PIP250M [ETC]

Integrated buck converter ; 集成降压转换器\n
PIP250M
型号: PIP250M
厂家: ETC    ETC
描述:

Integrated buck converter
集成降压转换器\n

转换器 开关
文件: 总19页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIP250M  
Integrated buck converter  
Rev. 02 — 21 February 2003  
Product data  
M3D797  
1. Description  
The PIP250M is a fully integrated synchronous buck converter intended for use as a  
point-of-load regulator. It contains two N-channel power MOSFETs, a Schottky diode  
and a voltage mode, pulse width modulated (PWM) controller. The controller features  
include overcurrent and overvoltage protection and undervoltage lockout functions.  
By combining the power components and the controller into a single component,  
stray inductances are virtually eliminated, resulting in lower switching losses and a  
compact, efficient design with minimal external component count.  
2. Features  
Output current up to 15 A  
Single supply 5 V operation  
Fixed 300 kHz operating frequency  
Voltage mode control  
Minimum regulated output voltage 0.8 V  
Internal soft start  
Overcurrent protection  
Overvoltage protection  
Remote sensing.  
3. Applications  
High-current point-of-load regulation  
Distributed power architectures  
Multiple output telecom power supplies  
Microprocessor and Digital Signal Processing (DSP) supplies  
Computer peripheral supplies  
Cable modems  
Set-top boxes.  
4. Ordering information  
Table 1: Ordering information  
Type number  
Package  
Name  
Description  
Version  
PIP250M  
HVQFN68  
plastic, thermal enhanced very thin quad flat package; no leads; SOT687-1  
68 terminals; body 10 × 10 × 0.85 mm  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
5. Block diagram  
61, 62  
6.0 V  
REGULATOR  
7
V
CB  
DDC  
POWER ON  
RESET  
40 µA  
PIP250M  
OCSET/  
ENABLE  
1, 2  
5
PHASE  
strobe  
9, 12 to 17,  
0.8 V  
REFERENCE  
25, 26, PAD2  
SOFT  
START  
V
DDO  
1 V  
OVP  
UVP  
PWM  
10, 18 to 24,  
27 to 41  
59, PAD3  
0.5 V  
CONTROL  
LOGIC  
VO  
0.8 V  
35 dB  
65  
V
DDC  
FB  
ERROR  
AMP  
8, 60, 67  
68, PAD1  
300 kHz  
V
SSC  
42 to 58  
V
OSCILLATOR  
SSO  
03aj54  
Fig 1. Block diagram  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
2 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
6. Pinning information  
6.1 Pinning  
1
2
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
V
OCSET/ENABLE  
SSO  
SSO  
OCSET/ENABLE  
V
V
V
V
V
V
3
n.c.  
n.c.  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
4
V
SSC  
5
PHASE  
n.c.  
PAD 1  
6
7
CB  
V
8
V
V
V
SSC  
VO  
PAD 3  
V
9
DDO  
SSO  
SSO  
10  
11  
12  
13  
14  
15  
16  
17  
VO  
n.c.  
VO  
VO  
VO  
VO  
VO  
VO  
VO  
V
DDO  
V
DDO  
V
DDO  
PAD 2  
V
DDO  
V
DDO  
V
DDO  
V
DDO  
PIP250M  
03aj53  
Grey area denotes terminal 1 index area.  
Fig 2. Pin configuration (footprint view).  
6.2 Pin description  
Table 2:  
Symbol  
Pin description  
Pin  
I/O  
Description  
[1]  
VDDO  
9, 12 to 17,  
-
output stage supply voltage  
25, 26, PAD2  
VSSO  
VDDC  
VSSC  
42 to 58  
61, 62  
-
-
-
output stage ground  
control circuit supply voltage  
control circuit ground  
[1]  
[1]  
8, 60, 67, 68,  
PAD1  
VO  
10, 18 to 24,  
27 to 41, 59,  
PAD3  
O
output  
CB  
7
I/O  
bootstrap capacitor connection  
sense connection for current limit  
current limit set and enable input  
PHASE  
5
I
I
OCSET/  
ENABLE  
1, 2  
FB  
65  
I
feedback input  
[2]  
n.c.  
3, 4, 6, 11, 63,  
64, 66  
-
no internal connection  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
3 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
[1] PAD1, PAD2 and PAD3 are electrical connections and must be soldered to the printed circuit board  
[2] All n.c. pins should be connected to VSSC  
.
7. Functional description  
7.1 Pin functions  
7.1.1 Output stage supply (VDDO, VSSO  
)
The power output stage of the PIP250M consists of two N-channel, power MOSFETs  
and a Schottky diode configured as a synchronous buck converter. The drain of the  
upper MOSFET is connected to the positive conversion supply (VDDO), and the  
source of the lower MOSFET is connected to power ground (VSSO). The Schottky  
diode is connected between the source and drain of the lower MOSFET.  
7.1.2 Output voltage (VO)  
VO is the switched node of the power MOSFET output stage. This node is connected  
internally to the source of the upper MOSFET and the drain of the lower MOSFET.  
7.1.3 Control circuit supply (VDDC, VSSC  
)
VDDC is the positive supply to the control circuit. VSSC is the control circuit ground. All  
control voltages are measured with respect to VSSC  
.
7.1.4 Bootstrap capacitor connection (CB)  
The upper MOSFET driver stage is powered from the CB pin.  
7.1.5 Voltage feedback pin (FB)  
The FB pin is connected to the inverting input of the error amplifier, and to the inputs  
of the overvoltage and undervoltage comparators.  
7.1.6 Current limit set and enable input (OCSET/ENABLE)  
The overcurrent threshold is set by an external resistor between VDDO and  
OCSET/ENABLE. The PIP250M can be shut down by pulling this pin LOW.  
7.1.7 Sense connection for current limit (PHASE)  
The PHASE input is normally connected externally to the power output stage  
switched node (VO). The voltage on the PHASE input is compared with the voltage  
on the OCSET/ENABLE input during the interval when the upper MOSFET is on. The  
overcurrent trip operates if the voltage on the PHASE input is lower than the voltage  
on the OCSET/ENABLE input.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
4 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
7.2 Operation  
7.2.1 Single supply operation  
10  
5 V  
D1  
V
V
CB  
DDC  
DDO  
100 nF  
VO  
1 µF  
100  
µF  
PIP250M  
V
V
SSO  
SSC  
03ak42  
Fig 3. Single supply operation.  
Operation of the PIP250M from a single 5 V conversion supply is shown in Figure 3.  
The upper MOSFET gate driver stage is supplied from the CB pin. An external  
bootstrap circuit, comprising D1 and the 100 nF capacitor generates a voltage on CB  
of twice VDDO  
.
The control circuit supply, VDDC is protected from transients by a low pass filter  
comprising a 10 resistor and a 1 µF capacitor. These components should be  
placed close to the device pins.  
7.2.2 Regulated output voltage  
The reference voltage of the PIP250M is 0.8 V. The regulated output voltage is set  
using a resistive divider as shown in Figure 9. The resistors should be placed as  
close as possible to the FB pin. Both resistors should be less than 1 kin order to  
avoid noise coupling. The 68 nF capacitor across the upper resistor improves the  
control loop stability by adding a small amount of phase margin.  
7.2.3 Power on reset  
The PIP250M control circuit powers up when the voltage on VDDC rises above the  
start-up threshold voltage (typically 4.1 V). The control circuit stops operating when  
the voltage on VDDC falls below the power-down threshold voltage (typically 3.6 V).  
Once the voltage on VDDC is above the start-up threshold voltage, the PIP250M does  
not produce pulses until the voltage on OCSET/ENABLE rises above the OCSET/  
ENABLE start-up threshold voltage (typically 1.25 V).  
7.2.4 Soft start  
The soft start sequence prevents surge currents being drawn from the conversion  
supply when the PIP250M is powered up into a high current load. The soft start  
sequence is controlled by an internal digital counter. During the soft start sequence,  
the reference voltage on the non inverting input of the error amplifier is increased  
from zero up to the normal operating level of 0.8 V. The duration of the soft start  
sequence is typically 2 ms.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
5 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
7.2.5 Overcurrent protection  
5 V  
R
OCSET  
1 nF  
OCSET/  
ENABLE  
V
DDO  
PIP250M  
40 µA  
OC  
PHASE  
VO  
strobe  
CONTROL  
LOGIC  
03ak44  
Fig 4. Overcurrent protection.  
The overcurrent protection function is shown in Figure 4. The overcurrent trip function  
is enabled when the upper MOSFET gate drive signal is HIGH.  
During this interval, the voltage on the PHASE input is compared with the voltage on  
the OCSET/ENABLE input. If the voltage on the PHASE input is lower than the  
voltage on the OCSET/ENABLE input, then the PIP250M detects an overcurrent trip  
condition and turns off the gate drive to the upper MOSFET. There is an internal filter  
with a time constant of 30 µs in series with the PHASE input. Since the switching  
frequency is 300 kHz, this means that the overcurrent trip operates if the overcurrent  
condition persists for10 switching cycles.  
If three overcurrent pulses are detected, the PIP250M latches off and produces no  
more pulses until it has been reset. To reset the PIP250M, the supply voltage (VDDC  
)
must be reduced below the power down reset threshold and then increased back up  
to 5 V.  
An external resistor (ROCSET) sets the overcurrent trip level. Figure 5 shows the  
overcurrent trip level (ITRIP) as a function of ROCSET  
.
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
6 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
03ak48  
30  
I
TRIP  
(A)  
20  
10  
0
1
2
3
4
R
(k)  
OCSET  
Fig 5. Overcurrent trip level as a function of ROCSET  
.
7.2.6 Undervoltage and overvoltage protection  
With reference to Figure 1, the FB pin is connected internally to the overvoltage and  
undervoltage comparators, labelled OVP and UVP respectively. In normal operation,  
the voltage on FB is regulated at 0.8 V.  
If the voltage on FB exceeds the overvoltage protection (OVP) threshold (1 V) for  
longer than 30 µs, an overvoltage condition is detected, the gate drive signals to the  
MOSFETs are disabled, and the PIP250M latches off. To reset the latch, the  
PIP250M must be powered down by reducing VDDC below the power down reset  
threshold and then increasing VDDC back up to 5 V.  
If the voltage on FB drops below the undervoltage protection (UVP) threshold (0.5 V)  
for longer than 30 µs, then an undervoltage condition is detected and the gate drive  
signals to the MOSFET drivers are turned off. If three undervoltage pulses are  
detected then the PIP250M latches off. To reset the PIP250M, the supply voltage  
(VDDC) must be reduced below the power down reset threshold and then increased  
back up to 5 V.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
7 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
8. Limiting values  
Table 3: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDDC  
VDDO  
VPHASE  
VOCSET  
VFB  
Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
-
Max  
Unit  
V
control circuit supply voltage  
output stage supply voltage  
input voltage on PHASE  
input voltage on OCSET  
input voltage on FB  
+7  
+7  
V
+7  
V
+7  
V
+7  
V
VO  
output voltage  
+VDDO + 0.3  
V
VCB  
bootstrap voltage  
+15  
15  
V
IO(AV)  
IORM  
average output current  
repetitive peak output current  
total power dissipation  
Tpcb 110 °C; Figure 6  
A
[1]  
[2]  
[2]  
tp 10 µs; duty cycle 0.075  
Tpcb = 25 °C  
-
200  
20  
A
Ptot  
-
W
W
°C  
°C  
kV  
Tpcb = 90 °C  
-
7
Tj  
junction temperature  
40  
55  
-
+125  
+150  
2
Tstg  
Vesd  
storage temperature  
electrostatic discharge voltage  
human body model; C = 100 pF;  
R = 1500 Ω  
[3]  
machine model; C = 200 pF;  
-
200  
V
R = 10 ; L = 0.75 µH  
[1] Pulse width and repetition rate limited by maximum value of Tj.  
[2] Assumes a thermal resistance from junction to printed-circuit board of 5 K/W  
[3] The PIP250M meets class 2 for Human Body Model and class M3 for Machine Model.  
03ak50  
16  
I
O(AV)  
(A)  
12  
8
4
0
0
50  
100  
150  
T
(°C)  
pcb  
Circuit of Figure 9; VDDC = 5 V; VDDO = 5 V; VO = 2.5 V.  
Fig 6. Average output current as a function of printed-circuit board temperature.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
8 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
9. Thermal characteristics  
Table 4: Thermal characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rth(j-pcb)  
thermal resistance from  
junction to printed-circuit  
board  
-
4
5
K/W  
Rth(j-a)  
thermal resistance from  
junction to ambient  
device mounted on FR4  
printed-circuit board; copper  
area around device 25 × 25 mm  
no thermal vias  
with thermal vias  
-
-
-
25  
20  
15  
-
-
-
K/W  
K/W  
K/W  
with thermal vias and forced  
air cooling; airflow = 0.8 ms-1  
(150 LFM)  
Rth(j-c)  
thermal resistance from  
junction to case  
measured on upper surface of  
package.  
-
11  
-
K/W  
10. Characteristics  
Table 5:  
VDDC = 5 V; Tamb = 25 °C; circuit of Figure 9 unless otherwise specified.  
Symbol Parameter Conditions  
Control circuit supply  
Characteristics  
Min  
Typ  
Max  
Unit  
VDDC  
IDDC  
control circuit supply voltage 40 °C Tj +125 °C  
-
-
5
-
-
V
control circuit supply current  
24  
mA  
Power dissipation  
Ptot  
power dissipation  
VDDC = 5 V; VDDO = 5 V;  
VO = 2.5 V; IO(AV) = 15 A;  
Figure 7  
-
-
3.6  
88  
-
-
W
%
η
efficiency  
VDDC = 5 V; VDDO = 5 V;  
VO = 2.5 V; IO(AV) = 15 A;  
Figure 8  
Power-on Reset  
VDDC(th)su  
VDDC(th)sd  
Vhys  
start-up threshold control  
circuit supply voltage  
VDDC increasing;  
VOCSET = 4.5 V  
3.85  
3.25  
4.1  
3.7  
4.35  
3.98  
V
V
shut-down threshold control VDDC decreasing;  
circuit supply voltage  
VOCSET = 4.5 V  
VOCSET = 4.5 V  
VOCSET increasing  
hysteresis  
0.3  
0.8  
0.5  
0.7  
2.0  
V
V
VOCSET(th)su start-up threshold voltage  
OCSET  
1.25  
Reference  
Vi(ref)FB  
Oscillator  
fosc  
reference voltage  
measured at FB pin  
0.78  
0.8  
0.82  
V
oscillator frequency  
250  
-
300  
350  
-
kHz  
V
Vosc(p-p)  
oscillator ramp amplitude  
(peak-to-peak value)  
1.75  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
9 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
Table 5:  
VDDC = 5 V; Tamb = 25 °C; circuit of Figure 9 unless otherwise specified.  
Symbol Parameter Conditions  
Error amplifier  
Characteristics…continued  
Min  
Typ  
Max  
Unit  
Gol  
GB  
open loop gain  
Gain bandwidth product  
-
-
35  
17  
-
-
dB  
MHz  
Overvoltage, overcurrent and undervoltage protection  
VFB(th)OV  
overvoltage threshold  
feedback voltage  
voltage on FB increasing  
voltage on FB decreasing  
VOCSET = 4.5 V  
1.0  
-
1.1  
0.5  
-
V
V
VFB(th)UV  
undervoltage threshold  
feedback voltage  
0.6  
IOCSET  
tD(OC)  
tD(UV)  
tSS  
OCSET sink current  
overcurrent trip delay  
undervoltage trip delay  
soft start interval  
35  
-
40  
30  
30  
2
45  
-
µA  
µs  
µs  
ms  
-
-
-
-
03al76  
03ak51  
100%  
4
η
P
tot  
(W)  
(%)  
95%  
(1)  
(2)  
3
90%  
85%  
80%  
75%  
(3)  
(4)  
(5)  
2
1
0
2
5
7
10  
12  
I
15  
(A)  
0
4
8
12  
16  
(A)  
I
O(AV)  
O(AV)  
See circuit of Figure 9.  
VDDC = 5 V; VDDO = 5 V; VO = 2.5 V  
See circuit of Figure 9.  
(1) VO = 3.3 V  
(2) VO = 2.5 V  
(3) VO = 1.8 V  
(4) VO = 1.5 V  
(5) VO = 1.2 V  
Fig 7. Total power dissipation as a function of average  
output current; typical values.  
Fig 8. Total solution efficiency as a function of  
average output current; typical values.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
10 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
11. Application information  
conversion  
supply  
1.2 µH  
10 Ω  
(5 V)  
BAW62  
100 nF  
V
V
DDO  
CB  
2000  
µF  
DDC  
2.7 kΩ  
1 µF  
PIP250M  
OCSET/  
2.5 µH  
V
output voltage  
(2.5 V)  
O
VO  
ENABLE  
1.2 kΩ  
4.7  
κΩ  
6.8 nF  
PHASE  
shut  
2000 µF  
V
V
SSC FB  
SSO  
down  
BSH112  
2.2  
κΩ  
03ak52  
Fig 9. Typical application circuit.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
11 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
12. Marking  
terminal 1  
index area  
TYPE No.  
Design centre  
k = Hazel Grove, UK  
Release status code  
X = Development Sample  
Y = Customer Qualification Sampl  
blank = Released for Supply  
DIFFUSION LOT No.  
Diffusion centre  
= Hazel Grove, UK  
MANUFACTURING CODE  
COUNTRY OF ORIGIN  
hfkYYWWY  
Assembly centre  
f = Anam Korea  
Date code  
YY = last two digits of year  
WW = week number  
03ai72  
03ag38  
TYPE No: PIP250M-NN (NN is version number)  
DIFFUSION LOT No: 7 characters  
MANUFACTURING CODE: see Figure 11  
COUNTRY OF ORIGIN: Korea  
Fig 10. SOT687-1 marking.  
Fig 11. Interpretation of manufacturing code.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
12 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
13. Package outline  
HVQFN68: plastic thermal enhanced very thin quad flat package; no leads;  
68 terminals; body 10 x 10 x 0.85 mm  
SOT687-1  
D
B
A
D
1
terminal 1  
index area  
A
4
A
A
E
E
1
1
c
detail X  
C
e
1
y
y
v
M
C
C
A
B
C
1
e
b
w
M
18  
34  
L
35  
17  
E
h1  
e
e
E
2
h
E
h1  
1
51  
terminal 1  
index area  
68  
52  
D
D
h
h
0
2.5  
5 mm  
X
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
c
e
e
1
e
v
w
y
y
1
D
D
D
E
E
E
E
L
4
1
2
1
h
1
h
h1  
max.  
0.05 0.80 0.30  
0.00 0.65 0.18  
10.15 9.95  
9.85 9.55  
10.15 9.95 7.85  
9.85 9.55 7.55  
0.75  
0.50  
3.8  
3.5  
3.8  
3.5  
mm  
1
0.5  
8
8
0.1  
0.05 0.05  
0.1  
0.2  
REFERENCES  
JEDEC  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEITA  
02-04-24  
02-10-18  
SOT687-1  
- - -  
MO-220  
- - -  
Fig 12. SOT687-1.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
13 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
14. Soldering  
14.1 Introduction to soldering HVQFN packages  
The HVQFN package is a near Chip Scale Package (CSP) with a copper lead frame.  
It is a leadless package, where electrical contact to the printed circuit board is made  
through metal pads on the underside of the package. In addition to the small pads  
around the periphery of the package, there are large pads on the underside that  
provide low thermal resistance, low electrical resistance, low inductance connections  
between the power components inside the package and the PCB. It is this feature of  
the HVQFN package that makes it ideally suited for low voltage, high current DC to  
DC converter applications.  
Electrical connection between the package and the printed circuit board is made by  
printing solder paste on the printed circuit board, placing the component and  
reflowing the solder in a convection or infra-red oven. The solder reflow process is  
shown in Figure 13 and the typical temperature profile is shown in Figure 14. To  
ensure good solder joints, the peak temperature Tp should not exceed 220° C, and  
the time above liquidus temperature should be less than 1.25 minutes. The ramp rate  
during preheat should not exceed 3 K/s. Nitrogen purge is recommended during  
reflow.  
SOLDER PASTE  
PRINTING  
03aj26  
300  
POST PRINT  
INSPECTION  
Temp  
(°C)  
COMPONENT  
PLACEMENT  
T
200  
T
p
r
PRE REFLOW  
INSPECTION  
1.25 min max  
T
e
1 min max  
REFLOW SOLDERING  
100  
rate of rise of  
temperature < 3 K/s  
POST REFLOW INSPECTION  
(PREFERABLY X-RAY)  
REWORK AND  
TOUCH UP  
0
0
1
2
3
03aj25  
time (minutes)  
Fig 13. Typical reflow soldering process flow.  
Fig 14. Typical reflow soldering temperature profile.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
14 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
14.2 Rework guidelines  
Since the solder joints are largely inaccessible, only the side fillets can be touched  
up. If there are defects underneath the package, then the whole package has to be  
removed.  
The first step in component removal is to reflow the solder joints. It is recommended  
that the board is heated from the underside using a convective heater whilst hot air or  
gas is directed at the upper surface of the component. Nozzles should be used to  
direct the hot air or gas to minimize heating of adjacent components. Excessive  
airflow should be avoided since this may cause the package to skew. An airflow of 15  
to 20 liters per minute is usually adequate.  
Once the solder joints have reflowed, the component should be lifted off the board  
using a vacuum pen.  
The next step is to clean the solder pads using solder braid and a blade shaped  
soldering tool. Finally, the pads should be cleaned with a solvent. The solvent is  
usually specific to the type of solder paste used in the original assembly and the  
paste manufacturers recommendations should be followed.  
15. Mounting  
15.1 PCB design guidelines  
The terminals on the underside of the package are rectangular in shape with a  
rounded edge on the inside. Electrical connection between the package and the  
printed-circuit board is made by printing solder paste onto the PCB footprint followed  
by component placement and reflow soldering. The PCB footprint shown in Figure 15  
is designed to form reliable solder joints.  
The use of solder resist between each solder land is recommended. PCB tracks  
should not be routed through the corner areas shown in Figure 15. This is because  
there is a small, exposed remnant of the lead frame in each corner of the package,  
left over from the cropping process.  
Good surface flatness of the PCB lands is desirable to ensure accuracy of placement  
after soldering. Printed-circuit boards that are finished with a roller tin process tend to  
leave small lumps of tin in the corners of each land. Levelling with a hot air knife  
improves flatness. Alternatively, an electro-less silver or silver immersion process  
produces completely flat PCB lands.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
15 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
1 SP  
(8×)  
0.4 SP  
0.4 SP  
0.6 Cu  
0.28 Cu (68×)  
1 SP  
(8×)  
7.6 Cu  
(2×)  
8.9 Cu 10.8 Cu  
11.15 OA  
(2×)  
0.6 Cu  
4.1  
(2×)  
(2×)  
0.5 SP  
(4×)  
0.4 SP (2×)  
0.9 SP  
(10×)  
e = 0.5  
4.1  
1 SP  
(10×)  
solder lands  
Cu pattern  
8.63 OA  
(4×)  
MGW820  
0.1  
0.2  
clearance  
0.025  
solder paste  
occupied area  
Fig 15. PCB footprint for SOT687-1 package (reflow soldering).  
15.2 Solder paste printing  
The process of printing the solder paste requires care because of the fine pitch and  
small size of the solder lands. A stencil thickness of 0.125 mm is recommended. The  
stencil apertures can be made the same size as the PCB lands in Figure 15.  
The type of solder paste recommended for HVQFN packages is “No clean”, Type 3,  
due to the difficulty of cleaning flux residues from beneath the package.  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
16 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
16. Revision history  
Table 6:  
Revision history  
CPCN  
Rev Date  
Description  
02 20030221  
-
Product data (9397 750 10904)  
Modifications:  
Table 2: Pin description OCSET changed to OCSET/ENABLE  
Section 7:  
Dual supply operation deleted  
Regulated output voltage section added  
Overcurrent protection description clarified  
Figure 5 revised  
Table 5:  
Typical value of IDDC changed from 20 mA to 24 mA  
Efficiency added  
Figure 8 added.  
01 20021018  
-
Objective data (9397 750 10579)  
9397 750 10904  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 02 — 21 February 2003  
17 of 19  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
17. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
18. Definitions  
19. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
18 of 19  
9397 750 10904  
Product data  
Rev. 02 — 21 February 2003  
PIP250M  
Integrated buck converter  
Philips Semiconductors  
Contents  
1
2
3
4
5
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 1  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 4  
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Output stage supply (VDDO, VSSO) . . . . . . . . . . 4  
Output voltage (VO) . . . . . . . . . . . . . . . . . . . . . 4  
Control circuit supply (VDDC, VSSC). . . . . . . . . . 4  
Bootstrap capacitor connection (CB) . . . . . . . . 4  
Voltage feedback pin (FB). . . . . . . . . . . . . . . . . 4  
Current limit set and enable  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.1.6  
input (OCSET/ENABLE) . . . . . . . . . . . . . . . . . 4  
Sense connection for current limit (PHASE). . . 4  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Single supply operation . . . . . . . . . . . . . . . . . . 5  
Regulated output voltage . . . . . . . . . . . . . . . . . 5  
Power on reset . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Overcurrent protection . . . . . . . . . . . . . . . . . . . 6  
Undervoltage and overvoltage protection. . . . . 7  
7.1.7  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 9  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Application information. . . . . . . . . . . . . . . . . . 11  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 13  
9
10  
11  
12  
13  
14  
14.1  
14.2  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Introduction to soldering HVQFN packages . . 14  
Rework guidelines . . . . . . . . . . . . . . . . . . . . . 15  
15  
15.1  
15.2  
Mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PCB design guidelines . . . . . . . . . . . . . . . . . . 15  
Solder paste printing. . . . . . . . . . . . . . . . . . . . 16  
16  
17  
18  
19  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 17  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 18  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
© Koninklijke Philips Electronics N.V. 2003.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 21 February 2003  
Document order number: 9397 750 10904  

相关型号:

PIP26U

Fibers can be free cut using fiber cutter
ETC

PIP30

TRANSIENT ABSORPTION ZENER
MICROSEMI

PIP30

7,500 & 15,000 Watt TVS Module
SEMTECH

PIP30

Transient Voltage Suppressor, Unidirectional
SENSITRON

PIP30

AC POWER BUS VOLTAGE SUPPRESSOR
PROTEC

PIP30H1

Trans Voltage Suppressor Diode, 7500W, 42.5V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE-11, 2 PIN
MICROSEMI

PIP30H1

Trans Voltage Suppressor Diode, 7500W, 42.5V V(RWM), Unidirectional, 1 Element, Silicon, PLASTIC, PIP, 2 PIN
PROTEC

PIP30H2

Trans Voltage Suppressor Diode, 7500W, Bidirectional, 1 Element, Silicon
SEMTECH

PIP30H2

Trans Voltage Suppressor Diode, 7500W, 42.5V V(RWM), Unidirectional, 1 Element, Silicon, PLASTIC, PIP, 2 PIN
PROTEC

PIP30H3

Trans Voltage Suppressor Diode, 7500W, 42.5V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE-11, 2 PIN
MICROSEMI

PIP30H3

Trans Voltage Suppressor Diode, 7500W, 42.5V V(RWM), Unidirectional, 1 Element, Silicon, PLASTIC, PIP, 2 PIN
PROTEC

PIP3102-R

LOGIC LEVEL TOPFET
NXP