3 V only).  
Data Sheet  
13  
2001-03-30  
PEF 82912/82913  
Overview  
Test Modes  
The test patterns on the S-interface (‘2 kHz Single Pulses‘, ‘96 kHz Continuous Pulses‘)  
and on the U-interface (‘Data Through‘, ‘Send Single Pulses‘) are invoked via C/I codes  
(TM1, TM2, DT, SSP). Setting SRES.RES_U to ‘1‘ forces the U-transceiver into test  
mode ‘Quiet Mode‘ (QM), i.e. the U-transceiver is hardware reset.  
1.8  
System Integration  
DC/DC Converter  
IDCC  
PEB2023  
MLT  
S/T - Interface  
U - Interface  
Q-SMINTI  
PEF 82912  
PEF 82913  
S
U
POTS Interface  
µP  
UTAH  
C 165 Core  
HV - SLIC  
SLICOFI - 2  
4x HDLC  
IOM-2  
IOM-2  
USB/  
V.24  
HV - SLIC  
USB / V.24 Interface  
HENTappl.vsd  
Figure 3  
Application Example Q-SMINTI: High Feature Intelligent NT  
The U-transceiver, S-transceiver and the IOM-2 channels can be controlled and  
monitored via:  
a) the parallel or serial microprocessor interface  
- Access of on-chip registers via µP interface Address/Data format  
- Activation/Deactivation control of U- and S-transceiver via µP interface and C/I  
handler  
- Q-SMINTI is Monitor channel master  
- TIC bus is transparent on IOM-2-interface and is used for D-channel arbitration  
between S-transceiver and off-chip HDLC controllers.  
Data Sheet  
14  
2001-03-30  
PEF 82912/82913  
Overview  
C/I0  
S
C/I1  
U
Mon  
C/I  
Register  
MON  
IOM -2  
µc - Interface  
IOM-2 Slave  
e.g. SLICOFI-2  
µc  
iommaster.vsd  
Figure 4  
Control via µP Interface  
Alternatively, the Q-SMINTI can be controlled via  
b) the IOM-2 Interface  
- Access of on-chip registers via the Monitor channel with Header/Address/Data  
format (Device is Monitor slave)  
- Activation/Deactivation control of U- and S-transceiver via the C/I channels CI0  
and CI1  
- TIC bus is transparent on IOM-2-interface and is used for D-channel arbitration  
between S-transceiver and off-chip HDLC controllers.  
Data Sheet  
15  
2001-03-30  
PEF 82912/82913  
Overview  
S
C/I1  
U
C/I0  
MON  
Register  
IOM -2  
INT  
IOM-2 Master  
e.g. UTAH  
iomslave.vsd  
Figure 5  
Control via IOM-2 Interface  
Data Sheet  
16  
2001-03-30  
PEF 82912/82913  
Functional Description  
2
Functional Description  
2.1  
Microcontroller Interfaces  
The Q-SMINTI supports either a serial or a parallel microcontroller interface. For  
applications where no controller is connected to the Q-SMINTI microcontroller  
interface, register programming is done via the IOM-2 MONITOR channel from a  
master device. In such applications the Q-SMINTI operates in the IOM-2 slave mode  
(refer to the corresponding chapter of the IOM-2 MONITOR handler).  
The interface selections are all done by pinstrapping. The possible interface selections  
are listed in Table 4. The selection pins are evaluated when the reset input RST is  
released. For the pin levels stated in the tables the following is defined:  
’High’:dynamic pin value which must be ’High’ when the pin level is evaluated  
VDD, VSS:static ’High’ or ’Low’ level (tied to VDD, VSS)  
Table 4  
PINS  
WR RD  
Interface Selection for the Q-SMINTI  
Serial/Parallel  
Interface  
PINS  
ALE  
Interface  
Type/Mode  
CS  
(R/W) (DS)  
VDD  
VSS  
edge  
VSS  
VSS  
Motorola  
’High’ ’High’  
Parallel  
Serial  
‘High’  
Siemens/Intel Non-Mux  
Siemens/Intel Mux  
VSS  
VSS  
’High’  
VSS  
Serial Control Interface(SCI)  
IOM-2 MONITOR Channel  
(Slave Mode)  
Note: For a selected interface mode which does not require all pins (e.g. address pins)  
the unused pins must be tied to VDD.  
The microcontroller interface also consists of a microcontroller clock generation at pin  
MCLK, an interrupt request at pin INT, a reset input pin RST and a reset output pin  
RSTO.  
The interrupt request pin INT (open drain output) becomes active if the Q-SMINTI  
requests an interrupt.  
Data Sheet  
17  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.1.1  
Serial Control Interface (SCI)  
The serial control interface (SCI) is compatible to the SPI interface of Motorola and to the  
Siemens C510 family of microcontrollers.  
The SCI consists of 4 lines: SCLK, SDX, SDR and CS. Data is transferred via the lines  
SDR and SDX at the rate given by SCLK. The falling edge of CS indicates the beginning  
of a serial access to the registers. The Q-SMINTI latches incoming data at the rising  
edge of SCLK and shifts out at the falling edge of SCLK. Each access must be  
terminated by a rising edge of CS. Data is transferred in groups of 8 bits with the MSB  
first.  
Pad mode of SDX can be selected ’open drain’ or ’push-pull’ by programming  
MODE2.PPSDX.  
Figure 6 shows the timing of a one byte read/write access via the serial control interface.  
Data Sheet  
18  
2001-03-30  
PEF 82912/82913  
Functional Description  
Write Access  
CS  
SCLK  
SDR  
SDX  
Command/Address  
Header  
Data  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
`0`  
write  
Read Access  
CS  
SCLK  
SDR  
SDX  
Command/Address  
Header  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
`1`  
read  
Data  
7 6 5 4 3 2 1 0  
SCI_TIM.VSD  
Figure 6  
Serial Control Interface Timing  
Data Sheet  
19  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.1.1.1 Programming Sequences  
The basic structure of a read/write access to the Q-SMINTI registers via the serial  
control interface is shown in Figure 7.  
write sequence:  
write  
byte 2  
byte 3  
header  
address (command)  
write data  
0
SDR  
7
0 7  
6
0
7
7
0
0
read sequence:  
read  
byte 2  
address (command)  
header  
1
0 7  
SDR  
7
6
0
byte 3  
SDX  
read data  
Figure 7  
Serial Command Structure  
A new programming sequence starts with the transfer of a header byte. The header byte  
specifies different programming sequences allowing a flexible and optimized access to  
the individual functional blocks of the Q-SMINTI.  
The possible sequences are listed in Table 5 and are described after that.  
Table 5  
Header Byte Code  
Sequence  
Header  
Byte  
Sequence Type  
Access to  
40H  
48H  
43H  
41H  
49H  
Adr-Data-Adr-Data  
non-interleaved  
interleaved  
Address Range 00H-7FH  
Adr-Data-Data-Data Read-/Write-only  
non-interleaved  
Address Range 00H-7FH  
interleaved  
Data Sheet  
20  
2001-03-30  
PEF 82912/82913  
Functional Description  
Header 40H: Non-interleaved A-D-A-D Sequences  
The non-interleaved A-D-A-D sequences give direct read/write access to the address  
range 00H-7FH and can have any length. In this mode SDX and SDR can be connected  
together allowing data transmission on one line.  
Example for a read/write access with header 40H:  
header wradr wrdata rdadr  
rdadr  
wradr wrdata  
SDR  
SDX  
rddata  
rddata  
Header 48H: Interleaved A-D-A-D Sequences  
The interleaved A-D-A-D sequences give direct read/write access to the address range  
00H-7FH and can have any length. This mode allows a time optimized access to the  
registers by interleaving the data on SDX and SDR.  
Example for a read/write access with header 48H:  
header wradr wrdata rdadr  
rdadr  
wradr wrdata  
SDR  
SDX  
rddata rddata  
Header 43H: Read-/Write- only A-D-D-D Sequence  
Generally, it can be used for any register access to the address range 20H-7DH. The  
sequence can have any length and is terminated by the rising edge of CS.  
Example for a write access with header 43H:  
header wradr wrdata wrdata wrdata wrdata wrdata wrdata wrdata  
SDR  
SDX  
(wradr)  
(wradr)  
(wradr)  
(wradr)  
(wradr)  
(wradr)  
(wradr)  
Example for a read access with header 43H:  
header rdadr  
SDR  
SDX  
rddata rddata rddata rddata rddata rddata rddata  
(rdadr)  
(rdadr)  
(rdadr)  
(rdadr)  
(rdadr)  
(rdadr)  
(rdadr)  
Data Sheet  
21  
2001-03-30  
PEF 82912/82913  
Functional Description  
Header 41H: Non-interleaved A-D-D-D Sequence  
This sequence (header 41H) allows in front of the A-D-D-D write access a non-  
interleaved A-D-A-D read access. Generally, it can be used for any register access to  
the address range 20H-7DH.The termination condition of the read access is the reception  
of the wradr. The sequence can have any length and is terminated by the rising edge of  
CS.  
Example for a read/write access with header 41H:  
header rdadr  
rdadr  
wradr wrdata wrdata wrdata  
SDR  
SDX  
(wradr)  
(wradr)  
(wradr)  
rddata  
rddata  
Header 49H: Interleaved A-D-D-D Sequence  
This sequence (header 49H) allows in front of the A-D-D-D write access an interleaved  
A-D-A-D read access. Generally, it can be used for any register access to the address  
range 20H-7DH.The termination condition of the read access is the reception of the  
wradr. The sequence can have any length and is terminated by the rising edge of CS.  
Example for a read/write access with header 49H:  
header rdadr  
rdadr  
wradr wrdata wrdata wrdata  
SDR  
SDX  
(wradr)  
(wradr)  
(wradr)  
rddata rddata  
2.1.2  
Parallel Microcontroller Interface  
The 8-bit parallel microcontroller interface with address decoding on chip allows an easy  
and fast microcontroller access.  
The parallel interface of the Q-SMINTI provides three types of µP busses which are  
selected via pin ALE. The bus operation modes with corresponding control pins are listed  
in Table 6.  
Table 6  
Bus Operation Modes  
Bus Mode  
Pin ALE  
VDD  
Control Pins  
CS, R/W, DS  
CS, WR, RD  
(1) Motorola  
(2) Siemens/Intel non-multiplexed  
(3) Siemens/Intel multiplexed  
VSS  
Edge  
CS, WR, RD, ALE  
The occurrence of an edge on ALE, either positive or negative, at any time during the  
operation immediately selects the interface type (3). A return to one of the other interface  
types is possible only if a hardware reset is issued.  
Data Sheet  
22  
2001-03-30  
PEF 82912/82913  
Functional Description  
Note: For a selected interface mode which does not require all pins (e.g. address pins)  
the unused pins must be tied to VDD.  
A read/write access to the Q-SMINTI registers can be done in multiplexed or non-  
multiplexed mode.  
In non-multiplexed mode the register address must be applied to the address bus (A0-  
A6) for the data access via the data bus (D0-D7).  
In multiplexed mode the address on the address bus (AD0-AD7) is latched in by ALE  
before a read/write access via the address/data bus is performed.  
The Q-SMINTI provides two different ways to address the register contents which can  
be selected with the AMOD bit in the MODE2 register. The address mode after reset is  
the indirect address mode (AMOD = ’0’). Reprogramming into the direct address mode  
(AMOD = ’1’) has to take place in the indirect address mode. Figure 8 illustrates both  
register addressing modes.  
Direct address mode (AMOD = ’1’): The register address to be read or written is directly  
set in the way described above.  
Indirect address mode (AMOD = ’0’):  
• non-muxed: only the LSB of the address bus (A0)  
• muxed: only the LSB of the address-data bus (AD0)  
gets evaluated to address a virtual ADDRESS (0H) and a virtual DATA (1H) register.  
Every access to a target register consists of:  
• a write access (muxed or non-muxed) to ADDRESS to store the target register´s  
address, as well as  
• a read access (muxed or non-muxed) from DATA to read from the target register or  
• a write access (muxed or non-muxed) to DATA to write to the target register  
Data Sheet  
23  
2001-03-30  
PEF 82912/82913  
Functional Description  
Direct Address Mode  
AMOD = ´1´  
Indirect Address Mode  
AMOD = ´0´ (default)  
D7 - D0  
Data  
D7 - D0  
Data  
A6 - A0  
7Fh  
A0  
7Eh  
7Dh  
7Ch  
04h  
03h  
02h  
01h  
00h  
1h  
0h  
DATA  
ADDRESS  
regacces.vsd  
Figure 8  
2.1.3  
Direct/Indirect Register Address Mode  
Microcontroller Clock Generation  
The microcontroller clock is derived from the unregulated 15.36 MHz clock from the  
oscillator and provided by the pin MCLK. Five clock rates are selectable by a  
programmable prescaler which is controlled by the bits MODE1.MCLK and  
MODE1.CDS corresponding to the following table.  
Table 7  
MODE1.  
MCLK Frequencies  
MCLK frequency  
MCLK frequency  
with  
MODE1.CDS = ’1’  
MCLK  
Bits  
with  
MODE1.CDS = ’0’  
0
0
1
1
0
1
0
1
3.84 MHz  
0.96 MHz  
7.68 MHz  
disabled  
7.68 MHz  
1.92 MHz  
15.36 MHz  
disabled  
The clock rate is changed after CS becomes inactive.  
Data Sheet  
24  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.2  
Reset Generation  
Figure 9 shows the organization of the reset generation of the Q-SMINTI.  
•.  
RSS1  
´0´  
´1´  
125µs  
t 250µs  
C/I0 Code Change  
(Exchange Awake)  
RSTO  
´1,x´  
´0,0´  
1  
RSS2,1  
RSS2,1  
´0,1´= open  
t = 125µs  
Watchdog  
Deacti-  
vation  
Delay  
Reset MODE1  
Register  
´1´  
´0´  
Software Reset  
Register (SRES)  
VDDDET  
RES_CI  
RES_HDLC  
RES_S  
POR/UVD  
Reset  
Functional  
Block  
´0´  
´1´  
VDDDET  
RES_U  
1  
Internal Reset  
of all Registers  
RST Pin  
RESETGEN.VSD  
Figure 9  
Reset Generation of the Q-SMINTI1)  
Reset Source Selection  
The internal reset sources C/I code change and Watchdog timer can be output at the low  
active reset pin RSTO. These reset sources can be selected with the RSS2,1 bits in the  
MODE1 register according to Table 8.  
1)  
The ’OR’-gates shall illustrate in a symbolic way, that ’source A active’ or ’source B active’ is forwarded. The  
real polarity of the different sources is not considered.  
Data Sheet  
25  
2001-03-30  
PEF 82912/82913  
Functional Description  
The internal reset sources set the MODE1 register to its reset value.  
Table 8  
Reset Source Selection  
RSS2  
Bit 1  
RSS1  
Bit 0  
C/I Code  
Change  
Watchdog  
Timer  
POR/UVD1) and  
RST  
0
0
1
0
1
0
1
--  
--  
x
/RSTO disabled (= high impedance)  
x
--  
x
x
x
1
--  
1)  
POR/UVD can be enabled/disabled via pin VDDDET  
C/I Code Change (Exchange Awake)  
A change in the downstream C/I channel (C/I0) generates a reset pulse of 125 µs t  
250 µs.  
• Watchdog Timer  
After the selection of the watchdog timer (RSS = ’11’) an internal timer is reset and  
started. During every time period of 128 ms the microcontroller has to program the  
WTC1- and WTC2 bits in the following sequence to reset and restart the watchdog timer:  
WTC1  
WTC2  
1.  
2.  
1
0
0
1
Otherwise the timer expires and a WOV-interrupt (ISTA Register) together with a reset  
out pulse on pin RSTO of 125 µs is generated.  
Deactivation of the watchdog timer is only possible with a hardware reset (including  
expiration of the watchdog timer).  
As in the SCOUT-S, the watchdog timer is clocked with the IOM-2 clocks and works  
only if the internal IOM-2 clocks are active. Hence, the power consumption is  
minimized in state power down.  
Software Reset Register (SRES)  
Several main functional blocks of the Q-SMINTI can be reset separately by software  
setting the corresponding bit in the SRES register. This is equivalent to a hardware reset  
of the corresponding functional block. The reset state is activated as long as the bit is set  
to ’1’.  
Data Sheet  
26  
2001-03-30  
PEF 82912/82913  
Functional Description  
External Reset Input  
At the RST input an external reset can be applied forcing the Q-SMINTI in the reset  
state. This external reset signal is additionally fed to the RSTO output.  
After release of an external reset, the µC has to wait for min. tµC before it starts read or  
write access to the Q-SMINTI (see Table 40).  
Reset Ouput  
If VDDDET is active, then the deactivation of a reset output on RSTO is delayed by  
tDEACT (see Table 41).  
Reset Generation  
The Q-SMINTI has an on-chip reset generator based on a Power-On Reset (POR) and  
Under Voltage Detection (UVD) circuit (see Table 41). The POR/UVD requires no  
external components.  
The POR/UVD circuit can be disabled via pin VDDDET.  
The requirements on VDD ramp-up during power-on reset are described in  
Chapter 5.6.5.  
Clocks and Data Lines During Reset  
During reset the data clock (DCL), the bit clock (BCL), the microcontroller clock1) (MCLK)  
and the frame synchronization (FSC) keep running.  
During reset DD and DU are high; with the exception of:  
• The output C/I code from the U-Transceiver on DD IOM-2 channel 0 is ’DR’ = 0000  
(Value after reset of register UCIR = ’00H’)  
• The output C/I code from the S-Transceiver on DU IOM-2 channel 1 is ’TIM’ = 0000.  
1)  
during a Power-On/UVD Reset, the microcontroller clock MCLK is not running, but starts running as soon as  
timer t  
is started.  
DEAC  
Data Sheet  
27  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.3  
IOM -2 Interface  
The Q-SMINTI supports the IOM-2 interface in terminal mode (DCL=1.536 MHz)  
according to the IOM-2 Reference Guide [13].  
IOM -2 Functional Description  
2.3.1  
The IOM-2 interface consists of four lines: FSC, DCL, DD, DU and optionally BCL. The  
rising edge of FSC indicates the start of an IOM-2 frame. The DCL and the BCL clock  
signals synchronize the data transfer on both data lines DU and DD. The DCL is twice  
the bit rate, the BCL rate is equal to the bit rate. The bits are shifted out with the rising  
edge of the first DCL clock cycle and sampled at the falling edge of the second clock  
cycle. With BCL the bits are shifted out with the rising edge and sampled with the falling  
edge of the single clock cycle.  
The IOM-2 interface can be enabled/disabled with the DIS_IOM bit in the IOM_CR  
register.  
The FSC signal is an 8 kHz frame sync signal. The number of PCM timeslots on the  
receive and transmit lines is determined by the frequency of the DCL clock (or BCL), with  
the 1.536 MHz (BCL=768 kHz) clock 3 channels consisting of 4 timeslots each are  
available.  
®
IOM -2 Frame Structure of the Q-SMINTI  
The frame structure on the IOM-2 data ports (DU,DD) of the Q-SMINTI with a DCL  
clock of 1.536 MHz (or BCL=768 kHz) and if TIC bus is not disabled (IOM_CR.TIC_DIS)  
is shown in Figure 10.  
macro_19  
Figure 10  
IOM -2 Frame Structure of the Q-SMINTI  
Data Sheet  
28  
2001-03-30  
PEF 82912/82913  
Functional Description  
The frame is composed of three channels  
• Channel 0 contains 144-kbit/s of user and signaling data (2B + D), a MONITOR  
programming channel (MON0) and a command/indication channel (CI0) for control  
and programming of e.g. the U-transceiver.  
• Channel 1 contains two 64-kbit/s intercommunication channels (IC), a MONITOR  
programming channel (MON1) and a command/indication channel (CI1) for control  
and programming of e.g. the S-transceiver.  
• Channel 2 is used for D-channel access mechanism (TlC-bus, S/G bit). Additionally,  
channel 2 supports further IC and MON channels.  
IOM -2 Handler  
2.3.2  
The IOM-2 handler offers a great flexibility for handling the data transfer between the  
different functional units of the Q-SMINTI and voice/data devices connected to the  
IOM-2 interface. Additionally it provides a microcontroller access to all time slots of the  
IOM-2 interface via the four controller data access registers (CDA).  
The PCM data of the functional units  
• S-transceiver (S) and the  
• Controller data access (CDA)  
can be configured by programming the time slot and data port selection registers  
(TSDP). With the TSS bits (Time Slot Selection) the PCM data of the functional units can  
be assigned to each of the 12 PCM time slots of the IOM-2 frame. With the DPS bit  
(Data Port Selection) the output of each functional unit is assigned to DU or DD  
respectively. The input is assigned vice versa. With the control registers (CR) the access  
to the data of the functional units can be controlled by setting the corresponding control  
bits (EN, SWAP).  
The IOM-2 handler also provides access to the  
• U and S transceiver  
• MONITOR channel  
• C/I channels (CI0,CI1)  
• TIC bus (TIC)  
The access to these channels is controlled by the registers S_CR, CI_CR and MON_CR.  
The IOM-2 interface with the two Serial Data Strobes (SDS1,2) is controlled by the  
control registers IOM_CR, SDS1_CR and SDS2_CR.  
The following Figure 11 shows the architecture of the IOM-2 handler.  
Data Sheet  
29  
2001-03-30  
PEF 82912/82913  
Functional Description  
CDA Data  
Monitor Data  
DU  
DD  
FSC  
DCL  
TIC Bus Data  
BCL/SCLK  
C/I0 Data  
C/I1 Data  
SDS1  
SDS2  
D/B1/B2 Data  
C/I0 Data  
Figure 11  
Architecture of the IOM-2 Handler  
Data Sheet  
30  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.3.2.1 Controller Data Access (CDA)  
The four controller data access registers (CDA10, CDA11, CDA20, CDA21) provide  
microcontroller access to the 12 IOM-2 time slots and more:  
• looping of up to four independent PCM channels from DU to DD or vice versa over the  
four CDA registers  
• shifting or switching of two independent PCM channels to another two independent  
PCM channels on both data ports (DU, DD). Between reading and writing the data can  
be manipulated (processed with an algorithm) by the microcontroller. If this is not the  
case a switching function is performed.  
• monitoring of up to four time slots on the IOM-2 interface simultaneously  
• microcontroller read and write access to each PCM channel  
The access principle, which is identical for the two channel register pairs CDA10/11 and  
CDA20/21, is illustrated in Figure 12. The index variables x,y used in the following  
description can be 1 or 2 for x, and 0 or 1 for y. The prefix ’CDA_’ from the register names  
has been omitted for simplification.  
To each of the four CDAxy data registers a TSDPxy register is assigned by which the  
time slot and the data port can be determined. With the TSS (Time Slot Selection) bits a  
time slot from 0...11 can be selected. With the DPS (Data Port Selection) bit the output  
of the CDAxy register can be assigned to DU or DD respectively. The time slot and data  
port for the output of CDAxy is always defined by its own TSDPxy register. The input of  
CDAxy depends on the SWAP bit in the control registers CRx.  
If the SWAP bit = ’0’ (swap is disabled) the time slot and data port for the input and output  
of the CDAxy register is defined by its own TSDPxy register.  
If the SWAP bit = ’1’ (swap is enabled) the input port and time slot of the CDAx0 is  
defined by the TSDP register of CDAx1 and the input port and time slot of CDAx1 is  
defined by the TSDP register of CDAx0. The input definition for time slot and data port  
CDAx0 are thus swapped to CDAx1 and for CDAx1 swapped to CDAx0. The output  
timeslots are not affected by SWAP.  
The input and output of every CDAxy register can be enabled or disabled by setting the  
corresponding EN (-able) bit in the control register CDAx_CR. If the input of a register is  
disabled the output value in the register is retained.  
Usually one input and one output of a functional unit (transceiver, CDA register) is  
programmed to a timeslot on IOM-2 (e.g. for B-channel transmission in upstream  
direction the S-transceiver writes data onto IOM-2 and the U-transceiver reads data  
from IOM-2). For monitoring data in such cases a CDA register is programmed as  
described below under “Monitoring Data”. Besides that none of the IOM-2 timeslots  
must be assigned more than one input and output of any functional unit.  
Data Sheet  
31  
2001-03-30  
PEF 82912/82913  
Functional Description  
•.  
TSa  
TSb  
DU  
Control  
Register  
CDA_CRx  
0
0
1
1
Enable  
Enable  
Input  
Swap  
(SWAP)  
output  
(EN_O1)  
input  
(EN_I0)  
input  
(EN_I1)  
output  
(EN_O0)  
1
1
CDAx1  
CDAx0  
1
1
1
1
1
0
0
1
DD  
TSa  
IOM_HAND.FM4  
TSb  
x = 1 or 2; a,b = 0...11  
Figure 12  
Data Access via CDAx0 and CDAx1 register pairs  
Looping and Shifting Data  
Figure 13 gives examples for typical configurations with the above explained control and  
configuration possibilities with the bits TSS, DPS, EN and SWAP in the registers  
TSDPxy or CDAx_CR:  
a) looping IOM-2 time slot data from DU to DD or vice versa (SWAP = ’0’)  
b) shifting data from TSa to TSb and TSc to TSd in both transmission directions (SWAP  
= ’1’)  
c) switching data from TSa to TSb and looping from DU to DD or switching TSc to TSd  
and looping from DD to DU .  
TSa is programmed in TSDP10, TSb in TSDP11, TSc in TSDP20 and TSd in TSDP21.  
Data Sheet  
32  
2001-03-30  
PEF 82912/82913  
Functional Description  
a) Looping Data  
TSa  
TSb  
TSc  
TSd  
DU  
CDA10 CDA11  
CDA20 CDA21  
DD  
DU  
.TSS: TSa  
.DPS  
.SWAP  
TSb  
’0’  
TSc  
’1’  
TSd  
’1’  
’0’  
’0’  
’0’  
b) Shifting Data  
TSa  
TSb  
TSd  
TSc  
CDA10 CDA11  
CDA20 CDA21  
DD  
DU  
.TSS: TSa  
TSb  
’1’  
TSc  
’0’  
TSd  
’1’  
.DPS  
’0’  
.SWAP  
’1’  
’1’  
c) Switching Data  
TSa  
TSb  
TSd  
TSc  
CDA10 CDA11  
CDA20 CDA21  
DD  
.TSS: TSa  
TSb  
’0’  
TSc  
’1’  
TSd  
’1’  
.DPS  
’0’  
.SWAP  
’1’  
’1’  
Figure 13  
Examples for Data Access via CDAxy Registers  
a) Looping Data  
b) Shifting (Switching) Data  
c) Switching and Looping Data  
Data Sheet  
33  
2001-03-30  
PEF 82912/82913  
Functional Description  
Figure 14 shows the timing of looping TSa from DU to DD via CDAxy register. TSa is  
read in the CDAxy register from DU and is written one frame later on DD.  
Figure 15 shows the timing of shifting data from TSa to TSb on DU(DD). In Figure 15a)  
shifting is done in one frame because TSa and TSb didn’t succeed directly one another  
(a = 0...9 and b a+2). In Figure 15b) shifting is done from one frame to the following  
frame. This is the case when the time slots succeed one other (b = a+1) or b is smaller  
than a (b < a).  
At looping and shifting the data can be accessed by the controller between the  
synchronous transfer interrupt (STI) and the status overflow interrupt (STOV). STI and  
STOV are explained in the section ’Synchronous Transfer’. If there is no controller  
intervention the looping and shifting is done autonomously.  
•.  
FSC  
DU  
TSa  
TSa  
CDAxy  
µC *)  
DD  
TSa  
TSa  
*) if access by the µC is required  
Figure 14  
Data Access when Looping TSa from DU to DD  
Data Sheet  
34  
2001-03-30  
PEF 82912/82913  
Functional Description  
a) Shifting TSa TSb within one frame  
(a,b: 0...11 and b a+2)  
FSC  
DU  
(DD)  
TSa  
TSa  
TSb  
CDAxy  
µC *)  
b) Shifting TSa TSb in the next frame  
(a,b: 0...11 and (b = a+1 or b <a)  
FSC  
DU  
TSa  
TSb  
TSa TSb  
(DD)  
CDAxy  
ACK  
µC *)  
*) if access by the µC is required  
Figure 15  
Data Access when Shifting TSa to TSb on DU (DD)  
Data Sheet  
35  
2001-03-30  
PEF 82912/82913  
Functional Description  
Monitoring Data  
Figure 16 gives an example for monitoring of two IOM-2 time slots each on DU or DD  
simultaneously. For monitoring on DU and/or DD the channel registers with even  
numbers (CDA10, CDA20) are assigned to time slots with even numbers TS(2n) and the  
channel registers with odd numbers (CDA11, CDA21) are assigned to time slots with odd  
numbers TS(2n+1). The user has to take care of this restriction by programming the  
appropriate time slots.  
This mode is only valid if two blocks (e.g. both transceivers) are programmed to these  
timeslots and communicating via IOM-2.  
However, if only one block is programmed to this timeslot the timeslots for CDAx0 and  
CDAx1 can be programmed completely independently.  
•.  
a) Monitoring Data  
EN_O:  
EN_I:  
DPS: ’0’  
TSS: TS(2n)  
’0’  
’1’  
’0’  
’1’  
CDA_CR1.  
’0’  
TS(2n+1)  
DU  
CDA10  
CDA20  
CDA11  
CDA21  
DD  
TS(2n)  
TSS:  
TS(2n+1)  
DPS: ’1’  
’1’  
’1’  
’0’  
CDA_CR2.  
’1’  
’0’  
EN_I:  
EN_O:  
Figure 16  
Example for Monitoring Data  
Data Sheet  
36  
2001-03-30  
PEF 82912/82913  
Functional Description  
Monitoring TIC Bus  
Monitoring the TIC bus (TS11) is handled as a special case. The TIC bus can be  
monitored with the registers CDAx0 by setting the EN_TBM (Enable TIC Bus Monitoring)  
bit in the control registers CRx. The TSDPx0 must be set to 08h for monitoring from DU  
or 88h for monitoring from DD. By this it is possible to monitor the TIC bus (TS11) and  
the odd numbered D-channel (TS3) simultaneously on DU and DD.  
Synchronous Transfer  
While looping, shifting and switching the data can be accessed by the controller between  
the synchronous transfer interrupt (STI) and the synchronous transfer overflow interrupt  
(STOV).  
The microcontroller access to each of the CDAxy registers can be synchronized by  
means of four programmable synchronous transfer interrupts (STIxy)1) and synchronous  
transfer overflow interrupts (STOVxy)2) in the STI register.  
Depending on the DPS bit in the corresponding TSDPxy register the STIxy is generated  
two (for DPS=’0’) or one (for DPS=’1’) BCL clock after the selected time slot  
(CDA_TSDPxy.TSS). One BCL clock is equivalent to two DCL clocks.  
In the following description the index xy0 and xy1 are used to refer to two different  
interrupt pairs (STI/STOV) out of the four CDA interrupt pairs (STI10/STOV10, STI11/  
STOV11, STI20/STOV20, STI21/STOV21).  
A STOVxy0 is related to its STIxy0 and is only generated if STIxy0 is enabled and not  
acknowledged. However, if STIxy0 is masked, the STOVxy0 is generated for any other  
STIxy1 which is enabled and not acknowledged.  
Table 9 gives some examples for that. It is assumed that a STOV interrupt is only  
generated because a STI interrupt was not acknowledged before.  
In example 1 only the STIxy0 is enabled and thus STIxy0 is only generated. If no STI is  
enabled, no interrupt will be generated even if STOV is enabled (example 2).  
In example 3 STIxy0 is enabled and generated and the corresponding STOVxy0 is  
disabled. STIxy1 is disabled but its STOVxy1 is enabled, and therefore STOVxy1 is  
generated due to STIxy0. In example 4 additionally the corresponding STOVxy0 is  
enabled, so STOVxy0 and STOVxy1 are both generated due to STIxy0.  
In example 5 additionally the STIxy1 is enabled with the result that STOVxy0 is only  
generated due to STIxy0 and STOVxy1 is only generated due to STIxy1.  
Compared to the previous example STOVxy0 is disabled in example 6, so STOVxy0 is  
not generated and STOVxy1 is only generated for STIxy1 but not for STIxy0.  
1)  
In order to enable the STI interrupts the input of the corresponding CDA register has to be enabled. This is also  
valid if only a synchronous write access is wanted. The enabling of the output alone does not effect an STI  
interrupt.  
In order to enable the STOV interrupts the output of the corresponding CDA register has to be enabled. This  
2)  
is also valid if only a synchronous read access is wanted. The enabling of the input alone does not effect an  
interrupt.  
Data Sheet  
37  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 9  
Examples for Synchronous Transfer Interrupts  
Enabled Interrupts  
(Register MSTI)  
Generated Interrupts  
(Register STI)  
STI  
xy0  
STOV  
-
STI  
xy0  
-
STOV  
-
Example 1  
Example 2  
Example 3  
Example 4  
Example 5  
-
xy0  
-
xy0  
xy1  
xy0  
xy0  
xy1  
xy0  
xy0 ; xy1  
xy0 ; xy1  
xy0 ; xy1  
xy0 ; xy1  
xy0  
xy1  
xy0  
xy1  
xy0 ; xy1  
xy0 ; xy1  
xy1  
xy0  
xy1  
-
Example 6  
Example 7  
xy1  
xy0 ; xy1 ; xy2  
xy0  
xy1  
xy0 ; xy2  
xy1 ; xy2  
Compared to example 5 in example 7 a third STOVxy2 is enabled and thus STOVxy2 is  
generated additionally for both STIxy0 and STIxy1.  
A STOV interrupt is not generated if all stimulating STI interrupts are acknowledged.  
A STIxy must be acknowledged by setting the ACKxy bit in the ASTI register two BCL  
clock (for DPS=’0’) or one BCL clocks (for DPS=’1’) before the time slot which is selected  
for the appropriate STIxy. The interrupt structure of the synchronous transfer is shown  
in Figure 17.  
Data Sheet  
38  
2001-03-30  
PEF 82912/82913  
Functional Description  
•.  
INT  
U
ST  
CIC  
1
U
STOV21  
STOV20  
STOV11  
STOV10  
STI21  
STOV21  
STOV20  
ST  
CIC  
0
STOV11  
STOV10  
STI21  
WOV  
S
ACK21  
ACK20  
ACK11  
ACK10  
ASTI  
WOV  
S
STI20  
STI20  
MOS  
1
MOS  
0
STI11  
STI10  
STI  
STI11  
STI10  
MSTI  
MASK  
ISTA  
Figure 17  
Interrupt Structure of the Synchronous Data Transfer  
Figure 18 shows some examples based on the timeslot structure. Figure a) shows at  
which point in time a STI and STOV interrupt is generated for a specific timeslot. Figure  
b) is identical to example 3 above, figure c) corresponds to example 5 and figure d)  
shows example 4.  
Data Sheet  
39  
2001-03-30  
PEF 82912/82913  
Functional Description  
•.  
: STI interrupt generated  
: STOV interrupt generated for a not acknowledged STI interrupt  
a) Interrupts for data access to time slot 0 (B1 after reset), MSTI.STI10 and MSTI.STOV10 enabled  
xy:  
10  
11  
21  
TS5  
'1'  
20  
TS11  
'1'  
CDA_TDSPxy.TSS:  
MSTI.STIxy:  
MSTI.STOVxy:  
TS0 TS1  
'0'  
'0'  
'1'  
'1'  
'1'  
'1'  
TS11 TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0  
b) Interrupts for data access to time slot 0 (B1 after reset), STOV interrupt used as flag for "last possible CDA  
access"; MSTI.STI10 and MSTI.STOV20 enabled  
xy:  
10  
11  
21  
TS5  
'1'  
20  
TS11  
'1'  
CDA_TDSPxy.TSS:  
MSTI.STIxy:  
MSTI.STOVxy:  
TS0 TS1  
'0'  
'1'  
'1'  
'1'  
'1'  
'0'  
TS11 TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0  
c) Interrupts for data access to time slot 0 and 1 (B1 and B2 after reset), MSTI.STI10, MSTI.STOV10,  
MSTI.STI11 and MSTI.STOV11 enabled  
xy:  
10  
11  
21  
TS5  
'1'  
20  
TS11  
'1'  
CDA_TDSPxy.TSS:  
MSTI.STIxy:  
MSTI.STOVxy:  
TS0 TS1  
'0'  
'0'  
'0'  
'0'  
'1'  
'1'  
TS11 TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0  
d) Interrupts for data access to time slot 0 (B1 after reset), STOV20 interrupt used as flag for "last possible CDA  
access", STOV10 interrupt used as flag for "CDA access failed"; MSTI.STI10, MSTI.STOV10 and  
MSTI.STOV20 enabled  
xy:  
10  
11  
21  
TS5  
'1'  
20  
TS11  
'1'  
CDA_TDSPxy.TSS:  
MSTI.STIxy:  
MSTI.STOVxy:  
TS0 TS1  
'0'  
'0'  
'1'  
'1'  
'1'  
'0'  
TS11 TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0  
sti_stov.vsd  
Figure 18  
Examples for the Synchronous Transfer Interrupt Control with one  
STIxy enabled  
.
Data Sheet  
40  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.3.2.2 Serial Data Strobe Signal  
For time slot oriented standard devices at the IOM-2 interface, the Q-SMINTI provides  
two independent data strobe signals SDS1 and SDS2.  
The two strobe signals can be generated with every 8-kHz-frame and are controlled by  
the registers SDS1/2_CR. By programming the TSS bits and three enable bits  
(ENS_TSS, ENS_TSS+1, ENS_TSS+3) a data strobe can be generated for the IOM-2  
time slots TS, TS+1 and TS+3 (bit7,6) and the combinations of them.  
The data strobes for TS and TS+1 are always 8 bits long (bit7 to bit0) whereas the data  
strobe for TS+3 is always 2 bits long (bit7, bit6).  
FSC  
M M  
R X  
M M  
R X  
D CI0  
CI1  
DD,DU  
B1  
B2 MON0  
IC1  
IC2 MON1  
TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0 TS1  
SDS1,2  
(Example1)  
SDS1,2  
(Example2)  
SDS1,2  
(Example3)  
Example 1: TSS  
ENS_TSS  
= '0H'  
= '0'  
ENS_TSS+1 = '1'  
ENS_TSS+3 = '0'  
Example 2: TSS  
ENS_TSS  
= '5H'  
= '1'  
ENS_TSS+1 = '1'  
ENS_TSS+3 = '0'  
Example 3: TSS  
ENS_TSS  
= '0H'  
= '1'  
ENS_TSS+1 = '1'  
ENS_TSS+3 = '1'  
strobe.vsd  
Figure 19  
Data Strobe Signal Generation  
Data Sheet  
41  
2001-03-30  
PEF 82912/82913  
Functional Description  
Figure 19 shows three examples for the generation of a strobe signal. In example 1 the  
SDS is active during channel B2 on IOM-2, whereas in the second example during IC2  
and MON1. The third example shows a strobe signal for 2B+D channels which is used  
e.g. at an IDSL (144 kbit/s) transmission.  
IOM -2 Monitor Channel  
2.3.3  
The IOM-2 MONITOR channel is utilized for information exchange between the Q-  
SMINTI and other devices in the MONITOR channel.  
The MONTIOR channel data can be controlled by the bits in the MONITOR control  
register (MON_CR). For the transmission of the MONITOR data one of the 3 IOM-2  
channels can be selected by setting the MONITOR channel selection bits (MCS) in the  
MONITOR control register (MON_CR).  
The DPS bit in the same register selects between an output on DU or DD respectively  
and with EN_MON the MONITOR data can be enabled/disabled. The default value is  
MONITOR channel 0 (MON0) enabled and transmission on DD.  
The MONITOR channel of the Q-SMINTI can be used in the following applications  
(refer also to Figure 4 and Figure 5):  
• As a master device the Q-SMINTI can program and control other devices (e.g. PSB  
2161) attached to the IOM-2, which therefore, do not need a microcontroller  
interface.  
• As a slave device the Q-SMINTI is programmed and controlled from a master  
device on IOM-2 (e.g. UTAH). This is used in applications where no microcontroller  
is connected directly to the Q-SMINTI.  
The MONITOR channel operates according to the IOM-2 Reference Guide [13].  
Note: In contrast to the INTC-Q, the Q-SMINTI does neither issue nor react on Monitor  
commands (MON0,1,2,8). Instead, the Q-SMINTI operated in IOM-2 slave  
mode must be programmed via new MONITOR channel concept (see  
Chapter 2.3.3.4), which provides full register access. The Monitor time out  
procedure is available. Reporting of the Q-SMINTI is performed via interrupts.  
2.3.3.1 Handshake Procedure  
The MONITOR channel operates on an asynchronous basis. While data transfers on the  
bus take place synchronized to frame sync, the flow of data is controlled by a handshake  
procedure using the MONITOR Channel Receive (MR) and MONITOR Channel  
Transmit (MX) bits. Data is placed onto the MONITOR channel and the MX bit is  
activated. This data will be transmitted once per 8-kHz frame until the transfer is  
acknowledged via the MR bit.  
Data Sheet  
42  
2001-03-30  
PEF 82912/82913  
Functional Description  
The MONITOR channel protocol is described In the following section and Figure 22  
shall illustrate this. The relevant control and status bits for transmission and reception  
are listed in Table 10 and Table 11.  
Table 10  
Transmit Direction  
Control/  
Register  
Bit  
Function  
Status Bit  
Control  
Status  
MOCR  
MXC  
MIE  
MX Bit Control  
Transmit Interrupt (MDA, MAB, MER) Enable  
Data Acknowledged  
MOSR  
MSTA  
MDA  
MAB  
MAC  
Data Abort  
Transmission Active  
Table 11  
Receive Direction  
Control/  
Register  
Bit  
Function  
Status Bit  
Control  
Status  
MOCR  
MRC  
MRE  
MDR  
MER  
MR Bit Control  
Receive Interrupt (MDR) Enable  
Data Received  
MOSR  
End of Reception  
Data Sheet  
43  
2001-03-30  
PEF 82912/82913  
Functional Description  
µ
µ
P
P
Transmitter  
MON  
Receiver  
MR  
MX  
FF  
1
1
0
1
1
1
MIE = 1  
MOX = ADR  
MXC = 1  
125  
µ
s
FF  
ADR  
MDR Int.  
MAC = 1  
RD MOR (=ADR)  
MRC = 1  
ADR  
0
1
0
0
0
0
MDA Int.  
MOX = DATA1  
DATA1  
DATA1  
MDR Int.  
RD MOR (=DATA1)  
DATA1  
DATA1  
0
0
1
0
MDA Int.  
MOX = DATA2  
DATA2  
DATA2  
1
0
0
0
MDR Int.  
RD MOR (=DATA2)  
DATA2  
DATA2  
0
0
1
0
MDA Int.  
MXC = 0  
FF  
FF  
1
1
0
0
MER Int.  
MRC = 0  
FF  
FF  
1
1
1
1
MAC = 0  
ITD10032  
®
Figure 20  
MONITOR Channel Protocol (IOM -2)  
Before starting a transmission, the microprocessor should verify that the transmitter is  
inactive, i.e. that a possible previous transmission has been terminated. This is indicated  
by a ’0’ in the MONITOR Channel Active MAC status bit.  
After having written the MONITOR Data Transmit (MOX) register, the microprocessor  
sets the MONITOR Transmit Control bit MXC to ’1’. This enables the MX bit to go active  
(0), indicating the presence of valid MONITOR data (contents of MOX) in the  
corresponding frame. As a result, the receiving device stores the MONITOR byte in its  
MONITOR Receive MOR register and generates a MDR interrupt status.  
Alerted by the MDR interrupt, the microprocessor reads the MONITOR Receive (MOR)  
register. When it is ready to accept data (e.g. based on the value in MOR, which in a  
point-to-multipoint application might be the address of the destination device), it sets the  
MR control bit MRC to ’1’ to enable the receiver to store succeeding MONITOR channel  
bytes and acknowledge them according to the MONITOR channel protocol.  
Data Sheet  
44  
2001-03-30  
PEF 82912/82913  
Functional Description  
In addition, it enables other MONITOR channel interrupts by setting MONITOR Interrupt  
Enable (MIE) to ’1’.  
As a result, the first MONITOR byte is acknowledged by the receiving device setting the  
MR bit to ’0’. This causes a MONITOR Data Acknowledge MDA interrupt status at the  
transmitter.  
A new MONITOR data byte can now be written by the microprocessor in MOX. The MX  
bit is still in the active (0) state. The transmitter indicates a new byte in the MONITOR  
channel by returning the MX bit active after sending it once in the inactive state. As a  
result, the receiver stores the MONITOR byte in MOR and generates a new MDR  
interrupt status. When the microprocessor has read the MOR register, the receiver  
acknowledges the data by returning the MR bit active after sending it once in the inactive  
state. This in turn causes the transmitter to generate a MDA interrupt status.  
This "MDA interrupt – write data – MDR interrupt – read data – MDA interrupt"  
handshake is repeated as long as the transmitter has data to send. Note that the  
MONITOR channel protocol imposes no maximum reaction times to the microprocessor.  
When the last byte has been acknowledged by the receiver (MDA interrupt status), the  
microprocessor sets the MONITOR Transmit Control bit MXC to ’0’. This enforces an  
inactive (’1’) state in the MX bit. Two frames of MX inactive signifies the end of a  
message. Thus, a MONITOR Channel End of Reception MER interrupt status is  
generated by the receiver when the MX bit is received in the inactive state in two  
consecutive frames. As a result, the microprocessor sets the MR control bit MRC to 0,  
which in turn enforces an inactive state in the MR bit. This marks the end of the  
transmission, making the MONITOR Channel Active MAC bit return to ’0’.  
During a transmission process, it is possible for the receiver to ask a transmission to be  
aborted by sending an inactive MR bit value in two consecutive frames. This is effected  
by the microprocessor writing the MR control bit MRC to ’0’. An aborted transmission is  
indicated by a MONITOR Channel Data Abort MAB interrupt status at the transmitter.  
The MONITOR transfer protocol rules are summarized in the following section  
• A pair of MX and MR in the inactive state for two or more consecutive frames indicates  
an idle state or an end of transmission.  
• A start of a transmission is initiated by the transmitter by setting the MXC bit to ’1’  
enabling the internal MX control. The receiver acknowledges the received first byte by  
setting the MR control bit to ’1’ enabling the internal MR control.  
• The internal MX, MR control indicates or acknowledges a new byte in the MON slot  
by toggling MX, MR from the active to the inactive state for one frame.  
• Two frames with the MR-bit set to inactive indicate a receiver request for abort.  
• The transmitter can delay a transmission sequence by sending the same byte  
continuously. In that case the MX-bit remains active in the IOM-2 frame following the  
first byte occurrence. Delaying a transmission sequence is only possible while the  
receiver MR-bit and the transmitter MX-bit are active.  
Data Sheet  
45  
2001-03-30  
PEF 82912/82913  
Functional Description  
• Since a double last-look criterion is implemented the receiver is able to receive the  
MON slot data at least twice (in two consecutive frames), the receiver waits for the  
acknowledge of the reception of two identical bytes in two successive frames.  
• To control this handshake procedure a collision detection mechanism is implemented  
in the transmitter. This is done by making a collision check per bit on the transmitted  
MONITOR data and the MX bit.  
• Monitor data will be transmitted repeatedly until its reception is acknowledged or the  
transmission time-out timer expires.  
• Two frames with the MX bit in the inactive state indicates the end of a message  
(EOM).  
• Transmission and reception of monitor messages can be performed simultaneously.  
This feature is used by the device to send back the response before the transmission  
from the controller is completed (the device does not wait for EOM from controller).  
2.3.3.2 Error Treatment  
In case the device does not detect identical monitor messages in two successive frames,  
transmission is not aborted. Instead the device will wait until two identical bytes are  
received in succession.  
A transmission is aborted by the device if  
• an error in the MR handshaking occurs  
• a collision on the IOM-2 bus of the MONITOR data or MX bit occurs  
• the transmission time-out timer expires  
A reception is aborted by the device if  
• an error in the MX handshaking occurs or  
• an abort request from the opposite device occurs  
MX/MR Treatment in Error Case  
In the master mode the MX/MR bits are under control of the microcontroller through MXC  
or MRC, respectively. An abort is indicated by an MAB interrupt or MER interrupt,  
respectively.  
In the slave mode the MX/MR bits are under control of the device. An abort is always  
indicated by setting the MX/MR bit inactive for two or more IOM-2 frames. The  
controller must react with EOM.  
Figure 21 shows an example for an abort requested by the receiver, Figure 22 shows  
an example for an abort requested by the transmitter and Figure 23 shows an example  
for a successful transmission.  
Data Sheet  
46  
2001-03-30  
PEF 82912/82913  
Functional Description  
IOM -2 Frame No.  
1
2
3
4
5
6
7
1
MX (DU)  
EOM  
0
1
MR (DD)  
0
Abort Request from Receiver  
mon_rec-abort.vsd  
Figure 21  
Monitor Channel, Transmission Abort requested by the Receiver  
IOM -2 Frame No.  
1
2
3
4
5
6
7
1
MR (DU)  
EOM  
0
1
MX (DD)  
0
Abort Request from Transmitter  
mon_tx-abort.vsd  
Figure 22  
Monitor Channel, Transmission Abort requested by the Transmitter  
IOM -2 Frame No.  
1
2
3
4
5
6
7
8
1
0
1
0
MR (DU)  
MX (DD)  
EOM  
mon_norm.vsd  
Figure 23  
Monitor Channel, Normal End of Transmission  
Data Sheet  
47  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.3.3.3 MONITOR Channel Programming as a Master Device  
The master mode is selected by default if one of the microcontroller interfaces is  
selected. The monitor data is written by the microcontroller in the MOX register and  
transmitted via IOM-2 DD(DU) line to the programmed/controlled device e.g. ARCOFI-  
BA PSB 2161. The transfer of the commands in the MON channel is regulated by the  
handshake protocol mechanism with MX, MR.  
2.3.3.4 MONITOR Channel Programming as a Slave Device  
MONITOR slave mode can be selected by pinstrapping the microcontroller interface pins  
according to Table 4. All programming data required by the device is received in the  
MONITOR time slot on the IOM-2 and is transferred to the MOR register. The transfer  
of the commands in the MON channel is regulated by the handshake protocol  
mechanism with MX, MR which is described in the previous Chapter 2.3.3.1.  
The first byte of the MONITOR message must contain in the higher nibble the MONITOR  
channel address code which is ’1000’ for the Q-SMINTI. The lower nibble distinguishes  
between a programming command and an identification command.  
Identification Command  
In order to be able to identify unambiguously different hardware designs of the Q-  
SMINTI by software, the following identification command is used:  
DU 1st byte value  
DU 2nd byte value  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
The Q-SMINTI responds to this identification sequence by sending a identification  
sequence:  
DD 1st byte value  
DD 2nd byte value  
1
0
0
0
0
0
0
0
0
0
DESIGN  
<IDENT>  
DESIGN: six bit code, specific for each device in order to identify differences in operation  
(see “ID - Identification Register” on Page 164).  
This identification sequence is usually done once, when the Q-SMINTI is connected for  
the first time. This function is used so that the software can distinguish between different  
possible hardware configurations. However this sequence is not compulsory.  
Programming Sequence  
The programming sequence is characterized by a ’1’ being sent in the lower nibble of the  
received address code. The data structure after this first byte is equivalent to the  
structure of the serial control interface described in chapter Chapter 2.1.1.  
Data Sheet  
48  
2001-03-30  
PEF 82912/82913  
Functional Description  
DU 1st byte value  
DU 2nd byte value  
DU 3rd byte value  
1
0
0
0
0
0
0
1
Header Byte  
Command/  
R/W  
Register Address  
DU 4th byte value  
Data 1  
DU (nth + 3) byte value  
Data n  
All registers can be read back when setting the R/W bit to ’1’. The Q-SMINTI responds  
by sending his IOM-2 specific address byte (81h) followed by the requested data.  
Note: Application Hint:  
It is not allowed to disable the MX- and MR-control in the programming device at  
the same time! First, the MX-control must be disabled, then the µC has to wait for  
an End of Reception before the MR-control may be disabled. Otherwise, the Q-  
SMINTI does not recognize an End of Reception.  
2.3.3.5 Monitor Time-Out Procedure  
To prevent lock-up situations in a MONITOR transmission a time-out procedure can be  
enabled by setting the time-out bit (TOUT) in the MONITOR configuration register  
(MCONF). An internal timer is always started when the transmitter must wait for the reply  
of the addressed device or for transmit data from the microcontroller. After 40 IOM-2  
frames (5 ms) without reply the timer expires and the transmission will be aborted with  
an EOM (End of Message) command by setting the MX bit to ’1’ for two consecutive  
IOM-2 frames.  
2.3.3.6 MONITOR Interrupt Logic  
Figure 24 shows the interrupt structure of the MONITOR handler. The MONITOR Data  
Receive interrupt status MDR has two enable bits, MONITOR Receive interrupt Enable  
(MRE) and MR bit Control (MRC). The MONITOR channel End of Reception MER,  
MONITOR channel Data Acknowledged MDA and MONITOR channel Data Abort MAB  
interrupt status bits have a common enable bit MONITOR Interrupt Enable MIE.  
MRE set to “0” prevents the occurrence of MDR status, including when the first byte of  
a packet is received. When MRE is set to “1” but MRC is set to “0”, the MDR interrupt  
status is generated only for the first byte of a receive packet. When both MRE and MRC  
are set to “1”, MDR is always generated and all received MONITOR bytes - marked by  
a 1-to-0 transition in MX bit - are stored. Additionally, a MRC set to “1” enables the control  
of the MR handshake bit according to the MONITOR channel protocol.  
Data Sheet  
49  
2001-03-30  
PEF 82912/82913  
Functional Description  
ISTA  
U
MASK  
U
ST  
ST  
CIC  
1
CIC  
0
WOV  
S
WOV  
S
MDR  
MER  
MRE  
MOS  
0
MOS  
1
MIE  
MDA  
MAB  
MOCR  
MOSR  
INT  
Figure 24  
2.3.4  
MONITOR Interrupt Structure  
C/I Channel Handling  
The Command/Indication channel carries real-time status information between the Q-  
SMINTI and another device connected to the IOM-2.  
1) C/I0 channel lies in IOM-2 channel 0 and access may be arbitrated via the TIC bus  
access protocol. In this case the arbitration is done in IOM-2 channel 2.  
The C/I0 channel is accessed via register CIR0 (received C/I0 data from DD) and  
register CIX0 (transmitted C/I0 data to DU). The C/I0 code is four bits long.  
In the receive direction, the code from layer-1 is continuously monitored, with an interrupt  
being generated any time a change occurs (ISTA.CIC).  
C/I0 only: a new code must be found in two consecutive IOM-2 frames to be considered  
valid and to trigger a C/I code change interrupt status (double last look criterion).  
In the transmit direction, the code written in CIX0 is continuously transmitted in C/I0.  
2) A second C/I channel (called C/I1) lies in IOM-2 channel 1 and is used to convey real  
time status information of the on-chip S-transceiver or an external device. The C/I1  
channel consists of four or six bits in each direction. The width can be changed from 4  
bit to 6 bit by setting bit CIX1.CICW.  
Data Sheet  
50  
2001-03-30  
PEF 82912/82913  
Functional Description  
In 4-bit mode 6-bits are written whereby the higher 2 bits must be set to “1” and 6-bits  
are read whereby only the 4 LSBs are used for comparison and interrupt generation (i.e.  
the higher two bits are ignored).  
The C/I1 channel is accessed via registers CIR1 and CIX1. The connection of CIR1 and  
CIX1 to DD and DU, respectively, can be selected by setting bit CI_CR.DPS_CI1. A  
change in the received C/I1 code is indicated by an interrupt status without double last  
look criterion.  
CIC Interrupt Logic  
Figure 25 shows the CIC interrupt structure.  
The two corresponding status bits CIC0 and CIC1 are read in CIR0 register. CIC1 can  
be individually disabled by clearing the enable bit CI1E in the CIX1 register. In this case  
the occurrence of a code change in CIR1 will not be displayed by CIC1 until the  
corresponding enable bit has been set to one.  
Bits CIC0 and CIC1 are cleared by a read of CIR0.  
An interrupt status is indicated every time a valid new code is loaded in CIR0 or CIR1.  
The CIR0 is buffered with a FIFO size of two. If a second code change occurs in the  
received C/I channel 0 before the first one has been read, immediately after reading of  
CIR0 a new interrupt will be generated and the new code will be stored in CIR0. If several  
consecutive codes are detected, only the first and the last code are obtained at the first  
and second register read, respectively.  
For CIR1 no FIFO is available. The actual code of the received C/I channel 1 is always  
stored in CIR1.  
MASK  
U
ISTA  
U
ST  
CIC  
0
ST  
CIC  
1
CIC0  
CIC1  
CIR0  
CI1E  
CIX1  
WOV  
S
WOV  
S
MOS  
0
MOS  
1
INT  
Figure 25  
CIC Interrupt Structure  
Data Sheet  
51  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.3.5  
D-Channel Access Control  
The upstream D-channel is arbitrated between the S-bus and external HDLC controllers  
via the TIC bus (S/G, BAC, TBA bits) according to the IOM-2 Reference Guide1).  
Further to the implementation in the INTC-Q it is possible, to set the priority (8 or 10) of  
all HDLC-controllers connected to IOM-2, which is particularly useful for use of the Q-  
SMINTI together with the UTAH.  
2.3.5.1 Application Examples for D-Channel Access Control  
Figure 26 and Figure 27 show different scenarios for the local D-channel arbitration  
between the S-bus and the microcontroller.  
Q-SMINTI  
BAC  
E-Bit  
Arbitr.  
S
U
D
D
S/G  
Prio  
IOM-2 i/f  
µP - i/f  
•µC has access to BAC-Bit  
and S/G-bit on IOM-2.  
•Access to TBA generally not  
required if only one local D-channel  
source.  
BAC  
C  
HDLC  
S/G  
µC  
e.g. UTAH;  
MPC860  
IOM-2  
Figure 26  
D-Channel Arbitration: µC with HDLC and Direct Access to TIC Bus  
1)  
The A/B-bit is not supported by the U-transceiver  
Data Sheet  
52  
2001-03-30  
PEF 82912/82913  
Functional Description  
Q-SMINTI  
BAC  
S/G  
E-Bit  
Arbitr.  
S
U
BAC  
D
D
S/G  
CIX0  
Prio  
C/I Channel  
Handler  
CIR0  
IOM-2 i/f  
µP - i/f  
.
µC has access to BAC, TBA-Bit  
and S/G-bit  
C  
via TIC-Bus Handler  
•µC must poll S/G bit until S/G=0,  
then transmit D-channel  
HDLC  
µC  
e.g.  
MC68302  
IOM-2  
Figure 27  
D-Channel Arbitration: µC with HDLC and no Access to TIC Bus  
2.3.5.2 TIC Bus Handling  
The TIC bus is implemented to organize the access to the C/I0-channel and to the D-  
channel from up to 7 D-channels HDLC controllers. The arbitration mechanism must be  
activated by setting MODEH.DIM2-0=00x.  
The arbitration mechanism is implemented in the last octet in IOM-2 channel 2 of the  
IOM-2 interface (see Figure 28). An access request to the TIC bus may either be  
generated by software (µC access to the C/I0-channel via CIX0 register) or by an  
external D-channel HDLC controller (transmission of an HDLC frame in the D-channel).  
A software access request to the bus is effected by setting the BAC bit in register CIX0  
to ’1’ (resulting in BAC = ’0’ on IOM-2).  
In the case of an access request by the Q-SMINTI, the Bus Accessed-bit BAC (bit 5 of  
last octet of CH2 on DU, see Figure 28) is checked for the status "bus free“, which is  
indicated by a logical ’1’. If the bus is free, the Q-SMINTI transmits its individual TIC bus  
address TAD programmed in the CIX0 register (CIX0.TBA2-0). While being transmitted  
the TIC bus address TAD is compared bit by bit with the value read back on DU. If a sent  
bit set to ’1’ is read back as ’0’ because of the access of an external device with a lower  
TAD, the Q-SMINTI withdraws immediately from the TIC bus, i.e. the remaining TAD  
bits are not transmitted. The TIC bus is occupied by the device which sends and reads  
back its address error-free. If more than one device attempt to seize the bus  
simultaneously, the one with the lowest address values wins. This one will set BAC=0 on  
TIC bus and starts D-channel transmission in the same frame.  
Data Sheet  
53  
2001-03-30  
PEF 82912/82913  
Functional Description  
MR  
MX  
MR  
MX  
TAD  
BAC  
B1  
B2  
MON0  
D
CI0  
IC1  
IC2  
MON1  
CI1  
DU  
BAC  
TAD  
1
ITD02575.vsd  
2
0
TIC-BUS Address (TAD 2 - 0)  
Bus Accessed ("1" no TIC-BUS Access)  
Figure 28  
Structure of Last Octet of Ch2 on DU  
When the TIC bus is seized by the Q-SMINTI, the bus is identified to other devices as  
occupied via the DU Ch2 Bus Accessed-bit state ’0’ until the access request is  
withdrawn. After a successful bus access, the Q-SMINTI is automatically set into a  
lower priority class, that is, a new bus access cannot be performed until the status "bus  
free" is indicated in two successive frames.  
If none of the devices connected to the IOM-2 interface request access to the D and C/  
I0 channels, the TIC bus address 7 will be present. The device with this address will  
therefore have access, by default, to the D and C/I0 channels.  
Note: Bit BAC (CIX0 register) should be reset by the µC when access is no more  
requested, to grant other devices access to the D and C/I0 channels.  
2.3.5.3 Stop/Go Bit Handling  
The availability of the DU D channel is indicated in bit 5 "Stop/Go" (S/G) of the last octet  
in DD channel 2 (Figure 29). The arbitration mechanism must be activated by setting  
MODEH.DIM2-0=0x1.  
S/G = 1 : stop  
S/G = 0 : go  
The Stop/Go bit is available to other layer-2 devices connected to the IOM-2 interface  
to determine if they can access the D channel in upstream direction.  
Data Sheet  
54  
2001-03-30  
PEF 82912/82913  
Functional Description  
MR  
MX  
MR  
MX  
S/G  
A/B  
MON  
0
B1  
B2  
D
CI0  
IC1  
IC2  
MON1  
CI1  
DD  
S/G A/B  
ITD09693.vsd  
Stop/Go  
Available/Blocked  
Figure 29  
Structure of Last Octet of Ch2 on DD  
2.3.5.4 D-Channel Arbitration  
In intelligent NT applications (selected via register S_MODE.MODE2-0) the Q-SMINTI  
has to share the upstream D-channel with one or more D-channel controllers on the  
IOM-2 interface and with all connected TEs on the S interface.  
The S-transceiver incorporates an elaborate state machine for D-channel priority  
handling on IOM-2 (Chapter 2.3.5.5). For the access to the D-channel a similar  
arbitration mechanism as on the S interface (writing D-bits, reading back E-bits) is  
performed for all D-channel sources on IOM-2. Due to this an equal and fair access is  
guaranteed for all D-channel sources on both the S interface and the IOM-2 interface.  
The access to the upstream D-channel is handled via the S/G bit for the HDLC  
controllers and via E-bit for all connected terminals on S (E-bits are inverted to block the  
terminals on S). Furthermore, if more than one HDLC source is requesting D-channel  
access on IOM-2 the TIC bus mechanism is used (see Chapter 2.3.5.2).  
The arbiter permanently counts the “1s” in the upstream D-channel on IOM-2. If the  
necessary number of “1s” is counted and an HDLC controller on IOM-2 requests  
upstream D-channel access (BAC bit is set to 0), the arbiter allows this D-channel  
controller immediate access and blocks other TEs on S (E-bits are inverted). Similar as  
on the S-interface the priority for D-channel access on IOM-2 can be configured to 8 or  
10 (S_CMD.DPRIO).  
The configuration settings of the Q-SMINTI in intelligent NT applications are  
summarized in Table 12.  
Data Sheet  
55  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 12  
Q-SMINTI Configuration Settings in Intelligent NT Applications  
Functional Configuration  
Configuration Setting  
Block  
Description  
Layer 1  
Select Intelligent  
NT mode  
S-Transceiver Mode Register:  
S_MODE.MODE0 = 0 (NT state machine)  
or  
S_MODE.MODE0 = 1 (LT-S state machine)  
S_MODE.MODE1 = 1  
S_MODE.MODE2 = 1  
Layer 2  
Enable S/G bit and  
TIC bus evaluation  
D-channel Mode Register:  
MODEH.DIM2-0 = 001  
Note: For mode selection in the S_MODE register the MODE1/2 bits are used to select  
intelligent NT mode, MODE0 selects NT or LT-S state machine.  
With the configuration settings shown above the Q-SMINTI in intelligent NT  
applications provides for equal access to the D-channel for terminals connected to the  
S-interface and for D-channel sources on IOM-2.  
2.3.5.5 State Machine of the D-Channel Arbiter  
Figure 30 gives a simplified view of the state machine of the D-channel arbiter. CNT is  
the number of ’1’ on the IOM-2 D-channel and BAC corresponds to the BAC-bit on  
IOM-2. The number n depends on configuration settings (selected priority 8 or 10) and  
the condition of the previous transmission, i.e. if an abort was seen (n = 8 or 10,  
respectively) or if the last transmission was successful (n = 9 or 11, respectively).  
Data Sheet  
56  
2001-03-30  
PEF 82912/82913  
Functional Description  
RST=0, A/B=0, Mode=0xx  
IN  
BAC  
State  
S/G  
DCI  
E
OUT  
BAC = 1 & DCI = 0  
READY  
(CNT  
2 & D=0)  
CNT ≥ 6  
& [BAC = 1 or (BAC = 0 & CNT  
< n)]  
S/G = 1  
E = D 1)2)  
(BAC=1 & DCI=0)  
BAC = d.c. DCI = d.c.  
LOCAL ACCESS  
Transmit / Stop Flag  
DCI=1)  
(BAC=0 or  
& CNT  
BAC = d.c. DCI = 0  
S ACCESS  
n
S/G = 0  
E = D  
CNT = 6  
S/G = 1  
E = D1)  
BAC = 0 or DCI = 1  
LOCAL ACCESS  
Wait for Start Flag  
1) Setting DCI = 1 causes E = D  
2) Setting A/B = 0 causes E = D  
S/G = 0  
E = D  
D-Channel_Arbitration.vsd  
Figure 30  
State Machine of the D-Channel Arbiter (Simplified View)1)  
Table 13 lists the major differences of the D-channel arbiter´s state machine between Q-  
SMINTI and INTC-Q [12]  
•:  
Table 13  
Major Differences D-Channel Arbiter INTC-Q and Q-SMINTI  
INTC-Q  
Q-SMINTI  
Automatically entered from Not available, initial state is  
State ’IDLE’  
(S/G=0, E=D)  
state ’READY’ or  
’READY’ (S/G=1, E=D)  
’S ACCESS’ after CNT=n  
BAC-bit  
Ignored  
Local HDLC must tie BAC =  
’0’ to enter state ’LOCAL  
ACCESS’  
D-channel inhibit  
Not possible  
S-MODE.DCH_INH  
Alternative to BAC-bit to  
enter state ’LOCAL  
ACCESS’  
1)  
If the S-transceiver is reset by SRES.RES_S = ’1’ or disabled by S_CONF0.DIS_TR = ’1’, then the D-channel  
arbiter is in state Ready (S/G = ’1’), too. The S/G evaluation of the HDLC has to be disabled in this case;  
otherwise, the HDLC is not able to send data.  
Data Sheet  
57  
2001-03-30  
PEF 82912/82913  
Functional Description  
1. Local D-Channel Controller Transmits Upstream  
In the initial state (’Ready’ state) neither the local D-channel sources nor any of the  
terminals connected to the S-bus transmit in the D-channel.  
The Q-SMINTI S-transceiver thus receives BAC = “1” (IOM-2 DU line) and transmits  
S/G = “1” (IOM-2 DD line). The access will then be established according to the  
following procedure:  
• Local D-channel source verifies that BAC bit is set to ONE (currently no bus access).  
• Local D-channel source issues TIC bus address and verifies that no controller with  
higher priority requests transmission (TIC bus access must always be performed even  
if no other D-channel sources are connected to IOM-2).  
• Local D-channel source issues BAC = “0” to block other sources on IOM-2 and to  
announce D-channel access.  
• Q-SMINTI S-transceiver pulls S/G bit to ZERO (’Local Access’ state) as soon as  
CNT n (see note) to allow sending D-channel data from the entitled source.  
Q-SMINTI S-transceiver transmits inverted echo channel (E bits) on the S-bus to  
block all connected S-bus terminals (E = D).  
• Local D-channel source commences with D data transmission on IOM-2 as long as  
it receives S/G = “0”.  
• After D-channel data transmission is completed the controller sets the BAC bit to  
ONE.  
• Q-SMINTI S-transceiver transmits non-inverted echo (E = D).  
• Q-SMINTI S-transceiver pulls S/G bit to ONE (’Ready’ state) to block the D-channel  
controller on IOM-2.  
Note: If right after D-data transmission the D-channel arbiter goes to state ’Ready’ and  
the local D-channel source wants to transmit again, then it may happen that the  
leading ’0’ of the start flag is written into the D-channel before the D-channel  
source recognizes that the S/G bit is pulled to ’1’ and stops transmission. In order  
to prevent unintended transitions to state ’S-Access’, the additional condition CNT  
2 is introduced. As soon as CNT n, the S/G bit is set to ’0’ and the D-channel  
source may start transmission again (if TIC bus is occupied). This allows an equal  
access for D-channel sources on IOM-2 and on the S interface.  
2. Terminal Transmits D-Channel Data Upstream  
The initial state is identical to that described in the last paragraph. When one of the  
connected S-bus terminals needs to transmit in the D-channel, access is established  
according to the following procedure:  
• S-transceiver recognizes that the D-channel on the S-bus is active via D = ’0’.  
• S-transceiver transfers S-bus D-channel data transparently through to the upstream  
IOM-2 bus.  
Data Sheet  
58  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.3.6  
Activation/Deactivation of IOM®-2 Interface  
The deactivation procedure of the IOM-2 interface is shown in Figure 31. After  
detecting the code DI (Deactivation Indication) the Q-SMINTI responds by transmitting  
DC (Deactivation Confirmation) during subsequent frames and stops the timing signals  
after the fourth frame. The clocks stop at the end of the C/I-code in IOM-2 channel 0.  
a)  
IOM R -2 Interface  
deactivated  
FSC  
DI  
DI  
DI  
DI  
DI  
DI  
DIN  
DR  
DR  
DC  
DC  
DC  
DC  
DOUT  
Detail see Fig.b  
b)  
IOM R -2 Interface  
deactivated  
DCL  
DIN  
D
C / Ι  
C / Ι  
C / Ι  
C / Ι  
ITD10292  
Figure 31  
Deactivation of the IOM®-2 Clocks  
Conditions for Power-Down  
If none of the following conditions is true, the IOM-2 interface can be switched off,  
reducing power consumption to a minimum.  
• S-transceiver is not in state ’Deactivated’  
• Signal INFO0 on the S-interface  
• Uk0-transceiver is not in state ’Deactivated’  
• Pin DU is low (either at the IOM-2 interface or via IOM_CR.SPU)  
• External pin EAW External Awake is low  
• Bit MODE 1.CFS = ’0’  
• Stop on the correct place in the IOM-2 frame. DCL must be low during power down  
(stop on falling edge of DCL) (see Figure 31).  
Data Sheet  
59  
2001-03-30  
PEF 82912/82913  
Functional Description  
A deactivated IOM-2 can be reactivated by one of the following methods:  
• Pulling pin DU line low:  
– directly at the IOM-2 interface  
– via the µP interface with "Software Power Up" (IOM_CR:SPU bit)  
• Pulling pin EAW ‘External Awake‘ low  
• Setting ‘Configuration Select‘ MODE1:CFS bit = ’0’  
• Level detection at the S-interface  
• Activation from the U-interface  
2.4  
U-Transceiver  
The state machine of the U-Transceiver is based on the NT state machine in the PEB /  
PEF 8191 documentation [12].  
Note: ’Self test request’ and ’Self test passed’ are not executed by the U-transceiver  
The U-transceiver is configured and controlled via the registers described in  
Chapter 4.11. The U-transceiver is always in IOM-2 channel 0. It is possible to select  
between a state machine that simplifies programming (see Chapter 2.4.10.6) and the  
state machine as known from the PEB / PEF 8091 (see Chapter 2.4.10.2).  
2.4.1  
2B1Q Frame Structure  
Transmission on the U2B1Q-interface is performed at a rate of 80 kbaud. The code used  
is reducing two bits to one quaternary symbol (2B1Q).  
Data is grouped together into U-superframes of 12 ms each. Each superframe consists  
of eight basic frames which begin with a synchronization word and contain 222 bits of  
information. The first basic frame of a superframe starts with an inverted synchword  
(ISW) compared to the other basic frames (SW). The structure of one U-superframe is  
illustrated in Figure 32 and Figure 33.  
ISW 1. Basic Frame SW  
2. Basic Frame . . .  
SW  
8. Basic Frame  
<---12 ms--->  
Figure 32  
U-Superframe Structure  
Data Sheet  
60  
2001-03-30  
PEF 82912/82913  
Functional Description  
(I) SW  
12 × 2B + D  
M1 – M6  
(Inverted) Synch Word  
18 Bit (9 Quat)  
User Data  
216 Bits (108 Quat)  
Maintenance Data  
6 Bits (3 Quat)  
<---1,5 ms--->  
Figure 33  
U-Basic Frame Structure  
Out of the 222 information bits 216 contain 2B + D data from 12 IOM®-frames, the  
remaining 6 bits are used to transmit maintenance information. Thus 48 maintenance  
bits are available per U-superframe. They are used to transmit two EOC-messages (24  
bit), 12 Maintenance (overhead) bits and one checksum (12 bit).  
Table 14  
U-Superframe Format  
Fram- 2B + Overhead Bits (M1 – M6)  
ing  
1 – 9  
D
Quat  
Position  
s
10 – 118 s 118 m 119 s 119 m 120 s 120 m  
117  
Bit  
Position  
s
1 – 18 19 – 235  
234  
236  
237  
238  
239  
240  
Super  
Basic  
Sync  
Frame # Frame # Word  
2B + M1  
D
M2  
M3  
M4  
M5  
1
M6  
1
1
1
2
3
4
5
6
ISW  
SW  
SW  
SW  
SW  
SW  
2B + EOC EOC EOC ACT/  
a1 a2 a3 ACT  
2B + EOC EOC EOC DEA /  
dm i1 i2 PS1  
2B + EOC EOC EOC SCO/  
i3 i4 i5 PS2  
2B + EOC EOC EOC 1/ NTM CRC3 CRC4  
i6 i7 i8  
2B + EOC EOC EOC 1/ CSO CRC5 CRC6  
a1 a2 a3  
2B + EOC EOC EOC  
dm i1 i2  
D
1
FEBE  
D
CRC1 CRC2  
D
D
D
1
CRC7 CRC8  
D
Data Sheet  
61  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 14  
U-Superframe Format (cont’d)  
Fram- 2B + Overhead Bits (M1 – M6)  
ing  
D
7
8
SW  
2B + EOC EOC EOC UOA /  
i3 i4 i5 SAI  
2B + EOC EOC EOC AIB /  
i6 i7 i8 NIB  
CRC9 CRC  
10  
D
SW  
CRC CRC  
D
11  
12  
2,3…  
LT- to NT dir. > /  
< NT- to LT dir.  
– ISW Inverted Synchronization Word (quad):  
– SW Synchronization Word (quad):  
– CRC Cyclic Redundancy Check  
– 3 – 3 + 3 + 3 + 3 – 3 + 3 – 3 – 3  
+ 3 + 3 – 3 – 3 – 3 + 3 – 3 + 3 + 3  
– EOC Embedded Operation Channel  
a
= address bit  
d/m = data / message bit  
= information (data / message)  
i
– ACT Activation bit  
– DEA Deactivation bit  
– CSO Cold Start Only  
– UOA U-Only Activation  
– SAI S-Activity Indicator  
– FEBE Far-end Block Error  
– PS1 Power Status Primary Source  
ACT = (1) –> Layer 2 ready for communication  
DEA = (0) –> LT informs NT that it will turn off  
CSO = (1) –> NT-activation with cold start only  
UOA = (0) –> U-only activated  
SAI = (0) –> S-interface is deactivated  
FEBE = (0) –> Far-end block error occurred  
PS1 = (1) –> Primary power supply ok  
– PS2 Power Status Secondary Source PS2 = (1) –> Secondary power supply ok  
– NTM NT-Test Mode  
NTM = (0) –> NT busy in test mode  
– AIB Alarm Indication Bit  
– NIB Network Indication Bit  
– SCO Start on Command only bit  
AIB = (0) –> Interruption (according to ANSI)  
NIB = (1) –> no function (reserved for network use)  
– 1  
(currently not defined by ANSI/ETSI)  
can be accessed by the system interface for proprietary use  
The principle signal flow is depicted in Figure 34 and Figure 35. The data is first  
grouped in bits that are covered by the CRC and bits that are not. After the CRC  
generation the bits are arranged in the proper sequence according to the 2B1Q frame  
format, encoded and finally transmitted.  
In receive direction the data is first decoded, descrambled, deframed and handed over  
for further processing.  
Data Sheet  
62  
2001-03-30  
PEF 82912/82913  
Functional Description  
U2B1Q-Fram er  
(M-bit handling acc. to ETR080)  
Tone/Pulse  
Patterns  
M
U
X
Sync/Inv. Sync  
M1,2,3 (EOC)  
2B+D, M4  
M
U
X
M5,6 except CRC  
2B1Q Encoding  
Scrambler  
M
U
X
M4  
M
CRC Generation  
U
X
2B+D  
Control  
uframer.emf  
Figure 34  
U2B1Q Framer - Data Flow Scheme  
M1,2,3 (EOC)  
U2B1Q-Deframer  
(M-bit handling acc. to ETR080)  
M5,6 except CRC  
D
E
CRC Check  
D
E
M
U
X
Descrambler  
M
U
X
2B1Q Decoding  
M4  
D
E
M
U
X
Sync/Inv. Sync  
2B+D  
Control  
udeframer.emf  
Figure 35  
U2B1Q Deframer - Data Flow Scheme  
Data Sheet  
63  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.2  
Maintenance Channel  
The last three symbols (6 bits) of each basic frame are used as M (Maintenance)-  
channel for the exchange of operation and maintenance data between the network and  
the NT. Approved M-bit data is first processed and then reported to the µC by interrupt  
requests. The verification method is programmed in the MFILT register (see  
Chapter 4.11.2).  
EOC-data is inserted into the U-frame at the positions M1, M2 and M3 (Table 14)  
thereby permitting the transmission of two complete EOC-messages (2× 12 bits) within  
one U-superframe (see Chapter 2.4.3).  
M4 bits are used to communicate status and maintenance functions between the  
transceivers. The meaning of a bit position is dependent upon the direction of  
transmission (upstream/downstream) and the operation mode (NT/LT). See Table 14 for  
the different meaning of the M4 bits. For details see Chapter 2.4.4.  
The M5 and M6 bits contain the FEBE bit and the CRC bits. For details see  
Chapter 2.4.6.  
2.4.2.1 Reporting to the µC Interface  
The maintenance channel information is exchanged with external devices via the  
appropriate registers. Received maintenance channel information is reported to the µC  
by an interrupt.  
2.4.2.2 Access from the µC Interface  
The maintenance data to be transmitted can be programmed by writing the internal  
EOCW/M4W/M56W registers.  
2.4.2.3 Availability of Maintenance Channel Information  
Transmission of the Maintenance channel data is only possible if a superframe is  
transmitted and the M-bits are transparent (M-Bits are “normal” in Table 24). In other  
states all maintenance bits are clamped to high.  
Reception of the Maintenance channel data is enabled by the state machine in the  
following states:  
Table 15  
Enabling the Maintenance Channel (Receive Direction)  
Synchronized1  
Synchronized2  
Wait for ACT  
Transparent  
Error S/T  
Data Sheet  
64  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 15  
Enabling the Maintenance Channel (Receive Direction)  
Pend. Deac. S/T  
Pend. Deac. U  
Analog Loop Back  
Reporting and execution of maintenance information is only sensible if the Q-SMINTI  
is synchronous. Filters are provided to avoid meaningless reporting.  
Reset values are applied to the maintenance bits before the state machine enters one of  
the states in Table 15.  
2.4.2.4 M-Bit Register Access Timing  
Since the maintenance data must be put into and read from the U-frame in time there is  
the need for synchronization if M-Bit data is exchanged via the µC-interface. Below the  
timing is given for the access to the M-Bit read and write registers.  
The write access timing is depicted in Figure 36. Timing references for a write access  
are the 6 ms and 12 ms interrupts which are accommodated in the ISTAU register. An  
active 6 ms interrupt signals that from this event there is a time frame of 3 basic frames  
duration (4.5 ms) for the write access to the EOCW register.  
The 12 ms interrupt serves as time reference for the write access to the M4W and M56W  
registers. From the point of time the 12 ms interrupt goes active there is a time window  
of 7 basic frames to overwrite the register values. The programmed data will be sent out  
with the next U-superframe.  
Note that the point of time when the 6 ms and 12 ms interrupts are generated within basic  
frame #1 and #5 is not fixed and may vary.  
Data Sheet  
65  
2001-03-30  
PEF 82912/82913  
Functional Description  
read access to  
ISTAU clears 6ms  
interrupt  
6ms Interrupt  
Frame No.  
#1  
#4  
#5  
#8  
#1  
µC write access  
time to EOCW  
µC write access  
time to EOCW  
3 Base Frames  
(4.5ms)  
max. 3 Base Frames  
(4.5ms)  
1. EOC  
2. EOC  
read access to  
ISTAU clears 12ms  
interrupt  
12ms Interrupt  
Frame No.  
#1  
#8  
#1  
µC write access time to M4W, M56W  
max. 7 Base Frames  
(10.5ms)  
wr_acs_timg_QSMINT.emf  
Figure 36  
Write Access Timing  
The read access timing is illustrated in Figure 37. An interrupt source of the same  
name is associated with each read register (EOCR, M4R, M56R). An EOC interrupt  
indicates that the value of the EOCR register has been changed and updated. So do the  
M4 and M56 interrupts. Note that unlike the 6 ms and 12 ms interrupts the ’read’  
interrupts are only generated on change of the register value and do not occur  
periodically.  
The EOC, M4 and M56 interrupt bits are all accommodated in the ISTAU register.  
Data Sheet  
66  
2001-03-30  
PEF 82912/82913  
Functional Description  
set active in frame  
#1 or #5 if value has  
been updated  
read access to  
ISTAU clears EOC  
interrupt  
EOC Interrupt  
Frame No.  
#1  
#4  
#5  
#8  
#1  
µC read access time  
to EOCR  
µC read access time  
to EOCR  
3 Base Frames  
(4.5ms)  
max. 3 Base Frames  
(4.5ms)  
1. EOC  
2. EOC  
read access to  
ISTAU clears M4  
interrupt  
set active in frame  
#1 if value has been  
updated  
M4 Interrupt  
Frame No.  
#1  
#8  
#1  
µC read access time to M4R  
max. 7 Base Frames  
(10.5ms)  
read access to  
ISTAU clears M56  
interrupt  
set active in frame  
#1 if value has been  
updated  
M56 Interrupt  
Frame No.  
#1  
#8  
#1  
µC read access time to M56R  
max. 7 Base Frames  
(10.5ms)  
wr_acs_timg_QSMINT.emf  
Figure 37  
2.4.3  
Read Access Timing  
Processing of the EOC  
2.4.3.1 EOC Commands  
The EOC command consists of an address field, a data/message indicator and an eight-  
bit information field. With the address field the destination of the transmitted message/  
data is defined. Addresses are defined for the NT, 6 repeater stations and broadcasting.  
Data Sheet  
67  
2001-03-30  
PEF 82912/82913  
Functional Description  
The data/message indicator needs to be set to (1) to indicate that the information field  
contains a message. If set to (0), numerical data is transferred to the NT. Currently no  
numerical data transfer to or from the NT is required.  
Table 16  
EOC  
Coding of EOC-Commands  
Address  
Field  
Data/  
Message  
Indicator  
Information  
Message  
O (rigin)  
D (estination)  
a1a2a3  
0 0 0  
111  
d/m  
i1 i2 i3 i4 i5 i6 i7 i8  
LT  
NT  
x
x
x
NT  
Broadcast  
0 01  
1 10  
Repeater stations  
No. 1 – No. 6  
0
1
Data  
Message  
1
1
1
1
1
1
1
1
0 1 0 1 0 0 0 0  
0 1 0 1 0 0 0 1  
0 1 0 1 0 0 1 0  
0 1 0 1 0 0 1 1  
0 1 0 1 0 1 0 0  
1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 0 1 0 1 0 1 0  
O
D
LBBD  
LB1  
LB2  
RCC  
NCC  
RTN  
H
O
D
O
D
O
D
O
D
O
D
D/O  
D
O/D  
O
UTC  
Table 17  
Usage of Supported EOC-Commands  
Function  
Hex-  
code  
i1-i8 D  
U
00  
H
H
Hold. Provokes no change. The device issues Hold if no NT or  
broadcast address is used or if the d/m indicator is set to (0).  
50  
LBBD  
Close complete loop-back (B1, B2, D). If this command is  
detected in NT EOC auto mode the C/I-code ARL is issued by  
the Q-SMINTI U-transceiver.  
Data Sheet  
68  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 17  
Usage of Supported EOC-Commands(cont’d)  
Hex-  
code  
Function  
i1-i8 D  
U
51  
52  
53  
LB1  
Closes B1 loop-back in NT. All B1-channel data will be  
looped back within the Q-SMINTI U-transceiver. The bits LB1  
and U/IOMare set in the register LOOP.  
LB2  
Closes B2 loop-back in NT. All B2-channel data will be  
looped back within the Q-SMINTI U-transceiver. The bits LB2  
and U/IOMare set in the register LOOP.  
Request corrupt CRC. Upon receipt the Q-SMINTI transmits  
corrupted (= inverted) CRCs upstream. This allows to test the  
near end block error counter on the LT-side. The far end block  
error counter at the Q-SMINTI-side is stopped and Q-  
SMINTI-error indications are retained.  
RCC  
54  
NCC  
RTN  
Notify of corrupt CRC. Upon receipt of NCC the Q-SMINTI-  
block error counters (near-end only) are disabled and error  
indications are retained. This prevents wrong error counts  
while corrupted CRCs are sent.  
AA  
FF  
XX  
UTC Unable to comply. Message sent instead of an  
acknowledgment if an undefined EOC-command or d/m bit=0  
was received by the Q-SMINTI.  
Return to normal. With this command all previously sent  
EOC-commands will be released. The EOCW register is reset  
to its initial state (FFH).  
ACK Acknowledge. If a defined and correctly addressed EOC-  
command was received by the Q-SMINTI, the Q-SMINTI  
replies by echoing back the received command.  
2.4.3.2 EOC Processor  
The on-chip EOC-processor is responsible for the correct insertion and extraction of  
EOC-data on the U-interface. The EOC-processor can be programmed either to auto  
mode or to transparent modes (see Chapter 2.4.3.3).  
Figure 38 shows the registers and pins that are involved when EOC data is transmitted  
and received.  
Data Sheet  
69  
2001-03-30  
PEF 82912/82913  
Functional Description  
U Receive Superframe  
EOC Message Filtering  
MFILT.EOC  
Last Verified EOC Message  
EOCR Register  
EOC  
Processor  
Interrupt  
Controller  
Echo  
INT  
eoc_rx.emf  
Figure 38  
EOC Message Reception  
U-Rx Frame  
EOC  
Processor  
µC  
EOC AUTO= '1'  
Enable  
EOCW  
EOC Command/ Message  
every 6 msec  
U Transmit Superframe  
eoc_tx.emf  
Figure 39  
EOC Command/Message Transmission  
Data Sheet  
70  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.3.3 EOC Operating Modes  
The EOC operating modes are programmable in the MFILT register (see  
Chapter 4.11.2)  
EOC Auto Mode  
Acknowledgement: All received EOC-frames are echoed back to the exchange  
immediately without triple-last-look. If an address other than (000)B or (111)B is  
received, a HOLD message with address (000)B is returned. However there is an  
exception: The Q-SMINTI will send a ’UTC’ after three consecutive receptions of d/  
m = 0 or after an undefined command.  
Latching: All detected EOC-commands, i.e. LBBD, RCC etc., are latched. Multiple  
subsequent valid EOC-commands are executed in parallel, as long as they are not  
disabled with the EOC ’RTN’ command or a deactivation.  
Reporting: With the triple-last-look criterion fulfilled the new EOC-command will be  
reported by an interrupt, independently of the address used and the status of the d/m  
indicator. The triple last look criterion implies that the new verified message is different  
to the last TLL-verified message.  
Execution: The EOC-commands listed in Table 16 will be executed automatically by  
the U-transceiver if they were addressed correctly (000B or 111B) and the d/m bit was  
set to message (1). The execution of a command is performed only after the “triple-  
last-look” criterion is met.  
EOC Transparent Mode 6 ms  
Acknowledgement: There is no automatic acknowledgement in transparent mode.  
Therefore the external µC has to perform the EOC-Procedure. 2 msec must be  
available for the report and the subsequent access of the transmit EOC data of the  
next outgoing EOC-frame.  
Latching: No latching is performed due to no execution.  
Reporting: The received EOC-frame is reported to the µC by an interrupt every 6 ms.  
Verification, acknowledgment and execution of the received command have to be  
initiated by an external controller. The µC can program back all defined test functions  
(close/open loops, send corrupted CRCs). In the transmit direction, the last written  
EOC-code from the µC is used.  
Execution: No automatic execution in transparent modes. The appropriate actions  
can be programmed by the µC.  
Data Sheet  
71  
2001-03-30  
PEF 82912/82913  
Functional Description  
Transparent mode with ’On Change bit’ active  
Acknowledgment: There is no automatic acknowledgement in transparent mode.  
For details see above.  
Latching: No latching is performed due to no execution.  
Reporting: This mode is almost identical to the Transparent Mode 6 ms. But a report  
to the µC by an interrupt takes place only, if a change in the EOC message has been  
detected.  
Execution: No automatic execution in transparent modes. The appropriate actions  
can be programmed by the µC.  
Transparent mode with TLL active  
Acknowledgement: There is no automatic acknowledgment in transparent mode.  
For details see above.  
Latching: No latching is performed due to no execution.  
Reporting: This mode is almost identical to the Transparent Mode 6 ms. But a report  
to the µC by an interrupt takes place only, if the new EOC command has been  
detected in at least three consecutive EOC messages.  
Execution: No automatic execution in transparent modes. The appropriate actions  
can be programmed by the µC.  
2.4.3.4 Examples for different EOC modes  
General  
In the following examples some letters like A,B,C are used to symbolize EOC command.  
There are also particular EOC commands mentioned which indicate special system  
behavior (e.g. UTC, H). The examples are shown in tables.  
Data Sheet  
72  
2001-03-30  
PEF 82912/82913  
Functional Description  
EOC Automode  
Table 18  
EOC Auto Mode  
remarks  
input from µC  
EOC TX  
Access to EOCW register has direct impact on EOC TX.  
A A A B A A A H H H D D A D D  
EOC RX  
A A A B A A A C C C D D D D A D D D  
report to µC  
A
C
D
D
• A, B: EOC commands with correct address, d/m bit = 1 and defined command.  
• C: EOC command with wrong address. Immediately acknowledged with H.  
• D: EOC command which is not defined or d/m bit = 0. Acknowledgement after TLL with  
UTC.  
Data Sheet  
73  
2001-03-30  
PEF 82912/82913  
Functional Description  
Transparent mode 6 ms)  
Table 19  
Transparent mode 6 ms  
remarks  
input from µC  
EOC TX  
A
A
C
C
B
B
C
C
C
D
D
B
B
A
A
A
A
B
B
A
C
C
B
A
A
B
A
A
C
A
A
C
A
A
C
B
B
D
B
B
D
B
B
EOC RX  
report to µC  
Transparent mode ’@change’  
Table 20  
Transparent mode ’@change’  
remarks  
input from µC  
EOC TX  
A
B
B
C
C
C
A
D
D
B
A
C
A
A
A
A
B
B
A
C
C
B
A
A
B
A
C
A
C
A
C
B
B
D
B
EOC RX  
report to µC  
Transparent mode TLL  
Table 21  
Transparent mode TLL  
remarks  
input from µC  
EOC TX  
A
B
C
D
A A A A B B B B B C C C C D D D D  
C C C C C A A A B A A A B B B B B  
EOC RX  
report to µC  
C
A
A
B
Data Sheet  
74  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.4  
Processing of the Overhead Bits M4, M5, M6  
2.4.4.1 M4 Bit Reporting to the µC  
Four different validation modes can be selected and take effect on a per bit base. Only  
if the received M4 bit change has been approved by the programmed filter algorithm a  
report to the µC is triggered. The following filter algorithms are provided and can be  
programmed in the MFILT register:  
• On Change  
Triple-Last-Look (TLL) coverage  
CRC coverage  
Note that unlike the M4 bits the M56 bits are not included in the CRC generation!  
CRC and TLL coverage  
2.4.4.2 M4 Bit Reporting to State Machine  
Some M4 bits, ACT, DEA and UOA, have two destinations, the state machine and the  
µC. Regarding these bits Triple-Last-Look (TLL) is applied by default before the changed  
status is input to the state machine. Via the MFILT register the user can decide whether  
the M4 bits which are input to the state machine shall be approved  
• by TLL (default setting, since TLL is a Bellcore requirement) or  
• by the same verification mode as selected for reporting to the µC.  
The reset values before activation are ACT=0, DEA=1, UOA=0.  
2.4.4.3 M5, M6 Bit Reporting to the µC  
By default changes in the received spare bits M51, M52, and M61 are reported to the µC  
only if no CRC violation has been detected. However the user has the choice to program  
one of the following two options in the MFILT register (for details see Chapter 4.11.2):  
• Same validation algorithm is applied to M5 and M6 bits as programmed for M4 bits  
On Change  
In transmit direction these bits are set by default to ’1’ if they are not explicitly set by an  
µC access (via M56W register).  
2.4.4.4 Summary of M4, M5, M6 Bit Reporting  
Figure 40 summarizes again the various filtering options that are provided for the  
several maintenance channel bits.  
Data Sheet  
75  
2001-03-30  
PEF 82912/82913  
Functional Description  
M
U
X
State  
Machine  
TLL  
MFILT.M4(Bit5)  
M
U
X
&
M4  
M4 INT  
CRC  
On  
Change  
MFILT.M4(Bit4,3)  
TLL  
M
U
X
&
M5, M6  
CRC  
M
U
X
On  
Change  
M56 INT  
MFILT.M56(Bit6)  
m456_filter_QSMINT.emf  
Figure 40  
Maintenance Channel Filtering Options  
Figure 41 illustrates the point of time when a detected M4, M5, M6 bit change is reported  
to the µC and when it is reported to the state machine:  
towards the µC reports are always sent after one complete U-superframe was  
received,  
• whereas towards the state machine M4-bit changes (ACT, DEA, UOA, SAI) are  
instantly passed on as soon as they were approved. In context of Figure 41 this  
means that a verified ACT bit change is already reported at the end of basic frame #1  
instead of the end of basic frame #8.  
n. Super Frame  
2. Basic Frame  
2B+D  
n+1. Super Frame  
1. Basic Frame  
8. Basic Frame  
ISW  
2B+D  
M1-6  
SW  
M1-6  
SW  
2B+D  
M1-6 ISW  
2B+D  
M1-6  
M4= ACT  
Time  
e.g. ACT  
bit  
INT  
validated  
reported to  
State  
Machine  
m4tim2sm_QSMINT.emf  
Figure 41  
M4 Bit Report Timing (Statemachine vs. µC)  
Data Sheet  
76  
2001-03-30  
PEF 82912/82913  
Functional Description  
However, if the same filter is selected towards the state machine as programmed  
towards the µC, the user has to be aware that if CRC mode is active, the state machine  
is informed at the end of the next U-superframe.  
2.4.5  
M4, M5, M6 Bit Control Mechanisms  
Figure 42 and Figure 43 show the control mechanisms that are provided for M4, M5 and  
M6 bit data:  
Via the M4WMASK register the user can selectively program which M4 bits are  
externally controlled and which are set by the internal state machine or dedicated pins  
(PS1, PS2). If one M4WMASK bit is set to ’0’ then the M4 bit value in the U-transmit  
frame is determined by the bit value at the corresponding bit position in the M4W register.  
Note: By bit 6 in the M4WMASK register it can be selected whether SAI is set by the  
state machine or by µC access and whether the value of the received UOA bit is  
reported to the state machine or UOA= ’1’ is signalled.  
Via the M4RMASK register the user can selectively program which M4 bit changes shall  
cause an report to the µC.  
The M4W register latches the M4 bits that are sent with the next available U-superframe.  
The M4R register contains the last validated M4 bit data.  
The default value of M51, M52 and M61 can be overwritten at any time by use of register  
M56W. M56R latches the last received and verified M5, M6 bit data.  
The control of the FEBE bit is performed by the CRC-Processor, see Chapter 2.4.6.  
Data Sheet  
77  
2001-03-30  
PEF 82912/82913  
Functional Description  
U Receive Superframe  
M4 Filtering (per bit)  
M56 Filtering (per bit)  
MFILT.M4  
MFILT.M56  
M4R Register  
M56R Register  
UOA DEA ACT  
AIB  
UOA M46  
M45  
M44 SCO DEA ACT  
0
MS2 MS1 NEBE M61  
M52  
M51 FEBE  
EN/  
DIS  
EN/  
DIS  
EN/  
DIS  
EN/  
DIS  
EN/  
DIS  
EN/  
DIS  
EN/  
DIS  
EN/  
DIS  
M4RMASK  
'0'= enabled  
'1'= disabled  
'1'  
MUX  
M4WMASK.Bit6  
Interrupt  
Controller  
State  
Machine  
INT  
m456_nt_rx_QSMINT.e  
Figure 42  
M4, M5, M6 Bit Control in Receive Direction  
Pins  
C/I Codes  
µC  
State  
Machine  
M4W Register  
NIB  
SAI  
M46 CSO NTM  
PS2  
PS1  
ACT  
'1'  
'1'  
'0'  
'1'  
MUX  
MUX MUX MUX MUX MUX  
MUX  
MUX  
M4WMASK  
M4WMASK.Bit6  
'1'= M4W Reg.  
'0'= SM/ Pin  
U Transmit Superframe  
MUX  
OPMODE.FEBE  
M56W Register  
1
1
1
1
M61  
M52  
M51  
FEBE  
NEBE  
Counter  
µC  
m456_nt_tx_QSMINT.emf  
Figure 43  
M4, M5, M6 Bit Control in Transmit Direction  
Data Sheet  
78  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.6  
Cyclic Redundancy Check / FEBE bit  
An error monitoring function is implemented covering the 2B + D and M4 data  
transmission of a U-superframe by a Cyclic Redundancy Check (CRC).  
The computed polynomial is:  
G (u) = u12 + u11 + u3 + u2 + u + 1  
(+ modulo 2 addition)  
The check digits (CRC bits CRC1, CRC2, …, CRC12) generated are transmitted in the  
U-superframe. The receiver will compute the CRC of the received 2B + D and M4 data  
and compare it with the received CRC-bits generated by the transmitter.  
A CRC-error will be indicated to both sides of the U-interface, as a NEBE (Near-end  
Block Error) on the side where the error is detected, as a FEBE (Far-end Block Error) on  
the remote side. The FEBE-bit will be placed in the next available U-superframe  
transmitted to the originator.  
Figure 44 illustrates the CRC-process.  
Data Sheet  
79  
2001-03-30  
PEF 82912/82913  
Functional Description  
IOM®-2  
IOM®-2  
NT  
LT  
U
(2B + D), M4  
SFR(n)  
DD  
DD  
G(u)  
G(u)  
CRC1... CRC12  
CRC1... CRC12  
SFR(n + 1)  
No  
=?  
Yes  
CRCOK=1  
FEBE  
Error  
Counter  
SFR(n + 1.0625)*  
(MON-8)  
FEBE = "1"  
CRCOK=0  
SFR(n + 1.0625)  
INT  
FEBE = "0"  
NEBE  
Error  
µC access  
Counter  
(2B + D), M4  
G(u)  
SFR(n + 0.0625)  
DU  
DU  
G(u)  
CRC 1... CRC 12  
CRC 1... CRC 12  
SFR(n + 1.0625)  
SFR(n + 2)  
No  
=?  
Yes  
FEBE  
Error  
Counter  
CRCOK=1  
µC access  
INT  
FEBE = "1"  
SFR(n + 2)  
CRCOK=0  
FEBE = "0"  
NEBE  
Error  
(MON-8)  
Counter  
*0.0625 of a SFR is the 60 Quats offset of the NT transmit data.  
crc_QSMINT.emf  
Figure 44  
CRC-Process  
Data Sheet  
80  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.7  
Block Error Counters  
The U-transceiver provides internal counters for far-end and near-end block errors. This  
allows a comfortable surveillance of the transmission quality at the U-interface. In  
addition, the occurrence of near-end errors, far-end errors, and the simultaneous  
occurrence of both errors are reported to the µC by an interrupt at the beginning of the  
following receive-superframe.  
A block error is detected each time when the calculated checksum (CRC) of the received  
data does not correspond to the control checksum transmitted in the successive  
superframe. One block error thus indicates that one U-superframe has not been  
transmitted correctly. No conclusion with respect to the number of bit errors is therefore  
possible.  
2.4.7.1 Near-End and Far-End Block Error Counter  
A near-end block error (NEBE) indicates that the error has been detected in the receive  
direction (i.e. NEBE in the NT = LT => NT error). Each detected NEBE-error increments  
the 8-bit NEBE-counter. When reaching the maximum count, counting is stopped and  
the counter value reads (FFH).  
A far-end block error identifies errors in transmission direction (i.e. FEBE in the NT = NT  
=> LT-error). FEBE errors are processed in the same manner as NEBE-errors.  
The FEBE and NEBE counter values can be read in registers FEBE and NEBE. The  
counter is cleared after read. The counters are also reset to 00H in all states except the  
states listed in Table 15.  
2.4.7.2 Testing Block Error Counters  
Figure 45 illustrates how near- and far-end block error counters can be tested.  
Transmission errors are simulated with artificially corrupted CRCs. With two commands  
the cyclic redundancy checksum can be inverted in the upstream and downstream  
direction. A third command offers to invert single FEBE-bits.  
EOC Command NCC:  
Requests the Q-SMINTI to notify corrupted CRCs.  
The functional behavior of the Q-SMINTI and the NEBE-counter depends on the  
mode selected:  
– EOC auto mode:  
NEBE-detection stopped: no NEBE interrupt generated and NEBE-counter disabled  
– EOC transparent mode  
NEBE-detection enabled: NEBE interrupt generated and NEBE-counter enabled  
Data Sheet  
81  
2001-03-30  
PEF 82912/82913  
Functional Description  
EOC Command RCC:  
Requests the Q-SMINTI to send corrupt CRCs. After issuing RCC near-end block  
errors will be registered on the LT-side.  
The functional behavior of the Q-SMINTI and the FEBE-counter depends on the  
mode selected:  
– EOC auto mode:  
The Q-SMINTI will react with a permanently inverted upstream CRC.  
FEBE-detection stopped: no FEBE interrupt generated and FEBE-counter disabled  
– EOC transparent mode  
The external µC must react on RCC by programming TEST.CCRC = ’1’.  
FEBE-detection enabled: FEBE interrupt generated and FEBE-counter enabled  
EOC command RTN:  
Disables all previously sent EOC commands.  
M56W.FEBE  
By setting / resetting M56W.FEBE (M56W.FEBE can only be set and controlled  
externally if OPMODE.FEBE is set to ’1’), the FEBE bit of the next available U-frame  
can be set / reset . Therefore, it is possible to predict exactly the FEBE-counter value.  
Data Sheet  
82  
2001-03-30  
PEF 82912/82913  
Functional Description  
EOC  
EOC  
U
LT  
IOM -2  
µC  
Interface  
Transparent  
Auto-Mode  
ISTAU.EOC=1  
EOCR = 'NCC'  
EOC : NCC  
(MON-0) NCC  
(MON-0) ACK  
STOP  
ERROR  
DETECT  
EOC Acknowledge  
Start Inverse  
CRC Bits  
(MON-8) CCRC  
FEBE = "0"  
ERROR  
COUNT  
NEBE  
ISTAU.FEBE/  
NEBE=1  
M56R.NEBE = '1'  
(MON-8) RBEF  
(MON-8) ABEC  
ERROR  
COUNT  
FEBE  
End Inverse  
CRC Bits  
(MON-8) NORM  
EOC : RTN  
(MON-0) RTN  
(MON-0) ACK  
ISTAU.EOC=1  
EOCR = 'RTN'  
FREE  
ERROR  
DETECT  
EOC Acknowledge  
ISTAU.EOC=1  
EOCR = 'RCC'  
STOP  
ERROR  
DETECT  
EOC : RCC  
(MON-0) RCC  
(MON-0) ACK  
EOC Acknowledge  
Start Inverse  
CRC Bits  
TEST.CCRC = '1'  
ERROR  
COUNT  
FEBE  
FEBE = "0"  
ISTAU.FEBE/  
NEBE=1  
(MON-8) RBEN  
(MON-8) ABEC  
ERROR  
COUNT  
NEBE  
M56R.FEBE = '1'  
EOC : RTN  
(MON-0) RTN  
ISTAU.EOC=1  
EOCR = 'RTN'  
FREE  
ERROR  
DETECT  
EOC Acknowledge  
End Inverse  
CRC Bits  
TEST.CCRC = '0'  
ITD04226_QSMINT.emf  
Figure 45  
2.4.8  
Block Error Counter Test  
Scrambling/ Descrambling  
The scrambling algorithm ensures that no sequences of permanent binary 0s or 1s are  
transmitted. The scrambling / descrambling process is controlled fully by the Q-  
SMINTI. Hence, no influence can be taken by the user.  
2.4.9  
C/I Codes  
The operational status of the U-transceiver is controlled by the Control/Indicate channel  
(C/I-channel).  
Data Sheet  
83  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 22 presents all defined C/I codes. A new command or indication will be recognized  
as valid after it has been detected in two successive IOM®-2-frames (double last-look  
criterion).  
Note: Unconditional C/I-Commands must be applied for at least 4 IOM-2 frames for  
reliable recognition by the U-transceiver.  
Commands have to be applied continuously on DU until the command is validated by the  
U-transceiver and the desired action has been initiated. Afterwards the command may  
be changed.  
An indication is issued permanently by the U-transceiver on DD until a new indication  
needs to be forwarded. Because a number of states issue identical indications it is not  
possible to identify every state individually.  
Table 22  
U - Transceiver C/I Codes  
IN  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
OUT  
DR  
TIM  
RES  
EI1  
SSP  
DT  
EI1  
PU  
AR  
AR  
ARL  
ARL  
AI  
AI  
AIL  
DC  
DI  
AI: Activation Indication  
AIL: Activation Indication Loop  
AR: Activation Request  
ARL: Activation Request Local Loop  
Data Sheet  
84  
2001-03-30  
PEF 82912/82913  
Functional Description  
DC: Deactivation Confirmation  
DI: Deactivation Indication  
DR: Deactivation Request  
DT: Data Through test mode  
EI1: Error Indication 1  
PU: Power-Up  
RES: Reset  
SSP: Send Single Pulses test mode  
TIM: Timing request  
2.4.10  
State Machines for Line Activation / Deactivation  
2.4.10.1 Notation  
The state machines control the sequence of signals at the U-interface that are generated  
during the start-up procedure. The informations contained in the following state diagrams  
are:  
– State name  
– U-signal transmitted  
– Overhead bits transmitted  
– C/I-code transmitted  
– Transition criteria  
– Timers  
Data Sheet  
85  
2001-03-30  
PEF 82912/82913  
Functional Description  
Figure 46 shows how to interpret the state diagrams.  
IN  
Signal Transmitted  
to U-Interface  
(general)  
Single Bit  
Transmitted  
to U-Interface  
State Name  
Indication Transmitted on C/I-Channel  
(DOUT)  
ITD04257.vsd  
OUT  
Figure 46  
Explanation of State Diagram Notation  
Combinations of transition criteria are possible. Logical “AND” is indicated by “&” (TN &  
DC), logical “OR” is written “or” and for a negation “/” is used. The start of a timer is  
indicated with “TxS” (“x” being equivalent to the timer number). Timers are always  
started when entering the new state. The action resulting after a timer has expired is  
indicated by the path labelled “TxE”.  
Data Sheet  
86  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.10.2 Standard NT State Machine (IEC-Q / NTC-Q Compatible)  
T14E  
T14S  
TL  
.
.
SN0  
SN0  
T14S  
AR or TL  
Pending Timing  
DC  
Deactivated  
DC  
Any State  
SSP or  
T14S  
TIM  
DI  
.
SP  
C/I= 'SSP'  
.
SN0  
DI  
Test  
DR  
IOM Awaked  
PU  
AR or TL  
T1S, T11S  
DI  
DI & NT-AUTO  
T1S,  
T11S  
.
.
.
SN0  
TN  
Alerting 1  
DR  
T11E  
TN  
T1S  
T11S  
Reset  
Alerting  
Any State  
Pin-RST or  
C/I= 'RES'  
DR  
PU  
DC  
T11E  
ARL  
T12S  
T12S  
T12S  
.
SN1  
.
.
SN1  
SN1  
EC-Training AL  
DC  
EC-Training  
DC  
EC-Training 1  
DR  
DI  
LSEC or T12E  
LSEC or T12E  
act=0  
LSUE  
or T1E  
.
SN0  
SN3  
EQ-Training  
Wait for SF AL  
DC  
DC  
BBD0 & FD  
BBD1 & SFD  
T20S  
SN2  
1) act=1/03)  
SN3/SN3T  
Pend.Deact. S/T  
LSUE  
or T1E  
.
SN3T  
act=0  
Analog Loop Back  
AR  
LOF  
DI  
Wait for SF  
DC  
DR  
T20E &  
dea=0  
LSUE  
BBD0 & SFD  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
LSUE  
Synchronized 1  
DC  
uoa=1  
uoa=0  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
LSUE  
Synchronized 2  
2)  
AR/ARL  
Al  
uoa=0  
dea=0  
LSUE  
LOF  
El1  
SN3/SN3T 1) act=1  
Wait for Act  
2)  
AR/ARL  
act=1  
act=0  
act=1  
Transparent  
LOF  
El1  
uoa=0  
dea=0  
LSUE  
Any State  
DT or  
C/I='DT'  
SN3T  
Yes  
2)  
AI/AIL  
No  
uoa=1  
act=1 & Al  
?
dea=0  
uoa=0  
LSUE  
SN3/SN3T 1)  
act=0  
Error S/T  
act=0  
2)  
AR/ARL  
dea=1  
SN3/SN3T1) act=1/03)  
Pend.Deact. U  
LOF  
.
SN0  
LOF  
Pend Receive Res.  
T13S  
T7S  
EI1  
DC  
LSU  
LSU or ( /LOF & T13E )  
T7S  
.
SN0  
Receive Reset  
T7E & DI  
TL  
DR  
Figure 47  
Standard NT State Machine (IEC-Q / NTC-Q Compatible) (Footnotes:  
see “Dependence of Outputs” on Page 92)  
Data Sheet  
87  
2001-03-30  
PEF 82912/82913  
Functional Description  
Note: The test modes ‘Data Through‘ (DT) and ‘Send Single Pulses‘ (SSP) are invoked  
via C/I codes ’DT’ and ’SSP’ according to Table 22. Setting SRES.RES_U to ‘1‘  
forces the U-transceiver into test mode ‘Quiet Mode‘ (QM), i.e. the U-transceiver  
is hardware reset.  
If the Metallic Loop Termination is used, then the U-transceiver is forced into the  
states ‘Reset‘ and ‘Transparent‘ by valid pulse streams on pin MTI according to  
Table 29.  
Note: If the state machine is in state ’Deactivated’ and the IOM-2 clocks are not  
running, then the transitions to ’IOM-2 Awaked’ or ’Alerting’ can be invoked by  
writing directly the corresponding C/I-code to register UCIW via the µC interface.  
2.4.10.3 Inputs to the U-Transceiver:  
C/I-Commands:  
AI  
Activation Indication  
The downstream device issues this indication to announce that its layer-1 is  
available. The U-transceiver informs the LT side by setting the “ACT” bit to “1”.  
AR  
ARL  
Activation Request  
The U-transceiver is requested to start the activation process by sending the wake-  
up signal TN.  
Activation Request Local Loop-back  
The U-transceiver is requested to operate an analog loop-back (close to the U-  
interface) and to begin the start-up sequence by sending SN1 (without starting timer  
T1). This command may be issued only after the U-transceiver has been HW- or SW-  
reset. This eases that the EC- and EQ-coefficient updating algorithms converge  
correctly. The ARL-command has to be issued continuously as long as the loop-back  
is required.  
DI  
Deactivation Indication  
This indication is used during a deactivation procedure to inform the U-transceiver  
that it may enter the deactivated (power-down) state.  
DT  
EI1  
Data Through  
This unconditional command is used for test purposes only and forces the U-  
transceiver into the “Transparent” state.  
Error Indication 1  
The downstream device indicates an error condition (loss of frame alignment or loss  
of incoming signal). The U-transceiver informs the LT-side by setting the ACT-bit to  
“0” thus indicating that transparency has been lost.  
RES  
SSP  
Reset  
Unconditional command which resets the U-transceiver.  
Send Single Pulses  
Unconditional command which requests the transmission of single pulses on the  
U-interface.  
Data Sheet  
88  
2001-03-30  
PEF 82912/82913  
Functional Description  
TIM  
Timing  
The U-transceiver is requested to enter state ’IOM -2 Awaked’.  
U-Interface Events:  
ACT = 0/1  
ACT-bit received from LT-side.  
– ACT = 1 requests the U-transceiver to transmit transparently in both directions. In  
the case of loop-backs, however, transparency in both directions of transmission is  
established when the receiver is synchronized.  
– ACT = 0 indicates that layer-2 functionality is not available.  
DEA = 0/1  
DEA-bit received from the LT-side  
– DEA = 0 informs the U-transceiver that a deactivation procedure has been started  
by the LT-side.  
– DEA = 1 reflects the case when DEA = 0 was detected by faults due to e.g.  
transmission errors and allows the U-transceiver to recover from this situation.  
UOA = 0/1  
UOA-bit received from network side  
– UOA = 0 informs the U-transceiver that only the U-interface is to be activated. The  
S/T-interface must be deactivated.  
– UOA = 1 requests the S/T-interface (if present) to activate.  
Timers  
The start of timers is indicated by TxS, the expiry by TxE. Table 23 shows which timers  
are used:  
Table 23  
Timer  
Timers Used  
Duration  
(ms)  
Function  
State  
T1  
15000  
40  
Supervisor for start-up  
Hold time  
T7  
Receive reset  
Alerting  
T11  
T12  
T13  
9
TN-transmission  
5500  
15000  
Supervisor EC-converge  
Frame synchronization  
EC-training  
Pend. receive  
reset  
T14  
T20  
0.5  
10  
Hold time  
Hold time  
Pend. timing  
Wait for SF  
2.4.10.4 Outputs of the U-Transceiver:  
The following signals and indications are issued on IOM®-2 (C/I-indications) and on the  
U-interface (predefined U-signals):  
Data Sheet  
89  
2001-03-30  
PEF 82912/82913  
Functional Description  
C/I-Indications  
AI  
Activation Indication  
The U-transceiver has established transparency of transmission. The downstream  
device is requested to establish layer-1 functionality.  
AIL  
Activation Indication Loopback  
The U-transceiver has established transparency of transmission. The downstream  
device is requested to establish a loopback #2.  
AR  
Activation Request  
The downstream device is requested to start the activation procedure.  
ARL  
Activation Request Loop-back  
The U-transceiver has detected a loop-back 2 command in the EOC-channel and has  
®
established transparency of transmission in the direction IOM -2 to U-interface. The  
downstream device is requested to start the activation procedure and to establish a  
loopback #2.  
DC  
DR  
Deactivation Confirmation  
Idle code on the IOM -2-interface.  
®
Deactivation Request  
The U-transceiver has detected a deactivation request command from the LT-side for  
a complete deactivation or a S/T only deactivation. The downstream device is  
requested to start the deactivation procedure.  
EI1  
Error Indication 1  
The U-transceiver has entered a failure condition caused by loss of framing on the  
U-interface or expiry of timer T1.  
Signals on U-Interface  
The signals SNx, TN and SP transmitted on the U-interface are defined in Table 24.  
Table 24  
Signal  
U-Interface Signals  
Synch. Word  
(SW)  
Superframe  
(ISW)  
2B + D  
M-Bits  
TN 1)  
SN0  
± 3  
± 3  
± 3  
± 3  
no signal  
present  
present  
present  
present  
no signal  
absent  
absent  
present  
present  
no signal  
no signal  
1
SN1  
1
SN2  
1
1
SN3  
1
normal  
normal  
SN3T  
Test Mode  
SP 2)  
normal  
test signal  
test signal  
90  
test signal  
test signal  
Data Sheet  
2001-03-30  
PEF 82912/82913  
Functional Description  
1)  
Note: Alternating ± 3 symbols at 10 kHz.  
Note: 2) 4 Options for the test signal can be selected by register TEST:  
A 40 kHz signal composed by alternating +/-3 or +/-1 transmit pulses.  
A series of single pulses spaced at intervals of 1.5 ms; Either alternating +/-1 or  
+/-3 pulses can be selected.  
Input Signals of the State Machine and related U-Signals  
The table below summarizes the input signals that control the NT state machine and that  
are extracted from the U-interface signal sequences.  
LOF  
Loss of framing  
This condition is fulfilled if framing is lost for 573 ms.  
LSEC  
LSU  
Loss of signal behind echo canceller  
Internal Signal which indicates that the echo canceller has converged  
Loss of Signal on U-Interface  
This signal indicates that a loss of signal level for a duration of 3 ms has  
been detected on the U-interface. This short response time is relevant in  
all cases where the NT waits for a response (no signal level) from the LT-  
side.  
LSUE  
Loss of Signal on U-Interface - Error condition  
After a loss of signal has been noticed, a 588 ms timer is started. When  
it has elapsed , the LSUE-criterion is fulfilled. This long response time  
(see also LSU) is valid in all cases where the NT is not prepared to lose  
signal level i.e. the LT has stopped transmission because of loss of  
framing, an unsuccessful activation, or the transmission line is  
interrupted.  
FD  
Frame Detected  
SFD  
Super Frame Detected  
BBD0 /  
BBD1  
BBD0/1 Detected  
These signals are set if either ’1' (BBD1) or ’0' (BBD0) were detected in  
4 subsequent basic frames. It is used as a criterion that the receiver has  
acquired frame synchronization and both its EC- and EQ-coefficients  
have converged. BBD0 corresponds to the received signal SL2 in case  
of a normal activation, BBD1 corresponds to the internally received  
signal SN3 in case of analog loop back.  
TL  
Awake tone detected  
The U-transceiver is requested to start an activation procedure.  
Data Sheet  
91  
2001-03-30  
PEF 82912/82913  
Functional Description  
Signals on IOM-2  
The Data (B+B+D) is set to all ’1’s in all states besides the states listed in Table 15.  
Dependence of Outputs  
• Outputs denoted with 1) in Figure 47:  
Signal output on Uk0 depends on the received EOC command and on the history of  
the state machine according to Table 25:  
Table 25  
Signal Output on Uk0  
EOC Command  
History of the State Machine  
Signal output on Uk0  
received ’LBBD’  
no influence  
SN3T  
SN3  
received no ’LBBD’ or ’RTN’ state ’Transparent’ has not been  
after an ’LBBD’  
reached previously during this  
activation procedure  
state ’Transparent’ has been  
reached previously during this  
activation procedure  
SN3T  
• Outputs denoted with 2) in Figure 47:  
C/I-code output depends on received EOC-command ’LBBD’ according to Table 26:  
Table 26  
C/I-Code Output  
EOC Command  
Synchroni Wait for Act Transparent Error S/T  
zed 2  
received no ’LBBD’ or  
’RTN’ after an ’LBBD’  
AR  
AR  
AI  
AR  
received ’LBBD’  
ARL  
ARL  
AIL  
ARL  
• Outputs denoted with 3) in Figure 47:  
In States ’Pend. Deact. S/T’ and ’Pend. Deact. U’ the ACT-bit output depends on its  
value in the previous state.  
• The value of the issued SAI-bit depends on the received C/I-code: DI and TIM lead to  
SAI = 0, any other C/I-code sets the SAI-bit to 1 indicating activity of the downstream  
device.  
• If state Alerting is entered from state Deactivated, then C/I-code ’PU’ is issued, else  
C/I-code ’DC’ is issued.  
Data Sheet  
92  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.10.5 Description of the NT-States  
The following states are used:  
Alerting  
The wake-up signal TN is transmitted for a period of T11 either in response to a received  
wake-up signal TL or to start an activation procedure on the LT-side.  
Alerting 1  
“Alerting 1” state is entered when a wake-up tone was received in the “Receive Reset”  
state and the deactivation procedure on the NT-side was not yet finished. The  
transmission of wake-up tone TN is started.  
Analog Loop-Back  
Transparency is achieved in both directions of transmission. This state can be left by  
making use of any unconditional command.  
Deactivated  
Only in state Deactivated the device may enter the power-down mode.  
EC Training  
The signal SN1 is transmitted on the U-interface to allow the NT-receiver to update the  
EC-coefficients. The automatic gain control (AGC), the timing recovery and the EQ  
updating algorithm are disabled.  
EC-Training 1  
The “EC-Training 1” state is entered if transmission of signal SN1 has to be started and  
the deactivation procedure on the NT-side is not yet finished.  
EC-Training AL  
The signal SN1 is transmitted on the U-interface to allow the NT-receiver to update the  
EC-coefficients. The automatic gain control (AGC), the timing recovery and the EQ  
updating algorithm are disabled.  
EQ-Training  
The receiver waits for signal SL1 or SL2 to be able to update the AGC, to recover the  
timing phase, to detect the synch-word (SW), and to update the EQ-coefficients.  
Data Sheet  
93  
2001-03-30  
PEF 82912/82913  
Functional Description  
Error S/T  
The downstream device is in an error condition (EI1). The LT-side is informed by setting  
the ACT-bit to “0” (loss of transparency on the NT-side).  
IOM-2-Awaked  
The U-transceiver is deactivated, but may not enter the power-down mode.  
Pending Deactivation of S/T  
The U-transceiver has received the UOA-bit at zero after a complete activation of the S/  
T-interface. The U-transceiver requests the downstream device to deactivate by issuing  
DR.  
Pending Deactivation of U-Interface  
The U-transceiver waits for the receive signal level to be turned off (LSU) to start the  
deactivation procedure.  
Pending Receive Reset  
The “Pending Receive Reset” state is entered upon detection of loss of framing on the  
U-interface or expiry of timer T1. This failure condition is signalled to the LT-side by  
turning off the transmit level (SN0). The U-transceiver then waits for a response (no  
signal level LSU) from the LT-side.  
Pending Timing  
In the NT-mode the pending timing state assures that the C/I-channel code DC is issued  
four times before entering the ’Deactivated’ state.  
Receive Reset  
In state ’Receive Reset’ a reset of the Uk0-receiver is performed, except in case that  
state ’Receive Reset’ was entered from state ’Pend. Deact. U’. Timer T7 assures that no  
activation procedure is started from the NT-side for a minimum period of time of T7. This  
gives the LT a chance to activate the NT.  
Reset  
In state ’Reset’ a software-reset is performed.  
Synchronized 1  
State ’Synchronized 1’ is the fully active state of the U-transceiver, while the downstream  
device is deactivated.  
Data Sheet  
94  
2001-03-30  
PEF 82912/82913  
Functional Description  
Synchronized 2  
In this state the U-transceiver has received UOA = 1. This is a request to activate the  
downstream device.  
Test  
The test signal SP is issued as long as C/I=SSP is applied. For further details see  
Table 24.  
Transparent  
This state is entered upon the detection of ACT = 1 received from the LT-side and  
corresponds to the fully active state.  
Wait for ACT  
Upon the receipt of AI, the NT waits for a response (ACT = 1) from the LT-side.  
Wait for SF  
The signal SN2 is sent on the U-interface and the receiver waits for detection of the  
superframe.  
Wait for SF AL  
This state is entered in the case of an analog loop-back and allows the receiver to update  
the AGC, to recover the timing phase, and to update the EQ-coefficients.  
2.4.10.6 Simplified NT State Machine  
As an alternative to the activation/deactivation state machine of the U-transceiver known  
from the IEC-Q [9], a more software friendly state machine can be selected.  
In the early days of ISDN, the activation and deactivation procedure in a NT was  
completely determined by the U- and S-transceiver state machines without a  
microcontroller being necessary. Intelligent NTs or U-terminals require a microcontroller  
and software. In this case the software controls both the S-and the U-transceiver state  
machine.  
The simplified U-transceiver state machine was developed to better address the needs  
and requirements of software running on the microcontroller. The simplified state  
machine offers the following advantages:  
– the software can tell whether the IOM-2 clocks are active or powered down via the  
received C/I code  
– From the received C/I code the software always knows, what it is expected to do and  
what options it has. The software does not have to backtrack older C/I codes.  
Data Sheet  
95  
2001-03-30  
PEF 82912/82913  
Functional Description  
– unnecessary C/I changes at irrelevant state transitions are omitted, hence the number  
of interrupts is reduced.  
All advantages can be offered by the following minor changes to the existing state  
machine:  
Table 27  
Change  
Changes to achieve Simplified NT State Machine  
State Standard NT  
State Machine State Machine  
Simplified NT  
Change of Transmitted C/I -Code  
Alerting  
DC/PU  
DC  
PU  
PU  
PU  
PU  
PU  
DR  
EC-Training  
EQ-Training  
Wait for SF  
DC  
DC  
Synchronized 1 DC  
Pend. Receive  
Res.  
EI1  
Pend. Deact. U. DC  
Wait for SF AL DC  
EC-Training AL DC  
all other States no changes  
DR  
DR  
DR  
Changed State Transition Criteria  
Alerting 1 to  
Alerting  
DI  
DI or TIM  
DI or TIM  
DI or TIM  
EC-Training 1 to DI  
EC-Training  
Pend.Deact.S/T DI  
to Synchron. 1  
all other  
transition  
criterias  
no changes  
New State Transitions  
ReceiveResetto none  
IOM-2 Awaked  
Reset to IOM®-2 none  
Awaked  
T7E & TIM  
TIM  
Data Sheet  
96  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 27  
Change  
Changes to achieve Simplified NT State Machine(cont’d)  
State Standard NT Simplified NT  
State Machine State Machine  
Test to IOM-2 none  
Awaked  
TIM  
Not Supported State Transitions  
Reset to Alerting DI & NTAUTO  
all other no changes  
transitions  
none  
Data Sheet  
97  
2001-03-30  
PEF 82912/82913  
Functional Description  
T14E  
T14S  
TL  
.
.
SN0  
SN0  
T14S  
AR or TL  
Pending Timing  
DC  
Deactivated  
DC  
Any State  
SSP or  
T14S  
TIM  
DI  
.
SP  
C/I= 'SSP'  
.
SN0  
DI  
Test  
IOM Awaked  
PU  
DR  
TIM  
AR or TL  
T1S, T11S  
TN  
DI  
T1S,  
T11S  
.
.
.
SN0  
TN  
T1S  
Reset  
Alerting 1  
Alerting  
PU  
T11S  
DR  
Any State  
Pin-RST or  
C/I= 'RES'  
DR  
T11E  
T11E  
ARL  
T12S  
T12S  
T12S  
.
SN1  
.
.
SN1  
SN1  
EC-Training AL  
DR  
EC-Training  
PU  
EC-Training 1  
DR  
DI or TIM  
LSEC or T12E  
LSEC or T12E  
LSUE  
or T1E  
.
SN0  
act=0  
SN3  
EQ-Training  
Wait for SF AL  
DR  
PU  
BBD0 & FD  
BBD1 & SFD  
T20S  
SN2  
1) act=1/03)  
SN3/SN3T  
LSUE  
or T1E  
.
SN3T  
act=0  
Analog Loop Back  
AR  
LOF  
Pend.Deact. S/T  
Wait for SF  
PU  
DR  
T20E &  
dea=0  
or  
LSUE  
DI  
BBD0 & SFD  
TIM  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
Synchronized 1  
LSUE  
PU  
uoa=1  
uoa=0  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
LSUE  
Synchronized 2  
2)  
AR/ARL  
Al  
uoa=0  
dea=0  
LSUE  
LOF  
El1  
SN3/SN3T 1) act=1  
Wait for Act  
2)  
AR/ARL  
act=1  
act=0  
act=1  
Transparent  
LOF  
El1  
uoa=0  
dea=0  
LSUE  
Any State  
DT or  
C/I='DT'  
SN3T  
Yes  
2)  
AI/AIL  
No  
uoa=1  
act=1 & Al  
?
dea=0  
uoa=0  
LSUE  
SN3/SN3T 1)  
act=0  
Error S/T  
act=0  
2)  
AR/ARL  
dea=1  
SN3/SN3T1) act=1/03)  
Pend.Deact. U  
LOF  
.
SN0  
LOF  
Pend Receive Res.  
T13S  
T7S  
DR  
DR  
LSU  
LSU or ( /LOF & T13E )  
T7S  
.
SN0  
T7E & TIM  
T7E & DI  
Receive Reset  
TL  
DR  
Figure 48  
Simplified NT State Machine  
Data Sheet  
98  
2001-03-30  
PEF 82912/82913  
Functional Description  
Table 28  
Appearance of the State Machine to the Software  
C/I ind. Meaning  
Options  
U-  
transp  
arent  
DR  
DC  
LT has decided to deactivate or DI  
activation was lost:  
– after an activation or  
– after an activation attempt or TIM  
– after reset  
Acknowledge and give no  
permission to turn off  
the clocks  
Acknowledge, clocks  
will stay active  
four IOM®-2 frames with C/I  
code DC are issued before  
TIM  
AR  
turn on clocks  
no  
start U-activation  
no action, permission to  
turn off the clocks will be  
given  
permission to turn off the clocks any  
other  
C/I-  
code  
PU  
AR  
clocks are on;  
any  
C/I-  
code  
no action, clocks will  
remain on  
no  
no  
U-interface is not transparent  
but may be synchronous (e.g.  
U-only activation)  
used during activation. U-  
interface is synchronous and is  
waiting for an ok from the  
downstream device  
AI  
accept that activation  
can continue, layer 2 of  
the downstream device  
is ready. Then wait for  
CI/ indication AI  
AI  
U-interface transparent  
--  
no action, transmit data yes  
report problem on  
downstream device  
EI1 or  
act=0  
2.4.11  
Metallic Loop Termination  
For North American applications a maintenance controller according to ANSI T1.601  
section 6.5 is implemented. The maintenance pulse stream from the U-interface Metallic  
Loop Termination circuit (MLT) is fed to pin MTI, usually via an optocoupler. It is digitally  
filtered for 20 ms and decoded independently on the polarity by the maintenance  
controller according to Table 29. Therefore, the maintenance controller is capable of  
detecting the DC and AC signaling format. The Q-SMINTI automatically sets the U-  
transceiver in the proper state and issues an interrupt. The state selected by the MLT is  
indicated via two bits.  
The Q-SMINTI reacts on a valid pulse stream independently of the current U-  
transceiver state. This includes the power-down state.  
Data Sheet  
99  
2001-03-30  
PEF 82912/82913  
Functional Description  
A test mode is valid for 75 seconds. If during the 75 seconds a valid pulse sequence is  
detected the 75 s timer starts again. After expiry of the 75 s timer the MLT maintenance  
controller goes back to normal operation.  
Table 29  
ANSI Maintenance Controller States  
ANSI maintenance U-transceiver State Machine  
Number of  
counted pulses controller state  
<= 5  
6
ignored  
no impact  
Quiet Mode  
transition to state ’Reset’  
start timer 75s  
7
8
ignored  
no impact  
Insertion Loss Measurement transition to state ’Transparent’  
start timer 75s  
9
ignored  
no impact  
10  
normal operation  
ignored  
transition to state ’Reset’  
no impact  
>= 11  
Figure 49 shows examples for pulse streams with inverse polarity selecting Quiet Mode.  
20 ms < tHIGH < 500 ms  
4 ms < tLOW < 500 ms  
1
Pin  
1
2
3
4
5
6
MTI 0  
500 ms  
500 ms  
20 ms < tLOW < 500 ms  
4 ms < tHIGH < 500 ms  
1
Pin  
1
2
3
4
5
6
MTI 0  
500 ms  
500 ms  
mlt.vsd  
Figure 49  
Pulse Streams Selecting Quiet Mode  
Data Sheet  
100  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.4.12  
U-Transceiver Interrupt Structure  
The U-Interrupt Status register (ISTAU) contains the interrupt sources of the U-  
Transceiver (Figure 50). Each source can be masked by setting the corresponding bit  
of the U-Interrupt Mask register (MASKU) to ’1’. Such masked interrupt status bits are  
not indicated when ISTAU is read and do not generate an interrupt request.  
The ISTAU register is cleared on read access. The interrupt sources of the ISTAU  
register (UCIR, EOCR, M4R, M56R) need not be evaluated.  
When at time t1 an interrupt source generates an interrupt, all further interrupts are  
collected. Reading the ISTAU register clears all interrupts set before t1, even if masked.  
All interrupts, which are flagged after t1 remain active. After the ISTAU read access, the  
next unmasked interrupt will generate the next interrupt at time t2. After t2 it is possible  
to reprogram the MASKU register, so that all interrupts, which arrived between t1 and t2  
are accessible.  
Data Sheet  
101  
2001-03-30  
PEF 82912/82913  
Functional Description  
M56R  
0
7
OPMODE.MLT  
MFILT  
MS2  
MS1  
NEBE  
M61  
+
CRC,  
TLL,  
no  
M52  
Filtering  
M51  
0
7
FEBE  
+
M4R  
MFILT  
M4RMASK  
UCIR  
7
AIB  
UOA  
M46  
M45  
M44  
SCO  
DEA  
ACT  
CRC,  
TLL,  
no  
C/I  
Filtering  
C/I  
C/I  
C/I  
0
0
EOCR  
MFILT  
15  
TLL,  
CHG,  
no  
ISTAU  
MLT  
MASKU  
MLT  
7
a1  
a2  
11  
0
Filtering  
CI  
CI  
FEBE/  
NEBE  
FEBE/  
NEBE  
M56  
M56  
i8  
M4  
M4  
EOC  
6ms  
12ms  
EOC  
6ms  
12ms  
0
ISTA  
MASK  
7
U
interr_U_Q2.vsd  
0
INT  
Figure 50  
Interrupt Structure U-Transceiver  
Data Sheet  
102  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.5  
S-Transceiver  
The S-Transceiver offers the NT and LT-S mode state machines described in the User’s  
Manual V3.4 [10].  
The S-transceiver lies in IOM-2 channel 1 (default) and is configured and controlled  
via the registers described in Chapter 4.7. The state machine is set to NT mode (default)  
but can be set to LT-S mode via register programming.  
The TE mode (S-transceiver TE mode, U-transceiver disabled) is not supported.  
2.5.1  
Line Coding, Frame Structure  
Line Coding  
The following figure illustrates the line code. A binary ONE is represented by no line  
signal. Binary ZEROs are coded with alternating positive and negative pulses with two  
exceptions:  
For the required frame structure a code violation is indicated by two consecutive pulses  
of the same polarity. These two pulses can be adjacent or separated by binary ONEs.  
In bus configurations a binary ZERO always overwrites a binary ONE.  
0 1 1  
code violation  
Figure 51  
S/T -Interface Line Code  
Frame Structure  
Each S/T frame consists of 48 bits at a nominal bit rate of 192 kbit/s. For user data  
(B1+B2+D) the frame structure applies to a data rate of 144 kbit/s (see Figure 51).  
In the direction TE NT the frame is transmitted with a two bit offset. For details on the  
framing rules please refer to ITU I.430 section 6.3. The following figure illustrates the  
standard frame structure for both directions (NT TE and TE NT) with all framing  
and maintenance bits.  
Data Sheet  
103  
2001-03-30  
PEF 82912/82913  
Functional Description  
Figure 52  
Frame Structure at Reference Points S and T (ITU I.430)  
– F  
Framing Bit  
F = (0b) identifies new frame (always  
positive pulse, always code violation)  
– L.  
D.C. Balancing Bit  
L. = (0b) number of binary ZEROs sent  
after the last L. bit was odd  
– D  
– E  
D-Channel Data Bit  
D-Channel Echo Bit  
Signaling data specified by user  
E = D received E-bit is equal to transmitted  
D-bit  
– FA  
– N  
Auxiliary Framing Bit  
See section 6.3 in ITU I.430  
FA  
N =  
– B1  
– B2  
– A  
B1-Channel Data Bit  
B2-Channel Data Bit  
Activation Bit  
User data  
User data  
A = (0b) INFO 2 transmitted  
A = (1b) INFO 4 transmitted  
– S  
– M  
S-Channel Data Bit  
Multiframing Bit  
S1 channel data (see note below)  
M = (1b) Start of new multi-frame  
Note: The ITU I.430 standard specifies S1 - S5 for optional use.  
Data Sheet  
104  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.5.2  
S/Q Channels, Multiframing  
According to ITU recommendation I.430 a multi-frame provides extra layer-1 capacity in  
the TE-to-NT direction through the use of an extra channel between the TE and NT (Q-  
channel). The Q bits are defined to be the bits in the FA bit position.  
In the NT-to-TE direction the S-channel bits are used for information transmission.  
The S- and Q-channels are accessed via µC by reading/writing the SQR or SQX bits in  
the S/Q channel registers (SQRR, SQXR).  
Table 30 shows the S and Q bit positions within the multi-frame.  
Table 30  
S/Q-Bit Position Identification and Multi-Frame Structure  
Frame Number NT-to-TE NT-to-TE  
FA Bit Position M Bit  
NT-to-TE  
S Bit  
TE-to-NT  
FA Bit Position  
1
2
3
4
5
ONE  
ONE  
S11  
S21  
S31  
S41  
S51  
Q1  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
6
7
8
9
ONE  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
S12  
S22  
S32  
S42  
S52  
Q2  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
10  
11  
12  
13  
14  
15  
ONE  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
S13  
S23  
S33  
S43  
S53  
Q3  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
16  
17  
18  
19  
20  
ONE  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
S14  
S24  
S34  
S44  
S54  
Q4  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
1
2
ONE  
ZERO  
ONE  
ZERO  
S11  
S21  
Q1  
ZERO  
Data Sheet  
105  
2001-03-30  
PEF 82912/82913  
Functional Description  
The S-transceiver starts multiframing if SQXR1.MFEN is set.  
After multi-frame synchronization has been established in the TE, the Q data will be  
inserted at the upstream (TE NT) FA bit position by the TE in each 5th S/T frame, the  
S data will be inserted at the downstream (NT TE) S bit position in each 5th S/T frame  
(see Table 30). Access to S2-S5-channel is not supported.  
Interrupt Handling for Multi-Framing  
To trigger the microcontroller for a multi-frame access an interrupt can be generated  
once per multi-frame (SQW) or if the received Q-channel have changed (SQC).  
In both cases the microcontroller has access to the multiframe within the duration of one  
multiframe (5 ms).  
The start of a multiframe can not be synchronized to an external signal.  
Data Transfer between IOM -2 and S0  
2.5.3  
In the state G3 (Activated) or if the internal layer-1 statemachine is disabled and XINF of  
register S_CMD is programmed to ’011’ the B1, B2 and D bits are transferred  
transparently from the S/T to the IOM-2 interface and vice versa. In all other states ’1’s  
are transmitted to the IOM-2 interface.  
Note: In intelligent NT or intelligent LT-S mode the D-channel access can be blocked by  
the IOM-2 D-channel handler.  
2.5.4  
Loopback 2  
C/I commands ARL and AIL close the analog loop as close to the S-interface as possible.  
ETSI refers to this loop under ’loopback 2’. ETSI requires, that B1, B2 and D channels  
have the same propagation delay when being looped back.  
The D-channel Echo bit is set to bin. 0 during an analog loopback (i.e. loopback 2). The  
loop is transparent.  
Note: After C/I-code AIL has been recognized by the S-transceiver, zeros are looped  
back in the B and D-channels (DU) for four frames.  
2.5.5  
Control of S-Transceiver / State Machine  
The S-transceiver activation/ deactivation can be controlled by an internal statemachine  
via the IOM-2 C/I-channel or by software via the µC interface directly. In the default  
state the internal layer-1 statemachine of the S-transceiver is used. By setting the L1SW  
bit in the S_CONF0 register the internal statemachine can be disabled and the layer-1  
transmit commands, which are normally generated by the internal statemachine can be  
written directly into the S_CMD register or the received status read out from the S_STA  
register, respectively. The S-transceiver layer-1 control flow is shown in Figure 53.  
Data Sheet  
106  
2001-03-30  
PEF 82912/82913  
Functional Description  
Disable internal  
Statemachine  
(S_CONF.L1SW)  
C/I  
Command  
Transmit  
INFO  
Command Register  
for Transmitter  
(S_CMD)  
Transmitter  
Receiver  
Layer-1  
State  
Machine  
C/I  
Indication  
IOM-2  
Receive  
INFO  
Status Register  
of Receiver  
(S_STA)  
Layer-1 Control  
µ
C-Interface  
macro_14  
Figure 53  
S-Transceiver Control  
The state diagram notation is given in Figure 54.  
The information contained in the state diagrams are:  
– state name  
– Signal received from the line interface (INFO)  
– Signal transmitted to the line interface (INFO)  
– C/I code received (commands)  
– C/I code transmitted (indications)  
– transition criteria  
The transition criteria are grouped into:  
– C/I commands  
– Signals received from the line interface (INFOs)  
– Reset  
Data Sheet  
107  
2001-03-30  
PEF 82912/82913  
Functional Description  
OUT  
IN  
Unconditional  
Transition  
IOM-2 Interface  
C/I code  
Ind. Cmd.  
State  
S/T Interface  
INFO  
ir  
ix  
macro_17.vsd  
Figure 54  
State Diagram Notation  
As can be seen from the transition criteria, combinations of multiple conditions are  
possible as well. A “ ” stands for a logical AND combination. And a “+” indicates a logical  
OR combination.  
Test Signals  
• 2 kHz Single Pulses (TM1)  
One pulse with a width of one bit period per frame with alternating polarity.  
• 96 kHz Continuous Pulses (TM2)  
Continuous pulses with a pulse width of one bit period.  
Note: The test signals TM1 and TM2 are invoked via C/I codes ‘TM1‘ and ‘TM2‘  
according to Chapter 2.5.5.1.  
External Layer-1 Statemachine  
Instead of using the integrated layer-1 statemachine it is also possible to implement the  
layer-1 statemachine completely in software.  
The internal layer-1 statemachine can be disabled by setting the L1SW bit in the  
S_CONF0 register to ’1’.  
The transmitter is completely under control of the microcontroller via register S_CMD.  
The status of the receiver is stored in register S_STA and has to be evaluated by the  
microcontroller. This register is updated continuously. If not masked a RIC interrupt is  
generated by any change of the register contents. The interrupt is cleared after a read  
access to this register.  
Reset States  
After an active signal on the reset pin RST the S-transceiver state machine is in the reset  
state.  
Data Sheet  
108  
2001-03-30  
PEF 82912/82913  
Functional Description  
C/I Codes in Reset State  
In the reset state the C/I code 0000 (TIM) is issued. This state is entered either after a  
hardware reset (RST) or with the C/I code RES.  
C/I Codes in Deactivated State  
If the S-transceiver is in state ‘Deactivated‘ and receives i0, the C/I code 0000 (TIM) is  
issued until expiration of the 8 ms timer. Otherwise, the C/I code 1111 (DI) is issued.  
2.5.5.1 C/I Codes  
The table below presents all defined C/I0 codes. A command needs to be applied  
continuously until the desired action has been initiated. Indications are strictly state  
orientated. Refer to the state diagrams in the following sections for commands and  
indications applicable in various states.  
LT-S  
Cmd  
DR  
RES  
TM1  
TM2  
NT  
Cmd  
DR  
RES  
TM1  
TM2  
RSY  
Code  
Ind  
TIM  
Ind  
TIM  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
RSY  
RSY  
AR  
AR  
AR  
AR  
ARL  
ARL  
CVR  
AI  
CVR  
AI  
AI  
AIL  
DC  
DC  
DI  
DI  
Data Sheet  
109  
2001-03-30  
PEF 82912/82913  
Functional Description  
Receive Infos on S/T  
I0  
I0  
I3  
I3  
INFO 0 detected  
Level detected (signal different to I0)  
INFO 3 detected  
Any INFO other than INFO 3  
Transmit Infos on S/T  
I0  
I2  
I4  
It  
INFO 0  
INFO 2  
INFO 4  
Send Single Pulses (TM1).  
Send Continuous Pulses (TM2).  
Data Sheet  
110  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.5.5.2 State Machine NT Mode  
RST  
TM1  
TM2  
RES  
DR  
G4 Pend. Deact.  
TIM  
i0  
TIM  
TIM  
DR  
DR  
Reset  
Test Mode i  
it  
ARD1)  
*
i0  
i0  
*
(i0*16ms)+32ms  
DC  
RES  
DC  
TM1  
TM2  
Any  
State  
DR  
DI  
Any  
State  
ARD1)  
G4 Wait for DR  
i0  
*
DC  
DR  
DI  
TIM  
DC  
G1 Deactivated  
ARD1)  
i0  
i0  
(i0*8ms)  
DC  
AR  
DR  
G1 i0 Detected  
i0  
*
ARD1)  
AR ARD  
DR  
G2 Pend. Act  
i2  
i3  
i3  
i3*ARD  
AID  
ARD  
RSY  
AI  
ARD  
i3*ARD1)  
i3*AID2)  
DR  
G2 Lost  
Framing S/T  
G2 Wait for AID  
RSY  
i2  
i3  
i2  
i3  
AID2)  
RSY  
DR  
ARD1)  
AID2)  
ARD1)  
i3*AID2)  
RSY  
AID  
RSY  
AI  
DR  
G3 Lost  
Framing U  
G3 Activated  
i4  
i3  
RSY  
i2  
*
1): ARD = AR or ARL  
2): AID =AI or AIL  
statem_nt_s.vsd  
Figure 55  
State Machine NT Mode  
Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’  
itself, i.e. C/I-code ’TMi’ must not be followed by C/I-code ’TMj’ directly.  
Data Sheet  
111  
2001-03-30  
PEF 82912/82913  
Functional Description  
G1 Deactivated  
The S-transceiver is not transmitting. There is no signal detected on the S/T-interface,  
and no activation command is received in the C/I channel. Activation is possible from the  
S/T interface and from the IOM-2 interface.  
G1 I0 Detected  
An INFO 0 is detected on the S/T-interface, translated to an “Activation Request”  
indication in the C/I channel. The S-transceiver is waiting for an AR command, which  
normally indicates that the transmission line upstream is synchronized.  
G2 Pending Activation  
As a result of the ARD command, an INFO 2 is sent on the S/T-interface. INFO 3 is not  
yet received. In case of ARL command, loop 2 is closed.  
G2 wait for AID  
INFO 3 was received, INFO 2 continues to be transmitted while the S-transceiver waits  
for a “switch-through” command AID from the device upstream.  
G3 Activated  
INFO 4 is sent on the S/T-interface as a result of the “switch through” command AID: the  
B and D-channels are transparent. On the command AIL, loop 2 is closed.  
G2 Lost Framing S/T  
This state is reached when the transceiver has lost synchronism in the state G3  
activated.  
G3 Lost Framing U  
On receiving an RSY command which usually indicates that synchronization has been  
lost on the transmission line, the S-transceiver transmits INFO 2.  
G4 Pending Deactivation  
This state is triggered by a deactivation request DR, and is an unstable state. Indication  
DI (state “G4 wait for DR”) is issued by the transceiver when:  
either INFO0 is received for a duration of 16 ms  
or an internal timer of 32 ms expires.  
Data Sheet  
112  
2001-03-30  
PEF 82912/82913  
Functional Description  
G4 wait for DR  
Final state after a deactivation request. The S-transceiver remains in this state until DC  
is issued.  
Unconditional States  
Test Mode TM1  
Send Single Pulses  
Test Mode TM2  
Send Continuous Pulses  
C/I Commands  
Command  
Abbr. Code  
Remark  
Deactivation Request DR  
0000  
Deactivation Request. Initiates a complete  
deactivation by transmitting INFO 0.  
Reset  
RES  
0001  
Reset of state machine. Transmission of  
Info0. No reaction to incoming infos. RES is  
an unconditional command.  
Send Single Pulses  
TM1  
TM2  
0010  
0011  
Send Single Pulses.  
Send Continuous  
Pulses  
Send Continuous Pulses.  
Receiver not  
Synchronous  
RSY  
AR  
0100  
1000  
1010  
Receiver is not synchronous  
Activation Request  
Activation Request. This command is used to  
start an activation.  
Activation Request  
Loop  
ARL  
Activation request loop. The transceiver is  
requested to operate an analog loop-back  
close to the S/T-interface.  
Activation Indication  
AI  
1100  
Activation Indication. Synchronous receiver,  
i.e. activation completed.  
Data Sheet  
113  
2001-03-30  
PEF 82912/82913  
Functional Description  
Command  
Abbr. Code  
Remark  
Activation Indication  
Loop  
AIL  
1110  
Activation Indication Loop  
Deactivation  
Confirmation  
DC  
1111  
Deactivation Confirmation. Transfers the  
transceiver into a deactivated state in which  
it can be activated from a terminal (detection  
of INFO 0 enabled).  
Indication  
Abbr. Code  
Remark  
Timing  
TIM  
RSY  
AR  
0000  
0100  
1000  
1011  
1100  
1111  
Interim indication during deactivation  
procedure.  
Receiver not  
Synchronous  
Receiver is not synchronous.  
Activation Request  
INFO 0 received from terminal. Activation  
proceeds.  
Illegal Code Ciolation CVR  
Illegal code violation received. This function  
has to be enabled in S_CONF0.EN_ICV.  
Activation Indication  
AI  
DI  
Synchronous receiver, i.e. activation  
completed.  
Deactivation  
Indication  
Timer (32 ms) expired or INFO 0 received for  
a duration of 16 ms after deactivation  
request.  
Data Sheet  
114  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.5.5.3 State Machine LT-S Mode  
RST  
TM1  
TM2  
RES  
DR  
G4 Pend. Deact.  
TIM  
i0  
TIM  
TIM  
DR  
DR  
Reset  
Test Mode i  
it  
ARD1)  
*
i0  
i0  
*
DC  
TM1  
TM2  
RES  
DC  
(i0*16ms)+32ms  
DR  
Any  
State  
Any  
State  
DI  
ARD1)  
G4 Wait for DR  
i0  
*
DC  
DR  
DI  
TIM  
DC  
G1 Deactivated  
i0  
i0  
(i0*8ms)+ARD1)  
DC  
ARD  
DR  
AR  
G2 Pend. Act.  
i2  
i3  
i3  
i3  
DC  
DC  
RSY  
AI  
ARD  
ARD  
i3  
DR  
G2 Lost  
Framing S/T  
G3 Activated  
i4  
i3  
i2  
i3  
DR  
1): ARD = AR or ARL  
statem_lts_s.vsd  
Figure 56  
State Machine LT-S Mode  
Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’  
itself, i.e. C/I-code ’TMi’ must not be followed by C/I-code ’TMj ’directly.  
Data Sheet  
115  
2001-03-30  
PEF 82912/82913  
Functional Description  
G1 deactivated  
The S-transceiver is not transmitting. There is no signal detected on the S/T-interface,  
and no activation command is received in the C/I channel. Activation is possible from the  
S/T interface and from the IOM-2 interface.  
G2 pending activation  
As a result of an INFO 0 detected on the S/T line or an ARD command, the S-transceiver  
begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise  
reception of INFO 3 is to be implemented in software. In case of an ARL command, loop  
2 is closed.  
G3 activated  
Normal state where INFO 4 is transmitted to the S/T-interface. The transceiver remains  
in this state as long as neither a deactivation nor a test mode is requested, nor the  
receiver looses synchronism.  
When receiver synchronism is lost, INFO 2 is sent automatically. After reception of  
INFO 3, the transmitter keeps on sending INFO 4.  
G2 lost framing  
This state is reached when the S-transceiver has lost synchronism in the state G3  
activated.  
G4 pending deactivation  
This state is triggered by a deactivation request DR. It is an unstable state: indication DI  
(state “G4 wait for DR.”) is issued by the S-transceiver when:  
either INFO0 is received for a duration of 16 ms,  
or an internal timer of 32 ms expires.  
G4 wait for DR  
Final state after a deactivation request. The transceiver remains in this state until DC is  
issued.  
Unconditional States  
Test mode - TM1  
Single alternating pulses are sent on the S/T-interface.  
Data Sheet  
116  
2001-03-30  
PEF 82912/82913  
Functional Description  
Test mode - TM2  
Continuous alternating pulses are sent on the S/T-interface.  
Command  
Abbr. Code  
Remark  
Deactivation Request DR  
0000  
DR - Deactivation Request. Initiates a  
complete deactivation by transmitting INFO  
0.  
Reset  
RES  
0001  
Reset of state machine. Transmission of  
Info0. No reaction to incoming infos. RES is  
an unconditional command.  
Send Single Pulses  
TM1  
TM2  
0010  
0011  
Send Single Pulses.  
Send Continuous  
Pulses  
Send Continuous Pulses.  
Activation Request  
AR  
1000  
1010  
Activation Request. This command is used to  
start an activation.  
Activation Request  
Loop  
ARL  
Activation request loop. The transceiver is  
requested to operate an analog loop-back  
close to the S/T-interface.  
Deactivation  
Confirmation  
DC  
1111  
Deactivation Confirmation. Transfers the  
transceiver into a deactivated state in which  
it can be activated from a terminal (detection  
of INFO 0 enabled).  
Indication  
Abbr. Code  
Remark  
Timing  
TIM  
RSY  
AR  
0000  
0100  
1000  
1011  
1100  
1111  
Interim indication during activation  
procedure in G1.  
Receiver not  
Synchronous  
Receiver is not synchronous  
Activation Request  
INFO 0 received from terminal. Activation  
proceeds.  
Illegal Code Ciolation CVR  
Illegal code violation received. This function  
has to be enabled in S_CONF0.EN_ICV.  
Activation Indication  
AI  
DI  
Synchronous receiver, i.e. activation  
completed.  
Deactivation  
Indication  
Timer (32 ms) expired or INFO 0 received for  
a duration of 16 ms after deactivation request  
Data Sheet  
117  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.5.6  
S-Transceiver Enable / Disable  
The layer-1 part of the S-transceiver can be enabled/disabled with the two bits  
S_CONF0.DIS_TR and S_CONF2.DIS_TX.  
If DIS_TX=’1’ the transmit buffers are disabled. The receiver will monitor for incoming  
data in this configuration. By default the transmitter is disabled (DIS_TX = ’1’).  
If the transceiver is disabled (DIS_TR = ’1’, DIS_TX = don’t care) all layer-1 functions are  
disabled including the level detection circuit of the receiver. In this case the power  
consumption of the S-transceiver is reduced to a minimum.  
Data Sheet  
118  
2001-03-30  
PEF 82912/82913  
Functional Description  
2.5.7  
Interrupt Structure S-Transceiver  
Level Detect  
S_STA  
7
RINF  
0
FECV  
0
FSYN  
0
0
7
LD  
SQRR  
MSYN  
MFEN  
0
0
SQR1  
SQR2  
SQR3  
SQR4  
0
7
SQXR  
0
ISTAS  
0
MASKS  
MFEN  
0
7
1
1
0
0
0
1
SQX1  
SQX2  
SQX3  
SQX4  
MASK  
ISTA  
7
0
1
LD  
RIC  
SQC  
SQW  
LD  
RIC  
SQC  
SQW  
0
0
S
0
INT  
interr.vsd  
Figure 57  
Interrupt Structure S-Transceiver  
Data Sheet  
119  
2001-03-30  
PEF 82912/82913  
Operational Description  
3
Operational Description  
3.1  
Layer 1 Activation/Deactivation  
3.1.1  
Complete Activation Initiated by Exchange  
Figure 58 depicts the procedure if activation has been initiated by the exchange side  
(LT).  
NT  
IOM -2  
IOM -2  
TE  
S/T-Reference Point  
U-Reference Point  
LT  
INFO 0  
INFO 0  
S0  
DC  
DI  
µC  
Uk0  
SL0  
SN0  
DC  
DI  
DC  
DC  
DI  
DI  
AR  
TL  
SL0  
TN  
PU  
AR  
DC1)  
SN1  
SN0  
SL1  
SL2 (act = 0, dea = 1, uoa = 1)  
ARM  
UAI  
SN2  
AR  
SN3 (act = 0, sai = 0)  
AR  
AR  
AR2)  
INFO 2  
INFO 3  
SN3 (act = 0, sai = 1)  
SL3T (act = 0, dea = 1, uoa = 1)  
SN3 (act = 1, sai = 1)  
AI  
AI  
AR  
AI  
AI  
SL3T (act = 1, dea = 1, uoa = 1)  
AI  
SN3T  
INFO 4  
AI  
AR8/10  
SBCX-X or  
IPAC-X  
DFE-Q  
Q-SMINTI  
1)C/I-Code DC is not issued in case of simplified state machine is selected  
2)C/I-Code AR is optional  
ITD08687.vsd  
Figure 58  
Complete Activation Initiated by Exchange  
Data Sheet  
120  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.1.2  
Complete Activation Initiated by TE  
Figure 59 depicts the procedure if activation has been initiated by the terminal side (TE).  
IOM -2  
IOM -2  
TE  
S/T-Reference Point  
NT  
µC  
U-Reference Point  
LT  
S0  
Uk0  
INFO 0  
INFO 0  
DC  
DI  
DC  
DI  
SL0  
SN0  
DC  
DI  
DC  
DI  
TIM  
PU  
AR  
INFO 1  
TIM  
AR  
TIM  
8ms  
PU  
AR  
TN  
AR  
DC1)  
SN1  
SN0  
SL1  
SL2 (act = 0, dea = 1, uoa = 0)  
ARM  
UAI  
SN2  
SN3 (act = 0, sai = 1)  
SL3T (uoa = 1)  
AR  
AR  
INFO 2  
INFO 0  
INFO 3  
RSY  
AR  
AI  
AI  
AI  
AI  
SN3 (act = 1, sai = 1)  
SL3T (act = 1, dea = 1, uoa = 1)  
SN3T  
AI  
INFO 4  
AI  
SBCX-X or  
IPAC-X  
Q-SMINTI  
DFE-Q  
1)C/I-Code DC is not issued in case of simplified state machine is selected  
ITD08688.vsd  
Figure 59  
Complete Activation Initiated by TE  
Data Sheet  
121  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.1.3  
Complete Activation Initiated by NT  
Figure 60 depicts the procedure if activation has been initiated by the Q-SMINTI itself  
(e.g. after hook-off of a local analog phone).  
NT  
IOM -2  
IOM -2  
TE  
S/T-Reference Point  
U-Reference Point  
LT  
S0  
Uk0  
INFO 0  
INFO 0  
DC  
DI  
µC  
DC  
DI  
SL0  
SN0  
DC  
DI  
DC  
DI  
TIM  
PU  
AR  
TN  
AR  
ARM  
UAI  
DC1)  
SN1  
SN0  
SL1  
SL2 (act = 0, dea = 1, uoa = 0)  
SN2  
SN3 (act = 0, sai = 1)  
SL3T (uoa = 1)  
AR  
AR  
AR  
INFO 2  
INFO 3  
AR  
AI  
AI  
AI  
AI  
SN3 (act = 1, sai = 1)  
SL3T (act = 1, dea = 1, uoa = 1)  
SN3T  
AI  
INFO 4  
AI  
SBCX-X or  
IPAC-X  
DFE-Q  
Q-SMINTI  
ITD08689.vsd  
1)C/I-Code DC is not issued in case of simplified state machine is selected  
Figure 60  
Complete Activation Initiated by Q-SMINTI  
Data Sheet  
122  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.1.4  
Complete Deactivation  
Figure 61 depicts the procedure if deactivation has been initiated. Deactivation of layer  
1 is always initiated by the exchange.  
IOM -2  
IOM -2  
TE  
S/T-Reference Point  
NT  
µC  
U-Reference Point  
LT  
INFO 4  
INFO 3  
S0  
AI  
AI  
AI  
AI  
SL3T (act = 1, dea = 1, uoa = 1)  
SN3T (act = 1, dea = 1)  
Uk0  
AI  
AR  
AI  
(AR)  
DR  
SL3T (act = 0, dea = 0)  
DEAC  
DC1) 2)  
DR  
40 ms  
SL0  
SL0  
3 ms  
DR  
INFO 0  
INFO 0  
TIM  
RSY  
DR  
DI  
DI  
DC  
DI  
DC  
DI  
&
DC  
DC  
SBCX-X or  
IPAC-X  
DFE-Q  
Q-SMINTI  
1)C/I-Code DR is issued in case of simplified state machine is selected  
2)C/I-Code AR might be issued before C/I-Code DC in case of M4  
ITD08690.vsd  
Validation Algorithm TLL, CRC&TLL or On Change is selected  
Figure 61  
Complete Deactivation Initiated by Exchange  
Data Sheet  
123  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.1.5  
Loop 2  
Figure 62 depicts the procedure if loop 2 is closed and opened.  
IOM -2  
S/T-Reference Point  
NT  
µC  
U-Reference Point  
LT  
IOM -2  
TE  
S0  
Uk0  
AI  
AI  
INFO 4  
AI  
AI  
SL3T (act = 1, dea = 1, uoa = 1)  
SN3T (act = 1, dea = 1)  
AR  
AI  
AI  
AR8/10  
INFO 3  
2B+D  
MON0:LBBD  
MON0:RTN  
EOC: LBBD: act = 1  
EOC: RTN: act = 1  
AIL  
AIL  
ISTAU.EOC=1  
2B+D  
AI  
AI  
ISTAU.EOC=1  
2B+D  
Q-SMINTI  
SBCX-X or  
IPAC-X  
DFE-Q  
ITD10034.vsd  
Figure 62  
Loop 2  
Data Sheet  
124  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.2  
Layer 1 Loopbacks  
Test loopbacks are specified by the national PTTs in order to facilitate the location of  
defect systems. Four different loopbacks are defined. The position of each loopback is  
illustrated in Figure 63.  
U
U
IOM®-2  
S-BUS  
Loop 2  
Loop 2  
S-Transceiver  
U-Transceiver  
IOM®-2  
Loop 1 A  
IOM®-2  
NT  
U-Transceiver  
U-Transceiver  
Loop 1  
IOM®-2  
U-Transceiver  
Repeater (optional)  
Loop 2  
Layer-1 Controller  
Layer-1 Controller  
Exchange  
U-Transceiver  
IOM-2  
Loop 3  
U-Transceiver  
PBX or TE  
loop_2b1q.emf  
Figure 63  
Test Loopbacks  
Loopbacks #1, #1A and #2 are controlled by the exchange. Loopback #3 is controlled  
locally on the remote side. All four loopback types are transparent. This means all bits  
that are looped back will also be passed onwards in the normal manner. Only the data  
looped back internally is processed; signals on the receive pins are ignored. The  
propagation delay of actually looped B and D channels data must be identical in all  
loopbacks.  
Besides the remote controlled loopback stimulation via the EOC channel, the Q-  
SMINTI features also direct loopback control via its register set.  
3.2.1  
Analog Loopback U-Transceiver (No. 3)  
Loopback #3 is closed by the U-transceiver as near to the U-interface as possible, i.e.  
the loop is closed in the analog part by short circuiting the output to the input. The signal  
on the line is ignored in this state. For this reason it is also called analog loopback. All  
analog signals will still be passed on to the U-interface.  
Before an analog loopback is closed by the appropriate C/I-command ARL (activation  
request loopback 3), the U-transceiver shall have been reset.  
Data Sheet  
125  
2001-03-30  
PEF 82912/82913  
Operational Description  
In order to open an analog loopback correctly, force the U-transceiver into the RESET  
state. This ensures that the echo coefficients and equalizer coefficients will converge  
correctly when activating anew.  
3.2.2  
Analog Loop-Back S-Transceiver  
The Q-SMINTI provides test and diagnostic functions for the S/T interface:  
The internal local loop (internal Loop A) is activated by a C/I command ARL or by  
setting the bit LP_A (Loop Analog) in the S_CMD register if the layer-1 statemachine is  
disabled.  
The transmit data of the transmitter is looped back internally to the receiver. The data of  
the IOM-2 input B- and D-channels are looped back to the output B- and D-channels.  
The S/T interface level detector is enabled, i.e. if a level is detected this will be reported  
by the Resynchronization Indication (RSY) but the loop function is not affected.  
Depending on the DIS_TX bit in the S_CONF2 register the internal local loop can be  
transparent or non transparent to the S/T line.  
The external local loop (external Loop A) is activated in the same way as the internal  
local loop described above. Additionally the EXLP bit in the S_CONF0 register has to be  
programmed and the loop has to be closed externally as described in Figure 64.  
The S/T interface level detector is disabled.  
SX1  
100  
SX2  
SR1  
SR2  
100  
Figure 64  
External Loop at the S/T-Interface  
Data Sheet  
126  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.2.3  
Loopback No.2  
For loopback #2 several alternatives exist. Both the type of loopback and the location  
may vary. The following loopback types belong to the loopback-#2 category:  
• complete loopback (B1,B2,D), in the U-transceiver  
• complete loopback (B1,B2,D), in a downstream device  
• B1-channel loopback, always performed in the U-transceiver  
• B2-channel loopback, always performed in the U-transceiver  
All loop variations performed by the U-transceiver are closed as near to the internal  
IOM-2 interface as possible.  
Normally loopback #2 is controlled by the exchange. The maintenance channel is used  
for this purpose. All loopback functions are latched. This allows channel B1 and channel  
B2 to be looped back simultaneously.  
3.2.3.1 Complete Loopback  
When receiving the request for a complete loopback, the U transceiver passes it on to  
the downstream device, e.g. the S-bus transceiver. This is achieved by issuing the C/I-  
code AIL in the “Transparent” state or C/I = ARL in states different than “Transparent”  
(note: this holds true only for the EOC automode). The U transceiver may be  
commanded to close the complete loopback itself.  
Figure 65 illustrates the two options.  
S-Transceiver  
2B+D  
U-Transceiver  
2 B+D  
loop request  
U
loop command  
Controller  
loop command  
lp2bymon8.vsd  
Figure 65  
Complete Loopback Options in NT-Mode  
The complete loopback is either opened under control of the exchange via the  
maintenance channel or locally controlled via the µC. No reset is required for loopback  
#2. The line stays active and is ready for data transmission.  
Data Sheet  
127  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.2.3.2 Loopback No.2 - Single Channel Loopbacks  
Single channel loopbacks are always performed directly in the U-Transceiver. No  
difference between the B1-channel and the B2-channel loopback control procedure  
exists.  
3.2.4  
Local Loopbacks Featured By the LOOP Register  
Besides the standardized remote loopbacks the U-transceiver features additional local  
loopbacks for enhanced test and debugging facilities. The local loopbacks that are  
featured by register LOOP are shown in Figure 66. They are closed in the U-transceiver  
itself and can be activated regardless of the current operational status.  
By the LOOP register it can be configured whether the loopback is closed only for the B1  
and/or B2 or for 2B+D channels and whether the loopback is closed towards the internal  
IOM-2 interface or towards the U-Interface.  
By default the loopbacks are set to transparent mode. In transparent mode the data is  
both passed on and looped back. In non-transparent mode the data is not forwarded but  
substituted by 1s (idle code).  
Besides the loopbacks in the system interface an additional digital loopback (DLB), the  
Framer/ Deframer loopback, is featured. It allows to test most digital functions of the U-  
transceiver besides the signal processing blocks.  
Data Sheet  
128  
2001-03-30  
PEF 82912/82913  
Operational Description  
LOOP.LB1=1  
LOOP.LB1=1  
LOOP.LB2=1  
LOOP.LBBD= 1  
&
LOOP.LB2=1  
LOOP.LBBD= 1  
&
LOOP.U/IOM=  
0
LOOP.U/IOM=  
1
Analog Part Digital Part  
Line Interface  
Unit  
U-  
Framing  
DAC  
Scrambler  
2B1Q  
2B1Q  
Echo  
Canceller  
Tx-FIFO  
Rx-FIFO  
IOM-2  
Interface  
A
G
C
De-  
Scrambler  
U-De-  
Framing  
Σ∆  
PDM  
Filter  
Equalizer  
+
ADC  
Timing  
Recovery  
Activation/ Deactivation  
Controller  
U-Transceiver  
Bandgap,  
Bias, Refer.  
LOOP.DLB= 1  
Digital Part  
Analog Part  
Line Interface  
Unit  
Tx-FIFO  
Rx-FIFO  
U-  
Scrambler  
DAC  
2B1Q  
2B1Q  
Framing  
Echo  
Canceller  
IOM-2  
Interface  
A
De-  
U-De-  
Σ∆  
PDM  
Filter  
G
+
Equalizer  
Scrambler  
Framing  
ADC  
C
Timing  
Recovery  
Activation/ Deactivation  
Controller  
U-Transceiver  
Bandgap,  
Bias, Refer.  
loopreg.emf  
Figure 66  
Loopbacks Featured by Register LOOP  
Data Sheet  
129  
2001-03-30  
PEF 82912/82913  
Operational Description  
3.3  
External Circuitry  
3.3.1  
Power Supply Blocking Recommendation  
The following blocking circuitry is suggested.  
VDDa_UR  
VDDa_UX  
VDDa_SR  
VDDa_SX  
VDDD  
3.3V  
VDDD  
1)  
1)  
1)  
1)  
1)  
1)  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
1µF  
VSSD  
VSSD  
GND  
VSSa_SX  
VSSa_SR  
VSSa_UX  
VSSa_UR  
1) These capacitors should be located as near to the pins as possible  
blocking_caps_Smint.vsd  
Figure 67  
3.3.2  
Power Supply Blocking  
U-Transceiver  
The Q-SMINTI is connected to the twisted pair via a transformer. Figure 68 shows the  
recommended external circuitry. The recommended protection circuitry is not displayed.  
Note: The integrated hybrid as specified for Version 1.1 is no more available in Version  
1.3 and an external hybrid is required.  
Data Sheet  
130  
2001-03-30  
PEF 82912/82913  
Operational Description  
•.  
RT  
R4  
R4  
RT  
AOUT  
n
RCOMP  
RPTC  
BIN  
AIN  
>1µ  
C
Loop  
RCOMP  
RPTC  
extcirc_U_Q2_exthybrid.emf  
BOUT  
Figure 68  
External Circuitry U-Transceiver  
U-Transformer Parameters  
The following Table 31 lists parameters of typical U-transformers:  
Table 31  
U-Transformer Parameters  
U-Transformer Parameters  
Symbol Value  
Unit  
U-Transformer ratio;  
n
1 : 2  
Device side : Line side  
Main inductance of windings on the line side  
LH  
14.5  
<75  
100  
mH  
µH  
pF  
Leakage inductance of windings on the line side LS  
Coupling capacitance between the windings on CK  
the device side and the windings on the line side  
DC resistance of the windings on device side  
DC resistance of the windings on line side  
1)RB / RL according to equation[2]  
RB  
RL  
2.51)  
51)  
Data Sheet  
131  
2001-03-30  
PEF 82912/82913  
Operational Description  
Resistors of the External Hybrid R3, R4 and RT  
R3 = 1.3 kΩ  
R4 = 1.0 kΩ  
RT = 9.5 Ω  
Resistors on the Line Side RPTC / Chip Side RT  
Optional use of up to 2x20 resistors (2xRPTC) on the line side of the transformer  
requires compensation resistors RCOMP depending on RPTC  
:
2RPTC + 8RCOMP = 40 Ω  
(1)  
(2)  
2RPTC + 4(2RCOMP + 2RT + ROUT + RB) + RL = 135 Ω  
RB, RL : see Table 31  
ROUT : see Table 38  
27 nF Capacitor C  
To achieve optimum performance the 27 nF capacitor should be MKT. A Ceramic  
capacitor is not recommended.  
Tolerances  
• Rs: ±1%  
• C=27 nF: ±10-20%  
• L=14.5 mH: ±10%  
3.3.3  
S-Transceiver  
In order to comply to the physical requirements of ITU recommendation I.430 and  
considering the national requirements concerning overvoltage protection and  
electromagnetic compatibility (EMC), the S-transceiver needs some additional circuitry.  
S-Transformer Parameters  
The following Table 32 lists parameters of a typical S-transformer:  
Table 32  
S-Transformer Parameters  
Transformer Parameters  
Symbol Value  
Unit  
Transformer ratio;  
n
2 : 1  
Device side : Line side  
Main inductance of windings on the line side  
LH  
typ. 30  
typ. <3  
mH  
µH  
Leakage inductance of windings on the line side LS  
Data Sheet  
132  
2001-03-30  
PEF 82912/82913  
Operational Description  
Transformer Parameters  
Symbol Value  
Unit  
Coupling capacitance between the windings on CK  
the device side and the windings on the line side  
typ. <100  
pF  
DC resistance of the windings on device side  
DC resistance of the windings on line side  
RB  
RL  
typ. 2.4  
typ. 1.4  
Transmitter  
The transmitter requires external resistors Rstx = 47in order to adjust the output  
voltage to the pulse mask (nominal 750 mV according to ITU I.430, to be tested with the  
test mode “TM1”) on the one hand and in order to meet the output impedance of  
minimum 20 on the other hand (to be tested with the testmode ’Continuous Pulses’)  
on the other hand.  
Note: The resistance of the S-transformer must be taken into account when  
dimensioning the external resistors Rstx. If the transmit path contains additional  
components (e.g. a choke), then the resistance of these additional components  
must be taken into account, too.  
47  
2 : 1  
SX1  
SX2  
VDD  
GND  
47  
DC Point  
extcirc_S.vsd  
Figure 69  
External Circuitry S-Interface Transmitter  
Data Sheet  
133  
2001-03-30  
PEF 82912/82913  
Operational Description  
Receiver  
The receiver of the S-transceiver is symmetrical. 10 koverall resistance are  
recommended in each receive path. It is preferable to split the resistance into two  
resistors for each line. This allows to place a high resistance between the transformer  
and the diode protection circuit (required to pass 96 kHz input impedance test of  
ITU I.430 [8] and ETS 300012-1). The remaining resistance (1.8 k) protects the S-  
transceiver itself from input current peaks.  
1k8  
8k2  
2 : 1  
SR1  
SR2  
VDD  
GND  
1k8  
8k2  
DC Point  
extcirc_S.vsd  
Figure 70  
3.3.4  
External Circuitry S-Interface Receiver  
Oscillator Circuitry  
Figure 71 illustrates the recommended oscillator circuit.  
CLD  
XOUT  
15.36 MHz  
CLD  
XIN  
Figure 71  
Crystal Oscillator  
Data Sheet  
134  
2001-03-30  
PEF 82912/82913  
Operational Description  
Table 33  
Crystal Parameters  
Parameter  
Symbol  
Limit Values  
Unit  
MHz  
ppm  
pF  
Frequency  
f
15.36  
Frequency calibration tolerance  
Load capacitance  
+/-60  
CL  
R1  
C0  
20  
Max. resonance resistance  
Max. shunt capacitance  
Oscillator mode  
20  
7
pF  
fundamental  
External Components and Parasitics  
The load capacitance CL is computed from the external capacitances CLD, the parasitic  
capacitances CPar (pin and PCB capacitances to ground and VDD) and the stray  
capacitance CIO between XIN and XOUT:  
(CLD + CPar) × (CLD + CPar  
CL = ------------------------------------------------------------------------ + C IO  
(CLD + CPar) + (CLD + CPar  
)
)
For a specific crystal the total load capacitance is predefined, so the equation must be  
solved for the external capacitances CLD, which is usually the only variable to be  
determined by the circuit designer. Typical values for the capacitances CLD connected  
to the crystal are 22 - 33 pF.  
3.3.5  
General  
• low power LEDs  
• MLT input supports  
– APC13112  
– AT&T LH1465AB  
– discrete as proposed by Infineon  
Data Sheet  
135  
2001-03-30  
PEF 82912/82913  
Register Description  
4
Register Description  
4.1  
Address Space  
7D  
H
U-Transceiver  
60  
H
Monitor Handler  
5C  
H
IOM-2 Handler  
(CDA, TSDP, CR, STI)  
40  
H
Interrupt, Global Registers  
3C  
H
S-Transceiver  
CI-Register  
30  
H
2E  
22  
H
MODEH-Register  
reserved  
H
H
00  
Figure 72  
Address Space  
Data Sheet  
136  
2001-03-30  
PEF 82912/82913  
Register Description  
4.2  
Interrupts  
Special events in the Q-SMINTI are indicated by means of a single interrupt output,  
which requests the host to read status information from the Q-SMINTI or transfer data  
from/to the Q-SMINTI.  
Since only one INT request output is provided, the cause of an interrupt must be  
determined by the host reading the interrupt status registers of the Q-SMINTI.  
The structure of the interrupt status registers is shown in Figure 73.  
MASKU ISTAU  
MLT  
CI  
MLT  
CI  
MSTI  
STOV21  
STOV20  
STOV11  
STOV10  
STI21  
STI  
STOV21  
ASTI  
FE/NEBE  
FE/NEBE  
M56  
M4  
STOV20  
STOV11  
STOV10  
STI21  
M56  
M4  
EOC  
6ms  
EOC  
6ms  
12ms  
ACK21  
ACK20  
ACK11  
ACK10  
STI20  
STI20  
12ms  
STI11  
STI11  
STI10  
STI10  
MASK  
U
ISTA  
U
ISTAS  
LD  
MASKS  
LD  
ST  
ST  
CIC  
1
CIC0  
CIC1  
CIR0  
CIC  
0
RIC  
RIC  
CI1E  
CIX1  
SQC  
SQW  
SQC  
SQW  
WOV  
S
WOV  
S
MOS  
0
MOS  
1
MRE  
MDR  
MER  
MDA  
MIE  
MAB  
MOCR  
MOSR  
INT  
Figure 73  
Q-SMINTI Interrupt Status Registers  
Data Sheet  
137  
2001-03-30  
PEF 82912/82913  
Register Description  
After the Q-SMINTI has requested an interrupt by setting its INT pin to low, the host  
must read first the Q-SMINTI interrupt status register (ISTA) in the associated interrupt  
service routine. The INT pin of the Q-SMINTI remains active until all interrupt sources  
are cleared. Therefore, it is possible that the INT pin is still active when the interrupt  
service routine is finished.  
Each interrupt indication of the interrupt status registers can selectively be masked by  
setting the respective bit in the MASK register.  
For some interrupt controllers or hosts it might be necessary to generate a new edge on  
the interrupt line to recognize pending interrupts. This can be done by masking all  
interrupts at the end of the interrupt service routine (writing FFH into the MASK register)  
and writing back the old mask to the MASK register.  
Data Sheet  
138  
2001-03-30  
PEF 82912/82913  
Register Description  
4.3  
Register Summary  
r(0) = reserved, implemented as zero.  
CI Handler  
Name  
7
1
6
1
5
0
4
3
2
1
0
ADDR R/W RES  
reserved  
00H  
-21H  
MODEH  
r(0)  
0
DIM2 DIM1 DIM0  
22H R/W C0H  
reserved  
23H-  
2DH  
CIR0  
CIX0  
CIR1  
CIX1  
CODR0  
CODX0  
CIC0  
CIC1  
S/G  
BAS  
2EH  
2EH  
2FH  
2FH  
R
F3H  
W FEH  
FEH  
TBA2 TBA1 TBA0 BAC  
CICW CI1E  
CODR1  
CODX1  
R
CICW CI1E  
W FEH  
Data Sheet  
139  
2001-03-30  
PEF 82912/82913  
Register Description  
S-Transceiver  
Name  
7
6
5
4
0
3
2
0
1
0
0
ADDR R/W RES  
30H R/W 40H  
S_  
CONF0  
DIS_  
TR  
BUS  
EN_  
ICV  
L1SW  
EXLP  
reserved  
31H  
S_  
CONF2  
DIS_  
TX  
0
0
0
0
0
0
0
0
32H R/W 80H  
S_STA  
S_CMD  
SQRR  
SQXR  
RINF  
XINF  
MSYN MFEN  
ICV  
0
1
FSYN  
PD  
0
LD  
0
33H  
R
00H  
DPRIO  
LP_A  
34H R/W 08H  
0
0
0
0
SQR1 SQR2 SQR3 SQR4  
SQX1 SQX2 SQX3 SQX4  
35H  
35H  
R
00H  
00H  
0
MFEN  
W
reserved  
36H-37H  
38H  
ISTAS  
0
1
0
x
1
0
x
1
0
x
1
0
LD  
LD  
RIC  
RIC  
SQC  
SQC  
SQW  
SQW  
R
00H  
MASKS  
39H R/W FFH  
3AH R/W 02H  
S_  
DCH_  
INH  
MODE2-0  
MODE  
reserved  
3BH  
Data Sheet  
140  
2001-03-30  
PEF 82912/82913  
Register Description  
Interrupt, General Configuration  
Name  
ISTA  
7
U
U
6
5
4
0
1
3
2
S
S
1
0
0
1
ADDR R/W RES  
ST  
ST  
CIC  
CIC  
CDS  
WOV  
WOV  
MOS  
MOS  
3CH  
3CH  
R
00H  
FFH  
MASK  
MODE1  
W
MCLK  
WTC1 WTC2 CFS  
RSS2 RSS1  
AMOD PPSDX 3EH R/W 00H  
3DH R/W 04H  
MODE2 LED2 LED1 LEDC  
0
0
0
ID  
0
0
0
0
DESIGN  
3FH  
3FH  
R
01H  
00H  
SRES  
RES_  
0
0
0
RES_ RES_  
W
CI/TIC  
S
U
Data Sheet  
141  
2001-03-30  
PEF 82912/82913  
Register Description  
IOM Handler (Timeslot, Data Port Selection,  
CDA Data and CDA Control Register)  
Name  
7
6
5
4
3
2
1
0
ADDR R/W RES  
40H R/W FFH  
41H R/W FFH  
42H R/W FFH  
43H R/W FFH  
44H R/W 00H  
CDA10  
CDA11  
CDA20  
CDA21  
Controller Data Access Register  
Controller Data Access Register  
Controller Data Access Register  
Controller Data Access Register  
CDA_  
TSDP10  
DPS  
DPS  
DPS  
DPS  
0
0
0
0
0
0
0
0
0
0
0
0
TSS  
TSS  
TSS  
TSS  
CDA_  
TSDP11  
45H R/W 01H  
46H R/W 80H  
47H R/W 81H  
CDA_  
TSDP20  
CDA_  
TSDP21  
reserved  
48H-  
4BH  
S_  
TSDP_  
B1  
DPS  
DPS  
0
0
0
0
0
0
TSS  
TSS  
4CH R/W 84H  
S_  
4DH R/W 85H  
TSDP_  
B2  
CDA1_  
CR  
0
0
0
0
EN_ EN_I1 EN_I0 EN_O1 EN_O0 SWAP 4EH R/W 00H  
TBM  
CDA2_  
CR  
EN_ EN_I1 EN_I0 EN_O1 EN_O0 SWAP 4FH R/W 00H  
TBM  
Data Sheet  
142  
2001-03-30  
PEF 82912/82913  
Register Description  
IOM Handler (Control Registers, Synchronous Transfer Interrupt  
Control)  
Name  
7
1
6
5
4
3
2
1
0
ADDR R/W RES  
50H  
reserved  
S_CR  
CI_CS EN_  
D
EN_  
B2R  
EN_  
B1R  
EN_  
B2X  
EN_ D_CS 51H R/W FFH  
B1X  
CI_CR  
DPS_  
CI1  
EN_  
CI1  
0
0
0
1
0
52H R/W 04H  
53H R/W 40H  
54H R/W 00H  
55H R/W 00H  
56H R/W 08H  
MON_  
CR  
DPS  
EN_  
MON  
0
0
0
0
0
0
MCS  
SDS1_  
CR  
ENS_ ENS_ ENS_  
TSS TSS+1 TSS+3  
TSS  
TSS  
SDS2_  
CR  
ENS_ ENS_ ENS_  
TSS TSS+1 TSS+3  
IOM_CR  
SPU  
0
0
TIC_  
DIS  
EN_  
BCL  
0
DIS_ DIS_  
OD  
IOM  
MCDA  
STI  
MCDA21  
MCDA20  
MCDA11  
MCDA10  
57H  
58H  
R
R
FFH  
00H  
STOV STOV STOV STOV  
STI  
21  
STI  
20  
STI  
11  
STI  
10  
21  
0
20  
0
11  
0
10  
0
ASTI  
MSTI  
ACK  
21  
ACK  
20  
ACK  
11  
ACK  
10  
58H  
W
00H  
STOV STOV STOV STOV  
21 20 11 10  
STI  
21  
STI  
20  
STI  
11  
STI  
10  
59H R/W FFH  
reserved  
5AH-  
5BH  
Data Sheet  
143  
2001-03-30  
PEF 82912/82913  
Register Description  
MONITOR Handler  
Name  
MOR  
7
6
5
4
3
2
1
0
ADDR R/W RES  
MONITOR Receive Data  
MONITOR Transmit Data  
5CH  
5CH  
5DH  
R
W
R
FFH  
FFH  
00H  
MOX  
MOSR  
MOCR  
MSTA  
MCONF  
MDR  
MRE  
0
MER  
MRC  
0
MDA  
MIE  
0
MAB  
MXC  
0
0
0
0
0
0
0
0
0
0
0
0
0
5EH R/W 00H  
MAC  
0
TOUT 5FH  
TOUT 5FH  
R
00H  
00H  
0
0
0
0
W
Data Sheet  
144  
2001-03-30  
PEF 82912/82913  
Register Description  
Register Summary U-Transceiver  
Name  
7
0
6
5
4
3
0
2
1
0
0
0
ADDR R/W RES  
60H R*/W 14H  
OPMODE  
UCI FEBE MLT  
CI_  
SEL  
MFILT  
EOCR  
EOCW  
M56 FILTER  
M4 FILTER  
EOC FILTER  
61H R*/W 14H  
62H  
reserved  
0
i1  
0
0
i2  
0
0
i3  
0
0
i4  
0
a1  
i5  
a2  
i6  
a3  
i7  
d/m  
i8  
63H  
64H  
65H  
66H  
R
0FH  
FFH  
01H  
00H  
a1  
i5  
a2  
i6  
a3  
i7  
d/m  
i8  
W
i1  
i2  
i3  
i4  
M4RMASK  
M4WMASK  
M4R  
M4 Read Mask Bits  
M4 Write Mask Bits  
67H R*/W 00H  
68H R*/W A8H  
verified M4 bit data of last received superframe  
M4 bit data to be send with next superframe  
69H  
R
BEH  
M4W  
6AH R*/W BEH  
M56R  
0
1
0
0
0
MS2  
MS1 NEBE M61  
M52  
M52  
M51 FEBE 6BH  
M51 FEBE 6CH  
R
W
R
1FH  
FFH  
00H  
01H  
M56W  
UCIR  
1
0
0
0
1
0
0
0
1
0
0
0
M61  
C/I code output  
C/I code input  
6DH  
6EH  
UCIW  
W
TEST  
CCRC +-1  
Tones  
0
40  
6FH R*/W 00H  
KHz  
LOOP  
FEBE  
NEBE  
0
DLB TRANS U/IOM  
1
LBBD LB2  
LB1  
70H R*/W 08H  
FEBE Counter Value  
NEBE Counter Value  
reserved  
71H  
72H  
R
R
00H  
00H  
73H-  
79H  
Data Sheet  
145  
2001-03-30  
PEF 82912/82913  
Register Description  
ISTAU  
MLT  
MLT  
CI  
CI  
FEBE/ M56  
NEBE  
M4  
M4  
EOC  
EOC  
6ms 12ms 7AH  
R
00H  
MASKU  
FEBE/ M56  
NEBE  
6ms 12ms 7BH R*/W FFH  
reserved  
7CH  
FW_  
VERSION  
R
6x  
H
FW Version Number  
reserved  
7DH  
7EH-  
7FH  
*) read back function for test use  
Note: Registers, which are denoted as ‘reserved‘, may not be accessed by the µC,  
neither for read nor for write operations.  
4.4  
Reset of U-Transceiver Functions During Deactivation or with  
C/I-Code RESET  
The following U-transceiver registers are reset during deactivation or with software reset:  
Table 34  
Reset of U-Transceiver Functions During Deactivation or with C/I-  
Code RESET  
Register  
EOCR  
EOCW  
M4R  
Reset to  
0FFFH  
0100H  
BEH  
Affected Bits  
all bits  
all bits  
all bits  
M4W  
BEH  
all bits  
M56R  
M56W  
TEST  
1FH  
all bits are reset besides MS2 and MS1  
all bits  
FFH  
only bit CCRC is reset  
LOOP  
only the bits LBBD, LB2 and LB1 are reset  
Data Sheet  
146  
2001-03-30  
PEF 82912/82913  
Register Description  
4.5  
U-Transceiver Mode Register Evaluation Timing  
The point of time when mode settings are detected and executed differs with the mode  
register type. Two different behaviors can be classified:  
• evaluation and execution after SW-reset (C/I= RES) or upon transition out of state  
’Deactivated’  
Note: Write access to these registers/bits is allowed only, while the state machine is  
in state Reset or Deactivated.  
• immediate evaluation and execution  
Below the mode registers are listed and grouped according to the different evaluation  
times as stated above.  
Table 35  
Register  
U-Transceiver Mode Register Evaluation Timing  
Affected Bits  
Registers Evaluated After SW-Reset or Upon Transition Out of State Deactivated  
OPMODE  
MFILT  
bit UCI, MLT  
complete register  
Immediate Evaluation and Execution  
OPMODE  
M4RMASK  
M4WMASK  
TEST  
bit FEBE, CI_SEL  
complete register  
complete register  
complete register  
complete register  
complete register  
LOOP  
MASKU  
Data Sheet  
147  
2001-03-30  
PEF 82912/82913  
Register Description  
4.6  
Detailed C/I Registers  
4.6.1  
MODEH - Mode Register IOM-2  
MODEH  
read/write  
Address:  
DIM1  
22H  
Value after reset: C0H  
7
0
1
1
0
r(0)  
0
DIM2  
DIM0  
DIM2-0  
Digital Interface Modes  
These bits define the characteristics of the IOM Data Ports (DU, DD). The  
DIM0 bit enables/disables the stop/go bit (S/G) evaluation. The DIM1 bit  
enables/disables the TIC bus access. The effect of the individual DIM bits is  
as follows:  
0-0 = Stop/go bit evaluation is disabled  
0-1 = Stop/go bit evaluation is enabled  
00- = TIC bus access is enabled  
01- = TIC bus access is disabled  
1xx = Reserved  
4.6.2  
CIR0  
CIR0 - Command/Indication Receive 0  
read  
Address:  
2EH  
Value after reset: F3H  
7
0
CODR0  
CIC0  
CIC1  
S/G  
BAS  
Data Sheet  
148  
2001-03-30  
PEF 82912/82913  
Register Description  
CODR0  
CIC0  
C/I0 Code Receive  
Value of the received Command/Indication code. A C/I-code is loaded in  
CODR0 only after being the same in two consecutive IOM-frames and the  
previous code has been read from CIR0.  
C/I0 Code Change  
0 = No change in the received Command/Indication code has been  
recognized  
1 = A change in the received Command/Indication code has been  
recognized. This bit is set only when a new code is detected in two  
consecutive IOM-frames. It is reset by a read of CIR0.  
CIC1  
C/I1 Code Change  
0 = No change in the received Command/Indication code has been  
recognized  
1 = A change in the received Command/Indication code in IOM-channel 1  
has been recognized. This bit is set when a new code is detected in  
one IOM-frame. It is reset by a read of CIR0.  
S/G  
Stop/Go Bit Monitoring  
Indicates the availability of the upstream D-channel;  
0 = Go  
1 = Stop  
BAS  
Bus Access Status  
Indicates the state of the TIC-bus:  
0 = the Q-SMINTI itself occupies the D- and C/I-channel  
1 = another device occupies the D- and C/I-channel  
Note: The CODR0 bits are updated every time a new C/I-code is detected in two  
consecutive IOM-frames. If several consecutive valid new codes are detected and  
CIR0 is not read, only the first and the last C/I code are made available in CIR0 at  
the first and second read of that register.  
Data Sheet  
149  
2001-03-30  
PEF 82912/82913  
Register Description  
4.6.3  
CIX0  
CIX0 - Command/Indication Transmit 0  
write  
Address:  
TBA0  
2EH  
Value after reset: FEH  
7
0
CODX0  
TBA2  
TBA1  
BAC  
CODX0  
TBA2-0  
C/I0-Code Transmit  
Code to be transmitted in the C/I-channel 0. The code is only transmitted if  
the TIC bus is occupied, otherwise “1s” are transmitted.  
TIC Bus Address  
Defines the individual address for the Q-SMINTI on the IOM bus.  
This address is used to access the C/I- and D-channel on the IOM interface.  
Note: If only one device is liable to transmit in the C/I- and D-channels of the  
IOM it should always be given the address value ‘7’.  
BAC  
Bus Access Control  
Only valid if the TIC-bus feature is enabled (MODE:DIM2-0).  
0 =  
1 =  
inactive  
The Q-SMINTI will try to access the TIC-bus to occupy the C/I-  
channel even if no D-channel frame has to be transmitted. It should  
be reset when the access has been completed to grant a similar  
access to other devices transmitting in that IOM-channel.  
Note: Access is always granted by default to the Q-SMINTI with TIC-Bus  
Address (TBA2-0, CIX0 register) ‘7’, which has the lowest priority in a  
bus configuration.  
Data Sheet  
150  
2001-03-30  
PEF 82912/82913  
Register Description  
4.6.4  
CIR1  
CIR1 - Command/Indication Receive 1  
read  
Address:  
CICW  
2FH  
Value after reset: FEH  
7
0
CODR1  
CI1E  
CODR1  
CICW  
C/I1-Code Receive  
C/I-Channel Width  
Contains the read back value from CIX1 register (see below)  
0 =  
1 =  
4 bit C/I1 channel width  
6 bit C/I1 channel width  
CI1E  
C/I1-channel Interrupt Enable  
Contains the read back value from CIX1 register (see below)  
0 =  
1 =  
Interrupt generation ISTA.CIC of CIR0.CIC1is masked  
Interrupt generation ISTA.CIC of CIR0.CIC1 is enabled  
4.6.5  
CIX1  
CIX1 - Command/Indication Transmit 1  
write  
Address:  
CICW  
2FH  
Value after reset: FEH  
7
0
CODX1  
CI1E  
CODX1  
CICW  
C/I1-Code Transmit  
Bits 5-0 of C/I-channel 1  
C/I-Channel Width  
0 = 4 bit C/I1 channel width  
Data Sheet  
151  
2001-03-30  
PEF 82912/82913  
Register Description  
1 =  
6 bit C/I1 channel width  
The C/I1 handler always reads and writes 6-bit values but if 4-bit is selected,  
the higher two bits are ignored for interrupt generation. However, in write  
direction the full CODX1 code is transmitted, i.e. the host must write the  
higher two bits to “1”.  
CI1E  
C/I1-channel Interrupt Enable  
0 =  
1 =  
Interrupt generation ISTA.CIC of CIR0.CIC1is masked  
Interrupt generation ISTA.CIC of CIR0.CIC1 is enabled  
4.7  
Detailed S-Transceiver Registers  
4.7.1  
S_CONF0 - S-Transceiver Configuration Register 0  
S_ CONF0  
read/write  
Address:  
30H  
Value after reset: 40H  
7
0
0
DIS_TR  
BUS  
EN_  
ICV  
0
L1SW  
0
EXLP  
DIS_TR  
BUS  
Disable Transceiver  
0 =  
1 =  
All S-transceiver functions are enabled.  
All S-transceiver functions are disabled and powered down (analog  
and digital parts).  
Point-to-Point / Bus Selection  
0 =  
1 =  
Adaptive Timing (Point-to-Point, extended passive bus).  
Fixed Timing (Short passive bus), directly derived from transmit  
clock.  
EN_ICV Enable Far End Code Violation  
0 = normal operation.  
Data Sheet  
152  
2001-03-30  
PEF 82912/82913  
Register Description  
1 =  
ICV enabled. The receipt of at least one illegal code violation within  
one multi-frame according to ANSI T1.605 is indicated by the C/I  
indication ‘1011’ (CVR) in two consecutive IOM frames.  
L1SW  
Enable Layer 1 State Machine in Software  
0 =  
1 =  
Layer 1 state machine of the Q-SMINTI is used.  
Layer 1 state machine is disabled. The functionality must be  
realized in software.  
The commands are written to register S_CMD and the status read  
in the S_STA.  
EXLP  
External Loop  
In case the analog loopback is activated with C/I = ARL or with the LP_A bit  
in the S_CMD register the loop is a  
0 =  
1 =  
internal loop next to the line pins  
external loop which has to be closed between SR1/SR2 and SX1/  
SX2  
Note: For the external loop the transmitter must be enabled (S_CONF2:DIS_TX = 0).  
4.7.2  
S_CONF2 - S-Transmitter Configuration Register 2  
S_ CONF2  
read/write  
Address:  
32H  
Value after reset: 80H  
7
0
0
DIS_TX  
0
0
0
0
0
0
DIS_TX  
Disable Line Driver  
0 =  
1 =  
Transmitter is enabled  
Transmitter is disabled  
Data Sheet  
153  
2001-03-30  
PEF 82912/82913  
Register Description  
4.7.3  
S_STA - S-Transceiver Status Register  
S_ STA  
read  
Address:  
33H  
Value after reset: 00H  
7
0
RINF  
0
ICV  
0
FSYN  
0
LD  
Important: This register is used only if the Layer 1 state machine of the device is disabled  
(S_CONF0:L1SW = 1) and implemented in software! With the layer 1 state machine  
enabled, the signals from this register are automatically evaluated.  
RINF  
Receiver INFO  
00 =  
01 =  
10 =  
11 =  
Received INFO 0 (no signal)  
Received any signal except INFO 0 or INFO 3  
reserved  
Received INFO 3  
ICV  
Illegal Code Violation  
0 =  
1 =  
No illegal code violation is detected.  
Illegal code violation (ANSI T1.605) in data stream is detected.  
FSYN  
LD  
Frame Synchronization State  
0 =  
1 =  
The S/T receiver is not synchronized.  
The S/T receiver has synchronized to the framing bit F.  
Level Detection  
0 =  
1 =  
No receive signal has been detected on the line.  
Any receive signal has been detected on the line.  
Data Sheet  
154  
2001-03-30  
PEF 82912/82913  
Register Description  
4.7.4  
S_CMD - S-Transceiver Command Register  
S_ CMD  
read/write  
Address:  
34H  
Value after reset: 08H  
7
0
0
XINF  
DPRIO  
1
PD  
LP_A  
Important: This register - except bit DPRIO - is writable only if the Layer 1 state machine  
of the device is disabled (S_CONF0.L1SW = 1) and implemented in software! With the  
device layer 1 state machine enabled, the signals from this register are automatically  
generated. DPRIO can also be written in intelligent NT mode.  
XINF  
Transmit INFO  
000 = Transmit INFO 0  
001 = reserved  
010 = Transmit INFO 2  
011 =  
Transmit INFO 4  
100 = Send continuous pulses at 192 kbit/s alternating or 96 kHz  
rectangular, respectively (TM2)  
101 = Send single pulses at 4 kbit/s with alternating polarity  
corresponding to 2 kHz fundamental mode (TM1)  
11x = reserved  
DPRIO  
PD  
D-Channel Priority  
0 =  
1 =  
Priority class 1 for D channel access on IOM  
Priority class 2 for D channel access on IOM  
Power Down  
0 =  
1 =  
The transceiver is set to operational mode  
The transceiver is set to power down mode  
LP_A  
Loop Analog  
The setting of this bit corresponds to the C/I command ARL.  
Data Sheet  
155  
2001-03-30  
PEF 82912/82913  
Register Description  
0 =  
1 =  
Analog loop is open  
Analog loop is closed internally or externally according to the EXLP  
bit in the S_CONF0 register  
4.7.5  
SQRR - S/Q-Channel Receive Register  
SQRR  
read  
Address:  
SQR3  
35H  
Value after reset: 00H  
7
0
MSYN  
MFEN  
0
0
SQR1  
SQR2  
SQR4  
MSYN  
MFEN  
Multi-frame Synchronization State  
0 =  
The S/T receiver has not synchronized to the received F and M  
A
bits  
1 =  
The S/T receiver has synchronized to the received F and M bits  
A
Multiframe Enable  
Read-back of the MFEN bit of the SQXR register  
0 =  
1 =  
S/T multiframe is disabled  
S/T multiframe is enabled  
SQR1-4 Received S/Q Bits  
Received Q bits in frames 1, 6, 11 and 16  
4.7.6  
SQXR- S/Q-Channel Transmit Register  
SQXR  
write  
Address:  
SQX3  
35H  
Value after reset: 00H  
7
0
0
MFEN  
0
0
SQX1  
SQX2  
SQX4  
Data Sheet  
156  
2001-03-30  
PEF 82912/82913  
Register Description  
MFEN  
Multiframe Enable  
Used to enable or disable the multiframe structure.  
0 =  
1 =  
S/T multiframe is disabled  
S/T multiframe is enabled  
SQX1-4  
Transmitted S/Q Bits  
Transmitted S bits in frames 1, 6, 11 and 16  
4.7.7  
ISTAS - Interrupt Status Register S-Transceiver  
ISTAS  
read  
Address:  
SQC  
38H  
Value after reset: 00H  
7
0
x
x
x
x
LD  
RIC  
SQW  
These bits are set if an interrupt status occurs and an interrupt signal is activated if the  
corresponding mask bit is set to “0”. If the mask bit is set to “1” no interrupt is generated,  
however the interrupt status bit is set in ISTAS. RIC, SQC and SQW are cleared by  
reading the corresponding source register S_STA, SQRR or writing SQXR,  
respectively.  
x
Reserved  
LD  
Level Detection  
0 =  
1 =  
inactive  
Any receive signal has been detected on the line. This bit is set to  
“1” (i.e. an interrupt is generated if not masked) as long as any  
receive signal is detected on the line.  
RIC  
Receiver INFO Change  
0 =  
1 =  
inactive  
RIC is activated if one of the S_STA bits RINF or ICV has changed.  
Data Sheet  
157  
2001-03-30  
PEF 82912/82913  
Register Description  
SQC  
S/Q-Channel Change  
0 =  
1 =  
inactive  
A change in the received 4-bit Q-channel has been detected. The  
new code can be read from the SQRx bits of registers SQRR within  
the next multiframe1). This bit is reset by a read access to the  
SQRR register.  
SQW  
S/Q-Channel Writable  
0 =  
1 =  
inactive  
The S channel data for the next multiframe is writable.  
The register for the S bits to be transmitted has to be written within  
the next multiframe. This bit is reset by writing register SQXR.  
This timing signal is indicated with the start of every multiframe.  
Data which is written right after SQW-indication will be transmitted  
with the start of the following multiframe. Data which is written  
before SQW-indication is transmitted in the multiframe which is  
indicated by SQW.  
SQW and SQC could be generated at the same time.  
1)  
Register SQRR stays valid as long as no code change has been received.  
4.7.8  
MASKS - Mask S-Transceiver Interrupt  
MASKS  
read/write  
Address:  
SQC  
39H  
Value after reset: FFH  
7
0
1
1
1
1
LD  
RIC  
SQW  
Bit 3..0  
Mask bits  
0 = The transceiver interrupts LD, RIC, SQC and SQW are enabled  
1 = The transceiver interrupts LD, RIC, SQC and SQW are masked  
Data Sheet  
158  
2001-03-30  
PEF 82912/82913  
Register Description  
4.7.9  
S_MODE - S-Transceiver Mode  
S_ MODE  
read/write  
Address:  
MODE  
3AH  
Value after reset: 02H  
7
0
0
0
0
0
DCH_INH  
DCH_  
INH  
D-Channel Inhibit  
0 =  
1 =  
inactive  
The S-transceiver blocks the access to the D-channel on S by  
inverting the E-bits.  
MODE  
Mode Selection  
000 = reserved  
001 = reserved  
010 = NT (without D-channel handler)  
011 = LT-S (without D-channel handler)  
110  
Intelligent NT mode (with NT state machine and with D-channel  
handler)  
111  
Intelligent NT mode (with LT-S state machine and with D-channel  
handler)  
100  
101  
reserved  
reserved  
Data Sheet  
159  
2001-03-30  
PEF 82912/82913  
Register Description  
4.8  
Interrupt and General Configuration Registers  
4.8.1  
ISTA  
ISTA - Interrupt Status Register  
read  
Address:  
MOS  
3CH  
Value after reset: 00H  
7
0
0
U
ST  
CIC  
0
WOV  
S
U
U-Transceiver Interrupt  
0 =  
1 =  
inactive  
An interrupt was generated by the U-transceiver. Read the ISTAU  
register.  
ST  
CIC  
Synchronous Transfer  
0 =  
1 =  
inactive  
This interrupt enables the microcontroller to lock on to the IOM®-2  
timing, for synchronous transfers.  
C/I Channel Change  
0 =  
1 =  
inactive  
A change in C/I0 channel or C/I1 channel has been recognized.  
The actual value can be read from CIR0 or CIR1.  
0 =  
inactive  
WOV  
Watchdog Timer Overflow  
0 =  
1 =  
inactive  
Signals the expiration of the watchdog timer, which means that the  
microcontroller has failed to set the watchdog timer control bits  
WTC1 and WTC2 (MODE1 register) in the correct manner. A reset  
out pulse on pin RSTO has been generated by the Q-SMINTI.  
S
S-Transceiver Interrupt  
Data Sheet  
160  
2001-03-30  
PEF 82912/82913  
Register Description  
0 =  
1 =  
inactive  
An interrupt was generated by the S-transceiver. Read the ISTAS  
register.  
MOS  
MONITOR Status  
0 =  
1 =  
0 =  
inactive  
A change in the MONITOR Status Register (MOSR) has occurred.  
inactive  
Note: A read of the ISTA register clears only the WOV interrupt. The other interrupts are  
cleared by reading the corresponding status register.  
4.8.2  
MASK - Mask Register  
MASK  
write  
Address:  
MOS  
3CH  
Value after reset: FFH  
7
0
1
U
ST  
CIC  
1
WOV  
S
Bit 7..0  
Mask bits  
0 =  
1 =  
Interrupt is not masked  
Interrupt is masked  
Each interrupt source in the ISTA register can be selectively masked by setting the  
corresponding bit in MASK to ‘1’. Masked interrupt status bits are not indicated when  
ISTA is read. Instead, they remain internally stored and pending, until the mask bit is  
reset to ‘0’.  
Note: In the event of a C/I channel change, CIC is set in ISTA even if the corresponding  
mask bit in MASK is active, but no interrupt is generated.  
Data Sheet  
161  
2001-03-30  
PEF 82912/82913  
Register Description  
4.8.3  
MODE1 - Mode1 Register  
MODE1  
read/write  
Address:  
RSS2  
3DH  
Value after reset: 04H  
7
0
MCLK  
CDS  
WTC1  
WTC2  
CFS  
RSS1  
MCLK  
Master Clock Frequency  
The Master Clock Frequency bits control the microcontroller clock output  
depending on MODE1.CDS = ’0’ or ’1’ (Table Table 2.1.3).  
MODE1.CDS = ’0’  
3.84 MHz  
MODE1.CDS = ’1’  
7.68 MHz  
00 =  
01 =  
10 =  
11 =  
0.96 MHz  
1.92 MHz  
7.68 MHz  
15.36 MHz  
disabled  
disabled  
CDS  
Clock Divider Selection  
0 =  
The 15.36 MHz oscillator clock divided by two is input to the MCLK  
prescaler  
1 =  
The 15.36 MHz oscillator clock is input to the MCLK prescaler.  
WTC1, 2 Watchdog Timer Control 1, 2  
After the watchdog timer mode has been selected (RSS = ‘11’) the  
watchdog timer is started. During every time period of 128 ms the  
microcontroller has to program the WTC1 and WTC2 bit in the following  
sequence (Chapter 2.2):  
10  
01  
first step  
second step  
to reset and restart the watchdog timer.  
If not, the timer expires and a WOV-interrupt (ISTA Register) together with  
a reset out pulse on pin RSTO is generated.  
The watchdog timer runs only when the internal IOM®-2 clocks are active,  
i.e. the watchdog timer is dead when bit CFS = 1 and the U and S-  
transceivers are in state power down.  
Data Sheet  
162  
2001-03-30  
PEF 82912/82913  
Register Description  
CFS  
Configuration Select  
0 =  
The IOM®-2 interface clock and frame signals are always active,  
“Deactivated State” of the U-transceiver and the S-transceiver  
included.  
1 =  
The IOM®-2 interface clocks and frame signals are inactive in the  
“Deactivated State” of the U-transceiver and the S-transceiver.  
RSS2,  
RSS1  
Reset Source Selection 2,1  
The Q-SMINTI reset sources can be selected according to the table below.  
C/I Code Change  
--  
Watchdog Timer  
--  
POR/UVD and RST  
x
00 =  
01 =  
10 =  
11 =  
RSTO disabled (high impedance)  
x
--  
x
x
x
--  
4.8.4  
MODE2 - Mode2 Register  
MODE2  
read/write  
Address:  
3EH  
Value after reset: 00H  
7
0
LED2  
LED1  
LEDC  
0
0
0
AMOD PPSDX  
LED2,1  
LED Control on pin ACT  
00 =  
01 =  
10 =  
11 =  
High  
flashing at 8 Hz  
flashing at 1 Hz  
Low  
LEDC  
LED Control Enable  
0 =  
1 =  
LED is controlled by the state machines as defined in Table 3.  
LED is controlled via bits LED2,1.  
Data Sheet  
163  
2001-03-30  
PEF 82912/82913  
Register Description  
AMOD  
Address Mode  
Selects between direct and indirect register access of the parallel  
microcontroller interface.  
0 =  
Indirect address mode is selected. The address line A0 is used to  
select between address (A0 = ‘0’) and data (A0 = ‘1’) register  
1 =  
Direct address mode is selected. The address is applied to the  
address bus (A0-A6)  
PPSDX  
Push/Pull Output for SDX  
0 =  
1 =  
The SDX pin has open drain characteristic  
The SDX pin has push/pull characteristic  
4.8.5  
ID  
ID - Identification Register  
read  
Address:  
3FH  
Value after reset: 01H  
7
0
0
0
DESIGN  
DESIGN Design Number  
The design number (DESIGN) allows to identify different hardware  
designs1) of the Q-SMINTI by software.  
000000: Version 1.1  
000001: Version 1.2  
000001: Version 1.3  
1)  
Distinction of different firmware versions is also possible by reading register (7D) in the address space of the  
H
U-transceiver (see Chapter 4.11.19).  
Data Sheet  
164  
2001-03-30  
PEF 82912/82913  
Register Description  
4.8.6  
SRES - Software Reset Register  
SRES  
write  
Address:  
3FH  
Value after reset: 00H  
7
0
0
0
RES_  
0
0
0
RES_S RES_U  
CI/TIC  
RES_xx Reset_xx  
0 = Deactivates the reset of the functional block xx  
1 = Activates the reset of the functional block xx.  
The reset state is activated as long as the bit is set to ‘1’  
Detailed IOM®-2 Handler Registers  
4.9  
4.9.1  
CDAxy - Controller Data Access Register xy  
These registers are used for microcontroller access to the IOM®-2 timeslots as well as  
for timeslot manipulations. (e.g. loops, shifts, ... see also “Controller Data Access  
(CDA)” on Page 31).  
CDAxy  
read/write  
Address: 40-43H  
0
7
Controller Data Access Register  
Data register CDAxy which can be accessed by the controller.  
Register Value after Reset Register Address  
CDA10  
CDA11  
CDA20  
CDA21  
FFH  
FFH  
FFH  
FFH  
40H  
41H  
42H  
43H  
Data Sheet  
165  
2001-03-30  
PEF 82912/82913  
Register Description  
4.9.2  
XXX_TSDPxy - Time Slot and Data Port Selection for CHxy  
XXX_TSDPxy  
read/write  
Address: 44-4DH  
0
7
DPS  
0
0
0
TSS  
Register  
Value after Reset  
Register Address  
CDA_TSDP10  
CDA_TSDP11  
CDA_TSDP20  
CDA_TSDP21  
00H (= output on B1-DD)  
01H (= output on B2-DD)  
80H (= output on B1-DU)  
81H (= output on B2-DU)  
reserved  
44H  
45H  
46H  
47H  
48-4BH  
S_TSDP_B1  
S_TSDP_B2  
84H (= output on TS4-DU) 4CH  
85H (= output on TS5-DU) 4DH  
This register determines the time slots and the data ports on the IOM®-2 Interface for the  
data channels xy of the functional units XXX (Controller Data Access (CDA) and S-  
transceiver (S)).  
Note: The U-transceiver is always in IOM-2 channel 0.  
DPS  
Data Port Selection  
0 =  
The data channel xy of the functional unit XXX is output on DD.  
The data channel xy of the functional unit XXX is input from DU.  
1 =  
The data channel xy of the functional unit XXX is output on DU.  
The data channel xy of the functional unit XXX is input from DD.  
Note: For the CDA (controller data access) data the input is determined by the  
CDAx_CR.SWAP bit. If SWAP = ‘0’ the input for the CDAxy data is vice versa to  
the output setting for CDAxy. If the SWAP = ‘1’ the input from CDAx0 is vice  
versa to the output setting of CDAx1 and the input from CDAx1 is vice versa to  
the output setting of CDAx0.  
TSS  
Timeslot Selection  
Selects one of the 12 timeslots from 0...11 on the IOM®-2 interface for the  
data channels.  
Data Sheet  
166  
2001-03-30  
PEF 82912/82913  
Register Description  
4.9.3  
CDAx_CR - Control Register Controller Data Access CH1x  
CDAx_CR  
read/write  
Address: 4E-4FH  
7
0
0
0
EN_TBM EN_I1  
EN_I0  
EN_O1 EN_O0 SWAP  
Register  
Value after Reset Register Address  
CDA1_CR 00H  
CDA2_CR 00H  
4EH  
4FH  
EN_TBM Enable TIC Bus Monitoring  
0 =  
1 =  
The TIC bus monitoring is disabled  
The TIC bus monitoring with the CDAx0 register is enabled. The  
TSDPx0 register must be set to 08H for monitoring from DU, or 88H  
for monitoring from DD.  
EN_I1,  
EN_I0  
Enable Input CDAx1, CDAx0  
0 =  
1 =  
The input of the CDAx1, CDAx0 register is disabled  
The input of the CDAx1, CDAx0 register is enabled  
EN_O1,  
EN_O0  
Enable Output CDAx1, CDAx0  
0 =  
1 =  
The output of the CDAx1, CDAx0 register is disabled  
The output of the CDAx1, CDAx0 register is enabled  
Data Sheet  
167  
2001-03-30  
PEF 82912/82913  
Register Description  
SWAP  
Swap Inputs  
0 =  
The time slot and data port for the input of the CDAxy register is  
defined by its own TSDPxy register. The data port for the CDAxy  
input is vice versa to the output setting for CDAxy.  
1 =  
The input (time slot and data port) of the CDAx0 is defined by the  
TSDP register of CDAx1 and the input of CDAx1 is defined by the  
TSDP register of CDAx0. The data port for the CDAx0 input is vice  
versa to the output setting for CDAx1. The data port for the CDAx1  
input is vice versa to the output setting for CDAx0. The input  
definition for time slot and data port CDAx0 are thus swapped to  
CDAx1 and for CDAx1 to CDAx0. The outputs are not affected by  
the SWAP bit.  
4.9.4  
S_CR  
S_CR - Control Register S-Transceiver Data  
read/write  
Address:  
51H  
Value after reset: FFH  
7
0
1
CI_CS  
EN_D EN_B2R EN_B1R EN_B2X EN_B1X D_CS  
CI_CS  
EN_D  
C/I Channel Selection  
This bit is used to select the IOM channel to which the S-transceiver C/I-  
channel is related to.  
0 =  
1 =  
C/I-channel in IOM-channel 0  
C/I-channel in IOM-channel 1  
Enable Transceiver D-Channel Data  
0 =  
1 =  
The corresponding data path to the transceiver is disabled  
The corresponding data path to the transceiver is enabled.  
EN_B2R Enable Transceiver B2 Receive Data (transmitter receives from IOM)  
0 = The corresponding data path to the transceiver is disabled  
Data Sheet  
168  
2001-03-30  
PEF 82912/82913  
Register Description  
1 =  
The corresponding data path to the transceiver is enabled.  
EN_B1R Enable Transceiver B1 Receive Data (transmitter receives from IOM)  
0 =  
1 =  
The corresponding data path to the transceiver is disabled  
The corresponding data path to the transceiver is enabled.  
EN_B2X Enable Transceiver B2 Transmit Data (transmitter transmits to IOM)  
0 =  
1 =  
The corresponding data path to the transceiver is disabled  
The corresponding data path to the transceiver is enabled.  
EN_B1X Enable Transceiver B1 Transmit Data (transmitter transmits to IOM)  
0 =  
1 =  
The corresponding data path to the transceiver is disabled  
The corresponding data path to the transceiver is enabled.  
These bits are used to individually enable/disable the D-channel and the  
receive/transmit paths for the B-channels for the S-transceiver.  
D_CS  
D Channel Selection  
This bit is used to select the IOM channel to which the S-transceiver D-  
channel is related to.  
0 =  
1 =  
D-channel in IOM-channel 0  
D-channel in IOM-channel 1  
4.9.5  
CI_CR - Control Register for CI1 Data  
CI_CR  
read/write  
Address:  
52H  
Value after reset: 04H  
7
0
DPS_CI1 EN_CI1  
0
0
0
1
0
DPS_CI1 Data Port Selection CI1 Handler  
0 =  
1 =  
The CI1 data is output on DD and input from DU  
The CI1 data is output on DU and input from DD  
Data Sheet  
169  
2001-03-30  
PEF 82912/82913  
Register Description  
EN_CI1  
Enable CI1 Handler  
0 =  
1 =  
CI1 data access is disabled  
CI1 data access is enabled  
Note: The timeslot for the C/I1 handler cannot be programmed but is fixed  
to IOM channel 1.  
4.9.6  
MON_CR - Control Register Monitor Data  
MON_CR  
read/write  
Address:  
53H  
Value after reset: 40H  
7
0
DPS EN_MON  
0
0
0
0
MCS  
DPS  
Data Port Selection  
0 = The Monitor data is output on DD and input from DU  
1 = The Monitor data is output on DU and input from DD  
EN_MON Enable Output  
0 = The Monitor data input and output is disabled  
1 = The Monitor data input and output is enabled  
MCS  
MONITOR Channel Selection  
00 = The MONITOR data is output on MON0  
01 = The MONITOR data is output on MON1  
10 = The MONITOR data is output on MON2  
11 = Not defined  
Data Sheet  
170  
2001-03-30  
PEF 82912/82913  
Register Description  
4.9.7  
SDS1_CR - Control Register Serial Data Strobe 1  
SDS1_CR  
read/write  
Address:  
54H  
Value after reset: 00H  
7
0
ENS_  
TSS  
ENS_  
TSS+1 TSS+3  
ENS_  
0
TSS  
This register is used to select position and length of the strobe signal 1. The length can  
be any combination of two 8-bit timeslot (ENS_TSS, ENS_TSS+1) and one 2-bit timeslot  
(ENS_TSS+3).  
ENS_  
TSS  
Enable Serial Data Strobe of timeslot TSS  
0 =  
1 =  
The serial data strobe signal SDS1 is inactive during TSS  
The serial data strobe signal SDS1 is active during TSS  
ENS_  
Enable Serial Data Strobe of timeslot TSS+1  
TSS+1  
0 =  
1 =  
The serial data strobe signal SDS1 is inactive during TSS+1  
The serial data strobe signal SDS1 is active during TSS+1  
ENS_  
Enable Serial Data Strobe of timeslot TSS+3 (D-Channel)  
TSS+3  
0 =  
1 =  
The serial data strobe signal SDS1 is inactive during the D-channel  
(bit7, 6) of TSS+3  
The serial data strobe signal SDS1 is active during the D-channel  
(bit7, 6) of TSS+3  
TSS  
Timeslot Selection  
Selects one of 12 timeslots on the IOM®-2 interface (with respect to FSC)  
during which SDS1 is active high. The data strobe signal allows standard  
data devices to access a programmable channel.  
Data Sheet  
171  
2001-03-30  
PEF 82912/82913  
Register Description  
4.9.8  
SDS2_CR - Control Register Serial Data Strobe 2  
SDS2_CR  
read/write  
Address:  
55H  
Value after reset: 00H  
7
0
ENS_  
TSS  
ENS_  
TSS+1 TSS+3  
ENS_  
0
TSS  
This register is used to select position and length of the strobe signal 2. The length can  
be any combination of two 8-bit timeslot (ENS_TSS, ENS_TSS+1) and one 2-bit timeslot  
(ENS_TSS+3).  
ENS_  
TSS  
Enable Serial Data Strobe of timeslot TSS  
0 =  
1 =  
The serial data strobe signal SDS2 is inactive during TSS  
The serial data strobe signal SDS2 is active during TSS  
ENS_  
Enable Serial Data Strobe of timeslot TSS+1  
TSS+1  
0 =  
1 =  
The serial data strobe signal SDS2 is inactive during TSS+1  
The serial data strobe signal SDS2 is active during TSS+1  
ENS_  
Enable Serial Data Strobe of timeslot TSS+3 (D-Channel)  
TSS+3  
0 =  
1 =  
The serial data strobe signal SDS2 is inactive during the D-channel  
(bit7, 6) of TSS+3  
The serial data strobe signal SDS2 is active during the D-channel  
(bit7, 6) of TSS+3  
TSS  
Timeslot Selection  
Selects one of 12 timeslots on the IOM®-2 interface (with respect to FSC)  
during which SDS2 is active high. The data strobe signal allows standard  
data devices to access a programmable channel.  
Data Sheet  
172  
2001-03-30  
PEF 82912/82913  
Register Description  
4.9.9  
IOM_CR - Control Register IOM Data  
IOM_CR  
read/write  
Address:  
56H  
Value after reset: 08H  
7
0
SPU  
0
0
TIC_DIS EN_BCL  
0
DIS_OD DIS_IOM  
SPU  
Software Power UP  
0 =  
1 =  
The DU line is normally used for transmitting data.  
Setting this bit to ‘1’ will pull the DU line to low. This will enforce the  
Q-SMINTI and other connected layer 1 devices to deliver IOM-  
clocking.  
TIC_DIS TIC Bus Disable  
0 =  
1 =  
The last octet of the last IOM time slot (TS 11) is used as TIC bus.  
The TIC bus is disabled. The last octet of the last IOM time slot  
(TS 11) can be used like any other time slot. This means that the  
timeslots TIC, A/B, S/G and BAC are not available any more.  
EN_BCL Enable Bit Clock BCL  
0 =  
1 =  
The BCL clock is disabled (output is high impedant)  
The BCL clock is enabled  
DIS_OD Disable Open Drain  
0 =  
1 =  
IOM outputs are open drain driver  
IOM outputs are push pull driver  
DIS_IOM Disable IOM  
DIS_IOM should be set to ‘1’ if external devices connected to the IOM  
interface should be “disconnected” e.g. for power saving purposes.  
However, the Q-SMINTI internal operation is independent of the DIS_IOM  
bit.  
Data Sheet  
173  
2001-03-30  
PEF 82912/82913  
Register Description  
0 =  
1 =  
The IOM interface is enabled  
The IOM interface is disabled (FSC, DCL, clock outputs have high  
impedance; DU, DD data line inputs are switched off and outputs  
are high impedant)  
4.9.10  
MCDA  
MCDA - Monitoring CDA Bits  
read  
Address:  
57H  
Value after reset: FFH  
7
0
MCDA21  
MCDA20  
Bit7 Bit6  
MCDA11  
Bit7 Bit6  
MCDA10  
Bit7 Bit6  
Bit7  
Bit6  
MCDAxy Monitoring CDAxy Bits  
Bit 7 and Bit 6 of the CDAxy registers are mapped into the MCDA register.  
This can be used for monitoring the D-channel bits on DU and DD and the  
“Echo bits” on the TIC bus with the same register.  
4.9.11  
STI - Synchronous Transfer Interrupt  
STI  
read  
Address:  
STI11  
58H  
Value after reset: 00H  
7
0
STOV21 STOV20 STOV11 STOV10 STI21  
STI20  
STI10  
For all interrupts in the STI register the following logical states are applied  
0 =  
1 =  
Interrupt has not occurred  
Interrupt has occurred  
STOVxy Synchronous Transfer Overflow Interrupt  
Data Sheet  
174  
2001-03-30  
PEF 82912/82913  
Register Description  
Enabled STOV interrupts for a certain STIxy interrupt are generated when  
the STIxy has not been acknowledged in time via the ACKxy bit in the ASTI  
register. This must be one (for DPS = ‘0’) or zero (for DPS = ‘1’) BCL clock  
cycles before the time slot which is selected for the STOV.  
STIxy  
Synchronous Transfer Interrupt  
Depending on the DPS bit in the corresponding TSDPxy register the  
Synchronous Transfer Interrupt STIxy is generated two (for DPS = ‘0’) or  
one (for DPS = ‘1’) BCL clock cycles after the selected time slot  
(TSDPxy.TSS).  
Note: ST0Vxy and ACKxy are useful for synchronizing microcontroller accesses and  
receive/transmit operations. One BCL clock is equivalent to two DCL clocks.  
4.9.12  
ASTI - Acknowledge Synchronous Transfer Interrupt  
ASTI  
write  
Address:  
58H  
Value after reset: 00H  
7
0
0
0
0
0
ACK21 ACK20 ACK11 ACK10  
ACKxy  
Acknowledge Synchronous Transfer Interrupt  
After a STIxy interrupt the microcontroller has to acknowledge the interrupt  
by setting the corresponding ACKxy bit.  
0 = No activity is initiated  
1 = Sets the acknowledge bit ACKxy for a STIxy interrupt  
4.9.13  
MSTI  
MSTI - Mask Synchronous Transfer Interrupt  
read/write  
Address:  
59H  
Value after reset: FFH  
7
0
STOV21 STOV20 STOV11 STOV10 STI21  
STI20  
STI11  
STI10  
Data Sheet  
175  
2001-03-30  
PEF 82912/82913  
Register Description  
For the MSTI register the following logical states are applied:  
0 =  
1 =  
Interrupt is not masked  
Interrupt is masked  
STOVxy Mask Synchronous Transfer Overflow xy  
Mask bits for the corresponding STOVxy interrupt bits.  
STIxy  
4.10  
Synchronous Transfer Interrupt xy  
Mask bits for the corresponding STIxy interrupt bits.  
Detailed MONITOR Handler Registers  
4.10.1  
MOR  
MOR - MONITOR Receive Channel  
read  
Address:  
5CH  
Value after reset: FFH  
7
0
Contains the MONITOR data received in the IOM®-2 MONITOR channel according to  
the MONITOR channel protocol. The MONITOR channel (0,1,2) can be selected by  
setting the monitor channel select bit MON_CR.MCS.  
4.10.2  
MOX  
MOX - MONITOR Transmit Channel  
write  
Address:  
5CH  
Value after reset: FFH  
7
0
Contains the MONITOR data to be transmitted in IOM®-2 MONITOR channel according  
to the MONITOR channel protocol. The MONITOR channel (0,1,2) can be selected by  
setting the monitor channel select bit MON_CR.MCS  
Data Sheet  
176  
2001-03-30  
PEF 82912/82913  
Register Description  
4.10.3  
MOSR  
MOSR - MONITOR Interrupt Status Register  
read  
Address:  
5DH  
Value after reset: 00H  
7
0
0
MDR  
MER  
MDA  
MAB  
0
0
0
MDR  
MER  
MDA  
MONITOR channel Data Received  
0 =  
1 =  
inactive  
MONITOR channel Data Received  
MONITOR channel End of Reception  
0 =  
1 =  
inactive  
MONITOR channel End of Reception  
MONITOR channel Data Acknowledged  
The remote end has acknowledged the MONITOR byte being transmitted.  
0 =  
1 =  
inactive  
MONITOR channel Data Acknowledged  
MAB  
MONITOR channel Data Abort  
0 =  
1 =  
inactive  
MONITOR channel Data Abort  
4.10.4  
MOCR  
MOCR - MONITOR Control Register  
read/write  
Address:  
5EH  
Value after reset: 00H  
7
0
0
MRE  
MRC  
MIE  
MXC  
0
0
0
Data Sheet  
177  
2001-03-30  
PEF 82912/82913  
Register Description  
MRE  
MRC  
MONITOR Receive Interrupt Enable  
0 =  
1 =  
MONITOR interrupt status MDR generation is masked.  
MONITOR interrupt status MDR generation is enabled.  
MR Bit Control  
Determines the value of the MR bit:  
0 =  
MR is always ‘1’. In addition, the MDR interrupt is blocked, except  
for the first byte of a packet (if MRE = 1).  
1 =  
MR is internally controlled by the Q-SMINTI according to  
MONITOR channel protocol. In addition, the MDR interrupt is  
enabled for all received bytes according to the MONITOR channel  
protocol (if MRE = 1).  
MIE  
MONITOR Interrupt Enable  
0 =  
1 =  
MONITOR interrupt status MER, MDA, MAB generation is masked  
MONITOR interrupt status MER, MDA, MAB generation is enabled  
MXC  
MX Bit Control  
Determines the value of the MX bit:  
0 =  
1 =  
The MX bit is always ‘1’.  
The MX bit is internally controlled by the Q-SMINTI according to  
MONITOR channel protocol.  
4.10.5  
MSTA  
MSTA - MONITOR Status Register  
read  
Address:  
5FH  
Value after reset: 00H  
7
0
0
0
0
0
0
MAC  
0
TOUT  
Data Sheet  
178  
2001-03-30  
PEF 82912/82913  
Register Description  
MAC  
MONITOR Transmit Channel Active  
0 =  
1 =  
No data transmission in the MONITOR channel  
The data transmission in the MONITOR channel is in progress.  
TOUT  
Time-Out  
Read-back value of the TOUT bit  
0 =  
1 =  
The monitor time-out function is disabled  
The monitor time-out function is enabled  
4.10.6  
MCONF - MONITOR Configuration Register  
MCONF  
write  
Address:  
5FH  
Value after reset: 00H  
7
0
0
0
0
0
0
0
0
TOUT  
TOUT  
Time-Out  
0 =  
1 =  
The monitor time-out function is disabled  
The monitor time-out function is enabled  
4.11  
Detailed U-Transceiver Registers  
OPMODE - Operation Mode Register  
4.11.1  
The Operation Mode register determines the operating mode of the U-transceiver.  
OPMODE  
read*)/write  
Address: 60H  
Reset Value:  
14H  
7
0
6
5
4
3
0
2
1
0
0
0
UCI  
FEBE  
MLT  
CI_SEL  
Data Sheet  
179  
2001-03-30  
PEF 82912/82913  
Register Description  
UCI  
Enable/Disable µC Control of C/I Codes  
0 =  
µC control disabled - C/I codes are exchanged via IOM®-2  
Read access to register UCIR by the µP is still possible  
1 =  
µC control enabled - C/I codes are exchanged via UCIR and UCIW  
registers  
In this case, the according C/I-channel on IOM®-2 is idle ‘1111‘  
FEBE  
Enable/Disable External Write Access to FEBE Bit in Register M56W  
0 =  
external access to FEBE bit disabled - FEBE bit is controlled by  
internal FEBE counter  
1 =  
external access to FEBE bit enabled - FEBE bit is controlled by  
external microprocessor  
MLT  
Enable/Disable Metallic Loop Termination Function  
MLT status is reflected in bit MS2 and MS1 in register M56R  
0 =  
1 =  
MLT disabled  
MLT enabled  
CI_SEL  
C/I Code Output Selection  
by CI_SEL the user can switch:  
– between the standard C/I indications of the NT state machine as  
implemented in today’s IEC-Q versions or  
– newly defined C/I code indications which facilitates control and debugging  
0 =  
1 =  
Standard NT state machine  
compliant to NT state machine of today’s IEC-Q V4.3-V5.3  
Simplified NT state machine  
output of newly defined C/I code indications for enhanced  
activation/deactivation control and debugging facilities  
4.11.2  
MFILT - M Bit Filter Options  
The M Bit Filter register defines the validation algorithm received Maintenance channel  
bits (EOC, M4, M56) of the U-interface have to undergo before they are approved and  
passed on to the µC.  
MFILT  
read*)/write  
Address: 61H  
Reset Value:  
14H  
Data Sheet  
180  
2001-03-30  
PEF 82912/82913  
Register Description  
7
6
5
4
3
2
1
0
M56 FILTER  
M4 FILTER  
EOC FILTER  
M56  
FILTER  
controls the validation mode of the spare bits (M51, M52, M61) on a per bit  
base (see Chapter 2.4.4.3).  
X0 =  
Apply same filter to M5 and M6 bit data as programmed for M4 bit  
data.  
X1 =  
On Change  
M4  
Filter  
3-bit field which controls the validation mode of the M4 bits on a per bit  
base (see Chapter 2.4.4.1).  
x00 = On Change  
x01 = TLL coverage of M4 bit data  
x10 = CRC coverage of M4 bit data  
x11 = CRC and TLL coverage of M4 bit data  
0xx = M4 bits towards state machine are covered by TLL.  
1xx = M4 bits towards state machine are checked by the same  
validation algorithm as programmed for the reporting to the system  
interface (see Chapter 2.4.4.2).  
EOC  
3-bit field which controls the processing of EOC messages and its  
FILTER  
verification algorithm (see Chapter 2.4.3.3).  
100 = EOC automatic mode  
001 = EOC transparent mode without any filtering  
010 = EOC transparent mode with ‘on change’ filtering  
011 = EOC transparent mode with Triple-Last-Look (TLL) Filtering  
4.11.3  
EOCR - EOC Read Register  
The EOC Read register contains the last verified EOC message (M1-M3 bits) according  
to the verification criterion selected in MFILT.EOC FILTER.  
EOCR  
read  
Address: 63H  
2001-03-30  
Reset Value: 0FFFH  
Data Sheet  
181  
PEF 82912/82913  
Register Description  
15  
0
14  
0
13  
0
12  
0
11  
a1  
10  
a2  
9
8
a3  
d/m  
7
6
5
4
3
2
1
0
i1  
i2  
i3  
i4  
i5  
i6  
i7  
i8  
EOC  
Embedded Operations Channel (see Chapter 2.4.3)  
address field  
a1 .. a3  
d/m  
data/ message indicator  
i1 .. i8  
4.11.4  
information field,  
EOCW - EOC Write Register  
Via the EOC Write register, the EOC message (M1-M3 bits) of the next available U  
superframe can be sent and it will be repeated until a new value is written to EOCW, or  
the line is deactivated.  
Access to the EOCW register is reasonably only if the EOC channel is operated in  
‘Transparent mode’, otherwise conflicts with the internal EOC processor may occur.  
EOCW  
write  
Address: 65H  
Reset Value: 0100H  
15  
0
14  
0
13  
0
12  
11  
a1  
10  
a2  
9
8
0
a3  
d/m  
7
6
5
4
3
2
1
0
i1  
i2  
i3  
i4  
i5  
i6  
i7  
i8  
Data Sheet  
182  
2001-03-30  
PEF 82912/82913  
Register Description  
a1 .. a3  
d/m  
address field  
data/ message indicator  
i1 .. i8  
information field (8 codes are reserved by ANSI/ETSI for diagnostic and  
loopback functions)  
4.11.5  
M4RMASK - M4 Read Mask Register  
Via the M4 Read Mask register, the user can selectively control which M4 bit changes  
are reported via interrupt requests.  
M4RMASK  
read*)/write  
Address: 67H  
Reset Value:  
00H  
6
7
5
4
3
2
1
0
M4 Read Mask Bits  
Bit 0..7  
0 =  
1 =  
M4 bit change indication by interrupt active  
M4 bit change indication by interrupt masked  
4.11.6  
M4WMASK - M4 Write Mask Register  
Access to the M4 Write Mask register (M4W) is controlled by the M4WMASK register.  
By means of the M4WMASK register the user can control on a per bit base which M4  
bits are controlled by the user and which are controlled by the state machine.  
M4WMASK  
read*)/write  
Address: 68H  
Reset Value:  
A8H  
6
7
5
4
3
2
1
0
M4 Write Mask Bits  
Data Sheet  
183  
2001-03-30  
PEF 82912/82913  
Register Description  
Bit 0..7  
Bit 6  
0 =  
1 =  
M4 bit is controlled by state machine/ external pins (PS1,2)  
M4 bit is controlled by µC  
Partial Activation Control External/Automatic,  
function corresponds to the MON-8 commands PACE and PACA  
0 =  
1 =  
SAI bit is controlled and UOA bit is evaluated by state machine  
SAI bit is controlled via the µC, UOA=1 is reported to the state  
machine  
4.11.7  
M4R - M4 Read  
The Read M4 bit register contains the last received and verified M4 bit data.  
M4R  
read  
Address: 69H  
Reset Value:  
BEH  
7
6
5
4
3
2
1
0
AIB  
UOA  
M46  
M45  
M44  
SCO  
DEA  
ACT  
AIB  
Interruption (according to ANSI)  
0 =  
1 =  
indicates interruption  
inactive  
UOA  
SCO  
U Activation Only  
0 =  
1 =  
indicates that only U is activated  
inactive  
Start-on-Command Only Bit  
indicates whether the DLC network will deactivate the loop between calls  
(defined in Bellcore TR-NWT000397)  
0 =  
Start-on-Command-Only mode active,  
in LULT mode the U-transceiver shall initiate the start-up procedure  
only upon command from the network (‘AR’ primitive)  
Data Sheet  
184  
2001-03-30  
PEF 82912/82913  
Register Description  
1 =  
normal mode,  
if the U-transceiver is operated within a DCL configuration as LULT  
it shall start operation as soon as power is applied  
DEA  
Deactivation Bit  
0 =  
1 =  
LT informs NT that it will turn off  
inactive  
ACT  
Activation Bit  
0 =  
1 =  
layer 2 not established  
signals layer 2 ready for communication  
4.11.8  
M4W - M4 Write Register  
Via the M4 bit Write register the M4 bits of the next available U-superframe and  
subsequent ones can be controlled. The value is latched and transmitted until a new  
value is set.  
M4W  
write  
Address: 6AH  
Reset Value:  
BEH  
7
6
5
4
3
2
1
0
NIB  
SAI  
M46  
CSO  
NTM  
PS2  
PS1  
ACT  
NIB  
SAI  
Network Indication Bit  
0 =  
1 =  
no function (reserved for network use)  
no function (reserved for network use)  
S Activity Indicator  
0 =  
1 =  
S-interface is deactivated  
S-interface is activated  
CSO  
Cold Start Only  
0 =  
1 =  
NT is capable to perform warm starts  
NT activation with cold start only  
Data Sheet  
185  
2001-03-30  
PEF 82912/82913  
Register Description  
NTM  
PS2  
NT Test Mode  
0 =  
1 =  
NT busy in test mode  
inactive  
Power Status Secondary Source  
0 =  
1 =  
secondary power supply failed  
secondary power supply ok  
PS1  
Power Status Primary Source  
0 =  
1 =  
primary power supply failed  
primary power supply ok  
ACT  
4.11.9  
Activation Bit  
0 =  
1 =  
layer 2 not established  
signals layer 2 ready for communication  
M56R - M56 Read Register  
Bits 1 to 3 of the M5, M6 bit Read register contain the last verified M5, M6 bit information.  
Bits 5 and 6 reflect the current MLT state (MS2,1). The FEBE/NEBE error indication bits  
are accommodated at bit positions 0 and 4. They signal that a FEBE and/or NEBE error  
have/has occurred.  
M56R  
read  
Address: 6BH  
Reset Value:  
1FH  
7
0
6
5
4
3
2
1
0
MS2  
MS1  
NEBE  
M61  
M52  
M51  
FEBE  
MS1,2  
MLT Status  
00 =  
01 =  
10 =  
11 =  
Normal Mode  
Insertion Loss  
Quiet Mode  
Reserved  
Data Sheet  
186  
2001-03-30  
PEF 82912/82913  
Register Description  
NEBE  
M61,  
Near-End Block Error  
0 =  
1 =  
Near-End Block Error has occurred  
no Near-End Block Error has occurred  
Received Spare Bits of last U superframe (M51, M52 and M61 have no  
M52, M51 effect on the Q-SMINTI ).  
FEBE Far-End Block Error  
0 =  
1 =  
Far-End Block Error has occurred  
no Far-End Block Error has occurred  
4.11.10 M56W - M56 Write Register  
Via the M56 bit Write register, the M5 and M6 bits of the next available superframe can  
be set. The value is latched and transmitted as long as a new value is set or the function  
is disabled. The FEBE bit can only be set and controlled externally if OPMODE.FEBE is  
set to ‘1’.  
M56W  
write  
Address: 6CH  
Reset Value:  
FFH  
7
1
6
1
5
1
4
3
2
1
0
1
M61  
M52  
M51  
FEBE  
M61,  
Transmitted Spare Bits to next U superframe (M51, M52 and M61 have no  
M52, M51 effect on the Q-SMINTI.  
FEBE  
Far-End Block Error  
0 =  
1 =  
Far-End Block Error has occurred  
no Far-End Block Error has occurred  
4.11.11 UCIR - C/I Code Read Register  
Via the U-transceiver C/I code Read register a microcontroller can access the C/I code  
that is output from the state machine.  
Data Sheet  
187  
2001-03-30  
PEF 82912/82913  
Register Description  
UCIR  
read  
Address: 6DH  
Reset Value:  
00H  
7
0
6
0
5
0
4
3
2
1
0
0
C/I code output  
4.11.12 UCIW - C/I Code Write Register  
The U-transceiver C/I code Write register allows a microcontroller to control the state of  
the U-transceiver. To enable this function bit UCI in register OPMODE must be set to ‘1’  
before.  
UCIW  
write  
Address: 6EH  
Reset Value:  
01H  
7
0
6
0
5
0
4
3
2
1
0
0
C/I code input  
4.11.13 TEST - Test Register  
The Test register sets the U-transceiver in the desired test mode.  
TEST  
read*)/write  
Address: 6FH  
Reset Value:  
00H  
7
0
6
0
5
0
4
3
2
1
0
0
0
CCRC  
+-1  
40kHz  
tones  
CCRC  
Send Corrupt CRC  
0 =  
1 =  
inactive  
send corrupt (inverted) CRCs  
+-1 tones Send +/-1 Pulses Instead of +/-3  
0 = issues +/-3 pulses during 40 kHz tone generation or in SSP mode  
Data Sheet  
188  
2001-03-30  
PEF 82912/82913  
Register Description  
1 =  
issues +/-1 pulses  
40kHz  
40 kHz Test Signal  
0 =  
1 =  
issues single pulses in state ’Test’  
issues a 40 kHz test signal in state ’Test’  
4.11.14 LOOP - Loop Back Register  
The Loop register controls the digital loopbacks of the U-transceiver. The analog  
loopback (No. 3) is closed by C/I= ‘ARL’.  
Note: If the EOC automatic mode is selected (MFILT.EOC Filter = ’100’), then register  
LOOP is accessed by the internal EOC processor:  
EOC-command ’LB1’ (’LB2’) sets LOOP.U/IOM and LOOP.LB1 (LOOP.LB2)  
EOC-command ’RTN’ resets LOOP.LB1, LOOP.LB2 and LOOP.LBBD  
LOOP  
read*)/write  
Address: 70H  
Reset Value:  
08H  
7
0
6
5
4
3
1
2
1
0
DLB  
TRANS U/IOM  
LBBD  
LB2  
LB1  
DLB  
Close Framer/Deframer Loopback  
– the loopback is closed at the analog/digital interface  
– prerequisite is that LB1, LB2, LBBD and U/IOM® are set to ‘0’  
– only user data is looped and no maintenance data is looped back1)  
0 =  
1 =  
Framer/Deframer loopback open  
Framer/Deframer loopback closed  
TRANS  
Transparent/ Non-Transparent Loopback  
– in transparent mode user data is both passed on and looped back,  
whereas in non-transparent mode data is not forwarded but substituted  
by ’1’s (idle code) and just looped back2)  
®
– if LBBD, LB2, LB1 is closed towards the IOM interface and bit TRANS is  
set to ’0’ then the state machine has to be put into state ’Transparent’ first  
(e.g. by C/I = DT) before data is output on the U-interface  
– bit TRANS has no effect on DLB and the analog loopback (ARL operates  
always in transparent mode)  
Data Sheet  
189  
2001-03-30  
PEF 82912/82913  
Register Description  
0 =  
1 =  
sets transparent loop mode for LBBD, LB2, LB1  
sets non-transparent mode for LBBD, LB2, LB1  
®
’1’s are sent on the IOM -2/PCM interface in the corresponding  
time-slot  
®
U/IOM  
Close LBBD, LB2, LB1 Towards U or Towards IOM  
– Switch that selects whether loopback LB1, LB2 or LBBD is closed  
®
towards U or towards IOM -2  
– the setting affects all test loops, LBBD, LB2 and LB1  
– an individual selection for LBBD, LB2, LB1 is not possible  
®
®
0 =  
1 =  
LB1, LB2, LBBD loops are closed from IOM -2 to IOM -2  
LB1, LB2, LBBD loops are closed from U to U  
LBBD  
LB2  
Close Complete Loop (B1, B2, D) Near the System Interface  
the direction towards the loop is closed is determined by bit ‘U/IOM’  
0 =  
1 =  
complete loopback open  
complete loopback closed  
Close Loop B2 Near the System Interface  
the direction towards the loop is closed is determined by bit ‘U/IOM’  
0 =  
1 =  
loopback B2 open  
loopback B2 closed  
LB1  
Close Loop B1 Near the System Interface  
the direction towards the loop is closed is determined by bit ‘U/IOM’  
0 =  
1 =  
loopback B1 open  
loopback B1 closed  
1)  
If in state Transparent the DLB-loopback is closed from IOM- to IOM, then C/I-code  
®
’DC’ instead of ’AI’ is issued on the IOM -2-interface.  
2)  
If in state Transparent the non-transparent LBBD-loopback is closed from U- to U,  
®
then C/I-code ’DC’ instead of ’AI’ is issued on the IOM -2-interface. However, the  
correct C/I-code ’AI’ can be read from register UCIR.  
4.11.15 FEBE - Far End Block Error Counter Register  
The Far End Block Error Counter Register contains the FEBE value. If the register is  
read out it is automatically reset to ‘0’.  
Data Sheet  
190  
2001-03-30  
PEF 82912/82913  
Register Description  
FEBE  
read  
Address: 71H  
Reset Value:  
00H  
6
7
5
4
3
2
1
0
FEBE Counter Value  
4.11.16 NEBE - Near End Block Error Counter Register  
The Near End Block Error Counter Register contains the NEBE value. If the register is  
read out it is automatically reset to ‘0’.  
NEBE  
read  
Address: 72H  
Reset Value:  
00H  
6
7
5
4
3
2
1
0
NEBE Counter Value  
4.11.17 ISTAU - Interrupt Status Register U-Interface  
The Interrupt Status register U-interface generates an interrupt for the unmasked  
interrupt flags. Refer to Chapter 2.4.12 for details on masking and clearing of interrupt  
flags. For the timing of the interrupt flags ISTAU(3:0) refer to Chapter 2.4.2.4.  
ISTAU  
read  
Address: 7AH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
MLT  
CI  
FEBE/  
NEBE  
M56  
M4  
EOC  
6ms  
12ms  
MLT  
MLT interrupt indication  
0 =  
1 =  
inactive  
MLT interrupt has occurred  
Data Sheet  
191  
2001-03-30  
PEF 82912/82913  
Register Description  
CI  
C/I code indication  
the CI interrupt is generated independently on OPMODE.UCI  
0 =  
1 =  
inactive  
CI code change has occurred  
FEBE/  
NEBE  
Far End/Near End Block Error indication  
register M56R notifies whether a FEBE or NEBE has been detected  
0 =  
1 =  
inactive  
FEBE/NEBE occurred  
M56  
M4  
Validated new M56 bit data received from U-interface  
0 =  
1 =  
inactive  
change of any M5, M6 bit has been detected in receive direction  
Validated new M4 bit data received from U-interface  
0 =  
1 =  
inactive  
change of any M4 bit has been detected in receive direction  
EOC  
Validated new EOC data received from U-interface  
0 =  
1 =  
inactive  
new EOC message has been received and acknowledged from U  
6 ms  
6 ms timer for the transmission of EOC commands on U  
0 =  
1 =  
inactive  
indicates when a EOC command is going to be issued on U  
12 ms  
Superframe marker (each 12 ms) is going to be issued on U in transmit  
direction  
Bellcore test requirement: SR-NWT-002397  
0 =  
1 =  
inactive  
indicates when a SF marker is going to be transmitted on U  
4.11.18 MASKU - Mask Register U-Interface  
The Interrupt Mask register U-Interface selectively masks each interrupt source in the  
ISTAU register by setting the corresponding bit to ‘1’.  
Data Sheet  
192  
2001-03-30  
PEF 82912/82913  
Register Description  
MASKU  
read*)/write  
Address: 7BH  
Reset Value:  
FFH  
6
7
5
4
3
2
1
0
MASKU Value  
Bit 0..7  
Mask bits  
0 =  
1 =  
interrupt active  
interrupt masked  
4.11.19 FW_VERSION  
FW_VERSION Register contains the Firmware Version number  
FW_VERSION  
read  
Address: 7DH  
Reset value: 6xH  
7
6
5
4
3
2
1
0
Firmware Version Number  
Version 1.2 : 6DH  
Version 1.3 : 6CH  
Data Sheet  
193  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Absolute Maximum Ratings  
Parameter  
Symbol Limit Values  
Unit  
°C  
°C  
V
Ambient temperature under bias  
Storage temperature  
TA  
-40 to 85  
– 65 to 150  
4.2  
TSTG  
VDD  
Maximum Voltage on VDD  
Maximum Voltage on any pin with respect to VS  
ground  
-0.3 to VDD + 3.3  
(max. < 5.5)  
V
ESD integrity (according EIA/JESD22-A114B (HBM)): 2 kV  
Note: Stress above those listed here may cause permanent damage to the device.  
Exposure to absolute maximum ratings conditions for extended periods may affect  
device reliability.  
Line Overload Protection  
The Q-SMINTI is compliant to ESD tests according to ANSI / EOS / ESD-S 5.1-1993  
(CDM), EIA/JESD22-A114B (HBM) and to Latch-up tests according to JEDEC EIA /  
JESD78. From these tests the following max. input currents are derived (Table 36):  
Table 36  
Test  
Maximum Input Currents  
Pulse Width Current  
Remarks  
ESD  
100 ns  
5 ms  
--  
1.3 A  
3 repetitions  
Latch-up  
DC  
+/-200 mA  
10 mA  
2 repetitions, respectively  
Data Sheet  
194  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.2  
DC Characteristics  
VDD/VDDA = 3.3 V +/- 5% ; VSS/VSSA = 0 V; TA = -40 to 85 °C  
Digital  
Pins  
Parameter  
Symbol Limit Values Unit Test  
Condition  
min. max.  
All  
Input low voltage  
Input high voltage  
VIL  
-0.3  
2.0  
0.8  
V
V
V
VIH  
5.25  
0.45  
All except Output low voltage  
DD/DU  
VOL1  
IOL1 = 3.0 mA  
IOH1 = 3.0 mA  
IOL2 = 4.0 mA  
IOH2 = 4.0 mA  
ACT,LP2I  
MCLK  
Output high voltage  
VOH1  
VOL2  
VOH2  
ILI  
2.4  
2.4  
V
V
V
DD/DU  
ACT,LP2I  
MCLK  
Output low voltage  
0.45  
Output high voltage  
(DD/DU push-pull)  
All  
Input leakage current  
10  
10  
µA  
µA  
0 V VIN VDD  
0 V VIN VDD  
Output leakage current ILO  
Analog  
Pins  
AIN, BIN Input leakage current  
ILI  
70  
µA  
0 V VIN VD  
D
Table 37  
S-Transceiver Characteristics  
Pin  
Parameter  
Symbol Limit Values  
min. typ.  
Unit Test  
Condition  
max.  
SX1,2 Absolute value of  
output pulse  
VX  
2.03 2.2  
2.31  
V
RL = 50 Ω  
amplitude  
(VSX2 - VSX1  
)
SX1,2 S-Transmitter  
output impedance  
ZX  
ZR  
10  
34  
kΩ  
see 1)  
see 2)3)  
0
SR1,2 S-Receiver input  
impedance  
10  
100  
kΩ  
VDD = 3.3 V  
VDD = 0 V  
1)  
Requirement ITU-T I.430, chapter 8.5.1.1a): ’At all times except when transmitting a binary zero, the output  
impedance , in the frequency range of 2kHz to 1 MHz, shall exceed the impedance indicated by the template  
in Figure 11. The requirement is applicable with an applied sinusoidal voltage of 100 mV (r.m.s value)’  
Data Sheet  
195  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
2)  
3)  
Requirement ITU-T I.430, chapter 8.5.1.1b): ’When transmitting a binary zero, the output impedance shall be  
> 20 .’: Must be met by external circuitry.  
Requirement ITU-T I.430, chapter 8.5.1.1b), Note: ’The output impedance limit shall apply for a nominal load  
impedance (resistive) of 50 . The output impedance for each nominal load shall be defined by determining  
the peak pulse amplitude for loads equal to the nominal value +/- 10%. The peak amplitude shall be defined  
as the the amplitude at the midpoint of a pulse. The limitation applies for pulses of both polarities.’  
Table 38  
U-Transceiver Characteristics  
Limit Values  
Unit  
min.  
typ.  
max.  
Receive Path  
Signal / (noise + total harmonic distortion)1) 652)  
dB  
3)  
DC-level at AD-output  
45  
4
50  
5
55  
%
Threshold of level detect  
16 (PEF mV  
(measured between AIN and BIN with  
respect to zero signal)  
82912)  
peak  
9 (PEF  
82913)  
Input impedance AIN/BIN  
80  
kΩ  
Transmit Path  
Signal / (noise + total harmonic distortion)4) 70  
dB  
V
Common mode DC-level  
1.61  
1.65  
2.5  
1.69  
35  
Offset between AOUT and BOUT  
mV  
V
Absolute peak voltage for a single +3 or -3 2.42  
pulse measured between AOUT and  
BOUT5)  
2.58  
Output impedance AOUT/BOUT:  
Power-up  
Power-down  
0.8  
3
1.5  
6
1)  
Test conditions: 1.4 Vpp differential sine wave as input on AIN/BIN with long range (low, critical range).  
Versions PEF 8x913 with enhanced performance of the U-interface are tested with tightened limit values  
The percentage of the "1 "-values in the PDM-signal.  
2)  
3)  
4)  
Interpretation and test conditions: The sum of noise and total harmonic distortion, weighted with a low pass  
filter 0 to 80 kHz, is at least 70 dB below the signal for an evenly distributed but otherwise random sequence  
of +3, +1, -1, -3.  
5)  
The signal amplitude measured over a period of 1 min. varies less than 1%.  
Data Sheet  
196  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.3  
Capacitances  
TA = 25 °C, 3.3 V ± 5 % VSSA = 0 V, VSSD = 0 V, fc = 1 MHz, unmeasured pins grounded.  
Table 39 Pin Capacitances  
Parameter  
Symbol Limit Values Unit Remarks  
min. max.  
Digital pads:  
Input Capacitance  
I/O Capacitance  
CIN  
CI/O  
7
7
pF  
pF  
Analog pads:  
Load Capacitance  
CL  
3
pF  
pin AIN, BIN  
5.4  
Power Consumption  
Power Consumption  
VDD=3.3 V, VSS=0 V, Inputs at VSS/VDD, no LED connected, 50% bin. zeros, no output  
loads except SX1,2 (50 1))  
Parameter  
Limit Values  
min. typ. max.  
Unit Test Condition  
Operational  
U and S enabled, IOM-2 off  
235  
200  
mW U: ETSI loop 1 (0 m)  
mW U: ETSI Loop 2.(typical  
line)  
Power Down  
15  
mW  
1)  
50 (2 x TR) on the S-bus.  
5.5  
Supply Voltages  
VDD = + Vdd ± 5%  
D
VDD = + Vdd ± 5%  
A
The maximum sinusoidal ripple on VDD is specified in the following figure:  
Data Sheet  
197  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
mV  
(peak)  
200  
100  
10  
60  
Frequency Ripple  
80 100  
Frequency / kHz  
ITD04269.vsd  
Figure 74  
Maximum Sinusoidal Ripple on Supply Voltage  
Data Sheet  
198  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.6  
AC Characteristics  
TA = -40 to 85 °C, VDD = 3.3 V ± 5%  
Inputs are driven to 2.4 V for a logical "1" and to 0.4 V for a logical "0". Timing  
measurements are made at 2.0 V for a logical "1" and 0.8 V for a logical "0". The AC  
testing input/output waveforms are shown in Figure 75.  
2.4  
2.0  
0.8  
2.0  
0.8  
Device  
Under  
Test  
Test Points  
0.45  
CLoad=50 pF  
ITS00621.vsd  
Figure 75  
Input/Output Waveform for AC Tests  
Symbol  
Parameter  
Limit values  
Min Max  
Unit  
All Output Pins  
Fall time  
30  
30  
ns  
ns  
Rise time  
Data Sheet  
199  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.6.1  
IOM®-2 Interface  
DCL  
t4  
t5  
Data valid  
t7  
DU/DD  
(Input)  
t6  
DU/DD  
(Output)  
last bit  
first bit  
t8  
DU/DD  
(Output)  
bit n  
bit n+1  
t18  
SDS1,2  
IOM-Timing.vsd  
Figure 76  
IOM®-2 Interface - Bit Synchronization Timing  
t
9
FSC  
DCL  
t
10  
t
t
3
2
t
1
BCL  
t
t
12  
11  
t
t
13  
14  
®
Figure 77  
IOM -2 Interface - Frame Synchronization Timing  
Data Sheet  
200  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
Parameter  
Symbol Limit values  
Unit  
IOM®-2 Interface  
Min  
565  
200  
200  
20  
Typ  
651  
310  
310  
Max  
735  
420  
420  
DCL period  
DCL high  
t1  
t2  
t3  
t4  
t5  
ns  
ns  
ns  
ns  
ns  
ns  
DCL low  
Input data setup  
Input data hold  
20  
Output data from high impedance to t6  
active  
100  
(FSC high or other than first timeslot)  
Output data from active to high  
impedance  
t7  
100  
80  
ns  
Output data delay from clock  
FSC high  
t8  
t9  
ns  
ns  
50% of  
FSC  
cycle  
time  
FSC advance to DCL  
BCL high  
t10  
t11  
t12  
t13  
t14  
t15  
65  
130  
651  
651  
1302  
130  
195  
735  
735  
1470  
195  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
565  
565  
1130  
65  
BCL low  
BCL period  
FSC advance to BCL  
DCL, FSC rise/fall  
Data out fall (C = 50 pF, R = 2 kto t16  
200  
L
V , open drain)  
DD  
Data out rise/fall  
t17  
t18  
150  
120  
ns  
ns  
(C = 50 pF, tristate)  
L
Strobe Signal Delay  
Note: At the start and end of a reset period, a frame jump may occur. This results in a  
DCL, BCL and FSC high time of min. 130 ns after this specific event.  
Data Sheet  
201  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.6.2  
Serial µP Interface  
t1  
t5  
t4  
t2  
t3  
CS  
SCLK  
SDR  
t11  
t6  
t7  
t9  
t8  
SDX  
t10  
SCI_timing.vsd  
Figure 78  
Serial Control Interface  
Parameter  
Symbol  
Limit values  
Unit  
SCI Interface  
Min  
200  
80  
Max  
SCLK cycle time  
SCLK high time  
SCLK low time  
t1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t2  
t3  
80  
CS setup time  
t4  
20  
CS hold time  
t5  
10  
SDR setup time  
SDR hold time  
t6  
15  
t7  
15  
SDX data out delay  
CS high to SDX tristate  
SCLK to SDX active  
CS high to SCLK  
t8  
60  
40  
60  
t9  
t10  
t11  
10  
Data Sheet  
202  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.6.3  
Parallel µP Interface  
Siemens/Intel Bus Mode  
tRR  
tRI  
RD x CS  
tDF  
tDH  
tRD  
AD0 - AD7  
Data  
Itt00712.vsd  
Figure 79  
Microprocessor Read Cycle  
tWW  
tWI  
WR x CS  
tDW  
tWD  
AD0 - AD7  
Data  
Itt00713.vsd  
Figure 80  
Microprocessor Write Cycle  
tAA  
tAD  
ALE  
WR x CS or  
RD x CS  
tALS  
tLA  
tAL  
AD0 - AD7  
Address  
Itt00714.vsd  
Figure 81  
Multiplexed Address Timing  
Data Sheet  
203  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
WR x CS or  
RD x CS  
tAS  
tAH  
A0 - A6  
Address  
Itt009661.vsd  
Figure 82  
Non-Multiplexed Address Timing  
Motorola Bus Mode  
R / W  
tRWD  
tDSD  
tRR  
tRI  
CS x DS  
tDF  
tDH  
tRD  
D0 - D7  
Data  
Itt00716.vsd  
Figure 83  
Microprocessor Read Timing  
R / W  
tRWD  
tDSD  
tWI  
tWW  
CS x DS  
tWD  
tDW  
D0 - D7  
Data  
Itt09679.vsd  
Figure 84  
Microprocessor Write Cycle  
Data Sheet  
204  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
CS x DS  
A0 - A6  
tAS  
tAH  
Address  
Itt09662.vsd  
Figure 85  
Non-Multiplexed Address Timing  
Microprocessor Interface Timing  
Parameter  
Symbol  
Limit Values Unit  
min.  
20  
10  
10  
10  
10  
10  
10  
10  
80  
max.  
ALE pulse width  
tAA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup time to ALE  
Address hold time from ALE  
Address latch setup time to WR, RD  
Address setup time  
tAL  
tLA  
tALS  
tAS  
Address hold time  
tAH  
tAD  
tDSD  
tRR  
tRD  
tDH  
tDF  
ALE guard time  
DS delay after R/W setup  
RD pulse width  
Data output delay from RD  
Data hold from RD  
80  
25  
0
Data float from RD  
RD control interval1)  
tRI  
70  
60  
10  
10  
70  
10  
W pulse width  
tWW  
tDW  
tWD  
tWI  
Data setup time to W x CS  
Data hold time W x CS  
W control interval  
R/W hold from CS x DS inactive  
tRWD  
1)  
control interval: t ' is minimal 70ns for all registers except ISTAU, FEBE and NEBE. However, the time  
RI  
between two consecutive read accesses to one of the registers ISTAU, FEBE or NEBE, respectively, must be  
longer than 330ns. This does not limit t of read sequences, which involve intermediate read access to other  
RI  
registers, as for instance: ISTAU -(t )- ISTA -(t )- ISTAH -(t )- ISTAU.  
RI  
RI  
RI  
Data Sheet  
205  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.6.4  
Reset  
Table 40  
Reset Input Signal Characteristics  
Symbol Limit Values  
Parameter  
Unit Test Conditions  
min.  
typ.  
max.  
Length of active tRST  
low state  
4
ms  
Power On  
the 4 ms are assumed to  
be long enough for the  
oscillator to run correctly  
2 x  
After Power On  
DCL  
clock  
cycles  
+ 400  
ns  
DelaytimeforµC tµC  
accessafterRST  
rising edge  
500  
ns  
t
µC  
RST  
tRST  
ITD09823.vsd  
Figure 86  
Reset Input Signal  
Data Sheet  
206  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
5.6.5  
Undervoltage Detection Characteristics  
VDD  
VHYS  
VDET  
VDDmin  
t
RSTO  
tACT  
tACT  
t
tDEACT  
tDEACT  
VDDDET.VSD  
Figure 87  
Table 41  
Undervoltage Control Timing  
Parameters of the UVD/POR Circuit  
VDD= 3.3 V ± 5 %; VSS= 0 V; TA = -40 to 85 °C  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
2.7  
30  
typ.  
max.  
Detection Threshold1)  
Hysteresis  
VDET  
VHys  
2.8  
2.92  
90  
V
VDD = 3.3 V ± 5 %  
mV  
V/µs  
Max. rising/falling VDD dVDD/dt  
edge for activation/  
0.1  
deactivation of UVD  
Max. rising VDD for  
power-on2)  
0.1  
V/  
ms  
Min. operating voltage VDDmin 1.5  
V
Data Sheet  
207  
2001-03-30  
PEF 82912/82913  
Electrical Characteristics  
Unit Test Condition  
VDD= 3.3 V ± 5 %; VSS= 0 V; TA = -40 to 85 °C  
Parameter  
Symbol  
Limit Values  
min.  
typ.  
max.  
10  
Delay for activation  
of RSTO  
tACT  
µs  
Delay for deactivation  
of RSTO  
tDEACT  
64  
ms  
1)  
The Detection Threshold V  
is far below the specified supply voltage range of analog and digital parts of the  
DET  
®
Q-SMINT I. Therefore, the board designer must take into account that a range of voltages is existing, where  
neither performance and functionality of the Q-SMINT I are guaranteed, nor a reset is generated.  
®
2)  
If the integrated Power-On Reset of the Q-SMINTI is selected (VDDDET = ’0’) and the supply voltage V is  
DD  
ramped up from 0V to 3.3V +/- 5%, then the Q-SMINTI is kept in reset during V  
< V < V  
+ V  
.
DDmin  
DD  
DET  
Hys  
V
must be ramped up so slowly that the Q-SMINTI leaves the reset state after the oscillator circuit has  
DD  
already finished start-up. The start-up time of the oscillator circuit is typically in the range between 3ms and  
12ms.  
Data Sheet  
208  
2001-03-30  
PEF 82912/82913  
Package Outlines  
6
Package Outlines  
Plastic Package, P-MQFP-64  
(Metric Quad Flat Package)  
Data Sheet  
209  
2001-03-30  
PEF 82912/82913  
Package Outlines  
Plastic Package, P-TQFP-64  
(Thin Quad Flat Package)  
Data Sheet  
210  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7
Appendix: Differences between Q- and T-SMINTI  
The Q- and T-SMINTI have been designed to be as compatible as possible. However,  
some differences between them are unavoidable due to the different line codes 2B1Q  
and 4B3T used for data transmission on the Uk0 line.  
Especially the pin compatibility between Q- and T-SMINTI allows for one single PCB  
design for both series with only some mounting differences. The µC software can  
distinguish between the Q- and T-series by reading the identification register via the  
IOM-2 (MONITOR channel identification command) or the µC interface (register  
ID.DESIGN), respectively.  
The following chapter summarizes the main differences between the Q- and T-SMINTI.  
7.1  
Pinning  
Table 42  
Pin Definitions and Functions  
Pin  
Q-SMINTI: 2B1Q  
T-SMINTI: 4B3T  
T/MQFP-64  
16  
55  
41  
Metallic Termination Input Tie to ‘1‘  
(MTI)  
Power Status (primary)  
(PS1)  
Tie to ‘1‘  
Power Status (secondary) Tie to ‘1‘  
(PS2)  
Data Sheet  
211  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7.2  
U-Transceiver  
7.2.1  
U-Interface Conformity  
Table 43  
Related Documents to the U-Interface  
Q-SMINTI: 2B1Q  
T-SMINTI: 4B3T  
ETSI: TS 102 080  
conform to annex A  
compliant to 10 ms  
interruptions  
conform to annex B  
ANSI: T1.601-1998  
(Revision of ANSI T1.601- MLT input and decode logic  
1992)  
conform  
not required  
not required  
CNET: ST/LAA/ELR/DNP/ conform  
822  
RC7355E  
conform  
not required  
conform  
FTZ-Richtlinie 1 TR 220  
not required  
Data Sheet  
212  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7.2.2  
U-Transceiver State Machines  
T14E  
T14S  
TL  
.
.
SN0  
SN0  
T14S  
AR or TL  
Pending Timing  
DC  
Deactivated  
DC  
Any State  
SSP or  
T14S  
TIM  
DI  
.
SP  
C/I= 'SSP'  
.
SN0  
DI  
Test  
DR  
IOM Awaked  
PU  
AR or TL  
T1S, T11S  
DI  
DI & NT-AUTO  
T1S,  
T11S  
.
.
.
SN0  
TN  
Alerting 1  
DR  
T11E  
TN  
T1S  
T11S  
Reset  
Alerting  
Any State  
Pin-RST or  
C/I= 'RES'  
DR  
PU  
DC  
T11E  
ARL  
T12S  
T12S  
T12S  
.
SN1  
.
.
SN1  
SN1  
EC-Training AL  
DC  
EC-Training  
DC  
EC-Training 1  
DR  
DI  
LSEC or T12E  
LSEC or T12E  
act=0  
LSUE  
or T1E  
.
SN0  
SN3  
EQ-Training  
Wait for SF AL  
DC  
DC  
BBD0 & FD  
BBD1 & SFD  
T20S  
SN2  
1) act=1/03)  
SN3/SN3T  
Pend.Deact. S/T  
LSUE  
or T1E  
.
SN3T  
act=0  
Analog Loop Back  
AR  
LOF  
DI  
Wait for SF  
DC  
DR  
T20E &  
dea=0  
LSUE  
BBD0 & SFD  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
LSUE  
Synchronized 1  
DC  
uoa=1  
uoa=0  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
LSUE  
Synchronized 2  
2)  
AR/ARL  
Al  
uoa=0  
dea=0  
LSUE  
LOF  
El1  
SN3/SN3T 1) act=1  
Wait for Act  
2)  
AR/ARL  
act=1  
act=0  
act=1  
Transparent  
LOF  
El1  
uoa=0  
dea=0  
LSUE  
Any State  
DT or  
C/I='DT'  
SN3T  
Yes  
2)  
AI/AIL  
No  
uoa=1  
act=1 & Al  
?
dea=0  
uoa=0  
LSUE  
SN3/SN3T 1)  
act=0  
Error S/T  
act=0  
2)  
AR/ARL  
dea=1  
SN3/SN3T1) act=1/03)  
Pend.Deact. U  
LOF  
.
SN0  
LOF  
Pend Receive Res.  
T13S  
T7S  
EI1  
DC  
LSU  
LSU or ( /LOF & T13E )  
T7S  
.
SN0  
Receive Reset  
T7E & DI  
TL  
DR  
Figure 88  
INTC-Q Compatible State Machine Q-SMINTI: 2B1Q  
Data Sheet  
213  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
T14E  
.
.
SN0  
SN0  
T14S  
AR or TL  
T14S  
TL  
Pending Timing  
DC  
Deactivated  
DC  
Any State  
SSP or  
T14S  
TIM  
DI  
.
SP  
C/I= 'SSP'  
.
SN0  
DI  
Test  
IOM Awaked  
PU  
DR  
TIM  
AR or TL  
T1S, T11S  
TN  
DI  
T1S,  
T11S  
.
.
.
SN0  
TN  
Alerting 1  
DR  
T11E  
T1S  
T11S  
Reset  
Alerting  
PU  
Any State  
Pin-RST or  
C/I= 'RES'  
DR  
T11E  
ARL  
T12S  
T12S  
T12S  
.
SN1  
.
.
SN1  
SN1  
EC-Training AL  
DR  
EC-Training  
PU  
EC-Training 1  
DR  
DI or TIM  
LSEC or T12E  
LSEC or T12E  
LSUE  
or T1E  
.
SN0  
act=0  
SN3  
EQ-Training  
Wait for SF AL  
DR  
PU  
BBD0 & FD  
BBD1 & SFD  
T20S  
SN2  
1) act=1/03)  
SN3/SN3T  
LSUE  
or T1E  
.
SN3T  
act=0  
Analog Loop Back  
AR  
LOF  
Pend.Deact. S/T  
Wait for SF  
PU  
DR  
T20E &  
dea=0  
DI or  
TIM  
LSUE  
BBD0 & SFD  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
Synchronized 1  
LSUE  
PU  
uoa=1  
uoa=0  
LOF  
SN3/SN3T1)  
act=0  
dea=0  
LSUE  
Synchronized 2  
2)  
AR/ARL  
Al  
uoa=0  
dea=0  
LSUE  
LOF  
El1  
SN3/SN3T 1) act=1  
Wait for Act  
2)  
AR/ARL  
act=1  
act=0  
act=1  
Transparent  
LOF  
El1  
uoa=0  
dea=0  
LSUE  
Any State  
DT or  
C/I='DT'  
SN3T  
Yes  
2)  
AI/AIL  
No  
uoa=1  
act=1 & Al  
?
dea=0  
uoa=0  
LSUE  
SN3/SN3T 1)  
act=0  
Error S/T  
act=0  
2)  
AR/ARL  
dea=1  
SN3/SN3T1) act=1/03)  
LOF  
.
SN0  
LOF  
Pend Receive Res.  
Pend.Deact. U  
T13S  
T7S  
DR  
DR  
LSU  
LSU or ( /LOF & T13E )  
T7S  
.
SN0  
T7E & TIM  
T7E & DI  
Receive Reset  
TL  
DR  
Figure 89  
Simplified State Machine Q-SMINTI: 2B1Q  
Data Sheet  
214  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
AWR  
TIM  
AR  
U0  
IOM Awaked  
DC  
U0  
AWR  
AWR  
Deactivated  
DC
DI  
AR  
T6S  
T05E  
U1W  
Start Awaking Uk0  
RSY  
T6S  
T05S  
T05S  
U0  
Deactivating  
DC  
AWT  
T6S  
T6E  
U0  
Awake Signal Sent  
RSY  
AWR  
T13S  
U0  
Ack. Sent / Received  
RSY  
AWT  
T13S  
U1W  
Sending Awake-Ack.  
RSY  
T13E  
AWR  
T13S  
(DI & T05E)  
U0  
T12S  
U1A  
(U0 & T12E)  
T05S  
SP / U0  
Test  
DI  
Synchronizing  
RSY  
Pend. Deactivation  
DR  
DR  
U2  
T05S  
SSP  
ANY STATE  
RES  
DT  
DI  
U1  
U0  
SBC Synchronizing  
AR / ARL  
LOF  
AI  
U0  
Reset  
DR  
U3  
U0  
Wait for Info U4H  
AR / ARL  
LOF  
U4H  
U0  
U0  
U5  
U0  
Transparent  
AI / AIL  
LOF  
Loss of Framing  
RSY  
NT_SM_4B3T_cust.emf  
Figure 90  
IEC-T/NTC-T Compatible State Machine T-SMINTI: 4B3T  
Both the Q- and the T-SMINTI U-transceiver can be controlled via state machines,  
which are compatible to those defined for the old NT generation INTC-Q and NTC-T.  
Additionally, the Q-SMINTI possesses a newly defined, so called ‘simplified‘ state  
machine. This simplified state machine can be used optionally instead of the INTC-Q  
compatible state machine and eases the U-transceiver control by software. Such a  
simplified state machine is not available for the T-SMINTI.  
Data Sheet  
215  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7.2.3  
Command/Indication Codes  
Table 44  
Code  
C/I Codes  
Q-SMINTI: 2B1Q  
T-SMINTI: 4B3T  
IN  
TIM  
RES  
OUT  
DR  
IN  
OUT  
DR  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
TIM  
EI1  
SSP  
DT  
EI1  
RSY  
SSP  
DT  
PU  
AR  
AR  
AR  
AR  
ARL  
ARL  
ARL  
AI  
AI  
AI  
RES  
AI  
AIL  
DC  
AIL  
DC  
DI  
DI  
Data Sheet  
216  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7.2.4  
Interrupt Structure  
M56R  
7
0
OPMODE.MLT  
MFILT  
MS2  
MS1  
NEBE  
M61  
M52  
M51  
FEBE  
+
CRC,  
TLL,  
no  
Filtering  
0
7
+
M4R  
MFILT  
M4RMASK  
UCIR  
7
AIB  
UOA  
M46  
M45  
M44  
SCO  
DEA  
ACT  
CRC,  
TLL,  
no  
C/I  
C/I  
C/I  
Filtering  
0
0
C/I  
EOCR  
MFILT  
15  
TLL,  
CHG,  
no  
ISTAU  
MLT  
MASKU  
MLT  
7
a1  
a2  
11  
0
Filtering  
CI  
CI  
FEBE/  
NEBE  
FEBE/  
NEBE  
M56  
M56  
i8  
M4  
M4  
EOC  
6ms  
12ms  
EOC  
6ms  
12ms  
0
ISTA  
MASK  
7
U
interr_U_Q2.vsd  
0
INT  
Figure 91  
Interrupt Structure U-Transceiver Q-SMINTI: 2B1Q  
Data Sheet  
217  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
UCIR  
7
0
0
0
0
C/I  
C/I  
C/I  
C/I  
0
ISTAU  
MASKU  
7
0
CI  
RDS  
0
1
CI  
RDS  
1
0
1
0
1
0
1
1ms  
1ms  
0
ISTA  
MASK  
U
S
...  
...  
...  
...  
...  
...  
intstruct_4b3t.emf  
INT  
Figure 92  
Interrupt Structure U-Transceiver T-SMINTI: 4B3T  
Data Sheet  
218  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7.2.5  
Register Summary U-Transceiver  
U-Interface Registers Q-SMINTI: 2B1Q  
Name  
7
0
6
5
4
3
0
2
1
0
0
0
ADDR R/W RES  
60H R*/W 14H  
OPMODE  
UCI FEBE MLT  
CI_  
SEL  
MFILT  
EOCR  
EOCW  
M56 FILTER  
M4 FILTER  
EOC FILTER  
61H R*/W 14H  
62H  
reserved  
0
i1  
0
0
i2  
0
0
i3  
0
0
i4  
0
a1  
i5  
a2  
i6  
a3  
i7  
d/m  
i8  
63H  
64H  
65H  
66H  
R
0F  
FFH  
01H  
00H  
a1  
i5  
a2  
i6  
a3  
i7  
d/m  
i8  
W
i1  
i2  
i3  
i4  
M4RMASK  
M4WMASK  
M4R  
M4 Read Mask Bits  
M4 Write Mask Bits  
67H R*/W 00H  
68H R*/W A8H  
verified M4 bit data of last received superframe  
M4 bit data to be send with next superframe  
69H  
R
BEH  
M4W  
6AH R*/W BEH  
M56R  
0
1
0
0
0
MS2  
MS1 NEBE M61  
M52  
M52  
M51 FEBE 6BH  
M51 FEBE 6CH  
R
W
R
1FH  
FFH  
00H  
01H  
M56W  
UCIR  
1
0
0
0
1
0
0
0
1
0
0
0
M61  
C/I code output  
C/I code input  
6DH  
6EH  
UCIW  
W
TEST  
CCRC +-1  
Tones  
0
40 KHz 6FH R*/W 00H  
LOOP  
FEBE  
NEBE  
0
DLB TRANS U/IOM  
1
LBBD LB2  
LB1  
70H R*/W 08H  
FEBE Counter Value  
NEBE Counter Value  
reserved  
71H  
72H  
R
R
00H  
00H  
73H-  
79H  
Data Sheet  
219  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
Name  
7
6
5
4
3
2
1
0
ADDR R/W RES  
ISTAU  
MLT  
CI  
FEBE/ M56  
NEBE  
M4  
EOC  
6ms 12ms 7AH 00H  
R
MASKU  
MLT  
CI  
FEBE/ M56  
NEBE  
M4  
EOC  
6ms 12ms 7BH R*/W FFH  
reserved  
7CH  
FW_  
FW Version Number  
7DH  
R
6xH  
VERSION  
reserved  
7EH-  
7FH  
Data Sheet  
220  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
U-Interface Registers T-SMINTI: 4B3T  
Name  
7
0
6
5
0
4
0
3
0
2
0
1
0
0
0
ADDR R/W RES  
60H R*/W 00H  
OPMODE  
UCI  
reserved  
61H-  
6CH  
UCIR  
UCIW  
0
0
0
0
0
0
0
C/I code output  
C/I code input  
6DH  
6EH  
6FH  
R
00H  
01H  
0
W
reserved  
LOOP  
RDS  
0
DLB TRANSU/IOM  
1
LBBD LB2  
LB1  
70H R*/W 08H  
71H  
reserved  
Block Error Counter Value  
reserved  
72H  
R
00H  
73H-  
79H  
ISTAU  
0
1
CI  
CI  
RDS  
RDS  
0
1
0
1
0
1
0
1
1 ms  
1 ms  
7AH  
R
00H  
MASKU  
7BH R*/W FFH  
7CH  
reserved  
FW_  
FW Version Number  
7DH  
R
3xH  
VERSION  
reserved  
7EH-  
7FH  
Data Sheet  
221  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
7.3  
External Circuitry  
The external circuitry of the Q- and T-SMINTI is equivalent; however, some external  
components of the U-transceiver hybrid must be dimensioned different for 2B1Q and  
4B3T. All information on the external circuitry is preliminary and may be changed in  
future documents.  
RT  
AOUT  
n
R4  
R4  
RT  
RCOMP  
RPTC  
BIN  
AIN  
>1µ  
C
Loop  
RCOMP  
RPTC  
extcirc_U_Q2_exthybrid.emf  
BOUT  
Figure 93  
Note: the necessary protection circuitry is not displayed in Figure 93.  
External Circuitry Q- and T-SMINTI  
Data Sheet  
222  
2001-03-30  
PEF 82912/82913  
Appendix: Differences between Q- and T-SMINT‚I  
Table 45  
Dimensions of External Components  
Q-SMINTI: 2B1Q  
Component  
T-SMINTI: 4B3T  
Transformer:  
Ratio  
1:2  
1:1.6  
Main Inductivity  
14.5 mH  
7.5 mH  
Resistance R3  
Resistance R4  
Resistance RT  
Capacitor C  
1.3 kΩ  
1.75 kΩ  
1.0 kΩ  
25 Ω  
1.0 kΩ  
9.5 Ω  
27 nF  
15 nF  
RPTC and RComp  
2RPTC + 8RComp = 40 Ω  
n2 × (2RCOMP + RB) + RL =  
20Ω  
Data Sheet  
223  
2001-03-30  
PEF 82912/82913  
Index  
AC Characteristics 200  
8
Index  
Activation/Deactivation 59  
Detailed Registers 165  
Frame Structure 28  
A
Absolute Maximum Ratings 194  
Address Space 136  
Functional Description 28  
L
B
Layer 1  
Activation/Deactivation 120  
Loopbacks 125  
LED Pins 13  
Block Diagram 7  
Block Error Counters 81  
C
Line Overload Protection 194  
C/I Channel  
Detailed Registers 148  
Functional Description 50  
C/I Codes  
S-Transceiver 109  
U-Transceiver 83  
Controller Data Access (CDA) 31  
Cyclic Redundancy Check 79  
M
Maintenance Channel 64  
Metallic Loop Termination 99  
Microcontroller Clock Generation 24  
Microcontroller Interfaces  
Interface Selection 17  
Parallel Microcontroller Interface 22  
Serial Control Interface (SCI) 18  
Monitor Channel  
D
DC Characteristics 195  
D-Channel Access Control  
Functional Description 52  
State Machine 56  
Detailed Registers 176  
Error Treatment 46  
Functional Description 42  
Handshake Procedure 42  
Interrupt Logic 49  
Differences between Q- and T-SMINT 211  
Time-Out Procedure 49  
E
EOC 67  
O
External Circuitry  
S-Transceiver 132  
U-Transceiver 130  
Oscillator Circuitry 134  
Overhead Bits 75  
P
F
Package Outlines 209  
Parallel Microcontroller Interface  
AC-Characteristics 203  
Functional Description 22  
Pin Configuration 6  
Pin Definitions and Functions 8  
Power Consumption 197  
Power Supply Blocking 130  
Power-On Reset 27, 207  
Features 3  
I
Identification  
via Monitor Channel 48  
via Register Access 164  
Interrupts 137  
IOM®-2 Interface  
Data Sheet  
224  
2001-03-30  
PEF 82912/82913  
Index  
R
Register Summary 139  
Reset  
Generation 25  
Input Signal Characteristics 206  
Power-On Reset 27, 207  
Under Voltage Detection 27, 207  
S
S/Q Channels 105  
Scrambling/ Descrambling 83  
Serial Control Interface (SCI)  
AC-Characteristics 202  
Functional Description 18  
Serial Data Strobe Signal 41  
Stop/Go Bit Handling 54  
S-Transceiver  
Detailed Registers 152  
Functional Description 103  
State Machine, LT-S 115  
State Machine, NT 111  
Supply Voltages 197  
Synchronous Transfer 37  
System Integration 14  
T
Test Modes 14  
TIC Bus Handling 53  
U
U-Interface Hybrid 130  
Under Voltage Detection 27, 207  
U-Transceiver  
Detailed Registers 179  
Functional Description 60  
State Machine, Simplified NT 95  
State Machine, Standard NT 87  
W
Watchdog Timer 26  
Data Sheet  
225  
2001-03-30  
Infineon goes for Business Excellence  
“Business excellence means intelligent approaches and clearly  
defined processes, which are both constantly under review and  
ultimately lead to good operating results.  
Better operating results and business excellence mean less  
idleness and wastefulness for all of us, more professional  
success, more accurate information, a better overview and,  
thereby, less frustration and more satisfaction.”  
Dr. Ulrich Schumacher  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

PEF82913

2B1Q Second Gen. Modular ISDN NT
INFINEON

PEF82913F

?2B1Q Second Generation Modular ISDN NT (Intelligent)?
ETC

PEF82913H

?2B1Q Second Generation Modular ISDN NT (Intelligent)?
ETC

PEF88008EV2.2

Telecom Circuit,
INTEL

PEG-3E-025B

Analog IC
ETC

PEG-3E-25B

PHASE SHIFTERS
MERRIMAC

PEG-3E-500B

PHASE SHIFTERS
MERRIMAC

PEG.0K.307.CLLC30

CONN RCPT FMALE 7POS SOLDER CUP
ETC

PEG.1K.303.CYMC50

CONN RCPT FMALE 3POS GOLD CRIMP
ETC

PEG.2K.312.CYMC70

CONN RCPT FMALE 12POS GOLD CRIMP
ETC

PEG.2K.312.CYMC75

CONN RCPT FMALE 12POS GOLD CRIMP
ETC

PEG.3B.312.CYZD11Z

CONN HSG RCPT 12POS PNL MNT SKT
ETC