RF1K4922496 [ETC]

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO ; 晶体管| MOSFET | PAIR |辅食| 30V V( BR ) DSS | 3.5AI ( D) | SO\n
RF1K4922496
型号: RF1K4922496
厂家: ETC    ETC
描述:

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO
晶体管| MOSFET | PAIR |辅食| 30V V( BR ) DSS | 3.5AI ( D) | SO\n

晶体 晶体管 开关 光电二极管
文件: 总15页 (文件大小:444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF1K49224  
Data Sheet  
January 2002  
3.5A/2.5A, 30V, 0.060/0.150 Ohms,  
Complementary LittleFET™ Power  
MOSFET  
Features  
• 3.5A, 30V (N-Channel)  
2.5A, 30V (P-Channel)  
The RF1K49224 complementary power MOSFET is  
manufactured using an advanced MegaFET process. This  
process, which uses feature sizes approaching those of LSI  
integrated circuits, gives optimum utilization of silicon,  
resulting in outstanding performance. It is designed for use  
in applications such as switching regulators, switching  
converters, motor drivers, relay drivers, and low voltage bus  
switches. This device can be operated directly from  
intergrated circuits.  
• r  
r
= 0.060(N-Channel)  
= 0.150(P-Channel)  
DS(ON)  
DS(ON)  
®
Temperature Compensating PSPICE Model  
• Thermal Impedance PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA49224.  
Ordering Information  
Symbol  
PART NUMBER  
PACKAGE  
BRAND  
RF1K49224  
D1(8)  
D1(7)  
RF1K49224  
MS-012AA  
NOTE: When ordering, use the entire part number. For ordering in  
tape and reel, add the suffix 96 to the part number, i.e. RF1K4922496.  
S1(1)  
G1(2)  
D2(6)  
D2(5)  
S2(3)  
G2(4)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
o
Absolute Maximum Ratings  
T = 25 C Unless Otherwise Specified  
A
N-CHANNEL  
P-CHANNEL  
UNITS  
Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V  
30  
30  
-30  
-30  
±20  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R = 20kΩ ) . . . . . . . . . . . . . . .V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . I  
3.5  
2.5  
A
D
Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Refer to Peak Current Curve  
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . E  
Refer to UIS Curve  
Refer to UIS Curve  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
2
2
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.016  
0.016  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . T , T  
-55 to 150  
-55 to 150  
C
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . .T  
o
300  
260  
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
N-Channel Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
I
30  
1
-
-
-
-
-
-
-
-
DSS  
D
GS  
V
V
= V , I = 250µA  
3
V
GS(TH)  
GS  
DS D  
o
I
V
V
= 30V,  
= 0V  
T
T
= 25 C  
1
µA  
µA  
nA  
DSS  
DS  
GS  
A
A
o
= 150 C  
-
50  
Gate to Source Leakage Current  
Drain to Source On Resistance  
I
V
= ±20V  
-
100  
GSS  
GS  
r
I
= 3.5A  
V
V
= 10V  
-
0.060  
DS(ON)  
D
GS  
GS  
= 4.5V  
0.132  
Turn-On Time  
t
V
R
R
= 15V, I  
D
3.5A,  
= 10V,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
ns  
ON  
DD  
= 4.29, V  
L
GS  
Turn-On Delay Time  
Rise Time  
t
10  
30  
60  
45  
-
-
ns  
d(ON)  
= 25Ω  
GS  
t
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
ns  
d(OFF)  
t
-
ns  
f
Turn-Off Time  
t
130  
45  
17  
2.9  
-
ns  
OFF  
Total Gate Charge  
Gate Charge at 10V  
Threshold Gate Charge  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Thermal Resistance Junction to Ambient  
Q
V
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 24V,  
3.5A,  
= 6.86Ω  
35  
13  
2.3  
575  
275  
100  
-
nC  
nC  
nC  
pF  
pF  
pF  
g(TOT)  
GS  
GS  
GS  
DS  
I
D
Q
g(10)  
R
L
I
= 1.0mA  
Q
g(REF)  
g(TH)  
C
= 25V, V  
GS  
= 0V,  
ISS  
OSS  
RSS  
f = 1MHz  
C
C
-
-
o
R
Pulse width = 1s  
Device mounted on FR-4 material  
62.5  
C/W  
JA  
θ
N-Channel Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
= 3.5A  
MIN  
TYP  
MAX  
1.25  
45  
UNITS  
V
V
I
I
-
-
-
-
SD  
SD  
t
= 3.5A, dI /dt = 100A/µs  
SD  
ns  
rr  
SD  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
o
P-Channel Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
I
-30  
-
-
-
-
-
-
-
-3  
DSS  
D
GS  
V
V
= V , I = 250µA  
-1  
-
V
GS(TH)  
GS  
DS D  
o
I
V
V
= -30V,  
= 0V  
T
T
= 25 C  
-1  
µA  
µA  
nA  
DSS  
DS  
GS  
A
A
o
= 150 C  
-
-50  
100  
0.150  
0.360  
40  
-
Gate to Source Leakage Current  
Drain to Source On Resistance  
I
V
= ±20V  
-
GSS  
GS  
r
I
= 2.5A  
V
= -10V  
= -4.5v  
-
DS(ON)  
D
GS  
GS  
V
Turn-On Time  
t
V
R
R
= -15V, I  
2.5A,  
= -10V,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
ns  
ns  
ns  
ns  
ns  
ns  
nC  
nC  
nC  
pF  
pF  
pF  
ON  
DD  
D
= 6, V  
L
GS  
Turn-On Delay Time  
Rise Time  
t
d(ON)  
= 25Ω  
GS  
t
19  
60  
34  
-
-
r
Turn-Off Delay Time  
Fall Time  
t
-
d(OFF)  
t
-
f
Turn-Off Time  
t
140  
35  
19  
1.9  
-
OFF  
Total Gate Charge  
Gate Charge at -10V  
Threshold Gate Charge  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Thermal Resistance Junction to Ambient  
Q
V
= 0V to -20V  
= 0V to -10V  
= 0V to -2V  
V
DD = -24V,  
28  
15  
1.5  
580  
260  
38  
-
g(TOT)  
GS  
GS  
GS  
DS  
I
2.5A,  
D
Q
V
V
V
g(-10)  
g(TH)  
R
= 9.6Ω  
L
I
= -1.0mA  
Q
g(REF)  
C
= -25V, V  
GS  
= 0V,  
ISS  
OSS  
RSS  
f = 1MHz  
C
-
C
-
o
R
Pulse width = 1s  
Device mounted on FR-4 material  
62.5  
C/W  
θJA  
P-Channel Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
= -2.5A  
MIN  
TYP  
MAX  
-1.25  
49  
UNITS  
V
V
I
I
-
-
-
-
SD  
SD  
SD  
t
= -2.5A, dI /dt = -100A/µs  
ns  
rr  
SD  
Typical Performance Curves (N-Channel)  
1.2  
1.0  
0.8  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.6  
0.4  
0.2  
0
0.5  
0
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
25  
50  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Typical Performance Curves (N-Channel) (Continued)  
10  
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
1
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
DM  
JA  
θ
θ
SINGLE PULSE  
0.001  
-4  
10  
-5  
10  
-3  
10  
-2  
-1  
10  
0
1
2
3
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
100  
10  
200  
o
= 25 C  
T
= MAX RATED  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
T
J
A
o
o
T
= 25 C  
A
100  
10  
1
150 - T  
A
I = I  
25  
V
= 10V  
GS  
125  
5ms  
10ms  
1
0.1  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100ms  
OPERATION IN THIS  
AREA MAY BE  
1s  
LIMITED BY r  
DS(ON)  
DC  
V
= 30V  
10  
DSS(MAX)  
0.01  
-5  
-4  
-3  
-2  
-1  
10  
0
1
0.1  
1
100  
10  
10  
10  
10  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
t, PULSE WIDTH (s)  
DS  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
20  
If R = 0  
= (L)(I )/(1.3*RATED BV  
25  
20  
15  
10  
5
t
- V  
)
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
V
= 5V  
GS  
t
AV  
- V ) +1]  
DD  
AS DSS  
V
= 20V  
= 10V  
GS  
10  
V
GS  
V
= 4.5V  
= 4V  
GS  
o
V
GS  
STARTING T = 25 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
A
o
V
= 3V  
STARTING T = 150 C  
J
GS  
0
1
0.1  
0
1
2
3
4
5
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
FIGURE 7. SATURATION CHARACTERISTICS  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Typical Performance Curves (N-Channel) (Continued)  
25  
250  
200  
150  
100  
50  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 15V  
o
DD  
25 C  
V = 15V  
I
I
I
= 7.0A  
= 3.5A  
= 1.75A  
DD  
D
D
20  
15  
10  
5
o
-55 C  
D
o
150 C  
I
= 0.5A  
D
0
0
3
4
5
6
7
8
9
10  
0
1.5  
3.0  
4.5  
6.0  
7.5  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
2.0  
1.5  
1.0  
0.5  
0
2.0  
V
= V , I = 250µA  
DS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
GS  
D
V
= 10V, I = 3.5A  
GS  
D
1.5  
1.0  
0.5  
0
-80  
-80  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
2.0  
1000  
V
= 0V, f = 1MHz  
GS  
ISS  
I
= 250µA  
C
C
C
= C  
+ C  
D
GS  
GD  
= C  
= C  
RSS  
OSS  
GD  
DS  
+ C  
GD  
750  
1.5  
1.0  
0.5  
0
C
ISS  
500  
250  
0
C
OSS  
C
RSS  
-80  
-40  
0
40  
80  
120  
160  
0
5
10  
15  
20  
25  
o
T , JUNCTION TEMPERATURE ( C)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
J
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Typical Performance Curves (N-Channel) (Continued)  
30  
10.0  
7.5  
V
= BV  
V = BV  
DD DSS  
DD  
DSS  
22.5  
15  
R
= 8.57Ω  
L
I
= 0.75mA  
g(REF)  
5.0  
V
= 10V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
V
V
V
V
= BV  
2.5  
0
7.5  
0
DD  
DD  
DD  
DD  
DSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
I
I
g(REF)  
g(REF)  
t, TIME (ms)  
20-----------------------  
80-----------------------  
I
I
g(ACT)  
g(ACT)  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT  
Test Circuits and Waveforms (N-Channel)  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
r
R
L
V
DS  
90%  
90%  
V
DS  
V
GS  
+
V
DD  
10%  
10%  
0
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Test Circuits and Waveforms (N-Channel) (Continued)  
V
DS  
V
DD  
Q
g(TOT)  
R
L
V
DS  
V
= 20V  
GS  
Q
g(10)  
V
GS  
+
-
V
= 10V  
V
V
GS  
DD  
GS  
V
= 2V  
GS  
DUT  
0
I
g(REF)  
Q
g(TH)  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORM  
Typical Performance Curves (P-Channel)  
1.2  
1.0  
0.8  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
0.6  
0.4  
0.2  
0
-0.5  
0
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
25  
50  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 21. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 22. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
1
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
DM  
JA  
θ
θ
SINGLE PULSE  
0.001  
-4  
10  
-5  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 23. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Typical Performance Curves (P-Channel) (Continued)  
-50  
-10  
-100  
o
T
= MAX RATED  
V
= -20V  
= -10V  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
J
T
= 25 C  
GS  
A
o
o
T
= 25 C  
A
150 - T  
I = I  
A
25  
V
GS  
125  
5ms  
-1  
-0.1  
10ms  
-10  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100ms  
1s  
OPERATION IN THIS  
AREA MAY BE  
DC  
V
= -30V  
-10  
LIMITED BY r  
DSS(MAX)  
DS(ON)  
-0.01  
-1  
-5  
10  
-4  
-3  
10  
-2  
10  
-1  
0
1
-0.1  
-1  
-100  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
FIGURE 24. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 25. PEAK CURRENT CAPABILITY  
-15  
-10  
-20  
If R = 0  
= (L)(I )/(1.3*RATED BV  
V
= -20V  
= -10V  
= -8V  
PULSE DURATION = 80µs  
GS  
t
- V  
)
DD  
AV  
If R 0  
AS  
DSS  
DUTY CYCLE = 0.5% MAX  
V
GS  
o
T
= 25 C  
A
V
= -7V  
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
- V ) +1]  
DD  
-16  
-12  
-8  
DSS  
GS  
V
GS  
V
= -6V  
GS  
o
STARTING T = 25 C  
J
V
= -5V  
GS  
o
STARTING T = 150 C  
J
V
= -4.5V  
GS  
-4  
0
-1  
0.1  
0
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 26. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
FIGURE 27. SATURATION CHARACTERISTICS  
-20  
500  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
V
= -15V  
V
= -15V  
150 C  
DD  
DD  
400  
300  
200  
100  
0
-16  
-12  
-8  
I
I
= -5.0A  
= -2.5A  
o
D
-55 C  
o
D
D
25 C  
I
= -1.25A  
I
= -0.625A  
D
-4  
0
-4  
-6  
-8  
-10  
-2  
0
-2  
-4  
-6  
-8  
-10  
V
, GATE TO SOURCEVOLTAGE (V)  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 28. TRANSFER CHARACTERISTICS  
FIGURE 29. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Typical Performance Curves (P-Channel) (Continued)  
2.0  
1.2  
1.0  
0.8  
0.6  
0.4  
V
= V , I = -250µA  
DS  
GS  
D
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= -10V, I = -2.5A  
GS  
D
1.5  
1.0  
0.5  
0
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 30. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 31. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
1.2  
750  
I
= -250µA  
D
C
ISS  
600  
450  
300  
1.1  
1.0  
0.9  
0.8  
V
= 0V, f = 1MHz  
GS  
ISS  
C
C
C
= C  
+ C  
GS  
GD  
= C  
= C  
RSS  
OSS  
GD  
DS GD  
+ C  
C
C
OSS  
150  
0
RSS  
0
-5  
-10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
-15  
-20  
-25  
-80  
-40  
0
40  
80  
120  
160  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
FIGURE 32. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 33. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
-10.0  
-30.0  
V
= BV  
DD  
DSS  
V
= BV  
DSS  
DD  
-22.5  
-15.0  
-7.5  
0
-7.5  
-5.0  
R
I
= 12Ω  
g(REF)  
L
= -0.26mA  
V
= -10V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
-2.5  
0
V
V
V
V
= BV  
DD  
DD  
DD  
DD  
DSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
I
I
g(REF)  
g(REF)  
t, TIME (µs)  
20-----------------------  
80--------------------  
I
I
g(ACT)  
g(ACT)  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 34. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Test Circuits and Waveforms (P-Channel)  
V
DS  
t
AV  
L
0
VARY t TO OBTAIN  
P
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
+
DUT  
0V  
V
DD  
t
P
I
AS  
V
GS  
V
DS  
I
AS  
t
P
0.01Ω  
BV  
DSS  
FIGURE 35. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 36. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
t
d(OFF)  
d(ON)  
t
t
f
r
0
10%  
10%  
R
L
V
DS  
V
GS  
-
V
DS  
90%  
90%  
V
DD  
+
V
0
GS  
V
GS  
10%  
50%  
DUT  
R
GS  
50%  
90%  
PULSE WIDTH  
FIGURE 37. SWITCHING TIME TEST CIRCUIT  
FIGURE 38. RESISTIVE SWITCHING WAVEFORMS  
V
DS  
V
DS  
Q
R
g(TH)  
L
0
V
= -2V  
-V  
GS  
V
GS  
-
V
= -10V  
GS  
GS  
V
DD  
Q
+
g(-10)  
V
= -20V  
GS  
DUT  
V
DD  
I
g(REF)  
Q
g(TOT)  
0
I
g(REF)  
FIGURE 39. GATE CHARGE TEST CIRCUIT  
FIGURE 40. GATE CHARGE WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
Soldering Precautions  
o
The soldering process creates a considerable thermal stress  
on any semiconductor component. The melting temperature  
of solder is higher than the maximum rated temperature of  
the device. The amount of time the device is heated to a high  
temperature should be minimized to assure device reliability.  
Therefore, the following precautions should always be  
observed in order to minimize the thermal stress to which the  
devices are subjected.  
3. Themaximumtemperaturegradientshouldbelessthan5 C  
per second when changing from preheating to soldering.  
4. The peak temperature in the soldering process should be  
o
at least 30 C higher than the melting point of the solder  
chosen.  
5. The maximum soldering temperature and time must not  
o
exceed 260 C for 10 seconds on the leads and case of  
the device.  
6. After soldering is complete, the device should be allowed  
to cool naturally for at least three minutes, as forced cool-  
ing will increase the temperature gradient and may result  
in latent failure due to mechanical stress.  
1. Always preheat the device.  
2. The deltatemperature between the preheatandsoldering  
o
should always be less than 100 C. Failure to preheat the  
device can result in excessive thermal stress which can  
damage the device.  
7. During cooling, mechanical stress or shock should be  
avoided.  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
PSPICE Electrical Model (N-Channel)  
SUBCKT RF1K49224 2 1 3 ;N-Channel Model rev 12/15/94  
CA 12 8 1.75e-9  
CB 15 14 1.80e-9  
CIN 6 8 1.20e-9  
DPLCAP  
5
DRAIN  
2
DBODY 7 5 DBDMOD  
10  
LDRAIN  
DBREAK 5 11 DBKMOD  
DPLCAP 10 5 DPLCAPMOD  
DBREAK  
EBREAK 11 7 17 18 33.29  
EDS 14 8 5 8 1  
RDRAIN  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTO 20 6 18 8 1  
11  
+
DBODY  
6
8
EBREAK  
MOS2  
ESG  
17  
18  
16  
+
VTO  
+
IT 8 17 1  
EVTO  
GATE  
21  
9
20  
+
6
18  
8
LDRAIN 2 5 1e-9  
LGATE 1 9 1.233e-9  
LSOURCE 3 7 0.452e-9  
1
MOS1  
RGATE  
LGATE  
CIN  
RIN  
LSOURCE  
RSOURCE  
8
7
MOS1 16 6 8 8 MOSMOD M = 0.99  
MOS2 16 21 8 8 MOSMOD M = 0.01  
3
SOURCE  
S1A  
S2A  
RBREAK 17 18 RBKMOD 1  
RDRAIN 5 16 RDSMOD 1e-4  
RGATE 9 20 1.83  
RIN 6 8 1e9  
RSOURCE 8 7 RDSMOD 13.5e-3  
RVTO 18 19 RVTOMOD 1  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
S1B  
CA  
S2B  
13  
RVTO  
19  
CB  
IT  
14  
+
+
VBAT  
+
6
8
5
8
EDS  
EGS  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 8 19 DC 1  
VTO 21 6 0.1  
.MODEL DBDMOD D (IS = 2.50e-13 RS = 1.35e-2 TRS1 = 4.31e-5 TRS2 = 2.15e-5 CJO = 9.33e-10 TT = 2.08e-8)  
.MODEL DBKMOD D (RS = 1.14 TRS1 = 2.23e-3 TRS2 = -8.91e-6)  
.MODEL DPLCAPMOD D (CJO = 7.99e-10 IS = 1e-30 N = 10)  
.MODEL MOSMOD NMOS (VTO = 2.1 5KP = 6.2 5IS = 1e-3 0N = 1 0TOX = 1L = 1 uW = 1u)  
.MODEL RBKMOD RES (TC1 = 7.74e- 4TC2 = 1.13e-6)  
.MODEL RDSMOD RES (TC1 = 4.5e-3 TC2 = -7.45e-7)  
.MODEL RVTOMOD RES (TC1 = -4.16e- 3TC2 = 2.16e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.15 VOFF= -5.15)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.15 VOFF= -7.15)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.6 VOFF= 2.4)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.4 VOFF= -2.6)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
PSPICE Electrical Model (P-Channel)  
SUBCKT RF1K49224 2 1 3 ;P-Channel Model rev 4/7/97  
CA 12 8 7.29e-10  
CB 15 14 5.01e-10  
CIN 6 8 5.55e-10  
LDRAIN  
ESG  
DRAIN  
2
5
-
+
8
6
10  
DBODY 5 7 DBODYMOD  
DBREAK 7 11 DBREAKMOD  
DPLCAP 10 6 DPLCAPMOD  
RLDRAIN  
RSLC1  
51  
+
+
RSLC2  
17  
18  
5
51  
EBREAK  
ESLC  
EBREAK 5 11 17 18 -35.46  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 5 10 8 6 1  
EVTHRES 6 21 19 8 1  
-
50  
-
DPLCAP  
RDRAIN  
DBODY  
EVTHRES  
+
EVTEMP 6 20 18 22 1  
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
11  
RGATE  
GATE  
1
6
IT 8 17 1  
-
+
18  
22  
MMED  
9
20  
DBREAK  
LDRAIN 2 5 1e-9  
LGATE 1 9 1.27e-9  
LSOURCE 3 7 4.20e-10  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 19.3e-3  
RGATE 9 20 7.44  
RLDRAIN 2 5 10  
RLGATE 1 9 12.7  
RLSOURCE 3 7 4.2  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
RSOURCE 8 7 RSOURCEMOD 65.37e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*48),2.5))}  
.MODEL DBODYMOD D (IS = 3.30e-13 RS = 4.56e-2 TRS1 =6.98e-4 TRS2 =8.08e-7 CJO = 8.21e-10 TT = 3.51e-8 M=0.4)  
.MODEL DBREAKMOD D (RS = 8.18e- 1TRS1 =5.28e- 3TRS2 = -7.18e-5  
.MODEL DPLCAPMOD D (CJO = 2.52e-1 0IS = 1e-3 0N = 10 M=0.6)  
.MODEL MMEDMOD PMOS (VTO= -1.95 KP=0.75 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=7.44)  
.MODEL MSTROMOD PMOS (VTO= -2.44 KP= 7.25 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MWEAKMOD PMOS (VTO= -1.68 KP=0.045 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=74.4 RS=0.1)  
.MODEL RBREAKMOD RES (TC1 = 9.45e- 4TC2 = -1.01e-7)  
.MODEL RDRAINMOD RES (TC1 = 3.69e-3 TC2 = 5.90e-6)  
.MODEL RSLCMOD RES (TC1=3.46e-3 TC2= 1.26e-6)  
.MODEL RSOURCEMOD RES (TC1=3.69e-3 TC2=5.90e-6)  
.MODEL RVTHRESMOD RES (TC=-5.19e-4 TC2= 5.02e-6)  
.MODEL RVTEMPMOD RES (TC1 = -3.54e- 3TC2 = -6.53e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 6.94 VOFF= 3.94)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.94 VOFF= 6.94)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.40 VOFF= -2.60)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.60 VOFF= 0.40)  
.ENDS  
NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options;IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
RF1K49224  
PSpice Thermal Model  
JUNCTION  
7
REV 28 Feb 97  
RF1K49224  
RTHERM1  
CTHERM1  
CTHERM1 7 6 1.00e-7  
CTHERM2 6 5 9.00e-4  
CTHERM3 5 4 3.00e-3  
CTHERM4 4 3 4.00e-2  
CTHERM5 3 2 5.20e-3  
CTHERM6 2 1 1.90e-2  
6
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 7 6 7.10e-2  
RTHERM2 6 5 1.90e-1  
RTHERM3 5 4 5.95e-1  
RTHERM4 4 3 4.27  
RTHERM5 3 2 1.2e1  
RTHERM6 2 1 1.04e2  
5
4
3
2
1
CASE  
©2002 Fairchild Semiconductor Corporation  
RF1K49224 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

RF1S0CA137KFT

Fixed Resistor, Metal Film, 1W, 137000ohm, 350V, 1% +/-Tol, 100ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA16R5F

Fixed Resistor, Metal Film, 1W, 16.5ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA1R10JT

Fixed Resistor, Metal Film, 1W, 1.1ohm, 350V, 5% +/-Tol, 200ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA357RF

Fixed Resistor, Metal Film, 1W, 357ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA680RJ

Fixed Resistor, Metal Film, 1W, 680ohm, 350V, 5% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S15N06SM

15A, 60V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S15N06SM9A

15A, 60V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S15N08L9A

45A, 80V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S17N06LSM

17A, 60V, 0.1ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S17N06LSM9A

17A, 60V, 0.1ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S22N10SM

22A, 100V, 0.080 Ohm, N-Channel Power MOSFETs
FAIRCHILD

RF1S22N10SM

22A, 100V, 0.080 Ohm, N-Channel Power MOSFETs
INTERSIL