REG104-5 [ETC]

DMOS 1A Low Dropout (LDO) Regulator ; DMOS 1A低压降( LDO )稳压器\n
REG104-5
型号: REG104-5
厂家: ETC    ETC
描述:

DMOS 1A Low Dropout (LDO) Regulator
DMOS 1A低压降( LDO )稳压器\n

稳压器
文件: 总15页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REG104  
REG  
104  
R
E
G
1
0
4
SBVS025C – SEPTEMBER 2001  
DMOS  
1A Low-Dropout Regulator  
DESCRIPTION  
FEATURES  
The REG104 is a family of low-noise, low-dropout linear  
regulators with low ground pin current. Its new DMOS  
topology provides significant improvement over previous  
designs, including low dropout voltage (only 230mV typ at  
full load), and better transient performance. In addition, no  
output capacitor is required for stability, unlike conventional  
low dropout regulators that are difficult to compensate and  
require expensive low ESR capacitors greater than 1µF.  
NEW DMOS TOPOLOGY:  
Ultra Low Dropout Voltage:  
230mV typ at 1A and 3.3V Output  
Output Capacitor NOT Required for Stability  
FAST TRANSIENT RESPONSE  
VERY LOW NOISE: 33µVrms  
HIGH ACCURACY: ±2% max  
Typical ground pin current is only 1.7mA (at IOUT = 1A) and  
drops to 0.5µA in “not enabled” mode. Unlike regulators with  
PNP pass devices, quiescent current remains relatively con-  
stant over load variations and under dropout conditions.  
HIGH EFFICIENCY:  
IGND = 1.7mA at IOUT = 1A  
Not Enabled: IGND = 0.5µA  
2.5V, 2.7V, 3.0V, 3.3V, 5.0V AND  
The REG104 has very low output noise (typically 33µVrms  
for VOUT = 3.3V with CNR = 0.01µF), making it ideal for use  
in portable communications equipment. On-chip trimming  
results in high output voltage accuracy. Accuracy is main-  
tained over temperature, line, and load variations. Key  
parameters are tested over the specified temperature range  
(–40°C to +85°C).  
ADJUSTABLE OUTPUT VERSIONS  
THERMAL PROTECTION  
SMALL SURFACE-MOUNT PACKAGES:  
SOT223-5, DDPAK-5  
The REG104 is well protected—internal circuitry provides  
a current limit which protects the load from damage. Ther-  
mal protection circuitry keeps the chip from being damaged  
by excessive temperature. The REG104 is available in the  
DDPAK-5 and the SOT223-5.  
APPLICATIONS  
PORTABLE COMMUNICATION DEVICES  
BATTERY-POWERED EQUIPMENT  
MODEMS  
BAR-CODE SCANNERS  
BACKUP POWER SUPPLIES  
Enable  
Enable  
VOUT  
VIN  
VOUT  
VIN  
REG104  
(Fixed Voltage  
Versions)  
+
R1  
Adj  
R2  
+
+
+
0.1µF  
(1)  
(1)  
COUT  
REG104-A  
COUT  
0.1µF  
NR  
Gnd  
Gnd  
NR = Noise Reduction  
NOTE: (1) Optional.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2000, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Supply Input Voltage, VIN .......................................................0.3V to 16V  
Enable Input ............................................................................ –0.3V to VIN  
Output Short-Circuit Duration ...................................................... Indefinite  
Operating Temperature Range ....................................... –55°C to +125°C  
Storage Temperature Range .......................................... –65°C to +150°C  
Junction Temperature ..................................................... –55°C to +150°C  
Lead Temperature (soldering, 3s, SOT, and DDPAK) ........................ +240°C  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
5V Output  
REG104FA-5  
DDPAK-5  
KTT  
40°C to +85°C  
REG104FA-5.0  
REG104FA-5  
REG104FA-5  
REG104GA-5  
REG104GA-5  
Rails, 49  
Tape and Reel, 500  
Rails, 78  
"
"
"
DCQ  
"
"
"
REG104GA-5  
SOT223-5  
40°C to +85°C  
R104G50  
"
"
"
"
Tape and Reel, 2500  
3.3V Output  
REG104FA-3.3  
DDPAK-5  
KTT  
"
DCQ  
"
40°C to +85°C  
REG104FA-3.3  
REG104FA-3.3  
REG104FA-3.3  
REG104GA-3.3  
REG104GA-3.3  
Rails, 49  
Tape and Reel, 500  
Rails, 78  
"
"
"
"
REG104GA-3.3  
SOT223-5  
40°C to +85°C  
R104G33  
"
"
"
"
Tape and Reel, 2500  
3.0V Output  
REG104FA-3  
DDPAK-5  
KTT  
40°C to +85°C  
REG104FA-3.0  
REG104FA-3  
REG104FA-3  
REG104GA-3  
REG104GA-3  
Rails, 49  
Tape and Reel, 500  
Rails, 78  
"
"
"
DCQ  
"
"
"
REG104GA-3  
SOT223-5  
40°C to +85°C  
R104G30  
"
"
"
"
Tape and Reel, 2500  
2.7V Output  
REG104FA-2.7  
DDPAK-5  
KTT  
"
DCQ  
"
40°C to +85°C  
REG104FA-2.7  
REG104FA-2.7  
REG104FA-2.7  
REG104GA-2.7  
REG104GA-2.7  
Rails, 49  
Tape and Reel, 500  
Rails, 78  
"
"
"
"
REG104GA-2.7  
SOT223-5  
40°C to +85°C  
R104G27  
"
"
"
"
Tape and Reel, 2500  
2.5V Output  
REG104FA-2.5  
DDPAK-5  
KTT  
"
DCQ  
"
40°C to +85°C  
REG104FA-2.5  
REG104FA-2.5  
REG104FA-2.5  
REG104GA-2.5  
REG104GA-2.5  
Rails, 49  
Tape and Reel, 500  
Rails, 78  
"
"
"
"
REG104GA-2.5  
SOT223-5  
40°C to +85°C  
R104G25  
"
"
"
"
Tape and Reel, 2500  
Adjustable Output  
REG104FA-A  
DDPAK-5  
KTT  
"
DCQ  
"
40°C to +85°C  
REG104FA-A  
REG104FA-A  
REG104FA-A  
REG104GA-A  
REG104GA-A  
Rails, 49  
Tape and Reel, 500  
Rails, 78  
"
"
"
"
R104GA  
"
REG104GA-A  
SOT223-5  
40°C to +85°C  
"
"
"
Tape and Reel, 2500  
PIN CONFIGURATIONS  
Top View  
SOT223-5  
DDPAK-5  
Tab is Gnd  
Tab is Gnd  
1
2 3 4  
5
1
2
3
4
5
VO  
NR/Adjust(1)  
Gnd  
VIN  
Enable  
VIN  
Gnd  
NR/Adjust(1)  
Enable  
VOUT  
(DCQ Package)  
(KTT Package)  
NOTE: (1) For REG104A-A: voltage setting resistor pin.  
All other models: noise reduction capacitor pin.  
REG104  
2
SBVS025C  
ELECTRICAL CHARACTERISTICS: VS = +2.7V to +5.5V  
Boldface limits apply over the specified temperature range, TJ = 40°C to +85°C  
At TJ = +25°C, VIN = VOUT + 1V (VOUT = 3.0V for REG104-A), VENABLE = 2V, IOUT = 10mA, CNR = 0.01µF, and COUT = 0.1µF(1), unless otherwise noted.  
REG104GA  
REG104FA  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
OUTPUT VOLTAGE  
Output Voltage Range  
REG104-2.5  
REG104-2.7  
REG104-3.0  
REG104-3.3  
REG104-5  
REG104-A  
VOUT  
2.5  
2.7  
3.0  
3.3  
5
V
V
V
V
V
V
VREF  
5.5  
Reference Voltage  
Adjust Pin Current  
Accuracy  
VREF  
IADJ  
1.295  
0.2  
±0.5  
V
µA  
%
1
±2  
TJ = 40°C to +85°C  
vs Temperature  
vs Line and Load  
TJ = 40°C to +85°C  
±3.0  
%
ppm/°C  
%
dVOUT/dT  
TJ = 40°C to +85°C  
IOUT = 10mA to 1A, VIN = (VOUT + 0.7V) to 15V  
VIN = (VOUT + 0.9V) to 15V  
70  
±0.5  
±2.5  
±3.5  
%
DC DROPOUT VOLTAGE(2, 3)  
For all models except 5V  
For 5V model  
For all models except 5V  
TJ = 40°C to +85°C  
For 5V models  
VDROP  
IOUT = 10mA  
3
230  
320  
25  
mV  
mV  
mV  
mV  
IOUT = 1A  
400  
500  
480  
IOUT = 1A  
IOUT = 1A  
I
OUT = 1A  
580  
mV  
TJ = 40°C to +85°C  
VOLTAGE NOISE  
f = 10Hz to 100kHz  
Vn  
Without CNR (all models)  
With CNR (all fixed voltage models)  
CNR = 0, COUT = 0  
CNR = 0.01µF, COUT = 10µF  
35µVrms/V VOUT  
10µVrms/V VOUT  
µVrms  
µVrms  
OUTPUT CURRENT  
Current Limit(4)  
TJ = 40°C to +85°C  
ICL  
1.2  
1.0  
1.7  
65  
2.1  
2.2  
A
A
RIPPLE REJECTION  
f = 120Hz  
dB  
ENABLE CONTROL  
V
ENABLE High (output enabled)  
VENABLE Low (output disabled)  
ENABLE High (output enabled)  
VENABLE  
IENABLE  
2
0.2  
VIN  
0.5  
100  
100  
V
V
nA  
nA  
µs  
ms  
I
VENABLE = 2V to VIN, VIN = 2.1V to 6.5(5)  
VENABLE = 0V to 0.5V  
1
2
50  
1.5  
IENABLE Low (output disabled)  
Output Disable Time  
Output Enable Softstart Time  
THERMAL SHUTDOWN  
Junction Temperature  
Shutdown  
150  
130  
°C  
°C  
Reset from Shutdown  
GROUND PIN CURRENT  
Ground Pin Current  
IGND  
IOUT = 10mA  
IOUT = 1A  
VENABLE 0.5V  
0.5  
1.7  
0.5  
0.7  
1.8  
mA  
mA  
µA  
Enable Pin Low  
INPUT VOLTAGE  
VIN  
Operating Input Voltage Range(6)  
Specified Input Voltage Range  
TJ = 40°C to +85°C  
2.1  
VOUT + 0.7  
VOUT + 0.9  
15  
15  
15  
V
V
V
VIN > 2.7V  
VIN > 2.9V  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
TJ  
40  
55  
65  
+85  
+125  
+150  
°C  
°C  
°C  
Storage Range  
Thermal Resistance  
DDPAK-5 Surface Mount  
SOT223-5 Surface Mount  
θJC  
θJC  
Junction-to-Case  
Junction-to-Case  
4
15  
°C/W  
°C/W  
NOTES: (1) The REG104 does not require a minimum output capacitor for stability. However, transient response can be improved with proper capacitor selection.  
(2) Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at VIN = VOUT + 1V at  
fixed load. (3) Not applicable for VOUT less than 2.7V. (4) Current limit is the output current that produces a 15% change in output voltage from VIN = VOUT + 1V and  
IOUT = 10mA. (5) For VIN > 6.5V, see typical characteristic VENABLE vs IENABLE.(6) The REG104 no longer regulates when VIN < VOUT + VDROP (MAX). In drop-out or  
when the input voltage is between 2.7V and 2.1V, the impedance from VIN to VOUT is typically less than 1at TJ = +25°C. See typical characteristic Output Voltage  
Change vs VIN.  
REG104  
SBVS025C  
3
TYPICAL CHARACTERISTICS  
For all models, at TJ = +25°C and VENABLE = 2V, unless otherwise noted.  
OUTPUT VOLTAGE CHANGE vs IOUT  
(VIN = VOUT + 1V, Output Voltage % Change  
Referred to IOUT = 10mA at +25°C)  
0.8  
DC DROPOUT VOLTAGE vs IOUT  
350  
300  
250  
200  
150  
100  
50  
0.6  
+125°C  
0.4  
+125°C  
0.2  
+25°C  
55°C  
0
+25°C  
0.2  
0.4  
0.6  
0.8  
55°C  
1  
0
1.2  
0
200  
400  
600  
800  
1000  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
IOUT (mA)  
OUTPUT VOLTAGE CHANGE vs IOUT  
(Output Voltage % Change Referred to  
OUTPUT VOLTAGE CHANGE vs VIN  
(Output Voltage % Change Referred to  
I
OUT = 10mA at +25°C)  
V
IN = VOUT + 1V at IOUT = 10mA)  
0.6  
0.4  
0.5  
0
IOUT = 10mA  
IOUT = 200mA  
IOUT = 10mA  
0.2  
IOUT = 200mA  
0
IOUT = 1000mA  
0.5  
1  
0.2  
0.4  
0.6  
0.8  
1  
IOUT = 1000mA  
1.5  
2  
1.2  
60 40 20  
0
20  
40  
60  
80 100 120  
0
2
4
6
8
10  
12  
Temperature (°C)  
Input Voltage Above VOUT (V)  
LINE REGULATION vs TEMPERATURE  
(VIN = VOUT + 1V to 16V)  
DC DROPOUT VOLTAGE vs TEMPERATURE  
IOUT = 1000mA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
350  
300  
250  
200  
150  
100  
50  
IOUT = 10mA  
IOUT = 200mA  
IOUT = 200mA  
IOUT = 10mA  
0
75  
75  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
REG104  
4
SBVS025C  
TYPICAL CHARACTERISTICS (Cont.)  
For all models, at TJ = +25°C and VENABLE = 2V, unless otherwise noted.  
LOAD TRANSIENT RESPONSE  
LINE TRANSIENT RESPONSE  
REG104-3.3  
REG104-3.3  
IOUT = 200mA  
COUT = 0  
COUT = 0  
VOUT  
VOUT  
COUT = 10µF  
COUT = 10µF  
VOUT  
VOUT  
ILOAD  
VIN  
1A  
6V  
5V  
10mA  
10µs/div  
50µs/div  
LOAD TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
REG104A  
REG104A  
Load = 200mA, CFB = 0.01µF, VOUT = 3.3V  
CFB = 0.01µF, VOUT = 3.3V  
COUT = 0  
COUT = 0  
COUT = 10µF  
COUT = 10µF  
1A  
6V  
5V  
ILOAD  
VIN  
10mA  
10µs/div  
50µs/div  
LOAD REGULATION vs TEMPERATURE  
(VIN = VOUT + 1V and 10mA < IOUT < 1000mA)  
OUTPUT NOISE DENSITY  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
CNR = 0  
C
OUT = 0  
C
C
NR = 0.01µF  
OUT = 10µF  
60 40 20  
0
20  
40  
60  
80 100 120  
10  
100  
1000  
10000  
100,000  
Temperature (°C)  
Frequency (Hz)  
REG104  
SBVS025C  
5
TYPICAL CHARACTERISTICS (Cont.)  
For all models, at TJ = +25°C and VENABLE = 2V, unless otherwise noted.  
GROUND PIN CURRENT, NOT ENABLED  
vs TEMPERATURE  
GROUND PIN CURRENT vs TEMPERATURE  
1.8  
3
2.5  
2
VENABLE = 0V  
IOUT = 1000mA  
1.6  
1.4  
1.2  
1
1.5  
1
IOUT = 200mA  
0.8  
0.5  
0
0.6  
IOUT = 10mA  
0.4  
75  
50  
25  
0
25  
50  
75  
100  
125  
60 40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
IADJUST vs TEMPERATURE  
GROUND PIN CURRENT vs IOUT  
1.6  
1.4  
1.2  
1
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
REG104-A  
0.8  
0.6  
0.4  
1
10  
100  
1000  
60 40 20  
0
20  
40  
60  
80 100 120 140  
IOUT (mA)  
Temperature (°C)  
RIPPLE REJECTION vs FREQUENCY  
CURRENT LIMIT vs TEMPERATURE  
VOUT = VOUT-NOMINAL 0.90  
70  
60  
50  
40  
30  
20  
1850  
1800  
1750  
1700  
1650  
1600  
1550  
VOUT = 1V  
COUT = 10µF  
COUT = 0  
10  
100  
1k  
10k  
100k  
60 40 20  
0
20  
40  
60  
80 100 120  
Frequency (Hz)  
Temperature (°C)  
REG104  
6
SBVS025C  
TYPICAL CHARACTERISTICS (Cont.)  
For all models, at TJ = +25°C and VENABLE = 2V, unless otherwise noted.  
RIPPLE REJECTION vs IOUT  
75  
SOFT START  
VRIPPLE = 3Vp-p, f = 120Hz  
70  
VOUT  
65  
60  
55  
50  
45  
40  
2V  
0
VENABLE  
0
200  
400  
600  
800  
1000  
250µs/div  
IOUT (mA)  
OUTPUT DISABLE TIME  
COUT = 0  
OUTPUT VOLTAGE DRIFT HISTOGRAM  
45  
40  
35  
30  
25  
20  
15  
10  
5
VOUT  
2V  
0
VENABLE  
0
10µs/div  
40 45 50 55 60 65 70 75 80 85 90  
VOUT Drift (ppm/°C)  
OUTPUT VOLTAGE ACCURACY HISTOGRAM  
60  
50  
40  
30  
20  
10  
0
1 0.8 0.6 0.4 0.2  
0
0.2 0.4 0.6 0.8  
1
Error (%)  
REG104  
SBVS025C  
7
None of the versions require an output capacitor for regula-  
tor stability. The REG104 will accept any output capacitor  
type less than 1µF. For capacitance values larger than 1µF  
the effective ESR should be greater than 0.1. This mini-  
mum ESR value includes parasitics such as printed circuit  
board traces, solder joints, and sockets. A minimum 0.1µF  
low ESR capacitor connected to the input supply voltage is  
recommended.  
BASIC OPERATION  
The REG104 series is a family of LDO (Low DropOut)  
linear regulators. The family includes five fixed output  
versions (2.5V to 5.0V) and an adjustable output version. An  
internal DMOS power device provides low dropout regula-  
tion with near constant ground pin current (largely indepen-  
dent of load and dropout conditions) and very fast line and  
load transient response. All versions include internal current  
limit and thermal shutdown circuitry.  
ENABLE  
Figure 1 shows the basic circuit connections for the fixed  
voltage models. Figure 2 gives the connections for the  
adjustable output version (REG104A) and example resistor  
values for some commonly used output voltages. Values for  
other voltages can be calculated from the equation shown in  
Figure 2.  
The Enable pin allows the regulator to be turned on and off.  
This pin is active HIGH and compatible with standard TTL-  
CMOS levels. Inputs below 0.5V (max) turn the regulator  
off and all circuitry is disabled. Under this condition ground-  
pin current drops to approximately 0.5µA.  
When not used, the Enable pin may be connected to VIN.  
Internal to the part, the Enable pin is connected to an input  
resistor-zener diode circuit, as shown in Figure 3, creating a  
nonlinear input impedance.  
Enable  
REG104  
Gnd NR  
VIN  
VOUT  
In  
Out  
175k  
Enable  
COUT  
0.1µF  
CNR  
0.01µF  
VZ = 10V  
Optional  
FIGURE 3. Enable Pin Equivalent Input Circuit.  
FIGURE 1. Fixed Voltage Nominal Circuit for REG104.  
Enable  
5
EXAMPLE RESISTOR VALUES  
2
VOUT  
1
V
OUT (V)  
R1 ()(1)  
R2 ()(1)  
VIN  
CFB  
0.01µF  
REG104  
R1  
COUT  
1.295  
2.5  
Short  
Open  
IADJ  
4
0.1µF  
12.1k  
1.21k  
13k  
1.3k  
Load  
Adj  
R2  
3
Gnd  
3
3.3  
5
16.9k  
1.69k  
13k  
1.3k  
Pin numbers for SOT-223 package.  
20k  
2.0k  
13k  
1.3k  
Optional  
37.4k  
3.74k  
13k  
1.3k  
VOUT = (1 + R1/R2) 1.295V  
NOTE: (1) Resistors are standard 1% values.  
To reduce current through divider, increase resistor  
values (see table at right).  
As the impedance of the resistor divider increases,  
I
ADJ (~200nA) may introduce an error.  
C
FB improves noise and transient response.  
FIGURE 2. Adjustable Voltage Circuit for REG104A.  
REG104  
8
SBVS025C  
The Enable Pin Current versus Applied Voltage relationship  
is shown in Figure 4. When the Enable pin is connected to  
VIN greater than 10V, a series resistor may be used to limit  
the current.  
Since the value of VREF is 1.295V, this relationship reduces to:  
µVrms  
VN = 35  
VOUT  
V
Connecting a capacitor, CNR, from the Noise-Reduction  
(NR) pin to ground can reduce the output noise voltage.  
Adding CNR, as shown in Figure 5, forms a low-pass filter  
for the voltage reference. For CNR = 10nF, the total noise in  
the 10Hz to 100kHz bandwidth is reduced by approximately  
a factor of 3.5. This noise reduction effect is shown in  
Figure 6.  
100  
10  
1
0.1  
45  
REG104-3.3  
0.01  
0.001  
0
2
4
6
8
10  
12  
14  
16  
Enable Voltage  
35  
FIGURE 4. Enable Pin Current versus Applied Voltage.  
OUTPUT NOISE  
COUT = 0  
COUT = 10µF  
A precision band-gap reference is used for the internal  
reference voltage, VREF, for the REG104. This reference is  
the dominant noise source within the REG104. It generates  
approximately 45µVrms in the 10Hz to 100kHz bandwidth  
at the reference output. The regulator control loop gains up  
the reference noise, so that the noise voltage of the regulator  
is approximately given by:  
25  
0.001  
0.01  
0.1  
1
CNR (µF)  
FIGURE 6. Output Noise versus Noise Reduction Capacitor.  
The REG104 adjustable version does not have the noise-  
reduction pin available, however, the adjust pin is the sum-  
ming junction of the error amplifier. A capacitor, CFB,  
R1 + R2  
VOUT  
VREF  
VN = 45µVrms  
= 45µVrms •  
R2  
VIN  
NR  
(fixed output  
versions only)  
Low Noise  
Charge Pump  
CNR  
(optional)  
VREF  
(1.295V)  
DMOS  
Output  
VOUT  
Over Current  
Over Temp  
Protection  
R1  
R2  
Enable  
Adj  
(Adjustable  
Versions)  
REG104  
NOTE: R1 and R2 are internal  
on fixed output versions.  
FIGURE 5. Block Diagram.  
REG104  
SBVS025C  
9
connected from the output to the adjust pin will reduce both  
the output noise and the peak error from a load transient.  
Figure 7 shows improved output noise performance for two  
capacitor combinations.  
For large step changes in load current, the REG104 requires  
a larger voltage drop across it to avoid degraded transient  
response. The boundary of this “transient dropout” region is  
shown as the top line in Figure 8. Values of VIN to VOUT  
voltage drop above this line insure normal transient re-  
sponse.  
10.0  
In the transient dropout region between “DC” and “Tran-  
sient”, transient response recovery time increases. The time  
required to recover from a load transient is a function of both  
the magnitude and rate of the step change in load current and  
the available “headroom” VIN to VOUT voltage drop. Under  
worst-case conditions (full-scale load change with VIN to  
VOUT voltage drop close to DC dropout levels), the REG104  
can take several hundred microseconds to re-enter the speci-  
fied window of regulation.  
1.0  
0.1  
TRANSIENT RESPONSE  
10  
100  
1000  
10000  
100000  
The REG104 response to transient line and load conditions  
improves at lower output voltages. The addition of a capaci-  
tor (nominal value 10nF) from the output pin to ground may  
improve the transient response. In the adjustable version, the  
addition of a capacitor, CFB (nominal value 10nF), from the  
output to the adjust pin will also improve the transient  
response.  
Frequency  
FIGURE 7. Output Noise Density on Adjustable Versions.  
The REG104 utilizes an internal charge pump to develop an  
internal supply voltage sufficient to drive the gate of the  
DMOS pass element above VIN. The charge-pump switch-  
ing noise (nominal switching frequency = 2MHz) is not  
measurable at the output of the regulator.  
THERMAL PROTECTION  
Power dissipated within the REG104 will cause the junc-  
tion temperature to rise. The REG104 has thermal shut-  
down circuitry that protects the regulator from damage.  
The thermal protection circuitry disables the output when  
the junction temperature reaches approximately 150°C,  
allowing the device to cool. When the junction temperature  
cools to approximately 130°C, the output circuitry is again  
enabled. Depending on various conditions, the thermal  
protection circuit may cycle on and off. This limits the  
dissipation of the regulator, but may have an undesirable  
effect on the load.  
DROP-OUT VOLTAGE  
The REG104 uses an N-channel DMOS as the “pass”  
element. When the input voltage is within a few hundred  
millivolts of the output voltage, the DMOS device behaves  
like a resistor. Therefore, for low values of VIN to VOUT, the  
regulator’s input-to-output resistance is the RdsON of the  
DMOS pass element (typically 230mΩ). For static (DC)  
loads, the REG104 will typically maintain regulation down  
to VIN to VOUT voltage drop of 230mV at full rated output  
current. In Figure 8, the bottom line (DC dropout) shows the  
minimum VIN to VOUT voltage drop required to prevent  
dropout under DC load conditions.  
Any tendency to activate the thermal protection circuit  
indicates excessive power dissipation or an inadequate heat  
sink. For reliable operation, junction temperature should be  
limited to 125°C, maximum. To estimate the margin of  
safety in a complete design (including heat sink), increase  
the ambient temperature until the thermal protection is  
triggered. Use worst-case loads and signal conditions. For  
good reliability, thermal protection should trigger more than  
35°C above the maximum expected ambient condition of  
your application. This produces a worst-case junction tem-  
perature of 125°C at the highest expected ambient tempera-  
ture and worst-case load.  
REG103 3.3 at 25°C  
250  
DC  
Transient  
200  
150  
100  
50  
The internal protection circuitry of the REG104 has been  
designed to protect against overload conditions. It was not  
intended to replace proper heat sinking. Continuously run-  
ning the REG104 into thermal shutdown will degrade reli-  
ability.  
0
0
100  
200  
300  
400  
500  
IOUT (mA)  
FIGURE 8. Transient and DC Dropout.  
10  
REG104  
SBVS025C  
POWER DISSIPATION  
5
4
3
2
1
0
The REG104 is available in two different package configu-  
rations. The ability to remove heat from the die is different  
for each package type and, therefore, presents different  
considerations in the Printed Circuit-Board (PCB) layout.  
The PCB area around the device that is free of other  
components moves the heat from the device to the ambient  
air. While it is difficult-to-impossible to quantify all of the  
variables in a thermal design of this type, performance data  
for several configurations are shown in Figure 9. In all cases  
the PCB copper area is bare copper, free of solder resist  
mask, and not solder plated. All examples are for 1-ounce  
copper. Using heavier copper will increase the effectiveness  
in moving the heat from the device. In those examples where  
there is copper on both sides of the PCB, no connection has  
been provided between the two sides. The addition of plated  
through holes will improve the heat sink effectiveness.  
CONDITIONS  
#1  
#2  
#3  
#4  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
CONDITION  
PACKAGE  
PCB AREA  
THETA J-A  
1
2
3
4
DDPAK  
SOT-223  
DDPAK  
4in2 Top Side Only  
4in2 Top Side Only  
None  
27°C/W  
53°C/W  
65°C/W  
110°C/W  
Power dissipation depends on input voltage and load condi-  
tions. Power dissipation is equal to the product of the  
average output current times the voltage across the output  
element, VIN to VOUT voltage drop.  
SOT-223  
0.5in2 Top Side Only  
FIGURE 9. Maximum Power Dissipation versus Ambient  
Temperature for the Various Packages and PCB  
Heat Sink Configurations.  
PD = (VIN – VOUT ) IOUT(AVG)  
Power dissipation can be minimized by using the lowest  
possible input voltage necessary to assure the required  
output voltage.  
REG104  
SBVS025C  
11  
REGULATOR MOUNTING  
Although the tabs of the DDPAK and the SOT-223 are  
electrically grounded, they are not intended to carry any  
current. The copper pad that acts as a heat sink should be  
isolated from the rest of the circuit to prevent current flow  
through the device from the tab to the ground pin. Solder pad  
footprint recommendations for the various REG104 devices  
are presented in the Application Bulletin “Solder Pad Rec-  
ommendations for Surface-Mount Devices” (SBFA015),  
available from the Texas Instruments web site (www.ti.com).  
The tab of both packages is electrically connected to ground.  
For best thermal performance, the tab of the DDPAK sur-  
face-mount version should be soldered directly to a circuit-  
board copper area. Increasing the copper area improves heat  
dissipation. Figure 10 shows typical thermal resistance from  
junction to ambient as a function of the copper area for the  
DDPAK, Figure 11 shows the same relationship for the  
SOT-223.  
THERMAL RESISTANCE vs PCB COPPER AREA  
50  
Circuit Board Copper Area  
REG104  
Surface Mount Package  
40  
30  
20  
10  
0
1 oz. copper  
REG104  
DDPAK Surface Mount Package  
5
0
1
2
3
4
Copper Area (inches2)  
FIGURE 10. Thermal Resistance versus PCB Area for the Five Lead DDPAK.  
THERMAL RESISTANCE vs PCB COPPER AREA  
180  
Circuit Board Copper Area  
REG104  
Surface Mount Package  
160  
1 oz. copper  
140  
120  
100  
80  
θ
60  
40  
20  
REG104  
SOT-223 Surface Mount Package  
0
0
1
2
3
4
5
Copper Area (inches2)  
FIGURE 11. Thermal Resistance versus PCB Area for the Five Lead SOT-223.  
REG104  
12  
SBVS025C  
PACKAGE DRAWINGS  
KTT (R-PSFM-G5)  
MPSF007A APRIL 2000 REVISED SEPTEMBER 2000  
PLASTIC FLANGE-MOUNT  
0.405 (10,29)  
0.395 (10,03)  
0.185 (4,70)  
0.058 (1,47)  
0.052 (1,32)  
0.175 (4,45)  
0.050 (1,27) NOM  
0.107 (2,72)  
0.103 (2,62)  
0.010 (0,25)  
0.001 (0,03)  
0.340 (8,64)  
0.330 (8,38)  
0.610 (15,49)  
0.590 (14,99)  
1
5
Seating Plane  
0.004 (0,10)  
0.035 (0,89)  
0.067 (1,70)  
0.268 (6,81)  
0.029 (0,74)  
0.010 (0,25) M  
0.010 (0,25)  
0.021 (0,53)  
0.015 (0,38)  
0.110 (2,79)  
0.090 (2,29)  
0°5°  
4200577-3/B 09/00  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).  
REG104  
SBVS025C  
13  
PACKAGE DRAWINGS (Cont.)  
DCQ (R-PDSO-G6)  
MPDS098 MARCH 2001  
PLASTIC SMALL-OUTLINE  
B
0.258 (6,55)  
0.254 (6,45)  
D
0.120 (3,05)  
0.116 (2,95)  
Gage  
Plane  
M
0.004 (0,10)  
C B  
H
A
6X  
0.003 (0,08)  
C
0.004 (0,10)  
0.001 (0,02)  
0.140 (3,55)  
0.136 (3,45)  
0.286 (7,26)  
0.270 (6,86)  
0.010(0,25)  
Seating  
Plane  
M
0.004 (0,10)  
C A  
0.045 (1,14)  
0.036 (0,91)  
D
4X  
0.020 (0,51)  
0.016 (0,41)  
0.050(1,27)  
5X  
E
F
0.200(5,08)  
M
0.004 (0,10)  
C B  
0.013 (0,32)  
0.009 (0,24)  
F
0.071 (1,80)  
MAX  
0.036 (0,91)  
0.034 (0,87)  
0.065 (1,65)  
0.061 (1,55)  
0°8°  
4202109/A 03/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Controlling dimension in inches  
I. Datums A and B are to be determined at Datum H.  
J. Packagedimensions per JEDEC outline drawing TO261,  
issue B, dated Feb. 1999.  
This variation is not yet included.  
D. Body length and width dimensions are determined at  
the outermost extremes of the plastic body exclusive  
of mold flash, tie bar burrs, gate burrs, and interlead  
flash, but including any mismatch between the top and  
the bottom of the plastic body.  
E. Lead width dimension does not include dambar  
protrusion.  
F. Lead width and thickness dimensions apply to solder  
plated leads.  
G. Interlead flash allow 0.008 inch max.  
H. Gate burr/protrusion max. 0.006 inch.  
REG104  
14  
SBVS025C  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2001, Texas Instruments Incorporated  

相关型号:

REG104-A

DMOS 1A Low Dropout Regulator
ETC

REG104FA

DMOS 1A Low-Dropout Regulator
TI

REG104FA-2.5

DMOS 1A Low-Dropout Regulator
TI

REG104FA-2.5

DMOS 1A Low-Dropout Regulator
BB

REG104FA-2.5/500

DMOS 1A Low-Dropout Regulator
TI

REG104FA-2.5/500

DMOS 1A Low-Dropout Regulator
BB

REG104FA-2.5/500G3

DMOS 1A Low-Dropout Regulator
BB

REG104FA-2.5/500G3

1A Low-Dropout Regulator
TI

REG104FA-2.5/KTTT

DMOS 1A Low-Dropout Regulator
TI

REG104FA-2.5KTTT

DMOS 1A Low-Dropout Regulator
TI

REG104FA-2.5KTTT

DMOS 1A Low-Dropout Regulator
BB

REG104FA-2.5KTTTG3

DMOS 1A Low-Dropout Regulator
BB