R1230D1.91A-TL [ETC]

Analog IC ; 模拟IC\n
R1230D1.91A-TL
型号: R1230D1.91A-TL
厂家: ETC    ETC
描述:

Analog IC
模拟IC\n

模拟IC
文件: 总20页 (文件大小:883K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2002. Jan. 30  
PWM/VFM step-down DC/DC converter with Synchronous  
Rectifier  
R1230D Series  
OUTLINE  
The R1230D Series are PWM step-down DC/DC Converters with synchronous rectifier, low supply current by CMOS  
process.  
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a  
soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), PWM/VFM  
alternative circuit, a chip enable circuit, and a driver transistor. A low ripple, high efficiency step-down DC/DC  
converter can be easily composed of this IC with only a few kinds of external components, or an inductor and  
capacitors. (As for R1230D001C/D types, divider resistors are also necessary.) In terms of Output Voltage, it is fixed  
internally in the R1230DXX1A/B types. While in the R1230D001C/D types, Output Voltage is adjustable with external  
divider resistors.  
PWM/VFM alternative circuit is active with Mode Pin of the R1230D Series. Thus, when the load current is small,  
the operation can be switching into the VFM operation from PWM operation by the logic of MODE pin and the  
efficiency at small load current can be improved. As protection circuits, Current Limit circuit which limits peak current  
of Lx at each clock cycle, and Latch type protection circuit which works if the term of Over-current condition keeps on  
a certain time in PWM mode exist. Latch-type protection circuit works to latch an internal driver with keeping it disable.  
To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC  
with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO.  
FEATURES  
Built-in Driver ON Resistance • • • • • • • • • • • • • P-channel 0.35, N-channel 0.45(at VIN=5V)  
Built-in Soft-start Function (TYP. 1.5ms), and Latch-type Protection Function (Delay Time; TYP. 1.5ms)  
Two choices of Oscillator Frequency • • • • • • 500kHz, 800kHz  
PWM/VFM alternative with MODE pin • • • • • • PWM operation; MODE pin at “L”,  
VFM operation; MODE pin at “H”  
High Efficiency • • • • • • • • • • • • • • • • • • TYP. 90%  
Output Voltage • • • • • • • • Stepwise Setting with a step of 0.1V in the range of 1.2V 3.3V(XX1A/B Type)  
or adjustable in the range of 0.8V to VIN(001C/D Type)  
High Accuracy Output Voltage • • • • • • • • • ±2.0%(XX1A/B Type)  
Package • • • • • SON8 (Max height 0.9mm, thin type)  
APPLICATIONS  
Power source for portable equipment.  
Rev. 1.15  
- 1 -  
BLOCK DIAGRAM  
R1230DXX1A/B  
VDD  
MODE“L”= PWM  
“H”= VFM  
VIN  
VOUT  
OSC  
PWM/VFM  
CONTROL  
Phase Compensation  
Lx  
OUTPUT  
CONTROL  
Vref  
CE  
Current Protection  
UVLO  
“H” Active  
Soft Start  
CE  
Chip Enable  
PGND  
AGND  
R1230D001C/D  
VDD  
MODE  
“L”= PWM  
“H”= VFM  
VIN  
VFB  
OSC  
PWM/VFM  
CONTROL  
Phase Compensation  
Lx  
OUTPUT  
CONTROL  
“H” Active  
Vref  
CE  
Chip Enable  
Current Protection  
UVLO  
Soft Start  
PGND  
AGND  
Rev. 1.15  
- 2 -  
SELECTION GUIDE  
In the R1230D Series, the output voltage, the oscillator frequency, and the taping type for the ICs can be  
selected at the user’s request.  
The selection can be made by designating the part number as shown below;  
R1230DXXXX-XX  
↑ ↑  
a
b c d  
Code  
a
Contents  
Setting Output Voltage(VOUT):  
Stepwise setting with a step of 0.1V in the range of 1.2V to 3.3V is possible for A/B version.  
“00” is for Output Voltage Adjustable C/D version  
1 : fixed  
b
c
Designation of Optional Function  
A : 500kHz, Fixed Output Voltage  
B : 800 kHz, Fixed Output Voltage  
C : 500kHz, Adjustable Output Voltage  
D : 800kHz, Adjustable Output Voltage  
d
Designation of Taping Type; Ex. :TR,TL(refer to Taping Specification)  
”TR” is prescribed as a standard.  
PIN CONFIGURATION  
SON-8  
2.9 0.2  
±
0.48TYP  
8
5
*
*
1
4
*Attention : Tab suspension leads in the  
parts have GND level. (They are connected to  
the reverse side of this IC.) Do not connect to  
other wires or land patterns.  
0.1  
0.65  
0.3 0.1  
±
Unit : mm  
0.1 M  
Rev. 1.15  
- 3 -  
PIN DESCRIPTION  
Symbol  
Description  
Pin No.  
1
2
3
4
5
6
7
8
V
Voltage Supply Pin  
Ground Pin  
Voltage Supply Pin  
Chip Enable Pin (active with “H”)  
Output/Feedback Pin  
Mode changer Pin (PWM mode at “L”, VFM mode at “H”.)  
Ground Pin  
Lx Pin  
IN  
PGND  
V
DD  
CE  
V
/V  
OUT FB  
MODE  
AGND  
Lx  
ABSOLUTE MAXIMUM RATINGS  
(AGND=PGND=0V)  
Symbol  
Item  
Supply Voltage  
Rating  
6.5  
6.5  
Unit  
V
V
V
IN  
V
V
IN  
V
DD  
Pin Voltage  
DD  
V
LX  
Lx Pin Voltage  
V
-0.3 V +0.3  
IN  
V
CE Pin Input Voltage  
MODE Pin Input Voltage  
V
V
CE  
-0.3 V +0.3  
IN  
V
MODE  
-0.3 V +0.3  
IN  
V
I
P
Topt  
Tstg  
V
Pin Input Voltage  
V
A
mW  
°C  
°C  
FB  
LX  
FB  
-0.3 V +0.3  
IN  
L Pin Output Current  
-0.8  
250  
-40 +85  
-55 +125  
X
Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
D
Rev. 1.15  
- 4 -  
ELECTRICAL CHARACTERISTICS  
R1230D**1A/B  
(Topt=25°C)  
Symbol  
Item  
Conditions  
+1.5V, V  
MIN.  
2.4  
TYP.×  
0.980  
TYP.  
MAX. Unit  
V
IN  
Operating Input Voltage  
Step-down Output Voltage  
5.5  
V
V
V
OUT  
V =V =V  
=0V,  
V
SET  
IN  
CE  
SET  
MODE  
TYP.×  
1.020  
I
=10mA  
OUT  
Step-down Output Voltage  
Temperature Coefficient  
ppm  
/°C  
V  
/
-40°C Topt 85°C  
±150  
OUT  
T  
fosc  
fosc  
Oscillator Frequency(xx1A) V =V =V  
+1.5V  
+1.5V  
+1.5V,  
425  
680  
500  
800  
230  
575 kHz  
920 kHz  
IN  
CE  
SET  
SET  
SET  
Oscillator Frequency(xx1B) V =V =V  
IN  
CE  
I
Supply Current(xx1A)  
V =V =V  
300  
DD  
IN  
CE  
µA  
V
OUT  
=V  
=0V  
MODE  
I
Supply Current(xx1B)  
V =V =V  
+1.5V,  
250  
350  
DD  
IN  
CE  
SET  
µA  
V
OUT  
=V  
=0V  
MODE  
I
Standby Current  
ON Resistance of  
Pch Transistor  
ON Resistance of  
Nch Transistor  
V =5.5V, V =V =0V  
OUT  
V =5.0V  
IN  
0
0.35  
5
0.60  
stb  
IN  
CE  
µA  
R
0.20  
0.20  
ONP  
R
V =5.0V  
IN  
0.45  
0.70  
ONN  
I leak Lx Leakage Current  
V =5.5V, V =0V, V =0V/5.5V  
-0.1  
-0.1  
-0.1  
1.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
LX  
IN  
CE  
LX  
µA  
µA  
µA  
V
V
%
V
I
V
OUT  
Leakage Current  
V =5.5V, V =0V, V =0V/5.5V  
VOUT  
IN  
CE  
LX  
I
CE Input Current  
V =5.5V, V  
=0V, V =5.5V/0V  
CE  
IN  
MODE  
CE  
V
V
CE "H" Input Voltage  
CE "L" Input Voltage  
V =5.5V, V =0V  
OUT  
CEH  
IN  
V =2.4V, V =0V  
OUT  
0.3  
CEL  
IN  
Oscillator Maximum Duty Cycle  
Maxdty  
V
V
=0V  
100  
MODE  
V
LX  
Lx Limit Voltage  
= V  
=0V, V =V =3.0V  
V -0.15 V -0.35 V -  
IN  
MODE  
OUT  
IN  
CE  
IN  
IN  
0.55  
2.5  
2.5  
2.2  
2.3  
0.1  
Delay Time by Soft-Start function  
Delay Time for protection circuit  
UVLO Threshold Voltage  
UVLO Released Voltage  
MODE Pin Input Current  
MODE ”H” Input Voltage  
MODE ”L” Input Voltage  
T
T
at no load, V =V =V  
+1.5V  
0.5  
1.5  
ms  
ms  
V
V
µA  
V
start  
IN  
CE  
SET  
V =V =V  
+1.5V, V =0V  
MODE  
0.5  
1.8  
1.9  
-0.1  
1.5  
1.5  
2.1  
2.2  
prot  
IN  
CE  
SET  
V
V
I
V =V =2.5V->1.5V, V  
=0V  
UVLO1  
UVLO2  
MODE  
IN  
CE  
OUT  
V =V =1.5V->2.5V, V  
=0V  
IN  
CE  
OUT  
V =5.5V, V =0V, V  
=5.5V/0V  
IN  
CE  
MODE  
V
V =V =5.5V, V  
=0V  
=0V  
MODEH  
IN  
CE  
OUT  
V
V =V =2.4V, V  
0.3  
85  
V
%
MODEL  
IN  
CE  
OUT  
VFMdty VFM Duty Cycle  
V =V = V  
=2.4V, V =0V  
OUT  
55  
65  
IN  
CE  
MODE  
Rev. 1.15  
- 5 -  
R1230D001C/D  
(Topt=25°C)  
Symbol  
Item  
Conditions  
+1.5V, V =0V,  
MODE  
MIN.  
2.4  
0.776  
TYP. MAX. Unit  
V
IN  
Operating Input Voltage  
Feedback Voltage  
5.5  
V
V
V
FB  
V =V =V  
0.800 0.824  
IN  
CE  
SET  
I
=10mA  
OUT  
Feedback Voltage  
ppm  
V  
/
-40°C Topt 85°C  
±150  
FB  
Temperature Coefficient  
/°C  
T  
fosc  
fosc  
Oscillator Frequency(xx1C)  
Oscillator Frequency(xx1D)  
Supply Current(xx1C)  
Supply Current(xx1D)  
Standby Current  
V =V =V  
+1.5V  
+1.5V  
425  
680  
500  
800  
230  
250  
0
575 kHz  
920 kHz  
IN  
CE  
SET  
V =V =V  
IN  
CE  
SET  
I
I
V =V =5.5V, V =V  
=0V  
=0V  
300  
DD  
IN  
CE  
FB  
MODE  
µA  
V =V =5.5V, V =V  
350  
DD  
IN  
CE  
FB  
MODE  
µA  
I
stb  
V =5.5V, V =V =0V  
IN  
5
CE  
FB  
µA  
R
ON Resistance of  
Pch Transistor  
ON Resistance of  
V =5.0V  
0.20  
0.20  
0.35  
0.60  
ONP  
IN  
R
V =5.0V  
IN  
0.45  
0.70  
ONN  
Nch Transistor  
I leak Lx Leakage Current  
V =5.5V, V =0V, V =0V/5.5V  
-0.1  
-0.1  
-0.1  
1.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
LX  
IN  
CE  
LX  
µA  
µA  
µA  
V
V
%
V
I
V
FB  
Leakage Current  
V =5.5V, V =0V, V =0V/5.5V  
VFB  
IN  
CE  
FB  
I
CE Input Current  
V =5.5V, V  
=0V, V =5.5V/0V  
CE  
IN  
MODE  
CE  
V
V
CE "H" Input Voltage  
CE "L" Input Voltage  
V =5.5V, V =0V  
CEH  
IN  
FB  
V =2.4V, V =0V  
0.3  
CEL  
IN  
FB  
Maxdty Oscillator Maximum Duty Cycle V  
=0V  
100  
MODE  
V
LX  
Lx Limit Voltage  
V =V =3.0V, V  
=0V, V =0V  
V -0.15 V -  
IN  
V -  
IN  
CE  
MODE  
FB  
IN  
0.35  
1.5  
1.5  
2.1  
2.2  
IN  
0.55  
2.5  
Delay Time by Soft-Start function  
Delay Time for protection circuit  
UVLO Threshold Voltage  
UVLO Released Voltage  
MODE Pin Input Current  
MODE ”H” Input Voltage  
MODE ”L” Input Voltage  
T
T
at no load, V =V =V +1.5V  
SET  
0.5  
ms  
ms  
V
V
µA  
V
start  
IN  
CE  
V =V =3.6V, V  
=0V  
prot  
IN  
CE  
MODE  
V
V
I
V =V =2.5V->1.5V, V =0V  
1.8  
1.9  
-0.1  
1.5  
2.2  
2.3  
0.1  
UVLO1  
UVLO2  
MODE  
IN  
CE  
FB  
V =V =1.5V->2.5V, V =0V  
IN  
CE  
FB  
V =5.5V, V  
=5.5V/0V, V =0V  
MODE CE  
IN  
V
MODE  
V =V =5.5V, V =0V  
IN CE FB  
V
V =V =2.4V, V =0V  
0.3  
85  
V
%
MODEL  
IN  
CE  
FB  
VFMdty VFM Duty Cycle  
V =V =V  
=2.4V, V =0V  
55  
65  
IN  
CE  
MODE  
FB  
Rev. 1.15  
- 6 -  
TEST CIRCUITS  
IN  
V
IN  
Lx  
CE  
V
Lx  
VDD  
VDD  
CE  
OSCILLOSCOPE  
OUT  
AGND VOUT  
PGND MODE  
V
AGND  
PGND  
A
MODE  
Test Circuit for Input Current and Leakage Current  
Test Circuit for Input Voltage and UVLO voltage  
OSCILLOSCOPE  
OUT  
V
IN  
V
Lx  
VDD  
CE  
L
10uF  
V
OUT  
AGND  
PGND MODE  
Test Circuit for Output Voltage, Oscillator Frequency, Soft-Starting Time  
IN  
V
Lx  
OSCILLOSCOPE  
A
VDD  
CE  
VIN  
Lx  
CE  
VDD  
OUT  
V
AGND  
A
PGND MODE  
OUT  
V
AGND  
PGND MODE  
Test Circuit for Supply Current and Standby Current  
Test Circuit for ON resistance of Lx, Limit Voltage, Delay  
Time of Protection Circuit  
The bypass capacitor between Power Supply and GND is Ceramic capacitor 10µF.  
Rev. 1.15  
- 7 -  
TYPICAL APPLICATION AND TECHNICAL NOTES  
1) Fixed Output Voltage Type  
VOUT  
VIN  
Lx  
AGND  
MODE  
VOUT  
L
CIN  
PGND  
VDD  
CE  
LOAD  
COUT  
L
: 10µH LQH3C100K54 (Murata)  
COUT: 10µF ECSTOJX106R (Panasonic)  
CIN : 10µF C3216JB0J106M (TDK)  
2) Adjustable Output Voltage Type  
L
VOUT  
VIN  
LX  
AGND  
MODE  
VFB  
CIN  
PGND  
R1  
LOAD  
Cb  
VDD  
CE  
COUT  
R
2
Rb  
L
: 10µH LQH3C100K54 (Murata)  
COUT: 10µF ECSTOJX106R (Panasonic)  
CIN : 10µF C3216JB0J106M (TDK)  
As for how to choose Cb, Rb, R1, and R2 values, refer to the technical notes.  
When you use these ICs, consider the following issues;  
Input same voltage into Power Supply pins, VIN and VDD. Set the same level as AGND and PGND.  
When you control the CE pin and MODE pin by another power supply, do not make its "H" level more than the  
voltage level of VIN / VDD pin.  
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize the  
wiring to VIN pin and PGND pin.  
At stand by mode, (CE=”L”), the Lx output is Hi-Z, or both P-channel transistor and N-channel transistor of Lx pin  
turn off.  
Use an external capacitor COUT with a capacity of 10µF or more, and with good high frequency characteristics  
such as tantalum capacitors.  
At VFM mode, (MODE=”H”), Latch protection circuit does not operate.  
If the mode is switched over into PWM mode from VFM mode during the operation, change the mode at light load  
current. If the load current us large, output voltage may decline.  
Rev. 1.15  
- 8 -  
Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching current may flow in these lines. If the  
impedance of VIN and PGND lines is too large, the internal voltage level in this IC may shift caused by the  
switching current, and the operation might be unstable.  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the  
values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy  
from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the  
input voltage is obtained. The operation will be explained with reference to the following diagrams:  
<Basic Circuits>  
<Current through L>  
i1  
ILmax  
IOUT  
ILmin  
ton  
topen  
L
Pch Tr  
Nch Tr  
VIN  
VOUT  
i2  
CL  
toff  
T=1/fosc  
Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL  
increases from ILmin(=0) to reach ILmax in proportion to the on-time period(ton) of P-channel Tr.  
Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at  
ILmax, and current IL (=i2) flows.  
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. turns  
off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not  
enough. In this case, IL value increases from this ILmin(>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the  
oscillator frequency (fosc) being maintained constant.  
Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the  
same as those when P-channel Tr. turns on and off.  
The difference between ILmax and ILmin, which is represented by I;  
I = ILmax – ILmin = VOUT × topen / L = (VIN-VOUT)×ton/L Equation 1  
Wherein T=1/fosc=ton+toff  
duty (%)=ton/T×100=ton×fosc×100  
topen toff  
In Equation 1, VOUT×topen/L and (VIN-VOUT)×ton/L respectively show the change of the current at “ON”, and the  
change of the current at “OFF”.  
When the output current (IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the  
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of  
toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen becomes to toff  
(topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The former mode is  
referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
Rev. 1.15  
- 9 -  
tonc =T×VIN/VOUT Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When P-channel Tr. of Lx is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of Lx are  
respectively described as Ronp and Ronn, and the DC resistor of the inductor is described as RL.)  
VIN=VOUT+(Ronp+RL)×IOUT+L×IRP/ton  
Equation 3  
Equation 4  
When P-channel Tr. of Lx is “OFF”(N-channel Tr. is “ON”):  
L×IRP/toff = RL×IOUT + VOUT + Ronn×IOUT  
Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, ton/(toff+ton)=DON,  
DON=(VOUT-Ronn×IOUT+RL×IOUT)/(VIN+ Ronn×IOUT -Ronp×IOUT) Equation 5  
Ripple Current is as follows;  
IRP=(VIN-VOUT-Ronp×IOUT-RL×IOUT)×DON/fosc/L  
Equation 6  
wherein, peak current that flows through L, and Lx Tr. is as follows;  
ILmax=IOUT+IRP/2  
Equation 7  
Consider ILmax, condition of input and output and select external components.  
The above explanation is directed to the calculation in an ideal case in continuous mode.  
How to Adjust Output Voltage and about Phase Compensation  
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 0.8V.  
Output Voltage, VOUT is as following equation;  
VOUT: R1+R2=VFB: R2  
VOUT=VFB×(R1+R2)/R2  
Thus, with changing the value of R1 and R2, output voltage can be set in the specified range.  
In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180  
degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase  
margin should be secured with proceeding the phase. A pole is formed with external components L and COUT.  
Fpole 1/2π√LCOUT  
A zero (signal back to zero) is formed with R1 and Cb.  
Fzero 1/(2π×R1×Cb)  
First, choose the appropriate value of R1, R2 and Cb.  
Set R1+R2 value 100kor less.  
For example, if L=10µH, COUT=10µF, the cut off frequency of the pole is approximately 16kHz.  
To make the cut off frequency of the zero as much as 16kHz, set R1=42kand Cb=100pF.  
If VOUT is set at 1.5V, R2=48kis appropriate.  
If a ceramic capacitor is desirable as COUT in your application, nonetheless of the usage of both the fixed output  
voltage type and adjustable output type, add 0.2or more resistance to compensate the ESR.  
Further, if a ceramic capacitor is desirable to use as COUT without adding another resister to compensate the ESR,  
phase should be back drastically. To make it, R2 value should be smaller compared to R1. As a result, the set output  
voltage may be large. For example, to make VOUT=1.5V, constants are R1=42k, R2=48k, and Cb=100pF. If the  
ceramic capacitor is used, under the heavy load condition, oscillation may be result. On the other hand, if R2=12kΩ  
and VOUT=3.6V, phase back becomes also large, and even if the device is used with a heavy load, the operation will  
be stable.  
Rb is effective for reducing the noise on VFB, however, it is not always necessary. If it is necessary, use as much as  
30kas Rb.  
Rev. 1.15  
- 10 -  
External Components  
1. Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic  
saturation occurs and make transform efficiency worse.  
Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output current,  
efficiency is better than using an inductor with a large value of L and vice versa.  
2. Capacitor  
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least 10µF  
for stable operation.  
COUT can reduce ripple of Output Voltage, therefore as much as 10µF tantalum type is recommended.  
TIMING CHART  
CE pin Voltage  
Output  
Short  
Output Short  
Internal Soft-start  
Set Voltage  
Internal Operational  
Amplifier Output  
Internal Oscillator Waveform  
Lx Pin Output  
Latched  
Delay Time of Protection  
Stable  
Soft-start Time  
The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched with  
protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty cycle of Lx  
is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of amplifier is “H”,  
then after the output voltage reaches the set output voltage, they are balanced with the stable state. Herein, if the  
output pin would be short circuit, the output of amplifier would become “H” again, and the condition would continue for  
1.5ms (TYP.), latch circuit would work and the output of Lx would be latched with “OFF”. (Output =“High-Z”)  
If the output short is released before the latch circuit works (within 1.5ms after output shorted), the output of amplifier  
is balanced in the stable state again.  
Once the IC is latched, to release the protection, input “L” with CE pin, or make the supply voltage at UVLO level or  
less.  
Rev. 1.15  
- 11 -  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
1.78  
1.76  
1.74  
1.72  
1.7  
R1230D181A  
Vin=3.3V PWM  
Vin=3.3V VFM  
Vin=5.0V PWM  
Vin=5.0V VFM  
1
10  
10  
10  
100  
1000  
Output Current IOUT[mA]  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
1.78  
1.76  
1.74  
1.72  
1.7  
R1230D181B  
Vin=3.3V PWM  
Vin=3.3V VFM  
Vin=5.0V PWM  
Vin=5.0V VFM  
1
100  
1000  
Output Current IOUT[mA]  
2.6  
2.55  
2.5  
R1230D251B  
Vin=3.3V PWM  
Vin=3.3V VFM  
Vin=5.0V PWM  
Vin=5.0V VFM  
2.45  
2.4  
1
100  
1000  
OUT  
Output Current I  
[mA]  
2) Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R1230D181A  
Vin=3.3V PWM  
Vin=3.3V VFM  
Vin=5.0V PWM  
Vin=5.0V VFM  
1
10  
100  
1000  
OUT  
Output Current I  
[mA]  
Rev. 1.15  
- 12 -  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R1230D181B  
Vin=3.3V PWM  
Vin=3.3V VFM  
Vin=5.0V PWM  
Vin=5.0V VFM  
1
10  
100  
1000  
OUT  
Output Current I  
[mA]  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R1230D251B  
Vin=3.3V PWM  
Vin=3.3V VFM  
Vin=5.0V PWM  
Vin=5.0V VFM  
1
10  
100  
1000  
Output Current IOUT[mA]  
3) Ripple Voltage vs. Output Current  
COUT=10uF Tantalum Capacitor ESR=400mohm  
R1230D181A  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-1.00E-06 0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06  
Time [sec]  
PWM Mode  
VIN=5.0V IOUT=200mA  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=5.0V  
IN  
V =3.3V  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
R1230D181B  
Output Current IOUT[mA]  
COUT=10µF Tantalum Capacitor ESR=400mΩ  
Rev. 1.15  
- 13 -  
COUT=10uF Ceramic Capacitor ESR=220mohm  
R1230D181B  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-1.00E-06 0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06  
Time [sec]  
PWM Mode  
VIN=5.0V IOUT=200mA  
4) Output Waveform  
COUT=10uF Tantalum Capacitor ESR=400mohm  
R1230D181B  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-4.00E-06  
-3.00E-06  
-2.00E-06  
-1.00E-06  
0.00E+00  
Time[sec]  
1.00E-06  
2.00E-06  
3.00E-06  
OUT  
=10mA  
4.00E-06  
IN  
PWM Mode  
V =5.0V I  
COUT=10uF Tantalum Capacitor ESR=400mohm  
R1230D181B  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-4.00E-06  
-3.00E-06  
-2.00E-06  
-1.00E-06  
0.00E+00  
Time[sec]  
1.00E-06  
2.00E-06  
3.00E-06  
OUT  
=100mA  
4.00E-06  
IN  
PWM Mode  
V =5.0V I  
5) Output Voltage vs. Input Voltage  
R1230D181B IOUT=20mA  
1.9  
1.85  
1.8  
VFM  
PWM  
1.75  
1.7  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage VIN[V]  
Rev. 1.15  
- 14 -  
6) Output Voltage vs. Temperature  
R1230D181B IOUT=100mA  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
1.78  
1.76  
1.74  
1.72  
1.7  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
Temperature Topt  
R1230D001C/D IOUT=100mA  
0.9  
0.85  
0.8  
0.75  
0.7  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
Temperature Topt  
7) Oscillator Frequency vs. Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt (°C)  
VIN=VOUT+1.5V  
8) Supply Current vs. Temperature  
450  
380  
310  
240  
170  
100  
800kHz  
500kHz  
-60  
-40  
-20  
0
20  
Temperature Topt  
40  
60  
VIN=5.5V  
80  
100  
(°C)  
Rev. 1.15  
- 15 -  
9) Soft-start time vs. Temperature  
R1230D181B VIN=3.3V  
3
2.4  
1.8  
1.2  
0.6  
0
800kHz  
500kHz  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
(°C)  
(°C)  
Temperature Topt  
10) Delay Time for protection vs. Temperature  
3
2.4  
1.8  
1.2  
0.6  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt  
11) UVLO Threshold/Released Voltage vs. Temperature  
2.3  
2.25  
2.2  
UVLO Released Voltage  
2.15  
2.1  
UVLO Detector Threshold  
2.05  
2
1.95  
1.9  
1.85  
1.8  
-60  
-40  
-20  
0
20  
Temperature Topt  
40  
60  
80  
100  
12) CE Pin Input Voltage vs. Temperature  
1.6  
1.4  
1.2  
1
CEH  
0.8  
CEL  
0.6  
0.4  
0.2  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
Temperature Topt  
Rev. 1.15  
- 16 -  
13) Mode Pin Input Voltage vs. Temperature  
1.6  
1.4  
1.2  
1
MODEH  
0.8  
0.6  
0.4  
0.2  
0
MODEL  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
Temperature Topt  
14) Duty Cycle at VFM Mode vs. Temperature  
80  
75  
70  
65  
60  
55  
50  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
Temperature Topt  
15) Lx Transistor on Resistance vs. Temperature  
VIN=3.0V  
1
0.75  
0.5  
Nch Tr. On Resistance  
Pch Tr. On Resistance  
0.25  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
(°C)  
Temperature Topt  
16) Limit Voltage vs. Temperature  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt (°C)  
Rev. 1.15  
- 17 -  
17) Load Transient Response  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
OUT  
I
=100mA  
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-05 -2.00E-05 0.00E+00  
2.00E-05  
4.00E-05  
6.00E-05  
Time[sec]  
8.00E-05  
1.00E-04  
1.20E-04  
1.40E-04  
R1230D181B VIN=5.0V PWM  
IOUT=200mA  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-05 -2.00E-05 0.00E+00  
2.00E-05  
4.00E-05  
6.00E-05  
Time[sec]  
8.00E-05  
1.00E-04  
1.20E-04  
1.40E-04  
R1230D181B VIN=5.0V PWM  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=0A  
IOUT=100mA  
-0.1  
-0.2  
-0.3  
-4.00E-06  
1.00E-06  
6.00E-06  
1.10E-05  
1.60E-05  
2.10E-05  
2.60E-05  
3.10E-05  
3.60E-05  
R1230D181B VIN=5.0V PWM  
Time [sec]  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=100mA  
IOUT=2mA  
-0.1  
-0.2  
-0.3  
-0.0002  
-0.0001  
0
0.0001  
0.0002  
0.0003  
0.0004  
0.0005  
0.0006  
0.0007  
0.0008  
Time [sec]  
R1230D181B VIN=5.0V PWM  
Rev. 1.15  
- 18 -  
IOUT=200mA  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-06  
1.00E-06  
6.00E-06  
1.10E-05  
1.60E-05  
2.10E-05  
2.60E-05  
3.10E-05  
3.60E-05  
R1230D181B VIN=5.0V PWM  
Time[sec]  
IOUT=200mA  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=2mA  
-0.1  
-0.2  
-0.3  
-0.0002  
-0.0001  
0
0.0001  
0.0002  
0.0003  
0.0004  
0.0005  
0.0006  
0.0007  
0.0008  
Time [sec]  
R1230D181B VIN=5.0V PWM  
18) Turn-on Waveform  
PWM Mode IOUT=0A  
5
4
4
2
CE  
0
3
2
1
VOUT  
0
-1  
-0.0004  
0
0.0004  
0.0008  
0.0012  
0.0016  
0.002  
0.0024  
0.0028  
R1230D181B VIN=5.0V  
Time [sec]  
PWM ModeIOUT=50mA  
5
4
3
2
1
0
4
2
CE  
0
0  
VOUT  
-1  
-0.0004  
0
0.0004  
0.0008  
0.0012  
0.0016  
0.002  
0.0024  
0.0028  
R1230D181B VIN=5.0V  
Time [sec]  
Rev. 1.15  
- 19 -  
PWM ModeIOUT=200mA  
5
4
3
2
1
0
4
2
0
CE  
0  
VOUT  
-1  
-0.0004  
0
0.0004  
0.0008  
0.0012  
0.0016  
0.002  
0.0024  
0.0028  
Time [sec]  
R1230D181B VIN=5.0V  
VFM Mode IOUT=0A  
5
4
3
2
1
0
4
2
0
CE  
VOUT  
-1  
-0.0004  
0
0.0004  
0.0008  
0.0012  
0.0016  
0.002  
0.0024  
0.0028  
R1230D181B VIN=5.0V  
Time [sec]  
VFM Mode IOUT=50mA  
5
4
3
2
1
0
4
2
0
CE  
0  
VOUT  
-1  
-0.0004  
0
0.0004  
0.0008  
0.0012  
0.0016  
0.002  
0.0024  
0.0028  
Time [sec]  
R1230D181B VIN=5.0V  
Rev. 1.15  
- 20 -  

相关型号:

ETC
ETC
ETC

R1230D121A-TL

SMPS Controller
ETC

R1230D121A-TR

SMPS Controller
ETC

R1230D121B-TL

SMPS Controller
ETC

R1230D121B-TR

SMPS Controller
ETC

R1230D121G-TL

Switching Regulator, Current-mode, 575kHz Switching Freq-Max, CMOS, PDSO8, 0.9 MM HEIGHT, SON-8
RICOH

R1230D121G-TR

Switching Regulator, Current-mode, 575kHz Switching Freq-Max, CMOS, PDSO8, 0.9 MM HEIGHT, SON-8
RICOH

R1230D121H-TR

Switching Regulator, Current-mode, 920kHz Switching Freq-Max, CMOS, PDSO8, 0.9 MM HEIGHT, SON-8
RICOH

R1230D131A-TL

SMPS Controller
ETC

R1230D131A-TR

SMPS Controller
ETC