PJ9910 [ETC]

LED 恒流驱动控制IC; LED恒流驱动控制IC
PJ9910
型号: PJ9910
厂家: ETC    ETC
描述:

LED 恒流驱动控制IC
LED恒流驱动控制IC

驱动
文件: 总23页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
PJ9910  
LED 恒流驱动控制 IC PJ9910  
概述  
特性  
PJ9910 是一款高效率定可靠的高亮度 LED  
灯恒流驱动控制 IC内置高精度比较器,  
off-time 控制电路流驱动等电路别适合  
大功率,多个高亮度 LED 灯串恒流驱动。  
y
可编程的 LED 驱动电流,编程范围为几毫  
安到 1 安培  
y
y
y
y
y
高效率:优于 90%  
宽输入电压范围:2.5V~400V  
高工作频率:最大 2.5MHz  
工作频率可调:10KHz~2.5MHz  
PJ9910 采用固定 off-time 控制工作方式,其工  
作频率可高达 2.5MHz使外部电感和滤波电  
高、体积减少,效率提高。off-time 最小时间,  
可通过外部电阻和电感进行设置,工作频率可  
根据用户要求而改变EN 端加 PWM 信号,  
可调节 LED 灯的亮度。  
驱动 LED 灯功能强LED 灯串可从 1 个到  
几百个 LED 高亮度灯  
y
亮度可 PWM 可调EN LED  
灯亮度  
通过调节外置的电阻控制高亮度 LED 灯的  
驱动电流,使 LED 灯亮度达到预期恒定亮度,  
流过高亮度 LED 灯的电流可从几毫安到 1 安培  
变化。  
应用范围  
y
y
y
y
y
y
y
220V 交流供电 LED 照明灯  
订货信息  
RGB 大显示屏 LED 灯  
220V 交流供电 LED 日光灯  
平板显示器 LED 背光灯  
交通警示 LED 灯  
恒流充电器控制  
通用恒流源  
封装  
1 of 9  
Preliminary  
PJ9910  
典型应用电路图  
L
VIN  
Bandgap  
VDD  
Off-  
t i me  
TOFF  
S
Q
DRV  
CS  
R
Zener  
Di ode  
2. 5V-  
5. 5V  
250mV  
-
EN  
R (opt i on)  
DC  
+
GND  
R
CS  
1  
管脚排列  
管脚序号  
管脚名称  
VSS  
功能描述  
电源地  
1
2
3
4
5
6
7
8
EN  
芯片使能端  
空脚  
NC  
GND  
DRV  
CS  
电源地  
外部 MOS 驱动脚  
输出电流检测  
关断时间设置  
电源正端  
TOFF  
VDD  
2 of 9  
Preliminary  
PJ9910  
最大额定参数值  
参数类型  
电压  
符号  
描述  
典型值  
单位  
Vmax  
8
V
VDD 脚最大电压  
Vmin-max  
Tmin-max  
Tstorage  
VESD  
-0.3-VDD+0.3  
-20-85  
V
EN 脚、CS 脚和 FB 脚电压范围  
工作温度  
oC  
oC  
V
温度  
-40-165  
2000  
存储温度  
ESD 抗静电  
电气特性  
ESD 抗静电能力(人体模式)  
参数  
符号  
VDD  
VCS  
测试条件  
最小  
2.5  
典型 最大  
单位  
V
6.5  
电源电压  
CS 脚反馈电压  
工作电流  
240  
250  
0.5  
260  
1
mV  
mA  
ns  
IDD  
TOFF0  
IDDQ  
VENH  
VENL  
TRISE  
620  
关断时间 (off 脚悬空)  
待机电流  
1
uA  
V
2.0  
EN 脚逻辑高电平  
EN 脚逻辑低电平  
DR 脚电平上升时间  
DRV 脚电平下降时间  
0.8  
50  
50  
V
ns  
DRV 脚接 500pF 电容  
DRV 脚接 500pF 电容  
ns  
T
FALL  
3 of 9  
App Notes(Step Down)  
PJ9910  
应用指引  
一 、 市 电 交 流 220V 供 电 LED 灯 照 明 应 用  
高 亮 度 大 功 率 LED 灯 , 由 于 相 同 亮 度 的 情 况 下 , 比 白 炽 灯 省 电 约 80%, 得 到 了  
广 泛 的 交 流 供 电 照 明 应 用 , 大 有 逐 渐 替 代 既 耗 电 、 发 热 、 寿 命 短 的 白 炽 灯 的 趋 势 。  
PJ 9910 特 别 适 合 110V/ 220V 交 流 供 电 的 照 明 典 型 应 用 如 图 2 所 示 220V 交 流  
电 通 过 整 流 桥 整 流 后 , 可 获 得 约 400V 的 直 流 电 压 。 由 于 PJ 9910 VDD 供 电 为 5. V,  
所 以 要 通 过 一 个 电 阻 和 一 个 稳 压 管 给 I C 供 电 。 在 MOSFET 控 制 电 压 为 高 电 平 时 ,  
MOSFET 功 率 开 关 管 导 通 , 电 感 L 储 存 能 量 , 当 控 制 电 压 为 低 电 平 时 , MOSFET 关 断 ,  
储 能 电 感 通 过 肖 特 基 二 极 管 释 放 能 量 , 从 而 点 亮 LED 灯 串 。  
电 路 参 数 选 择 :  
1LED 平 均 电 流  
在 图 1 工 作 在 连 续 工 作 模 式 下 , LED 的 平 均 电 流 I L 如 图 2 示 。  
T
T
T
OFF  
ON  
ILMAX  
IL  
i L(t )  
I
ΔL  
2  
I
LMAX 是 通 过 LED 灯 的 最 大 电 流 。  
2)工作频率确定  
工作频率由接在 T 脚的 R C 来设定R 接到 VDD R 阻值越小率越高C  
OFF  
OSC  
OSC  
OSC  
OSC  
OSC  
越大,工作频率越低。  
工作频率的高低根据实际使用情况决定的作频率越高感可以越小感的成  
本越低。  
LED 灯 驱 动 的 占 空 比 为 D=Vout Vi nT MOSFET 管接通时间,T MOSFET 管断  
ON  
OFF  
开时间(休 止 期 休 止 期 计 算 公 式 如 下 :  
100KROFF  
T
OFF = 0.51•  
(COFF +10pF)  
ROFF +100KΩ  
TOFF 脚不接电阻电容,则  
T
OFF = 0.51100K10pF = 510ns  
4 of 9  
App Notes(Step Down)  
PJ9910  
1
1D  
电路工作频率计 算 公 式 如 下 : F =  
=
T
T
OFF  
T 脚接 1000P 电容, T =51ms D=0. 1, 则电路工作频率 F 约为 20KHz。  
OFF  
OFF  
3)电感 L 选择  
电 感 L 的 选 用 原 则 是 确 保 流 过 电 感 的 电 流 变 化 值 远 小 于 通 过 电 感 的 最 大 电 流  
值 。 在 正 常 工 作 中 , 电 感 处 于 一 个 充 电 放 电 的 状 态 , 当 输 入 电 压 和 输 出 电 压 的 压  
差 较 大 时 , 加 大 电 感 的 值 , 当 压 差 小 时 , 可 以 用 较 小 的 电 感 。  
为 了 减 少 流 过 电 感 的 电 流 波 动 电 路 应 工 作 在 连 续 工 作 模 式 。在 连 续 工 作 模 式  
下 , ΔI L 最 小 。 在 休 止 期 , 流 过 LED 灯 的 ΔI L 计 算 如 下 :  
VOUT  
I  
L
=
TOFF  
L
为 了 使 流 过 LED 灯 电 流 波 动 小 于 ΔI L电感值应满足:  
VOUT  
L ≥  
TOFF  
IL  
一 般 取 值 在 几 百 微 享 到 十 几 毫 享 , 视 实 际 应 用 而 定 。  
4RCS 阻 值 确 定  
RCS 阻 值 不 同 , 就 可 设 置 通 过 LED 的 驱 动 电 流 , RCS 越 小 , 输 出 电 流 越 大 。 RCS  
的 选 择 公 式 如 下 :  
250mV  
RCS =  
I
L
+ 0.5I  
L
I L 为 通 过 LED 灯 的 平 均 电 流 ; 通 常 , 波 动 电 流 ΔI L 应 小 于 I L 的 十 分 之 一 。  
例 如 : I L 350mA, ΔI L17. 5mA, 则 RCS=0. 68Ω  
5MOSFET 管 的 选 用  
220V 交 流 供 电 情 况 下 , 首 先 要 考 虑 MOSFET 的 耐 压 , 一 般 要 求 MOSFET 的  
耐 压 高 于 600V。 其 次 , 根 据 驱 动 LED 灯 电 流 的 大 小 , 选 择 MOSFET I DS 最 大 电  
流 。  
一 般 情 况 下 , 应 选 用 MOSFET I DS 最 大 电 流 是 LED 灯 驱 动 电 流 的 5 倍 以 上 。  
另 外 MOSFET 的 内 阻 要 小 ; RDS 应 小 于 0. 5 欧 以 下 , RDS 越 小 , 损 耗 在 MOSFET 管 上  
的 功 率 越 小 , 电 路 的 变 换 效 率 就 越 高 。  
为 了 降 低 对 MOSFET 管 的 要 求 , 可 选 用 图 3 应 用 电 路 图 。  
6LED 灯亮度调节  
LED 灯的亮度调节,可由以下二种方法:  
第一种方法是通过改变 R 的电阻R 的电阻越小LED 灯的亮度越高R 电阻越大亮  
CS  
CS  
CS  
度越小。  
第二种方法是在 EN 端加 PWM 信号调光,PWM 信号可由 CPU 产生,也可由其它脉冲信号  
5 of 9  
Preliminary  
PJ9910  
产生PWM 信号可控制通过 LED 灯的电流从 0 变到正常电流状态可使 LED 灯从暗变为正常  
亮度。PWM 占空比越大,亮度越亮。利用 PWM 控制 LED 的亮度,非常方便和灵活,是最常用的  
调光方法,PWM 的频率可从几十 Hz 到几千 KHz。  
7EN 使能端子  
EN 端接(低电平)地时,PJ9910 处于休眠状态,此时,工作电流小于 10uA,自耗电  
非常小,当 EN 端为高电平时,PJ9910 处于工作状态,此时空载工作电流约为 200uA。  
EN 端可接受 PWM 信号调光信号,完成调光功能。  
6 of 9  
Preliminary  
PJ9910  
典型应用设计  
典型应用1:  
市电交流220V供电,驱动45串、6并、20mA白光LED灯,输出总电流120mA,使用在LED  
日光灯照明,应用电路如图3。改变R4可以改变输出电流大小。  
3  
7 of 9  
Preliminary  
PJ9910  
典型应用 2:  
市电交流 220V 供电12 1W 白光 LED 使用在 LED 洗墙灯装饰用电路如  
4。  
4  
8 of 9  
Preliminary  
PJ9910  
封装信息  
9 of 9  
P.1  
PJ9910  
WIDE INPUT RANGE  
POWER LED DRIVER  
DESCRIPTION  
FEATURES  
z >90% Efficiency  
z 8V to 450V input range  
The PJ9910 is a PWM high-efficiency LED  
driver control IC. It allows efficient  
z Constant-current LED driver  
z Applications from a few mA to more than 1A  
output  
z LED string from one to hundreds of diodes  
z PWM Low-Frequency Dimming via Enable pin  
z Input Voltage Surge ratings up to 450V  
operation of High Brightness (HB) LEDs  
from voltage sources ranging from 8Vdc up  
to 450Vdc. The PJ9910 controls an external  
MOSFET at fixed switching frequency up to  
300 kHz. The frequency can be programmed  
using a single resistor. The LED string is  
driven at constant current rather than  
constant voltage, thus providing constant  
light output and enhanced reliability. The  
output current can be programmed between  
a few milliamperes and up to more than 1A.  
APPLICATIONS  
z DC/DC LED driver  
z Automotive  
z Lighting  
PAD DIAGRAM  
TYPICAL APPLICATION CIRCUIT  
1. Chip size: X=1.88mm, Y=1.54mm  
(without scribe line width).  
2. Scribe line width: X=80µm, Y=80µm  
3. Pad size: 100µm x 100µm  
4. Substrate to GND  
Figure 1. 8~450V Powered Driver for Two  
White Power LEDs  
5. Wafer thickness: 460µm  
P.2  
PJ9910  
WIDE INPUT RANGE  
POWER LED DRIVER  
PAD LOCATION  
μ
X ( m)  
μ
Y ( m)  
Pad  
1
Pad Name  
VIN  
CS  
-887.5  
0
110  
0
2
3
GND  
GND  
GATE  
PWM_D  
VDD  
255.5  
395.5  
587.0  
556.5  
375.5  
235.5  
-1012.5  
-1012.5  
0
4
0
5
544.5  
1259.5  
1290  
1290  
1260.5  
1044.5  
6
7
8
VDD  
9
LD  
10  
ROSC  
DIE PHOTO  
P.3  
PJ9910  
WIDE INPUT RANGE  
POWER LED DRIVER  
ELECTRICAL CHARACTERISTICS (TA=25 , unless otherwise noted.  
Symbol  
Description  
Min Typ Max Unit Condition  
VINDC Input DC supply voltage range  
8.0  
7.0  
450  
1
V
DC input voltage  
IINsd  
Shut-Down mode supply current  
0.5  
7.5  
mA  
Pin PWM_D to  
GND, VIN=8V  
VDD  
Internally regulated voltage  
8.0  
V
V
VIN=8-450V,  
I
DD(ext)=0, pin Gate  
open  
VDDmax Maximal pin VDD voltage  
13.5  
When an external  
voltage applied to  
pin VDD  
IDD(ext) VDD current available for external  
circuitry  
1.0  
mA  
VIN=8-100V  
UVLO VDD undervoltage lockout threshold  
6.45  
6.7  
6.95  
V
mV  
V
VIN rising  
VIN falling  
VIN=8-450V  
VIN=8-450V  
VEN=5V  
Δ
UVLO  
VDD undervoltage lockout hysteresis  
500  
VEN(lo) Pin PWM_D input low voltage  
VEN(hi) Pin PWM_D input high voltage  
RLN Pin PWM_D pull-down resistance  
1.0  
2.4  
50  
V
Ω
k
100  
250  
150  
275  
TA=-40  
to  
VCS(hi) Current sense pull-in threshold voltage 225  
mV  
+85  
VGATE(hi) GATE high output voltage  
VDD-  
0.3  
VDD  
V
IOUT=-10mA  
VGATE(lo) GATE low output voltage  
0
0.3  
30  
V
IOUT=10mA  
ROSC=1.00M  
Ω
fosc  
Oscillator frequency  
20  
80  
25  
kHz  
kHz  
%
Ω
ROSC=223k  
100  
120  
100  
DmaxHT Maximum Oscillator PWM duty cycle  
FPWMhf=25kHz, at  
GATE, CS to GND  
TA=<85  
VIN=12V  
,
VLD  
Linear Dimming pin voltage range  
0
250  
mV  
P.4  
PJ9910  
WIDE INPUT RANGE  
POWER LED DRIVER  
TBLANK Current sense blanking interval  
tDELAY Delay from CS trip to GATE lo  
150  
215  
280  
ns  
VCS=0.55VLD,  
VLD=VDD  
300  
ns  
VIN=12V,  
VLD=0.15V, VCS=0  
to 0.22V after  
TBLANK  
tRISE  
GATE output rise time  
30  
30  
50  
50  
ns  
ns  
CGATE=500pF, 10%  
to 90% VGATE  
tFALL GATE output fall time  
CGATE=500pF, 90%  
to 10% VGATE  
Note: Also limited by package power dissipation limit, whichever is lower.  
8 SOIC PACKAGE  
PIN DESCRIPTION  
Application Note  
Buck-based LED Drivers  
Fundamental Buck Converter topology is an  
excellent choice for LED drivers in off-line (as  
well as low-voltage) applications as it can  
produce a constant LED current at very high  
efficiencies and low cost. A  
The low sense voltage allows the use of low  
current sense resistor values. IC PJ9910C operates  
down to 8V input, which is required for some low  
input voltage applications, and can take a  
maximum of 450V input, which makes it ideal for  
peak-current-controlled buck converter can give off-line applications. It also has an internal  
reasonable LED current variation over a wide regulator that supplies power to the IC from the  
range of input and LED voltages and needs little input voltage, eliminating the need for an external  
effort in feedback control design. Coupled with  
the fact that these converters can be easily  
low voltage power supply. It is capable of driving  
the external FET directly, without the need for  
designed to operate at above 90% efficiency, the additional driver circuitry. Linear or PWM dimming  
buck-based driver becomes an unbeatable  
solution to drive High Brightness LEDs.  
can also be easily implemented using the IC  
PJ9910C.  
The IC PJ9910C provides a low-cost, low  
This Application Note discusses the design of a  
component count solution to implement the  
buck-based LED driver using the IC PJ9910C with  
continuous mode buck converter. IC PJ9910C has the help of an off-line application example. The  
two current sense threshold voltages – an  
internally set 250mV and an external voltage at  
the LD pin. The actual threshold voltage will be  
the lower of the internal 250mV and the voltage  
at the LD pin.  
same procedure can be used to design LED  
drivers with any other lower voltage AC or DC  
input; 12V for example.  
Circuit Diagram  
loss dissipation during normal operation of the  
Step1: Switching Frequency and resistor (R1)  
The switching frequency determines the size of the converter, and must be minimized. A good rule of  
inductor L1 and size or type of input filter capacitor thumb is that the thermistor should limit the inrush  
C1. A larger switching frequency will result in a  
smaller inductor, but will increase the switching  
current to not more than five times the steady state  
current as given by equation (2), assuming  
losses in the circuit. For off-line applications, typical maximum voltage is applied. The required cold  
switching frequencies should be in range  
resistance is:  
20-150kHz. The higher the input voltage range (for  
example in Europe 230VAC), the lower the  
frequency should be to avoid extensive capacitive  
losses in the converter. For North America AC line  
a frequency of fs=100kHz is a good compromise.  
This gives us a 200Ω resistance at 25. Choose  
a thermistor with a resistance around 200Ω and  
From the datasheet, the oscillator resistor needed rms current greater than 0.2A for that application.  
to achieve this is 228kΩ.  
Step3: Choose the Input Capacitors (C1 and C2)  
The first design criterion to meet is that the  
Step2: Choose the Input Diode Bridge (D1)  
The voltage rating of the diode bridge will depend maximum LED string voltage should be less than  
on the maximum value of the input voltage. The  
half the minimum input voltage to avoid having to  
current rating will depend on the maximum average implement a special loop compensation technique.  
current drawn by the converter.  
For this example, the minimum rectified voltage  
should be:  
The hold-up and input filter capacitor required at  
The 1.5 factor in equation (1) a 50% safety margin the diode bridge output have to be calculated at the  
is more than enough. For this design, choose a  
400V, 1A diode bridge.  
minimum AC input voltage. The minimum capacitor  
value can be calculated as:  
Placing a thermistor (or resistor) in series with input  
bridge rectifier will effectively limit the inrush  
current to input bulk capacitor C1 during the initial  
start-up of the converter. Except this useful action  
during very short time interval, such a series  
element creates a unnecessary power  
In this example, C126.45μF.  
Note: Equation (5) yields a conservative estimate lifetime. Then, the inductor L1 can be computed at  
to for the least amount of capacitance required. It rectified value of the nominal input voltage as:  
means that the capacitor filter will normally care  
large ripple content. Some electrolytic capacitors  
may not be able to withstand such ripple current  
and minimum value of C1 capacitor may not be  
met, forcing the design to use larger value  
capacitor. In the case where the allowable ripple at  
the input of the buck converter is large, the  
In this example, L1 = 2.9mH  
capacitor C1 can be reduced significantly. See the The peak current rating of the inductor will be:  
Appendix for a more accurate calculation of the  
required capacitor value.  
The voltage rating of the capacitor should be more The rms current through the inductor will be the  
than the peak input voltage with 10-12% safety  
margin.  
same as the average current for the chosen 30%  
ripple.  
Right inductor for this application is an off-the-shelf  
2.7mH, 0.54A(peak), 0.33A(rms) inductor.  
Choose a 250V, 33μF electrolyte capacitor.  
Step5: Choose the FET (Q1) and Diode (D2)  
The peak voltage seen by the FET is equal to the  
maximum input voltage. Using a 50% safety rating,  
Such electrolytic capacitors have a sizable ESR  
component. The larger ESR of these capacitors  
makes it inappropriate to absorb the high  
frequency ripple current generated by the buck  
converter. Thus, adding a small MLCC capacitor in The maximum rms current through the FET  
parallel with the electrolytic capacitor is a good depends on the maximum duty cycle, which is 50%  
option to absorb the high frequency ripple current. by design. Hence, the current rating of the FET is:  
The required high frequency capacitance can be  
computed as:  
Typically a FET with about 3 times the current is  
chosen to minimize the resistive losses in the  
In this design example, the high frequency  
switch.  
capacitance required is about 250V, 22μF.  
For this application choose a 300V, <1A MOSFET,  
such as a BSP130 from Philips. Actual MOSFET  
type should be determined by the transistor  
Step4: Choose the Inductor (L1)  
The inductor value depends on the ripple current in permitted power dissipation on printed board. For  
the LEDs. Assume a +/- 15% ripple (a total of 30%) example, a BSP130 SOT-223 package limits the  
in the LED current, an aggressive assumption  
would go up to +/- 30% to reduce the size of the  
inductor more than twice at the price of reduced  
efficiency and , possibly, reduced LED  
dissipation to less than a Watt at 50+ Celsius, even  
if the MOSFET peak current capability is 1.5A. A  
good rule of thumb is to limit overall MOSFET  
power dissipation to not more than 3-5% of total  
Design for DC/DC Applications  
output power, by making a right transistor choice.  
In choosing MOSFET transistors for such LED  
The same procedure can be used for DC/DC  
drivers, going bigger does not mean getting better, applications. The only modifications are that the  
just the opposite. Using TO-220 transistor  
500/4A/2W instead of SOT-223 transistor  
300V/0.5A/6W does not more harm than good,  
reducing overall efficiency by several percent.  
input diode bridge and input hold-up capacitor are  
not required. A small input capacitance to absorb  
high frequency ripple current is all that is required.  
The capacitance can be computed using  
equation(7).  
The peak voltage rating of the diode is the same as  
the FET. Hence,  
Appendix  
The more accurate equations for computing the  
required capacitance values are:  
The average current through the diode is:  
Choose a 300V, 1A ultra-fast diode.  
Step6: Choose the Sense Resistor (R2)  
The sense resistor value is given by:  
For the example in this application note, the actual  
minimum capacitance required from the above  
equations is 19μF (as compared to 26μF from  
equation(5)).  
if the internal voltage threshold is being used.  
Otherwise, substitute the voltage at the LD pin  
instead of the 0.25V in equation(14).  
For this design, R2= 0.55Ω. Also calculate the  
resistor power dissipation:  
A 0.1W resistor is good for this application.  
Note: Capacitor C3 is a bypass capacitor. A typical  
value of 1.0 to 2.2μF, 16V is recommended.  
1
2
3
4
D
C
B
A
D
C
B
A
L1  
P1  
FUSE1  
1R/1W  
LED+  
3mH  
C12  
L2  
15mH  
C1  
RT1  
275VAC  
AC  
102  
10uF/250V  
1000V  
D8  
R3  
BD1  
MB6S  
D7  
M7  
LED  
LED  
C10  
C5  
0.1uF/275VA
SF26  
1M  
RV1  
275VAC  
102  
T1  
15mH  
1000V  
C11  
...  
102  
P2  
D6  
M7  
1000V  
D5  
M7  
DZ2  
12V  
C3  
C9  
102  
AC  
22uF/50V  
Vin=110/220VAC  
LED-  
25  
C2  
10uF/250V  
Q1  
4
I=240ma  
PJ2N60  
D9  
SS14  
R4  
2K  
U1 PJ9910S  
1
2
3
4
8
7
6
5
VSS VDD  
C7  
EN  
NC  
TOFF  
CS  
470pF  
Q2  
DZ1  
5.1V  
PJM3400  
GND DRV  
C4  
C8  
104  
22uF/50V  
R6  
82K  
R5  
3R 1%  
R7  
R8  
R9  
3 R 1%  
3 R 1%  
3R 1%  
VR1  
100R  
C6  
2pF  
项目1驱动电路.Sch  
1
2
3
4
PJ9910S PCBA BOM  
Part  
Number  
Ref Unit  
Price(RMB)  
Part Type  
PCB  
DESCRIPTION  
Footprint  
N/A  
Ref  
PCB  
Quantity Unit  
1
PJ9910S驱动电路板 V0.0.PCB,236mm x 20mm x 1.2mm FR-4  
1
PCS  
3.00  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
IC  
PJ9910S,LED Driver IC  
MB6S,600V 500mA  
PJ2N60,600V 2A  
PJM3400,30V 5A  
1N4007(M7),1000V 1A  
SF26,400V 2A  
SS14(1N5819),40V 1A  
C12V,12V 1/2W  
C5V1,5.1V 1/2W  
1 ohm,1W  
1M ohm,1/8W  
1.2K ohm,1/8W  
3 ohm,1/8W  
1 ohm,1/8W  
82K ohm,1/8W  
SOP8  
SOIC-4  
TO-252  
SOT-23  
DO-214AC  
D0-15  
DO-214AC  
MLL34  
SOD-123  
AXIAL-0.5  
0805  
U1  
BD1  
Q1  
1
1
1
1
3
1
1
1
1
1
1
1
2
1
1
1
2
1
1
2
1
1
2
1
1
1
1
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
PCS  
3.80  
1.00  
2.00  
0.60  
0.40  
0.50  
0.20  
0.15  
0.15  
0.15  
0.02  
0.02  
0.02  
0.02  
0.02  
0.60  
0.90  
0.30  
0.30  
0.35  
0.02  
0.02  
0.02  
1.50  
0.90  
0.05  
0.50  
Bridge  
MOSFET  
MOSFET  
Doide  
Doide  
Doide  
Q2  
D5 D6 D7  
D8  
D9  
DZ2  
DZ1  
FUSE1  
R3  
Zenor  
Zenor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
0805  
0805  
0805  
0805  
R4  
R5 R9  
R8  
R6  
17 Variable Resistor  
100 ohm,Variable Resistor  
10uF/250V ,E-cap  
1uF/50V,E-cap  
VR-5  
VR  
18  
19  
20  
21  
22  
23  
24  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
CD110  
CD11  
CD11  
RAD-0.4  
0805  
0805  
C1 C2  
C3  
C4  
C5 C10  
C6  
C7  
C8 C9  
T1  
L1  
L2  
RV1  
47uF/16V,E-cap  
0.1uF/275VAC,MKX/MKP X2  
2pF, Ceramic Capacitor  
470pF, Ceramic Capacitor  
0.1uF, Ceramic Capacitor  
20mH/800mA,10x6x5  
2.5mH/1000mA,10x16  
Line ,L=8.5mm,d=0.5mm  
5D471,470V,D=5mm  
0805  
25 Common Coil  
10x16  
10x16  
N/A  
26  
27  
28  
Inductor  
Line  
RV  
RAD-0.2  
29  
RT  
Line ,L=5.0mm,d=0.5mm  
N/A  
L2  
1
PCS  
0.05  
Total:  
35  
17.56  
First release  
REV:0.0  
Vendor info  
Vendor contact info  
0755-83674428  
PJ  
PJ  
0755-83674428  
Fairchild Semiconductor  
N/A  
PJ  
0755-83674428  
PJ  
0755-83674428  
N/A  
N/A  
Phiphs  
Leshan Radio Company  
YueJing Hi-tech Company  
Leshan Radio Company  
YueJing Hi-tech Company  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Rubycon  
Rubycon  
Rubycon  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
SHENZHEN SURONG CAPACITORS CO.,LTD  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Fenghua Advanced Technology (holding) Co., Ltd  
Miden Electronics Ltd.  
Miden Electronics Ltd.  
N/A  
N/A  
N/A  
WEI DE CHANG Elect Ltd.  
N/A  
N/A  
N/A  

相关型号:

PJA1000F-24

AC/DC CONVERTER 24V 1000W
COSEL

PJA1000F-48

AC/DC CONVERTER 48V 1000W
COSEL

PJA100F-12

AC/DC CONVERTER 12V 100W
COSEL

PJA100F-12-C

AC/DC CONVERTER 12V 100W
COSEL

PJA100F-12-J

AC/DC CONVERTER 12V 100W
COSEL

PJA100F-12-N2

AC/DC CONVERTER 12V 100W
COSEL

PJA100F-12-R

AC/DC CONVERTER 12V 100W
COSEL

PJA100F-12-T

AC/DC CONVERTER 12V 100W
COSEL

PJA100F-15

AC/DC CONVERTER 15V 100W
COSEL

PJA100F-15-C

AC/DC CONVERTER 15V 100W
COSEL

PJA100F-15-J

AC/DC CONVERTER 15V 100W
COSEL

PJA100F-15-N2

AC/DC CONVERTER 15V 100W
COSEL