PLX9656 [ETC]

I/O Accelerator|PCI9656 Data Book Corrections ; I / O加速器| PCI9656数据手册更正\n
PLX9656
型号: PLX9656
厂家: ETC    ETC
描述:

I/O Accelerator|PCI9656 Data Book Corrections
I / O加速器| PCI9656数据手册更正\n

PC
文件: 总28页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12/19/2002  
PCI 9656 Blue Book Revision 0.90b Corrections  
This document details several corrections to the PCI 9656 Blue Book, revision 0.90b. Please  
review these corrections before proceeding with your design.  
1. Toggling IDDQEN# At Power On Time  
When using the PCI 9656AD, external logic is required on the IDDQEN# pin to  
configure the PCI buffers for proper operation. This external logic is not required  
when using the PCI 9656BA. The requirement for this logic is not included in the Blue  
Book.  
PCI 9656AD IDDQEN#  
To put the PCI 9656AD into its IDDQ state, hold the IDDQEN# input signal (ball A10) in its  
asserted state.  
To configure the PCI 9656AD for normal operation, during initialization the IDDQEN# input signal  
must transition from its asserted state to its de-asserted state prior to PCI RST# de-assertion.  
This causes the silicon to configure its PCI I/O buffers for proper bus operation. After this  
transition completes, hold IDDQEN# in its de-asserted state.  
Note. For CompactPCI Hot Swap applications, IDDQEN# must be held in its de-  
asserted state during pre-charge. As a result, CompactPCI Hot Swap  
applications require that IDDQEN# transition from its de-asserted state to its  
asserted state after pre-charge completes, and then transition back to its de-  
asserted state prior to Local PCI RST# de-assertion.  
PCI 9656BA IDDQEN#  
To put the PCI 9656BA into its IDDQ state, hold the IDDQEN# input signal (ball A10) in its  
asserted state.  
To configure the PCI 9656BA for normal operation, hold IDDQEN# in its de-asserted state.  
Note. For applications that use the PCI 9656BA’s PCI Power Management  
D3cold PME Generation feature, de-assert IDDQEN# by tying it directly to the  
2.5V power source for Vcore. The PCI 9656BA uses IDDQEN# to sense both  
when Vcore is going away to prepare to enter the D3cold state and when Vcore  
is coming back to prepare to leave the D3cold state. Do not tie IDDQEN# to the  
2.5V power source for 2.5Vaux, and do not tie it to the 3.3V power source for  
either Vring or Card_Vaux.  
Even though the PCI 9656BA does not require any transitioning of its IDDQEN# input signal for  
proper PCI bus operation, transitioning the PCI 9656BA’s IDDQEN# in accordance with the PCI  
9656AD IDDQEN# requirements, above, will have no effect on PCI 9656BA operation. As a  
result, the PCI 9656BA can be substituted for the PCI 9656AD in existing designs without  
needing to remove the external IDDQEN# transitioning logic.  
Sample Circuit Designs Supporting All Silicon Versions  
The following circuit diagrams come directly from the schematics of two PLX hardware reference  
design boards that have been validated empirically. The first is an example circuit for designs that  
- 1 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
do not need to support CompactPCI Hot Swap. The second is an example for designs that do  
need to support CompactPCI Hot Swap.  
Note. These circuit diagrams are provided as examples only. It is the designer’s  
responsibility to create circuitry that meets the above stated IDDQEN# toggling  
requirements for their particular design.  
Figure 1. IDDQEN# Toggling Circuitry Example For Non-CompactPCI Hot Swap Designs  
Figure 2. IDDQEN# Toggling Circuitry Example For CompactPCI Hot Swap Designs  
2. USERi Pull-Up/Pull-Down At Power Up Time  
When using the PCI 9656, an external pull-up or pull-down resistor is required on the  
USERi pin to configure the chip for the desired PCI bus behavior during chip initialization.  
A pull-up resistor configures the chip to issue PCI Retries during initialization [high =  
retry], and a pull-down resistor configures the chip to do nothing on the PCI bus during  
initialization. This is true for both the PCI 9656AD and the PCI 9656BA. The description  
in the Blue Book regarding this is incorrect for these chip revisions.  
- 2 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
The following text replaces sections 2.4.1.2 and 4.4.1.2 of the Blue Book. Note that these  
sections of the Blue Book look very similar to what is below. The key difference is that the polarity  
of USERi is incorrectly reversed in the Blue Book descriptions. Follow the polarity in the  
description below. Changes from the Blue Book are underlined.  
2.4.1.2/4.4.1.2 Local Initialization  
As stated in PCI r2.2, Section 3.5.1.1:  
“If the target is accessed during initialization-time, it is allowed to do any of the  
following:  
1. Ignore the request (except if it is a boot device). This results in a Master Abort.  
2. Claim the access and hold in wait sates until it can complete the request, not to  
exceed the end of initialization-time.  
3. Claim the access and terminate with [PCI] Retry.”  
The PCI 9656 supports Option 1 (Initially Not Respond), and Option 3 (Initially Retry),  
above. For CompactPCI Hot Swap live insertion systems, the preferred method for  
the silicon is usually not to respond to PCI Configuration accesses during  
initialization. For legacy systems, Retries are usually preferred for compatibility  
reasons. However, it is ultimately the designer’s choice of which option to use.  
The PCI 9656 determines the option to use as follows:  
The USERi pin is sampled at the rising edge RST# to determine the selected PCI  
Bus response mode during local initialization. If USERi is low (through an external 1K  
ohm pull-down resistor), the PCI 9656 does not respond to PCI activity until the  
device’s Local Bus initialization is complete. This results in a Master Abort (the  
preferred method for CompactPCI Hot Swap systems). If USERi is high (through an  
external 1K—4.7K ohm pull-up resistor), the PCI 9656 responds to PCI accesses  
with PCI Retry cycles until the device’s Local Bus initialization is complete. Local Bus  
initialization is complete when the Local Init Status bit is set (LMISC1[2]=1).  
The LMISC1[2] bit can be programmed in one of three ways:  
1. By a Local Bus master writing a 1 directly to LMISC1[2].  
2. By the serial EEPROM specifying a value of 1 for LMISC1[2] during a serial  
EEPROM load.  
3. If a Local Bus Master is not present and either a serial EEPROM is not present or  
a blank serial EEPROM is present, the PCI 9656 reverts to its power on/reset  
default register values and sets this bit. (Refer to Table 2-18 on page 2-9.)  
During run time, USERi can be used as a general purpose input as described in the  
Tables 12-10, 12-11, and 12-12, for the M, C, and J mode Local Bus pins.  
Refer to Section 9, “CompactPCI Hot Swap” for specifics on using this feature in  
PICMG 2.1, R2.0 systems.  
- 3 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
3. EEDI/EEDO Pull-Up When Local Processor Present But EEPROM Not  
Present  
When using the PCI 9656, if initialization is to be performed by a Local Bus master and  
no serial EEPROM is present, the EEDI/EEDO pin must not be pulled down. This is true  
for both the PCI 9656AD and the PCI 9656BA. The description in the Blue Book  
regarding this is vague.  
Tables 2-18 and 4-18 of the Blue Book make no mention of a pull-up or pull-down resistor on the  
EEDI/EEDO pin when a Local Processor is present but an EEPROM is not present. The correct  
requirement is that the EEDI/EEDO pin must be either be left floating or pulled up with a 1K-ohm  
or greater value resistor when an EEPROM is not present. In any case, the pin must not be pulled  
down.  
The following shows the corrected entry of Tables 2-18 and 4-18:  
Table 1. Serial EEPROM Guidelines  
Local  
Processor  
Serial  
EEPROM  
System Boot Condition  
The Local Processor programs the PCI 9656 registers, then sets the  
Local Init Status bit (LMISC1[2] = 1).  
A 1K ohm or greater pull-up resistor on EEDI/EEDO is recommended,  
but not required. The EEDI/EEDO pin already has an internal pull-up  
(ref. Table 12-1).  
Present  
None  
Note: Some systems may avoid configuring devices that do not  
complete configuration accesses within 225 PCI clocks after RST# has  
been de-asserted. In addition, some systems may hang if Direct Slave  
reads and writes are immediately retried. The value of the Direct Slave  
Retry Delay Clocks (LBRD0[31:28]) may resolve the hang by delaying  
assertion of the STOP# signal by the PCI 9656.  
4. Updated Electrical Specifications  
The following table updates Blue Book Table 13-5 for both the PCI 9656AD and the PCI  
9656BA. Changes from the Blue Book are underlined.  
- 4 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 2. Electrical Characteristics Over Operating Range  
Parameter  
Description  
Output  
High Voltage  
Output  
Low Voltage  
Output  
Test Conditions  
Min  
Max  
Units  
1
VOH  
IOH = -12.0 mA  
2.4  
-
V
V
V
V
V
V
VDD = Min  
VIN = VIH or VIL  
1
VOL  
IOL = 12.0 mA  
-
0.4  
-
2
VOH  
IOH = -24.0 mA  
2.4  
-
VDD = Min  
High Voltage  
VIN = VIH or VIL  
2
Output  
Low Voltage  
Input  
VOL  
IOL = 24.0 mA  
0.4  
5.5  
0.8  
VIH  
VIL  
-
-
-
-
2.0  
-0.5  
High Level  
Input  
Low Level  
PCI 3.3V  
VOH3  
Output  
High Voltage  
PCI 3.3V  
Output  
IOH = -500 µA  
IOL = 1500 µA  
0.9 VDD  
-
V
V
VDD = Min  
VIN = VIH or VIL  
VOL3  
-
0.1 VDD  
Low Voltage  
PCI 3.3V Input  
High Level  
PCI 3.3V Input  
Low Level  
Input Leakage  
Current  
DC Current  
Per Pin During  
Pre-charge  
Three-State  
Output  
VIH3  
VIL3  
IIl  
-
-
-
-
0.5 VDD VDD+0.5  
V
V
-0.5  
-10  
0.3 VDD  
+10  
VSS = VIN = VDD, VDD = Max  
VP = 0.8 to 1.2V  
µA  
3
ILPC  
-
1.0  
mA  
µA  
IOZ  
VDD = Max  
-10  
+10  
Leakage  
Current  
4
Power Supply  
Current  
for I/O Ring  
Power Supply  
Current  
IDD  
I/O Ring VDD = 3.6V  
PCLK = 66MHz, LCLK = 66MHz  
-
-
-
95  
185  
50  
mA  
mA  
µA  
(I/O Ring)  
IDD  
(Core)  
Core VDD = 2.63V  
PCLK = 66MHz, LCLK = 66MHz  
for Core  
ICCL  
ICCH  
ICCZ  
Quiescent  
Power Supply  
Current  
VCC = Max  
VIN = GND or VCC  
Notes:  
1. For 12 mA I/O or output cells (Local Bus side).  
2. For 24 mA I/O or output cells (Local Bus side).  
3. ILPC is the DC current flowing from VDD to Ground during pre-charge, as both PMOS and  
NMOS devices remain on during pre-charge. It is not the leakage current flowing into or out  
of the pin under pre-charge.  
4. 40 Local Bus side I/Os switching simultaneously and 76 PCI side I/Os switching  
simultaneously.  
- 5 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
5. PCI Arbiter Enable/Disable  
When using the PCI 9656, the configuration register bit that is used to enable or disable  
the PCI 9656’s PCI Arbiter can only be written by the EEPROM or a Local Bus master. A  
PCI master cannot be write this bit. This is true for both the PCI 9656AD and the PCI  
9656BA. The description in the Blue Book regarding this is incorrect.  
Register 11-57 of the Blue Book incorrectly states that the PCI Arbiter Enable bit (PCIARB[0]) can  
be written by a PCI master. In fact, a PCI master cannot write the PCI Arbiter Enable bit.  
The following shows the corrected entry of Register 11-57:  
Table 3. (PCIARB; PCI:100h, LOC:1A0h) PCI Arbiter Control  
Value after  
Reset  
Bit  
Description  
Read  
Write  
PCI Arbiter Enable. Value of 0 indicates the PCI arbiter is disabled  
and REQ0# and GNT0# are used by the PCI 9656 to acquire PCI  
Bus use. Value of 1 indicates the PCI arbiter is enabled.  
Local/  
Serial  
EEPROM  
0
Yes  
0
6. PCI BAR’s 4 & 5 Unused  
For Direct Slave data transfers, the PCI 9656 supports mapping two PCI address spaces  
to the Local Bus using PCI Base Address Registers (BAR’s) 2 and 3. This is true for both  
the PCI 9656AD and the PCI 9656BA. The Blue Book PCI Configuration Register table  
regarding this is potentially confusing.  
Table 11-2 of the Blue Book could be interpreted to indicate that the PCI 9656 supports mapping  
four PCI address spaces to the Local Bus for Direct Slave data transfers. The PCI 9656 in fact  
only supports mapping two PCI address spaces.  
The following shows the corrected entries of Table 11-2.  
Table 4. PCI Configuration Registers  
Local  
Access  
(Offset  
from Chip  
Select  
To ensure software compatibility with other  
versions of the PCI 9656 family and to ensure  
compatibility with future enhancements, write 0 to  
all unused bits.  
PCI  
PCI/  
Local  
Writeable  
Serial  
EEPROM  
Writeable  
Configuration  
Register  
Address  
Address) 31  
0
20h  
24h  
20h  
24h  
PCI Base Address 4; unused  
PCI Base Address 5; unused  
Y
Y
N
N
7. Big Endian/Little Endian/Byte Lane Mode  
The Blue Book descriptions of Big Endian and Little Endian conversion are potentially  
confusing.  
PCI 9656 Big Endian and Little Endian conversion are detailed in Blue Book Sections 2.3 and 4.3.  
The following tables provide further clarification by detailing precisely PCI 9656 signal mappings  
between the PCI bus and the Local Bus during Big Endian and Little Endian conversion.  
- 6 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 5. C Mode Endian Mapping For Byte Lane Mode 0  
C Mode Local Bus Pin  
PCI Pins  
Mapped 2nd  
(64-bit Transfers  
Only)  
Byte Lane Mode = 0 (BIGEND[4] = 0)  
Little Endian Big Endian  
16-bit  
PCI Pins  
Mapped 1st  
32-bit  
8-bit  
32-bit  
1-LD24  
1-LD25  
16-bit  
1-LD8  
1-LD9  
8-bit  
AD32  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD41  
AD42  
AD43  
AD44  
AD45  
AD46  
AD47  
AD48  
AD48  
AD50  
AD51  
AD52  
AD53  
AD54  
AD55  
AD56  
AD57  
AD58  
AD59  
AD60  
AD61  
AD62  
AD63  
AD0  
AD1  
1-LD0  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
1-LD8  
1-LD9  
1-LD0  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
1-LD8  
1-LD9  
1-LD0  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
2-LD0  
2-LD1  
2-LD2  
2-LD3  
2-LD4  
2-LD5  
2-LD6  
2-LD7  
3-LD0  
3-LD1  
3-LD2  
3-LD3  
3-LD4  
3-LD5  
3-LD6  
3-LD7  
4-LD0  
4-LD1  
4-LD2  
4-LD3  
4-LD4  
4-LD5  
4-LD6  
4-LD7  
1-LD0  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
2-LD0  
2-LD1  
2-LD2  
2-LD3  
2-LD4  
2-LD5  
2-LD6  
2-LD7  
3-LD0  
3-LD1  
3-LD2  
3-LD3  
3-LD4  
3-LD5  
3-LD6  
3-LD7  
4-LD0  
4-LD1  
4-LD2  
4-LD3  
4-LD4  
4-LD5  
4-LD6  
4-LD7  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
1-LD26 1-LD10  
1-LD27 1-LD11  
1-LD28 1-LD12  
1-LD29 1-LD13  
1-LD30 1-LD14  
1-LD31 1-LD15  
AD8  
AD9  
1-LD16  
1-LD17  
1-LD18  
1-LD19  
1-LD20  
1-LD21  
1-LD22  
1-LD23  
1-LD8  
1-LD0  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
2-LD8  
2-LD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
1-LD10 1-LD10  
1-LD11 1-LD11  
1-LD12 1-LD12  
1-LD13 1-LD13  
1-LD14 1-LD14  
1-LD15 1-LD15  
1-LD16  
1-LD17  
1-LD18  
1-LD19  
1-LD20  
1-LD21  
1-LD22  
1-LD23  
1-LD24  
1-LD25  
2-LD0  
2-LD1  
2-LD2  
2-LD3  
2-LD4  
2-LD5  
2-LD6  
2-LD7  
2-LD8  
2-LD9  
1-LD9  
1-LD10 2-LD10  
1-LD11 2-LD11  
1-LD12 2-LD12  
1-LD13 2-LD13  
1-LD14 2-LD14  
1-LD15 2-LD15  
1-LD0  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
2-LD0  
2-LD1  
2-LD2  
2-LD3  
2-LD4  
2-LD5  
2-LD6  
2-LD7  
1-LD26 2-LD10  
1-LD27 2-LD11  
1-LD28 2-LD12  
1-LD29 2-LD13  
1-LD30 2-LD14  
1-LD31 2-LD15  
Notes  
1. During 64-bit PCI transfers, the lower 32 bits of the PCI bus (AD[31:0]) are always mapped first.  
2. For each Local Bus Pin table entry, n-m means that row’s PCI pin maps to Local Bus pinm during Local Bus cycle n that either  
results from the PCI cycle (PCI-to-Local Bus transfers) or results in the PCI cycle (Local Bus-to-PCI transfers). For example, a  
Local Bus Pin of “2-LD5” for PCI Pin AD21 during 16bit Little Endian Local Bus transfers (ref. the darkest shaded entry)  
means that during a PCI-to-Local Bus transfer, the value of PCI Pin AD21 during each 32-bit PCI transfer will occur on Local  
Bus pin LD5 of the second resulting 16-bit Local Bus transfer. During a Local Bus-to-PCI transfer, this means that the value of  
PCI Pin AD21 will result from the value of Local Bus pin LD5 during the second 16-bit Local Bus transfer.  
3. The mappings in the table only occur during data phases. Addresses always map to/from PCI AD[31:0] as indicated in the 32-bit  
Little Endian column after the address translation specified in the configuration registers is performed.  
4. Little and Big Endian Modes are selected by both register bits and pin signals, depending on the data phase type: Direct Master  
Read/Write, Direct Slave Read/Write, DMA PCI -to-Local Bus / Local Bus-to-PCI, and Configuration Register Read/Write. See  
the BIGEND register description in Table 11-41 and the BIGEND# pin description in Table 12-11 for details.  
- 7 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 6. C Mode Endian Mapping For Byte Lane Mode 1  
C Mode Local Bus Pin  
PCI Pins  
Mapped 2nd  
(64-bit Transfers  
Only)  
Byte Lane Mode = 1 (BIGEND[4] = 1)  
Little Endian Big Endian  
16-bit 16-bit  
PCI Pins  
Mapped 1st  
32-bit  
8-bit  
32-bit  
8-bit  
AD32  
AD0  
1-LD0  
1-LD16 1-LD24 1-LD24 1-LD24 1-LD24  
1-LD17 1-LD25 1-LD25 1-LD25 1-LD25  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
1-LD8  
1-LD18 1-LD26 1-LD26  
1-LD26 1-LD26  
1-LD19 1-LD27 1-LD27 1-LD27 1-LD27  
1-LD20 1-LD28 1-LD28 1-LD28 1-LD28  
1-LD21 1-LD29 1-LD29 1-LD29 1-LD29  
1-LD22 1-LD30 1-LD30 1-LD30 1-LD30  
1-LD23 1-LD31 1-LD31  
1-LD31 1-LD31  
1-LD24 2-LD24 1-LD16 1-LD16 2-LD24  
AD41  
AD42  
AD43  
AD44  
AD45  
AD46  
AD47  
AD48  
AD9  
1-LD9  
1-LD25 2-LD25 1-LD17 1-LD17 2-LD25  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
1-LD10 1-LD26 2-LD26 1-LD18 1-LD18 2-LD26  
1-LD11 1-LD27 2-LD27 1-LD19 1-LD19 2-LD27  
1-LD12 1-LD28 2-LD28 1-LD20 1-LD20 2-LD28  
1-LD13 1-LD29 2-LD29 1-LD21 1-LD21 2-LD29  
1-LD14 1-LD30 2-LD30 1-LD22 1-LD22 2-LD30  
1-LD15 1-LD31 2-LD31 1-LD23 1-LD23 2-LD31  
1-LD16 2-LD16 3-LD24  
1-LD8  
2-LD24 3-LD24  
AD48  
AD50  
AD51  
AD52  
AD53  
AD54  
AD55  
AD56  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
1-LD17 2-LD17 3-LD25  
1-LD9  
2-LD25 3-LD25  
1-LD18 2-LD18 3-LD26 1-LD10 2-LD26 3-LD26  
1-LD19 2-LD19 3-LD27 1-LD11 2-LD27 3-LD27  
1-LD20 2-LD20 3-LD28 1-LD12 2-LD28 3-LD28  
1-LD21 2-LD21 3-LD29 1-LD13 2-LD29 3-LD29  
1-LD22  
2-LD22 3-LD30 1-LD14 2-LD30 3-LD30  
1-LD23 2-LD23 3-LD31 1-LD15 2-LD31 3-LD31  
1-LD24 2-LD24 4-LD24  
1-LD0  
2-LD16 4-LD24  
AD57  
AD58  
AD59  
AD60  
AD61  
AD62  
AD63  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
1-LD25 2-LD25 4-LD25  
1-LD26 2-LD26 4-LD26  
1-LD27 2-LD27 4-LD27  
1-LD28 2-LD28 4-LD28  
1-LD29 2-LD29 4-LD29  
1-LD30 2-LD30 4-LD30  
1-LD31 2-LD31 4-LD31  
1-LD1  
1-LD2  
1-LD3  
1-LD4  
1-LD5  
1-LD6  
1-LD7  
2-LD17 4-LD25  
2-LD18 4-LD26  
2-LD19 4-LD27  
2-LD20 4-LD28  
2-LD21 4-LD29  
2-LD22 4-LD30  
2-LD23 4-LD31  
Notes  
1. During 64-bit PCI transfers, the lower 32 bits of the PCI bus (AD[31:0]) are always mapped first.  
2. For each Local Bus Pin table entry, n-m means that row’s PCI pin maps to Local Bus pinm during Local Bus cycle n that either  
results from the PCI cycle (PCI-to-Local Bus transfers) or results in the PCI cycle (Local Bus-to-PCI transfers). For example, a  
Local Bus Pin of “2-LD21” for PCI Pin AD21 during 16–bit Little Endian Local Bus transfers (ref. the darkest shaded entry)  
means that during a PCI-to-Local Bus transfer, the value of PCI Pin AD21 during each 32-bit PCI transfer will occur on Local  
Bus pin LD21 of the second resulting 16-bit Local Bus transfer. During a Local Bus-to-PCI transfer, this means that the value of  
PCI Pin AD21 will result from the value of Local Bus pin LD21 during the second 16-bit Local Bus transfer.  
3. The mappings in the table only occur during data phases. Addresses always map to/from PCI AD[31:0] as indicated in the 32-bit  
Little Endian column after the address translation specified in the configuration registers is performed.  
4. Little and Big Endian Modes are selected by both register bits and pin signals, depending on the data phase type: Direct Master  
Read/Write, Direct Slave Read/Write, DMA PCI -to-Local Bus / Local Bus-to-PCI, and Configuration Register Read/Write. See  
the BIGEND register description in Table 11-41 and the BIGEND# pin description in Table 12-11 for details.  
- 8 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 7. J Mode Endian Mapping For Byte Lane Mode 0  
J Mode Local Bus Pin  
PCI Pins  
Mapped 2nd  
(64-bit Transfers  
Only)  
Byte Lane Mode = 0 (BIGEND[4] = 0)  
PCI Pins  
Mapped 1st  
Little Endian Big Endian  
32-bit  
16-bit  
8-bit  
32-bit  
16-bit  
8-bit  
1-LAD0  
1-LAD0  
1-LAD0  
1-LAD24  
1-LAD8  
1-LAD0  
AD32  
AD0  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
1-LAD8  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
1-LAD8  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
2-LAD0  
1-LAD25  
1-LAD9  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
2-LAD0  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
1-LAD26 1-LAD10  
1-LAD27 1-LAD11  
1-LAD28 1-LAD12  
1-LAD29 1-LAD13  
1-LAD30 1-LAD14  
1-LAD31 1-LAD15  
1-LAD16  
1-LAD0  
1-LAD9  
1-LAD9  
2-LAD1  
2-LAD2  
2-LAD3  
2-LAD4  
2-LAD5  
2-LAD6  
2-LAD7  
3-LAD0  
1-LAD17  
1-LAD18  
1-LAD19  
1-LAD20  
1-LAD21  
1-LAD22  
1-LAD23  
1-LAD8  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
2-LAD8  
2-LAD1  
2-LAD2  
2-LAD3  
2-LAD4  
2-LAD5  
2-LAD6  
2-LAD7  
3-LAD0  
AD41  
AD42  
AD43  
AD44  
AD45  
AD46  
AD47  
AD48  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
1-LAD10 1-LAD10  
1-LAD11 1-LAD11  
1-LAD12 1-LAD12  
1-LAD13 1-LAD13  
1-LAD14 1-LAD14  
1-LAD15 1-LAD15  
1-LAD16  
2-LAD0  
1-LAD17  
1-LAD18  
1-LAD19  
1-LAD20  
1-LAD21  
1-LAD22  
1-LAD23  
1-LAD24  
1-LAD25  
1-LAD26 2-LAD10  
1-LAD27 2-LAD11  
1-LAD28 2-LAD12  
1-LAD29 2-LAD13  
1-LAD30 2-LAD14  
1-LAD31 2-LAD15  
2-LAD1  
2-LAD2  
2-LAD3  
2-LAD4  
2-LAD5  
2-LAD6  
2-LAD7  
2-LAD8  
2-LAD9  
3-LAD1  
3-LAD2  
3-LAD3  
3-LAD4  
3-LAD5  
3-LAD6  
3-LAD7  
4-LAD0  
4-LAD1  
4-LAD2  
4-LAD3  
4-LAD4  
4-LAD5  
4-LAD6  
4-LAD7  
1-LAD9  
2-LAD9  
3-LAD1  
3-LAD2  
3-LAD3  
3-LAD4  
3-LAD5  
3-LAD6  
3-LAD7  
4-LAD0  
4-LAD1  
4-LAD2  
4-LAD3  
4-LAD4  
4-LAD5  
4-LAD6  
4-LAD7  
AD48  
AD50  
AD51  
AD52  
AD53  
AD54  
AD55  
AD56  
AD57  
AD58  
AD59  
AD60  
AD61  
AD62  
AD63  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
1-LAD10 2-LAD10  
1-LAD11 2-LAD11  
1-LAD12 2-LAD12  
1-LAD13 2-LAD13  
1-LAD14 2-LAD14  
1-LAD15 2-LAD15  
1-LAD0  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
2-LAD0  
2-LAD1  
2-LAD2  
2-LAD3  
2-LAD4  
2-LAD5  
2-LAD6  
2-LAD7  
Notes  
1. During 64-bit PCI transfers, the lower 32 bits of the PCI bus (AD[31:0]) are always mapped first.  
2. For each Local Bus Pin table entry, n-m means that row’s PCI pin maps to Local Bus pinm during Local Bus cycle n that either  
results from the PCI cycle (PCI-to-Local Bus transfers) or results in the PCI cycle (Local Bus-to-PCI transfers). For example, a  
Local Bus Pin of “2-LAD5” for PCI Pin AD21 during 16bit Little Endian Local Bus transfers (ref. the darkest shaded entry)  
means that during a PCI-to-Local Bus transfer, the value of PCI Pin AD21 during each 32-bit PCI transfer will occur on Local  
Bus pin LAD5 of the second resulting 16-bit Local Bus transfer. During a Local Bus-to-PCI transfer, this means that the value of  
PCI Pin AD21 will result from the value of Local Bus pin LAD5 during the second 16-bit Local Bus transfer.  
3. The mappings in the table only occur during data phases. Addresses always map to/from PCI AD[31:0] as indicated in the 32-bit  
Little Endian column after the address translation specified in the configuration registers is performed.  
4. Little and Big Endian Modes are selected by both register bits and pin signals, depending on the data phase type: Direct Master  
Read/Write, Direct Slave Read/Write, DMA PCI -to-Local Bus / Local Bus-to-PCI, and Configuration Register Read/Write. See  
the BIGEND register description in Table 11-41 and the BIGEND# pin description in Table 12-11 for details.  
- 9 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 8. J Mode Endian Mapping For Byte Lane Mode 1  
J Mode Local Bus Pin  
PCI Pins  
Mapped 2nd  
(64-bit Transfers  
Only)  
Byte Lane Mode = 1 (BIGEND[4] = 1)  
Little Endian Big Endian  
16-bit 16-bit  
PCI Pins  
Mapped 1st  
32-bit  
8-bit  
32-bit  
8-bit  
1-LAD0  
1-LAD16 1-LAD24  
1-LAD24 1-LAD24 1-LAD24  
AD32  
AD0  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
1-LAD8  
1-LAD17 1-LAD25  
1-LAD18 1-LAD26  
1-LAD19 1-LAD27  
1-LAD20 1-LAD28  
1-LAD21 1-LAD29  
1-LAD22 1-LAD30  
1-LAD23 1-LAD31  
1-LAD24 2-LAD24  
1-LAD25 1-LAD25 1-LAD25  
1-LAD26 1-LAD26 1-LAD26  
1-LAD27 1-LAD27 1-LAD27  
1-LAD28 1-LAD28 1-LAD28  
1-LAD29 1-LAD29 1-LAD29  
1-LAD30 1-LAD30 1-LAD30  
1-LAD31 1-LAD31 1-LAD31  
1-LAD16 1-LAD16 2-LAD24  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
1-LAD9  
1-LAD25 2-LAD25  
1-LAD17 1-LAD17 2-LAD25  
1-LAD18 1-LAD18 2-LAD26  
1-LAD19 1-LAD19 2-LAD27  
1-LAD20 1-LAD20 2-LAD28  
1-LAD21 1-LAD21 2-LAD29  
1-LAD22 1-LAD22 2-LAD30  
1-LAD23 1-LAD23 2-LAD31  
AD41  
AD42  
AD43  
AD44  
AD45  
AD46  
AD47  
AD48  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
1-LAD10 1-LAD26 2-LAD26  
1-LAD11 1-LAD27 2-LAD27  
1-LAD12 1-LAD28 2-LAD28  
1-LAD13 1-LAD29 2-LAD29  
1-LAD14 1-LAD30 2-LAD30  
1-LAD15 1-LAD31 2-LAD31  
1-LAD16 2-LAD16 3-LAD24  
1-LAD8  
2-LAD24 3-LAD24  
1-LAD17 2-LAD17 3-LAD25  
1-LAD18 2-LAD18 3-LAD26  
1-LAD19 2-LAD19 3-LAD27  
1-LAD20 2-LAD20 3-LAD28  
1-LAD21 2-LAD21 3-LAD29  
1-LAD22 2-LAD22 3-LAD30  
1-LAD23 2-LAD23 3-LAD31  
1-LAD24 2-LAD24 4-LAD24  
1-LAD25 2-LAD25 4-LAD25  
1-LAD26 2-LAD26 4-LAD26  
1-LAD27 2-LAD27 4-LAD27  
1-LAD28 2-LAD28 4-LAD28  
1-LAD29 2-LAD29 4-LAD29  
1-LAD30 2-LAD30 4-LAD30  
1-LAD31 2-LAD31 4-LAD31  
1-LAD9  
2-LAD25 3-LAD25  
AD48  
AD50  
AD51  
AD52  
AD53  
AD54  
AD55  
AD56  
AD57  
AD58  
AD59  
AD60  
AD61  
AD62  
AD63  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
1-LAD10 2-LAD26 3-LAD26  
1-LAD11 2-LAD27 3-LAD27  
1-LAD12 2-LAD28 3-LAD28  
1-LAD13 2-LAD29 3-LAD29  
1-LAD14 2-LAD30 3-LAD30  
1-LAD15 2-LAD31 3-LAD31  
1-LAD0  
1-LAD1  
1-LAD2  
1-LAD3  
1-LAD4  
1-LAD5  
1-LAD6  
1-LAD7  
2-LAD16 4-LAD24  
2-LAD17 4-LAD25  
2-LAD18 4-LAD26  
2-LAD19 4-LAD27  
2-LAD20 4-LAD28  
2-LAD21 4-LAD29  
2-LAD22 4-LAD30  
2-LAD23 4-LAD31  
Notes  
1. During 64-bit PCI transfers, the lower 32 bits of the PCI bus (AD[31:0]) are always mapped first.  
2. For each Local Bus Pin table entry, n-m means that row’s PCI pin maps to Local Bus pinm during Local Bus cycle n that either  
results from the PCI cycle (PCI-to-Local Bus transfers) or results in the PCI cycle (Local Bus-to-PCI transfers). For example, a  
Local Bus Pin of “2-LAD21” for PCI Pin AD21 during 16–bit Little Endian Local Bus transfers (ref. the darkest shaded entry)  
means that during a PCI-to-Local Bus transfer, the value of PCI Pin AD21 during each 32-bit PCI transfer will occur on Local  
Bus pin LAD21 of the second resulting 16-bit Local Bus transfer. During a Local Bus-to-PCI transfer, this means that the value  
of PCI Pin AD21 will result from the value of Local Bus pin LAD21 during the second 16-bit Local Bus transfer.  
3. The mappings in the table only occur during data phases. Addresses always map to/from PCI AD[31:0] as indicated in the 32-bit  
Little Endian column after the address translation specified in the configuration registers is performed.  
4. Little and Big Endian Modes are selected by both register bits and pin signals, depending on the dat a phase type: Direct Master  
Read/Write, Direct Slave Read/Write, DMA PCI -to-Local Bus / Local Bus-to-PCI, and Configuration Register Read/Write. See  
the BIGEND register description in Table 11-41 and the BIGEND# pin description in Table 12-11 for details.  
- 10 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 9. M Mode Endian Mapping For Byte Lane Mode 0  
M Mode Local Bus Pin  
PCI Pins  
Mapped 2nd  
(64-bit Transfers  
Only)  
PCI Pins  
Byte Lane Mode = 0 (BIGEND[4] = 0)  
Little Endian Big Endian  
16-bit 16-bit  
Mapped 1st  
32-bit  
8-bit  
32-bit  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
8-bit  
AD32  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD41  
AD42  
AD43  
AD44  
AD45  
AD46  
AD47  
AD48  
AD48  
AD50  
AD51  
AD52  
AD53  
AD54  
AD55  
AD56  
AD57  
AD58  
AD59  
AD60  
AD61  
AD62  
AD63  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
1-LD31 1-LD31 1-LD31  
1-LD30 1-LD30 1-LD30  
1-LD29 1-LD29 1-LD29  
1-LD28 1-LD28 1-LD28  
1-LD27 1-LD27 1-LD27  
1-LD26 1-LD26 1-LD26  
1-LD25 1-LD25 1-LD25  
1-LD24 1-LD24 1-LD24  
1-LD23  
1-LD22  
1-LD21  
1-LD20  
1-LD19  
1-LD18  
1-LD17  
1-LD16  
1-LD31  
1-LD30  
1-LD29  
1-LD28  
1-LD27  
1-LD26  
1-LD25  
1-LD24  
2-LD31  
2-LD30  
2-LD29  
2-LD28  
2-LD27  
2-LD26  
2-LD25  
2-LD24  
3-LD31  
3-LD30  
3-LD29  
3-LD28  
3-LD27  
3-LD26  
3-LD25  
3-LD24  
4-LD31  
4-LD30  
4-LD29  
4-LD28  
4-LD27  
4-LD26  
4-LD25  
4-LD24  
AD8  
AD9  
1-LD23 1-LD23 2-LD31 1-LD15 1-LD31  
1-LD22 1-LD22 2-LD30 1-LD14 1-LD30  
1-LD21 1-LD21 2-LD29 1-LD13 1-LD29  
1-LD20 1-LD20 2-LD28 1-LD12 1-LD28  
1-LD19 1-LD19 2-LD27 1-LD11 1-LD27  
1-LD18 1-LD18 2-LD26 1-LD10 1-LD26  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
1-LD17 1-LD17 2-LD25  
1-LD16 1-LD16 2-LD24  
1-LD9  
1-LD8  
1-LD25  
1-LD24  
1-LD15 2-LD31 3-LD31 1-LD23 2-LD23  
1-LD14 2-LD30 3-LD30 1-LD22 2-LD22  
1-LD13 2-LD29 3-LD29 1-LD21 2-LD21  
1-LD12 2-LD28  
3-LD28 1-LD20 2-LD20  
1-LD11 2-LD27 3-LD27 1-LD19 2-LD19  
1-LD10 2-LD26 3-LD26 1-LD18 2-LD18  
1-LD9  
1-LD8  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
2-LD25 3-LD25 1-LD17 2-LD17  
2-LD24 3-LD24 1-LD16 2-LD16  
2-LD23 4-LD31 1-LD31 2-LD31  
2-LD22 4-LD30 1-LD30 2-LD30  
2-LD21 4-LD29 1-LD29 2-LD29  
2-LD20 4-LD28 1-LD28 2-LD28  
2-LD19 4-LD27 1-LD27 2-LD27  
2-LD18 4-LD26 1-LD26 2-LD26  
2-LD17 4-LD25 1-LD25 2-LD25  
2-LD16 4-LD24 1-LD24 2-LD24  
Notes  
1. During 64-bit PCI transfers, the lower 32 bits of the PCI bus (AD[31:0]) are always mapped first.  
2. For each Local Bus Pin table entry, n-m means that row’s PCI pin maps to Local Bus pinm during Local Bus cycle n that either  
results from the PCI cycle (PCI-to-Local Bus transfers) or results in the PCI cycle (Local Bus-to-PCI transfers). For example, a  
Local Bus Pin of “2-LD26” for PCI Pin AD21 during 16–bit Little Endian Local Bus transfers (ref. the darkest shaded entry)  
means that during a PCI-to-Local Bus transfer, the value of PCI Pin AD21 during each 32-bit PCI transfer will occur on Local  
Bus pin LD26 ofthe second resulting 16-bit Local Bus transfer. During a Local Bus-to-PCI transfer, this means that the value of  
PCI Pin AD21 will result from the value of Local Bus pin LD26 during the second 16-bit Local Bus transfer.  
3. The mappings in the table only occur during data phases. Addresses always map to/from PCI AD[31:0] as indicated in the 32-bit  
Little Endian column after the address translation specified in the configuration registers is performed.  
4. Little and Big Endian Modes are selected by both register bits and pin signals, depending on the data phase type: Direct Master  
Read/Write, Direct Slave Read/Write, DMA PCI -to-Local Bus / Local Bus-to-PCI, and Configuration Register Read/Write. See  
the BIGEND register description in Table 11-41 and the BIGEND# pin description in Table 12-11 for details.  
- 11 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 10. M Mode Endian Mapping For Byte Lane Mode 1  
M Mode Local Bus Pin  
PCI Pins  
Mapped 2nd  
(64-bit Transfers  
Only)  
PCI Pins  
Byte Lane Mode = 1 (BIGEND[4] = 1)  
Little Endian Big Endian  
16-bit 16-bit  
Mapped 1st  
32-bit  
8-bit  
32-bit  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
8-bit  
AD32  
AD33  
AD34  
AD35  
AD36  
AD37  
AD38  
AD39  
AD40  
AD41  
AD42  
AD43  
AD44  
AD45  
AD46  
AD47  
AD48  
AD48  
AD50  
AD51  
AD52  
AD53  
AD54  
AD55  
AD56  
AD57  
AD58  
AD59  
AD60  
AD61  
AD62  
AD63  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
1-LD31 1-LD15  
1-LD30 1-LD14  
1-LD29 1-LD13  
1-LD28 1-LD12  
1-LD27 1-LD11  
1-LD26 1-LD10  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
2-LD7  
2-LD6  
2-LD5  
2-LD4  
2-LD3  
2-LD2  
2-LD1  
2-LD0  
3-LD7  
3-LD6  
3-LD5  
3-LD4  
3-LD3  
3-LD2  
3-LD1  
3-LD0  
4-LD7  
4-LD6  
4-LD5  
4-LD4  
4-LD3  
4-LD2  
4-LD1  
4-LD0  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
2-LD7  
2-LD6  
2-LD5  
2-LD4  
2-LD3  
2-LD2  
2-LD1  
2-LD0  
3-LD7  
3-LD6  
3-LD5  
3-LD4  
3-LD3  
3-LD2  
3-LD1  
3-LD0  
4-LD7  
4-LD6  
4-LD5  
4-LD4  
4-LD3  
4-LD2  
4-LD1  
4-LD0  
1-LD25  
1-LD24  
1-LD23  
1-LD22  
1-LD21  
1-LD20  
1-LD19  
1-LD18  
1-LD17  
1-LD16  
1-LD9  
1-LD8  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
AD8  
AD9  
1-LD15 1-LD15  
1-LD14 1-LD14  
1-LD13 1-LD13  
1-LD12 1-LD12  
1-LD11 1-LD11  
1-LD10 1-LD10  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
1-LD9  
1-LD8  
1-LD9  
1-LD8  
2-LD7  
2-LD6  
2-LD5  
2-LD4  
2-LD3  
2-LD2  
2-LD1  
2-LD0  
1-LD15 2-LD15  
1-LD14 2-LD14  
1-LD13 2-LD13  
1-LD12 2-LD12  
1-LD11 2-LD11  
1-LD10 2-LD10  
1-LD23  
1-LD22  
1-LD21  
1-LD20  
1-LD19  
1-LD18  
1-LD17  
1-LD16  
1-LD9  
1-LD8  
1-LD7  
1-LD6  
1-LD5  
1-LD4  
1-LD3  
1-LD2  
1-LD1  
1-LD0  
2-LD9  
2-LD8  
2-LD7  
2-LD6  
2-LD5  
2-LD4  
2-LD3  
2-LD2  
2-LD1  
2-LD0  
1-LD31 2-LD15  
1-LD30 2-LD14  
1-LD29 2-LD13  
1-LD28 2-LD12  
1-LD27 2-LD11  
1-LD26 2-LD10  
1-LD25  
1-LD24  
2-LD9  
2-LD8  
Notes  
1. During 64-bit PCI transfers, the lower 32 bits of the PCI bus (AD[31:0]) are always mapped first.  
2. For each Local Bus Pin table entry, n-m means that row’s PCI pin maps to Local Bus pinm during Local Bus cycle n that either  
results from the PCI cycle (PCI-to-Local Bus transfers) or results in the PCI cycle (Local Bus-to-PCI transfers). For example, a  
Local Bus Pin of “2-LD10” for PCI Pin AD21 during 16–bit Little Endian Local Bus transfers (ref. the darkest shaded entry)  
means that during a PCI-to-Local Bus transfer, the value of PCI Pin AD21 during each 32-bit PCI transfer will occur on Local  
Bus pin LD10 of the second resulting 16-bit Local Bus transfer. During a Local Bus-to-PCI transfer, this means that the value of  
PCI Pin AD21 will result from the value of Local Bus pin LD10 during the second 16-bit Local Bus transfer.  
3. The mappings in the table only occur during data phases. Addresses always map to/from PCI AD[31:0] as indicated in the 32-bit  
Little Endian column after the address translation specified in the configuration registers is performed.  
4. Little and Big Endian Modes are selected by both register bits and pin signals, depending on the data phase type: DirectMaster  
Read/Write, Direct Slave Read/Write, DMA PCI -to-Local Bus / Local Bus-to-PCI, and Configuration Register Read/Write. See  
the BIGEND register description in Table 11-41 and the BIGEND# pin description in Table 12-11 for details.  
- 12 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
8. Local Bus Pause Timer Count Must Be Even (MARBR[8] = 0)  
The Blue Book includes a description of the Local Bus Pause Timer in the MARBR  
register (Register Description 11-40). For the PCI 9656AD, the Local Bus Pause Timer  
count must be even (MARBR[8] = 0). This restriction is not included in the Blue Book  
description. For the PCI 9056BA, this count may be odd or even (MARBR[8] = 0 or 1).  
The PCI 9656 includes a Local Bus Pause Timer (MARBR[15:8]) for specifying how long to stay  
off of the Local Bus between transfers to/from the Local Bus during DMA.  
For the PCI 9656AD, this count must be even (MARBR[8] = 0). Note that this counter is 0 after  
reset, so the only time this correction is of concern is if the Local Bus Pause Timer count is ever  
changed from its reset value.  
For the PCI 9056BA, this count may be odd or even (MARBR[8] = 0 or 1).  
9. ALE Output Delay Timing For Any Local Bus Clock Rate  
The Blue Book includes Figure 13-3 that shows the ALE output delay timing to the  
Processor/Local Bus clock for a clock rate of 33MHz. It does not show the output delay  
timing for other clock rates.  
The following figure shows the PCI 9656AD ALE output delay timing for any Processor/Local Bus  
clock rate. It replaces Figure 13-3 in the Blue Book for the PCI 9656AD silicon. LCHIGH is the time  
in ns that the Processor/Local Bus clock is high. (Note. When two times are given like x/y ns, x ns  
is the minimum value and y ns is the maximum value.)  
LCHIGH  
1.5V  
1.5V  
Local Clock  
3.1/6.9 ns  
LCHIGH+15.1/15.4 ns (33 MHz)  
LCHIGH+7.6/7.9 ns (66 MHz)  
2.9/6.5 ns  
ALE  
2.9/7.8 ns  
2.9/7.8 ns  
Address Bus  
Figure 3. PCI 9656AD ALE Output Delay to the Local Clock  
- 13 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
The following figure shows the PCI 9656BA ALE output delay timing for any Processor/Local Bus  
clock rate. It replaces Figure 13-3 in the Blue Book for the PCI 9656BA silicon. LCHIGH is the time  
in ns that the Processor/Local Bus clock is high. (Note. When two times are given like x/y ns, x ns  
is the minimum value and y ns is the maximum value.)  
LCHIGH  
1.5V  
1.5V  
Local Clock  
3.4/6.9 ns  
LCHIGH+14.8/14.9 ns (33 MHz)  
LCHIGH+6.8/6.9 ns (66 MHz)  
3.6/7.0 ns  
ALE  
3.0/6.4 ns  
3.0/6.4 ns  
Address Bus  
Figure 4. PCI 9656BA ALE Output Delay to the Local Clock  
10. M Mode LA30 & LA 31 Pin Outs  
Description:  
The Blue Book Table 14-3 pin outs for pins P19 and P20 are indicated incorrectly. The M  
Mode LA31 and LA30 signals are swapped. This is true for both the PCI 9656AD and the  
PCI 9656BA.  
Blue Book Table 14-3 indicates that pin P19 is “LA31 (M), LBE1# (C, J)” and pin P20 is “LA30  
(M), LBE0# (C, J)”. This is incorrect.  
For the PCI 9656AD and PCI 9656BA, pin P19 is “LA30 (M), LBE1# (C, J)” and pin P20 is “LA31  
(M), LBE0# (C, J)”.  
Note that in Table 12-10 the pin numbers for LA30 and LA31 are indicated correctly.  
11. AC Timing  
Description:  
PLX had conducted exhaustive static timing analysis (STA) of the PCI 9656AD and PCI  
9656BA silicon. The following six tables contain the results of that analysis and replace  
tables 13-6, 13-7, 13-8, and 13-9 in the Blue Book.  
- 14 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 11. C Mode Local Bus Input AC Timing Specifications  
Signals  
(Synchronous Inputs)  
TSETUP  
(VCC = 3.0V, Ta = 85°C)  
THOLD  
(VCC = 3.0V, Ta = 85°C)  
Blue Book AD STA BA STA  
Blue Book  
AD STA  
4.8 ns  
4.8 ns  
4.0 ns  
1.7 ns  
4.8 ns  
1.7 ns  
4.7 ns  
2.0 ns  
4.4 ns  
4.0 ns  
4.6 ns  
4.9 ns  
4.2 ns  
5.0 ns  
4.7 ns  
2.4 ns  
4.7 ns  
BA STA  
ADS#  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
2.1 ns  
4.0 ns  
3.4 ns  
0.3 ns  
4.0 ns  
2.9 ns  
4.2 ns  
2.9 ns  
3.3 ns  
3.4 ns  
3.6 ns  
3.1 ns  
2.5 ns  
3.5 ns  
4.0 ns  
2.9 ns  
4.0 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
BIGEND#  
BLAST#  
BREQi  
BTERM#  
CCS#  
DMPAF/EOT#  
DP[3:0]  
DREQ[1:0]#  
LA[31:2]  
LBE[3:0]#  
LD[31:0]  
LHOLDA  
LW/R#  
READY#  
USERi/LLOCKi#  
WAIT#  
Input Clocks  
Min  
Max  
0 MHz  
0 MHz  
Local Clock Input Frequency  
PCI Clock Input Frequency  
66 MHz  
66 MHz  
Table 12. C Mode Local Bus Output AC Timing Specifications  
Signals  
(Synchronous Outputs)  
Output TVALID  
(CL = 50pF, V CC = 3.0V, Ta = 85°C)  
Blue Book  
AD1 STA  
7.6 ns  
7.6 ns  
9.5 ns  
8.3 ns  
7.6 ns  
8.5 ns  
7.9 ns  
8.0 ns  
7.6 ns  
7.8 ns  
7.5 ns  
10.2 ns  
7.6 ns  
9.0 ns  
7.6 ns  
7.6 ns  
BA2 STA  
6.3 ns  
6.3 ns  
6.8 ns  
6.8 ns  
6.3 ns  
6.6 ns  
6.8 ns  
6.8 ns  
6.3 ns  
6.4 ns  
6.8 ns  
7.5 ns  
6.3 ns  
7.2 ns  
6.3 ns  
6.4 ns  
ADS#  
BLAST#  
BREQo  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
9ns  
BTERM#  
DACK[1:0]#  
DMPAF/EOT#  
DP[3:0]  
LA[31:2]  
LBE[3:0]#  
LD[31:0]  
LHOLD  
LSERR#  
LW/R#  
READY#  
USERo/LLOCKo#  
WAIT#  
1.  
On high-to-low transitions, output TVALID values increase/decrease by 23 ps for each increase/decrease of 1pF.  
On low-to-high transitions, output TVALID values increase/decrease by 20 ps for each increase/decrease of 1pF.  
2.  
On high-to-low transitions, output TVALID v alues increase/decrease by 16 ps for each increase/decrease of 1pF.  
On low-to-high transitions, output TVALID values increase/decrease by 20 ps for each increase/decrease of 1pF.  
On high-to-low transitions, the slew rate at 50 pF loading is 1.93 V/ns typical; .94 V/ns worst case.  
On low-to-high transitions, the slew rate at 50 pF loading is 1.15 V/ns typical; .70 V/ns worst case.  
- 15 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 13. J Mode Local Bus Input AC Timing Specifications  
Signals  
(Synchronous Inputs)  
TSETUP  
(VCC = 3.0V, Ta = 85°C)  
THOLD  
(VCC = 3.0V, Ta = 85°C)  
Blue Book  
AD STA  
4.9 ns  
4.5 ns  
4.8 ns  
4.0 ns  
1.7 ns  
4.8 ns  
1.7 ns  
4.7 ns  
2.0 ns  
4.4 ns  
4.0 ns  
4.9 ns  
4.6 ns  
4.2 ns  
5.0 ns  
4.7 ns  
2.4 ns  
4.7 ns  
BA STA  
Blue Book AD STA BA STA  
ADS#  
ALE  
BIGEND#  
BLAST#  
BREQi  
BTERM#  
CCS#  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
2.1 ns  
1.7 ns  
4.0 ns  
3.4 ns  
0.3 ns  
4.2 ns  
2.9 ns  
4.2 ns  
2.9 ns  
3.3 ns  
3.4 ns  
3.1 ns  
3.6 ns  
2.5 ns  
3.5 ns  
4.2 ns  
2.9 ns  
4.0 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
Max  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
DMPAF/EOT#  
DP[3:0]  
DREQ[1:0]#  
LA [28:2]  
LAD[31:0]  
LBE[3:0]#  
LHOLDA  
LW/R#  
READY#  
USERi/LLOCKi#  
WAIT#  
Input Clocks  
Min  
0 MHz  
0 MHz  
66 MHz  
66 MHz  
Local Clock Input Frequency  
PCI Clock Input Frequency  
Table 14. J Mode Local Bus Output AC Timing Specifications  
Signals  
(Synchronous Outputs)  
Output TVALID  
(CL = 50pF, V CC = 3.0V, Ta = 85°C)  
Blue Book  
AD1 STA  
BA2 STA  
ADS#  
ALE  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
7.6 ns  
8.0 ns  
7.6 ns  
9.5 ns  
8.3 ns  
7.6 ns  
7.9 ns  
8.5 ns  
7.9 ns  
7.9 ns  
8.0 ns  
7.8 ns  
7.6 ns  
7.5 ns  
10.2 ns  
7.6 ns  
9.0 ns  
7.6 ns  
7.6 ns  
6.3 ns  
See item 9, above.  
6.3 ns  
BLAST#  
BREQo  
BTERM#  
DACK[1:0]#  
DEN#  
DMPAF/EOT#  
DP[3:0]  
6.8 ns  
6.8 ns  
6.3 ns  
6.4 ns  
6.6 ns  
6.8 ns  
6.3 ns  
6.4 ns  
6.4 ns  
6.3 ns  
6.8 ns  
7.5 ns  
6.3 ns  
7.2 ns  
6.3 ns  
6.4 ns  
DT/R#  
LA[28:2]  
LAD[31:0]  
LBE[3:0]#  
LHOLD  
LSERR#  
LW/R#  
READY#  
USERo/LLOCKo#  
WAIT#  
1
2
On high-to-low transitions, output TVALID values increase/decrease by 23 ps for each increase/decrease of 1pF.  
On low-to-high transitions, output TVALID values increase/decrease by 20 ps for each increase/decrease of 1pF.  
On high-to-low transitions, output TVALID values increase/decrease by 16 ps for each increase/decrease of 1pF.  
On low-to-high transitions, output TVALID values increase/decrease by 20 ps for each increase/decrease of 1pF.  
On high-to-low transitions, the slew rate at 50 pF loading is 1.93 V/ns typical; .94 V/ns worst case.  
On low-to-high transitions, the slew rate at 50 pF loading is 1.15 V/ns typical; .70 V/ns worst case.  
- 16 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 15. M Mode Local Bus Input AC Timing Specifications  
Signals  
(Synchronous Inputs)  
TSETUP  
(VCC = 3.0V, Ta = 85°C)  
THOLD  
Blue Book  
AD STA  
4.9 ns  
4.5 ns  
4.4 ns  
5.3 ns  
4.8 ns  
4.8 ns  
1.7 ns  
2.0 ns  
4.4 ns  
5.2 ns  
4.9 ns  
4.7 ns  
5.3 ns  
5.3 ns  
5.2 ns  
4.8 ns  
5.0 ns  
1.9 ns  
Min  
BA STA  
Blue Book AD STA  
BA STA  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
BB#  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
4.5 ns  
2.7 ns  
3.8 ns  
2.9 ns  
4.0 ns  
3.8 ns  
4.1 ns  
2.9 ns  
2.9 ns  
3.3 ns  
3.6 ns  
3.1 ns  
4.2 ns  
3.5 ns  
4.1 ns  
4.4 ns  
2.1 ns  
3.6 ns  
3.2 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
1 ns  
Max  
66 MHz  
66 MHz  
BDIP#  
BG#  
BI#  
BIGEND#/WAIT#  
BURST#  
CCS#  
DP[0:3]  
DREQ[1:0]#  
LA[0:31]  
LD[0:31]  
MDREQ#/DMPAF/ EOT#  
RD/WR#  
TA#  
TEA#  
TS#  
TSIZ[0:1]#  
USERi/LLOCK#  
Input Clocks  
Local Clock Input Frequency  
PCI Clock Input Frequency  
0 MHz  
0 MHz  
Table 16. M Mode Local Bus Output AC Timing Specifications  
Signals  
Output TVALID  
(Synchronous Outputs)  
(CL = 50pF, V CC = 3.0V, Ta = 85°C)  
Blue Book  
AD1 STA  
9.4 ns  
7.7 ns  
7.6 ns  
7.5 ns  
7.6 ns  
7.6 ns  
7.9 ns  
8.0 ns  
7.8 ns  
8.5 ns  
7.6 ns  
9.5 ns  
9.0 ns  
9.6 ns  
7.6 ns  
7.6 ns  
7.6 ns  
BA2 STA  
BB#  
BDIP#  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
9 ns  
6.8 ns  
6.4 ns  
6.3 ns  
6.8 ns  
6.3 ns  
6.3 ns  
6.8 ns  
6.8 ns  
6.3 ns  
6.6 ns  
6.3 ns  
6.8 ns  
7.2 ns  
7.5 ns  
6.3 ns  
6.3 ns  
6.3 ns  
BIGEND#/WAIT#  
BR#  
BURST#  
DACK[1:0]#  
DP[0:3]  
LA[0:31]  
LD[0:31]  
MDREQ#/DMPAF/ EOT#  
RD/WR#  
RETRY#  
TA#  
TEA#  
TS#  
TSIZ[0:1]#  
USERo/LLOCKo#  
1
On high-to-low transitions, output TVALID values increase/decrease by 23 ps for each increase/decrease of 1pF.  
On low-to-high transitions, output TVALID values increase/decrease by 20 ps for each increase/decrease of 1pF.  
2
On high-to-low transitions, output TVALID values increase/decrease by 16 ps for each increase/decrease of 1pF.  
On low-to-high transitions, output TVALID values increase/decrease by 20 ps for each increase/decrease of 1pF.  
On high-to-low transitions, the slew rate at 50 pF loading is 1.93 V/ns typical; .94 V/ns worst case.  
On low-to-high transitions, the slew rate at 50 pF loading is 1.15 V/ns typical; .70 V/ns worst case.  
- 17 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
12. Pin Types  
Description:  
The following tables detail the pin types of the PCI 9656AD and PCI 9656BA silicon. The  
information in these tables is intended to replace the Pin Type columns of Blue Book  
Tables 12-4 through 12-12.  
Each table includes 5 columns for each pin:  
1. Each entry in the leftmost column contains the name of the signal (or signals, in the case of  
multiplexed pins) connected to that pin.  
2. Each entry in the next column contains the pin number (or pin numbers in the case of  
address buses, data buses, etc. that share the same pin type).  
3. Each entry in the next column contains the pin type in the Blue Book.  
4. Each entry in the next column contains the actual pin type for the AD silicon revision. Shaded  
entries in this column indicate where the actual pin type of the AD silicon differs from the pin  
type given in the Blue Book. While these changes should not effect designs that follow the  
Blue Book pin types, for designs that use the AD version of silicon, the designers should look  
carefully at the shaded entries in this column.  
5. Each entry in the rightmost column contains the actual pin type for the BA silicon revision.  
Shaded entries in this column indicate where the actual pin type of the BA silicon differs from  
the actual pin type of the AD silicon. While these changes should not effect designs intended  
to use both AD and BA silicon revisions, for AD designs that are intended to use the BA as a  
drop-in replacement for the AD, the designers should look carefully at the shaded entries in  
this column.  
- 18 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 17. PCI 9656AD/PCI 9656BA PCI Pin Types  
Symbol  
ACK64#  
Pin Number Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
I/O  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
N1  
STS  
PCI  
T4, U3, W1,  
V3, Y2, W4,  
V4, U5, Y3,  
Y4, V5, W5,  
Y5, V6, U7,  
W6, Y6, V7,  
W7, Y7, V8,  
W8, Y8, V9,  
W9, Y9, W10,  
V10, Y10, Y11,  
W11, V11, A5,  
D7, C6, B5,  
A4, C5, B4,  
A3, B3, B2,  
A2, C3, B1,  
C2, D2, D3,  
H3, H2, H1,  
J4, J3, J2,  
I/O  
TS  
PCI  
I/O  
TS  
PCI  
I/O  
TS  
PCI  
AD[63:0]  
J1, K2, K1,  
L2, L3, L4,  
M1, M2, M3,  
M4  
T2, U1, T3,  
C/BE[7:0]# U2, D5, E4,  
I/O  
TS  
I/O  
TS  
I/O  
TS  
G1, K3  
PCI  
PCI  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
E1  
DEVSEL#  
FRAME#  
C1  
O
O
GNT0#  
O
TP  
PCI  
TP  
PCI  
GNT0#  
REQ#  
C7  
REQ#  
O
STS  
PCI  
Note:  
If ((RST# asserted)  
or  
Note:  
If ((RST# asserted)  
or  
(BD_SEL# not asserted)) (BD_SEL# not asserted))  
Pin goes Hi-Z.  
Pin goes Hi-Z.  
O
O
TP  
TP  
PCI  
PCI  
Note:  
If ((RST# asserted)  
or  
Note:  
If ((RST# asserted)  
or  
W12, U11, P4,  
R2, R1, N3  
O
TP  
GNT[6:1]#  
(BD_SEL# not asserted) (BD_SEL# not asserted)  
or  
or  
PCARB[0]=0))  
Pins go Hi-Z.  
I
PCARB[0]=0))  
Pins go Hi-Z.  
I
C4  
B7  
I
IDSEL  
INTA#  
I/O  
OC  
PCI  
I/O  
OC  
PCI  
I/O  
OC  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
TS  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
TS  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
TS  
D1  
G4  
G2  
IRDY#  
LOCK#  
PAR  
PCI  
I/O  
TS  
PCI  
I
I/O  
STS  
PCI  
PCI  
I/O  
TS  
PCI  
I
I/O  
STS  
PCI  
PCI  
I/O  
TS  
PCI  
I
I/O  
STS  
PCI  
V1  
L1  
F2  
PAR64  
PCLK  
PERR#  
- 19 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 17. PCI 9656AD/PCI 9656BA PCI Pin Types  
Symbol  
PME#  
Pin Number Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
O
O
O
OC  
PCI  
B9  
OC  
PCI  
OC  
PCI  
REQ0#  
I
REQ0#  
GNT#  
B6  
I
I
GNT#  
I
V12, Y12, R3,  
T1, P2, P1  
I
I
I
REQ[6:1]#  
REQ64#  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
N2  
If (HOSTEN# asserted) If (HOSTEN# asserted)  
O
O
TP  
PCI  
TP  
PCI  
A6  
I/O  
RST#  
else  
else  
I
I
I/O  
OC  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
I/O  
I/O  
G3  
F3  
E3  
SERR#  
STOP#  
TRDY#  
OC  
PCI  
I/O  
STS  
PCI  
I/O  
OC  
PCI  
I/O  
STS  
PCI  
I/O  
STS  
PCI  
STS  
PCI  
- 20 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 18. PCI 9656AD/PCI 9656BA C Mode Pin Types  
Symbol  
ADS#  
Pin Number  
Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
I/O  
TS  
I/O  
TS  
I/O  
TS  
C17  
24 mA  
I
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
I/O  
TS  
C12  
A18  
BIGEND#  
BLAST#  
24 mA  
24 mA  
24 mA  
C16  
A17  
I
O
OC  
I
O
DTS  
24 mA  
I
O
DTS  
24 mA  
BREQi  
BREQo  
24 mA  
I/O  
DTS  
24 mA  
I
I/O  
DTS  
24 mA  
I
O
I/O  
DTS  
24 mA  
I
O
C20  
D12  
BTERM#  
CCS#  
TP  
TP  
24 mA  
24 mA  
Note:  
Note:  
O
TP  
If ((HOSTEN# not asserted & RST#  
If ((HOSTEN# not asserted & RST#  
C13, A13  
DACK[1:0]#  
asserted)  
asserted)  
24 mA  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
or  
(BD_SEL# not asserted))  
(BD_SEL# not asserted))  
Pins go Hi-Z.  
Pins go Hi-Z.  
If ((DMAMODE0[14]=1)  
or  
(DMAMODE1[14]=1))  
I
If ((DMAMODE0[14]=1)  
or  
else  
(DMAMODE1[14]=1))  
DMPAF  
O
O
TP  
24 mA  
I
TS  
24 mA  
DMPAF  
EOT#  
D14  
else  
EOT#  
I
Note for 2nd case:  
If ((HOSTEN# not asserted & RST#  
O
TP  
asserted  
24 mA  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
D18, B20, C18,  
B19  
DP[3:0]  
A14, B13  
I
I
I
DREQ[1:0]#  
W14, Y15, V14,  
W15, Y16, U14,  
V15, W16, Y17,  
V16, W17, Y18,  
U16, V17, W18,  
Y19, V18, W19,  
Y20, W20, V19,  
U18, T17, V20,  
U20, T18, T19,  
T20, R18, P17  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
LA[31:2]  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
R20, P18, P19,  
P20  
LBE[3:0]#  
LCLK  
D20  
I
I
I
- 21 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 18. PCI 9656AD/PCI 9656BA C Mode Pin Types  
Symbol  
LD[31:0]  
Pin Number  
N18, N19, N20,  
M17, M18, M19,  
M20, L19, L18,  
L20, K20, K19,  
K18, K17, J20,  
J19, J18, J17,  
H20, H19, H18,  
G20, G19, F20,  
G18, F19, E20,  
G17, F18, E19,  
E18, D19  
Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
O
TP  
24 mA  
Note:  
O
TP  
O
TP  
If ((HOSTEN# not asserted & RST#  
B18  
asserted)  
LHOLD  
24 mA  
24 mA  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
B17  
B15  
I
I
O
I
I
O
I
I
O
LHOLDA  
LINTi#  
A15  
A16  
D16  
LINTo#  
OC  
24 mA  
OC  
24 mA  
If (HOSTEN# asserted)  
OC  
24 mA  
If (HOSTEN# asserted)  
I
I
I/O  
TP  
24 mA  
LRESET#  
LSERR#  
else  
else  
O
TP  
24 mA  
O
OC  
O
TP  
24 mA  
O
OC  
O
OC  
24 mA  
24 mA  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
R19  
B10  
E17  
LW/R#  
I
I
I
PMEREQ#  
READY#  
I/O  
DTS  
24 mA  
I/O  
DTS  
24 mA  
I/O  
DTS  
24 mA  
USERi  
I
USERi  
B14  
I
I
LLOCKi#  
LLOCKi#  
I
O
TP  
O
TP  
24 mA  
24 mA  
USERo  
O
TS  
Note:  
Note:  
If ((HOSTEN# not asserted & RST#  
If ((HOSTEN# not asserted & RST#  
USERo  
C14  
B16  
24 mA  
asserted)  
asserted)  
LLOCKo#  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
LLOCKo#  
O
or  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
I/O  
TS  
I/O  
TS  
I/O  
TS  
WAIT#  
24 mA  
24 mA  
24 mA  
- 22 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 19. PCI 9656AD/PCI 9656BA J Mode Pin Types  
Blue Book r.90b Pin  
True AD Pin Type  
Type  
Symbol  
ADS#  
Pin Number  
True BA Pin Type  
I/O  
TS  
I/O  
TS  
I/O  
TS  
C17  
24 mA  
I/O  
TS  
24 mA  
I
24 mA  
I/O  
TS  
24 mA  
I
24 mA  
I/O  
TS  
24 mA  
I
V14  
C12  
A18  
ALE  
BIGEND#  
BLAST#  
I/O  
TS  
I/O  
TS  
I/O  
TS  
24 mA  
24 mA  
24 mA  
C16  
A17  
I
O
OC  
24 mA  
I/O  
I
O
DTS  
24 mA  
I/O  
I
O
DTS  
24 mA  
I/O  
BREQi  
BREQo  
C20  
D12  
BTERM#  
CCS#  
DTS  
24 mA  
I
DTS  
24 mA  
I
DTS  
24 mA  
I
O
TP  
24 mA  
O
TP  
24 mA  
Note:  
Note:  
O
TP  
If ((HOSTEN# not asserted & RST#  
If ((HOSTEN# not asserted & RST#  
C13, A13  
asserted)  
asserted)  
DACK[1:0]#  
24 mA  
or  
or  
(HOSTEN# asserted & LRESET#  
(HOSTEN# asserted & LRESET#  
asserted)  
asserted)  
or  
or  
(BD_SEL# not asserted))  
(BD_SEL# not asserted))  
Pins go Hi-Z.  
Pins go Hi-Z.  
O
TS  
24 mA  
O
TS  
24 mA  
O
TS  
24 mA  
Y15  
DEN#  
If ((DMAMODE0[14]=1)  
or  
(DMAMODE1[14]=1))  
I
If ((DMAMODE0[14]=1)  
or  
else  
(DMAMODE1[14]=1))  
DMPAF  
O
O
TP  
24 mA  
I
DMPAF  
EOT#  
TS  
24 mA  
D14  
else  
EOT#  
I
Note for 2nd case:  
If ((HOSTEN# not asserted & RST#  
O
TP  
asserted  
24 mA  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
D18, B20, C18,  
B19  
DP[3:0]  
A14, B13  
W14  
I
O
TS  
I
O
TS  
I
O
TS  
DREQ[1:0]#  
DT/R#  
24 mA  
24 mA  
24 mA  
W15, Y16, U14,  
V15, W16, Y17,  
V16, W17, Y18,  
U16, V17, W18,  
Y19, V18, W19,  
Y20, W20, V19,  
U18, T17, V20,  
U20, T18, T19,  
T20, R18, P17  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
LA[28:2]  
- 23 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 19. PCI 9656AD/PCI 9656BA J Mode Pin Types  
Blue Book r.90b Pin  
True AD Pin Type  
Type  
Symbol  
Pin Number  
True BA Pin Type  
N18, N19, N20,  
M17, M18, M19,  
M20, L19, L18,  
L20, K20, K19,  
K18, K17, J20,  
J19, J18, J17,  
H20, H19, H18,  
G20, G19, F20,  
G18, F19, E20,  
G17, F18, E19,  
E18, D19  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
LAD[31:0]  
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
R20, P18, P19,  
P20  
LBE[3:0]#  
LCLK  
D20  
O
TP  
24 mA  
Note:  
O
TP  
O
TP  
If ((HOSTEN# not asserted & RST#  
B18  
asserted)  
LHOLD  
24 mA  
24 mA  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
I
B17  
B15  
I
I
O
I
I
O
LHOLDA  
LINTi#  
I
O
A15  
A16  
D16  
LINTo#  
OC  
24 mA  
OC  
24 mA  
If (HOSTEN# asserted)  
OC  
24 mA  
If (HOSTEN# asserted)  
I
I
I/O  
TP  
24 mA  
else  
else  
LRESET#  
LSERR#  
O
TP  
24 mA  
O
OC  
O
TP  
24 mA  
O
OC  
O
OC  
24 mA  
24 mA  
24 mA  
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
R19  
B10  
E17  
LW/R#  
PMEREQ#  
READY#  
I/O  
DTS  
I/O  
DTS  
I/O  
DTS  
24 mA  
24 mA  
24 mA  
USERi  
I
USERi  
B14  
I
I
LLOCKi#  
LLOCKi#  
I
O
TP  
24 mA  
O
TP  
24 mA  
USERo  
O
TS  
Note:  
Note:  
USERo  
If ((HOSTEN# not asserted & RST#  
If ((HOSTEN# not asserted & RST#  
C14  
B16  
24 mA  
asserted)  
asserted)  
LLOCKo#  
or  
or  
(HOSTEN# asserted & LRESET#  
(HOSTEN# asserted & LRESET#  
LLOCKo#  
O
asserted)  
asserted)  
or  
or  
(BD_SEL# not asserted))  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
Pin goes Hi-Z.  
I/O  
TS  
I/O  
TS  
I/O  
TS  
WAIT#  
24 mA  
24 mA  
24 mA  
- 24 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 20. PCI 9656AD/PCI 9656BA M Mode Pin Types  
Symbol  
BB#  
Pin Number  
Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
I/O  
I/O  
I/O  
DTS  
C16  
OC  
DTS  
24 mA  
24 mA  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
B16  
BDIP#  
B17  
C20  
I
I
I
I
I
I
BG#  
BI#  
If(MARBR(31)=0)  
If(MARBR(31)=0)  
BIGEND#  
I
I
I
BIGEND#  
WAIT#  
C12  
WAIT#  
I/O  
TS  
else  
else  
I/O  
TS  
I/O  
TS  
24 mA  
24 mA  
24 mA  
O
TP  
24 mA  
Note:  
O
TP  
O
TP  
If ((HOSTEN# not asserted & RST#  
B18  
asserted)  
BR#  
24 mA  
24 mA  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
A18  
D12  
BURST#  
CCS#  
O
TP  
O
TP  
24 mA  
24 mA  
Note:  
Note:  
O
TP  
If ((HOSTEN# not asserted & RST#  
If ((HOSTEN# not asserted & RST#  
C13, A13  
asserted)  
asserted)  
DACK[1:0]#  
24 mA  
or  
or  
(HOSTEN# asserted & LRESET#  
(HOSTEN# asserted & LRESET#  
asserted)  
asserted)  
or  
or  
(BD_SEL# not asserted))  
(BD_SEL# not asserted))  
Pins go Hi-Z.  
Pins go Hi-Z.  
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
I/O  
TS  
24 mA  
I
D18, B20, C18,  
B19  
DP[0:3]  
A14, B13  
DREQ[1:0]#  
W14, Y15, V14,  
W15, Y16, U14,  
V15, W16, Y17,  
V16, W17, Y18,  
U16, V17, W18,  
Y19, V18, W19,  
Y20, W20, V19,  
U18, T17, V20,  
U20, T18, T19,  
T20, R18, P17,  
P19, P20  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
LA[0:31]  
D20  
I
I
I
LCLK  
N18, N19, N20,  
M17, M18, M19,  
M20, L19, L18,  
L20, K20, K19,  
K18, K17, J20,  
J19, J18, J17,  
H20, H19, H18,  
G20, G19, F20,  
G18, F19, E20,  
G17, F18, E19,  
E18, D19  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
LD[0:31]  
B15  
I
I
I
LINTi#  
- 25 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 20. PCI 9656AD/PCI 9656BA M Mode Pin Types  
Symbol  
LINTo#  
Pin Number  
Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
O
O
O
OC  
24 mA  
A15  
OC  
24 mA  
OC  
24 mA  
If (HOSTEN# asserted)  
If (HOSTEN# asserted)  
I
I
I/O  
TP  
A16  
LRESET#  
else  
else  
24 mA  
O
TP  
24 mA  
O
TP  
24 mA  
If ((DMAMODE0[14]=1)  
or  
(DMAMODE1[14]=1))  
I
MDREQ#  
O
TS  
24 mA  
If ((DMAMODE0[14]=1)  
or  
(DMAMODE1[14]=1))  
else  
MDREQ#  
DMPAF  
EOT#  
O
TP  
24 mA  
I
DMPAF  
O
TS  
D14  
else  
Note for 2nd case:  
If ((HOSTEN# not asserted & RST#  
24 mA  
O
TP  
24 mA  
asserted  
EOT#  
I
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
I
B10  
R19  
I
I
PMEREQ#  
RD/WR#  
I/O  
TS  
I/O  
TS  
I/O  
TS  
24 mA  
24 mA  
24 mA  
O
OC  
24 mA  
I/O  
O
DTS  
24 mA  
I/O  
O
DTS  
24 mA  
I/O  
A17  
E17  
RETRY#  
TA#  
DTS  
DTS  
DTS  
24 mA  
24 mA  
24 mA  
I/O  
OC  
24 mA  
I/O  
OC  
24 mA  
I/O  
OC  
24 mA  
D16  
TEA#  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
C17  
TS#  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
I/O  
TS  
24 mA  
R20, P18  
TSIZ[0:1]  
USERi  
I
USERi  
B14  
I
I
LLOCKi#  
LLOCKi#  
I
O
TP  
O
TP  
24 mA  
24 mA  
USERo  
O
Note:  
Note:  
TS  
If ((HOSTEN# not asserted & RST#  
If ((HOSTEN# not asserted & RST#  
USERo  
C14  
24 mA  
asserted)  
asserted)  
LLOCKo#  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
or  
(HOSTEN# asserted & LRESET#  
asserted)  
LLOCKo#  
O
or  
or  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
(BD_SEL# not asserted))  
Pin goes Hi-Z.  
- 26 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 21. PCI 9656AD/PCI 9656BA JTAG Pin Types  
Symbol Pin Number Blue Book r.90b Pin TypeTrue AD Pin TypeTrue BA Pin Type  
A8  
I
I
I
TCK  
A7  
I
O
I
O
I
O
TDI  
C8  
TDO  
TS  
PCI  
I
TS  
PCI  
I
TS  
PCI  
I
B8  
TMS  
D9  
I
I
I
TRST#  
Table 22. PCI 9656AD/PCI 9656BA Hot Swap Pin Types  
Symbol Pin Number Blue Book r.90b Pin TypeTrue AD Pin TypeTrue BA Pin Type  
U12  
C9  
Y14  
I
I
I
I
I
I
I
I
I
64EN#  
BD_SEL#  
CPCISW  
O
OC  
PCI  
O
TP  
O
OC  
PCI  
O
O
OC  
PCI  
O
Y13  
V13  
ENUM#  
OC  
OC  
LEDon#  
24 mA  
24 mA  
24 mA  
Table 23. PCI 9656AD/PCI 9656BA System Pin Types  
Symbol  
Pin Number Blue Book r.90b Pin TypeTrue AD Pin TypeTrue BA Pin Type  
A10  
A19, A20  
C15  
I
I
I
I
I
I
I
I
I
IDDQEN#  
MODE[1:0]  
HOSTEN#  
Table 24. PCI 9656AD/PCI 9656BA EEPROM Pin Types  
Symbol  
EECS  
Pin Number Blue Book r.90b Pin Type  
True AD Pin Type  
True BA Pin Type  
O
TP  
O
TP  
O
12 mA  
12 mA  
TP  
12 mA  
B12  
B11  
A12  
Note:  
Note:  
If (BD_SEL# not asserted)If (BD_SEL# not asserted)  
Pin goes Hi-Z.  
Pin goes Hi-Z.  
I/O  
TS  
I/O  
TS  
I/O  
TP  
12 mA  
12 mA  
12 mA  
EEDI/EEDO  
Note:  
If (CNTRL[31]=1)  
Pin goes Hi-Z.  
Note:  
If (CNTRL[31]=1)  
Pin goes Hi-Z.  
O
TP  
O
TP  
O
TP  
12 mA  
12 mA  
EESK  
12 mA  
Note:  
Note:  
If (BD_SEL# not asserted)If (BD_SEL# not asserted)  
Pin goes Hi-Z. Pin goes Hi-Z.  
- 27 -  
9656-SIL-DC1-P0-.96  
12/19/2002  
Table 25. PCI 9656AD/PCI 9656BA Power & Ground Pin Types  
Symbol  
2.5VAUX  
Pin Number Blue Book r.90b Pin TypeTrue AD Pin Type True BA Pin Type  
D10  
I
I
I
C10  
A11  
I
I
I
I
I
I
I
Card_VAUX  
PRESENT_DET  
W3  
I
I
I
I
I
I
I
I
VBB  
Note:  
Changes from VBB  
to VSS  
.
C11, C19, E2,  
P3, U9, U19  
I
VCORE  
VDDA  
VIO  
I
W2  
Note:  
Changes from VDDA  
to VRING  
.
A9, F1, V2,  
W13  
I
A1, D4, D6,  
D8, D11, D13,  
D15, D17, F4,  
F17, H4, H17,  
K4, L17, N4,  
N17, R4, R17,  
U4, U6, U8,  
U10, U13, U15,  
U17  
I
I
I
I
VRING  
J9-J12,  
K9-K12,  
L9-L12,  
M9-M12  
I
I
I
I
VSS  
I
Y1  
VSSA  
Note:  
Changes from VSSA  
to VSS  
.
- 28 -  
9656-SIL-DC1-P0-.96  

相关型号:

PLXPCI6140

2 PORT PCI TO PCI BRIDGE PLX PCI 6140 COMPARISON
PERICOM

PLY10A1121R7D

Single Phase EMI Filter
MURATA

PLY10A1121R7D031

Single Phase EMI Filter, 300V
MURATA

PLY10A1121R7D03B1

Single Phase EMI Filter, 300V
MURATA

PLY10A1121R7DB1

Single Phase EMI Filter
MURATA

PLY10A1121R8R031

Single Phase EMI Filter, 300V
MURATA

PLY10A1121R8R03M1

Single Phase EMI Filter
MURATA

PLY10A1121R8RB1

Single Phase EMI Filter
MURATA

PLY10A1130R5D02B1

Single Phase EMI Filter
MURATA

PLY10A1130R5D031

Single Phase EMI Filter, 300V
MURATA

PLY10A1421R4D02M1

Single Phase EMI Filter
MURATA

PLY10A1421R4D031

Single Phase EMI Filter, 300V
MURATA