QT0086202TME [ETC]

Controller Miscellaneous - Datasheet Reference ; 控制器杂项 - 数据表参考\n
QT0086202TME
型号: QT0086202TME
厂家: ETC    ETC
描述:

Controller Miscellaneous - Datasheet Reference
控制器杂项 - 数据表参考\n

控制器
文件: 总54页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
FireLink USB  
82C862/82C863  
Dual Controller  
PCI-USB Host Bridge  
Data Book  
912-2000-030  
Revision 1.1  
15 May 2001  
Copyright  
Copyright © 2001 OPTi Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored  
in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic,  
mechanical, magnetic, optical, manual, or otherwise, without the prior written permission of OPTi Inc., 660 Alder Dr., Milpitas,  
CA 95035.  
Disclaimer  
OPTi Inc. makes no representations or warranties with respect to the design and documentation herein described and  
especially disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, OPTi Inc.  
reserves the right to revise the design and associated documentation and to make changes from time to time in the content  
without obligation of OPTi Inc. to notify any person of such revisions or changes.  
Trademarks  
OPTi and OPTi Inc. are registered trademarks of OPTi Inc. All other trademarks and copyrights are the property of their  
respective holders.  
OPTi Inc.  
660 Alder Dr.  
Milpitas, CA 95035  
Tel: (408) 382-2600  
Fax: (408) 382-2601  
WWW: http://www.opti.com  
FireLink USB  
®
82C862/863  
TABLE OF CONTENTS  
1.0  
FEATURES......................................................................................................................................................................1  
1.1  
OVERVIEW  
..........................................................................................................................................................1  
2.0  
2.1  
2.2  
2.3  
SIGNAL DEFINITIONS....................................................................................................................................................3  
TERMINOLOGY/NOMENCLATURE CONVENTIONS ...................................................................................................................3  
NUMERICAL PIN CROSS-REFERENCE LIST...........................................................................................................................5  
SIGNAL DESCRIPTIONS......................................................................................................................................................6  
2.3.1  
2.3.2  
Clock and Reset Interface Signals .......................................................................................................................6  
PCI Bus Interface Signals.....................................................................................................................................6  
USB Interface Signals ..........................................................................................................................................9  
Host Controller shared signals: PME#, SMI#, REQ#, GNT# ................................................................................9  
Legacy and Interrupt Interface Signals...............................................................................................................10  
Power and Ground Pins .....................................................................................................................................10  
Strap Options .....................................................................................................................................................11  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
3.0  
3.1  
3.2  
3.3  
3.4  
FUNCTIONAL DESCRIPTION.......................................................................................................................................13  
UNIVERSAL SERIAL BUS (USB)........................................................................................................................................13  
PCI CONTROLLER ........................................................................................................................................................14  
CLOCK GENERATION.......................................................................................................................................................15  
POWER MANAGEMENT FEATURES ....................................................................................................................................15  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
Putting FireLink into USBSuspend State............................................................................................................15  
Powering Down the USB I/O Cells .....................................................................................................................15  
Stopping the 48MHz USB Clock.........................................................................................................................15  
Using CLKRUN# ................................................................................................................................................15  
Stopping the Internal USB Clocks ......................................................................................................................16  
Power Control Modes.........................................................................................................................................16  
3.5  
3.5.1  
3.5.2  
3.6  
HOST CONTROLLER ........................................................................................................................................................19  
Legacy Support ..................................................................................................................................................20  
Intercept Port 60h and 64h Accesses.................................................................................................................20  
GENERAL PURPOSE PINS ................................................................................................................................................21  
4.0  
4.1  
4.1.1  
4.1.2  
4.2  
4.2.1  
4.2.2  
4.2.3  
REGISTER DESCRIPTIONS .........................................................................................................................................23  
PCICFG REGISTER SPACE.............................................................................................................................................23  
Programming Differences from 82C861 Component..........................................................................................23  
PCICFG 00h-FFh ...............................................................................................................................................24  
HOST CONTROLLER REGISTER SPACE..............................................................................................................................29  
MEMOFST 00h-5Ch...........................................................................................................................................29  
Legacy Support Registers ..................................................................................................................................39  
MEMOFST 100h-1Fh (Legacy Support Registers).............................................................................................39  
5.0  
5.1  
5.2  
5.3  
ELECTRICAL RATINGS................................................................................................................................................41  
ABSOLUTE MAXIMUM RATINGS.........................................................................................................................................41  
DC CHARACTERISTICS:...................................................................................................................................................41  
AC CHARACTERISTICS (PRELIMINARY)..............................................................................................................................42  
5.3.1  
5.3.2  
5.3.3  
PCI Bus AC Timings...........................................................................................................................................42  
USB AC Timings: Full Speed Source.................................................................................................................43  
USB AC Timings: Low Speed Source ................................................................................................................44  
6.0  
6.1  
6.2  
6.3  
MARKING AND ORDER INFORMATION .....................................................................................................................46  
PACKAGE MARKING ........................................................................................................................................................46  
ORDER NUMBER AND SHIPPING BOX INFORMATION ............................................................................................................47  
PACKAGE SPECIFICATIONS ..............................................................................................................................................47  
7.0  
8.0  
MECHANICAL PACKAGE OUTLINES .........................................................................................................................48  
NAND TREE TEST MODE.............................................................................................................................................49  
912-2000-030  
Revision: 1.1  
Page i  
FireLink USB  
82C862/863  
912-2000-030  
Revision: 1.1  
®
Page ii  
FireLink USB  
®
82C862/863  
1.0 Features  
· Core operates at 3.3V; PCI inputs are 5V-tolerant  
The OPTi 82C862 and 82C863 FireLink USB devices are  
high performance USB host controllers. Both products  
share the same dual transfer engine design, the only  
difference being that the 82C862 product implements four  
USB ports, while the 82C863 product implements two  
ports.  
· Incorporates PCI Power Management, supporting very  
low power standby modes  
· Implements CLKRUN# pin to support hardware-  
enforced power-down  
Their shared feature set is as follows.  
· Packaged as 100-pin LQFP (Low-profile Quad Flat  
· Compliant with USB rev. 1.1 specification  
· Compliant with PCI rev 2.2 specification  
Pack)  
· Supported by Windows 98, Windows Me, Windows  
2000, Windows XP, Windows CE, Apple Mac OS, Linux  
· Implements complete USB Open Host Controller  
Interface (OHCI) specification  
· Two independent host controllers (implemented as a  
1.1 Overview  
multi-function PCI device)  
This document describes the OPTi FireLink USB  
82C862/82C863 controller.  
· Two USB ports (82C862) or one USB port (82C863) per  
controller  
This PCI-to-USB bridge is unique in that it consists of two  
independent dual-port controllers, each sharing only the  
common PCI bus connection. This arrangement allows for  
a total Universal Serial Bus bandwidth of 24Mbps, divided  
into 12Mbps for each pair of ports (or 12Mbps per port in  
the case of the 82C863).  
· Second host controller can be disabled if not used to  
save power  
· Clock input can be derived from either a 12MHz crystal  
or a 48MHz oscillator  
Figure  
functionality of the chip.  
1 provides a block diagram of the overall  
· Clocks can be turned off when not in use to save power  
Figure 1. FireLink USB Block Diagram  
port 1  
port 2  
82C862  
only  
FireLink USB  
USB  
Controller  
Module 1  
82C862/3  
USB Config Regs  
Function 0  
PCI  
interface  
Central  
Arbiter  
port 3  
port 4  
82C862  
only  
USB  
Controller  
Module 2  
REQ#, GNT#  
48MHz Clock  
Generation  
USB Config Regs  
Function 1  
12MHz  
xtal  
912-2000-030  
Revision: 1.1  
Page 1  
FireLink USB  
82C862/863  
912-2000-030  
Revision: 1.1  
®
Page 2  
FireLink USB  
®
82C862/863  
2.0 Signal Definitions  
2.1 Terminology/Nomenclature Conventions  
The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low  
voltage level. When "#" is not present after the signal name, the signal is asserted when at the high voltage level.  
The terms assertion and negation are used extensively. This is done to avoid confusion when working with a mixture of active  
low and active high signals. The term assert, or assertion indicates that a signal is active, independent of whether that level is  
represented by a high or low voltage. The term negate, or negation indicates that a signal is inactive.  
The tables in this section use several common abbreviations. Table 1 lists the mnemonics and their meanings. Note that  
TTL/CMOS/Schmitt-trigger levels pertain to inputs only. Outputs are driven at CMOS levels.  
Table 1. Signal Definitions Legend  
Mnemonic  
Description  
Analog  
CMOS  
Dcdr  
Diff  
Ext  
G
Analog-level compatible  
CMOS-level compatible  
Decoder  
Differential signal pair  
External  
Ground  
I
Input  
Int  
Internal  
I/O  
Input/Output  
Mux  
NIC  
O
Multiplexer  
No Internal Connection  
Output  
OD  
P
Open drain  
Power  
PD  
PU  
S
Pull-down resistor  
Pull-up resistor  
Schmitt-trigger  
Sustain Tristate  
TTL-level compatible  
S/T/S  
TTL  
912-2000-030  
Revision: 1.1  
Page 3  
FireLink USB  
82C862/863  
Figure 2. LQFP Pin Diagram (Note)  
Note: Figure 2 shows a pin diagram of the 82C862/3 packaged in an LQFP (Low-profile Quad Flat Pack, square).  
Refer to the "Mechanical Package Outlines" section for details regarding packaging.  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
SERR#  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
INTA#  
AD2  
AD1  
1
2
3
4
5
6
7
8
PWRFLT3#  
PWRON3#  
PME#  
AD0  
PERR#  
STOP#  
DEVSEL#  
TRDY#  
IRDY#  
GND  
GND  
X1/CLK48  
VCC  
X2  
AGND_PLL  
AVCC_PLL  
DGND_USB  
AGND_USB  
D1+ (82C863:NIC)  
D1- (82C863:NIC)  
D2+  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VCC  
FireLink USB  
FRAME#  
C/BE2#  
AD16  
82C862/3  
AD17  
VCC  
D2-  
GND  
AD18  
AVCC_USB  
DVCC_USB  
RESET#  
GND  
AD19  
AD20  
AD21  
TEST0  
PWRFLT1#  
PWRON1#  
AD22  
VCC  
PWRFLT2#  
PWRON2#  
TEST1  
AD23  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTE: NIC = No Internal Connection  
912-2000-030  
Revision: 1.1  
®
Page 4  
FireLink USB  
82C862/863  
2.2 Numerical Pin Cross-Reference List  
Pin  
No.  
Signal Name  
Power Plane  
Pin  
No.  
Signal Name  
Power Plane  
Pin  
No.  
Signal Name  
Power Plane  
1
2
INTA#  
AD2  
VCC  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
DGND_USB  
PCICLK  
GNT#  
REQ#  
AD31  
DVCC_USB  
VCC  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
IRDY#  
TRDY#  
DEVSEL#  
STOP#  
PERR#  
PME#  
PWRON3#  
PWRFLT3#  
SERR#  
PAR  
VCC  
3
AD1  
4
AD0  
5
GND  
6
X1/CLK48  
VCC  
AD30  
7
AD29  
8
X2  
GND  
9
AGND_PLL  
AVCC_PLL  
DGND_USB  
AGND_USB  
AVCC_PLL  
VCC  
10  
11  
12  
13  
AD28  
DVCC_USB  
AVCC_USB  
AD27  
C/BE1#  
AD15  
AD26  
82C862: D1+  
82C863: NIC  
AD25  
AD14  
CLKRUN#  
GND  
GND  
14  
82C862: D1-  
82C863: NIC  
VCC  
AD24  
AD13  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
D2+  
D2-  
C/BE3#  
IDSEL  
AD23  
AD12  
AD11  
AVCC_USB  
DVCC_USB  
RESET#  
GND  
GND  
DVCC_USB  
VCC  
AD22  
AD10  
PWRON1#  
PWRFLT1#  
AD21  
AD9  
AD8  
TEST0  
C/BE0#  
PWRON4#  
PWRFLT4#  
VCC  
VCC  
AD20  
PWRFLT2  
PWRON2  
TEST1  
AD19  
AD18  
GND  
AD7  
DVCC_USB  
AVCC_USB  
D4-  
DVCC_USB  
AVCC_USB  
VCC  
AD6  
AD17  
AD5  
AD16  
GND  
D4+  
C/BE2#  
FRAME#  
VCC  
SMI#  
82C862: D3-  
82C863: NIC  
INTB#  
AD4  
31  
32  
82C862: D3+  
82C863: NIC  
GND  
AD3  
AGND_USB  
912-2000-030  
Revision 1.1  
®
Page 5  
FireLink USB  
82C862/863  
2.3 Signal Descriptions  
2.3.1 Clock and Reset Interface Signals  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
PCICLK  
34  
I
PCI Clock: This input provides timing for all cycles on the host PCI bus; normally  
33MHz. All other PCI signals are sampled on the rising edge of PCLK (timing  
parameters refer to this edge).  
X1/CLK48  
X2  
6
8
I
O
USB Clock: The CLK48 input provides timing for USB data signals; this clock  
must be 48MHz for proper USB operation. As an option, a 12MHz crystal can be  
connected across X1 and X2, in which case an internal PLL will develop the  
48MHz signal. Refer to the TEST0-TEST1 strap options for selecting the mode of  
operation.  
RESET#  
19  
I
Reset: If RESET# is asserted for a minimum of 1µs while PCICLK is stable at  
33MHz, it causes the logic to enter its default state (all registers are set to their  
default values).  
AD[31:0], C/BE[3:0]#, and PAR are always driven low by the logic synchronously  
from the leading edge of RESET# and are always tristated from the trailing edge  
of RESET#. FRAME#, IRDY#, TRDY#, STOP#, and DEVSEL# are tristated from  
the leading edge of RESET# and remain so until driven as either a master or  
slave. RESET# may be asynchronous to PCICLK when asserted or negated,  
however, negation must occur with a clean, bounce-free edge.  
2.3.2 PCI Bus Interface Signals  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
AD[31:0]  
37:39,  
42:45,  
49, 51,  
55:58,  
61:62,  
78:79,  
82:84,  
86:88,  
93:95,  
99:100,  
2:1  
I/O  
Address and Data Lines 31 through 0: This bus carries the address and/or  
data during a PCI bus cycle. A PCI bus cycle has two phases - an address phase  
which is followed by one or more data phases. During the initial clock of the bus  
cycle, the AD bus contains a 32-bit physical byte address. AD[7:0] is the least  
significant byte (LSB) and AD[31:24] is the most significant byte (MBS). After the  
first clock of the cycle, the AD bus contains data.  
When the chip is the target, AD[31:0] are inputs during the address phase. For  
the data phase(s) that follow, the chip may supply data on AD[31:0] in the case of  
a read or accept data in the case of a write.  
When the chip is the master, it drives a valid address on AD[31:2] during the  
address phase, and drives write or accepts read data on AD[31:0] during the data  
phase. As a master, the chip always drives AD[1:0] low.  
C/BE[3:0]#  
49, 63,  
77, 89  
I/O  
Bus Command and Byte Enables 3 through 0: These signals provide the  
command type information during the address phase and carry the byte enable  
information during the data phase. C/BE0# corresponds to byte 0, C/BE1# to byte  
1, C/BE2# to byte 2, and C/BE3# to byte 3. If the chip is the initiator of a PCI bus  
cycle, it drives C/BE[3:0]#. When it is the target, it samples C/BE[3:0]#.  
912-2000-030  
Revision: 1.1  
®
Page 6  
FireLink USB  
82C862/863  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
PAR  
76  
O
Even Parity: The logic calculates PAR for both the address and data phases of  
PCI cycles. PAR is valid one PCI clock after the associated address or data  
phase, but may or may not be valid for subsequent clocks. It is calculated based  
on 36 bits - AD[31:0] plus C/BE[3:0]#. "Even" parity means that the sum of the 36  
bit values plus PAR is always an even number, even if one or more bits of  
C/BE[3:0]# indicate invalid data.  
FRAME#  
64  
I/O  
(s/t/s)  
Cycle Frame: This signal is driven by the current PCI bus master to indicate the  
beginning and duration of an access. The master asserts FRAME# at the  
beginning of a bus cycle, sustains the assertion during data transfers, and then  
negates FRAME# in the final data phase.  
FRAME# is an input when the chip is the target and an output when it is the  
initiator. FRAME# is tristated from the leading edge of RESET# and remains  
tristated until driven as either a master or slave.  
IRDY#  
67  
I/O  
(s/t/s)  
Initiator Ready: IRDY#, along with TRDY#, indicates whether the chip is able to  
complete the current data phase of the cycle. IRDY# and TRDY# are both  
asserted when a data phase is completed.  
During a write, the chip asserts IRDY# to indicate that it has valid data on  
AD[31:0]. During a read, the chip asserts IRDY# to indicate that it is prepared to  
accept data.  
IRDY# is an input when the chip is a target and an output when it is the initiator.  
IRDY# is tristated from the leading edge of RESET# and remains tristated until  
driven as either a master or a slave by the chip.  
TRDY#  
68  
I/O  
(s/t/s)  
Target Ready: TRDY#, along with IRDY#, indicates whether the chip is able to  
complete the current data phase of the cycle. TRDY# and IRDY# are both  
asserted when a data phase is completed.  
When the chip is acting as the target during read and write cycles, it performs in  
the following manner:  
1. During a read, the chip asserts TRDY# to indicate that it has placed valid  
data on AD[31:0].  
2. During a write, the chip asserts TRDY# to indicate that is prepared to accept  
data.  
TRDY# is an input when the chip is the initiator and an output when it is the  
target. TRDY# is tristated from the leading edge of RESET# and remains so until  
driven as either a master or a slave by the chip.  
STOP#  
70  
I/O  
(s/t/s)  
Stop: STOP# is an output when the chip is the target and an input when it is the  
initiator. As the target, the chip asserts STOP# to request that the master stop the  
current cycle. As the master, the assertion of STOP# by a target forces the chip  
to stop the current cycle.  
STOP# is tristated from the leading edge of RESET# and remains so until driven  
by the chip acting as a slave.  
912-2000-030  
Revision 1.1  
®
Page 7  
FireLink USB  
82C862/863  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
DEVSEL#  
69  
I/O  
Device Select: The chip claims a PCI cycle via positive decoding by asserting  
(s/t/s)  
DEVSEL#. As an output, the chip drives DEVSEL# for two different reasons:  
1. If the chip samples IDSEL active in configuration cycles, DEVSEL# is  
asserted.  
2. When the chip decodes an internal address or when it subtractively decodes  
a cycle, DEVSEL# is asserted  
When DEVSEL# is an input, it indicates the target response to an chip master-  
initiated cycle. DEVSEL# is tristated from the leading edge of RESET# and  
remains so until driven by the chip acting as a slave.  
IDSEL  
50  
I
Initialization Device Select: This signal is the "chip select" during configuration  
read and write cycles. IDSEL is sampled by the chip during the address phase of  
a cycle. If IDSEL is found to be active and the bus command is a configuration  
read or write, the chip claims the cycle with DEVSEL#.  
PERR#  
SERR#  
71  
75  
I/O  
I
Parity Error: The chip uses this line to report data parity errors during any PCI  
cycle except a Special Cycle.  
System Error: The chip uses this line to report address parity errors and data  
parity errors on the Special Cycle command, or any other system error where the  
result will be catastrophic.  
REQ#  
36  
35  
46  
O
I
Bus Request: REQ# is asserted by the chip to request ownership of the PCI  
bus.  
GNT#  
Bus Grant: GNT# is sampled by the chip for an active low assertion, which  
indicates that it has been granted use of the PCI bus.  
CLKRUN#  
I/O  
Clock Run: The CLKRUN# function is available on this pin and can be used to  
reduce chip power consumption during idle periods. It is an I/O sustained tristate  
signal and follows the PCI 2.1 defined protocol.  
GPIO2  
INTB#  
General Purpose I/O pin 2: These pins can be written or read by specific  
application software. Refer to PCICFG 53-55h for information.  
98  
O
PCI Interrupt B: This signal can be connected to a PCI Interrupt line.  
912-2000-030  
Revision: 1.1  
®
Page 8  
FireLink USB  
82C862/863  
2.3.3 USB Interface Signals  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
D1+  
D1-  
13  
14  
diff  
diff  
diff  
diff  
O
USB Port 1 Differential Data Pair: This pair comes from the first controller.  
These pins have no internal connection on the 82C863 part.  
D2+  
D2-  
15  
16  
USB Port 2 Differential Data Pair: This pair comes from the first controller.  
D3+  
D3-  
28  
29  
USB Port 3 Differential Data Pair: This pair comes from the second controller.  
These pins have no internal connection on the 82C863 part.  
D4+  
D4-  
30  
31  
USB Port 4 Differential Data Pair: This pair comes from the second controller.  
PWRON1#  
PWRON2#  
PWRON3#  
PWRON4#  
53  
24  
73  
90  
Power On Lines 1, 2, 3 and 4: These outputs are used to switch port VCC for  
the respective USB port. The controlled VCC is used only by the device  
connected to the port, and is not used by the chip. PWRON1# and PWRON3#  
are not used for the 82C863 part and can be left unconnected.  
PWRFLT1#  
PWRFLT2#  
PWRFLT3#  
PWRFLT4#  
54  
23  
74  
91  
I
Power Fault Lines 1, 2, 3 and 4: These inputs indicate that an over-current fault  
has occurred on the respective USB port. Their polarity can be both strap- and  
software-controlled: Refer to the Strap Options section for details. PWRFLT1#  
and PWRFLT3# should be tied to GND for the 82C863 part.  
2.3.4 Host Controller shared signals: PME#, SMI#, REQ#, GNT#  
Several other signals are shared by both host controllers in addition to the bused PCI signals. The shared signals are all active  
low. The diagram below best explains the internal connections of the chip.  
FireLink USB  
GNT1#  
USB  
REQ1#  
Host1  
Internal  
GNT#  
SMI1#  
Arbiter  
PME1#  
REQ#  
GNT2#  
REQ2#  
USB  
Host2  
SMI#  
SMI2#  
PME2#  
PME#  
912-2000-030  
Revision 1.1  
®
Page 9  
FireLink USB  
82C862/863  
2.3.5 Legacy and Interrupt Interface Signals  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
SMI#  
97  
72  
O
System Management Interrupt: This signal is used to request a System  
Management Mode (SMM) interrupt. It can be connected to a spare EPMI pin on  
the host chipset.  
GPIO4  
PME#  
General Purpose I/O pin 4: These pins can be written or read by specific  
application software. Refer to PCICFG 53-55h for information.  
special  
Power Management Event: This signal is used to wake up the system from a  
PCI Power Management (PCI/PM) power saving mode. This pin is normally tri-  
stated and is driven low when active.  
Note: When unpowered, the PME# driver output circuit will not be damaged if  
PME# is powered from another source. Moreover, once power is removed from  
the chip, this pin does not present a current path to ground.  
GPIO3  
General Purpose I/O pin 3: These pins can be written or read by specific  
application software. Refer to PCICFG 53-55h for information.  
INTA#  
TEST0  
1
O
PCI Interrupt A: This signal can be connected to a PCI interrupt line.  
21  
I/O  
TEST Pin 0: This pin is sampled by the chip at reset time to put the logic into a  
test mode if needed. See the STRAP OPTIONS section for details.  
GPIO0  
TEST1  
GPIO1  
General Purpose I/O pin 0: These pins can be written or read by specific  
application software. Refer to PCICFG 53-55h for information.  
25  
I/O  
TEST Pin 1: This pin is sampled by the chip at reset time to put the logic into a  
test mode if needed. See the STRAP OPTIONS section for details.  
General Purpose I/O pin 1: These pins can be written or read by specific  
application software. Refer to PCICFG 53-55h for information.  
2.3.6 Power and Ground Pins  
Signal Name  
Pin  
No.  
Pin  
Type  
Signal Description  
VCC  
7, 22, 41,  
60, 65,  
P
3.3V Power Connection: Core voltage is always 3.3V. However, the PCI  
interface can be 5V as the PCI inputs are 5V-tolerant.  
81, 92,  
AVCC_PLL  
AVCC_USB  
DVCC_USB  
GND  
10  
P
P
P
G
PLL Analog Power: Connect to low-noise 3.3V.  
USB I/O Analog Power: Connect to low-noise 3.3V.  
USB I/O Digital Power: Connect to 3.3V.  
17, 27  
18, 26  
20,40,47,  
59,66,80,  
85,96  
Core Digital Ground: Connect to board ground.  
AGND_PLL  
AGND_USB  
DGND_USB  
9
G
G
G
PLL Analog Ground: Connect to same board ground as GND.  
USB I/O Analog Ground: Connect to same board ground as GND.  
USB I/O Digital Ground: Connect to same board ground as GND.  
12, 32  
11, 33  
912-2000-030  
Revision: 1.1  
®
Page 10  
FireLink USB  
82C862/863  
2.3.7 Strap Options  
The 82C862/3 component offers several operating mode choices at power-up time. These choices are selected through a  
strap resistor that pulls the related pin either up or down to the required level. A 4.7k ohm resistor is recommended.  
Table 2. Strap Selected Options  
Pin  
Mode  
PWRON3#  
Enable/Disable Second Host  
1
0
Enable Second USB Host Controller (Function 1) [DEFAULT]  
Disable Second USB Host Controller. All clocks going to the logic for the second host are stopped to  
reduce power consumption.  
TEST0  
TEST1  
Mode Operation  
0
0
1
1
0
1
1
0
PLL Operational Mode using 12 MHz crystal on X1 and X2 [DEFAULT]  
48 MHz clock Operation Mode. X1 connects to 48 MHz clock, X2 no-connect.  
NAND Tree test mode  
Tristate test mode  
SMI#  
PCI Power Management PME# function / Reference USB clock  
0
PME# becomes 48 MHz reference clock output from PLL. Used for testing PLL. Also disables PCI power  
management, PCICFG 06h[4] = 0.  
1
Enables PME# function and PCI power management, PCICFG 06h[4]=1. [DEFAULT]  
PWRON2#  
Global/Individual Power Control  
1
Individual PWRON# and PWRFLT# for each port: [DEFAULT]  
HcRhDescA NoPowerSwitching=0 (MEMOFST 49h[1])  
HcRhDescA PowerSwitchingMode=1 (MEMOFST 49h[0])  
HcRhDescB PortPowerControlMask bit1,bit2=1,1 (MEMOFST4Eh[1,2])  
HcRhDescA NoOvercurrentProtection=0 (MEMOFST 49h[4])  
HcRhDescA OvercurrentProtectionMode=1 (MEMOFST 49h[3]])  
0
Global PWRON# and PWRFLT# for each port:  
HcRhDescA NoPowerSwitching=0 (MEMOFST 49h[1])  
HcRhDescA PowerSwitchingMode=0 (MEMOFST 49h[0])  
HcRhDescB PortPowerControlMask bit1,bit2=0,0 (MEMOFST4Eh[1,2])  
HcRhDescA NoOvercurrentProtection=0 (MEMOFST 49h[4])  
HcRhDescA OvercurrentProtectionMode=0 (MEMOFST 49h[3]])  
912-2000-030  
Revision 1.1  
®
Page 11  
FireLink USB  
82C862/863  
912-2000-030  
Revision: 1.1  
®
Page 12  
FireLink USB  
®
82C862/863  
3.0 Functional Description  
3.1 Universal Serial Bus (USB)  
The 82C862/3 controller supports a PCI-based implementation of Universal Serial Bus utilizing the OpenHCI core developed  
by Compaq. The logic core consists of two USB host controller modules (making the part a multi-function PCI device), and a  
PCI interface controller.  
Each USB host controller module contains an integrated root hub that supports one (82C863) or two (82C862) downstream  
USB hubs or devices. Keyboard and mouse legacy support are also included for DOS compatibility with USB devices. This  
legacy support operates in conjunction with the primary host controller module as described later in this document.  
This document must be used along with the following public domain reference documents to get the complete functional  
description of the USB core implementation.  
·
·
·
USB Specification, Revision 1.1  
OpenHCI Specification, Revision 1.0a  
PCI Specification, Version 2.2  
A functional block diagram of one of the two USB controller modules is given in Figure 3. The other is identical.  
Figure 3. USB Functional Block Diagram  
CLKRUN#  
PCI Bus  
PCI Interface  
GPIO  
Interface  
PCI Master  
PCI Slave  
PCI I/O  
PCI Config  
Serial  
ROM  
Core  
Clock  
Control  
Logic  
KBD Legacy  
SODIMM  
Frame  
Management  
List Processor  
Bus Master  
PWRFLT1  
PWRON1  
VD1+  
Port  
1
USB  
1
VD1-  
Clock  
Gen  
Global  
Operation  
(82C862  
only)  
Data Buffer  
Engine  
Root Hub  
Control  
Port  
2
PWRFLT2  
PWRON2  
VD2+  
USB SIE  
USB  
2
VD2-  
912-2000-030  
Revision: 1.1  
Page 13  
FireLink USB  
82C862/863  
3.2 PCI Controller  
The PCI controller interfaces the host controller to the PCI bus. As a master, the PCI controller is responsible for running  
cycles on the PCI bus on behalf of the host controller. As a target, the PCI controller monitors the cycles on the PCI bus and  
determines when to respond to these cycles. A USB host controller module is a PCI target when it decodes cycles to its  
internal PCI configuration registers or to its internal PCI memory mapped I/O registers. The PCI controller asserts DEVSEL# in  
medium decode timing to claim a PCI transaction.  
Since two PCI-interfaced USB controller modules reside on-chip, the logic includes an internal arbiter to select between the  
two modules when one or both make a bus mastering request.  
The PCI configuration space of the primary USB host controller module is accessed as Device #X, Function #0, where Device  
#X depends on which AD line is connected to the IDSEL input. For the secondary USB host controller module, PCI  
configuration register space is accessed as Function #1 instead. PCI configuration space is hereafter referred to as PCICFG.  
Table 3 gives a register map of the PCICFG register space (duplicated for each of the two functions). Refer to the "PCICFG  
Register Space" section for detailed bit information.  
Table 3. PCI Controller Register Map  
PCICFG  
00h-01h  
R/W  
Register Name  
PCICFG  
3Fh  
R/W  
Register Name  
RO  
RO  
R/W  
R/W  
RO  
RO  
R/W  
R/W  
RO  
--  
Vendor ID  
R/W  
--  
Maximum Latency  
Reserved for factory test  
Reserved  
02h-03h  
04h-05h  
06h-07h  
08h  
Device ID  
40h-45h  
46h-4Bh  
4Ch  
Command  
--  
Status  
R/W  
R/W  
--  
Interrupt Pin Selection  
Miscellaneous Control  
Reserved  
Revision ID  
4Dh  
09h-0Bh  
0Ch  
Class Code  
4Eh-4Fh  
50h  
Cache Line Size  
Master Latency Timer  
Header Type  
Reserved  
R/W  
--  
PCI Host Feature Control  
Reserved  
0Dh  
51h  
0Eh  
52h  
R/W  
R/W  
R/W  
R/W  
--  
Strap Option Override  
GPIO Select  
0Fh  
53h  
10h-13h  
14h-2Bh  
2Ch-2Dh  
2Eh-2Fh  
30h-3Bh  
3Ch  
R/W  
--  
Base Address Register 0  
Reserved  
54h  
GPIO Output Enable  
GPIO Data  
55h  
RO  
RO  
--  
Subsystem Vendor  
Subsystem ID  
Reserved  
56h-7Bh  
7Ch-7Fh  
80h-EFh  
F0h-F5h  
F6h-FFh  
Reserved  
R/W  
--  
Subsystem ID Restore  
Reserved  
R/W  
R/W  
R/W  
Interrupt Line  
Interrupt Pin  
Minimum Grant  
R/W  
--  
PCI Power Management  
Reserved  
3Dh  
3Eh  
912-2000-030  
Revision: 1.1  
®
Page 14  
FireLink USB  
82C862/863  
3.3 Clock Generation  
The USB core requires an accurate 48MHz internal clock for proper operation. This clock can be obtained either by connecting  
an external 48MHz oscillator, or by connecting a 12MHz crystal.  
To use the external 48MHz clock, connect the clock source to the X1 pin and strap TEST1 high. The X2 pin is not used in this  
configuration and must be left floating. This clock must be accurate to +/- 0.2%, or 2000ppm. Jitter must be less than +/- 1ns.  
To use a 12MHz crystal, connect it to the X1 and X2 pins and strap TEST1 low. An internal PLL develops the required 48MHz  
clock. This PLL can be powered down when not in use through the PCI Power Management registers. Since the 12MHz clock  
generated is used to develop 48MHz internally, the crystal accuracy must be within +/- 0.05%, or 500ppm.  
3.4 Power Management Features  
FireLink USB implements new power management features which can reduce the overall power consumed in mobile USB  
applications. Key features are as follows.  
The OS can put each USB controller module individually into USBSuspend state.  
Once in USBSuspend state, the BIOS can turn off the USB I/O cells on each port for further power savings.  
The external PCI clock can be stopped if system hardware is designed to use the CLKRUN# pin from the chip, which can also  
be used to awaken the system.  
The external 48MHz USB clock can also be stopped along with the PCICLK when the system will be put into a Standby mode.  
USB clocks to each of the internal modules can be stopped independently through the PCI power management registers.  
Each of these features is described in the sections below.  
3.4.1 Putting FireLink into USBSuspend State  
Before a host system goes into a suspend state, the operating system should put the OHCI USB controller into USBSuspend  
mode by writing to register MEMOFST 04h[7:6] = 11.  
3.4.2 Powering Down the USB I/O Cells  
Once in USBSuspend state, the USB I/O cells can be disabled to reduce power by setting PCICFG 50h[1:0] = 11. If this  
feature is used, the I/O cells should be disabled by the BIOS before going into system-level Suspend, and re-enabled by the  
BIOS before giving control back to the operating system.  
3.4.3 Stopping the 48MHz USB Clock  
After the controller is put into USBSuspend state, still another step can be taken to further reduce power consumption: stop the  
48MHz USB clock. If this route is taken, the USB clock must be stopped and started in a glitch free manner. The usual means  
of effecting this control would be through software control of the system clock generator circuit.  
Once the USB clock is stopped, the system can be awakened by using PME#, which will be asserted on a USB wake up event  
(resume signalling, connect, disconnect). This system event should be designed to restart the 48MHz clock to the USB  
controller.  
3.4.4 Using CLKRUN#  
The CLKRUN# pin is always operational in the part; no enabling is required. The PCI Mobile Design Guide, available from the  
PCISIG, describes the operation of CLKRUN# in detail. Briefly, connected devices monitor this pin to see if it goes high,  
indicating that the host wants to stop the system PCICLKs. If the line goes high, connected devices are allowed to momentarily  
drive the pin low. The host will then take over driving this pin low until it wants to try again to stop the clocks.  
The host system uses CLKRUN# to determine whether or not the USB controller requires a PCI clock by releasing CLKRUN#,  
which is always pulled high with a resistor. The USB controller power management logic will drive this pin low again as  
912-2000-030  
Revision 1.1  
®
Page 15  
FireLink USB  
82C862/863  
required by the CLKRUN# specification if the controller is using the clock, i.e. whenever a USB device is attached. If the  
controller does not drive the clock low, the system is free to slow or stop the PCI clock.  
3.4.5 Stopping the Internal USB Clocks  
The chip is equipped with PCI Power Management registers. When either function is set to D3hot mode, its internal USB clock  
is switched off to effect a significant reduction in power consumption. Returning the system to D0 will restart the internal USB  
clock.  
3.4.6 Power Control Modes  
The chip pinout includes the following signals for controlling and monitoring USB power for the respective USB port:  
· PWRON1-4# are active-low outputs to turn USB power on.  
· PWRFLT1-4# are active-low inputs to detect over current.  
At design time, it must be decided whether these control and monitoring signals will be used independently on a per-port basis  
(ideal situation), or paired together (for lower component cost). Consequently, the chip can strap into one of two power control  
modes:  
· Individual PWRON# and PWRFLT# - entered when PWRON2# is sensed high at reset  
· Global PWRON# and PWRFLT# - entered when PWRON2# is sensed low at reset.  
The part supports two modes for turning on power to the respective USB ports: Global and Individual (per-port). This logic is  
contained in the Root Hub partition of each USB controller module, and consists of a portion for the Root Hub itself as well as  
portions for each individual port. The operation of Global and Individual power switching is explained below.  
Global Power Switching is the mode that is supported in the original 82C861 design. In this mode either PWRON1# or  
PWRON2# can be used to turn on power for both ports on USB Host 1, and either PWRON3# or PWRON4# can be used to  
turn on power for both ports USB Host 2. When supporting this mode the following registers are of significance:  
Register  
Field  
Value or Function  
0: Ports are power switched  
HcRhDescriptorA  
NoPowerSwitching  
MEMOFST 49h[1]  
HcRhDescriptorA  
HcRhDescriptorB  
HcRhStatus  
PowerSwitchingMode  
MEMOFST 49h[0]  
0: All ports are powered at the same time  
Not Used  
PortPowerControlMask  
MEMOFST 4Eh[2:1]  
ClearGlobalPower (write)  
MEMOFST 50h[0]  
This bit is written to ‘1’ to turn OFF power to all ports.  
This bit is written to ‘1’ to turn ON power to all ports.  
HcRhStatus  
SetGlobalPower (write)  
MEMOFST 52h[0]  
PortPowerStatus (read)  
MEMOFST 55h[0] port 1  
MEMOFST 59h[0] port 2  
0=port power is off  
1=port power is on  
Only Set/ClearGlobalPower controls this bit  
HcRhPort1Status  
HcRhPort2Status  
912-2000-030  
Revision: 1.1  
®
Page 16  
FireLink USB  
82C862/863  
Individual Power Switching is the mode in which the power to the USB ports can be controlled individually by using the Port  
Status registers for each port, or can also be controlled globally depending on the value in the PowerControlMask register.  
When strapping into this mode, the PowerControlMask registers will be set. All four signals, PWRON1#, PWRON2#,  
PWRON3#, and PWRON4# will be used to turn on the respective USB ports power and will be independently controlled.  
When supporting this mode the following registers are of significance:  
Register  
Field  
Value or Function  
0: Ports are power switched  
HcRhDescriptorA  
NoPowerSwitching  
MEMOFST 49h[1]  
HcRhDescriptorA  
HcRhDescriptorB  
PowerSwitchingMode  
MEMOFST 49h[0]  
1: Each port is powered individually. This mode allows  
the port to be either global or individual controlled  
depending on value in PortPowerControlMask.  
PortPowerControlMask  
MEMOFST 4Eh[2:1]  
This register determines if the ports power is controlled  
individually by the Port Status register, or globally by the  
Root Hub Status register.  
0=port uses global Set/ClearGlobalPower  
1=port uses per-port Set/ClearPortPower  
HcRhStatus  
HcRhStatus  
ClearGlobalPower (write)  
MEMOFST 50h[0]  
This bit is written to ‘1’ to turn off power to ports whose  
PortPowerControlMask=0.  
SetGlobalPower (write)  
MEMOFST 52h[0]  
This bit is written to ‘1’ to turn on power to ports whose  
PortPowerControlMask=0.  
PortPowerStatus (read)  
MEMOFST 55h[0] port 1  
MEMOFST 59h[0] port 2  
0=port power is off  
1=port power is on  
If per-port switching is enabled for this port, then only  
Set/ClearPortPower affect this bit. If global mode is  
enabled, then Set/ClearGlobalPower control this bit.  
HcRhPort1Status  
HcRhPort2Status  
SetPortPower (write)  
1: sets PortPowerStatus  
HcRhPort1Status  
HcRhPort2Status  
MEMOFST 55h[0] port 1  
MEMOFST 59h[0] port 2  
Only valid if port is enabled for per-port switching.  
ClearPortPower (write)  
MEMOFST 55h[1] port 1  
MEMOFST 59h[1] port 2  
1: clear PortPowerStatus  
Only valid if port is enabled for per-port switching.  
HcRhPort1Status  
HcRhPort2Status  
912-2000-030  
Revision 1.1  
®
Page 17  
FireLink USB  
82C862/863  
The logic also supports both Global and per-port overcurrent detection as follows.  
Global overcurrent mode – either PWRFLT1# or PWRFLT2# can be used to detect an overcurrent condition on any port on  
USB Host 1, and either PWRFLT3# or PWRFLT4# can be used to detect an overcurrent condition on any port on USB Host 2.  
For example, if PWRFLT1# is asserted, it means an overcurrent condition exists on USB Host 1, resulting in power shutoff for  
both ports on USB Host 1, and setting of the appropriate global overcurrent indicator bits.  
Register  
Field  
Value or Function  
HcRhDescriptorA  
NoOvercurrentProtection  
MEMOFST 49h[4]  
0: Over-current status is reported  
HcRhDescriptorA  
HcRhStatus  
OverCurrentProtectionMode  
MEMOFST 49h[3]  
0: Global - Over-current reported  
collectively for all ports  
OverCurrentIndicator  
MEMOFST 50h[1]  
1: Global over-current exists  
0: power operations normal  
HcRhStatus  
OverCurrentIndicatorChange  
MEMOFST 52h[1]  
Set by hardware when  
OverCurrentIndicator bit changes.  
Write a ‘1’ to clear this bit.  
PortOverCurrentIndicator  
MEMOFST 54h[3] port 1  
MEMOFST 58h[3] port 2  
Not used, set to ‘0’ for global over-  
current.  
HcRhPort1Status  
HcRhPort2Status  
PortOverCurrentIndicatorChange  
MEMOFST 56h[3] port 1  
MEMOFST 5Ah[3] port 2  
Not used, set to ‘0’ for global over-  
current.  
HcRhPort1Status  
HcRhPort2Status  
Per-Port overcurrent mode – PWRFLT1 #, PWRFLT2#, PWRFLT3#, and PWRFLT4# are all used to monitor each port  
individually. If an overcurrent condition exists on one port, power is only shut off to that port.  
Register  
Field  
Value or Function  
HcRhDescriptorA  
NoOvercurrentProtection  
MEMOFST 49h[4]  
0: Over-current status is reported  
HcRhDescriptorA  
HcRhStatus  
OverCurrentProtectionMode  
MEMOFST 49h[3]  
1: Over-current is reported on a per-  
port basis  
OverCurrentIndicator  
MEMOFST 50h[1]  
Not used, always ‘0’ for per-port  
over-current mode.  
HcRhStatus  
OverCurrentIndicatorChange  
MEMOFST 52h[1]  
Not used, always ‘0’ for per-port  
over-current mode.  
PortOverCurrentIndicator  
MEMOFST 54h[3] port 1  
MEMOFST 58h[3] port 2  
0: no over-current condition  
1: over-current condition exists  
HcRhPort1Status  
HcRhPort2Status  
PortOverCurrentIndicatorChange  
MEMOFST 56h[3] port 1  
MEMOFST 5Ah[3] port 2  
Set by hardware when  
PortOverCurrentIndicator bit  
changes. Write a ‘1’ to clear this bit.  
HcRhPort1Status  
HcRhPort2Status  
912-2000-030  
Revision: 1.1  
®
Page 18  
FireLink USB  
82C862/863  
3.5 Host Controller  
This block is the operational control block in the USB core. It is responsible for the host controller operational states (Suspend,  
Disabled, Enabled), special USB signaling (Reset, Resume), status, interrupt control, and host controller configuration  
information.  
The host controller (HC) interface registers are PCI memory mapped I/O, hereafter referred to as MEMOFST. Table 4 gives a  
register map for the MEMOFST register space. Refer to the "Host Controller Register Space" section for detailed bit  
information.  
Table 4. Host Controller Register Map  
MEMOFST  
R/W  
Register Name  
00h-03h  
04h-07h  
08h-0Bh  
0Ch-0Fh  
10h-13h  
14h-17h  
18h-1Bh  
1Ch-1Fh  
20h-23h  
24h-27h  
28h-2Bh  
2Ch-2Fh  
30h-33h  
34h-37h  
38h-3Bh  
3Ch-3Fh  
40h-43h  
44h-47h  
48h-4Bh  
4Ch-4Fh  
50h-53h  
54h-57h  
58h-5Bh  
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
HcRevision  
HcControl  
HcCommandStatus  
HcInterruptStatus  
HcInterrupt Enable  
HcInterrupt Disable  
HcHCCA  
HcPeriodCurrentED  
HcControlHeadED  
HcControlCurrentED  
HcBulkHeadED  
HcBulkCurrentED  
HcDoneHead  
HcFmInterval  
HcFrameRemaining  
HcFmNumber  
HcPeriodicStart  
HcLSThreshold  
HcRhDescriptorA  
HcRhDescriptorB  
HcRhStatus  
HcRhPort1Status  
HcRhPort2Status  
912-2000-030  
Revision 1.1  
®
Page 19  
FireLink USB  
82C862/863  
3.5.1 Legacy Support  
Four registers are provided for legacy support:  
1. HceControl  
- - Used to enable and control the emulation hardware and report various status information.  
2. HceInput  
- - Emulation side of the legacy Input Buffer register.  
3. HceOutput  
- - Emulation side of the legacy Output Buffer register where keyboard and mouse data is to be written by software.  
4. HceStatus  
- - Emulation side of the legacy Status register.  
These registers are located in the Host Controller Register Space; from MEMOFST 100h through 10Fh. Table 5 shows a  
register map of these registers. Refer to the "Legacy Support Registers" section for detailed bit information.  
Table 5. Legacy Support Register Map  
MEMOFST  
R/W  
Register Name  
100h-103h  
104h-107h  
108h-10Bh  
10Ch-10Fh  
R/W  
R/W  
R/W  
R/W  
HceControl  
HceInput  
HceOutput  
HceStatus  
3.5.2 Intercept Port 60h and 64h Accesses  
The HceStatus, HceInput, and HceOutput registers are accessible at I/O Ports 60h and 64h when emulation is enabled. Reads  
and writes to these registers using the I/O Ports do have some side effects as shown in Table 6. However, accessing these  
registers directly through their memory address produces no side effects.  
When emulation is enabled, I/O accesses of Ports 60h and 64h must be handled by the Host Controller (HC). The HC must be  
positioned in the system so that it can do a positive decode of accesses to Ports 60h and 64h on the PCI bus. If a keyboard  
controller is present in the system, it must either use subtractive decode or have provisions to disable its decode of Ports 60h  
and 64h. If the legacy keyboard controller uses positive decode and is turned off during emulation, it must be possible for the  
emulation code to quickly re-enable and disable the legacy keyboard controller Port 60h and 64h decode. This is necessary to  
support a mixed operating environment.  
Table 6. Emulated Registers and Side Effects  
Register Contents  
Accessed/Modified  
Side Effect  
HceOutput  
HceInput  
· A read from Port 60h will set the Output Full bit (MEMOFST 10Ch[0]) to 0.  
· A write to Port 60h will set the Input Full bit (MEMOFST 10Ch[1]) to 1 and the Cmd Data bit  
(MEMOFST 10Ch[3]) to 0.  
· A write to Port 64h will set the: Input Full bit (MEMOFST 10Ch[1]) to 0 and the Cmd Data bit  
(MEMOFST 10Ch[3]) to 1.  
HceStatus  
· A read from Port 64h returns the current value of the HceStatus register.  
912-2000-030  
Revision: 1.1  
®
Page 20  
FireLink USB  
82C862/863  
3.6 General Purpose Pins  
The strap pins TEST0, TEST1, CLKRUN#, PME#, and SMI# are multifunction pins that offer general purpose I/O (GPIO)  
functionality.  
At reset time these pins are always input pins. After being sampled at reset to determine strap selections for the chip logic,  
these pins can be programmatically selected to be GPIO signals. TEST0 and TEST1 are automatically available as GPIO pins  
after reset is de-asserted, since they have no other assigned functions. The other pins must be specifically enabled for GPIO if  
their primary function assignment is not needed. The PIO mapping is as follows.  
Signal  
PIO signal mapped to  
TEST0  
TEST1  
CLKRUN#  
PME#  
PIO0  
PIO1  
PIO2  
PIO3  
PIO4  
SMI#  
Refer to PCICFG 53h, 54h, and 55h for information on selection and direction of PIO pins. Note that PIO pins can be used  
along with host CPU software to generate I2C interface signaling; contact OPTi for details or sample code.  
912-2000-030  
Revision 1.1  
®
Page 21  
FireLink USB  
82C862/863  
912-2000-030  
Revision: 1.1  
®
Page 22  
FireLink USB  
®
82C862/863  
4.0 Register Descriptions  
The chip has three types of register spaces:  
1. PCI Configuration Register Space  
2. Host Controller Register Space  
3. I/O Register Space  
The subsections that follow detail the locations and access mechanisms for the registers located within these register spaces.  
Notes: 1. All bits/registers are read/write and their default value is 0 unless otherwise specified.  
2. All reserved bits/registers MUST be written to 0 unless otherwise specified.  
4.1 PCICFG Register Space  
FireLink USB implements a multi-function PCI device.  
Function 0: Primary USB host controller module  
Function 1: Secondary USB host controller module.  
The two USB controller modules each have their own PCI configuration space. The configuration space of both USB  
controllers are similar except for the value in the Interrupt Pin register (PCICFG 3Dh) and the Interrupt Pin Selection register  
(PCICFG 4Ch), because the controllers are assigned different interrupt pins by default.  
The configuration space of each PCI USB controller module is referred to as PCICFG. The bit formats for these registers are  
described in the following section.  
4.1.1 Programming Differences from 82C861 Component  
While the physical device part number of this chip is 82C862 or 82C863, the USB controller modules identify themselves as  
82C861 to maintain backward software compatibility with the previous OPTi chip. Software can differentiate between the chips  
by reading the Revision ID of 20h in PCICFG 08h (previous revisions read back 10h or lower).  
Additional revision 20h changes that relate to the programming interface are as follows.  
· The 82C862/3 component adds PCI power management, reflected in changes in PCICFG 06h and the addition of PCICFG  
34h, 4Dh, and F0-F5h.  
· The 82C862/3 part provides a way to restore the Subsystem Vendor ID and Subsystem ID values in a single-step process,  
necessary for proper context restoration after the chip is powered down during OS Suspend operations. This new approach  
is reflected in the deletion of PCICFG 50h[3] and the addition of PCICFG 7C-7Fh.  
· The limited-functionality "I2C" general purpose I/O pins of the 82C861 part have been replaced by true GPIO pins, resulting  
in the deletion of PCICFG 4Eh.  
· The IRQ Driveback feature is no longer supported, resulting in the deletion of PCICFG 51h and 54-57h.  
· Changes to the chip pinout result in major changes to the PCICFG 52h bit definitions.  
· PCICFG 4Ch has been added to allow both USB controller modules to share a single PCI interrupt.  
· All bits of MEMOFST 4Bh are now read/writeable (previous chip versions allowed only bits [1:0] to be written).  
912-2000-030  
Revision: 1.1  
Page 23  
FireLink USB  
82C862/863  
4.1.2 PCICFG 00h-FFh  
7
6
5
4
3
2
1
0
PCICFG 00h  
PCICFG 01h  
Vendor Identification Register (RO)  
Device Identification Register (RO)  
Command Register - Byte 0  
Default = 45h  
Default = 10h  
PCICFG 02h  
PCICFG 03h  
Default = 61h  
Default = C8h  
PCICFG 04h  
Default = 00h  
Wait cycle  
control:  
PERR#  
(response)  
detection  
enable bit:  
VGA palette  
snooping:  
Postable  
memory write  
command:  
Special Cycles:  
USB core  
can run  
PCI master  
cycles:  
USB core  
responds as  
a target to  
memory  
USB core  
responds as  
a target to I/O  
cycles:  
USB core does  
not run Special  
USB core does  
not need to  
This bit is  
always 0.  
Not used when Cycles on PCI.  
USB core is a This bit is  
master. This bit always 0.  
is always 0.  
cycles.  
0 = PERR# not  
asserted  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
insert a wait  
state between  
address and  
data on the AD  
lines. This bit is  
always 0.  
0 = Disable  
1 = Enable  
1 = USB core  
can assert  
PERR# if it  
is the  
receiving  
data agent  
and detects  
a data  
parity error.  
PCICFG 05h  
Command Register - Byte 1  
Default = 00h  
Reserved: These bits are always 0.  
Back-to-back  
enable:  
SERR#  
(response)  
detection  
enable bit:  
USB core only  
acts as a  
0 = SERR# not  
asserted  
master to a  
single device,  
so this  
functionality is  
not needed.  
This bit is  
1 = USB core  
asserts  
SERR#  
always 0.  
PCICFG 06h  
Status Register - Byte 0  
Default = 90h  
Fast back-to-  
back capability:  
Reserved  
Capabilities bit  
(RO):  
Reserved  
USB core  
0=No PCI  
Power  
Management  
supports fast  
back-to-back  
transactions  
when they are  
not to same  
agent. This bit  
is always 1.  
1=PCI Power  
Management  
Available  
See note.  
Note: Bit [4] enables extended PCI capabilities. This bit =1 by default, enabling PCI power management capabilities. PCI power  
management is enabled/disabled by a strap option, which can be overridden by writing PCICFG 4Dh[1]=0 to disable PCI PM, or writing  
PCICFG 4Dh[1]=1 to enable PCI PM.  
912-2000-030  
Revision: 1.1  
®
Page 24  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
PCICFG 07h  
Status Register - Byte 1  
Default = 02h  
Detected  
parity error:  
SERR#  
status:  
Received  
master abort  
status:  
Received  
target abort  
status:  
Signaled target  
abort status:  
DEVSEL timing (RO):  
Data parity  
reported:  
Indicates DEVSEL# timing when  
This bit is set to This bit is set to  
This bit is set to performing a positive decode.  
Set to 1 if  
1 whenever the 1 whenever the Set to 1 when  
USB core USB core the USB core,  
detects a parity detects a PCI  
error, even if address parity  
This bit is set to 1 when the  
1 when a USB USB core  
acting as a PCI core generated signals target  
master, aborts PCI cycle (USB abort.  
Since DEVSEL# is asserted to  
meet the medium timing, these  
bits are encoded as 01.  
PCICFG 04h[6]  
is set and the  
USB core  
detects PERR#  
asserted while  
acting as PCI  
master  
PCICFG 04h[6] error.  
is disabled.  
a PCI bus  
memory cycle. master) is  
core is the PCI  
Write 1 to clear.  
Write 1 to clear.  
aborted by a  
PCI target.  
Write 1 to clear.  
Write 1 to clear.  
(whether  
PERR# was  
driven by USB  
core or not.)  
Write 1 to clear.  
PCICFG 08h  
Revision Identification Register (RO)  
Class Code Register (RO)  
Default = 20h  
PCICFG 09h  
PCICFG 0Ah  
PCICFG 0Bh  
Default = 10h  
Default = 03h  
Default = 0Ch  
PCICFG 0Ch  
PCICFG 0Dh  
PCICFG 0Eh  
Cache Line Size Register  
Default = 00h  
Default = 00h  
Default = 80h  
Master Latency Timer Register  
Header Type Register (RO)  
Multi-function  
device:  
Layout type = 00h (no special layout)  
1=Yes (always)  
PCICFG 0Fh  
Reserved  
Default = 00h  
Default = 00h  
PCICFG 10h-13h  
Base Address Register 0  
This register identifies the base address of a contiguous memory space in main memory. POST will write all 1s to this register, then  
read back the value to determine how big of a memory space is requested. After allocating the requested memory, POST will write the  
upper bytes with the base address.  
Bits [31:0] correspond to: 10h = [7:0], 11h = [15:8], 12h = [23:16], 13h = [31:24].  
- Bit [0] - Indicates that the operational registers are mapped into memory space. Always = 0.  
- Bits [2:1] - Indicates that the base register is 32 bits wide and can be placed anywhere in 32-bit memory space. Always = 0.  
- Bit [3] - Indicates no support for prefetchable memory. Always = 0.  
- Bits [11:4] - Indicates a 4K byte address range is requested, Always = 0.  
- Bits [31:12] - Base Address: Post writes the value of the memory base address to this register.  
PCICFG 14h-2Bh  
Reserved  
Default = 00h  
Default = 45h  
PCICFG 2Ch  
Subsystem Vendor ID Register (RO) - Byte 0  
The Subsystem Vendor ID register is read-only but its value can be changed through PCICFG 7Dh:7Ch.  
PCICFG 2Dh  
Subsystem Vendor ID Register (RO) - Byte 1  
Default = 10h  
Default = 61h  
PCICFG 2Eh  
Subsystem ID Register (RO) Byte 0  
The Subsystem ID register is read-only but its value can be changed through PCICFG 7Fh:7Eh.  
PCICFG 2Fh  
Subsystem ID Register (RO) Byte 1  
Reserved  
Default = C8h  
Default = 00h  
PCICFG 30h-33h  
912-2000-030  
Revision 1.1  
®
Page 25  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
PCICFG 34h  
Capabilities Pointer Register (RO)  
Default = F0h  
This register provides the offset into the PCI Configuration Space of the USB controller for the location of the PCI Power Management  
register block. This location is PCICFG F0h  
PCICFG 35h-3Bh  
Reserved  
Default = 00h  
PCICFG 3Ch  
Interrupt Line Register  
Default = 00h  
This register identifies the system interrupt controller line to which the interrupt pin of this USB controller module is connected. The value of  
this register is used by device drivers and has no direct meaning to the USB core.  
PCICFG 3Dh  
Interrupt Pin Register  
Primary Default = 01h  
Secondary Default = 02h  
This register identifies the interrupt pin a device uses. The primary USB controller module uses INTA#, so this value reads 01h by default;  
the secondary USB controller module uses INTB#, so this value reads 02h by default. The interrupt pin used by each USB controller module  
can be changed via the respective PCICFG 4Ch[1:0].  
PCICFG 3Eh  
PCICFG 3Fh  
PCICFG 40h-44h  
PCICFG 45h  
Minimum Grant Register (RO)  
Default = 00h  
Default = 00h  
Default = 00h  
Default = 00h  
Reserved  
Maximum Latency Register (RO)  
Reserved  
Reserved  
These registers are for internal testing purposes. Do not write to these registers.  
Reserved  
This register is for internal testing purposes. Do not write to this register.  
Reserved  
Reserved  
SIE Pipelining  
0=Enable  
1=Disable  
PCICFG 46h-4Bh  
PCICFG 4Ch  
Reserved  
Default = 00h  
Interrupt Pin Selection Register  
Function 0 Default = 00h  
Function 1 Default = 01h  
Reserved  
USB controller interrupt pin:  
00 = PCIRQ0# (INTA#)  
01 = PCIRQ1# (INTB#)  
10 = PCIRQ2# (INTC#)  
11 = PCIRQ3# (INTD#)  
The interrupt pin selected will be  
reflected in PCICFG 3Dh.  
PCICFG 4Dh  
Miscellaneous Control Register  
Reserved  
Default = 00h  
State of  
Reserved  
Capabilities bit:  
0 = Force  
PCICFG  
06h[4] = 0  
1 = Force  
PCICFG  
06h[4] = 1  
PCICFG 4E-4Fh  
Reserved  
Default = 00h  
912-2000-030  
Revision: 1.1  
®
Page 26  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
PCICFG 50h  
PCI Host Feature Control Register  
Default = 00h  
Reserved  
Reserved,  
formerly  
CLKRUN#  
mode control  
Reserved,  
formerly  
Subsystem  
Vendor ID write enable control  
enable control  
Reserved,  
formerly  
CLKRUN#  
Port 2 output:  
Port 1 output:  
0 = Enable  
1 = Disable  
0 = Enable  
1 = Disable  
(Controls USB (Controls USB  
I/O cells to save I/O cells to save  
power)  
power)  
PCICFG 51h  
Reserved  
Strap Option Override  
Default = 00h  
PCICFG 52h  
Default = 03h  
Reserved  
Read/write  
factory test  
mode  
0=Disable  
1=Enable  
TEST0 Strap  
Value  
TEST1 Strap  
PWRON3#  
Strap Value –  
Secondary  
Controller  
Mode  
SMI# Strap  
Selection  
PWRFLT  
Polarity:  
PWRON  
polarity:  
Value  
0 = Low  
(Operational)  
1 = High  
0 = Low - use  
12MHz crystal  
and PLL  
0 = PME# used 0 = High  
as 48MHz  
output  
0 = High  
1 = Low  
1 = Low  
(Test Mode)  
1 = High - use  
external 48MHz  
0 = Disable  
1 = Enable  
1 = PME# pin  
functional  
PCICFG 53h  
GPIO Select Register  
Default = 00h  
PIO4 Direction PIO3 Direction PIO2 Direction PIO1 Direction PIO0 Direction SMI# / PIO4  
Select  
PME# / PIO3  
Select  
CLKRUN# /  
PIO2 Select  
0=Input  
0=Input  
0=Input  
0=Input  
0=Input  
1=Output  
1=Output  
1=Output  
1=Output  
1=Output  
0=SMI#  
(default)  
1=PIO4  
0=PME#  
(default)  
1=PIO3  
0=CLKRUN#  
(default)  
1=PIO2  
PCICFG 54h  
GPIO Output Enable Register  
Default = 00h  
Reserved  
PIO4 Buffer  
PIO3 Buffer  
PIO2 Buffer  
PIO1 Buffer  
PIO0 Buffer  
0=Disable  
1=Enable  
0=Disable  
1=Enable  
0=Disable  
1=Enable  
0=Disable  
1=Enable  
0=Disable  
1=Enable  
These bits control buffer driving for those GPIO pins selected to be outputs.  
PCICFG 55h GPIO Data Register  
Default = 00h  
Reserved  
PIO4 Data  
PIO3 Data  
PIO2 Data  
PIO1 Data  
PIO0 Data  
0=Low  
1=High  
0=Low  
1=High  
0=Low  
1=High  
0=Low  
1=High  
0=Low  
1=High  
For input pins these bits return the value presently being driven onto the pins; for output pins these bits select the level that will be driven.  
PCICFG 56h-7Bh  
Reserved  
Default = 00h  
Default = 45h  
PCICFG 7Ch  
Subsystem Vendor ID Restore Register - Byte 0  
The register is used to program the value of the Subsystem Vendor ID register at PCICFG 2Dh:2Ch.  
PCICFG 7Dh  
Subsystem Vendor ID Restore Register - Byte 1  
Default = 10h  
Default = 61h  
PCICFG 7Eh  
Subsystem ID Restore Register - Byte 0  
The register is used to program the value of the Subsystem ID register at PCICFG 2Fh:2Eh.  
PCICFG 7Fh  
Subsystem ID Restore Register - Byte 1  
Reserved  
Default = C8h  
Default = 00h  
PCICFG 80h - EFh  
912-2000-030  
Revision 1.1  
®
Page 27  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
PCICFG F0h  
CAP_ID Register (RO)  
Default = 01h  
This register returns a value of 01h to identify the Capabilities list item as being the PCI Power Management Register Block.  
PCICFG F1h  
Next_Item_Ptr Register (RO)  
Default = 00h  
Default = 01h  
This register returns a value of 00h to indicate that there are no additional items in the Capabilities list.  
PCICFG F2h  
Reserved  
PMC Register (RO) - Byte 0  
Device Specific  
Initialization  
(DSI):  
Reserved  
PME Clock:  
Version:  
0 = PME# clock  
not required  
to generate  
PME#  
001 = This function complies with Revision 1.0 of  
the PCI PowerManagement Interface Specification.  
0 = DSI is not  
required  
PCICFG F3h  
PMC Register (RO) - Byte 1  
Default = 40h  
PME Support:  
D2 device state D1 device state  
support: support:  
Reserved  
01000 = The PCI USB controller supports PME# generation from D3hot.  
0 = No 0 = No  
PCICFG F4h  
PMCSR Register - Byte 0  
Default = 00h  
Reserved  
PowerState (R/W):  
00 = D0  
01 = D1 (Not Supported)  
10 = D2 (Not Supported)  
11 = D3hot  
This field is used both to  
determine the current power state  
and to set a new power state.  
Unsupported states will be  
ignored when written to.  
PCICFG F5h  
PMCSR Register - Byte 1  
Data_Select (RO):  
Default = 00h  
PME Status  
(R/W):  
Data_Scale (RO):  
PME_En (R/W):  
0 = PME#  
assertion is  
disabled  
00 = Data register is not  
supported  
0000 = Data register is not supported  
This bit is set  
when a PME  
event is  
1 = PME# is  
asserted  
generated.  
Write 1 to clear.  
when PME_  
Status = 1  
PCICFG F6h - FFh  
Reserved  
Default = 00h  
912-2000-030  
Revision: 1.1  
®
Page 28  
FireLink USB  
82C862/863  
4.2 Host Controller Register Space  
This register space is the operational control block in the USB core. It is responsible for the host controller operational states  
(Suspend, Disabled, Enabled), special USB signaling (Reset, Resume), status, interrupt control, and host controller  
configuration information.  
The host controller (HC) interface registers are PCI memory mapped I/O, hereafter referred to as MEMOFST. The bit formats  
for these registers are described below.  
4.2.1 MEMOFST 00h-5Ch  
7
6
5
4
3
2
1
0
MEMOFST 00h  
HcRevision Register (RO)  
Default = 10h  
MEMOFST 01h-03h  
Default = 000001h  
Bits [31:0] correspond to: 00h = [7:0], 01h = [15:8], 02h = [23:16], 03h = [31:24]  
- Bits [7:0]  
Revision - Indicates the Open HCI Specification revision number implemented by hardware (X.Y = XYh).  
FireLink support Specification 1.0.  
- Bits [31:8] Reserved  
MEMOFST 04h  
HcControl Register - Byte 0  
Default = 00h  
HC Functional State:  
Processing of  
Bulk List:  
Processing of  
Control List:  
Disable  
Isochronous  
List when  
Periodic List is  
enabled:(1)  
Processing of  
Periodic  
(interrupt and  
isochronous)  
List:  
Control Bulk Service Ratio:  
00 = USB Reset  
Specifies the number of control  
endpoints serviced for every bulk  
endpoint. Encoding is NÐ1 where  
N is the number of control  
endpoints (i.e., 00 = 1 control  
endpoint; 11 = 4 control  
01 = USB Resume  
10 = USB Operational  
11 = USB Suspend  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Yes  
1 = No  
0 = Disable  
1 = Enable  
The HC may force a state change  
from USB Suspend to USB  
Resume after detecting resume  
signaling from a downstream port.  
endpoints).  
The HC checks  
this bit prior to  
attempting any  
periodic  
transfers in a  
frame.  
(1) Disabling the Isochronous List when the Periodic List is enabled allows interrupt endpoint descriptors to be serviced. While processing  
the Period List, the HC will check bit 3 when it finds an isochronous endpoint descriptor.  
MEMOFST 05h  
HcControl Register - Byte 1  
Default = 00h  
Reserved  
Remote  
Wakeup  
Connected  
Enable:  
Remote  
Wakeup  
Connected  
(RO):  
Interrupt  
Routing:  
0 = Interrupts  
routed to  
normal  
If a remote  
Indicates  
wakeup signal  
is supported,  
this bit is used  
to enable that  
operation.  
Since there is  
no remote  
wakeup signal  
whether the HC  
supports a  
remote wakeup  
signal. This  
implementation  
does not  
support any  
such signal.  
interrupt  
mechanism  
(INTA#)  
1 = Interrupts  
routed to  
SMI  
supported, this The bit is  
bit is ignored. hardcoded to 0.  
MEMOFST 06h-07h  
HcControl Register - Bytes 2 & 3  
Default = 00h  
Reserved  
912-2000-030  
Revision 1.1  
®
Page 29  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 08h  
HcCommandStatus Register - Byte 0  
Default = 00h  
Reserved  
Ownership  
Change  
Request:  
Bulk List has  
an active  
endpoint  
Control List  
has an active  
endpoint  
HC Reset:  
Writing a 1  
initiates a  
software reset.  
descriptor?(1)  
descriptor?(1)  
When set by  
software, this  
bit sets the  
Ownership  
Change bit  
(MEMOFST  
0Fh[6]).  
0 = No  
1 = Yes  
0 = No  
1 = Yes  
This bit is  
cleared by the  
HC upon  
completion of  
reset operation.  
Cleared by  
software.  
(1) The bit may be set by either software or the HC. It is cleared by the HC each time it begins processing the head of the list (Bulk List for  
bit 2, Control List for bit 1)  
MEMOFST 09h  
HcCommandStatus Register - Byte 1  
Default = 00h  
Reserved  
MEMOFST 0Ah  
HcCommandStatus Register - Byte 2  
Default = 00h  
Reserved  
Schedule Overrun Count:  
This field increments every time  
the Scheduling Overrun bit  
(MEMOFST 0Ch[0] is set. The  
count wraps from 11 to 00.  
MEMOFST 0Bh  
HcCommandStatus Register - Byte 3  
Default = 00h  
Reserved  
MEMOFST 0Ch  
HcInterrupt Status Register - Byte 0*  
Default = 00h  
Reserved  
Root Hub  
Status  
Change:  
Frame Number Unrecoverable  
Resume  
Detected:  
Start of Frame:  
Writeback  
Done Head:  
Scheduling  
Overrun  
occurred?  
Overflow:  
Error:  
This bit is set  
when the  
Frame  
This bit is set  
when  
This event is  
not  
This bit is set  
when the HC  
This bit is set  
after the Host  
Controller has  
This bit is set  
when the  
content of HcRh 3Ch[15] (Frame and is  
Status (50h-  
53h) or the  
content of any  
HcRhPort  
0 = No  
1 = Yes  
MEMOFST  
implemented  
detects resume Management  
signaling on a  
hardcoded to 0. downstream  
block signals a written  
Number  
"Start of Frame" HcDoneHead to  
Register)  
changes from  
0-to-1 or from  
All writes are  
ignored.  
port.  
event.  
HccaDoneHead  
.
Status Register 1-to-0.  
(54h-5Bh) has  
changed.  
MEMOFST 0Dh-0Eh  
HcInterruptStatus Register - Bytes 1 & 2  
Default = 00h  
Reserved  
912-2000-030  
Revision: 1.1  
®
Page 30  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 0Fh  
HcInterruptStatus Register - Byte 3*  
Reserved  
Default = 00h  
Reserved  
Ownership  
Change:  
This bit is set  
when the  
Ownership  
Change  
Request bit  
(MEMOFST  
08h[3]) is set.  
* Writing a 1 to a bit in this register clears the corresponding bit, while writing a 0 leaves the bit unchanged.  
MEMOFST 10h  
HcInterruptEnable Register - Byte 0*  
Default = 00h  
Reserved  
Allow interrupt  
Allow interrupt  
Reserved  
Allow interrupt  
Allow interrupt  
Allow interrupt  
Allow interrupt  
generation due generation due  
generation due generation due generation due generation due  
All writes to this  
bit are ignored.  
to Root Hub  
Status  
to Frame  
Number  
to Resume  
Detected:  
to Start of  
Frame:  
to Writeback  
Done Head:  
to Scheduling  
Overrun:  
Change:  
Overflow:  
0 = Ignore  
1 = Enable  
0 = Ignore  
1 = Enable  
0 = Ignore  
1 = Enable  
0 = Ignore  
1 = Enable  
0 = Ignore  
1 = Enable  
0 = Ignore  
1 = Enable  
MEMOFST 11h-12h  
HcInterruptEnable Register - Bytes 1 & 2  
Default = 00h  
Default = 00h  
Reserved  
MEMOFST 13h  
HcInterruptEnable Register - Byte 3*  
Master  
interrupt  
generation:  
Allow interrupt  
Reserved  
generation due  
to Ownership  
Change:  
0 = Ignore  
0 = Ignore  
1 = Enable  
1 = Allows all  
interrupts to  
be enabled  
in 10h-13h.  
* Writing a 1 to a bit in this register sets the corresponding bit, while writing a 0 leaves the bit unchanged.  
MEMOFST 14h  
HcInterruptDisable Register - Byte 0*  
Default = 00h  
Reserved  
Allow interrupt  
Allow interrupt  
Reserved  
Allow interrupt  
Allow interrupt  
Allow interrupt  
Allow interrupt  
generation due generation due  
generation due generation due generation due generation due  
All writes to this  
bit are ignored.  
to Root Hub  
Status  
to Frame  
Number  
to Resume  
Detected:  
to Start of  
Frame:  
to Writeback  
Done Head:  
to Scheduling  
Overrun:  
Change:  
Overflow:  
0 = Ignore  
0 = Ignore  
0 = Ignore  
0 = Ignore  
0 = Ignore  
0 = Ignore  
1 = Disable  
1 = Disable  
1 = Disable  
1 = Disable  
1 = Disable  
1 = Disable  
MEMOFST 15h-16h  
HcInterruptDisable Register - Bytes 1 & 2  
Default = 00h  
Reserved  
912-2000-030  
Revision 1.1  
®
Page 31  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 17h  
HcInterruptDisable Register - Byte 3*  
Default = 00h  
Master  
interrupt  
generation:  
Allow interrupt  
generation due  
to Ownership  
Change:  
Reserved  
0 = Ignore  
0 = Ignore  
1 = Disable  
1 = Allows all  
interrupts to  
be disabled  
in 10h-13h.  
* Writing a 1 to a bit in this register clears the corresponding bit, while writing a 0 leaves the bit unchanged.  
MEMOFST 18h-1Bh  
Bits [31:0] correspond to: 18h = [7:0], 19h = [15:8], 1Ah = [23:16], 1Bh = [31:24].  
- Bits [7:0] Reserved  
HcHCCA Register  
Default = 00h  
Default = 00h  
Default = 00h  
Default = 00h  
Default = 00h  
Default = 00h  
Default = 00h  
- Bits [31:8] Pointer to HCCA base address  
MEMOFST 1Ch-1Fh  
HcPeriodCurrentED Register  
Bits [31:0] correspond to: 1Ch = [7:0], 1Dh = [15:8], 1Eh = [23:16], 1Fh = [31:24].  
- Bits [3:0] Reserved  
- Bits [31:4] Pointer to current Periodic List End Descriptor  
MEMOFST 20h-23h  
HcControlHeadED Register  
Bits [31:0] correspond to: 20h = [7:0], 21h = [15:8], 22h = [23:16], 23h = [31:24].  
- Bits [3:0]  
Reserved  
- Bits [31:4] Pointer to current Control List Head End Descriptor  
MEMOFST 24h-27h  
HcControlCurrent ED  
Bits [31:0] correspond to: 24h = [7:0], 25h = [15:8], 26h = [23:16], 27h = [31:24].  
- Bits [3:0]  
Reserved  
- Bits [31:4] Pointer to current End Descriptor in Control List  
MEMOFST 28h-2Bh  
HcBulkHeadED Register  
Bits [31:0] correspond to: 28h = [7:0], 29h = [15:8], 2Ah = [23:16], 2Bh = [31:24].  
- Bits [3:0]  
Reserved  
- Bits [31:4] Pointer to current Bulk List Head End Descriptor in Control List  
MEMOFST 2Ch-2Fh  
Bits [31:0] correspond to: 2Ch = [7:0], 2Dh = [15:8], 2Eh = [23:16], 2Fh = [31:24].  
- Bits [3:0] Reserved  
HcBulkCurrentED Register  
- Bits [31:4] Pointer to current Bulk List End Descriptor  
MEMOFST 30h-33h  
HcDoneHead Register  
Bits [31:0] correspond to: 30h = [7:0], 31h = [15:8], 32h = [23:16], 33h = [31:24].  
- Bits [3:0] Reserved  
- Bits [31:4] Pointer to current Done List Head End Descriptor  
912-2000-030  
Revision: 1.1  
®
Page 32  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 34h-37h  
HcFmInterval Register  
Default = xxxx2EDFh  
Bits [31:0] correspond to: 34h = [7:0], 35h = [15:8], 36h = [23:16], 37h = [31:24].  
- Bits [13:0] Frame Interval - These bits specify the length of a frame as (bit times - 1). For 12,000 bit times in a frame, a value of  
11,999 is stored here.  
- Bits [15:14] Reserved  
- Bits [30:16] FS Largest Data Packet: These bits specify a value which is loaded into the Largest Data Packet Counter at the beginning  
of each frame.  
- Bit 31  
Frame Interval Toggle - This bit is toggled by HCD whenever it loads a new value into the Frame Interval bits (bits [13:0]).  
MEMOFST 38h-3Bh  
HcFrameRemaining Register  
Default = 00h  
Bits [31:0] correspond to: 38h = [7:0], 39h = [15:8], 3Ah = [23:16], 3Bh = [31:24].  
- Bits [13:0] Frame Remaining (RO) - This 14-bit decrementing counter is used to time a frame. When the HC is in the USB Operational  
state, the counter decrements each 12MHz clock period. When the count reaches 0, the end of a frame has been reached.  
The counter reloads with Frame Interval (MEMOFST 34h[13:0]) at that time. In addition, the counter loads when the HC  
transitions into the USB Operational state.  
- Bits [30:14] Reserved  
- Bit 31  
Frame Remaining Toggle (RO) - This bit is loaded with Frame Interval Toggle (MEMOFST 34h[31]) when Frame  
Remaining (bits [13:0]) is loaded.  
MEMOFST 3Ch-3Fh  
HcFmNumber Register  
Default = 00h  
Bits [31:0] correspond to: 3Ch = [7:0], 3Dh = [15:8], 3Eh = [23:16], 3Fh = [31:24].  
- Bits [15:0] Frame Number (RO) - This 16-bit incrementing counter is incremented coincident with the load of Frame Remaining  
(MEMOFST 38h[13:0]). The count will roll over from FFFh to 0h.  
- Bits [31:16] Reserved  
MEMOFST 40h-43h  
HcPeriodicStart Register  
Default = 00h  
Bits [31:0] correspond to: 40h = [7:0], 41h = [15:8], 42h = [23:16], 43h = [31:24].  
- Bits [13:0] Periodic Start - These bits are used by the List Processor to determine where in a frame the Periodic List processing must  
begin.  
- Bits [31:14] Reserved  
MEMOFST 44h-47h  
HcLSThreshold Register  
Default = 00h  
Bits [31:0] correspond to: 44h = [7:0], 45h = [15:8], 46h = [23:16], 47h = [31:24].  
- Bits [11:0] LS Threshold - These bits contain a value used by the Frame Management Block to determine whether or not a low speed  
transaction can be started in the current frame.  
- Bits [31:12] Reserved  
MEMOFST 48h  
HcRhDescriptorA Register - Byte 0 (RO)  
Default = 02h  
Number Downstream Ports - The USB core supports two downstream ports.  
912-2000-030  
Revision 1.1  
®
Page 33  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 49h  
HcRhDescriptorA Register - Byte 1  
Default = 09h  
Reserved  
No Over-  
current  
Protection:(1)  
Over-current  
Protection  
Mode:  
Device Type  
(RO):  
No Power  
Switching:(1)  
Power  
Switching  
Mode:  
0 = Ports are  
powered  
The USB core  
is not a  
compound  
device.  
0 = Over-  
current  
0 = Global over-  
current  
0 = Global  
switching  
switched  
status is  
reported  
1 = Individual  
Over-  
1 = Individual  
switching  
1 = Ports are  
always  
1 = Over-  
current  
Current  
powered on  
This bit is only  
valid when bit 1  
is cleared.  
This bit is only  
valid when bit 4  
is cleared.  
status is not  
reported  
This bit should  
be written to 0.  
This bit should  
be written to 0.  
(1) Bits 4 and 1 should be written to support the external system port over-current and switching implementations.  
MEMOFST 4Ah  
HcRhDescriptorA Register - Byte 2  
Default = 00h  
Default = 01h  
Reserved  
MEMOFST 4Bh  
HcRhDescriptorA Register - Byte 3  
Power-On to Power-Good Time  
- The USB core power switching is effective within 2ms. The field value is represented as the number of 2ms intervals. This field should  
be written to support the system implementation. This field should always be written to a non-zero value.  
MEMOFST 4Ch-4Dh  
HcRhDescriptorB Register - Bytes 0 & 1  
Default = 00h  
Bits [15:0] correspond to: 4Ch = [7:0], 4Dh = [15:8].  
- Bit 0  
Reserved  
- Bits [15:1] Device Removable - USB core ports default to removable devices:  
0 = Device not removable  
1 = Device removable  
Bit 15 corresponds to Port 15, Bit 14 corresponds to Port 14, the remaining bits follow suit. Unimplemented ports are  
reserved.  
MEMOFST 4Eh-4Fh  
Bits [15:0] correspond to: 4Eh = [7:0], 4Fh = [15:8].  
- Bit 0 Reserved  
HcRhDescriptorB Register- Bytes 2 & 3  
Default = 00h  
- Bits [15:1] Port Power Control Mask: Bit 15 corresponds to Port 15, Bit 14 corresponds to Port 14, the remaining bits follow suit.  
Unimplemented ports are reserved.  
0 = Device not removable  
1 = Global power mask  
This field is only valid if No Power Switching bit (MEMOFST 49h[1]) is cleared and Power Switching Mode Bit (MEMOFST  
49h[0]) is set (individual port switching). When set, the port only responds to individual port power switching commands  
(Set/ClearPortPower, MEMOFST 54h[1:0] and 58h[1:0]). When cleared, the port only responds to global power switching  
commands (Set/ClearGlobalPower, MEMOFST 52h[0] and 50h[0]).  
912-2000-030  
Revision: 1.1  
®
Page 34  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 50h  
HcRhStatus Register - Byte 0  
Reserved  
Default = 00h  
Over-current Read: Local  
Indicator  
(RO):(1)  
Power Status  
Not supported.  
Reflects state of Always read 0.  
OVCR pin.  
Write: Clear  
Global Power  
0 = No over-  
current  
0 = No effect  
condition  
1 = Issue Clear  
Global  
1 = Over-  
current  
Power  
command  
to ports  
condition  
(1) Bit 1 is only valid if the No Over-current Protection (MEMOFST 49h[4]) and Over-current Protection Mode (MEMOFST 49h[3]) bits are  
cleared.  
MEMOFST 51h  
HcRhStatus Register - Byte 1  
Default = 00h  
Read: Device  
Remote Wake-  
up Enable(1)  
Reserved  
0 = Disabled  
1 = Enabled  
Write: Set  
Remote Wake-  
up Enable  
0 = No effect  
1 = Sets Device  
Remote  
Wakeup  
Enable  
(1) Allows port Connect Status Change Bit (MEMOFST 56h[0] for Port 1 and MEMOFST 59h[0] for Port 2) as a remote wakeup event.  
MEMOFST 52h  
HcRhStatus Register - Byte 2  
Reserved  
Default = 00h  
Over-current Read: Local  
Indicator  
Change  
Power Status  
Change  
This bit is set  
Not supported.  
when the Over- Always read 0  
current  
Write: Set  
Indicator bit  
Global Power  
(MEMOFST  
50h[1])  
0 = No effect  
changes.  
1 = Issue Set  
Global  
Write 1 to clear  
Power  
command  
to ports  
912-2000-030  
Revision 1.1  
®
Page 35  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 53h  
HcRhStatus Register - Byte 3  
Default = 00h  
Clear Remote  
Wakeup  
Reserved  
Enable (WO)  
0 = No effect  
1 = Clear  
Device  
Remote  
Wakeup  
Enable bit  
(MEMOFST  
51h[7])  
MEMOFST 54h  
HcRhPort1Status Register - Byte 0  
Default = 00h  
Reserved  
Read: Port  
Reset Status  
Read: Port  
Over-current  
Indicator(1)  
Read: Port  
Suspend Status Enable Status  
Read: Port  
Read: Current  
Connect Status  
0 = Port reset  
status  
0 = Port is not  
suspended  
0 = Port  
disabled  
1 = Port  
enabled  
0 = No device  
connected  
0 = No over-  
current  
signal not  
active  
1 = Port is  
selectively  
suspended  
1 = Device  
connected.(  
2)  
condition  
1 = Over-  
current  
1 = Port reset  
signal  
Write: Set Port  
Enable  
Write: Set Port  
Suspend  
Write: Clear  
Port Enable  
condition  
active  
0 = No effect  
Write: Clear  
Port Suspend  
Write: Set Port  
Reset  
0 = No effect  
0 = No effect  
1 = Sets Port  
Enable  
1 = Sets Port  
Suspend  
Status  
1 = Clears Port  
Enable  
0 = No effect  
0 = No effect  
Status  
1 = Initiates  
selective  
1 = Sets Port  
Reset  
Status bit  
(bit 1)  
resume  
Status  
sequence  
for the port  
(1) The USB core supports global over-current reporting. This bit reflects the state of the OVRCUR pin dedicated to this port. This bit is only  
valid if the No Over-current Protection (MEMOFST 49h[4]) bit is cleared and Over-current Protection Mode (MEMOFST 49h[3]) bit is set.  
(2) If the Device Removable bits (MEMOFST 4Ch[15:0]) are set (not removable), bit 0 is always 1.  
MEMOFST 55h  
HcRhPort1Status Register - Byte 1  
Reserved  
Default = 00h  
Read: Low  
Read: Port  
Speed Device  
Attached(1)  
Power Status(2)  
0 = Port power  
is off  
0 = Full speed  
device  
1 = Port power  
is on  
1 = Low speed  
device  
Write: Set Port  
Power  
Write: Clear  
Port Power  
0 = No effect  
0 = No effect  
1 = Sets Port  
Power  
1 = Clears Port  
Power  
Status  
Status (bit  
0)  
(1) Bit 1 defines the speed (and bus idle) of the attached device. It is only valid when Current Connect Status (MEMOFST 54h[0]) bit is set.  
(2) Bit 0 reflects the power state of the port regardless of the power switching mode. If the No Power Switching (MEMOFST 49h[1]) bit is set,  
bit 0 is always read as 1.  
912-2000-030  
Revision: 1.1  
®
Page 36  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 56h  
HcRhPort1Status Register - Byte 2  
Default = 00h  
Reserved  
Port Reset  
Status Change  
Port Over-  
current  
Port Suspend  
Status Change Status Change  
Port Enable  
Connect Status  
Change  
Indicator  
Change  
0 = Port reset is  
not  
Indicates the  
completion of  
the selective  
Indicates that  
the port has  
been disabled  
due to a  
hardware event detected.  
(cleared Port  
Enable Status,  
MEMOFST  
54h[1]).  
Indicates a  
connect or  
disconnect  
This bit is set  
when the Over- resume  
current  
Indicator  
(MEMOFST  
50h[1]) bit  
changes.  
complete  
event has been  
1 = Port reset is  
complete  
sequence for  
the port.  
0 = No  
0 = Port is not  
resumed  
connect/dis  
connect  
event  
1 = Port resume  
is complete  
0 = Port has not  
been  
Write 1 to clear  
1 = Hardware  
detection of  
connect/dis  
connect  
disabled  
1 = Port Enable  
Status has  
been  
event(1)  
Write 1 to clear  
Default = 00h  
Default = 00h  
cleared  
(1) If the Device Removable Bits (MEMOFST 4Ch[15:1]) are set, bit 0 resets to 1.  
MEMOFST 57h  
HcRhPort1Status Register - Byte 3  
Reserved  
MEMOFST 58h  
HcRhPort2Status Register - Byte 0  
Reserved  
Read: Port  
Reset Status  
Read: Port  
Over-current  
Indicator(1)  
Read: Port  
Suspend Status Enable Status  
Read: Port  
Read: Current  
Connect Status  
0 = Port reset  
status  
0 = Port is not  
suspended  
0 = Port  
disabled  
1 = Port  
enabled  
0 = No device  
connected  
0 = No over-  
current  
signal not  
active  
1 = Port is  
selectively  
suspended  
1 = Device  
connected.(  
2)  
condition  
1 = Over-  
current  
1 = Port reset  
signal  
Write: Set Port  
Enable  
Write: Set Port  
Suspend  
Write: Clear  
Port Enable  
condition  
active  
0 = No effect  
Write: Clear  
Port Suspend  
Write: Set Port  
Reset  
0 = No effect  
0 = No effect  
1 = Sets Port  
Enable  
1 = Sets Port  
Suspend  
Status  
1 = Clears Port  
Enable  
0 = No effect  
0 = No effect  
Status  
1 = Initiates  
selective  
1 = Sets Port  
Reset  
Status bit  
(bit 1)  
resume  
Status  
sequence  
for the port  
(1) The USB core supports global over-current reporting. This bit reflects the state of the OVRCUR pin dedicated to this port. This bit is only  
valid if the No Over-current Protection (MEMOFST 49h[4]) bit is cleared and Over-current Protection Mode (MEMOFST 49h[3]) bit is set.  
(2) If the Device Removable bits (MEMOFST 4Ch[15:0]) are set (not removable), bit 0 is always 1.  
912-2000-030  
Revision 1.1  
®
Page 37  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 59h  
HcRhPort2Status Register - Byte 1  
Reserved  
Default = 00h  
Read: Low  
Read: Port  
Speed Device  
Attached(1)  
Power Status(2)  
0 = Port power  
is off  
0 = Full speed  
device  
1 = Port power  
is on  
1 = Low speed  
device  
Write: Set Port  
Power  
Write: Clear  
Port Power  
0 = No effect  
0 = No effect  
1 = Sets Port  
Power  
1 = Clears Port  
Power  
Status  
Status (bit  
0)  
(1) Bit 1 defines the speed (and bus idle) of the attached device. It is only valid when Current Connect Status (MEMOFST 54h[0]) bit is set.  
(2) Bit 0 reflects the power state of the port regardless of the power switching mode. If the No Power Switching (MEMOFST 49h[1]) bit is set,  
bit 0 is always read as 1.  
MEMOFST 5Ah  
HcRhPort2Status Register - Byte 2  
Default = 00h  
Reserved  
Port Reset  
Status Change  
Port Over-  
current  
Port Suspend  
Status Change Status Change  
Port Enable  
Connect Status  
Change  
Indicator  
Change  
0 = Port reset is  
not  
Indicates the  
completion of  
the selective  
Indicates that  
the port has  
been disabled  
due to a  
hardware event detected.  
(cleared Port  
Enable Status,  
MEMOFST  
54h[1]).  
Indicates a  
connect or  
disconnect  
This bit is set  
when the Over- resume  
current  
Indicator  
(MEMOFST  
50h[1]) bit  
changes.  
complete  
event has been  
1 = Port reset is  
complete  
sequence for  
the port.  
0 = No  
0 = Port is not  
resumed  
connect/dis  
connect  
event  
1 = Port resume  
is complete  
0 = Port has not  
been  
Write 1 to clear  
1 = Hardware  
detection of  
connect/dis  
connect  
disabled  
1 = Port Enable  
Status has  
been  
event(1)  
Write 1 to clear  
cleared  
(1) If the Device Removable Bits (MEMOFST 4Ch[15:1]) are set, bit 0 resets to 1.  
MEMOFST 5Bh  
HcRhPort2 Status Register - Byte 3  
Reserved  
Default = 00h  
912-2000-030  
Revision: 1.1  
®
Page 38  
FireLink USB  
82C862/863  
4.2.2 Legacy Support Registers  
Four registers are provided for legacy support:  
1. HceControl  
- - Used to enable and control the emulation hardware and report various status information.  
2. HceInput  
- - Emulation side of the legacy Input Buffer register.  
3. HceOutput  
- - Emulation side of the legacy Output Buffer register where keyboard and mouse data is to be written by software.  
4. HceStatus  
- - Emulation side of the legacy Status register.  
These registers are located in the Host Controller Register Space; from MEMOFST 100h through 10Fh. The bit formats for  
these registers are described below.  
Refer to "Legacy Support" section for information when accessing these registers when emulation is enabled.  
4.2.3 MEMOFST 100h-1Fh (Legacy Support Registers)  
7
6
5
4
3
2
1
0
MEMOFST 100h  
HceControl Register - Byte 0  
Default = 00h  
IRQ12 Active  
IRQ1 Active  
GateA20  
Sequence  
External  
IRQEn  
IRQEn  
Character  
Pending  
Emulation  
Interrupt (RO)  
Emulation  
Enable  
Indicates that a Indicates that a  
positive  
transition of  
IRQ12 from  
If the Output  
Full bit  
(MEMOFST  
positive  
transition of  
IRQ1 from  
Set by HC  
when a data  
value of D1h is kybrd controller 10Ch[0]) = 1,  
IRQ1 and  
IRQ12 from  
HC generates  
emulation  
interrupt when  
A static decode HC is enabled  
of the emulation for legacy  
interrupt  
emulation?  
kybrd controller kybrd controller written to Port  
causes  
emulation  
interrupt:  
HC generates  
IRQ1 or IRQ12. bit (MEMOFST  
the Output Full condition.  
0 = No  
1 = Yes(1)  
has occurred.  
has occurred.  
64h.  
10Ch[0]) = 0.  
Writing a 1  
Writing a 1  
Cleared by HC  
If the Aux  
clears this bit,  
while writing a 0 while writing a 0 64h of any  
leaves it  
unchanged.  
clears this bit,  
on write to Port 0 = Disable  
Output Full bit  
(MEMOFST  
10Ch[5]) = 0,  
HC generates  
IRQ1; if = 1, HC  
generates  
0 = Disable  
1 = Enable  
1 = Enable  
leaves it  
unchanged.  
value other than  
D1h.  
This bit is  
independent of  
the Emulation  
Enable bit (bit  
0) setting.  
IRQ12.  
0 = Disable  
1 = Enable  
(1) The HC decodes accesses to Ports 60h/64h and generates IRQ1 and/or IRQ12 when appropriate. Additionally, the HC generates an  
emulation interrupt at appropriate times to invoke the emulation software.  
MEMOFST 101h  
HceControl Register - Byte 1  
Default = 00h  
Reserved  
A20 State:  
Indicates  
current state of  
Gate A20 on  
kybrd controller.  
Used to  
compare  
against value  
written to Port  
60h when  
GateA20  
Sequence is  
active.  
912-2000-030  
Revision 1.1  
®
Page 39  
FireLink USB  
82C862/863  
7
6
5
4
3
2
1
0
MEMOFST 102h-103h  
HceControl Register - Bytes 2 & 3  
Default = 00h  
Reserved  
MEMOFST 104h  
HceInput Register - Bytes 0  
Default = 00h  
Input Data:  
- I/O data that is written to Ports 60h and 64h is captured in this register.  
Note: Refer to "Emulated Registers and Side Effects" if emulation is enabled.  
MEMOFST 105h-107h  
HceInput Register - Bytes 1-3  
Default = 00h  
Default = 00h  
Reserved  
MEMOFST 108h  
HceOutput Register - Bytes 0  
Output Data:  
- This register hosts data that is returned when an I/O read of Port 60h is performed by application software.  
Note: Refer to "Emulated Registers and Side Effects" if emulation is enabled.  
MEMOFST 109h-10Bh  
HceOutput Register - Bytes 1-3  
Default = 00h  
Reserved  
MEMOFST 10Ch  
HceStatus Register - Byte 0  
Default = 00h  
Parity  
Time-out  
Aux Output  
Full  
Inhibit Switch  
Cmd Data  
Flag  
Input Full  
Output Full  
Indicates parity Used to indicate  
Reflects state of HC sets this bit Nominally used HC sets this bit HC sets this bit  
error on  
keyboard/mous  
e data.  
a time-out  
Assert IRQ12 if the keyboard  
on I/O writes to as a system  
to 1 on an I/O  
to 0 on a read  
of Port 60h.  
While this bit is  
0 and the  
Output Full bit  
(MEMOFST  
10Ch[0]) = 1  
and IRQEn bit  
(MEMOFST  
100h[3]) = 1?  
inhibit switch:  
Ports 60h and  
64h:  
flag by software write to Port  
to indicate a  
warm or cold  
boot.  
60h or 64h  
except for the  
case of a  
0 = Inhibited  
1 = Not  
inhibited  
0 = Port 60h  
1 = Port 64h  
Character  
GateA20  
Pending bit  
(MEMOFST  
100h[2]) = 1, an  
emulation  
Sequence.  
While set to 1  
and emulation  
is enabled  
0 = No  
1 = Yes  
interrupt  
(MEMOFST  
100h[0] = 1), an  
emulation  
interrupt  
condition exists.  
condition exists.  
Setting this bit  
to 1 will  
generate either  
IRQ1 or IRQ12  
under certain  
conditions(1).  
(1) If the IRQEn bit (MEMOFST 100h[3]) = 1 and Aux Output Full bit (MEMOFST 10Ch[5]) = 0: IRQ1 is generated.  
If the IRQEn bit (MEMOFST 100h[3]) = 1 and Aux Output Full bit (MEMOFST 10Ch[5]) = 1: IRQ12 is generated.  
Note: Refer to "Emulated Registers and Side Effects if emulation is enabled.  
MEMOFST 10Dh-10Fh  
HceStatus Register - Bytes 1-3  
Default = 00h  
Reserved  
912-2000-030  
Revision: 1.1  
®
Page 40  
FireLink USB  
®
82C862/863  
5.0 Electrical Ratings  
Stresses above those listed in the following tables may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this  
specification are not implied.  
5.1 Absolute Maximum Ratings  
Symbol  
Parameter  
5.0 Volt  
3.3 Volt  
Unit  
Min  
Max  
Min  
Max  
VCC  
VI  
Supply Voltage  
not allowed not allowed  
+4.0  
V
Input Voltage  
–0.5  
–0.5  
0
VCC + 0.5  
VCC + 0.5  
+70  
–0.5  
–0.5  
0
VCC + 0.5  
VCC + 0.5  
+70  
V
VO  
Output Voltage  
V
TOP  
TSTG  
Operating Temperature  
Storage Temperature  
degrees C  
degrees C  
–40  
+125  
–40  
+125  
5.2 DC Characteristics:  
VCC = 3.3V ±5%, TA = 0C to +70C  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
VIL  
Input low Voltage  
–0.5  
+2.0  
+0.8  
+5.5  
+0.4  
V
V
VIH  
VOL  
VOH  
IIL  
Input high Voltage  
Output low Voltage  
Output high Voltage  
Input Leakage Current  
Tristate Leakage Current  
Input Capacitance  
Output Capacitance  
V
IOL = 4.0mA  
+2.4  
V
IOH = –1.6mA  
VIN = VCC  
+10.0  
+10.0  
+10.0  
+10.0  
µA  
µA  
pF  
pF  
IOZ  
CIN  
COUT  
ICC  
Power Supply Current:  
3.3V Core  
50mA max during operation,  
1mA max during Standby (all clocks stopped)  
912-2000-030  
Revision: 1.1  
Page 41  
FireLink USB  
82C862/863  
5.3 AC Characteristics (Preliminary)  
5.3.1 PCI Bus AC Timings  
Sym  
Parameter  
Min  
Max  
Unit  
Figure  
t100  
C/BE[3:0]#, AD[31:0], FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, LOCK#,  
PAR, SERR#, PERR# setup time to PCICLK rising  
7
ns  
4
t101  
t102  
C/BE[3:0]#, AD[31:0], FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, LOCK#,  
PAR, SERR#, PERR# hold time from PCICLK rising  
0
2
ns  
ns  
5
6
C/BE[3:0]#, AD[31:0], FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, LOCK#,  
PAR, SERR#, PERR# valid delay from PCICLK rising  
11  
12  
t103  
t104  
t105  
REQ# setup time to PCICLK rising  
REQ# hold time from PCICLK rising  
GNT# valid delay from PCICLK rising  
12  
0
ns  
ns  
ns  
4
5
6
2
Figure 4. Setup Timing Waveform  
0ns  
50ns  
100ns  
PCICLK  
SIGNAL  
t100, t103  
Figure 5. Hold Timing Waveform  
0ns  
50ns  
100ns  
PCICLK  
SIGNAL  
t101, t104  
Figure 6. Output Delay Timing Waveform  
0ns  
50ns  
100ns  
PCICLK  
SIGNAL  
t102, t105  
912-2000-030  
Revision: 1.1  
®
Page 42  
FireLink USB  
82C862/863  
5.3.2 USB AC Timings: Full Speed Source  
Sym  
Parameter  
Min  
Max  
Unit  
Figure Condition (Notes 1, 2, and 3)  
Driver Characteristics  
Transition Time:  
CL = 50pF, Notes 5 and 6  
tR  
tF  
Rise Time  
Fall Time  
4
4
20  
20  
ns  
ns  
tRFM  
vCRS  
zDRV  
Rise/Fall Time Matching  
90  
1.3  
28  
110  
2.0  
43  
%
V
(tR/tF)  
Output Signal Crossover Voltage  
Driver Output Resistance  
ohm  
Steady state drive  
Data Source Timings  
tDRATE  
Full Speed Data Rate  
11.97 12.03 Mbps  
Average bit rate = 12Mbps ±0.25%  
1.0ms ±0.05%  
tFRAME Frame Interval  
0.9995 1.0005  
ms  
Source Differential Driver Jitter:  
Notes 7 and 8  
tDJ1  
tDJ2  
To Next Transition  
For Paired Transitions  
–3.5  
–4.0  
3.5  
4.0  
ns  
ns  
tEOPT  
tDEOP  
Source EOP Width  
160  
–2  
175  
5
ns  
ns  
Note 8  
Note 8  
Note 8  
Differential to EOP Transition Skew  
Receiver Data Jitter Tolerance:  
To Next Transition  
tJR1  
tJR2  
–18.5  
–9  
18.5  
9
ns  
ns  
For Paired Transitions  
EOP Width at Receiver:  
Must Reject at EOP  
Must Accept as EOP  
Note 8  
tEOPR1  
tEOPR2  
40  
82  
ns  
ns  
912-2000-030  
Revision 1.1  
®
Page 43  
FireLink USB  
82C862/863  
5.3.3 USB AC Timings: Low Speed Source  
Sym  
Parameter  
Min  
Max  
Unit  
Figure Condition (Notes 1, 2, and 4)  
Driver Characteristics  
Transition Time:  
Notes 5 and 6  
tR  
tF  
Rise Time  
Fall Time  
75  
75  
300  
300  
ns  
ns  
Min# measured with: CL = 50pF  
Max# measured with: CL = 350pF  
tRFM  
vCRS  
Rise/Fall Time Matching  
80  
120  
2.0  
%
V
(tR/tF)  
Output Signal Crossover Voltage  
1.3  
Data Source Timings  
tDRATE  
Low Speed Data Rate  
1.4775 1.5225 Mbps  
Average bit rate = 1.5Mbps ±1.5%  
Source Differential Driver Jitter,  
At Host (Downstream):  
To Next Transition  
7
7
Notes 7 and 8  
tDDJ1  
tDDJ2  
–75  
–45  
75  
45  
ns  
ns  
For Paired Transitions  
Source Differential Driver Jitter,  
At Function (Upstream):  
To Next Transition  
Notes 7 and 8  
tUDJ1  
tUDJ2  
–95  
–150  
95  
150  
ns  
ns  
For Paired Transitions  
tEOPT  
tDEOP  
Source EOP Width  
1.25  
–40  
150  
100  
µs  
ns  
8
8
9
Note 8  
Note 8  
Differential to EOP Transition Skew  
Receiver Data Jitter Tolerance,  
At Host (Upstream):  
tUJR1  
tUJR2  
To Next Transition  
For Paired Transitions  
–152  
–200  
152  
200  
ns  
ns  
Receiver Data Jitter Tolerance,  
At Function (Downstream):  
To Next Transition  
9
9
tDJR1  
tDJR2  
–75  
–45  
75  
45  
ns  
ns  
For Paired Transitions  
EOP Width at Receiver:  
Must Reject at EOP  
Must Accept as EOP  
Note 8  
tEOPR1  
tEOPR2  
330  
675  
ns  
ns  
Notes: 1. All voltages measured from the local ground potential, unless otherwise specified.  
2. All timings use a capacitive load (CL) to ground of 50pF, unless otherwise specified.  
3. Full speed timings have a 1.5 kohm pull-up to 2.8V on the D+ data line.  
4. Low speed timings have a 1.5 kohm pull-up to 2.8V on the D– line.  
5. Measured from 10% to 90% of the data signal.  
6. The rising and falling edges should be smoothly transitioning (monotonic).  
7. Timing difference between the differential data signals.  
8. Measured at crossover point of differential data signals.  
9. The maximum load specification is the maximum effective capacitive load allowed that meets the target hub Vbus  
droop of 330mV.  
912-2000-030  
Revision: 1.1  
®
Page 44  
FireLink USB  
82C862/863  
Figure 7. Differential Data Jitter  
tPERIOD  
Crossover Points  
Differential  
Data Lines  
Consecutive Transitions  
N * tPERIOD + tXJR1  
Paired Transitions  
N * tPERIOD + tXJR2  
Figure 8. Differential to EOP Transition Skew and EOP Width  
tPERIOD  
Crossover  
Point Extended  
Crossover Point  
Differential  
Data Lines  
Differential Data to SE0 Skew  
N * tPERIOD + tDEOP  
Source EOP Width: tEOPT  
Source EOP Width: tEOP1, tEOP2  
Figure 9. Receiver Jitter Tolerance  
tPERIOD  
Differential  
Data Lines  
tJR  
tJR1  
tJR2  
Consecutive Transitions  
N * tPERIOD + tJR1  
Paired Transitions  
N * tPERIOD + tJR2  
912-2000-030  
Revision 1.1  
®
Page 45  
FireLink USB  
82C862/863  
6.0 Marking and Order Information  
6.1 Package Marking  
82C862. Specific marking for the production 82C862 silicon, LQFP package, is as follows (not to scale):  
OPTi  
OPTi  
OPTi  
FireLink USB  
FireLink USB  
FireLink USB  
82C862  
rryyww  
mmfp  
82C862  
02yyww  
02ME  
82C862  
03yyww  
11UE  
(generic)  
(1st prod. rev.)  
(2nd prod. rev.)  
82C863. Specific marking for the production 82C863 silicon, LQFP package, is as follows (not to scale):  
OPTi  
OPTi  
OPTi  
FireLink USB  
FireLink USB  
FireLink USB  
82C863  
rryyww  
mmfp  
82C863  
02yyww  
02ME  
82C863  
03yyww  
11UE  
(generic)  
(1st prod. rev.)  
(2nd prod. rev.)  
For both products:  
– rr indicates OPTi netlist revision  
– yy indicates the year of production  
– ww indicates the week of production (1-52)  
– mm indicates foundry mask revision  
– f indicates the foundry (M identifies the foundry as WSMC, now part of TSMC; U identifies the foundry as UMC)  
– p indicates the packaging house (E identifies the assembly house as ASE).  
912-2000-030  
Revision: 1.1  
®
Page 46  
FireLink USB  
82C862/863  
6.2 Order Number and Shipping Box Information  
Specific marking for the box in which the 82C862/3 silicon is shipped is as follows:  
QT0086202XME-002 – Identifies that the box contains 82C862 LQFP packaged parts. The -002 marking indicates a  
normal production run; initial production parts meeting the same stringent requirements are marked -999. 02XME indicates  
the same as the 02ME on the chip marking; the “X” indicates no particular speed grading.  
2nd revision: QT0086203XUE-002 – same product, but re-engineered for UMC foundry.  
QT0086302XME-002 – Identifies that the box contains 82C863 LQFP packaged parts. The -002 marking indicates a  
normal production run; initial production parts meeting the same stringent requirements are marked -999. 02XME indicates  
the same as the 02ME on the chip marking; the “X” indicates no particular speed grading.  
2nd revision: QT0086303XUE-002 – same product, but re-engineered for UMC foundry.  
These are also the numbers used to order parts from OPTi.  
Packing Options. All packing is done in trays only (tape and reel are not available). Trays measure 13.5mm x 32.2mm for  
LQFP. Tray organization: 90 parts per tray (configured as shown below); 10 trays per box.  
°
Baking method: 125 C for 12 hours.  
6.3 Package Specifications  
Package Thermal Specifications. For LQFP package, worst-case values are as follows:  
qJA = 40 °C/W at no air flow  
qJC = 5 °C/W  
– Max power output = 1.5W at 25 °C.  
Packaging Details.  
– LEAD FRAME: C7025 (Cu)  
– SOLDER: Sn/Pb = 85/15  
– WIRE BOND: Gold Wire (99.99% Au)  
°
– Resistance to flow, spot, or IR reflow soldering heat: 255 C for 5s max.  
– EPOXY: ABLESTIK 8361H  
– MOLDING COMPOUND: Sumitomo EME-7320A(R)  
Environmental Details.  
– Electrostatic Discharge (ESD) Tolerance: 2000V  
912-2000-030  
Revision 1.1  
®
Page 47  
FireLink USB  
82C862/863  
7.0 Mechanical Package Outlines  
Figure 10. 100-Pin Low-Profile Quad Flat Pack (LQFP)  
912-2000-030  
Revision: 1.1  
®
Page 48  
FireLink USB  
82C862/863  
8.0 NAND Tree Test Mode  
The NAND Tree test mode is a convenient method of testing all digital signal pins on the chip for connectivity. By sequentially  
inverting each input and observing the output, proper connections are assured. The logic structure is shown in Figure 11.  
Figure 11. NAND Tree Logic  
Input 1  
Pin 21  
Input 2  
Pin 23  
Input 3  
Pin 24  
Input 61  
Pin 2  
AD0  
Pin 4  
Input 62  
Pin 3  
The NAND tree mode tests both input and bi-directional pins that are part of the NAND tree chain. The NAND tree chain starts  
at pin 21 (TEST0) while the output of the chain is at pin 4 (AD0). RESET# and PCICLK# are not included in the NAND tree  
chain.  
To enable the NAND tree test mode, strap FireLink USB by pulling up the following pins during the rising edge of RESET#: Pin  
25 (TEST1) and Pin 21 (TEST0). For reliable strapping, toggle PCICLK at least two times after RESET# goes low, and at least  
two times after RESET# goes high. After that strapping sequence, set both RESET# and PCICLK high. Do not toggle RESET#  
and PCICLK during the NAND tree test.  
Testing involves the following steps.  
1. Drive all signal inputs initially high.  
2. Note the signal state on the AD0 pin (pin 4).  
3. Drive the first NAND tree signal input pin (pin 21) low.  
4. The signal state on the OUT pin will invert.  
5. Drive the next input pin in the sequence (pin 23) low.  
6. The signal state on the OUT pin will again invert.  
7. Continue this sequence until reaching the final pin (pin 3), ensuring that the AD0 pin toggles each time.  
912-2000-030  
Revision 1.1  
®
Page 49  

相关型号:

QT0086302TME

Controller Miscellaneous - Datasheet Reference
ETC

QT01180A-2120P

Board Stacking Connector, 180 Contact(s), 2 Row(s), Female, Straight, 0.02 inch Pitch, Surface Mount Terminal, Locking, Ivory Insulator, Receptacle,
FOXCONN

QT012206-1031-2H

Board Connector, 220 Contact(s), 2 Row(s), Female, Straight, 0.02 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Receptacle, HALOGEN FREE AND LEAD FREE
FOXCONN

QT012206-1041-3H

Board Connector, 220 Contact(s), 4 Row(s), Male, Straight, 0.02 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Plug, HALOGEN FREE AND LEAD FREE
FOXCONN

QT1+10G

QTOUCH⑩ SENSOR IC
QUANTUM

QT1+IG

QTOUCH⑩ SENSOR IC
QUANTUM

QT1+T+G

CHARGE-TRANSFER TOUCH SENSOR
QUANTUM

QT100

CHARGE-TRANSFER IC
QUANTUM

QT100-ISG

CHARGE-TRANSFER IC
QUANTUM

QT100A-ISMG

Consumer Circuit, PDSO10
ATMEL

QT100_07

CHARGE-TRANSFER QTOUCH⑩ IC
QUANTUM

QT100_0707

CHARGE-TRANSFER QTOUCH™ IC
QUANTUM