RDC-19222 [ETC]

Resolver and Synchro To Digital Converters ; 解析器和同步数字转换器\n
RDC-19222
型号: RDC-19222
厂家: ETC    ETC
描述:

Resolver and Synchro To Digital Converters
解析器和同步数字转换器\n

转换器
文件: 总24页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Make sure the next  
Card you purchase  
has...  
®
RDC-19220 SERIES  
16-BIT MONOLITHIC TRACKING RESOLVER  
(LVDT)-TO-DIGITAL CONVERTERS  
FEATURES  
+5 Volt Only Option  
Only Five External Passive  
Components  
Programmable:  
- Resolution: 10-, 12-, 14-, or 16-Bit  
- Bandwidth: to 1200 Hz  
- Tracking: to 2300 RPS  
Differential Resolver and LVDT  
Input Modes  
Velocity Output Eliminates  
Tachometer  
Built-In-Test (BIT) Output,  
No 180° Hangup  
Small Size: 40-Pin DDIP or  
44-Pin J-Lead Package  
DESCRIPTION  
The RDC-19220 Series of converters are low-cost, versatile, 16-bit  
monolithic, state-of-the-art Resolver(/LVDT)-to-Digital Converters.  
These single-chip converters are available in small 40-pin DDIP, or 44-  
pin J-Lead packages and offer programmable features such as reso-  
lution, bandwidth and velocity output scaling.  
-55° to +125°C Operating  
Temperature Available  
Resolution programming allows selection of 10-, 12-, 14-, or 16-bit,  
with accuracies to 2.3 min. This feature combines the high tracking  
rate of a 10-bit converter with the precision and low-speed velocity  
resolution of a 16-bit converter in one package.  
The velocity output (VEL) from the RDC-19220 Series, which can be  
used to replace a tachometer, is a 4 V signal (3.5 V with the +5 V only  
option) referenced to ground with a linearity of 0.75% of output volt-  
age. The full scale value of VEL is set by the user with a single resis-  
tor.  
RDC-19220 Series converters are available with operating tempera-  
ture ranges of 0° to +70°C, -40° to +85°C and -55° to +125°C. Military  
processing is available (consult factory).  
APPLICATIONS  
With its low cost, small size, high accuracy and versatile performance,  
the RDC-19220 Series converter is ideal for use in modern high-per-  
formance industrial and military control systems. Typical applications  
include motor control, radar antenna positioning, machine tool con-  
trol, robotics, and process control.  
FOR MORE INFORMATION CONTACT:  
Technical Support:  
1-800-DDC-5757 ext. 7382  
Data Device Corporation  
105 Wilbur Place  
Bohemia, New York 11716  
631-567-5600 Fax: 631-567-7358  
www.ddc-web.com  
©
1999 Data Device Corporation  
+REF -REF  
BIT  
-VSUM  
VEL  
SIN  
-S  
C
R
BW  
-
C
10  
BW  
+
+S  
COS  
-C  
B
R1  
CONTROL  
TRANSFORMER  
GAIN  
A
DEMODULATOR  
-
INTEGRATOR  
+
+C  
R
V
HYSTERESIS  
B
+5C  
+CAP  
-CAP  
-5C  
-VCO  
16 BIT  
UP/DOWN  
COUNTER  
VCO  
&
TIMING  
-5 V  
INVERTER  
R
R
S
C
E
A GND  
+5 V  
DATA  
LATCH  
GND  
-5 V  
INH  
BIT 1  
THRU  
BIT 16  
A
B
CB  
EM  
EL  
FIGURE 1. RDC-19220 SERIES BLOCK DIAGRAM  
TABLE 1. RDC-19220 SPECIFICATIONS  
These specifications apply over the rated power supply, temperature  
and reference frequency ranges, and 10% signal amplitude variation  
and harmonic distortion.  
TABLE 1. RDC-19220 SPECIFICATIONS (CONTD)  
PARAMETER  
DYNAMIC  
UNIT  
VALUE  
(at maximum bandwidth)  
CHARACTERISTICS  
Resolution  
Tracking Rate (max)(note 4)  
Bandwidth(Closed Loop)  
(max) (note 4)  
Ka  
PARAMETER  
RESOLUTION  
UNIT  
VALUE  
bits  
rps  
Hz  
10  
1152  
1200 1200  
12  
288  
14  
72  
600  
16  
18  
300  
Bits 10, 12, 14, or 16  
Min 4 or 2 + 1 LSB (note 3)  
LSB 1 max  
ACCURACY  
REPEATABILITY  
2
1/sec  
1/sec  
5.7M 5.7M  
19.5 19.5  
1.4M 360k  
4.9 1.2  
295k 295k  
A1  
DIFFERENTIAL LINEARITY LSB 1 max in the 16th bit  
A2  
A
B
1/sec 295k 295k  
1/sec 2400 2400  
REFERENCE  
Type  
Voltage:  
(+REF, -REF)  
Differential  
1200  
600  
30k  
20  
600  
300  
2k  
1/sec 1200 1200  
2
Acceleration (1 LSB lag)  
Settling Time(179° step)  
deg/s  
msec  
2M 500k  
differential  
single ended  
overload  
Frequency  
Input Impedance  
VP-P ±10 max  
2
8
50  
VP  
V
Hz  
±5 max  
±25 continuous, 100 transient  
DC to 40,000 (note 4)  
VELOCITY  
CHARACTERISTICS  
Polarity  
Voltage Range(Full Scale)  
Scale Factor Error  
Scale Factor TC  
Reversal Error  
Linearity  
Positive for increasing angle  
±4 (at nominal ps)  
Ohm 10M min // 20 pf  
(+S, -S, SIN, +C, -C, COS)  
Resolver, differential, groundbased  
Vrms 2 ±15%  
±25 continuous  
Ohm 10M min//10 pf.  
V
SIGNAL INPUT  
Type  
Voltage: operating  
overload  
%
10 typ  
20 max  
PPM/C 100 typ  
200 max  
%
%
0.75 typ 1.3 max  
0.25 typ 0.50 max  
V
Input impedance  
Zero Offset  
Zero Offset TC  
Load  
mv  
5 typ  
10 max  
DIGITAL INPUT/OUTPUT  
Logic Type  
Inputs  
µV/C 15 typ  
kΩ  
(Vp/V)% 1 typ  
30max  
8 max  
.125 min 2 max  
TTL/CMOS compatible  
Logic 0 = 0.8 V max.  
Logic 1 = 2.0 V min.  
Loading =10 µA max P.U. current  
source to +5 V //5 pF max.  
CMOS transient protected  
Logic 0 inhibits; Data stable  
within 0.3 µs  
Noise  
POWER SUPPLIES  
Nominal Voltage  
Voltage Range  
Max Volt. w/o Damage  
Current  
(note 5)  
V
%
V
+5  
± 5 +5, -20 (-4 V to -5.25 V)  
+7 -7  
-5  
Inhibit (INH)  
mA 14 typ, 22 max (each)  
Enable Bits 1 to 8 (EM)  
Enable Bits 9 to 16 (EL)  
Logic 0 enables; Data stable  
within 150 ns  
TEMPERATURE RANGE  
Operating  
Logic 1 = High Impedance  
Data High Z within 100 nS  
-30X  
-20X  
-10X  
°C  
°C  
°C  
0 to +70  
-40 to +85  
-55 to +125  
Resolution and Mode  
Control (A & B)  
(see notes 1 and 2.)  
Mode  
resolver  
B
0
0
1
1
A
0
1
0
1
0
-5 V  
-5 V  
Resolution  
10 bits  
12 bits  
14 bits  
16 bits  
8 bits  
Storage  
plastic package  
ceramic package  
°C  
°C  
-65 to +150  
-65 to +150  
"
"
"
THERMAL RESISTANCE  
Junction-to-Case (θjc)  
40-pin DDIP (plastic)  
40-pin DDIP (ceramic)  
44-pin J-Lead (plastic)  
44-pin J-Lead (ceramic)  
LVDT -5 V  
°C/W 92.4  
°C/W 4.6  
°C/W 72.6  
°C/W 2.4  
"
"
"
0
1
10 bits  
12 bits  
14 bits  
-5 V -5 V  
Outputs  
Parallel Data (1-16)  
PHYSICAL  
10, 12, 14, or 16 parallel lines;  
natural binary angle positive  
logic (see TABLE 2)  
0.25 to 0.75 µs positive pulse  
leading edge initiates counter  
update.  
CHARACTERISTICS  
Size: 40-pin DDIP  
44-pin J-Lead  
in(mm) 2.0 x 0.6 x 0.2 (50.8 x 15.24 x 5.08)  
in(mm) 0.690 square (17.526)  
Converter Busy (CB)  
Weight:  
40-pin DDIP  
44-pin J-Lead  
Plastic  
oz(g) 0.21 (5.95)  
oz(g) 0.08 (2.27)  
Ceramic  
0.24 (6.80)  
0.065 (1.84)  
Zero Index  
Logic 1 at all 0s (ENL to -5 V);  
LSBs are enabled  
(Zl)  
Built-in-Test (BIT)  
Logic 0 for BIT condition.  
±100 LSBs of error typ. with a  
filter of 500 µS, or total Loss-of-  
Signal (LOS)  
50 pF +  
Logic 0; 1 TTL load, 1.6 mA at  
0.4 V max  
Notes: 1. Unused data bits are set to logic “0.”  
2. In LVDT mode, bit 16 is LSB for 14-bit resolution  
or bit 12 is LSB for 10-bit resolution.  
3. Accuracy in LVDT mode is 0.15% + 1 LSB of full scale.  
4. See text, General Setup Considerations and Higher  
Tracking Rates.  
Drive Capability  
5. See text: General Setup Considerations for RDC19222.  
Logic 1; 10 TTL loads, -0.4 mA  
at 2.8 V min  
Logic 0; 100 mV max driving CMOS  
Logic 1; +5 V supply minus 100mV  
min driving CMOS, High Z;  
10 uA//5 pF max  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
3
THEORY OF OPERATION  
er with the velocity integrator forms a type II servo feedback loop.  
A lead in the frequency response is introduced to stabilize the  
loop and another lag at higher frequency is introduced to reduce  
the gain and ripple at the carrier frequency and above. The set-  
tings of the various error processor gains and break frequencies  
are done with external resistors and capacitors so that the con-  
verter loop dynamics can be easily controlled by the user.  
The RDC-19220 Series of converters are single CMOS custom  
monolithic chips. They are implemented using the latest IC tech-  
nology which merges precision analog circuitry with digital logic  
to form a complete, high-performance tracking resolver-to-digital  
converter. For user flexibility and convenience, the converter  
bandwidth, dynamics and velocity scaling are externally set with  
passive components.  
TABLE 2. DIGITAL ANGLE OUTPUTS  
FIGURE 1 is the functional block diagram of the RDC-19220  
Series. The converter operates with ±5 Vdc power supplies.  
Analog signals are referenced to analog ground, which is at  
ground potential.The converter is made up of two main sections;  
a converter and a digital interface. The converter front-end con-  
sists of sine and cosine differential input amplifiers. These inputs  
are protected to ±25 V with 2 kresistors and diode clamps to  
the ±5 Vdc supplies. These amplifiers feed the high accuracy  
Control Transformer (CT). Its other input is the 16-bit digital angle  
φ. Its output is an analog error angle, or difference angle,  
between the two inputs. The CT performs the ratiometric trigono-  
metric computation of SINθCOSφ - COSθSINφ = SIN(θ-φ) using  
amplifiers, switches, logic and capacitors in precision ratios.  
BIT  
DEG/BIT  
MIN/BIT  
1(MSB)  
180  
90  
45  
10800  
5400  
2700  
1350  
675  
337.5  
168.75  
84.38  
42.19  
21.09  
10.55  
5.27  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
22.5  
11.25  
5.625  
2.813  
1.405  
0.7031  
0.3516  
0.1758  
0.0879  
0.0439  
0.0220  
0.0110  
0.0055  
2.64  
1.32  
0.66  
0.33  
Note: The transfer function of the CT is normally trigonometric,  
but in LDVT mode the transfer function is triangular (linear)  
and could thereby convert any linear transducer output.  
Note: EM enables the MSBs and EL enables the LSBs.  
TRANSFER FUNCTION AND BODE PLOT  
The converter accuracy is limited by the precision of the com-  
puting elements in the CT. In these converters, ratioed capacitors  
are used in the CT instead of the more conventional precision  
ratioed resistors. Capacitors, used as computing elements with  
op-amps, need to be sampled to eliminate voltage drifting.  
Therefore, the circuits are sampled at a high rate (67 kHz) to  
eliminate this drifting and at the same time to cancel out the op-  
amp offsets.  
The dynamic performance of the converter can be determined from  
its Transfer Function Block Diagrams and its Bode Plots (open and  
closed loop). These are shown in FIGURES 2, 3, and 4.  
The open loop transfer function is as follows:  
S
A2  
S2  
+1  
(B )  
Open Loop Transfer Function =  
S
+1  
(10B )  
The error processing is performed using the industry standard  
technique for type II tracking R/D converters.The dc error is inte-  
grated yielding a velocity voltage which in turn drives a voltage  
controlled oscillator (VCO). This VCO is an incremental integra-  
tor (constant voltage input to position rate output) which togeth-  
where A is the gain coefficient and A2= A1A2  
and B is the frequency of lead compensation.  
C
R
BW  
B
VEL  
C
/10  
R
BW  
V
R
S
-VSUM  
VEL  
-VCO  
50 pf  
C
VCO  
CT  
R
1
16 BIT  
UP/DOWN  
COUNTER  
RESOLVER  
INPUT  
(θ)  
+
VCO  
GAIN  
DEMOD  
1
±1.25 V  
THRESHOLD  
-
C
F
S
S
11 mV/LSB  
DIGITAL  
OUTPUT  
(φ)  
H = 1  
FIGURE 2. TRANSFER FUNCTION BLOCK DIAGRAM #1  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
4
The components of gain coefficient are error gradient, integrator  
gain and VCO gain. These can be broken down as follows:  
4) The BIT output which is active low is activated by an error  
of approximately 100 LSBs. During normal operation for step  
inputs or on power up, a large error can exist.  
- Error Gradient = 0.011 volts per LSB (CT + Error Amp + Demod  
with 2 Vrms input)  
5) This device has several high impedance amplifier inputs  
(+C, -C, +S, -S, -VCO and -VSUM). These nodes are sensi-  
tive to noise and coupling components should be connected  
as close as possible.  
Cs Fs  
1.1 CBW  
- Integrator Gain =  
volts per second per volt  
1
- VCO Gain =  
LSBs per second per volt  
1.25 RV CVCO  
6) Setup of bandwidth and velocity scaling for the optimized  
critically damped case should proceed as follows:  
where: Cs = 10 pF  
Fs = 67 kHz when Rs = 30 kΩ  
Fs = 100 kHz when Rs = 20 kΩ  
Fs = 134 kHz when Rs = 15 kΩ  
CVCO = 50 pF  
- Select the desired f BW (closed loop) based on overall  
system dynamics.  
RV, RB, and CBW are selected by the user to set velocity scaling  
and bandwidth.  
- Select f  
3.5f BW  
carrier  
For the converter’s max tracking rate value,  
see the row indicated in TABLE 4.  
Application max. rate  
{
}
GENERAL SETUP CONSIDERATIONS  
- Compute Rv = 55 kx  
DDC has external component selection software which consid-  
ers all the criteria below, and in a simple fashion, asks the key  
parameters (carrier frequency, resolution, bandwidth, and track-  
ing rate) to derive the external component value.  
3.2 x Fs (Hz) x 108  
Rv x (f BW)2  
- Compute CBW (pF) =  
- Where Fs = 67 kHz for R CLK = 30 KΩ  
100 kHz for R CLK = 20 KΩ  
The following recommendations should be considered when  
installing the RDC-19220 Series R/D converters:  
134 kHz for R CLK = 15 KΩ  
1) In setting the bandwidth (BW) and Tracking Rate (TR)  
(selecting five external components), the system require-  
ments need to be considered. For greatest noise immunity,  
select the minimum BW and TR the system will allow.  
0.9  
CBW x f BW  
- Compute RB =  
CBW  
- Compute  
10  
2) Power supplies are ±5 V dc. For lowest noise performance  
it is recommended that a 0.1 µF or larger cap be connected  
from each supply to ground near the converter package.  
Note: DDC has software available to perform the previous calcu-  
lations. Contact DDC to request software or visit our web-  
site at www.ddc-web.com to download software.  
3) Resolver inputs and velocity output are referenced to A  
GND. This pin should be connected to GND near the con-  
verter package. Digital currents flowing through ground will  
not disturb the analog signals.  
(CRITICALLY DAMPED)  
VELOCITY  
OUT  
GAIN = 4  
2A  
ERROR PROCESSOR  
ω (rad/sec)  
10B  
OPEN LOOP  
VCO  
CT  
S
B
B
A
A
S
+ 1  
1
A
S
DIGITAL  
POSITION  
OUT (φ)  
+
2
RESOLVER  
INPUT  
(θ)  
e
(B = A/2)  
S
10B  
+ 1  
-
GAIN = 0.4  
H = 1  
2 A  
fBW = BW (Hz) =  
2 A  
π
2A  
2
ω (rad/sec)  
CLOSED LOOP  
FIGURE 3. TRANSFER FUNCTION  
BLOCK DIAGRAM #2  
FIGURE 4. BODE PLOTS  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
5
7) Selecting a fBW that is too low relative to the maximum appli-  
cation tracking rate can create a spin-around condition in  
which the converter never settles. The relationship to insure  
against spin-around is as follows (TABLE 3):  
For a 12-bit converter there are 212 or 4096 counts per rotation.  
1,333,333/4096 = 325 rotations per second or 333,333 counts  
per second per volt.  
1
Rv =  
= 48 kΩ  
(333,333 x 50 pF x 1.25)  
TABLE 3. TRACKING/BW RELATIONSHIP  
RPS (MAX)/BW  
RESOLUTION  
1
10  
12  
14  
16  
The maximum rate capability of the RDC-19220 is set by Rs.  
When Rs = 30 kit is nominally 1,333,333 counts/sec, which  
equates to 325 rps (rotations per second). This is the absolute  
maximum rate; it is recommended to only run at <90% of this rate  
0.45  
0.25  
0.125  
(as seen in TABLE 3), therefore the minimum R will be limited  
v
8) For RDC-19222:  
to 55 kΩ. The converter maximum tracking rate can be increased  
50% in the 16- and 14-bit modes and 100% in the 12- and 10-bit  
modes by increasing the supply current from 12 to 15 mA (by  
using an Rc = 23 k), and by increasing the sampling rate by  
changing Rs to 20 kfor 16- and 14-bit resolution or to 15 kfor  
12- and 10-bit resolution (see TABLE 4).  
This version is capable of +5V only operation. It accomplishes  
this with a charge pump technique that inverts the +5V supply  
for use as -5V, hence the +5V supply current doubles. The  
built-in -5 V inverter can be used by connecting pin 2 to 26, pin  
17 to 22, a 10 µF/10 Vdc capacitor from pin 23 (negative ter-  
minal) to pin 25 (positive terminal), and a 47 µF/10 Vdc capac-  
itor from -5 V to GND. The current drain from the +5 V supply  
doubles. No external -5 V supply is needed.  
The maximum carrier frequency can, in the same way, increase  
from: 5 to 10 kHz in the 16-bit mode, 7 to 14 kHz in the 14-bit  
mode,11 to 32 kHz in the 12-bit mode, and 20 to 40 kHz in the  
10-bit mode (see TABLE 5).  
When using the -5 V inverter, the max. tracking rate should be  
scaled for a velocity output of 3.5 V max. Use the following equa-  
tion to determine tracking rate used in the formula on page 4:  
The maximum tracking rate and carrier frequency for full perfor-  
mance are set by the power supply current control resistor (Rc)  
per the following tables:  
TR (required) x (4.0) = Tracking rate used in calculation  
(3.5)  
TABLE 4. MAX TRACKING RATE  
(MIN) IN RPS  
Depending on the res-  
olution, select one of  
the values from this  
row, for use in convert-  
er max tracking rate  
formula. (See previous  
page for formula.)  
R
R
RESOLUTION  
10 12 14 16  
30k** or open 30k 1152 288 72 18  
Note:When using the highest BW and Tracking Rates, using  
the -5 V inverter is not recommended.  
C
S
()  
()  
HIGHER TRACKING RATES AND CARRIER FREQUENCIES  
Tracking rate (nominally 4 V) is limited by two factors: velocity  
voltage saturation and maximum internal clock rate (nominally  
1,333,333 Hz). An understanding of their interaction is essential  
to extending performance.  
23k  
23k  
20k 1728 432 108 27  
15k 2304 576  
*
*
* Not recommended.  
** The use of a high quality thin-film resistor will provide better temperature  
stability than leaving open.  
TABLE 5. CARRIER FREQUENCY  
(MAX) IN KHZ  
The General Setup Considerations section makes note of the  
selection of Rv for the desired velocity scaling. Rv is the input resis-  
tor to an inverting integrator with a 50 pF nominal feedback capac-  
itor. When it integrates to -1.25 V, the converter counts up 1 LSB  
and when it integrates to +1.25 V, the converter counts down 1  
LSB. When a count is taken, a charge is dumped on the capacitor;  
such that, the voltage on it changes 1.25 V in a direction to bring  
it to 0 V. The output counts per second per volt input is therefore:  
R
R
RESOLUTION  
C
S
()  
30k** or open  
23k  
()  
30k  
30k  
20k  
15k  
10  
20  
24  
34  
40  
12  
11  
12  
24  
32  
14  
7
16  
5
11  
14  
*
7
23k  
10  
*
23k  
* Not recommended.  
** The use of a high quality thin-film resistor will provide better temperature  
stability than leaving open.  
1
(R x 50 pF x 1.25)  
v
The carrier frequency should be 1/10, or less, of the sampling fre-  
quency in order to have many samples per carrier cycle. The con-  
verter will work with reduced quadrature rejection at a carrier fre-  
quency up to 1/4 the sampling frequency. Carrier frequency should  
be at least 3.5 times the BW in order to eliminate the chance of jitter.  
As an example:  
Calculate Rv for the maximum counting rate, at a VEL voltage  
of 4 V.  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
6
TABLE 6. TRANSFORMERS  
ANGLE  
ACCURACY***  
FIGURE  
NUMBER  
P/N  
TYPE  
FREQUENCY (HZ)* IN (VRMS)* OUT (VRMS)**  
LENGTH (IN) WIDTH (IN) HEIGHT (IN)  
52034  
52035  
52036  
52037  
52038  
B-426  
52039  
24133  
S - R  
S - R  
400  
400  
400  
400  
400  
400  
60  
11.8  
90  
2
1
1
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
1.1  
0.61  
0.61  
0.61  
0.61  
0.61  
0.61  
1.14  
1.125  
0.3  
0.3  
0.3  
0.3  
0.3  
0.32  
.42  
.42  
5A  
5A  
5B  
5B  
5B  
5C  
5D  
5D  
2
R - R  
11.8  
26  
2
1
R - R  
2
1
R - R  
90  
2
3.4  
1
Reference  
Synchro  
Reference  
115  
90  
N/A  
1
2
60  
115  
3/6 ****  
N/A  
1.125  
*
±10% Frequency (Hz) and Line-to-Line input voltage (Vrms) tolerances  
** 2 Vrms Output Magnitudes are -2 Vrms ±0.5% full scale  
*** Angle Accuracy (Max Minutes)  
**** 3 Vrms to ground or 6 Vrms differential (±3% full scale)  
Dimensions are for each individual main and teaser  
60 Hz Synchro transformers are active (requires ±15 Vdc power supplies)  
400 Hz transformer temperature range: -55°C to +125°C  
60 Hz transformer temperature ranges: -55°C to +125°C, 0 to +70°C  
0.61 MAX  
(15.49)  
0.61 MAX  
(15.49)  
0.15 MAX  
(3.81)  
0.09 MAX  
(2.29)  
0.30 MAX  
(7.62)  
0.09 MAX  
(2.29)  
0.15 MAX  
(3.81)  
1
3
T1A  
8
4
7
5
6
11 12  
14 15  
0.81 MAX  
(20.57)  
T1B  
0.600  
(15.24)  
10  
9
20 19 18 17 16  
0.115 MAX  
(2.92)  
SIDE VIEW  
0.100 (2.54) TYP  
TOL NON CUM  
BOTTOM VIEW  
BOTTOM VIEW  
TERMINALS  
0.025 ±0.001 (6.35 ±0.03) DIAM  
0.125 (3.18) MIN LENGTH  
SOLDER PLATED BRASS  
PIN NUMBERS FOR REF. ONLY  
Dimensions are shown in inches (mm).  
T1A  
1
6
-SIN  
S1  
S3  
5
3
10  
+SIN  
SYNCHRO  
INPUT  
RESOLVER  
OUTPUT  
T1B  
11  
15  
16  
20  
-COS  
S2  
+COS  
FIGURE 5A. TRANSFORMER LAYOUT AND SCHEMATIC (SYNCHRO INPUT - 52034/52035)  
0.61 MAX  
(15.49)  
0.61 MAX  
(15.49)  
0.15 MAX  
(3.81)  
0.09 MAX  
(2.29)  
0.30 MAX  
(7.62)  
0.09 MAX  
(2.29)  
0.15 MAX  
(3.81)  
1
3
T1A  
8
4
5
6
11 12  
14 15  
0.81 MAX  
(20.57)  
T1B  
0.600  
(15.24)  
10  
9
7
20 19 18 17 16  
0.115 MAX  
(2.92)  
SIDE VIEW  
0.100 (2.54) TYP  
TOL NON CUM  
BOTTOM VIEW  
BOTTOM VIEW  
TERMINALS  
0.025 ±0.001 (6.35 ±0.03) DIAM  
0.125 (3.18) MIN LENGTH  
SOLDER PLATED BRASS  
PIN NUMBERS FOR REF. ONLY  
Dimensions are shown in inches (mm).  
T1A  
1
3
6
-SIN  
S1  
S3  
10  
+SIN  
RESOLVER  
INPUT  
RESOLVER  
OUTPUT  
T1B  
11  
15  
16  
20  
-COS  
S4  
S2  
+COS  
FIGURE 5B. TRANSFORMER LAYOUT AND SCHEMATIC (RESOLVER INPUT - 52036/52037/52038)  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
7
CASE IS BLACK AND  
NON-CONDUCTIVE  
0.25  
(6.35)  
MIN.  
1.14 MAX  
(28.96)  
+
+S  
S3  
S1  
+15 V  
*
*
(+15 V) (-R)  
*
*
0.61 MAX  
(15.49)  
0.32 MAX  
(8.13)  
1.14 MAX  
(28.96)  
0.85 ±0.010  
(21.59 ±0.25)  
52039  
or  
24133  
0.125 MIN  
(3.17)  
0.09 MAX  
(2.29)  
0.15 MAX  
(3.81)  
(RH)  
S2  
(RL)  
(V)  
V
(+R)  
+C  
(-Vs)  
-Vs  
*
1
2
9
3
T1A  
8
5
6
+
(BOTTOM VIEW)  
0.42  
(10.67)  
MAX.  
0.600  
(15.24)  
0.81 MAX  
(20.57)  
0.13 ±0.03  
(3.30 ±0.76)  
0.21 ±0.3  
10  
7
(5.33 ±0.76)  
0.175 ±0.010 (4.45 ±0.25)  
NONCUMULATIVE  
TOLERANCE  
0.105 (2.66)  
0.040 ±0.002 DIA. PIN.  
SOLDER PLATED BRASS  
SIDE VIEW  
0.100 (2.54) TYP  
TOL NON CUM  
BOTTOM VIEW  
TERMINALS  
0.025 ±0.001 (6.35 ±0.03) DIAM  
0.125 (3.18) MIN LENGTH  
SOLDER-PLATED BRASS  
+15 V  
+15 V  
Input  
RH  
Input  
S1  
Output  
+R (RH)  
Output  
+S  
Dimensions are shown in inches (mm).  
24133  
52039  
S2  
-R (RL)  
+C  
RL  
S3  
V
-Vs  
(-15 V)  
V
-Vs  
(-15 V)  
(Analog  
Gnd)  
(Analog  
Gnd)  
1
6
INPUT  
OUTPUT  
The mechanical outline is the same for the synchro input trans-  
former (52039) and the reference input transformer (24133),  
except for the pins. Pins for the reference transformer are shown  
in parenthesis ( ) below. An asterisk * indicates that the pin is  
omitted.  
5
10  
FIGURE 5D. 60 HZ SYNCHRO AND REFERENCE  
TRANSFORMER DIAGRAMS  
(SYNCHRO INPUT - 52039 / REFERENCE INPUT - 24133)  
FIGURE 5C. TRANSFORMER LAYOUT AND  
SCHEMATIC (REFERENCE INPUT - B-426)  
EXTERNAL  
REFERENCE  
LO  
HI  
6
CBW  
RB  
1
5
B-426  
10  
CBW/10  
RV  
+R  
-VSUM  
-S SIN  
+S  
-R  
VEL  
-VCO  
S1  
S3  
RH  
RL  
1
3
10  
6
TIA  
TIB  
DIGITAL  
OUTPUT  
+C  
-C  
RDC-19220  
16  
S4  
11  
15  
20  
CB  
BIT  
COS  
S2  
16  
AGND  
52036(11.8V)  
OR  
INH  
EM  
EL  
52037(26V)  
OR  
GND  
Rc  
Rs  
52038(90V)  
A
B
+5V  
-5V  
SYNCHRO INPUT  
RESOLUTION  
CONTROL  
S1  
+S  
+C  
1
RH  
RL  
10  
S3  
3
TIA  
6
5
20  
11  
TIB  
S2  
AGND  
GND  
15  
16  
52034(11.8V)  
OR  
52035(90V)  
FIGURE 6. TYPICAL TRANSFORMER CONNECTIONS  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
8
TYPICAL INPUT CONNECTIONS  
FIGURES 7 through 9 illustrate typical input configurations  
EXTERNAL  
REF  
LO  
HI  
R
R
R
1
2
4
R
3
10k (1%)  
-R  
+R  
S3  
+S  
-S  
SIN  
Note: The five external BW components as  
shown in FIGURE 1 and 2 are necessary  
for the R/D to function.  
COS  
-C  
S1  
+C  
10k (1%)  
S2  
S4  
A GND  
RESOLVER  
GND  
Notes:  
1) Resistors selected to limit Vref peak to between 1 V and 4 V.  
2) External reference LO is grounded, then R3 and R4 are not  
needed, and -R is connected to GND.  
FIGURE 7A. TYPICAL CONNECTIONS, 2 V RESOLVER, DIRECT INPUT  
R
1
-S  
SIN  
S3  
S1  
+S  
R
R
2
Note: The five external BW components as  
shown in FIGURE 1 and 2 are necessary for  
the R/D to function.  
R
1
S2  
S4  
+C  
2
A GND  
-C  
COS  
R2  
2
=
R1 + R2 X Volt  
R1 + R2 should not load the Resolver too much; it is recommended to use a R2 = 10k.  
R1 + R2 Ratio Errors will result in Angular Errors,  
2 cycle, 0.1% Ratio Error = 0.029° Peak Error.  
FIGURE 7B. TYPICAL CONNECTIONS, X- VOLT RESOLVER, DIRECT INPUT  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
9
SIN  
R
f
R
R
i
i
-S  
-
S1  
S3  
+S  
+
Note: The five external BW components as  
shown in FIGURE 1 and 2 are necessary  
for the R/D to function.  
R
R
f
f
A GND  
RESOLVER  
INPUT  
COS  
R
R
i
i
-C  
-
S4  
S2  
+C  
+
R
f
Ri  
Rf  
x 2 Vrms = Resolver L-L rms voltage  
CONVERTER  
Rf ≥ 6 kΩ  
S1 and S3, S2 and S4, and RH and RL should be ideally twisted shielded, with the shield tied to GND at the converter.  
FIGURE 8A. DIFFERENTIAL RESOLVER INPUT  
SIN  
3
R
f
R
i
-S  
1
6
-
S1  
S3  
2
5
R
i
+S  
+
Note: The five external BW components as  
shown in FIGURE 1 and 2 are necessary  
for the R/D to function.  
R
f
f
4
RESOLVER  
INPUT  
A GND  
COS  
13  
R
R
R
i
i
-C  
15  
16  
7
-
S4  
S2  
+C  
+
8 10  
R
f
12  
CONVERTER  
S1 and S3, S2 and S4, and RH and RL should be ideally twisted shielded, with the shield tied to GND at the converter.  
For DDC-49530 or DDC-57470: Ri = 70.8 k, 11.8 V input, synchro or resolver.  
For DDC-49590: Ri = 270 k, 90 V input, synchro or resolver.  
Maximum addition error is 1 minute.  
FIGURE 8B. DIFFERENTIAL RESOLVER INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
10  
SIN  
R
R
f
f
R
R
i
i
-S  
-
S1  
S3  
+S  
+
Note: The five external BW components as  
shown in FIGURE 1 and 2 are necessary  
for the R/D to function.  
A GND  
COS  
R
i
R /  
f
3
R
i
-C  
-
R /2  
i
+C  
3
+
S2  
R /  
f
CONVERTER  
Ri  
Rf  
x 2 Vrms = Synchro L-L rms voltage  
Rf 6 kΩ  
S1, S2, and S3 should be triple twisted shielded; RH and RL should be twisted shielded, In both cases the shield should be tied to GND at the  
converter.  
FIGURE 9A. SYNCHRO INPUT  
SIN  
3
R
f
R
i
-S  
1
6
-
S1  
S3  
2
5
R
i
+S  
+
Note: The five external BW components as  
shown in FIGURE 1 and 2 are necessary  
for the R/D to function.  
R
f
4
A GND  
COS  
14  
R
i
16  
7
R / 3  
f
R
i
8
-C  
-
15  
15  
R /2  
i
+C  
10  
9
+
S2  
R / 3  
f
11  
CONVERTER  
S1, S2, and S3 should be triple twisted shielded; RH and RL should be twisted shielded, In both cases the shield should be tied to GND at the converter.  
90 V input = DDC-49590: Ri = 270 k, 90 V input, synchro or resolver.  
11.8 V input = DDC-49530 or DDC-57470: Ri = 70.8 k, 11.8 V input, synchro or resolver.  
Maximum addition error is 1 minute.  
FIGURE 9B. SYNCHRO INPUT, USING DDC-49530/DDC-57470 (11.8 V) OR DDC-49590 (90 V)  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
11  
REDUCED POWER SUPPLY CURRENTS  
When Rs = 30 k(tracking rate is not being pushed), nominal power  
supply current can be cut from 14 to 9 mA by setting Rc = 53 k.  
INCREASED TRACKING/DECREASED SETTLING  
(GEAR SHIFTING)  
Connecting the BIT output to the resolution control lines (A and  
B) will change the resolution of the converter down (“gear shift”)  
and make the converter settle faster and track at higher rates.  
The converter bandwidth is independent of the resolution.  
TRANSFORMER ISOLATION  
System requirements often include electrical isolation. There are  
transformers available for reference and synchro/resolver signal  
isolation. TABLE 6 includes a listing of the most common trans-  
formers.The synchro/resolver transformers reduce the voltage to  
2 Vrms for a direct connection to the converter. See FIGURES  
5A, 5B, 5C and 5D for transformer layouts and schematics, and  
FIGURE 6 for typical connections.  
ADDITIONAL ERROR SOURCES  
Quadrature voltages in a resolver or synchro are by definition the  
resulting 90° fundamental signal in the nulled out error voltage (e)  
in the converter. This voltage is due to capacitive or inductive cou-  
pling in the synchro or resolver signals. A digital position error will  
result due to the interaction of this quadrature voltage and a refer-  
ence phase shift between the converter signal and reference  
inputs. The magnitude of this error is given in the following formula:  
DC INPUTS  
As noted in TABLE 1 the RDC-19220 will accept dc inputs. It is  
necessary to set the REF input to dc by tying +REF to +5 V and  
-REF to GND or -5 \/. (With dc inputs, the converter will function  
from 0 to 180° and BIT will remain at logic 0.)  
Magnitude of Error = (Quadrature Voltage/F.S.signal) • tan α  
Where:  
VELOCITY TRIMMING  
RDC-19220 Series specifications for velocity scaling, reversal  
error and offset are contained in TABLE 1. Velocity scaling and  
offset are externally trimmable for applications requiring tighter  
specifications than those available from the standard unit. FIG-  
URE 10 shows the setup for trimming these parameters with  
external pots. It should also be noted that when the resolution is  
changed, VEL scaling is also changed. Since the VEL output is  
from an integrator with capacitor feedback, the VEL voltage can-  
not change instantaneously. Therefore, when changing resolu-  
tion while moving there will be a transient with a magnitude pro-  
portional to the velocity and a duration determined by the con-  
verter bandwidth.  
Magnitude of Error is in radians  
Quadrature Voltage is in volts  
LAG  
R
+ REF  
- REF  
+ REF  
- REF  
C
LEAD  
R
C
RDC-19220  
+ REF  
- REF  
+ REF  
- REF  
+5 V  
100 R  
V
8
100 kΩ  
(OFFSET)  
Xc  
R
tan ϕ =  
-5 V  
0.8 R  
-VCO  
VEL  
V
Where ϕ = desired phase-shift  
0.4 R (SCALING)  
1
Xc =  
V
10  
2πfc  
Where f = carrier frequency  
Where c = capacitance  
FIGURE 10. VELOCITY TRIMMING  
FIGURE 11. PHASE-SHIFT COMPENSATION  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
12  
Full Scale signal is in volts  
LVDT MODE  
α = signal to REF phase shift  
As shown in TABLE 1 the RDC-19220 Series units can be made  
to operate as LVDT-to-digital converters by connecting  
Resolution Control inputs A and B to “0,1,or the -5 volt supply.  
In this mode the RDC-19220 Series functions as a ratiometric  
tracking linear converter. When linear ac inputs are applied from  
a LVDT the converter operates over one quarter of its range.This  
results in two less bits of resolution for LVDT mode than are pro-  
vided in resolver mode.  
An example of the magnitude of error is as follows:  
Let: Quadrature Voltage = 11.8 mV  
Let: F.S. signal = 11.8 V  
Let: α = 6°  
Then: Magnitude of Error = 0.36 min @ 1 LSB in the 16th bit.  
FIGURE 12B shows a direct LVDT 2 Vrms full scale input. Some  
LDVT output signals will need to be scaled to be compatible with  
the converter input. FIGURE 12C is a schematic of an input scal-  
ing circuit applicable to 3-wire LVDTs. The value of the scaling  
Note: Quadrature is composed of static quadrature which is  
specified by the synchro or resolver supplier plus the speed  
voltage which is determined by the following formula:  
Speed Voltage = (rotational speed/carrier frequency) • F.S. signal  
Where:  
TABLE 7. LVDT OUTPUT CODE (14-BIT R/D OR  
12-BIT LVDT)  
LVDT OUTPUT  
MSB  
LSB  
+ over full travel  
+ full travel -1 LSB  
+0.5 travel  
+1 LSB  
null  
- 1 LSB  
-0.5 travel  
- full travel  
- over full travel  
01  
00  
00  
00  
00  
00  
00  
00  
11  
xxxx  
1111  
1100  
1000  
1000  
0111  
0100  
0000  
xxxx  
xxxx  
1111  
0000  
0000  
0000  
1111  
0000  
0000  
xxxx  
xxxx  
1111  
0000  
0001  
0000  
1111  
0000  
0000  
xxxx  
Speed Voltage is the quadrature due to rotation.  
Rotation speed is the rps (rotations per second) of the synchro  
or resolver.  
Carrier frequency is the REF in Hz.  
A circuit to LEAD or LAG the reference into the converter that will  
compensate for phase-shift between the signal and the refer-  
ence to reduce the effects of the quadrature is illustrated in FIG-  
URE 11.  
Note: TABLE 7 refers to FIGURE 12C.  
C1  
SIN  
aR  
-S  
2 WIRE LVDT  
R
-
R
+S  
REF IN  
R
+
FS = 2 V  
aR  
C2  
COS  
bR  
R
R
2R  
-C  
R
R
-
2R  
+C  
+
2 V  
R
bR  
+REF  
-REF  
C
= C , set for phase lag = phase lead through the LVDT.  
2
1
FIGURE 12A. 2-WIRE LVDT DIRECT INPUT  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
13  
-S  
SIN  
+S  
A GND  
-REF  
+REF  
+C  
RDC-19220  
-C  
COS  
FIGURE 12B. 3-WIRE LVDT DIRECT INPUT  
aR  
SIN  
-S  
R
V
B
-
R'  
R'  
+S  
R
+
R'  
aR  
bR  
R
2R'  
COS  
-C  
R
-
V
A
R'  
R/2  
2R'  
+
+C  
+REF  
-REF  
bR  
Notes:  
1. R' 10 kΩ  
2. Consideration for the value of R is LVDT loading.  
1
1
=
b =  
a =  
VAnull  
VBnull  
RDC-19220  
INPUT  
LVDT  
OUTPUT  
2
(VA - VB )max.  
2V  
SIN  
V
A
1V  
a
SIN = 1 + (VA - VB )  
2
V
B
COS  
+FS  
+FS  
NULL  
-FS  
-FS  
NULL  
a
COS = 1 - (VA - VB )  
2
FIGURE 12C. 3-WIRE LVDT SCALING CIRCUIT  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
14  
constant “a” is selected to provide an input of 2 Vrms at full stroke  
of the LVDT. The value of scaling constant “b” is selected to pro-  
vide an input of 1 Vrms at null of the LVDT. Suggested compo-  
nents for implementing the input scaling circuit are a quad op-  
amp, such as a 4741 type, and precision film resistors of 0.1%  
tolerance. FIGURE 12A illustrates a 2-wire LVDT configuration.  
Output angle data is enabled onto the tri-state data bus in two  
bytes. Enable MSBs (EM) is used for the most significant 8 bits  
and Enable LSBs (EL) is used for the least significant 8 bits. As  
shown in FIGURE 14, output data is valid 150 ns maximum after  
the application of a negative enable pulse. The tri-state data bus  
returns to the high impedance state 100 ns maximum after the  
rising edge of the enable signal.  
Data output of the RDC-19220 Series is Binary Coded in LVDT  
mode. The most negative stroke of the LVDT is represented by  
all zeros and the most positive stroke of the LVDT is represent-  
ed by all ones.The most significant 2 bits (2 MSBs) may be used  
as overrange indicators. Positive overrange is indicated by code  
“01” and negative overrange is indicated by code “11” (see  
TABLE 7).  
The Converter Busy (CB) signal indicates that the tracking con-  
verter output angle is changing 1 LSB. As shown in FIGURE 15,  
output data is valid 50 ns maximum after the middle of the CB  
pulse. CB pulse width is 1/40 Fs, which is nominally 375 ns.  
BUILT-IN-TEST (BIT)  
The Built-ln-Test output (BIT) monitors the level of error from the  
demodulator. This signal is the difference in the input and output  
angles and ideally should be zero. However, if it exceeds approx-  
imately 100 LSBs (of the selected resolution) the logic level at  
BIT will change from a logic 1 to a logic 0.  
INHIBIT, ENABLE, AND CB TIMING  
The Inhibit (INH) signal is used to freeze the digital output angle  
in the transparent output data latch while data is being trans-  
ferred. Application of an Inhibit signal does not interfere with the  
continuous tracking of the converter. As shown in FIGURE 13,  
angular output data is valid 300 ns maximum after the applica-  
tion of the negative inhibit pulse.  
This condition will occur during a large step and reset after the  
converter settles out. BIT will also change to logic 0 for an over-  
velocity condition, because the converter loop cannot maintain  
input/output or if the converter malfunctions where it cannot  
maintain the loop at a null. BIT will also be set low for a detected  
total Loss-of-Signal (LOS). The BIT signal may pulse during cer-  
tain error conditions (i.e., converter spin around or signal ampli-  
tude on threshold of LOS).  
INHIBIT  
300 ns max  
LOS will be detected if both sin and cos input voltages are less  
than 800 mV peak.  
DATA  
DATA  
VALID  
FIGURE 13. INHIBIT TIMING  
1/40 F  
S
(375 nsec nominal)  
ENABLE  
CB  
150 ns MAX  
50 ns  
100 ns MAX  
DATA  
VALID  
DATA  
VALID  
DATA  
VALID  
DATA  
HIGH Z  
HIGH Z  
DATA  
FIGURE 14. ENABLE TIMING  
FIGURE 15. CONVERTER BUSY TIMING  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
15  
ENCODER EMULATION  
signals as illustrated in FIGURE 16A. Also, the LSB byte is  
always enabled.  
The RDC-19220 can be made to emulate incremental optical  
encoder output signals, where such an interface is desired. This  
is accomplished by tying EL to -5 V, whereby CB becomes Zero  
Index (Zl) Logic 1 at all 0s, the LSB+1 becomes A, and the exclu-  
sive-or of the LSB and LSB+1 becomes B emulating A QUAD B  
FIGURE 16B illustrates a more detailed circuit with delays and  
filtering to eliminate potential glitch due to data skew and rise/fall  
differences caused by logic loading.  
CB (ZI)  
LSB +1  
(ZI)  
A
B
LSB  
EL  
-5 V  
FIGURE 16A. INCREMENTAL ENCODER EMULATION  
U2D  
74AC86  
R2  
2k  
13  
11  
C2  
A
B
RDC-19220  
220 pF  
12  
U2A  
74AC86  
R1  
2k  
U2B  
2
1
LSB +1  
74AC86  
3
4
5
6
8
C1  
220 pF  
LSB  
U2C  
74AC86  
R3  
2k  
9
CB/NRP  
C3  
120 pF  
NRP  
10  
EL  
D1  
1N4148  
-5 V  
NOTE: CMOS LOGIC IS RECOMMENDED. TTL AND TTL  
COMPATABLE LOGIC WILL SKEW THE DELAYS.  
FIGURE 16B. FILTERED/BUFFERED ENCODER EMULATOR CIRCUIT  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
16  
TYPICAL-5 VOLT CIRCUITS  
PINOUT FUNCTION TABLES BY MODEL NUMBER  
The TABLES 8 and 9 detail pinout functions by the DDC model  
number.  
Since the 40-pin DDIP RDC-19220 does not have a pinout for  
the -5 V inverter, it may be necessary to create a -5 V from other  
supplies on the board. FIGURE 17 illustrates several possibili-  
ties.  
The RDC-19220 has differential inputs but requires both ±5 V  
power supplies.  
The RDC-19222 has differential inputs and can be used with the  
+5 V only option.  
-15  
79LO5  
-5  
3 TERMINAL  
NEGATIVE REGULATOR  
TABLE 9. RDC-19222 PINOUTS (44-PIN, +5 V ONLY)  
#
1
NAME  
#
NAME  
Bit 16 (LSB)  
EL  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
-5  
-5  
-15  
-12  
2
+5 V  
A
Bit 8  
10.2 V  
3
Bit 15  
Bit 7  
ZENER  
4
B
5.1 V  
ZENER  
5
INH  
+REF  
-REF  
-VCO  
-VSUM  
VEL  
+C  
Bit 14  
Bit 6  
6
-5  
-15  
7
Bit 13  
Bit 5  
6.8 V  
ZENER  
8
9
Bit 12  
Bit 4  
FIGURE 17. TYPICAL -5 VOLT CIRCUITS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NOTES:  
Bit 11  
Bit 3  
COS  
-C  
TABLE 8. RDC-19220 PINOUTS (40-PIN)  
Bit 10  
Bit 2  
#
1
NAME  
DESCRIPTION  
#
NAME  
DESCRIPTION  
+S  
A
Resolution Control 40 +5 V  
Power Supply  
SIN  
-S  
Bit 9  
Bit 1 (MSB)  
Enable LSBs (see  
note)  
2
B
Resolution Control 39 EL  
-5 V  
RS  
CB  
3
4
5
6
7
8
9
INH  
Inhibit  
38 Bit 16  
37 Bit 8  
36 Bit 15  
35 Bit 7  
34 Bit 14  
33 Bit 6  
32 Bit 13  
31 Bit 5  
30 Bit 12  
29 Bit 4  
28 Bit 11  
27 Bit 3  
26 Bit 10  
25 Bit 2  
24 Bit 9  
23 Bit 1  
22 CB  
LSB  
BIT  
+REF  
-REF  
-VCO  
+Reference Input  
-Reference Input  
Neg VCO Input  
RC  
+5C (+5 V)  
+CAP  
GND  
EM  
A GND  
-VSUM Vel Sum Point  
-5C (-5 V)  
-CAP  
VEL  
+C  
Velocity Output  
Signal Input  
Signal Output  
Signal Input  
Signal Input  
Signal Output  
Signal Input  
Power Supply  
Sampling Set  
Current Set  
1. When -5 V is applied to pin 1 (EL), Converter Busy (CB) becomes  
Zero index (ZI).  
10 COS  
11 -C  
2. When using the built-in -5 V inverter: connect pin 2 to 26, pin 17 to  
22, and a 10 µF/10 Vdc capacitor from pin 23 (negative terminal) to  
pin 25 (positive terminal). Connect a 47 µF/10 Vdc capacitor from -5  
V to GND. The current drain from the +5 V supply doubles. No exter-  
nal -5 V supply is needed.  
12 +S  
13 +SIN  
14 -S  
15 -5 V  
R
R
16  
17  
S
C
18 EM  
Enable MSBs  
MSB  
19 A GND Analog Ground  
20 GND Ground  
Converter Busy  
Built-In-Test  
21 BIT  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
17  
2.035 - 2.065 (40 PIN)  
(51.65 - 52.45)  
DIMENSIONS SHOWN ARE IN INCHES (MM).  
0.590 ±0.010  
(14.99 ±0.25)  
0.150 - 0.160  
(3.81 - 4.06)  
0.008 - 0.015  
(0.20 - 0.38)  
0.010 - 0.020  
(0.25 - 0.51)  
0.012 - 0.025  
(0.31 - 0.64)  
0.120 - 0.160  
(3.05 - 4.06)  
0.580 - 0.695  
(14.73 - 17.65)  
0.090 - 0.110  
(2.29 - 2.79  
0.030 - 0.070  
(0.76 - 1.78)  
FIGURE 18. RDC-19220 (40-PIN DDIP) PLASTIC  
PACKAGE MECHANICAL OUTLINE  
PIN NUMBERS  
FOR REF ONLY  
0.125 ±0.020  
(3.18 ±0.508)  
0.085 ±0.010  
0.590 ±0.010  
(14.99 ±0.25)  
0.050 ±0.010  
(1.27 ±0.25)  
(2.16 ±0.25)  
1
40  
0.100 ±0.010 TYP  
(2.54 ±0.25)  
0.018 ±0.006 TYP  
(0.46 ±0.15)  
2.000 ±0.020  
(50.8 ±0.51)  
0.050 ±0.020 TYP  
(1.27 ±0.51)  
20  
21  
0.012 ±0.004 TYP  
(0.31 ±0.10)  
DIMENSIONS SHOWN ARE IN INCHES (MM).  
+0.050  
0.095 ±0.010  
(2.41 ±0.25)  
0.600  
- 0.020  
+1.27  
- 0.51  
(15.25  
)
FIGURE 19. RDC-19220 (40-PIN DDIP) CERAMIC PACKAGE MECHANICAL OUTLINE  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
18  
PIN 1 IDENTIFIER  
PIN #'S SHOWN  
FOR REFERENCE ONLY  
ALTERNATE PIN 1 IDENTIFIER  
6
40  
.155 MAX  
(3.94)  
.020 MIN  
0.690 SQ. ±.005  
(17.53)  
.620 SQ  
± .010  
(15.75)  
0.650 SQ. NOM  
(16.51)  
.016 ± .005 (.41)  
DIMENSIONS SHOWN ARE IN INCHES (MM) TOLERANCE IN INCHES  
0.010 x 45˚ CHFR (3)  
(0.25)  
.050 ± .002  
(1.27)  
FIGURE 20. RDC-19222 (44-PIN PLASTIC J-LEAD) MECHANICAL OUTLINE  
0.075 ±0.010  
(1.91 ±0.25)  
0.040 x 45˚  
CHAMFER  
0.500 ±0.010  
(12.70 ±0.25)  
(1.02)  
(3 PLACES)  
0.020 x 45˚  
(0.51)  
CHAMFER  
(ORIENTATION  
MARK)  
0.113 (REF)  
(2.87)  
0.050 TYP  
(1.27)  
0.065 ±0.007  
(1.65 ±0.18)  
6
1
40  
7
39  
0.630 ±0.020 TYP  
(16.00 ±0.51)  
0.500 ±0.010  
(12.70 ±0.25)  
0.017 TYP  
(0.43)  
17  
29  
PIN NUMBERS  
FOR REF ONLY  
18  
28  
0.075 ±0.010  
(1.91 ±0.25)  
0.650 SQ ±0.010  
(16.51 ±0.25)  
DIMENSIONS SHOWN ARE IN INCHES (MM)  
0.690 ±0.010 TYP  
(17.53 ±0.25)  
FIGURE 21. RDC-19222 (44-PIN CERAMIC J-LEAD) MECHANICAL OUTLINE  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
19  
16  
15  
14  
13  
12  
11  
10  
9
TABLE 10. FRONT-END THIN-FILM RESISTOR  
NETWORKS (SEE FIGURE 23)  
DDC-49530, DDC-57470 RESISTOR VALUES (11.8 V INPUTS)  
SYMBOL  
ABS  
VALUE () (%)  
70.8 k 0.1  
TOL REL TO  
REL  
VALUE () (%)  
TOL TCR(PPM)  
R1  
R2  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
25  
2
2
2
2
2
2
2
2
2
2
1
2
3
4
5
6
7
8
R1  
R4  
12 k  
12 k  
0.02  
0.02  
0.02  
0.02  
0.02  
FIGURE 22. (DDC-55688-1) LAYOUT AND RESISTOR  
R1  
70.8 k  
70.8 k  
35.4 k  
VALUES (R1 AND R2 = 10 K , 1.0% TOL.,  
R1  
ABSOLUTE Tc = ±100 PPM MAX.)  
R1  
R6  
6.9282 k 0.02  
5.0718 k 0.02  
5.0718 k 0.02  
6.9282 k 0.02  
R6  
16  
R11  
15  
R10  
14  
R9  
13  
12  
R8  
11  
R7  
10  
R6  
9
R11  
R11  
R1  
70.8 k  
0.02  
DDC-49590 RESISTOR VALUES (90 V INPUTS)  
270 k 0.1  
R1  
R2  
R3  
R4  
R5  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
25  
2
2
2
2
2
2
2
2
2
2
R1  
R4  
6 k  
0.02  
0.02  
0.02  
0.02  
0.02  
6 k  
1
2
3
4
5
6
7
8
R1  
270 k  
270 k  
135 k  
FIGURE 23. (DDC-49530, DDC-57470, DDC-49590)  
LAYOUT AND RESISTOR VALUES (SEE TABLE 10)  
R1  
R1  
R6  
3.4641 k 0.02  
2.5359 k 0.02  
2.5359 k 0.02  
3.4641 k 0.02  
R6  
0.870 MAX  
(22.10)  
R11  
R11  
R1  
0.250 ±0.005  
(6.35 ±0.13)  
270 k  
0.02  
0.320 - 0.300  
(8.13 - 7.62)  
0.13 ±0.005  
(3.30 ±0.13)  
0.810 MAX  
0.015 ±0.009  
(0.38 ±0.23)  
0.020 MIN  
(0.51)  
0.125 MIN  
(3.18)  
XXX-XXX  
0.075 ±0.015  
(1.91 ±0.38)  
0.018 ±0.003  
(0.46 ±0.08)  
0.305 MAX  
0.200 MAX  
0.300 ±0.10  
+0.025  
0.325  
DATECODE  
Pin #1  
-0.015  
0.100 TYP  
(2.54)  
+0.64  
-0.38  
(8.26  
)
DIMENSIONS SHOWN ARE IN INCHES (MM).  
0.125 MIN  
FIGURE 24. 16-PIN THIN-FILM RESISTOR  
NETWORK MECHANICAL OUTLINE  
(DDC-49530, DDC-49590*, DDC-55688)  
0.100 TYP  
0.820 MAX  
*Note: DDC-49590 - alternate ceramic package may be substituted for plastic  
package depending upon availability (See Figure 26).  
XXX-XXX  
0.260 ±0.010  
0.200 MAX  
.405  
DATECODE  
Pin #1  
0.325 ±0.010  
7˚  
45˚  
0.299  
(7.6)  
0.406  
(10.3)  
0.101  
(2.6)  
0.014  
(.36)  
0.125 MIN  
0.342  
(8.7)  
0.087 MAX  
0.010 TYP  
0.009  
(0.23)  
0.100 TYP  
0.092  
(2.3)  
DIMENSIONS SHOWN ARE IN INCHES  
DIMENSIONS SHOWN ARE IN INCHES (MM).  
FIGURE 26. 16-PIN THIN-FILM RESISTOR  
NETWORK MECHANICAL OUTLINE  
(ALTERNATE CERAMIC PACKAGE FOR DDC-49590)  
FIGURE 25. 16-PIN SURFACE MOUNT THIN-FILM  
RESISTOR NETWORK MECHANICAL OUTLINE  
(DDC-57470)  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
20  
ORDERING INFORMATION  
RDC-1922X-XXXX  
Supplemental Process Requirements:  
T = Tape and Reel  
S = Pre-Cap Source Inspection  
L = Pull Test  
Q = Pre-Cap Source and Pull Test  
K = One Lot Date Code  
W = One Lot Date Code and Pre-Cap Source Inspection  
Y = One Lot Date Code and 100% Pull Test  
Z = One Lot Date Code, Pre-Cap Source Inspection and 100% Pull Test  
Accuracy:  
2 = 4 minutes + 1 LSB  
3 = 2 minutes + 1 LSB  
Process Requirements:  
0 = Standard DDC Processing, no Burn-In  
2 = 168 Hour Burn-In at +125°C (-55 to +125°C devices only) **  
7 = 168 Hour Burn-In at +125°C (-55 to +125°C devices only) plus solder dip **  
Temperature Grade:  
1 = -55 to +125°C  
2 = -40 to +85°C  
3 = 0 to +70°C  
4 = -55 to +125°C with Variables Test Data  
Package:  
0 = 40-Pin DDIP*  
2 = 44-Pin J-Lead* with +5 Volt-Only Option  
9 = Screened to Class K, 44-Pin J-Lead ceramic package,  
only available in the following options: **  
Temperature Grade: #1 or 4  
Process Requirements: #2 or 7  
*Plastic for -20X and -3XX, ceramic for -1XX and -4XX.  
** For RDC-19229 Process Requirement Burn-In will be 320 hours.  
Notes:  
1) DDC reserves the right to supply ceramic packages in place of plastic packages.  
2) Consult factory for External Component Selection Software.  
THIN-FILM RESISTOR NETWORKS: (Operating temperature range: -55 to +125°C)  
DDC-49530 = 11.8 V input, DIP  
DDC-57470 = 11.8 V input, surface mount  
DDC-49590 = 90 V input, DIP  
DDC-55688-1 = 2 V direct, DIP  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
21  
NOTES:  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
22  
NOTES:  
Data Device Corporation  
www.ddc-web.com  
RDC-19220 SERIES  
L-11/02-300  
23  
The information in this data sheet is believed to be accurate; however, no responsibility is  
assumed by Data Device Corporation for its use, and no license or rights are  
granted by implication or otherwise in connection therewith.  
Specifications are subject to change without notice.  
105 Wilbur Place, Bohemia, New York, U.S.A. 11716-2482  
For Technical Support - 1-800-DDC-5757 ext. 7382  
Headquarters, N.Y., U.S.A. - Tel: (631) 567-5600, Fax: (631) 567-7358  
Southeast, U.S.A. - Tel: (703) 450-7900, Fax: (703) 450-6610  
West Coast, U.S.A. - Tel: (714) 895-9777, Fax: (714) 895-4988  
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264  
Ireland - Tel: +353-21-341065, Fax: +353-21-341568  
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425  
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089  
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689  
World Wide Web - http://www.ddc-web.com  
U
®
DATA DEVICE CORPORATION  
REGISTERED TO ISO 9001  
FILE NO. A5976  
L-11/02-300  
24  
PRINTED IN THE U.S.A.  

相关型号:

RDC-19222-102

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-103

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-112

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-112T

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-113

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-113T

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-122

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-123

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-201

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-202

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-202T

LVDT/Resolver-to-Digital Converter
ETC

RDC-19222-203

LVDT/Resolver-to-Digital Converter
ETC