PIC16LF872-E/SP [ETC]

Microcontroller ; 微控制器\n
PIC16LF872-E/SP
型号: PIC16LF872-E/SP
厂家: ETC    ETC
描述:

Microcontroller
微控制器\n

微控制器 外围集成电路 光电二极管 时钟
文件: 总168页 (文件大小:2769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16F872  
Data Sheet  
28-Pin, 8-Bit CMOS FLASH  
Microcontroller with 10-Bit A/D  
2002 Microchip Technology Inc.  
DS30221B  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART,  
PRO MATE, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microID,  
microPort, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Term Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
DS30221B - page ii  
2002 Microchip Technology Inc.  
PIC16F872  
M
28-Pin, 8-Bit CMOS FLASH Microcontroller  
with 10-bit A/D  
High Performance RISC CPU:  
Pin Diagram  
DIP, SOIC, SSOP  
Only 35 single word instructions to learn  
All single cycle instructions except for program  
branches, which are two-cycle  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
RB1  
RB0/INT  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
2K x 14 words of FLASH Program Memory  
128 bytes of Data Memory (RAM)  
RA5/AN4/SS  
VSS  
64 bytes of EEPROM Data Memory  
Pinout compatible to the PIC16C72A  
Interrupt capability (up to 10 sources)  
Eight level deep hardware stack  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VSS  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
Direct, Indirect and Relative Addressing modes  
RC3/SCK/SCL  
Peripheral Features:  
High Sink/Source Current: 25 mA  
Timer0: 8-bit timer/counter with 8-bit prescaler  
Special Microcontroller Features:  
Timer1: 16-bit timer/counter with prescaler,  
can be incremented during SLEEP via external  
crystal/clock  
Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
Timer2: 8-bit timer/counter with 8-bit period  
Watchdog Timer (WDT) with its own on-chip RC  
register, prescaler and postscaler  
oscillator for reliable operation  
One Capture, Compare, PWM module  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
Programmable code protection  
Power saving SLEEP mode  
Selectable oscillator options  
In-Circuit Serial Programming(ICSP) via two  
pins  
10-bit, 5-channel Analog-to-Digital converter (A/D)  
Single 5V In-Circuit Serial Programming capability  
In-Circuit Debugging via two pins  
Synchronous Serial Port (SSP) with SPI(Master  
mode) and I2C(Master/Slave)  
Brown-out detection circuitry for  
Brown-out Reset (BOR)  
Processor read/write access to program memory  
CMOS Technology:  
Low power, high speed CMOS FLASH/EEPROM  
technology  
Wide operating voltage range: 2.0V to 5.5V  
Fully static design  
Commercial, Industrial and Extended temperature  
ranges  
Low power consumption:  
- < 2 mA typical @ 5V, 4 MHz  
- 20 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
2002 Microchip Technology Inc.  
DS30221B-page 1  
PIC16F872  
Table of Contents  
1.0 Device Overview......................................................................................................................................................................... 3  
2.0 Memory Organization.................................................................................................................................................................. 7  
3.0 Data EEPROM and FLASH Program Memory ......................................................................................................................... 23  
4.0 I/O Ports.................................................................................................................................................................................... 29  
5.0 Timer0 Module.......................................................................................................................................................................... 35  
6.0 Timer1 Module.......................................................................................................................................................................... 39  
7.0 Timer2 Module.......................................................................................................................................................................... 43  
8.0 Capture/Compare/PWM Module............................................................................................................................................... 45  
9.0 Master Synchronous Serial Port (MSSP) Module..................................................................................................................... 51  
10.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................ 79  
11.0 Special Features of the CPU .................................................................................................................................................... 87  
12.0 Instruction Set Summary......................................................................................................................................................... 103  
13.0 Development Support ............................................................................................................................................................. 111  
14.0 Electrical Characteristics......................................................................................................................................................... 117  
15.0 DC and AC Characteristics Graphs and Tables ..................................................................................................................... 139  
16.0 Packaging Information ............................................................................................................................................................ 151  
Appendix A: Revision History ........................................................................................................................................................... 155  
Appendix B: Conversion Considerations........................................................................................................................................... 155  
Index ................................................................................................................................................................................................. 157  
On-Line Support................................................................................................................................................................................ 163  
Reader Response ............................................................................................................................................................................. 164  
PIC16F872 Product Identification System ........................................................................................................................................ 165  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS30221B-page 2  
2002 Microchip Technology Inc.  
PIC16F872  
document to this data sheet, and is highly recom-  
mended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information  
about the PIC16F872 microcontroller. Additional infor-  
mation may be found in the PICmicroMid-Range  
Reference Manual (DS33023), which may be obtained  
from your local Microchip Sales Representative or  
downloaded from the Microchip website. The Refer-  
ence Manual should be considered a complementary  
The block diagram of the PIC16F872 architecture is  
shown in Figure 1-1. A pinout description is provided in  
Table 1-2.  
TABLE 1-1:  
KEY FEATURES OF THE PIC16F872  
Operating Frequency  
RESETS (and Delays)  
FLASH Program Memory (14-bit words)  
Data Memory (bytes)  
EEPROM Data Memory (bytes)  
Interrupts  
DC - 20 MHz  
POR, BOR (PWRT, OST)  
2K  
128  
64  
10  
Ports A, B, C  
3
I/O Ports  
Timers  
Capture/Compare/PWM module  
Serial Communications  
10-bit Analog-to-Digital Module  
Instruction Set  
1
MSSP  
5 input channels  
35 Instructions  
Packaging  
28-lead PDIP  
28-lead SOIC  
28-lead SSOP  
2002 Microchip Technology Inc.  
DS30221B-page 3  
PIC16F872  
FIGURE 1-1:  
PIC16F872 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
FLASH  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
RA5/AN4/SS  
Program  
Bus  
14  
RAM Addr (1)  
9
PORTB  
Addr MUX  
Instruction reg  
RB0/INT  
RB1  
RB2  
Indirect  
Addr  
7
Direct Addr  
8
RB3/PGM  
RB4  
FSR reg  
RB5  
RB6/PGC  
RB7/PGD  
STATUS reg  
8
3
MUX  
Power-up  
Timer  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
Timing  
Generation  
W reg  
Brown-out  
Reset  
OSC1/CLKIN  
OSC2/CLKOUT  
RC7  
In-Circuit  
Debugger  
Low Voltage  
Programming  
MCLR VDD, VSS  
Timer1  
Timer0  
Timer2  
Synchronous  
Serial Port  
Data EEPROM  
CCP  
10-bit A/D  
Note 1:  
Higher order bits are from the STATUS register.  
DS30221B-page 4  
2002 Microchip Technology Inc.  
PIC16F872  
TABLE 1-2:  
Pin Name  
PIC16F872 PINOUT DESCRIPTION  
I/O/P  
Type  
Buffer  
Type  
Pin#  
Description  
OSC1/CLKI  
OSC1  
9
I
ST/CMOS Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input. ST  
buffer when configured in RC mode. Otherwise CMOS.  
External clock source input. Always associated with pin  
function OSC1 (see OSC2/CLKO pin).  
CLKI  
OSC2/CLKO  
OSC2  
10  
O
Oscillator crystal or clock output.  
Oscillator crystal output.  
Connects to crystal or resonator in Crystal Oscillator  
mode.  
CLKO  
In RC mode, OSC2 pin outputs CLKO, which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate.  
MCLR/VPP  
MCLR  
1
I/P  
ST  
Master Clear (input) or programming voltage (output).  
Master Clear (Reset) input. This pin is an active low  
RESET to the device.  
VPP  
Programming voltage input.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
Digital I/O.  
AN2  
Analog input 2.  
VREF-  
Negative analog reference voltage.  
RA3/AN3/VREF+  
RA3  
5
I/O  
TTL  
Digital I/O.  
AN3  
Analog input 3.  
VREF+  
Positive analog reference voltage.  
RA4/T0CKI  
RA4  
6
7
I/O  
I/O  
ST  
Digital I/O; open drain when configured as output.  
Timer0 clock input.  
T0CKI  
RA5/SS/AN4  
RA5  
TTL  
Digital I/O.  
SS  
AN4  
Slave Select for the Synchronous Serial Port.  
Analog input 4.  
Legend: I = input  
O = output  
I/O = input/output  
P = power  
= Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
2002 Microchip Technology Inc.  
DS30221B-page 5  
PIC16F872  
TABLE 1-2:  
PIC16F872 PINOUT DESCRIPTION (CONTINUED)  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Pin#  
Description  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
RB0/INT  
RB0  
21  
I/O  
TTL/ST(1)  
Digital I/O.  
INT  
External interrupt pin.  
RB1  
RB2  
22  
23  
24  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
RB3/PGM  
RB3  
Digital I/O.  
PGM  
Low voltage ICSP programming enable pin.  
RB4  
RB5  
25  
26  
27  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL/ST(2)  
Digital I/O.  
Digital I/O.  
RB6/PGC  
RB6  
Digital I/O.  
PGC  
In-Circuit Debugger and ICSP programming clock.  
RB7/PGD  
RB7  
28  
11  
I/O  
I/O  
TTL/ST(2)  
Digital I/O.  
PGD  
In-Circuit Debugger and ICSP programming data.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
ST  
Digital I/O.  
T1OSO  
T1CKI  
Timer1 oscillator output.  
Timer1 clock input.  
RC1/T1OSI  
RC1  
12  
13  
14  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
RC2/CCP1  
RC2  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode.  
RC4/SDI/SDA  
RC4  
15  
16  
I/O  
I/O  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI Data In pin (SPI mode).  
SPI Data I/O pin (I2C mode).  
RC5/SDO  
RC5  
Digital I/O.  
SDO  
SPI Data Out pin (SPI mode).  
RC6  
17  
18  
I/O  
ST  
ST  
Digital I/O.  
RC7  
I/O  
Digital I/O.  
VSS  
8, 19  
20  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
P
Legend: I = input  
O = output  
I/O = input/output  
P = power  
= Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
DS30221B-page 6  
2002 Microchip Technology Inc.  
PIC16F872  
2.2  
Data Memory Organization  
2.0  
MEMORY ORGANIZATION  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 (STATUS<6>)  
and RP0 (STATUS<5>) are the bank select bits.  
There are three memory blocks in the PIC16F872. The  
Program Memory and Data Memory have separate  
buses so that concurrent access can occur. Data mem-  
ory is covered in this section; the EEPROM data mem-  
ory and FLASH program memory blocks are detailed in  
Section 3.0.  
RP1:RP0  
Bank  
00  
01  
10  
11  
0
1
2
3
Additional information on device memory may be found  
in the PICmicroMid-Range Reference Manual  
(DS33023).  
2.1  
Program Memory Organization  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain Special  
Function Registers. Some frequently used Special  
Function Registers from one bank may be mirrored in  
another bank for code reduction and quicker access.  
The PIC16F872 has a 13-bit program counter capable  
of addressing an 8K word x 14 bit program memory  
space. The PIC16F872 device actually has 2K words of  
FLASH program memory. Accessing a location above  
the physically implemented address will cause a wrap-  
around.  
The RESET vector is at 0000h and the interrupt vector  
is at 0004h.  
Note: EEPROM Data Memory description can be  
found in Section 4.0 of this data sheet.  
FIGURE 2-1:  
PIC16F872 PROGRAM  
MEMORY MAP AND  
STACK  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
PC<12:0>  
13  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register (FSR).  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 8  
0000h  
Reset Vector  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-Chip  
Program  
Memory  
07FFh  
1FFFh  
2002 Microchip Technology Inc.  
DS30221B-page 7  
PIC16F872  
FIGURE 2-2:  
PIC16F872 REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
TRISB  
PORTB  
PCLATH  
INTCON  
EEDATA  
EEADR  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
EECON1  
EECON2  
Reserved(1)  
Reserved(1)  
PCLATH  
INTCON  
PIE1  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
EEDATH  
EEADRH  
PCON  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
ADRESL  
ADCON1  
ADRESH  
ADCON0  
1A0h  
120h  
A0h  
General  
Purpose  
Register  
accesses  
A0h - BFh  
accesses  
20h-7Fh  
General  
Purpose  
Register  
32 Bytes  
1BFh  
1C0h  
BFh  
C0h  
96 Bytes  
16Fh  
170h  
1EFh  
1F0h  
EFh  
F0h  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as 0.  
* Not a physical register.  
Note 1: These registers are reserved; maintain these registers clear.  
DS30221B-page 8  
2002 Microchip Technology Inc.  
PIC16F872  
The Special Function Registers can be classified into  
two sets: core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral feature section.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Details  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on  
page:  
Bank 0  
(2)  
00h  
INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
0000 0000 21, 93  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
TMR0  
PCL  
Timer0 Module Register  
xxxx xxxx 35, 93  
0000 0000 20, 93  
0001 1xxx 12, 93  
xxxx xxxx 21, 93  
--0x 0000 29, 93  
xxxx xxxx 31, 93  
xxxx xxxx 33, 93  
(2)  
(2)  
(2)  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect Data Memory Address Pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
Unimplemented  
Unimplemented  
(1,2)  
0Ah  
0Bh  
PCLATH  
INTCON  
PIR1  
GIE  
(3)  
TMR0IE  
(3)  
Write Buffer for the upper 5 bits of the Program Counter ---0 0000 20, 93  
(2)  
PEIE  
ADIF  
(3)  
INTE  
(3)  
RBIE  
SSPIF  
BCLIF  
TMR0IF  
INTF  
RBIF  
0000 000x 14, 93  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
CCP1IF TMR2IF TMR1IF r0rr 0000 16, 93  
PIR2  
EEIF  
(3)  
-r-0 0--r 18, 93  
xxxx xxxx 40, 94  
xxxx xxxx 40, 94  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 39, 94  
0000 0000 43, 94  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 43, 94  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx 55, 94  
SSPM0 0000 0000 53, 94  
xxxx xxxx 45, 94  
SSPM2  
SSPM1  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx 45, 94  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 45, 94  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESH  
ADCON0  
A/D Result Register High Byte  
ADCS1 ADCS0 CHS2  
xxxx xxxx 84, 94  
CHS1  
CHS0  
GO/  
DONE  
ADON  
0000 00-0 79, 94  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r= reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are  
transferred to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These bits are reserved; always maintain these bits clear.  
2002 Microchip Technology Inc.  
DS30221B-page 9  
PIC16F872  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Details  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on  
page:  
Bank 1  
(2)  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
0000 0000 21, 93  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
OPTION_REG RBPU  
INTEDG  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
T0CS  
T0SE  
PSA  
PS2  
PS1  
DC  
PS0  
C
1111 1111 13, 94  
0000 0000 20, 93  
0001 1xxx 12, 93  
xxxx xxxx 21, 93  
--11 1111 29, 94  
1111 1111 31, 94  
1111 1111 33, 94  
(2)  
(2)  
(2)  
PCL  
STATUS  
FSR  
PD  
Z
TRISA  
TRISB  
TRISC  
PORTB Data Direction Register  
PORTC Data Direction Register  
Unimplemented  
Unimplemented  
(1,2)  
8Ah  
8Bh  
PCLATH  
INTCON  
PIE1  
GIE  
(3)  
PEIE  
ADIE  
(3)  
TMR0IE  
(3)  
Write Buffer for the upper 5 bits of the Program Counter ---0 0000 20, 93  
(2)  
INTE  
(3)  
RBIE  
SSPIE  
BCLIE  
TMR0IF  
INTF  
RBIF  
0000 000x 14, 93  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
CCP1IE TMR2IE TMR1IE r0rr 0000 15, 94  
PIE2  
EEIE  
(3)  
-r-0 0--r 17, 94  
---- --qq 19, 94  
PCON  
POR  
BOR  
Unimplemented  
Unimplemented  
SSPCON2  
PR2  
GCEN ACKSTAT ACKDT  
ACKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
SEN  
BF  
0000 0000 54, 94  
1111 1111 43, 94  
0000 0000 58, 94  
Timer2 Period Register  
2
SSPADD  
Synchronous Serial Port (I C mode) Address Register  
94h  
95h  
96h  
97h  
95h  
95h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
0000 0000 52, 94  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESL  
ADCON1  
A/D Result Register Low Byte  
ADFM  
xxxx xxxx 84, 94  
PCFG0 0---0000 80, 94  
PCFG3  
PCFG2  
PCFG1  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r= reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are  
transferred to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These bits are reserved; always maintain these bits clear.  
DS30221B-page 10  
2002 Microchip Technology Inc.  
PIC16F872  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Details  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on  
page:  
Bank 2  
(2)  
100h  
INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
0000 0000 21, 93  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
TMR0  
PCL  
Timer0 Module Register  
xxxx xxxx 35, 93  
0000 0000 20, 93  
0001 1xxx 12, 93  
xxxx xxxx 21, 93  
(2)  
(2)  
(2)  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx 31, 93  
Unimplemented  
Unimplemented  
Unimplemented  
(1,2)  
10Ah  
10Bh  
PCLATH  
INTCON  
EEDATA  
EEADR  
EEDATH  
EEADRH  
Write Buffer for the upper 5 bits of the Program Counter ---0 0000 20, 93  
(2)  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 14, 93  
xxxx xxxx 23, 94  
xxxx xxxx 23, 94  
xxxx xxxx 23, 94  
xxxx xxxx 23, 94  
10Ch  
10Dh  
10Eh  
10Fh  
EEPROM Data Register Low Byte  
EEPROM Address Register Low Byte  
EEPROM Data Register High Byte  
EEPROM Address Register High Byte  
Bank 3  
(2)  
180h  
INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
0000 0000 21, 93  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
OPTION_REG RBPU  
INTEDG  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
DC  
PS0  
C
1111 1111 13, 94  
0000 0000 20, 93  
0001 1xxx 12, 93  
xxxx xxxx 21, 93  
(2)  
(2)  
(2)  
PCL  
STATUS  
FSR  
PD  
Z
Indirect Data Memory Address Pointer  
Unimplemented  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111 31, 94  
Unimplemented  
Unimplemented  
(1,2)  
18Ah  
18Bh  
PCLATH  
INTCON  
EECON1  
EECON2  
PEIE  
TMR0IE  
Write Buffer for the upper 5 bits of the Program Counter ---0 0000 20, 93  
(2)  
GIE  
INTE  
RBIE  
TMR0IF  
WREN  
INTF  
WR  
RBIF  
RD  
0000 000x 14, 93  
x--- x000 24, 94  
---- ---- 23, 94  
18Ch  
18Dh  
18Eh  
18Fh  
EEPGD  
WRERR  
EEPROM Control Register2 (not a physical register)  
Reserved; maintain clear  
0000 0000  
0000 0000  
Reserved; maintain clear  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r= reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are  
transferred to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These bits are reserved; always maintain these bits clear.  
2002 Microchip Technology Inc.  
DS30221B-page 11  
PIC16F872  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register contains the arithmetic status of  
the ALU, the RESET status and the bank select bits for  
data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions not affecting any status bits, see the  
Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable, therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6:5  
RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
(for borrow the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30221B-page 12  
2002 Microchip Technology Inc.  
PIC16F872  
2.2.2.2  
OPTION_REG Register  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG Register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2:  
OPTION_REG REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Legend:  
R = Readable bit  
W = Writable bit  
1= Bit is set  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
0= Bit is cleared  
x = Bit is unknown  
Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3  
in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper oper-  
ation of the device  
2002 Microchip Technology Inc.  
DS30221B-page 13  
PIC16F872  
2.2.2.3  
INTCON Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3:  
INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INTF  
R/W-x  
RBIF  
TMR0IE  
TMR0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set  
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared  
(must be cleared in software).  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30221B-page 14  
2002 Microchip Technology Inc.  
PIC16F872  
2.2.2.4  
PIE1 Register  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
The PIE1 register contains the individual enable bits for  
the peripheral interrupts.  
REGISTER 2-4:  
PIE1 REGISTER (ADDRESS: 8Ch)  
R/W-0  
reserved  
bit 7  
R/W-0  
ADIE  
R/W-0  
R/W-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
reserved reserved  
CCP1IE  
TMR2IE  
bit 7  
bit 6  
Reserved: Always maintain these bits clear  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
bit 5-4  
bit 3  
Reserved: Always maintain these bits clear  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
bit 2  
bit 1  
bit 0  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 15  
PIC16F872  
2.2.2.5  
PIR1 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt bits are clear prior to enabling an  
interrupt.  
The PIR1 register contains the individual flag bits for  
the peripheral interrupts.  
REGISTER 2-5:  
PIR1 REGISTER (ADDRESS: 0Ch)  
R/W-0  
reserved  
bit 7  
R/W-0  
ADIF  
R/W-0  
R/W-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
reserved reserved  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
bit 6  
Reserved: Always maintain these bits clear  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
bit 5-4  
bit 3  
Reserved: Always maintain these bits clear  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag  
1= The SSP interrupt condition has occurred, and must be cleared in software before returning  
from the Interrupt Service Routine. The conditions that will set this bit are:  
SPI  
- A transmission/reception has taken place  
I2C Slave  
- A transmission/reception has taken place  
I2C Master  
- A transmission/reception has taken place  
- The initiated START condition was completed by the SSP module  
- The initiated STOP condition was completed by the SSP module  
- The initiated Restart condition was completed by the SSP module  
- The initiated Acknowledge condition was completed by the SSP module  
- A START condition occurred while the SSP module was idle (multi-master system)  
- A STOP condition occurred while the SSP module was idle (multi-master system)  
0 = No SSP interrupt condition has occurred  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode: Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30221B-page 16  
2002 Microchip Technology Inc.  
PIC16F872  
2.2.2.6  
PIE2 Register  
The PIE2 register contains the individual enable bits for  
the CCP2 peripheral interrupt, the SSP bus collision  
interrupt, and the EEPROM write operation interrupt.  
REGISTER 2-6:  
PIE2 REGISTER (ADDRESS: 8Dh)  
U-0  
R/W-0  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
U-0  
U-0  
R/W-0  
reserved  
bit 0  
reserved  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Unimplemented: Read as '0'  
EEIE: EEPROM Write Operation Interrupt Enable bit  
1= Enable EEPROM write interrupt  
0= Disable EEPROM write interrupt  
bit 3  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enable bus collision interrupt  
0= Disable bus collision interrupt  
bit 2-1  
bit 0  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 17  
PIC16F872  
2.2.2.7  
PIR2 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The PIR2 register contains the flag bits for the CCP2  
interrupt, the SSP bus collision interrupt and the  
EEPROM write operation interrupt.  
.
REGISTER 2-7:  
PIR2 REGISTER (ADDRESS: 0Dh)  
U-0  
R/W-0  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
U-0  
U-0  
R/W-0  
reserved  
bit 0  
reserved  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Unimplemented: Read as '0'  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision has occurred in the SSP, when configured for I2C Master mode  
0= No bus collision has occurred  
bit 2-1  
bit 0  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30221B-page 18  
2002 Microchip Technology Inc.  
PIC16F872  
2.2.2.8  
PCON Register  
Note: BOR is unknown on POR. It must be set by  
the user and checked on subsequent  
RESETS to see if BOR is clear, indicating  
a brown-out has occurred. The BOR status  
bit is a dont care and is not predictable if  
the brown-out circuit is disabled (by clear-  
ing the BODEN bit in the Configuration  
Word).  
The Power Control (PCON) Register contains flag bits  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset (BOR), a Watchdog Reset  
(WDT) and an external MCLR Reset.  
REGISTER 2-8:  
PCON REGISTER (ADDRESS: 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 19  
PIC16F872  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC16FXXX family has an 8-level deep x 13-bit  
wide hardware stack. The stack space is not part of  
either program or data space and the stack pointer is  
not readable or writable. The PC is PUSHed onto the  
stack when a CALLinstruction is executed or an inter-  
rupt causes a branch. The stack is POPed in the event  
of a RETURN, RETLWor a RETFIEinstruction execu-  
tion. PCLATH is not affected by a PUSH or POP oper-  
ation.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any RESET, the upper bits of the  
PC will be cleared. Figure 2-3 shows the two situations  
for the loading of the PC. The upper example in the fig-  
ure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-3:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
Note 1: There are no status bits to indicate stack  
PCH  
PCL  
overflow or stack underflow conditions.  
12  
8
7
0
Instruction with  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PC  
PCL  
2.4  
Program Memory Paging  
8
7
0
GOTO,CALL  
All PIC16FXXX devices are capable of addressing a  
continuous 8K word block of program memory. The  
CALL and GOTO instructions provide only 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2 bits of the address are provided by  
PCLATH<4:3>. Since the PIC16F872 has only 2K  
words of program memory or one page, additional code  
is not required to ensure that the correct page is  
selected before a CALL or GOTO instruction is exe-  
cuted. The PCLATH<4:3> bits should always be main-  
tained as zeros. If a return from a CALLinstruction (or  
interrupt) is executed, the entire 13-bit PC is popped off  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
2.3.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
the  
stack. Therefore,  
manipulation of  
the  
Application Note, Implementing  
(AN556).  
a Table Read"  
PCLATH<4:3> bits are not required for the return  
instructions (which POPs the address from the stack).  
Note: The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
DS30221B-page 20  
2002 Microchip Technology Inc.  
PIC16F872  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-1.  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = 0), will read 00h. Writing to the INDF register  
indirectly results in a no operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 2-4.  
NEXT  
CLRF INDF  
INCF FSR,F  
BTFSS FSR,4  
GOTO NEXT  
CONTINUE  
:
;yes continue  
FIGURE 2-4:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
RP1:RP0  
6
0
0
IRP  
FSR Register  
Bank Select  
Location Select  
Bank Select  
Location Select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail, see Figure 2-2.  
2002 Microchip Technology Inc.  
DS30221B-page 21  
PIC16F872  
NOTES:  
DS30221B-page 22  
2002 Microchip Technology Inc.  
PIC16F872  
The EEPROM Data memory allows byte read and write  
operations without interfering with the normal operation  
of the microcontroller. When interfacing to EEPROM  
Data memory, the EEADR register holds the address to  
be accessed. Depending on the operation, the EEDATA  
register holds the data to be written or the data read at  
the address in EEADR. The PIC16F872 has 64 bytes of  
EEPROM Data memory and therefore, requires that the  
two Most Significant bits of EEADR remain clear.  
EEPROM Data memory on these devices wraps around  
to 0 (i.e., 40h in the EEADR maps to 00h).  
3.0  
DATA EEPROM AND FLASH  
PROGRAM MEMORY  
The Data EEPROM and FLASH Program Memory are  
readable and writable during normal operation over the  
entire VDD range. These operations take place on a sin-  
gle byte for Data EEPROM memory and a single word  
for Program memory. A write operation causes an  
erase-then-write operation to take place on the speci-  
fied byte or word. A bulk erase operation may not be  
issued from user code (which includes removing code  
protection).  
The FLASH Program memory allows non-intrusive  
read access, but write operations cause the device to  
stop executing instructions until the write completes.  
When interfacing to the Program memory, the  
EEADRH:EEADR registers pair forms a two-byte word  
which holds the 13-bit address of the memory location  
being accessed. The EEDATH:EEDATA register pair  
holds the 14-bit data for writes or reflects the value of  
program memory after a read operation. Just as in  
EEPROM Data memory accesses, the value of the  
EEADRH:EEADR registers must be within the valid  
range of program memory, depending on the device  
(0000h to 07FFh). Addresses outside of this range  
wrap around to 0000h (i.e., 0800h maps to 0000h).  
Access to program memory allows for checksum calcu-  
lation. The values written to Program memory do not  
need to be valid instructions. Therefore, numbers of up  
to 14 bits can be stored in memory for use as calibra-  
tion parameters, serial numbers, packed 7-bit ASCII,  
etc. Executing a program memory location, containing  
data that forms an invalid instruction, results in the exe-  
cution of a NOPinstruction.  
The EEPROM Data memory is rated for high erase/  
write cycles (specification #D120). The FLASH Pro-  
gram memory is rated much lower (specification  
#D130) because EEPROM Data memory can be used  
to store frequently updated values. An on-chip timer  
controls the write time and it will vary with voltage and  
temperature, as well as from chip to chip. Please refer  
to the specifications for exact limits (specifications  
#D122 and #D133).  
3.1  
EECON1 and EECON2 Registers  
The EECON1 register is the control register for config-  
uring and initiating the access. The EECON2 register is  
not a physically implemented register, but is used  
exclusively in the memory write sequence to prevent  
inadvertent writes.  
A byte or word write automatically erases the location  
and writes the new value (erase before write). Writing  
to EEPROM Data memory does not impact the opera-  
tion of the device. Writing to Program memory will  
cease the execution of instructions until the write is  
complete. The program memory cannot be accessed  
during the write. During the write operation, the oscilla-  
tor continues to run, the peripherals continue to func-  
tion and interrupt events will be detected and  
essentially queueduntil the write is complete. When  
the write completes, the next instruction in the pipeline  
is executed and the branch to the interrupt vector will  
take place if the interrupt is enabled and occurred dur-  
ing the write.  
There are many bits used to control the read and write  
operations to EEPROM Data and FLASH Program  
memory. The EEPGD bit determines if the access will  
be a program or data memory access. When clear, any  
subsequent operations will work on the EEPROM Data  
memory. When set, all subsequent operations will  
operate in the Program memory.  
Read operations only use one additional bit, RD, which  
initiates the read operation from the desired memory  
location. Once this bit is set, the value of the desired  
memory location will be available in the data registers.  
This bit cannot be cleared by firmware. It is automati-  
cally cleared at the end of the read operation. For  
EEPROM Data memory reads, the data will be avail-  
able in the EEDATA register in the very next instruction  
cycle after the RD bit is set. For program memory  
reads, the data will be loaded into the  
EEDATH:EEDATA registers, following the second  
instruction after the RD bit is set.  
Read and write access to both memories take place  
indirectly through a set of Special Function Registers  
(SFR). The six SFRs used are:  
EEDATA  
EEDATH  
EEADR  
EEADRH  
EECON1  
EECON2  
2002 Microchip Technology Inc.  
DS30221B-page 23  
PIC16F872  
Write operations have two control bits, WR and WREN,  
and two status bits, WRERR and EEIF. The WREN bit  
is used to enable or disable the write operation. When  
WREN is clear, the write operation will be disabled.  
Therefore, the WREN bit must be set before executing  
a write operation. The WR bit is used to initiate the write  
operation. It also is automatically cleared at the end of  
the write operation. The interrupt flag EEIF (located in  
register PIR2) is used to determine when the memory  
write completes. This flag must be cleared in software  
before setting the WR bit. For EEPROM Data memory,  
once the WREN bit and the WR bit have been set, the  
desired memory address in EEADR will be erased fol-  
lowed by a write of the data in EEDATA. This operation  
takes place in parallel with the microcontroller continu-  
ing to execute normally. When the write is complete,  
the EEIF flag bit will be set. For program memory, once  
the WREN bit and the WR bit have been set, the micro-  
controller will cease to execute instructions. The  
desired  
memory  
location  
pointed  
to  
by  
EEADRH:EEADR will be erased. Then the data value  
in EEDATH:EEDATA will be programmed. When com-  
plete, the EEIF flag bit will be set and the microcontrol-  
ler will continue to execute code.  
The WRERR bit is used to indicate when the device  
has been RESET during a write operation. WRERR  
should be cleared after Power-on Reset. Thereafter, it  
should be checked on any other RESET. The WRERR  
bit is set when a write operation is interrupted by a  
MCLR Reset or a WDT Time-out Reset during normal  
operation. In these situations, following a RESET, the  
user should check the WRERR bit and rewrite the  
memory location if set. The contents of the data regis-  
ters, address registers and EEPGD bit are not affected  
by either MCLR Reset or WDT Time-out Reset during  
normal operation.  
REGISTER 3-1:  
EECON1 REGISTER (ADDRESS 18Ch)  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
EEPGD: Program/Data EEPROM Select bit  
1= Accesses Program memory  
0= Accesses data memory  
(This bit cannot be changed while a read or write operation is in progress.)  
bit 6-4  
bit 3  
Unimplemented: Read as '0'  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR Reset or any WDT Reset during normal operation)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not  
cleared) in software.  
0= Does not initiate an EEPROM read  
Legend:  
S = Settable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set 0= Bit is cleared  
R = Readable bit  
W = Writable bit  
- n = Value at POR  
x = Bit is unknown  
DS30221B-page 24  
2002 Microchip Technology Inc.  
PIC16F872  
should be kept clear at all times, except when writing to  
the EEPROM Data. The WR bit can only be set if the  
WREN bit was set in a previous operation, i.e., they  
both cannot be set in the same operation. The WREN  
bit should then be cleared by firmware after the write.  
Clearing the WREN bit before the write actually com-  
pletes will not terminate the write in progress.  
3.2  
Reading the EEPROM Data  
Memory  
Reading EEPROM Data memory only requires that the  
desired address to access be written to the EEADR  
register and clear the EEPGD bit. After the RD bit is set,  
data will be available in the EEDATA register on the  
very next instruction cycle. EEDATA will hold this value  
until another read operation is initiated or until it is writ-  
ten by firmware.  
Writes to EEPROM Data memory must also be pref-  
aced with a special sequence of instructions that pre-  
vent inadvertent write operations. This is a sequence of  
five instructions that must be executed without interrup-  
tion for each byte written.  
The steps to reading the EEPROM Data Memory are:  
1. Write the address to EEDATA. Make sure that  
the address is not larger than the memory size  
of the device.  
The steps to write to program memory are:  
1. Write the address to EEADR. Make sure that the  
address is not larger than the memory size of  
the device.  
2. Clear the EEPGD bit to point to EEPROM Data  
memory.  
3. Set the RD bit to start the read operation.  
4. Read the data from the EEDATA register.  
2. Write the 8-bit data value to be programmed in  
the EEDATA registers.  
3. Clear the EEPGD bit to point to EEPROM Data  
memory.  
EXAMPLE 3-1:  
EEPROM DATA READ  
BSF  
BCF  
STATUS, RP1  
STATUS, RP0  
ADDR, W  
;
;Bank 2  
;Write address  
4. Set the WREN bit to enable program operations.  
5. Disable interrupts (if enabled).  
MOVF  
MOVWF EEADR  
6. Execute the special five instruction sequence:  
;to read from  
BSF  
BCF  
BSF  
BCF  
MOVF  
STATUS, RP0  
EECON1, EEPGD ;Point to Data memory  
EECON1, RD  
STATUS, RP0  
EEDATA, W  
;Bank 3  
Write 55h to EECON2 in two steps (first to W,  
then to EECON2)  
;Start read operation  
;Bank 2  
;W = EEDATA  
Write AAh to EECON2 in two steps (first to  
W, then to EECON2)  
Set the WR bit  
7. Enable interrupts (if using interrupts).  
8. Clear the WREN bit to disable program operations.  
3.3  
Writing to the EEPROM Data  
Memory  
9. At the completion of the write cycle, the WR bit  
is cleared and the EEIF interrupt flag bit is set.  
(EEIF must be cleared by firmware). Firmware  
may check for EEIF to be set or WR to clear to  
indicate end of program cycle.  
There are many steps in writing to the EEPROM Data  
memory. Both address and data values must be written  
to the SFRs. The EEPGD bit must be cleared and the  
WREN bit must be set to enable writes. The WREN bit  
EXAMPLE 3-2:  
EEPROM DATA WRITE  
BSF  
BCF  
STATUS, RP1  
STATUS, RP0  
ADDR, W  
EEADR  
VALUE, W  
;
;Bank 2  
;Address to  
;write to  
;Data to  
;write  
;Bank 3  
;Point to Data memory  
;Enable writes  
MOVF  
MOVWF  
MOVF  
MOVWF  
BSF  
EEDATA  
STATUS, RP0  
EECON1, EEPGD  
EECON1, WREN  
BCF  
BSF  
;Only disable interrupts  
;if already enabled,  
;otherwise discard  
;Write 55h to  
;EECON2  
;Write AAh to  
BCF  
INTCON, GIE  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
0x55  
EECON2  
0xAA  
EECON2  
EECON1, WR  
;EECON2  
;Start write operation  
;Only enable interrupts  
;if using interrupts,  
;otherwise discard  
;Disable writes  
BSF  
BCF  
INTCON, GIE  
EECON1, WREN  
2002 Microchip Technology Inc.  
DS30221B-page 25  
PIC16F872  
The steps to reading the FLASH Program Memory are:  
3.4  
Reading the FLASH Program  
Memory  
1. Write the address to EEADRH:EEADR. Make  
sure that the address is not larger than the mem-  
ory size of the device.  
Reading FLASH Program memory is much like that of  
EEPROM Data memory, only two NOP instructions  
must be inserted after the RD bit is set. These two  
instruction cycles that the NOPinstructions execute will  
be used by the microcontroller to read the data out of  
program memory and insert the value into the  
EEDATH:EEDATA registers. Data will be available fol-  
lowing the second NOP instruction. EEDATH and  
EEDATA will hold their value until another read opera-  
tion is initiated, or until they are written by firmware.  
2. Set the EEPGD bit to point to FLASH Program  
memory.  
3. Set the RD bit to start the read operation.  
4. Execute two NOPinstructions to allow the micro-  
controller to read out of program memory.  
5. Read the data from the EEDATH:EEDATA  
registers.  
EXAMPLE 3-3:  
BSF  
FLASH PROGRAM READ  
STATUS, RP1  
STATUS, RP0  
ADDRL, W  
;
BCF  
;Bank 2  
MOVF  
MOVWF  
MOVF  
MOVWF  
BSF  
;Write the  
;address bytes  
EEADR  
ADDRH,W  
;for the desired  
EEADRH  
;address to read  
STATUS, RP0  
EECON1, EEPGD  
EECON1, RD  
;Bank 3  
BSF  
;Point to Program memory  
BSF  
;Start read operation  
NOP  
;Required two NOPs  
NOP  
;
BCF  
STATUS, RP0  
EEDATA, W  
DATAL  
;Bank 2  
MOVF  
MOVWF  
MOVF  
MOVWF  
;DATAL = EEDATA  
;
EEDATH,W  
DATAH  
;DATAH = EEDATH  
;
clear at all times, except when writing to the FLASH  
Program memory. The WR bit can only be set if the  
WREN bit was set in a previous operation, i.e., they  
both cannot be set in the same operation. The WREN  
bit should then be cleared by firmware after the write.  
Clearing the WREN bit before the write actually com-  
pletes will not terminate the write in progress.  
3.5  
Writing to the FLASH Program  
Memory  
Writing to FLASH Program memory is unique in that the  
microcontroller does not execute instructions while pro-  
gramming is taking place. The oscillator continues to  
run and all peripherals continue to operate and queue  
interrupts, if enabled. Once the write operation com-  
pletes (specification #D133), the processor begins exe-  
cuting code from where it left off. The other important  
difference when writing to FLASH Program memory is  
that the WRT configuration bit, when clear, prevents  
any writes to program memory (see Table 3-1).  
Writes to program memory must also be prefaced with  
a special sequence of instructions that prevent inad-  
vertent write operations. This is a sequence of five  
instructions that must be executed without interruption  
for each byte written. These instructions must then be  
followed by two NOPinstructions to allow the microcon-  
troller to setup for the write operation. Once the write is  
complete, the execution of instructions starts with the  
instruction after the second NOP.  
Just like EEPROM Data memory, there are many steps  
in writing to the FLASH Program memory. Both  
address and data values must be written to the SFRs.  
The EEPGD bit must be set and the WREN bit must be  
set to enable writes. The WREN bit should be kept  
DS30221B-page 26  
2002 Microchip Technology Inc.  
PIC16F872  
The steps to write to program memory are:  
Write AAh to EECON2 in two steps (first to W,  
then to EECON2)  
1. Write the address to EEADRH:EEADR. Make  
sure that the address is not larger than the mem-  
ory size of the device.  
Set the WR bit  
7. Execute two NOPinstructions to allow the micro-  
controller to setup for write operation.  
2. Write the 14-bit data value to be programmed in  
the EEDATH:EEDATA registers.  
8. Enable interrupts (if using interrupts).  
3. Set the EEPGD bit to point to FLASH Program  
memory.  
9. Clear the WREN bit to disable program  
operations.  
4. Set the WREN bit to enable program operations.  
5. Disable interrupts (if enabled).  
At the completion of the write cycle, the WR bit is  
cleared and the EEIF interrupt flag bit is set. (EEIF  
must be cleared by firmware). Since the microcontroller  
does not execute instructions during the write cycle, the  
firmware does not necessarily have to check either  
EEIF or WR to determine if the write had finished.  
6. Execute the special five instruction sequence:  
Write 55h to EECON2 in two steps (first to W,  
then to EECON2)  
EXAMPLE 3-4:  
FLASH PROGRAM WRITE  
BSF  
BCF  
STATUS, RP1  
STATUS, RP0  
ADDRL, W  
EEADR  
ADDRH, W  
EEADRH  
VALUEL, W  
EEDATA  
VALUEH, W  
EEDATH  
STATUS, RP0  
EECON1, EEPGD  
EECON1, WREN  
;
;Bank 2  
;Write address  
;of desired  
;program memory  
;location  
;Write value to  
;program at  
;desired memory  
;location  
;Bank 3  
;Point to Program memory  
;Enable writes  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
BSF  
BSF  
BSF  
;Only disable interrupts  
;if already enabled,  
;otherwise discard  
;Write 55h to  
;EECON2  
;Write AAh to  
BCF  
INTCON, GIE  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
0x55  
EECON2  
0xAA  
EECON2  
EECON1, WR  
;EECON2  
;Start write operation  
;Two NOPs to allow micro  
;to setup for write  
;Only enable interrupts  
;if using interrupts,  
;otherwise discard  
;Disable writes  
NOP  
NOP  
BSF  
BCF  
INTCON, GIE  
EECON1, WREN  
3.6  
Write Verify  
3.7  
Protection Against Spurious Writes  
The PIC16F87X devices do not automatically verify the  
value written during a write operation. Depending on  
the application, good programming practice may dic-  
tate that the value written to memory be verified against  
the original value. This should be used in applications  
where excessive writes can stress bits near the speci-  
fied endurance limits.  
There are conditions when the device may not want to  
write to the EEPROM Data memory or FLASH program  
memory. To protect against these spurious write condi-  
tions various mechanisms have been built into the  
device. On power-up, the WREN bit is cleared and the  
Power-up Timer (if enabled) prevents writes.  
The write initiate sequence and the WREN bit together  
help prevent any accidental writes during brown-out,  
power glitches or firmware malfunction.  
2002 Microchip Technology Inc.  
DS30221B-page 27  
PIC16F872  
ent effects on writing to program memory. Table 4-1  
shows the effect of the code protect bits and the WRT  
bit on program memory.  
3.8  
Operation While Code Protected  
The PIC16F872 has two code protect mechanisms,  
one bit for EEPROM Data memory and two bits for  
FLASH Program memory. Data can be read and written  
to the EEPROM Data memory regardless of the state  
of the code protection bit, CPD. When code protection  
is enabled, CPD cleared, external access via ICSP is  
disabled regardless of the state of the program memory  
code protect bits. This prevents the contents of  
EEPROM Data memory from being read out of the  
device.  
Once code protection has been enabled for either  
EEPROM Data memory or FLASH Program memory,  
only a full erase of the entire device will disable code  
protection.  
3.9  
FLASH Program Memory Write  
Protection  
The configuration word contains a bit that write protects  
the FLASH Program memory called WRT. This bit can  
only be accessed when programming the device via  
ICSP. Once write protection is enabled, only an erase  
of the entire device will disable it. When enabled, write  
protection prevents any writes to FLASH Program  
memory. Write protection does not affect program  
memory reads.  
The state of the program memory code protect bits,  
CP0 and CP1, do not affect the execution of instruc-  
tions out of program memory. The PIC16F872 can  
always read the values in program memory, regardless  
of the state of the code protect bits. However, the state  
of the code protect bits and the WRT bit will have differ-  
TABLE 3-1:  
READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY  
Configuration Bits  
Internal  
Read  
Internal  
Write  
Memory Location  
ICSP Read  
ICSP Write  
CP1  
CP0  
WRT  
0
0
1
1
0
0
1
1
0
1
0
1
All program memory  
All program memory  
All program memory  
All program memory  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
TABLE 3-2:  
REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh, 18Bh  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF INTF  
RBIF 0000 000x 0000 000u  
10Dh  
10Fh  
10Ch  
10Eh  
18Ch  
18Dh  
8Dh  
EEADR  
EEPROM Address Register, Low Byte  
EEPROM Address, High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
EEADRH  
EEDATA EEPROM Data Register, Low Byte  
EEDATH  
EEPROM Data Register, High Byte  
WRERR WREN  
EECON1 EEPGD  
WR  
RD  
x--- x000 x--- u000  
EECON2 EEPROM Control Register2 (not a physical register)  
PIE2  
PIR2  
(1)  
(1)  
EEIE  
EEIF  
BCLIE  
BCLIF  
(1)  
(1)  
-r-0 0--r -r-0 0--r  
-r-0 0--r -r-0 0--r  
0Dh  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented, read as '0'.  
Shaded cells are not used during FLASH/EEPROM access.  
Note 1: These bits are reserved; always maintain these bits clear.  
DS30221B-page 28  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 4-1:  
BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
4.0  
I/O PORTS  
The PIC16F872 provides three general purpose I/O  
ports. Some pins for these ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data  
Bus  
Data Latch  
D
Q
VDD  
WR  
Port  
Q
CK  
P
I/O pin(1)  
Additional information on I/O ports may be found in the  
PICmicroMid-Range Reference Manual (DS33023).  
TRIS Latch  
N
D
Q
4.1  
PORTA and the TRISA Register  
WR  
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
TRIS  
Q
CK  
VSS  
Analog  
Input  
Mode  
RD  
TRIS  
TTL  
Input  
Buffer  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified and then written to the port  
data latch.  
Q
D
EN  
RD PORT  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
To A/D Converter  
Note 1:  
I/O pins have protection diodes to VDD and VSS.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 4-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Data Latch  
Data  
Bus  
Note: On a Power-on Reset, these pins are con-  
D
Q
figured as analog inputs and read as '0'.  
WR  
PORT  
Q
CK  
I/O pin(1)  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
N
TRIS Latch  
D
Q
VSS  
WR  
TRIS  
Schmitt  
Trigger  
Input  
Q
CK  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BCF  
BCF  
STATUS, RP0  
STATUS, RP1 ; Bank0  
;
Buffer  
RD  
TRIS  
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
BSF  
STATUS, RP0 ; Select Bank 1  
Q
D
MOVLW  
MOVWF  
MOVLW  
0x06  
; Configure all pins  
ADCON1  
0xCF  
; as digital inputs  
; Value used to  
EN  
; initialize data  
; direction  
RD PORT  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6>are always  
; read as ’0’.  
TMR0 clock input  
Note 1:  
I/O pin has protection diodes to VSS only.  
2002 Microchip Technology Inc.  
DS30221B-page 29  
PIC16F872  
TABLE 4-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Input/output or analog input or VREF.  
Input/output or external clock input for Timer0.  
Output is open drain type.  
RA5/SS/AN4  
bit5  
TTL  
Input/output or slave select input for synchronous serial port or analog input.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on: Value on all  
Address Name  
Bit 7 Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
--0- 0000 --0- 0000  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
PCFG3 PCFG2 PCFG1 PCFG0  
ADCON1 ADFM  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by PORTA.  
Note: When using the SSP module in SPI Slave mode and SS enabled, the A/D converter must be set to one of  
the following modes, where PCFG3:PCFG0 = 0100, 0101, 011x, 1101, 1110, 1111.  
DS30221B-page 30  
2002 Microchip Technology Inc.  
PIC16F872  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
4.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Three pins of PORTB are multiplexed with the Low  
Voltage Programming function; RB3/PGM, RB6/PGC  
and RB7/PGD. The alternate functions of these pins  
are described in the Special Features Section.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
This interrupt on mismatch feature, together with soft-  
ware configurable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key depression. Refer to the Embedded  
Control Handbook, Implementing Wake-Up on Key  
Stroke(AN552).  
FIGURE 4-3:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
RB0/INT is an external interrupt input pin and is config-  
ured using the INTEDG bit (OPTION_REG<6>).  
VDD  
RBPU(2)  
Weak  
Pull-up  
RB0/INT is discussed in detail in Section 11.10.1.  
P
Data Latch  
Data Bus  
WR Port  
D
Q
FIGURE 4-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
VDD  
I/O pin(1)  
CK  
TRIS Latch  
RBPU(2)  
Weak  
P
Pull-up  
D
Q
TTL  
Input  
Buffer  
Data Latch  
Data Bus  
WR Port  
WR TRIS  
D
Q
CK  
I/O pin(1)  
CK  
TRIS Latch  
RD TRIS  
RD Port  
D
Q
Q
D
TTL  
Input  
Buffer  
WR TRIS  
RD TRIS  
CK  
EN  
ST  
Buffer  
RB0/INT  
RB3/PGM  
Latch  
Schmitt Trigger  
Buffer  
RD Port  
Q
Q
D
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
EN  
Q1  
Set RBIF  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
D
Four of the PORTB pins, RB7:RB4, have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The mismatchoutputs of RB7:RB4  
are ORed together to generate the RB Port Change  
Interrupt with flag bit RBIF (INTCON<0>).  
RD Port  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB6  
In Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
2002 Microchip Technology Inc.  
DS30221B-page 31  
PIC16F872  
TABLE 4-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
bit1  
bit2  
bit3  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
RB2  
RB3/PGM  
Input/output pin or programming pin in LVP mode.  
Internal software programmable weak pull-up.  
RB4  
bit4  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
RB5  
TTL  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
RB6/PGC  
RB7/PGD  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.  
Internal software programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.  
Internal software programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 4-4:  
Address  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on: Value on  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
RB5 RB4 RB3 RB2 RB1 RB0  
POR,  
BOR  
all other  
RESETS  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
PORTB Data Direction Register  
81h, 181h OPTION_REG RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30221B-page 32  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 4-6:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<4:3>  
4.3  
PORTC and the TRISC Register  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
VDD  
0
D
Q
Q
P
WR  
PORT  
I/O  
1
pin(1)  
CK  
PORTC is multiplexed with several peripheral functions  
(Table 4-5). PORTC pins have Schmitt Trigger input  
buffers.  
When the I2C module is enabled, the PORTC (4:3) pins  
can be configured with normal I2C levels or with SMBus  
levels by using the CKE bit (SSPSTAT<6>).  
Data Latch  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
Vss  
RD  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
the destination should be avoided. The user should  
refer to the corresponding peripheral section for the  
correct TRIS bit settings.  
TRIS  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
Schmitt  
Trigger  
with  
SMBus  
Levels  
EN  
RD  
PORT  
SSPl Input  
0
1
CKE  
SSPSTAT<6>  
FIGURE 4-5:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<2:0>  
RC<7:5>  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port data  
and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
VDD  
P
0
1
D
Q
Q
WR  
PORT  
CK  
Data Latch  
I/O pin(1)  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
RD  
TRIS  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
EN  
RD  
PORT  
Peripheral Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
2002 Microchip Technology Inc.  
DS30221B-page 33  
PIC16F872  
TABLE 4-5:  
PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
bit0  
bit1  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin or Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output.  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/  
PWM output.  
RC3 can also be the synchronous serial clock for both SPI and I2C  
RC3/SCK/SCL  
modes.  
RC4/SDI/SDA  
RC5/SDO  
bit4  
bit5  
ST  
ST  
RC4 can also be the SPI Data In (SPI mode) or Data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output  
(SPI mode).  
RC6  
RC7  
bit6  
bit7  
ST  
ST  
Input/output port pin.  
Input/output port pin.  
Legend: ST = Schmitt Trigger input  
TABLE 4-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
Value on  
all other  
RESETS  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
07h  
87h  
PORTC RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
TRISC PORTC Data Direction Register  
Legend: x= unknown, u= unchanged  
DS30221B-page 34  
2002 Microchip Technology Inc.  
PIC16F872  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In Counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 5.2.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
8-bit timer/counter  
Readable and writable  
8-bit software programmable prescaler  
Internal or external clock select  
Interrupt on overflow from FFh to 00h  
Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler is not readable or writable. Section 5.3 details the  
operation of the prescaler.  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
5.1  
Timer0 Interrupt  
Additional information on the Timer0 module is avail-  
able in the PICmicroMid-Range MCU Family Refer-  
ence Manual (DS33023).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
TMR0IF (INTCON<2>). The interrupt can be masked  
by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF  
must be cleared in software by the Timer0 module  
Interrupt Service Routine before re-enabling this inter-  
rupt. The TMR0 interrupt cannot awaken the processor  
from SLEEP, since the timer is shut-off during SLEEP.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In Timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
CLKOUT (= FOSC/4)  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
Pin  
SYNC  
2
TMR0 reg  
Cycles  
T0SE  
T0CS  
Set Flag Bit TMR0IF  
PSA  
on Overflow  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
2002 Microchip Technology Inc.  
DS30221B-page 35  
PIC16F872  
Timer0 module means that there is no prescaler for the  
Watchdog Timer, and vice-versa. This prescaler is not  
readable or writable (see Figure 5-1).  
5.2  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2TOSC (and  
a small RC delay of 20 ns) and low for at least 2TOSC  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF1, MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer. The prescaler is not  
readable or writable.  
Note: Writing to TMR0, when the prescaler is  
assigned to Timer0, will clear the prescaler  
count, but will not change the prescaler  
assignment.  
5.3  
Prescaler  
There is only one prescaler available, which is mutually  
exclusively shared between the Timer0 module and the  
Watchdog Timer. A prescaler assignment for the  
REGISTER 5-1:  
OPTION_REG REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU  
INTEDG  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
bit 3  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
1= Bit is set  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: To avoid an unintended device RESET, the instruction sequence shown in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023) must be executed when changing the prescaler assignment from  
Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.  
DS30221B-page 36  
2002 Microchip Technology Inc.  
PIC16F872  
TABLE 5-1:  
Address  
REGISTERS ASSOCIATED WITH TIMER0  
Value on: Value on  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1 Bit 0  
POR,  
BOR  
all other  
resets  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
01h,101h TMR0  
Timer0 Module Register  
GIE PEIE TMR0IE INTE RBIE TMR0IF INTF RBIF  
0Bh,8Bh, INTCON  
10Bh,18Bh  
1111 1111 1111 1111  
81h,181h OPTION_REG RBPU INTEDG T0CS T0SE PSA  
PS2  
PS1 PS0  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as 0.  
Shaded cells are not used by Timer0.  
2002 Microchip Technology Inc.  
DS30221B-page 37  
PIC16F872  
NOTES:  
DS30221B-page 38  
2002 Microchip Technology Inc.  
PIC16F872  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
6.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L), which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal RESET input. This  
RESET can be generated by either of the two CCP  
modules (Section 8.0). Register 6-1 shows the Timer1  
control register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored, and these pins read as 0.  
Timer1 can operate in one of two modes:  
As a Timer  
As a Counter  
Additional information on timer modules is available in  
the PICmicroMid-range MCU Family Reference  
Manual (DS33023).  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut off (The oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
TMR1CS: Timer1 Clock Source Select bit  
bit 1  
bit 0  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 39  
PIC16F872  
6.1  
Timer1 Operation in Timer Mode  
6.2  
Timer1 Counter Operation  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
Timer1 may operate in either a Synchronous or an  
Asynchronous mode, depending on the setting of the  
TMR1CS bit.  
When Timer1 is being incremented via an external  
source, increments occur on a rising edge. After Timer1  
is enabled in Counter mode, the module must first have  
a falling edge before the counter begins to increment.  
FIGURE 6-1:  
TIMER1 INCREMENTING EDGE  
T1CKI  
(Default High)  
T1CKI  
(Default Low)  
Note: Arrows indicate counter increments.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple counter.  
6.3  
Timer1 Operation in Synchronized  
Counter Mode  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2, when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when  
bit T1OSCEN is cleared.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut-off. The pres-  
caler, however, will continue to increment.  
FIGURE 6-2:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
(2)  
Oscillator  
RC1/T1OSI/CCP2  
2
Q Clock  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
DS30221B-page 40  
2002 Microchip Technology Inc.  
PIC16F872  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
6.4  
Timer1 Operation in  
Asynchronous Counter Mode  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 6.4.1).  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
In Asynchronous Counter mode, Timer1 cannot be  
used as a time-base for capture or compare opera-  
tions.  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P ± 20 PPM  
STD XTL 200.000 kHz ± 20 PPM  
6.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself, poses certain problems, since  
the timer may overflow between the reads.  
6.6  
Resetting Timer1 using a CCP  
Trigger Output  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
If the CCP1 or CCP2 module is configured in Compare  
mode to generate special event trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
a
Timer1.  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
Reading the 16-bit value requires some care. Exam-  
ples 12-2 and 12-3 in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023) show how to  
read and write Timer1 when it is running in Asynchro-  
nous mode.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
6.5  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator, rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for use with a 32 kHz crystal. Table 6-1 shows the  
capacitor selection for the Timer1 oscillator.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
6.7  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
TMR1H and TMR1L registers are not reset to 00h on a  
POR or any other RESET, except by the CCP1 and  
CCP2 special event triggers.  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other RESETS, the register  
is unaffected.  
6.8  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
2002 Microchip Technology Inc.  
DS30221B-page 41  
PIC16F872  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
r0rr 0000  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
(3)  
(3)  
ADIF  
ADIE  
(3)  
(3)  
(3)  
(3)  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
0000 0000  
r0rr 0000  
0000 0000  
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
DS30221B-page 42  
2002 Microchip Technology Inc.  
PIC16F872  
Register 7-1 shows the Timer2 Control register.  
7.0  
TIMER2 MODULE  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module(s). The TMR2 reg-  
ister is readable and writable, and is cleared on any  
device RESET.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
The input clock (FOSC/4) has a prescale option of 1:1,  
TMR2  
Output(1)  
Reset  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
T2CKPS1:  
T2CKPS0  
4
PR2 reg  
T2OUTPS3:  
T2OUTPS0  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit,  
TMR2IF (PIR1<1>)).  
Note 1: TMR2 register output can be software selected by the  
SSP module as a baud clock.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
TMR2ON: Timer2 On bit  
bit 2  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 43  
PIC16F872  
7.1  
Timer2 Prescaler and Postscaler  
7.2  
Output of TMR2  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
The output of TMR2 (before the postscaler) is fed to the  
SSP module, which optionally uses it to generate shift  
clock.  
a write to the TMR2 register  
a write to the T2CON register  
any device RESET (POR, MCLR Reset, WDT  
Reset or BOR)  
TMR2 is not cleared when T2CON is written.  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
(3)  
(3)  
ADIF  
ADIE  
(3)  
(3)  
(3)  
(3)  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF r0rr 0000 0000 0000  
CCP1IE TMR2IE TMR1IE r0rr 0000 0000 0000  
0000 0000 0000 0000  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
DS30221B-page 44  
2002 Microchip Technology Inc.  
PIC16F872  
Additional information on CCP modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023) and in Application Note (AN594),  
Using the CCP Modules(DS00594).  
8.0  
CAPTURE/COMPARE/PWM  
MODULE  
The Capture/Compare/PWM (CCP) module contains a  
16-bit register, which can operate as a:  
TABLE 8-1:  
CCP MODE - TIMER  
RESOURCES REQUIRED  
16-bit Capture register  
16-bit Compare register  
PWM Master/Slave Duty Cycle register  
CCP Mode  
Capture  
Compare  
PWM  
Timer Resource  
The timer resources used by the module are shown in  
Table 8-1.  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is  
generated by a compare match and will reset Timer1.  
REGISTER 8-1:  
CCP1CON REGISTER (ADDRESS: 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
Unimplemented: Read as '0'  
bit 7-6  
bit 5-4  
CCP1X:CCP1Y: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: CCP1 Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCP module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set, CCP1 pin is unaffected);  
CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 45  
PIC16F872  
8.1.2  
TIMER1 MODE SELECTION  
8.1  
Capture Mode  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as one of the  
following:  
Every falling edge  
Every rising edge  
8.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in operating mode.  
Every 4th rising edge  
Every 16th rising edge  
The type of event is configured by control bits  
CCP1M3:CCP1M0 (CCP1CON<3:0>). When a cap-  
ture is made, the interrupt request flag bit CCP1IF  
(PIR1<2>) is set. The interrupt flag must be cleared in  
software. If another capture occurs before the value in  
register CCPR1 is read, the old captured value is over-  
written by the new value.  
8.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. Any RESET will clear  
the prescaler counter.  
8.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a cap-  
ture condition.  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
RC2/CCP1  
Pin  
Set Flag bit CCP1IF  
(PIR1<2>)  
CLRF  
CCP1CON  
; Turn CCP module off  
Prescaler  
MOVLW  
NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
÷ 1, 4, 16  
CCPR1H  
CCPR1L  
; move value and CCP ON  
MOVWF  
CCP1CON  
; Load CCP1CON with this  
; value  
Capture  
Enable  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
DS30221B-page 46  
2002 Microchip Technology Inc.  
PIC16F872  
8.2.1  
CCP PIN CONFIGURATION  
8.2  
Compare Mode  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the PORTC  
I/O data latch.  
Driven high  
Driven low  
Remains unchanged  
The action on the pin is based on the value of control  
bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
8.2.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
8.2.3  
SOFTWARE INTERRUPT MODE  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>).  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCPIF bit is set, causing  
a CCP interrupt (if enabled).  
Special Event Trigger  
8.2.4  
SPECIAL EVENT TRIGGER  
Set Flag bit CCP1IF  
(PIR1<2>)  
RC2/CCP1  
Pin  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
The special event trigger output of CCP1 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled). This allows the CCPR1 regis-  
ter to effectively be a 16-bit programmable period  
register for Timer1.  
Match  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Note: The special event trigger from the CCP  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
PIR1  
(1)  
(1)  
ADIF  
ADIE  
(1)  
(1)  
(1)  
(1)  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF r0rr 0000 0000 0000  
CCP1IE TMR2IE TMR1IE r0rr 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: These bits are reserved; always maintain clear.  
2002 Microchip Technology Inc.  
DS30221B-page 47  
PIC16F872  
8.3.1  
PWM PERIOD  
8.3  
PWM Mode (PWM)  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation mode, the CCP1 pin pro-  
duces up to a 10-bit resolution PWM output. Since the  
CCP1 pin is multiplexed with the PORTC data latch, the  
TRISC<2> bit must be cleared to make the CCP1 pin  
an output.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
TMR2 is cleared  
Figure 8-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.3.  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 7.1) is  
not used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
8.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
RC2/CCP1  
Q
R
S
(Note 1)  
TMR2  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>)•  
TOSC (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read only register.  
Note 1: The 8-bit timer is concatenated with 2-bit internal Q  
clock, or 2 bits of the prescaler to create 10-bit time-base.  
A PWM output (Figure 8-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitch-free PWM operation.  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 8-4:  
PWM OUTPUT  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the formula:  
Period  
FOSC  
log( )  
FPWM  
Resolution  
bits  
=
Duty Cycle  
log(2)  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS30221B-page 48  
2002 Microchip Technology Inc.  
PIC16F872  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
8.3.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
1. Set the PWM period by writing to the PR2  
register.  
5. Configure the CCP1 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
TABLE 8-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz  
78.12kHz  
156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
5.5  
Maximum Resolution (bits)  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on: Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
PIR1  
(1)  
(1)  
ADIF  
ADIE  
(1)  
(1)  
(1)  
(1)  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE r0rr 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Modules Register  
0000 0000 0000 0000  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: These bits are reserved; always maintain clear.  
2002 Microchip Technology Inc.  
DS30221B-page 49  
PIC16F872  
NOTES:  
DS30221B-page 50  
2002 Microchip Technology Inc.  
PIC16F872  
The MSSP module is controlled by three special func-  
tion registers:  
9.0  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
SSPSTAT  
SSPCON  
SSPCON2  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
The SSPSTAT and SSPCON registers are used in both  
SPI and I2C modes; their individual bits take on differ-  
ent functions depending on the mode selected. The  
SSPCON2 register, on the other hand, is associated  
only with I2C operations. The registers are detailed in  
Registers 9-1 through 9-3 on the following pages.  
Serial Peripheral Interface (SPI)  
Inter-Integrated Circuit (I2C)  
The operation of the module in SPI mode is discussed  
in greater detail in Section 9.1. The operations of the  
module in the the various I2C modes are covered in  
Section 9.2, while special considerations for connect-  
ing the I2C bus are discussed in Section 9.3.  
2002 Microchip Technology Inc.  
DS30221B-page 51  
PIC16F872  
REGISTER 9-1:  
SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
2
In I C Master or Slave mode:  
1= Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for High Speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select bit (Figure 9-2, Figure 9-3 and Figure 9-4)  
SPI mode:  
For CKP = 0  
1= Transmit happens on transition from active clock state to idle clock state  
0= Transmit happens on transition from idle clock state to active clock state  
For CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
In I C Master or Slave mode:  
1= Input levels conform to SMBus spec  
2
0= Input levels conform to I C specs  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next START bit, STOP bit or not ACK bit.  
2
In I C Slave mode:  
1= Read  
0= Write  
2
In I C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress.  
Logical OR of this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in IDLE  
mode.  
2
bit 1  
bit 0  
UA: Update Address bit (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only):  
1= Data Transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data Transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30221B-page 52  
2002 Microchip Technology Inc.  
PIC16F872  
REGISTER 9-2:  
SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS: 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
2
1= A write to SSPBUF was attempted while the I C conditions were not valid  
0= No collision  
Slave mode:  
1= SSPBUF register is written while still transmitting the previous word (must be cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow.  
In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid over-  
flows. In Master mode, the overflow bit is not set since each operation is initiated by writing to  
the SSPBUF register. (Must be cleared in software.)  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "dont care" in  
Transmit mode. (Must be cleared in software.)  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode:  
When enabled, these pins must be properly configured as input or output.  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
When enabled, these pins must be properly configured as input or output.  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= IDLE state for clock is a high level  
0= IDLE state for clock is a low level  
2
In I C slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
2
In I C master mode:  
Unused in this mode  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
2
1000= I C Master mode, clock = FOSC / (4 * (SSPADD+1)  
2
1011= I C Firmware Controlled Master mode (slave idle)  
2
1110= I C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts  
enabled  
2
1111= I C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts  
enabled  
1001, 1010, 1100, 1101= reserved  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 53  
PIC16F872  
REGISTER 9-3:  
SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS: 91h)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (In I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C Master mode only)  
In Master Receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of  
a receive.  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Auto-  
matically cleared by hardware.  
0= Acknowledge sequence IDLE  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C Master mode only).  
1= Enables Receive mode for I2C  
0= Receive IDLE  
PEN: STOP Condition Enable bit (In I2C Master mode only)  
SCK Release Control:  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition IDLE  
bit 1  
bit 0  
RSEN: Repeated START Condition Enabled bit (In I2C Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins. Automatically cleared by  
hardware.  
0= Repeated START condition IDLE  
SEN: START Condition Enabled bit (In I2C Master mode only)  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition IDLE  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the IDLE  
mode, this bit may not be set (no spooling), and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30221B-page 54  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 9-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
9.1  
SPI Mode  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
Serial Data Out (SDO)  
Serial Data In (SDI)  
Serial Clock (SCK)  
SSPBUF reg  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
SSPSR reg  
Shift  
Clock  
SDI  
bit0  
Slave Select (SS)  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
SDO  
Control  
Enable  
SS  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock Polarity (IDLE state of SCK)  
SS  
Edge  
Select  
Data input sample phase  
(middle or end of data output time)  
2
Clock Select  
Clock edge  
(output data on rising/falling edge of SCK)  
SSPM3:SSPM0  
SMP:CKE  
Clock Rate (Master mode only)  
4
TMR2 Output  
2
2
Slave Select mode (Slave mode only)  
Edge  
Select  
Figure 9-4 shows the block diagram of the MSSP mod-  
ule when in SPI mode.  
TOSC  
Prescaler  
4, 16, 64  
SCK  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
isters, and then set bit SSPEN. This configures the  
SDI, SDO, SCK and SS pins as serial port pins. For the  
pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed. That is:  
Data to TX/RX in SSPSR  
Data Direction bit  
9.1.1  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 9-5) is to broad-  
cast data by the software protocol.  
SDI is automatically controlled by the SPI module  
SDO must have TRISC<5> cleared  
SCK (Master mode) must have TRISC<3>  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI  
module is only going to receive, the SDO output could  
be disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a line activity monitor.  
cleared  
SCK (Slave mode) must have TRISC<3> set  
SS must have TRISA<5> set, and  
Register ADCON1 must be set in a way that pin  
RA5 is configured as a digital I/O  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
2002 Microchip Technology Inc.  
DS30221B-page 55  
PIC16F872  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This, then, would give  
waveforms for SPI communication as shown in  
Figure 9-6, Figure 9-8 and Figure 9-9, where the MSb is  
transmitted first. In Master mode, the SPI clock rate (bit  
rate) is user programmable to be one of the following:  
This allows a maximum bit clock frequency (at 20 MHz)  
of 5.0 MHz.  
Figure 9-6 shows the waveforms for Master mode.  
When CKE = 1, the SDO data is valid before there is a  
clock edge on SCK. The change of the input sample is  
shown based on the state of the SMP bit. The time  
when the SSPBUF is loaded with the received data is  
shown.  
FOSC/4 (or TCY)  
FOSC/16 (or 4 TCY)  
FOSC/64 (or 16 TCY)  
Timer2 Output/2  
FIGURE 9-2:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
9.1.2  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Note 1: When the SPI module is in Slave mode  
with  
SS  
pin  
control  
enabled  
(SSPCON<3:0> = 0100), the SPI module  
will reset if the SS pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times, as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with  
CKE = '1', then SS pin control must be  
enabled.  
DS30221B-page 56  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 9-3:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
FIGURE 9-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
SDO  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE TMR0IE INTE RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
13h  
14h  
PIR1  
(1)  
(1)  
ADIF  
ADIE  
(1)  
(1)  
(1)  
(1)  
SSPIF CCP1IF TMR2IF TMR1IF r0rr 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE r0rr 0000 0000 0000  
PIE1  
SSPBUF  
SSPCON  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
SMP CKE D/A R/W UA BF 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
94h  
SSPSTAT  
P
S
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by the SSP in SPI mode.  
Note 1: These bits are reserved; always maintain these bits clear.  
2002 Microchip Technology Inc.  
DS30221B-page 57  
PIC16F872  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Master mode, clock = OSC/4 (SSPADD +1)  
Before selecting any I2C mode, the SCL and SDA pins  
must be programmed to inputs by setting the appropri-  
ate TRIS bits. Selecting an I2C mode by setting the  
SSPEN bit, enables the SCL and SDA pins to be used  
as the clock and data lines in I2C mode. Pull-up resis-  
tors must be provided externally to the SCL and SDA  
pins for the proper operation of the I2C module.  
2
9.2  
MSSP I C Operation  
The MSSP module in I2C mode, fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits  
in hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
Refer to Application Note (AN578), "Use of the SSP  
Module in the I 2C Multi-Master Environment."  
A "glitch" filter is on the SCL and SDA pins when the pin  
is an input. This filter operates in both the 100 kHz and  
400 kHz modes. In the 100 kHz mode, when these pins  
are an output, there is a slew rate control of the pin that  
is independent of device frequency.  
The CKE bit (SSPSTAT<6:7>) sets the levels of the  
SDA and SCL pins in either Master or Slave mode.  
When CKE = 1, the levels will conform to the SMBus  
specification. When CKE = 0, the levels will conform to  
the I2C specification.  
FIGURE 9-5:  
I2C SLAVE MODE BLOCK  
DIAGRAM  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START (S) or STOP (P) bit, specifies if the received  
byte was data or address, if the next byte is the com-  
pletion of 10-bit address, and if this will be a read or  
write data transfer.  
Internal  
Data Bus  
Read  
Write  
SSPBUF reg  
SCL  
SDA  
Shift  
Clock  
SSPBUF is the register to which the transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
SSPSR reg  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD reg  
START and  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
STOP bit Detect  
The SSPADD register holds the slave address. In  
10-bit mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
Two pins are used for data transfer. These are the SCL  
pin, which is the clock, and the SDA pin, which is the  
data. The SDA and SCL pins are automatically config-  
ured when the I2C mode is enabled. The SSP module  
functions are enabled by setting SSP Enable bit  
SSPEN (SSPCON<5>).  
9.2.1  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs. The MSSP module will override the  
input state with the output data when required (slave-  
transmitter).  
The MSSP module has six registers for I2C operation.  
They are the:  
SSP Control Register (SSPCON)  
SSP Control Register2 (SSPCON2)  
SSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
SSP Shift Register (SSPSR) - Not directly  
accessible  
SSP Address Register (SSPADD)  
DS30221B-page 58  
2002 Microchip Technology Inc.  
PIC16F872  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
1. Receive first (high) byte of Address (bits SSPIF,  
BF and UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with the second  
(low) byte of Address (clears bit UA and  
releases the SCL line).  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF and UA are set).  
If the BF bit is set, the SSPSR register value is not  
loaded into the SSPBUF, but bit SSPIF and SSPOV are  
set. Table 9-2 shows what happens when a data trans-  
fer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister, while bit SSPOV is cleared through software.  
5. Update the SSPADD register with the first (high)  
byte of Address. This will clear bit UA and  
release the SCL line.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated START condition.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I2C specification, as well as the requirement of  
the MSSP module, is shown in timing parameter #100  
and parameter #101 of the electrical specifications.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Note: Following the Repeated START condition  
(step 7) in 10-bit mode, the user only  
needs to match the first 7-bit address. The  
user does not update the SSPADD for the  
second half of the address.  
9.2.1.1  
Addressing  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
9.2.1.2  
Slave Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set. This is an error  
condition due to user firmware.  
a) The SSPSR register value is loaded into the  
SSPBUF register on the falling edge of the 8th  
SCL pulse.  
b) The buffer full bit, BF, is set on the falling edge  
of the 8th SCL pulse.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the received byte.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set  
(interrupt is generated if enabled) on the falling  
edge of the 9th SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write,  
so the slave device will receive the second address  
byte. For a 10-bit address the first byte would equal  
1111 0 A9 A8 0, where A9 and A8 are the two  
MSbs of the address. The sequence of events for a  
10-bit address is as follows, with steps 7-9 for slave  
transmitter:  
Note: The SSPBUF will be loaded if the SSPOV  
bit is set and the BF flag is cleared. If a  
read of the SSPBUF was performed, but  
the user did not clear the state of the  
SSPOV bit before the next receive  
occurred, the ACK is not sent and the  
SSPBUF is updated.  
2002 Microchip Technology Inc.  
DS30221B-page 59  
PIC16F872  
TABLE 9-2:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Pulse  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
An SSP interrupt is generated for each data transfer  
byte. The SSPIF flag bit must be cleared in software  
and the SSPSTAT register is used to determine the sta-  
tus of the byte transfer. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
9.2.1.3  
Slave Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and the SCL pin is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register. Then the  
SCL pin should be enabled by setting bit CKP  
(SSPCON<4>). The master must monitor the SCL pin  
prior to asserting another clock pulse. The slave  
devices may be holding off the master by stretching the  
clock. The eight data bits are shifted out on the falling  
edge of the SCL input. This ensures that the SDA sig-  
nal is valid during the SCL high time (Figure 9-7).  
As a slave-transmitter, the ACK pulse from the master  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line is high (Not ACK), then the  
data transfer is complete. When the Not ACK is latched  
by the slave, the slave logic is reset and the slave then  
monitors for another occurrence of the START bit. If the  
SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Then, the SCL pin should be enabled  
by setting the CKP bit.  
FIGURE 9-6:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W=0  
ACK  
Not  
ACK  
Receiving Address  
A7 A6 A5 A4  
Receiving Data  
Receiving Data  
ACK  
SDA  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
9
7
1
2
4
9
5
4
3
6
9
5
6
1
2
3
6
1
2
4
8
5
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full  
ACK is not sent  
DS30221B-page 60  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 9-7:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Transmitting Data Not ACK  
R/W = 1  
ACK  
Receiving Address  
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is written in software  
From SSP Interrupt  
Service Routine  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit),  
the SSPIF flag is set.  
9.2.2  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF, to determine if the address was device spe-  
cific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when GCEN is set while the slave is config-  
ured in 10-bit Address mode, then the second half of  
the address is not necessary, the UA bit will not be set,  
and the slave will begin receiving data after the  
Acknowledge (Figure 9-8).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a START bit detect, 8-bits are shifted  
into SSPSR and the address is compared against  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 9-8:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)  
Address is compared to General Call Address  
after ACK, set interrupt flag  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF  
(SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV  
(SSPCON<6>)  
0’  
1’  
GCEN  
(SSPCON2<7>)  
2002 Microchip Technology Inc.  
DS30221B-page 61  
PIC16F872  
9.2.3  
SLEEP OPERATION  
9.2.4  
EFFECTS OF A RESET  
While in SLEEP mode, the I2C module can receive  
addresses or data. When an address match or com-  
plete byte transfer occurs, wake the processor from  
SLEEP (if the SSP interrupt is enabled).  
A RESET disables the SSP module and terminates the  
current transfer.  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
TMR0IE INTE  
RBIE TMR0IF INTF  
RBIF 0000 000x 0000 000u  
0Ch  
8Ch  
0Dh  
8Dh  
13h  
14h  
91h  
94h  
PIR1  
(1)  
(1)  
ADIF  
ADIE  
(1)  
(1)  
(1)  
(1)  
(1)  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE r0rr 0000 0000 0000  
PIE1  
PIR2  
EEIF  
BCLIF  
(1)  
(1)  
CCP2IF -r-0 0--0 -r-0 0--0  
CCP2IE -r-0 0--r -r-0 0--r  
xxxx xxxx uuuu uuuu  
PIE2  
(1)  
EEIE BCLIE  
SSPBUF  
SSPCON  
SSPCON2  
SSPSTAT  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN  
GCEN ACKSTAT ACKDT ACKEN RCEN  
SMP CKE D/A  
CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
PEN  
R/W  
RSEN  
UA  
SEN 0000 0000 0000 0000  
P
S
BF  
0000 0000 0000 0000  
2
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the SSP in I C mode.  
Note 1: These bits are reserved; always maintain these bits clear.  
DS30221B-page 62  
2002 Microchip Technology Inc.  
PIC16F872  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (an SSP Interrupt will occur if  
enabled):  
9.2.5  
MASTER MODE  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a RESET or when the MSSP module is  
disabled. Control of the I2C bus may be taken when the  
P bit is set, or the bus is IDLE, with both the S and P  
bits clear.  
START condition  
STOP condition  
Data transfer byte transmitted/received  
Acknowledge transmit  
Repeated START  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
2
FIGURE 9-9:  
SSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0,  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit Detect,  
STOP bit Detect  
Write Collision Detect  
Clock Arbitration  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
State Counter for  
End of XMIT/RCV  
The states where arbitration can be lost are:  
9.2.6  
MULTI-MASTER MODE  
Address Transfer  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is IDLE with both the S and P bits clear. When  
the bus is busy, enabling the SSP interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
Data Transfer  
A START Condition  
A Repeated START Condition  
An Acknowledge Condition  
In Multi-Master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
2002 Microchip Technology Inc.  
DS30221B-page 63  
PIC16F872  
I2C MASTER MODE SUPPORT  
will automatically begin counting on a write to the  
SSPBUF. Once the given operation is complete (i.e.,  
transmission of the last data bit is followed by ACK) the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state  
9.2.7  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has six options.  
A typical transmit sequence would go as follows:  
Assert a START condition on SDA and SCL.  
a) The user generates a Start Condition by setting  
the START enable bit (SEN) in SSPCON2.  
Assert a Repeated START condition on SDA and  
SCL.  
b) SSPIF is set. The module will wait the required  
start time before any other operation takes place.  
Write to the SSPBUF register, initiating transmis-  
sion of data/address.  
c) The user loads the SSPBUF with address to  
transmit.  
Generate a STOP condition on SDA and SCL.  
Configure the I2C port to receive data.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
Generate an Acknowledge condition at the end of  
a received byte of data.  
e) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
Note: The MSSP module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
initiate transmission, before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
f) The module generates an interrupt at the end of  
the ninth clock cycle by setting SSPIF.  
g) The user loads the SSPBUF with eight bits of data.  
h) DATA is shifted out the SDA pin until all 8 bits are  
transmitted.  
i) The MSSP module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF bit.  
9.2.7.1  
I2C Master Mode Operation  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
START condition. Since the Repeated START condi-  
tion is also the beginning of the next serial transfer, the  
I2C bus will not be released.  
k) The user generates a STOP condition by setting  
the STOP enable bit PEN in SSPCON2.  
l) Interrupt is generated once the STOP condition  
is complete.  
9.2.8  
BAUD RATE GENERATOR  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic '0'. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
In I2C Master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 9-10). When the BRG is loaded with this value,  
the BRG counts down to 0 and stops until another reload  
has taken place. The BRG count is decremented twice  
per instruction cycle (TCY), on the Q2 and Q4 clock.  
In I2C Master mode, the BRG is reloaded automatically.  
If Clock Arbitration is taking place, for instance, the  
BRG will be reloaded when the SCL pin is sampled  
high (Figure 9-11).  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic '1'. Thus, the first byte transmitted is a 7-bit slave  
address followed by a '1' to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
FIGURE 9-10:  
BAUD RATE GENERATOR  
BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
Reload  
Reload  
SSPM3:SSPM0  
SCL  
The baud rate generator used for SPI mode operation  
is now used to set the SCL clock frequency for either  
100 kHz, 400 kHz or 1 MHz I2C operation. The baud  
rate generator reload value is contained in the lower 7  
bits of the SSPADD register. The baud rate generator  
Control  
FOSC/4  
BRG Down Counter  
CLKOUT  
DS30221B-page 64  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 9-11:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements  
(on Q2 and Q4 cycles)  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place, and BRG starts its count.  
BRG  
Reload  
9.2.9  
I2C MASTER MODE START  
CONDITION TIMING  
Note: If, at the beginning of START condition, the  
SDA and SCL pins are already sampled  
low, or if during the START condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag (BCLIF) is  
set, the START condition is aborted, and  
the I2C module is reset into its IDLE state.  
To initiate a START condition, the user sets the START  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the baud rate generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the START condition,  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware. The baud rate generator is suspended,  
leaving the SDA line held low, and the START condition  
is complete.  
9.2.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a START  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesnt  
occur).  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
FIGURE 9-12:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here  
SDA = 1,  
At completion of START bit,  
hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
TBRG  
SCL  
TBRG  
S
2002 Microchip Technology Inc.  
DS30221B-page 65  
PIC16F872  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode), or eight bits of data (7-bit  
mode).  
9.2.10  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2<1>) is programmed high and the I2C  
module is in the IDLE state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the baud rate generator is loaded with the  
contents of SSPADD<6:0> and begins counting. The  
SDA pin is released (brought high) for one baud rate  
generator count (TBRG). When the baud rate generator  
times out if SDA is sampled high, the SCL pin will be  
de-asserted (brought high). When SCL is sampled  
high, the baud rate generator is reloaded with the con-  
tents of SSPADD<6:0> and begins counting. SDA and  
SCL must be sampled high for one TBRG. This action is  
then followed by assertion of the SDA pin (SDA is low)  
for one TBRG, while SCL is high. Following this, the  
RSEN bit in the SSPCON2 register will be automati-  
cally cleared and the baud rate generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
START condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntilthebaudrategeneratorhastimedout.  
9.2.10.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, then WCOL is set and  
the contents of the buffer are unchanged (the write  
doesnt occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated  
START condition occurs if:  
SDA is sampled low when SCL  
goes from low to high.  
SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 9-13:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
SDA = 1,  
SCL = 1  
occurs here.  
At completion of START bit,  
hardware clear RSEN bit  
and set SSPIF  
SDA = 1,  
SCL(no change).  
TBRG TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated START  
DS30221B-page 66  
2002 Microchip Technology Inc.  
PIC16F872  
9.2.11  
I2C MASTER MODE  
TRANSMISSION  
9.2.11.1  
BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
Transmission of a data byte, a 7-bit address, or either  
half of a 10-bit address, is accomplished by simply writ-  
ing a value to SSPBUF register. This action will set the  
buffer full flag (BF) and allow the baud rate generator to  
begin counting and start the next transmission. Each bit  
of address/data will be shifted out onto the SDA pin  
after the falling edge of SCL is asserted (see data hold  
time spec). SCL is held low for one baud rate gener-  
ator rollover count (TBRG). Data should be valid before  
SCL is released high (see data setup time spec). When  
the SCL pin is released high, it is held that way for  
TBRG. The data on the SDA pin must remain stable for  
that duration and some hold time after the next falling  
edge of SCL. After the eighth bit is shifted out (the fall-  
ing edge of the eighth clock), the BF flag is cleared and  
the master releases SDA, allowing the slave device  
being addressed to respond with an ACK bit during the  
ninth bit time, if an address match occurs or if data was  
received properly. The status of ACK is read into the  
ACKDT on the falling edge of the ninth clock. If the  
master receives an Acknowledge, the Acknowledge  
status bit (ACKSTAT) is cleared. If not, the bit is set.  
After the ninth clock, the SSPIF is set and the master  
clock (baud rate generator) is suspended until the next  
data byte is loaded into the SSPBUF, leaving SCL low  
and SDA unchanged (Figure 9-14).  
9.2.11.2  
WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), then WCOL is set and the contents of the  
buffer are unchanged (the write doesnt occur).  
WCOL must be cleared in software.  
9.2.11.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0), and is set when the slave does Not  
Acknowledge (ACK = 1). A slave sends an Acknowl-  
edge when it has recognized its address (including a  
general call), or when the slave has properly received  
its data.  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL, until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared, and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
2002 Microchip Technology Inc.  
DS30221B-page 67  
PIC16F872  
2
FIGURE 9-14:  
I C MASTER MODE TIMING (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS30221B-page 68  
2002 Microchip Technology Inc.  
PIC16F872  
9.2.12  
I2C MASTER MODE RECEPTION  
9.2.12.1  
BF Status Flag  
In receive operation, BF is set when an address or data  
byte is loaded into SSPBUF from SSPSR. It is cleared  
when SSPBUF is read.  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note: The SSP module must be in an IDLE state  
before the RCEN bit is set, or the RCEN bit  
will be disregarded.  
9.2.12.2  
SSPOV Status Flag  
In receive operation, SSPOV is set when 8 bits are  
received into the SSPSR, and the BF flag is already set  
from a previous reception.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high), and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag is set,  
the SSPIF is set, and the baud rate generator is sus-  
pended from counting, holding SCL low. The SSP is  
now in IDLE state, awaiting the next command. When  
the buffer is read by the CPU, the BF flag is automati-  
cally cleared. The user can then send an Acknowledge  
bit at the end of reception, by setting the Acknowledge  
sequence enable bit, ACKEN (SSPCON2<4>).  
9.2.12.3  
WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), then WCOL is set and the contents of the buffer  
are unchanged (the write doesnt occur).  
2002 Microchip Technology Inc.  
DS30221B-page 69  
PIC16F872  
2
FIGURE 9-15:  
I C MASTER MODE TIMING (RECEPTION, 7-BIT ADDRESS)  
DS30221B-page 70  
2002 Microchip Technology Inc.  
PIC16F872  
sampled high (clock arbitration), the baud rate genera-  
tor counts for TBRG. The SCL pin is then pulled low. Fol-  
lowing this, the ACKEN bit is automatically cleared, the  
baud rate generator is turned off, and the SSP module  
then goes into IDLE mode (Figure 9-16).  
9.2.13  
ACKNOWLEDGE SEQUENCE  
TIMING  
An Acknowledge sequence is enabled by setting the  
Acknowledge sequence enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The baud rate gen-  
erator then counts for one rollover period (TBRG), and  
the SCL pin is de-asserted high). When the SCL pin is  
9.2.13.1  
WCOL Status Flag  
If the user writes the SSPBUF when an acknowledge  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesnt  
occur).  
FIGURE 9-16:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here.  
Write to SSPCON2,  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
Whenever the firmware decides to take control of the  
bus, it will first determine if the bus is busy by checking  
the S and P bits in the SSPSTAT register. If the bus is  
busy, then the CPU can be interrupted (notified) when  
a STOP bit is detected (i.e., bus is free).  
9.2.14  
STOP CONDITION TIMING  
A STOP bit is asserted on the SDA pin at the end of a  
receive/transmit, by setting the Stop Sequence Enable  
bit PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is sam-  
pled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high, and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be de-asserted. When the SDA pin is sampled high  
while SCL is high, the P bit (SSPSTAT<4>) is set. A  
TBRG later, the PEN bit is cleared and the SSPIF bit is  
set (Figure 9-17).  
9.2.14.1  
WCOL Status Flag  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then WCOL is set and the contents of the  
buffer are unchanged (the write doesnt occur).  
2002 Microchip Technology Inc.  
DS30221B-page 71  
PIC16F872  
FIGURE 9-17:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup STOP condition.  
Note: TBRG = one baud rate generator period.  
9.2.15  
CLOCK ARBITRATION  
9.2.16  
SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit, or Repeated START/STOP condi-  
tion, de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count, in the event that the clock  
is held low by an external device (Figure 9-18).  
While in SLEEP mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from SLEEP (if the SSP interrupt is enabled).  
9.2.17  
EFFECTS OF A RESET  
A RESET disables the SSP module and terminates the  
current transfer.  
FIGURE 9-18:  
CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
release SCL.  
If SCL = 1, load BRG with  
SSPADD<6:0> and start count  
to measure high time interval.  
BRG overflow occurs,  
release SCL. Slave device holds SCL low.  
SCL = 1, BRG starts counting  
clock high interval  
SCL  
SDA  
SCL line sampled once every machine cycle (TOSC 4).  
Hold off BRG until SCL is sampled high.  
TBRG  
TBRG  
TBRG  
DS30221B-page 72  
2002 Microchip Technology Inc.  
PIC16F872  
If a START, Repeated START, STOP or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
9.2.18  
MULTI -MASTER  
COMMUNICATION,  
BUS COLLISION, AND  
BUS ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a 1on SDA, by letting SDA float high and  
another master asserts a 0. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a 1and the data sampled on the SDA pin = 0,  
a bus collision has taken place. The master will set the  
Bus Collision Interrupt Flag, BCLIF and reset the I2C  
port to its IDLE state. (Figure 9-19).  
The master will continue to monitor the SDA and SCL  
pins, and if a STOP condition occurs, the SSPIF bit will  
be set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is IDLE and the S and P bits are  
cleared.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision Interrupt Service Routine, and if the  
I2C bus is free, the user can resume communication by  
asserting a START condition.  
FIGURE 9-19:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesnt match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt  
BCLIF  
2002 Microchip Technology Inc.  
DS30221B-page 73  
PIC16F872  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 9-22). If, however, a '1' is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0. During this time, if the SCL pins are  
sampled as '0', a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
9.2.18.1  
Bus Collision During a START  
Condition  
During a START condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 9-20).  
b) SCL is sampled low before SDA is asserted low.  
(Figure 9-21).  
During a START condition, both the SDA and the SCL  
pins are monitored. If either the SDA pin or the SCL pin  
is already low, then these events all occur:  
Note: The reason that bus collision is not a factor  
during a START condition, is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
START or STOP conditions.  
the START condition is aborted,  
and the BCLIF flag is set  
and the SSP module is reset to its IDLE state  
(Figure 9-20).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data '1' during the START condition.  
FIGURE 9-20:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable START  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into IDLE state.  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS30221B-page 74  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 9-21:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0 before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0 before BRG time-out,  
Bus collision occurs. Set BCLIF.  
BCLIF  
Interrupts cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 9-22:  
BRG RESET DUE TO SDA COLLISION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
s
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software.  
SDA = 0, SCL = 1  
Set SSPIF  
2002 Microchip Technology Inc.  
DS30221B-page 75  
PIC16F872  
SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high to low before the BRG  
times out, no bus collision occurs, because no two  
masters can assert SDA at exactly the same time.  
9.2.18.2  
Bus Collision During a Repeated  
START Condition  
During a Repeated START condition, a bus collision  
occurs if:  
If, however, SCL goes from high to low before the BRG  
times out and SDA has not already been asserted, a  
bus collision occurs. In this case, another master is  
attempting to transmit a data1during the Repeated  
START condition.  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data 1.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low, the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is com-  
plete (Figure 9-23).  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled. If  
SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data0). If, however,  
FIGURE 9-23:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
0’  
0’  
S
0’  
SSPIF  
FIGURE 9-24:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
0’  
0’  
0’  
S
SSPIF  
DS30221B-page 76  
2002 Microchip Technology Inc.  
PIC16F872  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data 0. If the SCL pin is sampled low before  
SDA is allowed to float high, a bus collision occurs. This  
is a case of another master attempting to drive a data  
0(Figure 9-25).  
9.2.18.3  
Bus Collision During a STOP  
Condition  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 9-25:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 9-26:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2002 Microchip Technology Inc.  
DS30221B-page 77  
PIC16F872  
2
VOL max = 0.4V at 3 mA, Rp min = (5.5-0.4)/0.003 =  
1.7 kΩ. VDD, as a function of Rp, is shown in  
Figure 9-27. The desired noise margin of 0.1 VDD for  
the low level limits the maximum value of Rs. Series  
resistors are optional and used to improve ESD  
susceptibility.  
9.3  
Connection Considerations for I C  
Bus  
For standard mode I2C bus devices, the values of  
resistors Rp and Rs in Figure 9-27 depend on the fol-  
lowing parameters:  
Supply voltage  
The bus capacitance is the total capacitance of wire,  
connections, and pins. This capacitance limits the max-  
imum value of Rp, due to the specified rise time  
(Figure 9-27).  
Bus capacitance  
Number of connected devices  
(input current + leakage current).  
The SMP bit is the slew rate control enabled bit. This bit  
is in the SSPSTAT register, and controls the slew rate  
of the I/O pins when in I2C mode (master or slave).  
The supply voltage limits the minimum value of resistor  
Rp, due to the specified minimum sink current of 3 mA  
at VOL max = 0.4V, for the specified output stages. For  
example, with a supply voltage of VDD = 5V+10% and  
FIGURE 9-27:  
SAMPLE DEVICE CONFIGURATION FOR I2C BUS  
VDD + 10%  
DEVICE  
Rp  
Rp  
Rs  
Rs  
SDA  
SCL  
C =10 - 400 pF  
b
2
Note: I C devices with input levels related to VDD must have one common supply line to which the pull-up resistor is  
also connected.  
DS30221B-page 78  
2002 Microchip Technology Inc.  
PIC16F872  
The A/D module has four registers. These registers  
are:  
10.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
A/D Result High Register (ADRESH)  
A/D Result Low Register (ADRESL)  
A/D Control Register0 (ADCON0)  
A/D Control Register1 (ADCON1)  
The Analog-to-Digital (A/D) Converter module has five  
input channels. The analog input charges a sample and  
hold capacitor. The output of the sample and hold  
capacitor is the input into the converter. The converter  
then generates a digital result of this analog level via  
successive approximation. The A/D conversion of the  
analog input signal results in a corresponding 10-bit  
digital number. The A/D module has high and low volt-  
age reference input that is software selectable to some  
combination of VDD, VSS, RA2 or RA3.  
The ADCON0 register, shown in Register 10-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 10-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be the voltage refer-  
ence), or as digital I/O.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D clock must be derived from the  
A/Ds internal RC oscillator.  
Additional information on using the A/D module can be  
found in the PICmicroMid-Range MCU Family Ref-  
erence Manual (DS33023).  
REGISTER 10-1: ADCON0 REGISTER (ADDRESS: 1Fh)  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6  
bit 5-3  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal A/D module RC oscillator)  
CHS2:CHS0: Analog Channel Select bits  
000= Channel 0 (RA0/AN0)  
001= Channel 1 (RA1/AN1)  
010= Channel 2 (RA2/AN2)  
011= Channel 3 (RA3/AN3)  
100= Channel 4 (RA5/AN4)  
bit 2  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D  
conversion is complete)  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30221B-page 79  
PIC16F872  
REGISTER 10-2: ADCON1 REGISTER (ADDRESS: 9Fh)  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADFM  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified. Six Most Significant bits of ADRESH are read as 0.  
0= Left justified. Six Least Significant bits of ADRESL are read as 0.  
bit 6-4  
bit 3-0  
Unimplemented: Read as '0'  
PCFG3:PCFG0: A/D Port Configuration Control bits:  
PCFG3:  
PCFG0  
AN4  
RA5  
AN3  
RA3  
AN2  
RA2  
AN1  
RA1  
AN0  
RA0  
CHAN/  
Refs  
VREF+  
VREF-  
(1)  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
RA3  
RA3  
RA3  
VDD  
RA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RA2  
VSS  
VSS  
RA2  
RA2  
RA2  
VSS  
RA2  
8/0  
7/1  
5/0  
4/1  
3/0  
2/1  
0/0  
6/2  
6/0  
5/1  
4/2  
3/2  
2/2  
1/0  
1/2  
VREF+  
A
A
VREF+  
A
A
D
VREF+  
D
D
D
VREF+  
A
VREF-  
A
VREF+  
VREF+  
VREF+  
VREF+  
D
A
VREF-  
VREF-  
VREF-  
D
VREF+  
VREF-  
A = Analog input  
D = Digital I/O  
Note 1: This column indicates the number of analog channels available as A/D inputs and  
the number of analog channels used as voltage reference inputs.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30221B-page 80  
2002 Microchip Technology Inc.  
PIC16F872  
The ADRESH:ADRESL registers contain the 10-bit  
result of the A/D conversion. When the A/D conversion  
is complete, the result is loaded into this A/D result reg-  
ister pair, the GO/DONE bit (ADCON0<2>) is cleared  
and the A/D interrupt flag bit ADIF is set. The block dia-  
gram of the A/D module is shown in Figure 10-1.  
2. Configure A/D interrupt (if desired):  
Clear ADIF bit  
Set ADIE bit  
Set PEIE bit  
Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
Polling for the GO/DONE bit to be cleared  
To determine sample time, see Section 10.1. After this  
acquisition time has elapsed, the A/D conversion can  
be started.  
(with interrupts enabled); OR  
Waiting for the A/D interrupt  
6. Read  
A/D  
Result  
register  
pair  
These steps should be followed for doing an A/D  
conversion:  
(ADRESH:ADRESL), clear bit ADIF if required.  
7. For the next conversion, go to step 1 or step 2,  
as required. The A/D conversion time per bit is  
defined as TAD.  
1. Configure the A/D module:  
Configure analog pins/voltage reference and  
digital I/O (ADCON1)  
Select A/D input channel (ADCON0)  
Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
FIGURE 10-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
100  
RA5/AN4  
011  
RA3/AN3/VREF+  
VAIN  
010  
RA2/AN2/VREF-  
(Input Voltage)  
001  
RA1/AN1  
000  
RA0/AN0  
VDD  
A/D  
Converter  
VREF+  
(Reference  
Voltage)  
PCFG3:PCFG0  
VREF-  
(Reference  
Voltage)  
VSS  
PCFG3:PCFG0  
2002 Microchip Technology Inc.  
DS30221B-page 81  
PIC16F872  
decreased. After the analog input channel is selected  
(changed), this acquisition must be done before the  
conversion can be started.  
10.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 10-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), Figure 10-2. The maximum recommended  
impedance for analog sources is 10 k. As the  
impedance is decreased, the acquisition time may be  
Equation 10-1 may be used to calculate the minimum  
acquisition time. This equation assumes that 1/2 LSb  
error is used (1024 steps for the A/D). The 1/2 LSb  
error is the maximum error allowed for the A/D to meet  
its specified resolution.  
To calculate the minimum acquisition time, TACQ, see  
the PICmicroMid-Range Reference Manual  
(DS33023).  
EQUATION 10-1: ACQUISITION TIME  
TACQ  
= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2 µs + TC + [(Temperature -25°C)(0.05 µs/°C)]  
TC  
= CHOLD (RIC + RSS + RS) In(1/2047) - 120 pF (1 k+ 7 k+ 10 k) In(0.0004885)  
= 16.47 µs  
TACQ  
= 2 µs + 16.47 µs + [(50°C -25°C)(0.05 µs/°C)  
= 19.72 µs  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
FIGURE 10-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CHOLD  
= DAC capacitance  
= 120 pF  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I LEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
= interconnect resistance  
= sampling switch  
2V  
RIC  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 1011  
Sampling Switch  
(k)  
DS30221B-page 82  
2002 Microchip Technology Inc.  
PIC16F872  
10.2 Selecting the A/D Conversion  
Clock  
10.3 Configuring Analog Port Pins  
The ADCON1, and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires a minimum 12TAD per 10-bit  
conversion. The source of the A/D conversion clock is  
software selected. The four possible options for TAD  
are:  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
2TOSC  
8TOSC  
Note 1: When reading the port register, any pin  
configured as an analog input channel will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
32TOSC  
Internal A/D module RC oscillator (2-6 µs)  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 10-1shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the device  
specifications.  
TABLE 10-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS1:ADCS0  
2TOSC  
8TOSC  
00  
01  
10  
11  
1.25 MHz  
5 MHz  
32TOSC  
RC(1, 2, 3)  
20 MHz  
(Note 1)  
Note 1: The RC source has a typical TAD time of 4 µs, but can vary between 2-6 µs.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recom-  
mended for SLEEP operation.  
3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 14.1 and 14.2).  
2002 Microchip Technology Inc.  
DS30221B-page 83  
PIC16F872  
In Figure 10-3, after the GO bit is set, the first time seg-  
ment has a minimum of TCY and a maximum of TAD.  
10.4 A/D Conversions  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D result register  
pair will NOT be updated with the partially completed  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
A/D  
conversion  
sample.  
That  
is,  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers). After  
the A/D conversion is aborted, acquisition on the  
selected channel is automatically started. The  
GO/DONE bit can then be set to start the conversion.  
FIGURE 10-3:  
A/D CONVERSION TAD CYCLES  
TCY to TAD TAD1 TAD2 TAD3  
TAD5 TAD6  
b6 b5  
T
AD  
7
T
AD  
8
T
AD  
9
TAD10 TAD11  
b1 b0  
TAD4  
b9  
b8  
b7  
b4  
b3  
b2  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
ADRES is loaded  
GO bit is cleared  
ADIF bit is set  
Holding capacitor is connected to analog input  
Format Select bit (ADFM) controls this justification.  
Figure 10-4 shows the operation of the A/D result justi-  
fication. The extra bits are loaded with 0s. When an  
A/D result will not overwrite these locations (A/D  
disable), these registers may be used as two general  
purpose 8-bit registers.  
10.4.1  
A/D RESULT REGISTERS  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16-bits wide.  
The A/D module gives the flexibility to left or right justify  
the 10-bit result in the 16-bit result register. The A/D  
FIGURE 10-4:  
A/D RESULT JUSTIFICATION  
10-Bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-bit Result  
10-bit Result  
Left Justified  
Right Justified  
DS30221B-page 84  
2002 Microchip Technology Inc.  
PIC16F872  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
10.5 A/D Operation During SLEEP  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To allow the con-  
version to occur during SLEEP, ensure the  
SLEEPinstruction immediately follows the  
instruction that sets the GO/DONE bit.  
10.6 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off, and  
any conversion is aborted. All A/D input pins are con-  
figured as analog inputs.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
The value that is in the ADRESH:ADRESL registers is  
not modified for  
a
Power-on Reset. The  
ADRESH:ADRESL registers will contain unknown data  
after a Power-on Reset.  
TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D  
POR,  
BOR  
MCLR,  
WDT  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
1Eh  
9Eh  
1Fh  
9Fh  
85h  
05h  
PIR1  
PIE1  
(1)  
(1)  
ADIF  
ADIE  
(1)  
(1)  
(1)  
(1)  
SSPIF  
CCP1IF TMR2IF TMR1IF r0rr 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE r0rr 0000 0000 0000  
xxxx xxxx uuuu uuuu  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
ADCON0 ADCS1 ADCS0 CHS2  
xxxx xxxx uuuu uuuu  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
ADCON1 ADFM  
PCFG3 PCFG2 PCFG1 PCFG0 --0- 0000 --0- 0000  
TRISA  
PORTA Data Direction Register  
--11 1111 --11 1111  
--0x 0000 --0u 0000  
PORTA  
PORTA Data Latch when written: PORTA pins when read  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: These bits are reserved; always maintain clear.  
2002 Microchip Technology Inc.  
DS30221B-page 85  
PIC16F872  
NOTES:  
DS30221B-page 86  
2002 Microchip Technology Inc.  
PIC16F872  
11.1 Configuration Bits  
11.0 SPECIAL FEATURES OF THE  
CPU  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. The erased, or unprogrammed,  
value of the configuration word is 3FFFh. These bits  
are mapped in program memory location 2007h.  
The PIC16F872 microcontroller has a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code protec-  
tion. These are:  
It is important to note that address 2007h is beyond the  
user program memory space, which can be accessed  
only during programming.  
Oscillator Selection  
RESET  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
Interrupts  
Watchdog Timer (WDT)  
SLEEP  
Code Protection  
ID Locations  
In-Circuit Serial Programming  
Low Voltage In-Circuit Serial Programming  
In-Circuit Debugger  
The microcontrollers have a Watchdog Timer, which  
can be shut-off only through configuration bits. It runs  
off its own RC oscillator for added reliability.  
There are two timers that offer necessary delays on  
power-up. One is the Oscillator Start-up Timer (OST),  
intended to keep the chip in RESET until the crystal  
oscillator is stable. The other is the Power-up Timer  
(PWRT), which provides a fixed delay of 72 ms (nomi-  
nal) on power-up only. It is designed to keep the part in  
RESET while the power supply stabilizes. With these  
two timers on-chip, most applications need no external  
RESET circuitry.  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external RESET, Watchdog Timer Wake-up, or  
through an interrupt.  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost, while the LP crystal option  
saves power. A set of configuration bits is used to  
select various options.  
Additional information on special features is available  
in the PICmicroMid-Range Reference Manual,  
(DS33023).  
2002 Microchip Technology Inc.  
DS30221B-page 87  
PIC16F872  
REGISTER 11-1: CONFIGURATION WORD (ADDRESS: 2007h)(1)  
R/P-1 R/P-1 R/P-1  
U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1  
CP1  
CP0 DEBUG  
WRT CPD LVP BODEN CP1  
CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
bit13  
bit 13-12  
bit 5-4  
CP1:CP0: FLASH Program Memory Code Protection bits(2)  
11= Code protection off  
10= Not supported  
01= Not supported  
00= All memory code protected  
bit 11  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger  
bit 10  
bit 9  
Unimplemented: Read as 1’  
WRT: FLASH Program Memory Write Enable bit  
1= Unprotected program memory may be written to by EECON control  
0= Unprotected program memory may not be written to by EECON control  
bit 8  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1-0  
CPD: Data EEPROM Memory Code Protection bit  
1= Code protection off  
0= Data EEPROM memory code protected  
LVP: Low Voltage In-Circuit Serial Programming Enable bit  
1= RB3/PGM pin has PGM function, low voltage programming enabled  
0= RB3 is digital I/O, HV on MCLR must be used for programming  
BODEN: Brown-out Reset Enable bit(3)  
1= BOR enabled  
0= BOR disabled  
PWRTE: Power-up Timer Enable bit(3)  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection  
scheme listed.  
3: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of  
the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset  
is enabled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as 0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS30221B-page 88  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 11-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC  
11.2 Oscillator Configurations  
11.2.1 OSCILLATOR TYPES  
CONFIGURATION)  
The PIC16F872 can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
Clock from  
Ext. System  
LP  
XT  
HS  
RC  
Low Power Crystal  
PIC16F87X  
OSC2  
Crystal/Resonator  
Open  
High Speed Crystal/Resonator  
Resistor/Capacitor  
11.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 11-1). The  
PIC16F872 oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 11-2).  
TABLE 11-1: CERAMIC RESONATORS  
Ranges Tested:  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF 68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
FIGURE 11-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
These values are for design guidance only.  
See notes following Table 11-2.  
Resonators Used:  
OSC CONFIGURATION)  
455 kHz Panasonic EFO-A455K04B  
0.3%  
(1)  
C1  
OSC1  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.5%  
0.5%  
0.5%  
0.5%  
To  
Internal  
Logic  
XTAL  
(3)  
RF  
OSC2  
16.0 MHz Murata Erie CSA16.00MX  
SLEEP  
PIC16F87X  
(2)  
RS  
All resonators used did not have built-in capacitors.  
(1)  
C2  
Note 1: See Table 11-1 and Table 11-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
2002 Microchip Technology Inc.  
DS30221B-page 89  
PIC16F872  
TABLE 11-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
11.2.3  
RC OSCILLATOR  
For timing insensitive applications, the RCdevice  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 11-3 shows how the R/C combina-  
tion is connected to the PIC16F872.  
Cap.  
Range  
C2  
Crystal  
Freq  
Cap. Range  
C1  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
HS  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
FIGURE 11-3:  
RC OSCILLATOR MODE  
These values are for design guidance only.  
See notes following this table.  
VDD  
Crystals Used  
REXT  
Internal  
OSC1  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
Clock  
CEXT  
VSS  
PIC16F87X  
ECS ECS-40-20-1  
OSC2/CLKOUT  
EPSON CA-301 8.000M-C ± 30 PPM  
FOSC/4  
Recommended values:  
20 MHz EPSON CA-301 20.000M-C ± 30 PPM  
3 kΩ ≤ REXT 100 kΩ  
CEXT > 20pF  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-  
up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents.  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
4: When migrating from other PICmicro®  
devices, oscillator performance should be  
verified.  
DS30221B-page 90  
2002 Microchip Technology Inc.  
PIC16F872  
SLEEP, and Brown-out Reset (BOR). They are not  
affected by a WDT Wake-up, which is viewed as the  
resumption of normal operation. The TO and PD bits  
are set or cleared differently in different RESET situa-  
tions, as indicated in Table 11-4. These bits are used in  
software to determine the nature of the RESET. See  
Table 11-6 for a full description of RESET states of all  
registers.  
11.3 Reset  
The PIC16F872 differentiates between various kinds of  
RESET:  
Power-on Reset (POR)  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset (during normal operation)  
WDT Wake-up (during SLEEP)  
Brown-out Reset (BOR)  
A simplified block diagram of the On-Chip Reset circuit  
is shown in Figure 11-4.  
These devices have a MCLR noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on POR and unchanged  
in any other RESET. Most other registers are reset to a  
RESET stateon Power-on Reset (POR), on the  
MCLR and WDT Reset, on MCLR Reset during  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 11-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BODEN  
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
R
Q
OSC1  
(1)  
On-Chip  
RC OSC  
PWRT  
10-bit Ripple Counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2002 Microchip Technology Inc.  
DS30221B-page 91  
PIC16F872  
11.4 Power-on Reset (POR)  
11.7 Brown-out Reset (BOR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V - 1.7V). To  
take advantage of the POR, tie the MCLR pin directly  
(or through a resistor) to VDD. This will eliminate exter-  
nal RC components usually needed to create a Power-  
on Reset. A maximum rise time for VDD is specified.  
See Electrical Specifications for details.  
The configuration bit, BODEN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter #D005, about 4V) for longer than TBOR  
(parameter #35, about 100 µS), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a RESET may not occur.  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer then keeps the device in RESET for  
TPWRT (parameter #33, about 72 mS). If VDD should fall  
below VBOR during TPWRT, the Brown-out Reset pro-  
cess will restart when VDD rises above VBOR with the  
Power-up Timer Reset. The Power-up Timer is always  
enabled when the Brown-out Reset circuit is enabled,  
regardless of the state of the PWRT configuration bit.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature,...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. Brown-out Reset may be used to meet the  
start-up conditions. For additional information, refer to  
Application Note (AN007), Power-up Trouble  
Shooting, (DS00007).  
11.8 Time-out Sequence  
11.5 Power-up Timer (PWRT)  
On power-up, the time-out sequence is as follows: the  
PWRT delay starts (if enabled) when a POR Reset  
occurs. Then, OST starts counting 1024 oscillator  
cycles when PWRT ends (LP, XT, HS). When the OST  
ends, the device comes out of RESET.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in RESET as long as the PWRT is active.  
The PWRTs time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/dis-  
able the PWRT.  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution imme-  
diately. This is useful for testing purposes or to synchro-  
nize more than one PIC16F872 device operating in  
parallel.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
Table 11-5 shows the RESET conditions for the  
STATUS, PCON and PC registers, while Table 11-6  
shows the RESET conditions for all the registers.  
11.6 Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a delay of  
1024 oscillator cycles (from OSC1 input) after the  
PWRT delay is over (if PWRT is enabled). This helps to  
ensure that the crystal oscillator or resonator has  
started and stabilized.  
11.9 Power Control/Status Register  
(PCON)  
The Power Control/Status Register, PCON, has two bits.  
Bit 0 is the Brown-out Reset Status bit (BOR). Bit BOR  
is unknown on a Power-on Reset. It must then be set  
by the user and checked on subsequent RESETS to  
see if bit BOR cleared, indicating a BOR occurred.  
When the Brown-out Reset is disabled, the state of the  
BOR bit is unpredictable and is, therefore, not valid at  
any time.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
Bit 1 is the Power-on Reset Status bit (POR). It is  
cleared on a Power-on Reset and unaffected other-  
wise. The user must set this bit following a Power-on  
Reset.  
TABLE 11-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
DS30221B-page 92  
2002 Microchip Technology Inc.  
PIC16F872  
TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0’  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
uuuu uuuu  
PC + 1(2)  
0000h  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
---0 0000  
0000 000x  
r0rr 0000  
-r-0 0--r  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
---0 0000  
0000 000u  
r0rr 0000  
-r-0 0--r  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu(1)  
rurr uuuu(1)  
-r-u u--r(1)  
PORTA  
PORTB  
PORTC  
PCLATH  
INTCON  
PIR1  
PIR2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain clear  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 11-5 for RESET value for specific condition.  
2002 Microchip Technology Inc.  
DS30221B-page 93  
PIC16F872  
TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
TMR1L  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
r0rr 0000  
-r-0 0--r  
---- --qq  
0000 0000  
1111 1111  
0000 0000  
--00 0000  
xxxx xxxx  
0--- 0000  
0--- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
x--- x000  
---- ----  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
r0rr 0000  
-r-0 0--r  
---- --uu  
0000 0000  
1111 1111  
0000 0000  
--00 0000  
uuuu uuuu  
0--- 0000  
0--- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- u000  
---- ----  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
rurr uuuu  
-r-u u--r  
---- --uu  
uuuu uuuu  
1111 1111  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
u--- uuuu  
u--- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
---- ----  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
PIE1  
PIE2  
PCON  
SSPCON2  
PR2  
SSPADD  
SSPSTAT  
ADRESL  
ADCON1  
EEDATA  
EEADR  
EEDATH  
EEADRH  
EECON1  
EECON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain clear  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 11-5 for RESET value for specific condition.  
DS30221B-page 94  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 11-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 11-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2002 Microchip Technology Inc.  
DS30221B-page 95  
PIC16F872  
FIGURE 11-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 11-8:  
SLOW RISETIME (MCLR TIED TO VDD VIA RC NETWORK)  
5V  
1V  
VDD  
MCLR  
0V  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30221B-page 96  
2002 Microchip Technology Inc.  
PIC16F872  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
11.10 Interrupts  
The PIC16F872 has 10 sources of interrupt. The inter-  
rupt control register (INTCON) records individual inter-  
rupt requests in flag bits. It also has individual and  
global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers, PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers, PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function  
register, INTCON.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupts flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two-cycle instructions. Individual  
interrupt flag bits are set, regardless of the status of  
their corresponding mask bit, PEIE bit, or GIE bit  
The return from interruptinstruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 11-9:  
INTERRUPT LOGIC  
EEIF  
EEIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
TMR0IF  
TMR0IE  
INTF  
INTE  
SSPIF  
SSPIE  
Interrupt to CPU  
RBIF  
RBIE  
CCP1IF  
CCP1IE  
PEIE  
GIE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
BCLIF  
BCLIE  
2002 Microchip Technology Inc.  
DS30221B-page 97  
PIC16F872  
11.10.1 INT INTERRUPT  
11.10.3 PORTB INTCON CHANGE  
External interrupt on the RB0/INT pin is edge triggered,  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT inter-  
rupt can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit GIE, decides whether or not the  
processor branches to the interrupt vector following  
wake-up. See Section 11.13 for details on SLEEP  
mode.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>), see  
Section 4.2.  
11.11 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, (i.e., W register and STATUS  
register). This will have to be implemented in software.  
Since the upper 16 bytes of each bank are common in  
PIC16F872 devices, temporary holding registers,  
W_TEMP, STATUS_TEMP and PCLATH_TEMP,  
should be placed in here. These 16 locations dont  
require banking and therefore, make it easier for con-  
text save and restore. The same code shown in  
Example 11-1 can be used.  
11.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit TMR0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit  
TMR0IE (INTCON<5>), see Section 5.0.  
EXAMPLE 11-1:  
SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
:
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
:(ISR)  
:
;(Insert user code here)  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30221B-page 98  
2002 Microchip Technology Inc.  
PIC16F872  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION_REG register.  
11.12 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKI pin. That means that the WDT will run,  
even if the clock on the OSC1/CLKI and OSC2/CLKO  
pins of the device has been stopped, for example, by  
execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT, and prevent it from  
timing out and generating  
RESET condition.  
a device  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS regis-  
ter will be cleared upon a Watchdog Timer time-out.  
2: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but  
the prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 11.1).  
FIGURE 11-10:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-1)  
0
Postscaler  
M
1
U
WDT Timer  
X
8
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 5-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note:  
PSA and PS2:PS0 are bits in the OPTION_REG register.  
TABLE 11-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
BODEN(1)  
INTEDG  
CP1  
CP0  
PWRTE(1)  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
81h,181h OPTION_REG RBPU  
T0CS  
T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 11-1 for operation of these bits.  
2002 Microchip Technology Inc.  
DS30221B-page 99  
PIC16F872  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
11.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should also be considered.  
11.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
11.13.1 WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
1. External RESET input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or  
Peripheral Interrupt.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a wake-up. The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared if a WDT time-out occurred and caused  
wake-up.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. CCP Capture mode interrupt.  
4. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
5. SSP (START/STOP) bit detect interrupt.  
6. SSP transmit or receive in Slave mode  
(SPI/I2C).  
7. USART RX or TX (Synchronous Slave mode).  
8. A/D conversion (when A/D clock source is RC).  
9. EEPROM write operation completion.  
DS30221B-page 100  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 11-11:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
CLKOUT(4)  
TOST  
INT pin  
INTF Flag  
Interrupt Latency  
(INTCON<1>)  
(Note 2)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC osc mode.  
3: GIE = 1assumed. In this case, after wake- up, the processor jumps to the interrupt routine.  
If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
11.14 In-Circuit Debugger  
11.15 Program Verification/Code  
Protection  
When the DEBUG bit in the configuration word is  
programmed to a 0, the In-Circuit Debugger function-  
ality is enabled. This function allows simple debugging  
functions when used with MPLAB® IDE. When the  
microcontroller has this feature enabled, some of the  
resources are not available for general use. Table 11-8  
shows which features are consumed by the back-  
ground debugger.  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
11.16 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations, where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 Least Significant bits of the ID  
location are used.  
TABLE 11-8: DEBUGGER RESOURCES  
I/O pins  
RB6, RB7  
1 level  
Stack  
Program Memory  
Address 0000h must be NOP  
Last 100h words  
Data Memory  
0x070 (0x0F0, 0x170, 0x1F0)  
0x1EB - 0x1EF  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies.  
2002 Microchip Technology Inc.  
DS30221B-page 101  
PIC16F872  
If Low Voltage Programming mode is not used, the LVP  
bit can be programmed to a '0' and RB3/PGM becomes  
a digital I/O pin. However, the LVP bit may only be pro-  
grammed when programming is entered with VIHH on  
MCLR. The LVP bit can only be charged when using  
high voltage on MCLR.  
11.17 In-Circuit Serial Programming  
PIC16F872 microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
It should be noted that once the LVP bit is programmed  
to 0, only the High Voltage Programming mode is avail-  
able and only High Voltage Programming mode can be  
used to program the device.  
When using low voltage ICSP, the part must be sup-  
plied 4.5V to 5.5V if a bulk erase will be executed. This  
includes reprogramming of the code protect bits from  
an on-state to off-state. For all other cases of low volt-  
age ICSP, the part may be programmed at the normal  
operating voltage. This means calibration values,  
unique user IDs, or user code can be reprogrammed or  
added.  
When using ICSP, the part must be supplied 4.5V to  
5.5V if a bulk erase will be executed. This includes  
reprogramming of the code protect, both from an on-  
state to off-state. For all other cases of ICSP, the part  
may be programmed at the normal operating voltages.  
This means calibration values, unique user IDs or user  
code can be reprogrammed or added.  
For complete details of serial programming, please  
refer to the EEPROM Memory Programming Specifica-  
tion for the PIC16F87X (DS39025).  
11.18 Low Voltage ICSP Programming  
The LVP bit of the configuration word enables low volt-  
age ICSP programming. This mode allows the micro-  
controller to be programmed via ICSP, using a VDD  
source in the operating voltage range. This only means  
that VPP does not have to be brought to VIHH, but can  
instead be left at the normal operating voltage. In this  
mode, the RB3/PGM pin is dedicated to the program-  
ming function and ceases to be a general purpose I/O  
pin. During programming, VDD is applied to the MCLR  
pin. To enter Programming mode, VDD must be applied  
to the RB3/PGM pin, provided the LVP bit is set. The  
LVP bit defaults to on (1) from the factory.  
Note 1: The High Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
2: While in low voltage ICSP mode, the RB3  
pin can no longer be used as a general  
purpose I/O pin.  
3: When using low voltage ICSP program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 3 in the TRISB register  
must be cleared to disable the pull-up on  
RB3 and ensure the proper operation of  
the device.  
DS30221B-page 102  
2002 Microchip Technology Inc.  
PIC16F872  
For example, a CLRF PORTBinstruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended result that the condition that sets the RBIF flag  
would be cleared.  
12.0 INSTRUCTION SET SUMMARY  
The PIC16 instruction set is highly orthogonal and is  
comprised of three basic categories:  
Byte-oriented operations  
Bit-oriented operations  
TABLE 12-1: OPCODE FIELD  
DESCRIPTIONS  
Literal and control operations  
Each PIC16 instruction is a 14-bit word divided into an  
opcode which specifies the instruction type, and one or  
more operands which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 12-1, while the various opcode  
fields are summarized in Table 12-1.  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Table 13-2 lists the instructions recognized by the  
MPASMTM Assembler. A complete description of each  
instruction is also available in the PICmicroMid-  
Range Reference Manual (DS33023).  
Don't care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
For byte-oriented instructions, frepresents a file reg-  
ister designator and drepresents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
PC  
TO  
PD  
Program Counter  
Time-out bit  
The destination designator specifies where the result of  
the operation is to be placed. If dis zero, the result is  
placed in the W register. If dis one, the result is placed  
in the file register specified in the instruction.  
Power-down bit  
For bit-oriented instructions, brepresents a bit field  
designator, which selects the bit affected by the opera-  
tion, while frepresents the address of the file in which  
the bit is located.  
FIGURE 12-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, krepresents an  
eight- or eleven-bit constant or literal value  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 µs. All instructions are  
executed within a single instruction cycle, unless a con-  
ditional test is true or the program counter is changed  
as a result of an instruction. When this occurs, the exe-  
cution takes two instruction cycles with the second  
cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Note: To maintain upward compatibility with  
future PIC16F872 products, do not use the  
OPTIONand TRISinstructions.  
Literal and control operations  
General  
All instruction examples use the format 0xhhto repre-  
sent a hexadecimal number, where hsignifies a hexa-  
decimal digit.  
13  
8
7
0
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
12.1 READ-MODIFY-WRITE  
OPERATIONS  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion or the destination designator d. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k (literal)  
2002 Microchip Technology Inc.  
DS30221B-page 103  
PIC16F872  
TABLE 12-2: PIC16F872 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1,2  
1,2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an external  
device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023).  
DS30221B-page 104  
2002 Microchip Technology Inc.  
PIC16F872  
12.2 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
C, DC, Z  
Operation:  
0 (f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal k’  
and the result is placed in the W  
register.  
Bit 'b' in register 'f' is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit 'b' in register 'f' is set.  
Description:  
Add the contents of the W register  
with register f. If dis 0, the result  
is stored in the W register. If dis  
1, the result is stored back in  
register f.  
BTFSS  
Bit Test f, Skip if Set  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 1  
Z
Status Affected: None  
The contents of W register are  
ANDed with the eight-bit literal  
'k'. The result is placed in the W  
register.  
Description:  
If bit 'b' in register 'f' is '0', the next  
instruction is executed.  
If bit 'b' is '1', then the next instruc-  
tion is discarded and a NOPis  
executed instead, making this a  
2TCY instruction.  
BTFSC  
Bit Test, Skip if Clear  
ANDWF  
AND W with f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description: If bit 'b' in register 'f' is '1', the next  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
instruction is executed.  
If bit 'b', in register 'f', is '0', the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
2002 Microchip Technology Inc.  
DS30221B-page 105  
PIC16F872  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto  
the stack. The eleven-bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets  
the prescaler of the WDT. Status  
bits TO and PD are set.  
CLRF  
Clear f  
COMF  
Complement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1 Z  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register fare  
cleared and the Z bit is set.  
The contents of register fare  
complemented. If dis 0, the  
result is stored in W. If dis 1, the  
result is stored back in register f.  
CLRW  
Clear W  
DECF  
Decrement f  
Syntax:  
[ label ] CLRW  
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h (W)  
1 Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
Decrement register f. If dis 0,  
the result is stored in the W  
register. If dis 1, the result is  
stored back in register f.  
DS30221B-page 106  
2002 Microchip Technology Inc.  
PIC16F872  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register fare  
Description:  
The contents of register fare  
decremented. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in  
register f.  
incremented. If dis 0, the result is  
placed in the W register. If dis 1,  
the result is placed back in  
register f.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead,  
making it a 2TCY instruction.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
a NOPis executed instead, making  
it a 2TCY instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
ORed with the eight-bit literal 'k'.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-  
cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register 'f'. If 'd' is 0, the result is  
placed in the W register. If 'd' is 1,  
the result is placed back in  
register 'f'.  
The contents of register fare  
incremented. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in  
register f.  
2002 Microchip Technology Inc.  
DS30221B-page 107  
PIC16F872  
MOVF  
Move f  
NOP  
No Operation  
Syntax:  
[ label ] MOVF f,d  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
No operation.  
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f itself.  
d = 1 is useful to test a file register,  
since status flag Z is affected.  
MOVLW  
Move Literal to W  
RETFIE  
Return from Interrupt  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k (W)  
Syntax:  
[ label ] RETFIE  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
None  
TOS PC,  
1 GIE  
None  
Status Affected: None  
The eight-bit literal kis loaded  
into W register. The dont cares  
will assemble as 0s.  
MOVWF  
Move W to f  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
k (W);  
TOS PC  
None  
Status Affected: None  
Move data from W register to  
register 'f'.  
Description: The W register is loaded with the  
eight-bit literal 'k'. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
DS30221B-page 108  
2002 Microchip Technology Inc.  
PIC16F872  
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
[ label ] RLF f,d  
Syntax:  
[ label ] SLEEP  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0 PD  
The contents of register fare rotated  
one bit to the left through the Carry  
Flag. If dis 0, the result is placed in  
the W register. If dis 1, the result is  
stored back in register f.  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
C
Register f  
The processor is put into SLEEP  
mode with the oscillator stopped.  
RETURN  
Return from Subroutine  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
k - (W) → (W)  
Status Affected: None  
Status Affected: C, DC, Z  
Description:  
Return from subroutine. The stack  
Description:  
The W register is subtracted (2s  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
complement method) from the  
eight-bit literal 'k'. The result is  
placed in the W register.  
RRF  
Rotate Right f through Carry  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
See description below  
C
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Status  
Affected:  
C, DC, Z  
The contents of register fare  
rotated one bit to the right through  
the Carry Flag. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in  
register f.  
Description:  
Subtract (2s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
C
Register f  
2002 Microchip Technology Inc.  
DS30221B-page 109  
PIC16F872  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
The upper and lower nibbles of  
register fare exchanged. If dis  
0, the result is placed in the W  
register. If dis 1, the result is  
placed in register f.  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[label] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
The contents of the W register  
are XORed with the eight-bit lit-  
eral 'k'. The result is placed in  
the W register.  
DS30221B-page 110  
2002 Microchip Technology Inc.  
PIC16F872  
The MPLAB IDE allows you to:  
13.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
13.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
13.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
13.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2002 Microchip Technology Inc.  
DS30221B-page 111  
PIC16F872  
13.4 MPLINK Object Linker/  
MPLIB Object Librarian  
13.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
13.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
13.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS30221B-page 112  
2002 Microchip Technology Inc.  
PIC16F872  
13.8 MPLAB ICD In-Circuit Debugger  
13.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchips In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
13.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
13.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
13.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
DS30221B-page 113  
PIC16F872  
13.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
13.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
13.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS30221B-page 114  
2002 Microchip Technology Inc.  
PIC16F872  
TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
DS30221B-page 115  
PIC16F872  
NOTES:  
DS30221B-page 116  
2002 Microchip Technology Inc.  
PIC16F872  
14.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Voltage on RA4 with respect to Vss..................................................................................................................0 to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB....................................................................................................200 mA  
Maximum current sourced by PORTA and PORTB ..............................................................................................200 mA  
Maximum current sunk by PORTC .......................................................................................................................200 mA  
Maximum current sourced by PORTC ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus,  
a series resistor of 50-100should be used when applying a lowlevel to the MCLR pin, rather than pulling  
this pin directly to VSS.  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
DS30221B-page 117  
PIC16F872  
FIGURE 14-1:  
PIC16F872 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
20 MHz  
Frequency  
FIGURE 14-2:  
PIC16LF872 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
Equation 2  
2.2 V  
Equation 1  
4 MHz  
10 MHz  
20 MHz  
Frequency  
Equation 1: FMAX = (6.0 MHz/V) (VDDAPPMIN - 2.0V) + 4 MHz; VDDAPPMIN = 2.2V - 3.0V  
Equation 2: FMAX = (10.0 MHz/V) (VDDAPPMIN - 3.0V) + 10 MHz; VDDAPPMIN = 3.0V - 4.0V  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10 MHz.  
DS30221B-page 118  
2002 Microchip Technology Inc.  
PIC16F872  
14.1 DC Characteristics: PIC16F872 (Commercial, Industrial)  
PIC16LF872 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF872 (Commercial, Industrial)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
PIC16F872 (Commercial, Industrial)  
Param Symbol  
No.  
Characteristic/  
Device  
Min TypMax Units  
Conditions  
VDD  
Supply Voltage  
PIC16LF872  
D001  
2.2  
5.5  
V
LP,XT,RC osc configuration  
(DC to 4 MHz)  
D001  
PIC16F872  
4.0  
4.5  
5.5  
5.5  
5.5  
V
V
V
V
LP, XT, RC osc configuration  
HS osc configuration  
BOR enabled, FMAX = 14 MHz(7)  
D001A  
D001A  
PIC16LF872  
PIC16F872 VBOR  
D002  
VDR  
RAM Data Retention  
1.5  
Voltage(1)  
D003  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See section on Power-on Reset for details  
D004  
D005  
SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
3.7  
V/ms See section on Power-on Reset for details  
VBOR  
IDD  
Brown-out Reset  
Voltage  
Supply Current(2,5)  
4.0  
4.35  
V
BODEN bit in configuration word enabled  
D010  
D010  
D010A  
D013  
PIC16LF872  
0.6  
1.6  
20  
7
2.0  
4
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V  
PIC16F872  
PIC16LF872  
PIC16F872  
mA RC osc configurations  
FOSC = 4 MHz, VDD = 5.5V  
35  
15  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
mA HS osc configuration,  
FOSC = 20 MHz, VDD = 5.5V  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data is Typcolumn is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only,  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
2002 Microchip Technology Inc.  
DS30221B-page 119  
PIC16F872  
14.1 DC Characteristics: PIC16F872 (Commercial, Industrial)  
PIC16LF872 (Commercial, Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
PIC16LF872 (Commercial, Industrial)  
PIC16F872 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Param Symbol  
No.  
Characteristic/  
Device  
Min TypMax Units  
Conditions  
D015  
IBOR  
Brown-out  
85  
200  
µA BOR enabled, VDD = 5.0V  
Reset Current(6)  
Power-down Current(3,5)  
PIC16LF872  
IPD  
D020  
D020  
D021  
D021  
D021A  
D021A  
D023  
7.5  
10.5  
0.9  
1.5  
0.9  
1.5  
85  
30  
42  
5
µA VDD = 3.0V, WDT enabled,  
-40°C to +85°C  
µA VDD = 4.0V, WDT enabled,  
-40°C to +85°C  
PIC16F872  
PIC16LF872  
PIC16F872  
PIC16LF872  
PIC16F872  
µA VDD = 3.0V, WDT disabled,  
0°C to +70°C  
16  
5
µA VDD = 4.0V, WDT disabled,  
-40°C to +85°C  
µA VDD = 3.0V, WDT disabled,  
-40°C to +85°C  
19  
200  
µA VDD = 4.0V, WDT disabled,  
-40°C to +85°C  
IBOR  
Brown-out  
µA BOR enabled, VDD = 5.0V  
Reset Current(6)  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data is Typcolumn is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only,  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30221B-page 120  
2002 Microchip Technology Inc.  
PIC16F872  
14.2 DC Characteristics: PIC16F872 (Commercial, Industrial)  
PIC16LF872 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC specification  
(Section 14.1)  
Param  
Sym  
No.  
Characteristic  
Min  
TypMax Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP modes)  
Ports RC3 and RC4:  
with Schmitt Trigger buffer  
with SMBus  
0.2VDD  
0.2VDD  
0.3VDD  
(Note 1)  
D034  
VSS  
-0.5  
-
-
0.3VDD  
0.6  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
D034A  
VIH  
Input High Voltage  
I/O ports:  
-
-
-
D040  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D040A  
0.25VDD  
+ 0.8V  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
OSC1 (XT, HS and LP modes)  
OSC1 (in RC mode)  
Ports RC3 and RC4:  
with Schmitt Trigger buffer  
with SMBus  
(Note 1)  
D044  
D044A  
D070  
0.7VDD  
1.4  
-
-
VDD  
5.5  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
IPURB PORTB Weak Pull-up Current  
50  
250  
400  
µA VDD = 5V, VPIN = VSS,  
-40°C TO +85°C  
Input Leakage Current(2, 3)  
IIL  
D060  
I/O ports  
-
-
1
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS  
and LP osc configuration  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F872 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
2002 Microchip Technology Inc.  
DS30221B-page 121  
PIC16F872  
14.2 DC Characteristics: PIC16F872 (Commercial, Industrial)  
PIC16LF872 (Commercial, Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC specification  
(Section 14.1)  
Param  
Sym  
No.  
Characteristic  
Min  
TypMax Units  
Conditions  
VOL  
VOH  
Output Low Voltage  
D080  
D083  
I/O ports  
-
-
-
-
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Output High Voltage  
I/O ports(3)  
D090  
D092  
VDD - 0.7  
-
-
-
-
-
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config) VDD - 0.7  
D150* VOD  
Open Drain High Voltage  
-
-
8.5  
RA4 pin  
Capacitive Loading Specs on  
Output Pins  
D100  
COSC2 OSC2 pin  
-
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2 (RC  
mode) SCL, SDA (I2C mode)  
-
-
-
-
50  
400  
pF  
pF  
Data EEPROM Memory  
D120  
D121  
ED  
Endurance  
100K  
VMIN  
-
-
-
E/W 25°C at 5V  
VDRW VDD for read/write  
5.5  
V
Using EECON to read/write  
VMIN = min. operating voltage  
D122  
TDEW Erase/write cycle time  
-
4
8
ms  
Program FLASH Memory  
D130  
D131  
D132A  
EP  
Endurance  
1000  
VMIN  
VMIN  
-
-
-
-
E/W 25°C at 5V  
VPR  
VDD for read  
5.5  
5.5  
V
Vmin = min operating voltage  
VDD for erase/write  
V
Using EECON to read/write,  
VMIN = min. operating voltage  
D133  
TPEW Erase/Write cycle time  
-
4
8
ms  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F872 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30221B-page 122  
2002 Microchip Technology Inc.  
PIC16F872  
14.3 DC Characteristics: PIC16F872 (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
PIC16F872 (Extended)  
Param Symbol  
No.  
Characteristic/  
Device  
Min  
TypMax Units  
Conditions  
VDD  
Supply Voltage  
D001  
4.0  
4.5  
5.5  
5.5  
5.5  
V
V
V
V
LP, XT, RC osc configuration  
HS osc configuration  
BOR enabled, FMAX = 14 MHz(7)  
D001A  
D001A  
D002  
VBOR  
VDR  
RAM Data Retention  
Voltage(1)  
1.5  
D003  
D004  
D005  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See section on Power-on Reset for  
details  
SVDD  
VDD Rise Rate to ensure 0.05  
internal Power-on Reset  
signal  
V/ms See section on Power-on Reset for  
details  
VBOR  
IDD  
Brown-out Reset  
Voltage  
Supply Current(2,5)  
3.7  
4.0  
4.35  
V
BODEN bit in configuration word  
enabled  
D010  
D013  
D015  
1.6  
7
4
mA RC osc configurations  
FOSC = 4 MHz, VDD = 5.5V  
15  
mA HS osc configuration,  
FOSC = 20 MHZ, VDD = 5.5V  
IBOR  
Brown-out  
85  
200  
µA BOR enabled, VDD = 5.0V  
Reset Current(6)  
IPD  
Power-down  
Current(3,5)  
D020A  
D021B  
D023  
10.5  
1.5  
85  
60  
30  
µA VDD = 4.0V, WDT enabled  
µA VDD = 4.0V, WDT disabled  
µA BOR enabled, VDD = 5.0V  
IBOR  
Brown-out  
200  
Reset Current(6)  
Data in Typcolumn is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only,  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
2002 Microchip Technology Inc.  
DS30221B-page 123  
PIC16F872  
14.4 DC Characteristics: PIC16F872 (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Operating voltage VDD range as described in DC specification  
(Section 14.1)  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
Vss  
Vss  
Vss  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP modes)  
Ports RC3 and RC4:  
with Schmitt Trigger buffer  
with SMBus  
0.2VDD  
0.2VDD  
0.3VDD  
(Note1)  
D034  
Vss  
-0.5  
-
-
0.3VDD  
0.6  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
D034A  
VIH  
Input High Voltage  
I/O ports:  
-
-
-
D040  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D040A  
0.25VDD  
+ 0.8V  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
OSC1 (XT, HS and LP modes)  
OSC1 (in RC mode)  
Ports RC3 and RC4:  
with Schmitt Trigger buffer  
with SMBus  
(Note1)  
D044  
0.7VDD  
1.4  
-
-
VDD  
5.5  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
D044A  
D070A IPURB PORTB Weak Pull-up Current  
50  
300  
500  
µA VDD = 5V, VPIN = VSS,  
Input Leakage Current(2, 3)  
IIL  
D060  
I/O ports  
-
-
1
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS  
and LP osc configuration  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F872 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30221B-page 124  
2002 Microchip Technology Inc.  
PIC16F872  
14.4 DC Characteristics: PIC16F872 (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Operating voltage VDD range as described in DC specification  
(Section 14.1)  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O Ports  
D080A  
D083A  
0.6  
0.6  
V
V
IOL =2.5 mA, VDD = 4.5V  
IOL = 1.2 mA, VDD = 4.5V  
OSC2/CLKOUT (RC osc config)  
Output High Voltage  
I/O ports(3)  
VOH  
D090A  
D092A  
VDD - 0.7  
-
-
-
-
-
V
V
V
IOH = -2.5 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V  
RA4 pin  
OSC2/CLKOUT (RC osc config) VDD - 0.7  
D150* VOD  
Open Drain High Voltage  
-
8.5  
Capacitive Loading Specs on  
Output Pins  
D100  
COSC2 OSC2 pin  
-
-
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(RC mode)  
-
-
-
-
50  
pF  
SCL, SDA (I2C mode)  
400  
pF  
Data EEPROM Memory  
D120  
D121  
ED  
Endurance  
100K  
VMIN  
-
-
-
E/W 25°C at 5V  
VDRW VDD for read/write  
5.5  
V
Using EECON to read/write  
VMIN = min. operating voltage  
D122  
TDEW Erase/write cycle time  
-
4
8
ms  
Program FLASH Memory  
D130  
D131  
D132A  
EP  
Endurance  
1000  
VMIN  
VMIN  
-
-
-
-
E/W 25°C at 5V  
VPR  
VDD for read  
5.5  
5.5  
V
VMIN = min. operating voltage  
VDD for erase/write  
V
Using EECON to read/write,  
VMIN = min. operating voltage  
D133  
TPEW Erase/Write cycle time  
-
4
8
ms  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F872 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
2002 Microchip Technology Inc.  
DS30221B-page 125  
PIC16F872  
14.5 Timing Parameter Symbology  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
(I2C specifications only)  
(I2C specifications only)  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 14-3:  
LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464 Ω  
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as ports  
15 pF for OSC2 output  
DS30221B-page 126  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 14-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 14-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
TOSC  
External CLKIN Period  
(Note 1)  
250  
250  
50  
TCY  
ns XT and RC osc mode  
ns HS osc mode (-04)  
ns HS osc mode (-20)  
µs LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
ns RC osc mode  
10,000  
250  
250  
ns XT osc mode  
ns HS osc mode (-04)  
ns HS osc mode (-20)  
µs LP osc mode  
5
2
3
TCY  
Instruction Cycle Time  
(Note 1)  
200  
DC  
ns TCY = 4/FOSC  
TosL, External Clock in (OSC1) High or 100  
TosH Low Time  
25  
50  
15  
ns XT oscillator  
µs LP oscillator  
ns HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
2.5  
15  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an  
external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time  
limit is "DC" (no clock) for all devices.  
2002 Microchip Technology Inc.  
DS30221B-page 127  
PIC16F872  
FIGURE 14-5:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
18  
19  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 14-3 for load conditions.  
TABLE 14-2: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUTto Port out valid  
TioV2ckH Port in valid before CLKOUT↑  
TckH2ioI Port in hold after CLKOUT↑  
0.5TCY + 20  
TOSC + 200  
0
TosH2ioV OSC1(Q1 cycle) to  
100  
255  
Port out valid  
18*  
TosH2ioI OSC1(Q2 cycle) to Port  
Standard (F)  
100  
200  
0
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
input invalid (I/O in hold time)  
Extended (LF)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TIOR  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard (F)  
Extended (LF)  
Standard (F)  
Extended (LF)  
40  
145  
40  
145  
21*  
TIOF  
22††* TINP  
23††* TRBP  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x TOSC.  
DS30221B-page 128  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 14-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 14-3 for load conditions.  
FIGURE 14-7:  
BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
TABLE 14-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
30  
TMCL  
TWDT  
MCLR Pulse Width (Low)  
2
7
µs  
VDD = 5V, -40°C to +85°C  
31*  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms VDD = 5V, -40°C to +85°C  
32  
33*  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power up Timer Period  
28  
1024 TOSC  
132  
2.1  
TOSC = OSC1 period  
72  
ms VDD = 5V, -40°C to +85°C  
µs  
I/O Hi-Impedance from MCLR Low  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
µs  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2002 Microchip Technology Inc.  
DS30221B-page 129  
PIC16F872  
FIGURE 14-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 14-3 for load conditions.  
TABLE 14-4: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Tt0H  
Characteristic  
T0CKI High Pulse Width  
Min  
TypMax Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
ns Must also meet  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
10  
parameter 42  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
N
ns N = prescale  
value (2, 4,...,  
256)  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
15  
ns  
ns  
ns  
ns  
25  
Asynchronous  
30  
50  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
Standard(F)  
15  
25  
30  
50  
ns  
ns  
ns  
ns  
Asynchronous  
Synchronous  
T1CKI Input  
Period  
Greater of:  
30 OR TCY + 40  
N
ns N = prescale  
value (1, 2, 4, 8)  
Extended(LF)  
Greater of:  
50 OR TCY + 40  
N
N = prescale  
value (1, 2, 4, 8)  
Asynchronous  
Standard(F)  
60  
100  
DC  
ns  
ns  
Extended(LF)  
Ft1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
TCKEZtmr1 Delay from External Clock Edge to Timer Increment  
These parameters are characterized but not tested.  
2TOSC  
7TOSC  
*
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
DS30221B-page 130  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 14-9:  
CAPTURE/COMPARE/PWM TIMINGS  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 14-3 for load conditions.  
54  
TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
No Prescaler  
With Prescaler  
Min  
TypMax Units  
Conditions  
50*  
TccL CCP1 Input Low Time  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Standard(F)  
10  
Extended(LF)  
20  
0.5TCY + 20  
10  
51*  
TccH CCP1 Input High Time No Prescaler  
With Prescaler  
Standard(F)  
Extended(LF)  
20  
52*  
53*  
TccP CCP1 Input Period  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
TccR CCP1 Output Rise Time  
TccF CCP1 Output Fall Time  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54*  
* These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
2002 Microchip Technology Inc.  
DS30221B-page 131  
PIC16F872  
FIGURE 14-10:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 14-3 for load conditions.  
FIGURE 14-11:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 14-3 for load conditions.  
DS30221B-page 132  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 14-12:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 14-3 for load conditions.  
FIGURE 14-13:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 14-3 for load conditions.  
2002 Microchip Technology Inc.  
DS30221B-page 133  
PIC16F872  
TABLE 14-6: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
SSto SCKor SCKInput  
Min  
Typ†  
Max Units Conditions  
70*  
TssL2scH,  
TssL2scL  
TCY  
ns  
71*  
72*  
73*  
TscH  
TscL  
SCK Input High Time (Slave mode)  
SCK Input Low Time (Slave mode)  
Setup Time of SDI Data Input to SCK Edge  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
74*  
75*  
TscH2diL,  
TscL2diL  
Hold Time of SDI Data Input to SCK Edge  
100  
ns  
TdoR  
SDO Data Output Rise Time  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
76*  
77*  
78*  
TdoF  
SDO Data Output Fall Time  
10  
25  
50  
ns  
ns  
TssH2doZ  
TscR  
SSto SDO Output Hi-Impedance  
10  
SCK Output Rise Time (Master mode) Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
79*  
80*  
TscF  
SCK Output Fall Time (Master mode)  
10  
25  
ns  
ns  
TscH2doV, SDO Data Output Valid after SCK  
TscL2doV Edge  
Standard(F)  
Extended(LF)  
50  
145  
81*  
TdoV2scH, SDO Data Output Setup to SCK Edge  
TdoV2scL  
TCY  
ns  
82*  
83*  
TssL2doV  
SDO Data Output Valid after SSEdge  
50  
ns  
ns  
TscH2ssH, SSafter SCK Edge  
1.5TCY + 40  
TscL2ssH  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
FIGURE 14-14:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 14-3 for load conditions.  
TABLE 14-7: I2C BUS START/STOP BITS REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
START condition  
Min Typ Max Units  
Conditions  
No.  
90  
TSU:STA  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
ns  
ns  
ns  
Only relevant for Repeated  
START condition  
Setup time  
91  
92  
93  
THD:STA  
TSU:STO  
THD:STO  
START condition  
Hold time  
4000  
600  
After this period, the first clock  
pulse is generated  
STOP condition  
Setup time  
4700  
600  
STOP condition  
Hold time  
4000  
600  
DS30221B-page 134  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 14-15:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 14-3 for load conditions.  
TABLE 14-8: I2C BUS DATA REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
4.0  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
0.6  
µs  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL Rise  
Time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1CB  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall  
Time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1CB  
CB is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
pF  
Only relevant for Repeated  
START condition  
THD:STA START Condition Hold 100 kHz mode  
After this period, the first clock  
pulse is generated  
Time  
400 kHz mode  
106  
107  
92  
THD:DAT Data Input Hold Time 100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data Input Setup Time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO STOP Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
TBUF  
CB  
Output Valid From  
Clock  
3500  
(Note 1)  
Bus Free Time  
4.7  
1.3  
Time the bus must be free before  
a new transmission can start  
Bus Capacitive Loading  
400  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast mode (400 kHz) I C bus device can be used in a standard mode (100 kHz) I C bus system, but the requirement  
that TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period  
of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line:  
2
TR max.+ TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I C bus specification) before the SCL line is  
released.  
2002 Microchip Technology Inc.  
DS30221B-page 135  
PIC16F872  
TABLE 14-9: A/D CONVERTER CHARACTERISTICS:  
PIC16F872 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16LF872 (COMMERCIAL, INDUSTRIAL)  
Param  
No.  
Sym  
Characteristic  
Resolution  
Min  
Typ†  
Max  
Units  
Conditions  
A01 NR  
A03 EIL  
A04 EDL  
10-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
Integral Linearity Error  
< ± 1  
< ± 1  
< ± 2  
< ± 1  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
Differential Linearity Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A07 EGN  
Gain Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
(3)  
A10  
Monotonicity  
guaranteed  
VSS VAIN VREF  
A20 VREF Reference Voltage (VREF+ - VREF-)  
2.0  
VDD + 0.3  
V
Absolute minimum electrical  
spec. to ensure 10-bit  
accuracy.  
A21 VREF+ Reference Voltage High  
A22 VREF- Reference Voltage Low  
AVDD - 2.5V  
AVSS - 0.3V  
VSS - 0.3V  
AVDD + 0.3V  
VREF+ - 2.0V  
VREF + 0.3V  
10.0  
V
V
A25 VAIN  
A30 ZAIN  
Analog Input Voltage  
V
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40 IAD  
A/D Conversion  
Current (VDD)  
Standard  
Extended  
10  
220  
90  
µA Average current consumption  
when A/D is on (Note 1).  
µA  
A50 IREF  
VREF Input Current (Note 2)  
1000  
µA During VAIN acquisition,  
based on differential of VHOLD  
to VAIN to charge CHOLD, see  
Section 10.1.  
10  
µA During A/D conversion cycle.  
* These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.  
DS30221B-page 136  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 14-16:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note:  
If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 14-10: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
A/D Clock Period Standard(F)  
Min  
Typ†  
Max  
Units  
Conditions  
130 TAD  
1.6  
3.0  
2.0  
3.0  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF 2.0V  
µs A/D RC mode  
µs A/D RC mode  
TAD  
Extended(LF)  
Standard(F)  
4.0  
6.0  
6.0  
9.0  
12  
Extended(LF)  
131 TCNV Conversion Time (not including S/H time)  
(Note 1)  
132 TACQ Acquisition Time  
(Note 2)  
40  
µs  
10*  
µs The minimum time is the  
amplifier settling time. This may  
be used if the "new" input volt-  
age has not changed by more  
than 1 LSb (i.e., 20.0 mV @  
5.12V) from the last sampled  
voltage (as stated on CHOLD).  
134 TGO  
Q4 to A/D Clock Start  
TOSC/2 §  
If the A/D clock source is  
selected as RC, a time of TCY is  
added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
* These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§ This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 10.1 for min. conditions.  
2002 Microchip Technology Inc.  
DS30221B-page 137  
PIC16F872  
NOTES:  
DS30221B-page 138  
2002 Microchip Technology Inc.  
PIC16F872  
15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified oper-  
ating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
Typicalrepresents the mean of the distribution at 25°C. Maximumor minimumrepresents (mean + 3σ) or (mean - 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 15-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
7
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
6
5
4
3
2
1
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.2V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (M Hz)  
FIGURE 15-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
8
Typical: statistical mean @ 25°C  
7
6
5
4
3
2
1
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.2V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (M Hz)  
2002 Microchip Technology Inc.  
DS30221B-page 139  
PIC16F872  
FIGURE 15-3:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
1.6  
Typical: statistical mean @ 25°C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.2V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 15-4:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.2V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS30221B-page 140  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 15-5:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
80  
5.5V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.2V  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 15-6:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
120  
110  
100  
90  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
5.5V  
5.0V  
80  
4.5V  
70  
4.0V  
60  
3.5V  
3.0V  
50  
40  
2.5V  
2.2V  
30  
20  
10  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
2002 Microchip Technology Inc.  
DS30221B-page 141  
PIC16F872  
FIGURE 15-7:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 20 pF, 25°C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.3kΩ  
5.1k  
10kΩ  
100k  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-8:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, 25°C)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.3k  
5.1k  
10kΩ  
100kΩ  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30221B-page 142  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 15-9:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, 25°C)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3.3k  
5.1k  
10k  
100k  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-10:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
MMax ((1255C°C))  
10  
Max (85°C)  
Max (85C)  
1
0.1  
Typ (25°C)  
Tp (25C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS30221B-page 143  
PIC16F872  
FIGURE 15-11:  
IBOR vs. VDD OVER TEMPERATURE  
1.2  
Note: Device current in RESET  
depends on oscillator mode,  
frequency and circuit.  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max RESET  
Max Reset  
Typ RESET  
(25°C)  
Indeterminate  
State  
Device in SLEEP  
Device in RESET  
Max SLEEP  
Ml
Typ SLEEP (25°C)  
2.2  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-12:  
TYPICAL AND MAXIMUM ITMR1 vs. VDD OVER TEMPERATURE  
(-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL=32 kHZ, C1 AND C2=50 pF)  
90  
80  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Max (-10°C)  
Typ (25°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30221B-page 144  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 15-13:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE  
14  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
12  
10  
8
Max (125°C)  
Typ (25°C)  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
FIGURE 15-14:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS30221B-page 145  
PIC16F872  
FIGURE 15-15:  
AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO +125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
125°C  
85°C  
85C  
25°C  
25C  
-40°C  
-40C  
0
2.2  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-16:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD=5V, -40°C TO +125°C)  
5.0  
Max (-40°C)  
Max (-40C)  
4.5  
4.0  
3.5  
3.0  
Typ (25°C)  
Typ (25C)  
Min (125°C)  
Min (125C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
2.5  
2.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS30221B-page 146  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 15-17:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD=3V, -40°C TO +125°C)  
3.0  
Max (-40°C)  
Max (-40C)  
Typical: statistical mean @ 25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
Typ (25°C)  
Typ (25C)  
Min (125°C)  
Min (125C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 15-18:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD=5V, -40°C TO 125°C)  
2.0  
1.8  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max (125°C)  
Ma(125)  
Typ (25°C)  
Typ (25C)  
MMinn ((--4400°CC))  
0
5
10  
15  
20  
25  
IOL (-mA)  
2002 Microchip Technology Inc.  
DS30221B-page 147  
PIC16F872  
FIGURE 15-19:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD=3V, -40°C TO +125°C)  
3.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max (125°C)  
Max (125C)  
Typ (25°C)  
Typ (25C)  
Min (-40°C)  
Min (-40C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 15-20:  
MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO +125°C)  
1.8  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max  
Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30221B-page 148  
2002 Microchip Technology Inc.  
PIC16F872  
FIGURE 15-21:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)  
4.5  
4.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max High  
Min High  
Max Low  
Min Low  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 15-22:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40°C TO +125°C)  
3.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
Max High  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Min High  
Max Low  
Min Low  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS30221B-page 149  
PIC16F872  
NOTES:  
DS30221B-page 150  
2002 Microchip Technology Inc.  
PIC16F872  
16.0 PACKAGING INFORMATION  
16.1 Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F872/SP  
0117017  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16F872-I/SO  
YYWWNNN  
0110017  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16LF872  
-I/SS  
YYWWNNN  
0120017  
Legend: XX...X Customer specific information*  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2002 Microchip Technology Inc.  
DS30221B-page 151  
PIC16F872  
28-Lead Skinny Plastic Dual In-line (SP) 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
B
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
DS30221B-page 152  
2002 Microchip Technology Inc.  
PIC16F872  
28-Lead Plastic Small Outline (SO) Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
2002 Microchip Technology Inc.  
DS30221B-page 153  
PIC16F872  
28-Lead Plastic Shrink Small Outline (SS) 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
DS30221B-page 154  
2002 Microchip Technology Inc.  
PIC16F872  
APPENDIX A: REVISION HISTORY  
APPENDIX B: CONVERSION  
CONSIDERATIONS  
Version  
Date  
Revision Description  
Considerations for converting from previous versions  
of devices to the ones listed in this data sheet are listed  
in Table B-1.  
A
11/99  
This is a new data sheet (Pre-  
liminary). However, these  
devices are similar to the  
PIC16C72A devices found in  
the PIC16C62B/72A Data  
Sheet (DS35008).  
TABLE B-1:  
CONVERSION  
CONSIDERATIONS  
B
12/01  
Final version of data sheet.  
Includes DC and AC charac-  
teristics graphs and updated  
electrical specifications.  
Characteristic  
PIC16C72A  
PIC16F872  
Pins  
Timers  
28  
3
28  
3
Interrupts  
7
10  
Communication  
Basic SSP  
(SPI, I2C  
Slave)  
SSP (SPI, I2C  
Master/Slave)  
Frequency  
A/D  
20 MHz  
20 MHz  
8-bit,  
10-bit  
5 channels  
5 channels  
CCP  
1
1
Program  
Memory  
2K EPROM  
2K FLASH  
RAM  
EEPROM Data  
Other  
128 bytes  
None  
128 bytes  
64 bytes  
In-Circuit  
Debugger,  
Low Voltage  
Programming  
2002 Microchip Technology Inc.  
DS30221B-page 155  
PIC16F872  
NOTES:  
DS30221B-page 156  
2002 Microchip Technology Inc.  
PIC16F872  
INDEX  
PWM Mode ............................................................... 48  
RA3:RA0 and RA5 Pins ............................................ 29  
RA4/T0CKI Pin .......................................................... 29  
RB3:RB0 Pins ........................................................... 31  
RB7:RB4 Pins ........................................................... 31  
RC Oscillator Mode ................................................... 90  
A
A/D ..................................................................................... 79  
Acquisition Requirements .......................................... 82  
ADCON0 Register ..................................................... 79  
ADCON1 Register ..................................................... 79  
ADIF Bit ..................................................................... 81  
ADRESH Register ..................................................... 79  
ADRESL Register ...................................................... 79  
Associated Registers and Bits ................................... 85  
Configuring Analog Port Pins .................................... 83  
Configuring the Interrupt ............................................ 81  
Configuring the Module ............................................. 81  
Conversion Clock ...................................................... 83  
Conversions ............................................................... 84  
Effects of a RESET .................................................... 85  
GO/DONE Bit ............................................................ 81  
Internal Sampling Switch (Rss) Impedance ............... 82  
Operation During SLEEP ........................................... 85  
Result Registers ........................................................ 84  
Source Impedance .................................................... 82  
TAD ............................................................................ 83  
Absolute Maximum Ratings ............................................. 117  
ACK pulse .......................................................................... 59  
ACKDT Bit  
Acknowledge Data Bit (ACKDT) ................................ 54  
ACKEN Bit  
Acknowledge Sequence Enable Bit (ACKEN) ........... 54  
Acknowledge Pulse (ACK) ................................................. 59  
ACKSTAT Bit  
Acknowledge Status Bit (ACKSTAT) ......................... 54  
ACKSTAT Status Flag ....................................................... 67  
ADCON0 Register ............................................................... 9  
ADCON1 Register ............................................................. 10  
ADRESH Register ............................................................... 9  
ADRESL Register .............................................................. 10  
Analog-to-Digital Converter. See A/D  
2
SSP (I C Master Mode) ............................................ 63  
Timer0/WDT Prescaler .............................................. 35  
Timer1 ....................................................................... 40  
Timer2 ....................................................................... 43  
Watchdog Timer ........................................................ 99  
BOR. See Brown-out Reset  
Brown-out Reset (BOR) ................................ 87, 91, 92, 93  
Bus Arbitration ................................................................... 73  
Bus Collision  
Section ...................................................................... 73  
Bus Collision During a Repeated START Condition ......... 76  
Bus Collision During a START Condition .......................... 74  
Bus Collision During a STOP Condition ............................ 77  
Bus Collision Interrupt Flag (BCLIF) .................................. 18  
C
Capture Mode  
CCP Pin Configuration .............................................. 46  
Software Interrupt ...................................................... 46  
Timer1 Mode Selection ............................................. 46  
Capture/Compare/PWM (CCP) ......................................... 45  
Associated Registers ................................................ 47  
PWM and Timer2 .............................................. 49  
Capture Mode ........................................................... 46  
CCP1IF ............................................................. 46  
Prescaler ........................................................... 46  
CCP Timer Resources .............................................. 45  
Compare Mode ......................................................... 47  
Software Interrupt Mode .................................... 47  
Special Event Trigger ........................................ 47  
PWM Mode ............................................................... 48  
Duty Cycle ......................................................... 48  
Example Frequencies/  
Application Notes  
AN552 (Implementing Wake-up on Key Stroke) ........ 31  
AN556 (Implementing a Table Read) ........................ 20  
AN578 (Use of the SSP Module in the I C  
Resolutions (Table) ........................... 49  
2
PWM Period ...................................................... 48  
Special Event Trigger and A/D Conversions ............. 47  
CCP. See Capture/Compare/PWM  
Multi-Master Environment) ........................ 58  
Assembler  
MPASM Assembler ................................................. 111  
CCP1CON Register ............................................................ 9  
CCP1M3:CCP1M0 bits ...................................................... 45  
CCP1X bit .......................................................................... 45  
CCP1Y bit .......................................................................... 45  
CCPR1H Register .........................................................9, 45  
CCPR1L Register ..........................................................9, 45  
CKE Bit .............................................................................. 52  
CKP Bit .............................................................................. 53  
Clock Polarity Select Bit (CKP) ......................................... 53  
Code Examples  
Changing Between Capture Prescalers .................... 46  
EEPROM Data Read ................................................ 25  
EEPROM Data Write ................................................. 25  
FLASH Program Read .............................................. 26  
FLASH Program Write .............................................. 27  
Indirect Addressing ................................................... 21  
Initializing PORTA ..................................................... 29  
Saving STATUS, W and PCLATH Registers ............ 98  
Code Protected Operation  
B
Banking, Data Memory ........................................................ 7  
BCLIF Bit ........................................................................... 18  
BF Bit  
Buffer Full Status Bit (BF) .......................................... 52  
BF Status Flag ............................................................ 67, 69  
Block Diagrams  
A/D Converter ............................................................ 81  
Analog Input Model .................................................... 82  
Baud Rate Generator ................................................ 64  
Capture Mode ............................................................ 46  
Compare Mode .......................................................... 47  
2
I C Slave Mode ......................................................... 58  
Interrupt Logic ............................................................ 97  
MSSP (SPI Mode) ..................................................... 55  
On-Chip Reset Circuit ................................................ 91  
Peripheral Output Override (RC 2:0, 7:5) .................. 33  
Peripheral Output Override (RC 4:3) ......................... 33  
PIC16F872 .................................................................. 4  
Data EEPROM and FLASH Program Memory .......... 28  
2002 Microchip Technology Inc.  
DS30221B-page 157  
PIC16F872  
Code Protection ........................................................ 87, 101  
Compare Mode  
I
I/O Ports ............................................................................ 29  
CCP Pin Configuration ...............................................47  
Timer1 Mode Selection ..............................................47  
Computed GOTO ...............................................................20  
Configuration Bits ..............................................................87  
Configuration Word ............................................................88  
Conversion Considerations ..............................................155  
2
I C Bus  
Connection Considerations ....................................... 78  
Sample Device Configuration .................................... 78  
2
I C Mode  
Acknowledge Sequence Timing ................................ 71  
Addressing ................................................................ 59  
Associated Registers ................................................. 62  
Baud Rate Generator (BRG) ..................................... 64  
Bus Arbitration ........................................................... 73  
Bus Collision .............................................................. 73  
Repeated START Condition .............................. 76  
D
D/A Bit ................................................................................52  
Data EEPROM ...................................................................23  
Associated Registers .................................................28  
Code Protection .........................................................28  
Reading .....................................................................25  
Special Functions Registers ......................................23  
Spurious Write Protection ..........................................27  
Write Verify ................................................................27  
Writing to ....................................................................25  
Data Memory .......................................................................7  
Bank Select (RP1:RP0 Bits) ........................................7  
General Purpose Register File ....................................7  
Register File Map .........................................................8  
Special Function Registers ..........................................9  
Data/Address Bit (D/A) ......................................................52  
DC and AC Characteristics Graphs and Tables ..............139  
DC Characteristics  
START Condition .............................................. 74  
STOP Condition ................................................ 77  
Clock Arbitration ........................................................ 72  
Conditions to not give ACK Pulse ............................. 59  
Effects of a RESET .............................................62, 72  
General Call Address Support ................................... 61  
Master Mode ............................................................. 63  
Master Mode Operation ............................................. 64  
Master Mode Reception ............................................ 69  
Master Mode Repeated START Condition ................ 66  
Master Mode START Condition ................................ 65  
Master Mode Transmission ....................................... 67  
Master Mode Transmit Sequence ............................. 64  
Multi-Master Communication ..................................... 73  
Multi-Master Mode ..................................................... 63  
Operation ................................................................... 58  
Slave Mode ............................................................... 58  
Slave Reception ........................................................ 59  
Slave Transmission ................................................... 60  
SLEEP Operation ................................................62, 72  
SSPADD Address Register ....................................... 58  
SSPBUF Register ...................................................... 58  
STOP Condition Timing ............................................. 71  
ICEPIC In-Circuit Emulator .............................................. 112  
ID Locations ..............................................................87, 101  
In-Circuit Debugger ...................................................87, 101  
In-Circuit Serial Programming (ICSP) .......................87, 102  
INDF Register ...................................................................... 9  
Indirect Addressing ............................................................ 21  
FSR Register .........................................................7, 21  
Instruction Format ........................................................... 103  
Instruction Set ................................................................. 103  
ADDLW ................................................................... 105  
ADDWF ................................................................... 105  
ANDLW ................................................................... 105  
ANDWF ................................................................... 105  
BCF ......................................................................... 105  
BSF ......................................................................... 105  
BTFSC ..................................................................... 105  
BTFSS ..................................................................... 105  
CALL ....................................................................... 106  
CLRF ....................................................................... 106  
CLRW ...................................................................... 106  
CLRWDT ................................................................. 106  
COMF ...................................................................... 106  
DECF ....................................................................... 106  
DECFSZ .................................................................. 107  
GOTO ...................................................................... 107  
INCF ........................................................................ 107  
INCFSZ ................................................................... 107  
IORLW ..................................................................... 107  
IORWF .................................................................... 107  
Commercial and Industrial ............................... 119122  
Extended ............................................................ 12352  
Development Support ......................................................111  
Device Overview ..................................................................3  
Direct Addressing ..............................................................21  
E
EECON1 and EECON2 Registers .....................................23  
EECON1 Register ..............................................................11  
EECON2 Register ..............................................................11  
Electrical Characteristics .................................................117  
Equations  
A/D  
Calculating Acquisition Time .............................82  
Errata ...................................................................................2  
External Clock Timing Requirements ..............................127  
F
Firmware Instructions ......................................................103  
FLASH Program Memory ..................................................23  
Associated Registers .................................................28  
Code Protection .........................................................28  
Configuration Bits and Read/Write State ...................28  
Reading .....................................................................26  
Special Function Registers ........................................23  
Spurious Write Protection ..........................................27  
Write Protection .........................................................28  
Write Verify ................................................................27  
Writing to ....................................................................26  
FSR Register ................................................................ 9, 21  
G
GCEN Bit  
General Call Enable Bit (GCEN) ................................54  
General Call Address Support ...........................................61  
DS30221B-page 158  
2002 Microchip Technology Inc.  
PIC16F872  
MOVF ...................................................................... 108  
MOVLW ................................................................... 108  
MOVWF ................................................................... 108  
NOP ......................................................................... 108  
RETFIE .................................................................... 108  
RETLW .................................................................... 108  
RETURN .................................................................. 109  
RLF .......................................................................... 109  
RRF ......................................................................... 109  
SLEEP ..................................................................... 109  
SUBLW .................................................................... 109  
SUBWF .................................................................... 109  
SWAPF .................................................................... 110  
XORLW ................................................................... 110  
XORWF ................................................................... 110  
Summary Table ....................................................... 104  
INT Interrupt (RB0/INT). See Interrupt Sources  
M
Master Clear (MCLR)  
MCLR Reset, Normal Operation .........................91, 93  
MCLR Reset, SLEEP ..........................................91, 93  
Master Synchronous Serial Port. See MSSP  
MCLR/VPP Pin ..................................................................... 5  
Memory Organization .......................................................... 7  
Data Memory ............................................................... 7  
Program Memory ........................................................ 7  
MPLAB C17 and MPLAB C18 C Compilers .................... 111  
MPLAB ICD In-Circuit Debugger ..................................... 113  
MPLAB ICE High Performance Universal In-Circuit  
Emulator with MPLAB IDE ...................................... 112  
MPLAB Integrated Development  
Environment Software ............................................. 111  
MPLINK Object Linker/MPLIB Object Librarian ............... 112  
MSSP ................................................................................ 51  
INTCON Register .......................................................... 9, 14  
GIE Bit ....................................................................... 14  
INTE Bit ..................................................................... 14  
INTF Bit ..................................................................... 14  
PEIE Bit ..................................................................... 14  
RBIE Bit ..................................................................... 14  
RBIF Bit .............................................................. 14, 31  
TMR0IE Bit ................................................................ 14  
TMR0IF Bit ................................................................ 14  
2
I C Operation ............................................................ 58  
Overflow Detect Bit (SSPOV) .................................... 59  
Special Function Registers  
SSPCON ........................................................... 51  
SSPCON2 ......................................................... 51  
SSPSTAT .......................................................... 51  
SPI Master Mode ...................................................... 55  
SPI Mode .................................................................. 55  
SPI Slave Mode ........................................................ 56  
SSPADD ................................................................... 59  
SSPADD Register ..................................................... 58  
SSPBUF .................................................................... 55  
SSPBUF Register ..................................................... 58  
SSPSR ................................................................55, 59  
SSPSTAT Register ................................................... 58  
Multi-Master Communication ............................................. 73  
2
Inter-Integrated Circuit (I C) .............................................. 51  
Internal Sampling Switch (Rss) Impedance ....................... 82  
Interrupt Sources ........................................................ 87, 97  
Interrupt-on-Change (RB7:RB4 ) ............................... 31  
RB0/INT Pin, External ............................................... 98  
TMR0 Overflow .......................................................... 98  
Interrupts  
Bus Collision Interrupt ............................................... 18  
Synchronous Serial Port Interrupt ............................. 16  
Interrupts, Context Saving During ...................................... 98  
Interrupts, Enable Bits  
O
OPCODE Field Descriptions ........................................... 103  
OPTION_REG Register ..............................................10, 13  
INTEDG Bit ............................................................... 13  
PS2:PS0 Bits ............................................................. 13  
PSA Bit ...................................................................... 13  
RBPU Bit ................................................................... 13  
T0CS Bit .................................................................... 13  
T0SE Bit .................................................................... 13  
OSC1/CLKI Pin ................................................................... 5  
OSC2/CLKO Pin .................................................................. 5  
Oscillator Configuration  
HS .......................................................................89, 92  
LP ........................................................................89, 92  
RC ................................................................ 89, 90, 92  
XT ........................................................................89, 92  
Oscillator Selection ............................................................ 87  
Oscillator, WDT ................................................................. 99  
Oscillators  
Global Interrupt Enable (GIE Bit) ............................... 97  
Interrupt-on-Change (RB7:RB4) Enable  
(RBIE Bit) .................................................. 98  
Interrupts, Flag Bits  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ............................................ 31, 98  
TMR0 Overflow Flag (TMR0IF Bit) ............................ 98  
K
KEELOQ Evaluation and Programming Tools ................... 114  
L
Load Conditions ............................................................... 126  
Loading of PC .................................................................... 20  
Low Voltage ICSP Programming ..................................... 102  
Low Voltage In-Circuit Serial Programming ....................... 87  
Capacitor Selection ................................................... 90  
Crystal and Ceramic Resonators .............................. 89  
RC ............................................................................. 90  
2002 Microchip Technology Inc.  
DS30221B-page 159  
PIC16F872  
Program Memory  
Interrupt Vector ............................................................ 7  
P
P Bit  
Paging ....................................................................... 20  
Program Memory Map and Stack ................................ 7  
RESET Vector ............................................................. 7  
Program Verification ........................................................ 101  
Programming, Device Instructions .................................. 103  
Pulse Width Modulation.See Capture/Compare/PWM,  
PWM Mode.  
STOP Bit (P) ..............................................................52  
Packaging ............................................................... 151154  
PCL Register ..........................................................9, 10, 20  
PCLATH Register ......................................................... 9, 20  
PCON Register .....................................................10, 19, 92  
BOR Bit ......................................................................19  
POR Bit ......................................................................19  
PEN Bit  
PUSH ................................................................................ 20  
PWM Mode  
STOP Condition Enable Bit (PEN) .............................54  
PICDEM 1 Low Cost PICmicro  
Setup ......................................................................... 49  
Demonstration Board ...............................................113  
PICDEM 17 Demonstration Board ...................................114  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board ...............................................113  
PICDEM 3 Low Cost PIC16CXXX  
R
R/W Bit .............................................................................. 59  
Read/Write Bit Information (R/W) .............................. 52  
R/W Bit .............................................................................. 59  
RA0/AN0 Pin ....................................................................... 5  
RA1/AN1 Pin ....................................................................... 5  
RA2/AN2/VREF- Pin ............................................................. 5  
RA3/AN3/VREF+ Pin ............................................................ 5  
RA4/T0CKI Pin .................................................................... 5  
RA5/SS/AN4 Pin ................................................................. 5  
RAM. See Data Memory  
RB0/INT Pin ........................................................................ 6  
RB1 Pin ............................................................................... 6  
RB2 Pin ............................................................................... 6  
RB3/PGM Pin ...................................................................... 6  
RB4 Pin ............................................................................... 6  
RB5 Pin ............................................................................... 6  
RB6/PGC Pin ...................................................................... 6  
RB7/PGD Pin ...................................................................... 6  
RC0/T1OSO/T1CKI Pin ....................................................... 6  
RC1/T1OSI Pin .................................................................... 6  
RC2/CCP1 Pin .................................................................... 6  
RC3/SCK/SCL Pin ............................................................... 6  
RC4/SDI/SDA Pin ................................................................ 6  
RC5/SDO Pin ...................................................................... 6  
RC6 Pin ............................................................................... 6  
RC7 Pin ............................................................................... 6  
RCEN Bit  
Demonstration Board ...............................................114  
PICSTART Plus Entry Level Development  
Programmer .............................................................113  
PIE1 Register .............................................................. 10, 15  
PIE2 Register .............................................................. 10, 17  
Pinout Descriptions ......................................................... 56  
PIR1 Register ............................................................... 9, 16  
PIR2 Register ............................................................... 9, 18  
POP ...................................................................................20  
POR. See Power-on Reset  
PORTA ................................................................................5  
Associated Registers .................................................30  
Functions ...................................................................30  
PORTA Register ................................................... 9, 29  
RA3  
RA0 and RA5 Port Pins .....................................29  
TRISA Register ..........................................................29  
PORTB ................................................................................6  
Associated Registers .................................................32  
Functions ...................................................................32  
PORTB Register ................................................... 9, 31  
RB0/INT Pin, External ................................................98  
RB7:RB4 Interrupt-on-Change ..................................98  
RB7:RB4 Interrupt-on-Change Enable  
Receive Enable Bit (RCEN) ...................................... 54  
Receive Overflow Indicator Bit (SSPOV) .......................... 53  
Registers  
(RBIE Bit) ...................................................98  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF Bit) ............................................ 31, 98  
ADCON0 (A/D Control 0) Register ............................ 79  
ADCON1 (A/D Control 1) Register ............................ 80  
CCP1CON (CCP Control 1) Register ........................ 45  
EECON1 (EEPROM Control) Register ...................... 24  
INTCON Register ...................................................... 14  
OPTION_REG Register ......................................13, 36  
PCON (Power Control) Register ............................... 19  
PIE1 (Peripheral Interrupt Enable 1) Register ........... 15  
PIE2 (Peripheral Interrupt Enable 2) Register ........... 17  
PIR1 (Peripheral Interrupt Request 1) Register ........ 16  
PIR2 (Peripheral Interrupt Request 2) Register ........ 18  
Special Function, Summary ........................................ 9  
SSPCON (Sync Serial Port Control) Register ........... 53  
SSPCON2 (Sync Serial Port Control 2) Register ...... 54  
SSPSTAT (Sync Serial Port Status) Register ........... 52  
STATUS Register ...................................................... 12  
T1CON (Timer1 Control) Register ............................. 39  
T2CON (Timer 2 Control) Register ............................ 43  
TRISB Register ................................................... 11, 31  
PORTC ................................................................................6  
Associated Registers .................................................34  
Functions ...................................................................34  
PORTC Register ................................................... 9, 33  
TRISC Register ..........................................................33  
Power-down Mode. See SLEEP  
Power-on Reset (POR) ..................................87, 91, 92, 93  
Oscillator Start-up Timer (OST) .......................... 87, 92  
Power Control (PCON) Register ................................92  
Power-down (PD Bit) .................................................91  
Power-up Timer (PWRT) .................................... 87, 92  
Time-out (TO Bit) .......................................................91  
Time-out Sequence on Power-up ..............................96  
PR2 Register .............................................................. 10, 43  
PRO MATE II Universal Device Programmer ..................113  
Program Counter  
RESET Conditions .....................................................93  
DS30221B-page 160  
2002 Microchip Technology Inc.  
PIC16F872  
RESET ........................................................................ 87, 91  
RESET Conditions for All Registers .......................... 93  
RESET Conditions for PCON Register ...................... 93  
RESET Conditions for Program Counter ................... 93  
RESET Conditions for Special Registers .................. 93  
RESET Conditions for STATUS Register .................. 93  
RESET  
STATUS Register ..........................................................9, 12  
C Bit .......................................................................... 12  
DC Bit ........................................................................ 12  
IRP Bit ....................................................................... 12  
PD Bit ..................................................................12, 91  
RP1:RP0 Bits ............................................................ 12  
TO Bit ..................................................................12, 91  
Z Bit ........................................................................... 12  
Synchronous Serial Port Enable Bit (SSPEN) ................... 53  
Synchronous Serial Port Interrupt ..................................... 16  
Synchronous Serial Port Mode Select Bits  
Brown-out Reset (BOR). See Brown-out Reset (BOR)  
MCLR Reset. See MCLR  
Power-on Reset (POR). See Power-on Reset (POR)  
WDT Reset. See Watchdog Timer (WDT)  
Revision History ............................................................... 155  
RSEN Bit  
(SSPM3:SSPM0) ...................................................... 53  
T
Repeated START Condition Enabled Bit (RSEN) ..... 54  
T1CKPS0 bit ...................................................................... 39  
T1CKPS1 bit ...................................................................... 39  
T1CON Register .................................................................. 9  
T1OSCEN bit ..................................................................... 39  
T1SYNC bit ....................................................................... 39  
T2CON Register .................................................................. 9  
Time-out Sequence ........................................................... 92  
Timer0 ............................................................................... 35  
Associated Registers ................................................ 37  
External Clock ........................................................... 36  
Interrupt ..................................................................... 35  
Overflow Flag (TMR0IF Bit) ...................................... 98  
Overflow Interrupt ...................................................... 98  
Prescaler ................................................................... 36  
T0CKI ........................................................................ 36  
Timer1 ............................................................................... 39  
Associated Registers ................................................ 42  
Asynchronous Counter Mode .................................... 41  
Counter Operation ..................................................... 40  
Operation in Timer Mode .......................................... 40  
Oscillator ................................................................... 41  
Capacitor Selection ........................................... 41  
Prescaler ................................................................... 41  
Reading and Writing in Asynchronous  
S
S Bit  
START Bit (S) ............................................................ 52  
Sample Bit (SMP) .............................................................. 52  
SCK Pin ............................................................................. 55  
SCL Pin .............................................................................. 58  
SDA Pin ............................................................................. 58  
SDI Pin ............................................................................... 55  
SDO Pin ............................................................................. 55  
SEN Bit  
START Condition Enabled Bit (SEN) ........................ 54  
Serial Clock (SCK) ............................................................. 55  
Serial Clock (SCL) ............................................................. 58  
Serial Data Address (SDA) ................................................ 58  
Serial Data In (SDI) ............................................................ 55  
Serial Data Out (SDO) ....................................................... 55  
Slave Select (SS) ............................................................... 55  
SLEEP ................................................................87, 91, 100  
SMP Bit .............................................................................. 52  
Software Simulator (MPLAB SIM) ................................... 112  
Special Features of the CPU ............................................. 87  
Special Function Registers (SFRs) ...................................... 9  
Data EEPROM and FLASH Program Memory .......... 23  
Speed, Operating ................................................................. 1  
SPI Clock Edge Select Bit (CKE) ....................................... 52  
SPI Mode  
Associated Registers ................................................. 57  
Master Mode .............................................................. 56  
Serial Clock ............................................................... 55  
Serial Data In ............................................................. 55  
Serial Data Out .......................................................... 55  
Slave Select ............................................................... 55  
SPI Clock ................................................................... 56  
SS Pin ................................................................................ 55  
SSBUF Register .................................................................. 9  
MSSP  
Counter Mode ........................................... 41  
Resetting of Timer1 Registers ................................... 41  
Resetting Timer1 using a CCP Trigger Output ......... 41  
Synchronized Counter Mode ..................................... 40  
Timer2 ............................................................................... 43  
Associated Registers ................................................ 44  
Output ....................................................................... 44  
Postscaler ................................................................. 43  
Prescaler ................................................................... 43  
Prescaler and Postscaler .......................................... 44  
Timing Diagrams  
A/D Conversion ....................................................... 137  
Acknowledge Sequence ............................................ 71  
Baud Rate Generator with Clock Arbitration ............. 65  
BRG Reset Due to SDA Collision During  
START Condition ...................................... 75  
Brown-out Reset ..................................................... 129  
Bus Collision  
Transmit and Acknowledge ............................... 73  
Bus Collision During a Repeated START  
Condition (Case 1) .................................... 76  
Bus Collision During a Repeated START  
2
See also I C Mode and SPI Mode.  
SSPADD Register .............................................................. 10  
SSPBUF register ............................................................... 58  
SSPCON Register ............................................................... 9  
SSPCON2 Register ........................................................... 10  
SSPEN Bit ......................................................................... 53  
SSPIF ......................................................................... 16, 59  
SSPM3:SSPM0 Bits .......................................................... 53  
SSPOV Bit .................................................................. 53, 59  
SSPOV Status Flag ........................................................... 69  
SSPSTAT Register ..................................................... 10, 58  
Stack .................................................................................. 20  
Overflows ................................................................... 20  
Underflow .................................................................. 20  
Condition (Case2) ..................................... 76  
Bus Collision During a STOP Condition  
(Case 1) .................................................... 77  
Bus Collision During a STOP Condition  
(Case 2) .................................................... 77  
2002 Microchip Technology Inc.  
DS30221B-page 161  
PIC16F872  
Bus Collision During START Condition  
U
UA Bit  
(SCL = 0) ...................................................75  
Bus Collision During START Condition  
(SDA Only) ................................................74  
Update Address Bit (UA) ........................................... 52  
Capture/Compare/PWM ..........................................131  
CLKOUT and I/O .....................................................128  
External Clock ..........................................................127  
First START Bit Timing ..............................................65  
W
Wake-up from SLEEP ...............................................87, 100  
Interrupts ................................................................... 93  
MCLR Reset .............................................................. 93  
WDT Reset ................................................................ 93  
Wake-Up Using Interrupts ............................................... 100  
Watchdog Timer (WDT) ..............................................87, 99  
Enable (WDTE Bit) .................................................... 99  
Postscaler. See Postscaler, WDT  
2
I C Bus Data ............................................................135  
2
I C Bus START/STOP Bits ......................................134  
2
I C Master Mode Transmission .................................68  
2
I C Mode (7-bit Reception) ................................. 60, 70  
2
I C Mode (7-bit Transmission) ...................................61  
Master Mode Transmit Clock Arbitration ...................72  
Power-up Timer .......................................................129  
Repeat START Condition ..........................................66  
RESET .....................................................................129  
Slave Mode General Call Address Sequence  
Programming Considerations .................................... 99  
RC Oscillator ............................................................. 99  
Time-out Period ......................................................... 99  
WDT Reset, Normal Operation ...........................91, 93  
WDT Reset, SLEEP ............................................91, 93  
WDT Reset, Wake-up ............................................... 93  
WCOL ................................................................................ 65  
WCOL Bit .......................................................................... 53  
WCOL Status Flag ........................................ 65, 67, 69, 71  
Write Collision Detect Bit (WCOL) ..................................... 53  
Write Verify  
(7 or 10-bit Mode) ......................................61  
Slow Rise Time (MCLR Tied to VDD  
Via RC Network) ........................................96  
SPI Master Mode .......................................................56  
SPI Master Mode (CKE = 0, SMP = 0) ....................132  
SPI Master Mode (CKE = 1, SMP = 1) ....................132  
SPI Slave Mode (CKE = 0) ............................... 57, 133  
SPI Slave Mode (CKE = 1) ............................... 57, 133  
Start-up Timer ..........................................................129  
STOP Condition Receive or Transmit Mode ..............72  
Time-out Sequence on Power-up ..............................96  
Time-out Sequence on Power-up  
Data EEPROM and FLASH Program Memory .......... 27  
WWW, On-Line Support ...................................................... 2  
(MCLR Not Tied to VDD)  
Case 1 ...............................................................95  
Case 2 ...............................................................96  
Time-out Sequence on Power-up  
(MCLR Tied to VDD Via RC Network) ........95  
Timer0 ......................................................................130  
Timer1 ......................................................................130  
Wake-up from SLEEP via Interrupt ..........................101  
Watchdog Timer ......................................................129  
Timing Parameter Symbology .........................................126  
TMR0 Register .............................................................. 9, 11  
TMR1CS bit .......................................................................39  
TMR1H Register ..................................................................9  
TMR1L Register ...................................................................9  
TMR1ON bit .......................................................................39  
TMR2 Register .....................................................................9  
TOUTPS3:TOUTPS0 bits ..................................................43  
TRISA Register ..................................................................10  
TRISB Register ..................................................................10  
TRISC Register ..................................................................10  
DS30221B-page 162  
2002 Microchip Technology Inc.  
PIC16F872  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
013001  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
Users Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
Job Postings  
Microchip Consultant Program Member Listing  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Systems,  
technical information and more  
Listing of seminars and events  
2002 Microchip Technology Inc.  
DS30221B-page 163  
PIC16F872  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30221B  
Device:  
PIC16F872  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30221B-page 164  
2002 Microchip Technology Inc.  
PIC16F872  
PIC16F872 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F872 - I/P 301 = Industrial temp., skinny  
PDIP package, normal VDD limits, QTP pattern  
#301.  
b)  
c)  
PIC16F872 - E/SO = Extended temp., SOIC  
package, normal VDD limits.  
PIC16LF872 - /SS = Commercial temp., SSOP  
package, extended VDD limits.  
Device  
PIC16F87X(1), PIC16F87XT(2);VDD range 4.0V to 5.5V  
PIC16LF87X(1), PIC16LF87XT(2 );VDD range 2.0V to 5.5V  
Temperature Range  
blank =  
0°C to +70°C (Commercial)  
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
I
=
=
E
Package  
SO  
SP  
SS  
=
=
=
SOIC  
Skinny Plastic DIP  
SSOP  
Note 1:  
2:  
F
LF  
T
=
=
=
CMOS FLASH  
Low Power CMOS FLASH  
in tape and reel - SOIC, PLCC,  
MQFP, TQFP packages only.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS30221B-page 165  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Rm. 531, North Building  
Fujian Foreign Trade Center Hotel  
73 Wusi Road  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Dayton  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Fuzhou 350001, China  
Tel: 86-591-7557563 Fax: 86-591-7557572  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
France  
Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Italy  
Hong Kong  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
India  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
1 Floor, Wing A (A3/A4)  
No. 11, OShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
10/01/01  
DS30221B-page 166  
2002 Microchip Technology Inc.  

相关型号:

PIC16LF872-E/SS

Microcontroller
ETC

PIC16LF872-I/SO

28-Pin, 8-Bit CMOS FLASH Microcontroller
MICROCHIP

PIC16LF872-I/SO301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,28PIN,PLASTIC
MICROCHIP

PIC16LF872-I/SP

28-Pin, 8-Bit CMOS FLASH Microcontroller
MICROCHIP

PIC16LF872-I/SP301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,28PIN,PLASTIC
MICROCHIP

PIC16LF872-I/SS

28-Pin, 8-Bit CMOS FLASH Microcontroller
MICROCHIP

PIC16LF872-I/SS301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,28PIN,PLASTIC
MICROCHIP

PIC16LF872/SO

28-Pin, 8-Bit CMOS FLASH Microcontroller
MICROCHIP

PIC16LF872/SP

28-Pin, 8-Bit CMOS FLASH Microcontroller
MICROCHIP

PIC16LF872/SP301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,28PIN,PLASTIC
MICROCHIP

PIC16LF872/SS

28-Pin, 8-Bit CMOS FLASH Microcontroller
MICROCHIP

PIC16LF872/SS301

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,28PIN,PLASTIC
MICROCHIP