RH80532NC021256 [ETC]

Microprocessor ; 微处理器\n
RH80532NC021256
型号: RH80532NC021256
厂家: ETC    ETC
描述:

Microprocessor
微处理器\n

外围集成电路 微处理器 时钟
文件: 总93页 (文件大小:1955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Mobile Intel Celeron Processor  
on .13 Micron Process and in  
Micro-FCPGA Package  
Datasheet  
September 2002  
Order Number: 251308-002  
Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of any  
patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products. Information  
contained herein supersedes previously published specifications on these devices from Intel.  
Actual system-level properties, such as skin temperature, are a function of various factors, including component placement, component power  
characteristics, system power and thermal management techniques, software application usage and general system design. Intel is not responsible  
for its customers' system designs, nor is Intel responsible for ensuring that its customers' products comply with all applicable laws and regulations.  
Intel provides this and other thermal design information for informational purposes only. System design is the sole responsibility of Intel's customers,  
and Intel's customers should not rely on any Intel-provided information as either an endorsement or recommendation of any particular system design  
characteristics.  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Mobile Intel Celeron Processor may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com  
Copyright © 2002 Intel Corporation.  
Intel, Celeron, and Intel NetBurst are registered trademarks or trademarks of Intel Corporation and its subsidiares in the United States and other  
countries.  
* Other brands and names may be claimed as property of others.  
2
251308-002  
Datasheet  
Contents  
Contents  
1
Introduction......................................................................................................................................9  
1.1  
Terminology........................................................................................................................10  
1.1.1 Terminology ...........................................................................................................10  
References .........................................................................................................................11  
1.2  
2
Electrical Specifications.................................................................................................................13  
2.1  
2.2  
2.3  
System Bus and GTLREF ..................................................................................................13  
Power and Ground Pins......................................................................................................13  
Decoupling Guidelines........................................................................................................13  
2.3.1 VCC Decoupling ....................................................................................................14  
2.3.2 System Bus AGTL+ Decoupling ............................................................................14  
2.3.3 System Bus Clock (BCLK[1:0]) and Processor Clocking.......................................14  
Voltage Identification and Power Sequencing ....................................................................15  
2.4.1 Phase Lock Loop (PLL) Power and Filter ..............................................................16  
2.4.2 Catastrophic Thermal Protection ...........................................................................18  
Signal Terminations, Unused Pins, and TESTHI[11:0].......................................................18  
System Bus Signal Groups.................................................................................................19  
Asynchronous GTL+ Signals ..............................................................................................21  
Test Access Port (TAP) Connection...................................................................................21  
System Bus Frequency Select Signals (BSEL[1:0]) ...........................................................21  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10 Maximum Ratings...............................................................................................................22  
2.11 Processor DC Specifications ..............................................................................................22  
2.12 AGTL+ System Bus Specifications.....................................................................................31  
2.13 System Bus AC Specifications ...........................................................................................32  
2.14 Processor AC Timing Waveforms.......................................................................................37  
3
System Bus Signal Quality Specifications.....................................................................................47  
3.1  
3.2  
3.3  
System Bus Clock (BCLK) Signal Quality Specifications and Measurement Guidelines ...47  
System Bus Signal Quality Specifications and Measurement Guidelines ..........................48  
System Bus Signal Quality Specifications and Measurement Guidelines ..........................51  
3.3.1 Overshoot/Undershoot Guidelines.........................................................................51  
3.3.2 Overshoot/Undershoot Magnitude.........................................................................51  
3.3.3 Overshoot/Undershoot Pulse Duration ..................................................................51  
3.3.4 Activity Factor ........................................................................................................52  
3.3.5 Reading Overshoot/Undershoot Specification Tables ...........................................52  
3.3.6 Conformance Determination to Overshoot/Undershoot Specifications..................53  
4
5
Package Mechanical Specifications ..............................................................................................57  
4.1 Processor Pin-Out ..............................................................................................................60  
Pin Listing and Signal Definitions ..................................................................................................63  
5.1  
5.2  
Mobile Intel Celeron Processor Pin Assignments...............................................................63  
Alphabetical Signals Reference..........................................................................................77  
6
Thermal Specifications and Design Considerations......................................................................85  
6.1  
Thermal Specifications .......................................................................................................86  
6.1.1 Thermal Diode .......................................................................................................86  
251308-002  
3
Datasheet  
Contents  
6.1.2 Thermal Monitor.....................................................................................................87  
Configuration and Low Power Features ........................................................................................89  
7
7.1  
7.2  
Power-On Configuration Options........................................................................................89  
Clock Control and Low Power States .................................................................................89  
7.2.1 Normal State..........................................................................................................89  
7.2.2 AutoHALT Powerdown State.................................................................................90  
7.2.3 Stop-Grant State....................................................................................................90  
7.2.4 HALT/Grant Snoop State.......................................................................................91  
7.2.5 Sleep State ............................................................................................................91  
7.2.6 Deep Sleep State...................................................................................................92  
8
Debug Tools Specifications...........................................................................................................93  
8.1  
Logic Analyzer Interface (LAI) ............................................................................................93  
8.1.1 Mechanical Considerations....................................................................................93  
8.1.2 Electrical Considerations .......................................................................................93  
4
251308-002  
Datasheet  
Contents  
Figures  
1
2
3
4
5
6
7
8
9
VCCVID Pin Voltage and Current Requirements .......................................................................15  
Typical VCCIOPLL, VCCA and VSSA Power Distribution..........................................................17  
Phase Lock Loop (PLL) Filter Requirements.............................................................................17  
Illustration of VCC Static and Transient Tolerances (VID = 1.30 V)...........................................25  
Illustration of Deep Sleep VCC Static and Transient Tolerances (VID Setting = 1.30 V)...........26  
ITPCLKOUT[1:0] Output Buffer Diagram....................................................................................31  
AC Test Circuit............................................................................................................................38  
TCK Clock Waveform .................................................................................................................38  
Differential Clock Waveform .......................................................................................................39  
10 Differential Clock Crosspoint Specification.................................................................................40  
11 System Bus Common Clock Valid Delay Timings ......................................................................40  
12 System Bus Reset and Configuration Timings ...........................................................................41  
13 Source Synchronous 2X (Address) Timings...............................................................................41  
14 Source Synchronous 4X Timings ...............................................................................................42  
15 Power Up Sequence..................................................................................................................43  
16 Power Down Sequence ..............................................................................................................43  
17 Test Reset Timings.....................................................................................................................44  
18 THERMTRIP# to Vcc Timing......................................................................................................44  
19 FERR#/PBE# Valid Delay Timing...............................................................................................44  
20 TAP Valid Delay Timing..............................................................................................................45  
21 ITPCLKOUT Valid Delay Timing.................................................................................................45  
22 Stop Grant/Sleep/Deep Sleep Timing.........................................................................................46  
23 BCLK Signal Integrity Waveform ................................................................................................48  
24 Low-to-High System Bus Receiver Ringback Tolerance............................................................49  
25 High-to-Low System Bus Receiver Ringback Tolerance............................................................49  
26 Low-to-High System Bus Receiver Ringback Tolerance for PWRGOOD and TAP Buffers.......50  
27 High-to-Low System Bus Receiver Ringback Tolerance for PWRGOOD and TAP Buffers.......50  
28 Maximum Acceptable Overshoot/Undershoot Waveform...........................................................56  
29 Micro-FCPGA Package Top and Bottom Isometric Views..........................................................57  
30 Micro-FCPGA Package - Top and Side Views ...........................................................................58  
31 Micro-FCPGA Package - Bottom View.......................................................................................60  
32 The Coordinates of the Processor Pins as Viewed From the Top of the Package.....................61  
33 Clock Control States...................................................................................................................90  
251308-002  
5
Datasheet  
Contents  
Tables  
1
2
3
4
5
6
7
8
9
References .................................................................................................................................11  
Core Frequency to System Bus Multipliers ................................................................................14  
Voltage Identification Definition ..................................................................................................15  
System Bus Pin Groups .............................................................................................................20  
BSEL[1:0] Frequency Table for BCLK[1:0].................................................................................21  
Processor DC Absolute Maximum Ratings ................................................................................22  
Voltage and Current Specifications ............................................................................................23  
IMVP-III Voltage Regulator Tolerances for VID = 1.30 V Operating Mode.................................24  
IMVP-III Deep Sleep State Voltage Regulator Tolerances (VID = 1.30 V, VID Offset = 4.62%) 25  
10 System Bus Differential BCLK Specifications.............................................................................27  
11 AGTL+ Signal Group DC Specifications.....................................................................................28  
12 Asynchronous GTL+ Signal Group DC Specifications ...............................................................29  
13 PWRGOOD and TAP Signal Group DC Specifications..............................................................30  
14 ITPCLKOUT[1:0] DC Specifications...........................................................................................30  
15 BSEL [1:0] and VID[4:0] DC Specifications................................................................................31  
16 AGTL+ Bus Voltage Definitions..................................................................................................32  
17 System Bus Differential Clock Specifications.............................................................................33  
18 System Bus Common Clock AC Specifications..........................................................................33  
19 System Bus Source Synch AC Specifications AGTL+ Signal Group .........................................34  
20 Miscellaneous Signals AC Specifications...................................................................................35  
21 System Bus AC Specifications (Reset Conditions) ....................................................................35  
22 TAP Signals AC Specifications...................................................................................................36  
23 ITPCLKOUT[1:0] AC Specifications ...........................................................................................36  
24 Stop Grant/Sleep/Deep Sleep AC Specifications.......................................................................37  
25 BCLK Signal Quality Specifications............................................................................................47  
26 Ringback Specifications for AGTL+ and Asynchronous GTL+ Signal Groups...........................48  
27 Ringback Specifications for PWRGOOD Input and TAP Signal Groups....................................49  
28 Source Synchronous (400 MHz) AGTL+ Signal Group Overshoot/Undershoot Tolerance........53  
29 Source Synchronous (200 MHz) AGTL+ Signal Group Overshoot/Undershoot Tolerance........54  
30 Common Clock (100 MHz) AGTL+ Signal Group Overshoot/Undershoot Tolerance.................54  
31 Asynchronous GTL+, PWRGOOD Input, and TAP Signal Groups Overshoot/Undershoot  
Tolerance....................................................................................................................................56  
32 Micro-FCPGA Package Dimensions ..........................................................................................59  
33 Pin Listing by Pin Name .............................................................................................................64  
34 Pin Listing by Pin Number ..........................................................................................................70  
35 Signal Description.......................................................................................................................77  
36 Power Specifications for the Mobile Intel Celeron Processor.....................................................85  
37 Thermal Diode Interface.............................................................................................................86  
38 Thermal Diode Specifications.....................................................................................................86  
39 Power-On Configuration Option Pins .........................................................................................89  
6
251308-002  
Datasheet  
Contents  
Revision History  
Date  
Revision  
Description  
June 2002  
1.0  
Initial release of the datasheet  
Updates include:  
Added specifications for 1.6 GHz, 1.7 GHz, and 1.8 GHz  
September 2002 2.0  
Current and power specifications updated in Table 7 and Table 38  
Corrected STPCLK#/SLP# timing relationship in Section 7.2.3 to match  
parameter T75.  
251308-002  
7
Datasheet  
Contents  
This page intentionally left blank.  
8
251308-002  
Datasheet  
Introduction  
1 Introduction  
The Mobile IntelCeleronProcessor on .13 Micron Process and in Micro-FCPGA Package  
utilizes a 478-pin, Micro Flip-Chip Pin Grid Array (Micro-FCPGA) package, and plugs into a  
surface-mount, Zero Insertion Force (ZIF) socket. The Mobile Intel Celeron Processor on .13  
micron process maintains the tradition of compatibility with IA-32 software. In this document the  
Mobile Intel Celeron Processor on .13 Micron Process and in Micro-FCPGA Package will be  
referred to as the “Mobile Intel Celeron Processor” or simply “the processor”.  
The Mobile Intel Celeron Processor is designed for uni-processor based Value PC mobile systems.  
Features of the processor include hyper pipelined technology, a 400-MHz system bus, and an  
execution trace cache. The 400-MHz system bus is a quad-pumped bus running off a 100-MHz  
system clock making 3.2 GB/sec data transfer rates possible. The execution trace cache is a first  
level cache that stores approximately 12-k decoded micro-operations, which removes the decoder  
from the main execution path.  
Additional features include advanced dynamic execution, advanced transfer cache, enhanced  
floating point and multi-media unit, and Streaming SIMD Extensions 2 (SSE2). The advanced  
dynamic execution improves speculative execution and branch prediction internal to the processor.  
The advanced transfer cache is a 256 KB, on-die level 2 (L2) cache. The floating point and multi  
media units have 128-bit wide registers with a separate register for data movement. Finally, SSE2  
support includes instructions for double-precision floating point, SIMD integer, and memory  
management. Power management capabilities such as AutoHALT, Stop-Grant, Sleep, and Deep  
Sleep have been incorporated. The processor includes an address bus power down capability which  
removes power from the address and data pins when the system bus is not in use. This feature is  
always enabled on the processor.  
The Mobile Intel Celeron Processor’s 400-MHz system bus utilizes a split-transaction, deferred  
reply protocol. This system bus is not compatible with the P6 processor family bus. The 400-MHz  
system bus uses Source-Synchronous Transfer (SST) of address and data to improve throughput by  
transferring data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X  
data bus, the address bus can deliver addresses two times per bus clock and is referred to as a  
“double-clocked” or 2X address bus. Working together, the 4X data bus and 2X address bus  
provide a data bus bandwidth of up to 3.2 Gbytes/second.  
The processor system bus uses a variant of GTL+ signalling technology called Assisted Gunning  
Transceiver Logic (AGTL+) signal technology. The Mobile Intel Celeron Processor is available at  
the following core frequencies:  
1.8 GHz (at 1.30 V)  
1.7 GHz (at 1.30 V)  
1.6 GHz (at 1.30 V)  
1.5 GHz (at 1.30 V)  
1.4 GHz (at 1.30 V)  
251308-002  
9
Datasheet  
Introduction  
1.1  
Terminology  
A “#” symbol after a signal name refers to an active low signal, indicating a signal is in the active  
state when driven to a low level. For example, when RESET# is low, a reset has been requested.  
Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where  
the name does not imply an active state but describes part of a binary sequence (such as address or  
data), the “#” symbol implies that the signal is inverted. For example, D[3:0] = “HLHL” refers to a  
hex ‘A, and D[3:0]# = “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
“System Bus” refers to the interface between the processor and system core logic (also known as  
the chipset components). The system bus is a multiprocessing interface to processors, memory, and  
I/O.  
1.1.1  
Terminology  
Commonly used terms are explained here for clarification:  
Processor — For this document, the term processor shall mean the Mobile Intel Celeron  
Processor in the 478-pin package.  
Keep out zone — The area on or near the processor that system design can not utilize.  
Intel845MP/845MZ chipsets — Mobile chipsets that will support the Mobile Intel  
Celeron Processor.  
Processor core — Mobile Intel Celeron Processor core die with integrated L2 cache.  
Micro-FCPGA package — Micro Flip-Chip Pin Grid Array package with 50-mil pin pitch.  
10  
251308-002  
Datasheet  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document.  
Table 1. References  
Document  
Order Number  
250688-002  
Mobile Intel Pentium 4 Processor-M and Intel 845MP/845MZ Chipset  
Platform Design Guide  
Intel Architecture Software Developer's Manual  
Volume I: Basic Architecture  
245470  
245471  
245472  
Volume II: Instruction Set Reference  
Volume III: System Programming Guide  
251308-002  
11  
Datasheet  
Introduction  
This page intentionally left blank.  
12  
251308-002  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
2.1  
System Bus and GTLREF  
Most Mobile Intel Celeron Processor system bus signals use Assisted Gunning Transceiver Logic  
(AGTL+) signalling technology. As with the Intel P6 family of microprocessors, this signalling  
technology provides improved noise margins and reduced ringing through low-voltage swings and  
controlled edge rates. The termination voltage level for the Mobile Intel Celeron Processor AGTL+  
signals is VCC, which is the operating voltage of the processor core. Previous generations of Intel  
mobile processors utilize a fixed termination voltage known as VCCT. The use of a termination  
voltage that is determined by the processor core allows better voltage scaling on the system bus for  
Mobile Intel Celeron Processor. Because of the speed improvements to data and address bus, signal  
integrity and platform design methods have become more critical than with previous processor  
families. Design guidelines for the Mobile Intel Celeron Processor system bus will be detailed in  
the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design  
Guide.  
The AGTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board.  
Termination resistors are provided on the processor silicon and are terminated to its core voltage  
(VCC). Intel’s 845MP/845MZ chipsets will also provide on-die termination, thus eliminating the  
need to terminate the bus on the system board for most AGTL+ signals. However, some AGTL+  
signals do not include on-die termination and must be terminated on the system board. For more  
information, refer to the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ  
Chipset Platform Design Guide.  
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+  
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the  
system bus, including trace lengths, is highly recommended when designing a system.  
2.2  
2.3  
Power and Ground Pins  
For clean on-chip power distribution, the Mobile Intel Celeron Processor have 85 VCC (power) and  
181 VSS (ground) inputs. All power pins must be connected to VCC, while all VSS pins must be  
connected to a system ground plane.The processor VCC pins must be supplied with the voltage  
determined by the VID (Voltage ID) pins and the loadline specifications (see Figure 4 to Figure 5).  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is capable of  
generating large average current swings between low and full power states. This may cause  
voltages on power planes to sag below their minimum values if bulk decoupling is not adequate.  
Care must be taken in the board design to ensure that the voltage provided to the processor remains  
within the specifications listed in Table 7. Failure to do so can result in timing violations and affect  
251308-002  
13  
Datasheet  
Electrical Specifications  
the long term reliability of the processor. For further information and design guidelines, refer to the  
Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design  
Guide.  
2.3.1  
V
Decoupling  
CC  
Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR)  
and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the  
large current swings when the part is powering on, or entering/exiting low-power states, must be  
provided by the voltage regulator solution. For more details on decoupling recommendations,  
please refer to the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset  
Platform Design Guide.  
2.3.2  
2.3.3  
System Bus AGTL+ Decoupling  
The Mobile Intel Celeron Processor integrates signal termination on the die and incorporates high  
frequency decoupling capacitance on the processor package. Decoupling must also be provided by  
the system motherboard for proper AGTL+ bus operation. For more information, refer to the  
Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design  
Guide.  
System Bus Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the  
processor. As in previous generation processors, the Mobile Intel Celeron Processor core frequency  
is a multiple of the BCLK[1:0] frequency. Refer to Table 2 for the Mobile Intel Celeron Processor  
supported ratios.  
Table 2. Core Frequency to System Bus Multipliers  
Multiplication of System Core  
Frequency to System Bus Frequency  
2
Core Frequency  
Notes  
800 MHz  
1.20 GHz  
1.40 GHz  
1.50 GHz  
1.60 GHz  
1.70 GHz  
1.80 GHz  
1/8  
1
1/12  
1/14  
1/15  
1/16  
1/17  
1/18  
NOTES:  
1. Ratio is used for debug purposes only.  
2. Listed frequencies are not necessarily committed production frequencies.  
The Mobile Intel Celeron Processor uses a differential clocking implementation.  
251308-002  
14  
Datasheet  
Electrical Specifications  
2.4  
Voltage Identification and Power Sequencing  
The voltage set by the VID pins is the nominal/typical voltage setting for the processor. A  
minimum voltage is provided in Table 7 and changes with frequency. This allows processors  
running at a higher frequency to have a relaxed minimum voltage specification. The specifications  
have been set such that one voltage regulator can work with all supported frequencies.  
The Mobile Intel Celeron Processor uses five voltage identification pins, VID[4:0], to support  
automatic selection of power supply voltages. The VID pins for the Mobile Intel Celeron Processor  
are open drain outputs driven by the processor VID circuitry. Table 3 specifies the voltage level  
corresponding to the state of VID[4:0]. A “1” in this table refers to a high-voltage level and a “0”  
refers to low-voltage level.  
Power source characteristics must be stable whenever the supply to the voltage regulator is stable.  
Refer to Figure 15 for timing details of the power up sequence. Also refer to Mobile Intel  
Pentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design Guide for  
implementation details.  
Mobile Intel Celeron Processor’s Voltage Identification circuit requires an independent 1.2 V  
supply. This voltage must be routed to the processor VCCVID pin. Figure 1 shows the voltage and  
current requirements of the VCCVID pin.  
Figure 1. VCCVID Pin Voltage and Current Requirements  
1.2V+10%  
1.2V-5%  
1V  
150mA to 300mA  
80mA  
30mA  
1mA  
70nS  
5nS  
Table 3. Voltage Identification Definition (Sheet 1 of 2)  
Processor Pins  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC_  
1
1
1
1
1
0.600  
251308-002  
15  
Datasheet  
Electrical Specifications  
Table 3. Voltage Identification Definition (Sheet 2 of 2)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.050  
1.100  
1.150  
1.200  
1.250  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
2.4.1  
Phase Lock Loop (PLL) Power and Filter  
VCCA and VCCIOPLL are power sources required by the PLL clock generators on the Mobile Intel  
Celeron Processor silicon. Since these PLLs are analog in nature, they require quiet power supplies  
for minimum jitter. Jitter is detrimental to the system: it degrades external I/O timings as well as  
internal core timings (i.e. maximum frequency). To prevent this degradation, these supplies must  
be low pass filtered from VCCVID. A typical filter topology is shown in Figure 2.  
The AC low-pass requirements, with input at VCCVID and output measured across the capacitor  
(CA or CIO in Figure 2), is as follows:  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz  
251308-002  
16  
Datasheet  
Electrical Specifications  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
The filter requirements are illustrated in Figure 3. For recommendations on implementing the filter  
refer to the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform  
Design Guide.  
Figure 2. Typical VCCIOPLL, VCCA and VSSA Power Distribution  
VCCVID  
L
VCCA  
CA  
PLL  
Processor  
Core  
VSSA  
CIO  
VCCIOPLL  
L
.
Figure 3. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
-0.5 dB  
forbidden  
zone  
-28 dB  
forbidden  
zone  
-34 dB  
DC  
passband  
1 Hz  
fpeak  
1 MHz  
66 MHz  
fcore  
high frequency  
band  
NOTES:  
1. Diagram not to scale.  
251308-002  
17  
Datasheet  
Electrical Specifications  
1. No specification for frequencies beyond fcore (core frequency).  
1. fpeak, if existent, should be less than 0.05 MHz.  
2.4.2  
Catastrophic Thermal Protection  
The Mobile Intel Celeron Processor supports the THERMTRIP# signal for catastrophic thermal  
protection. Alternatively, an external thermal sensor can be used to protect the processor and the  
system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all  
processor internal clocks and activity, leakage current can be high enough such that the processor  
cannot be protected in all conditions without the removal of power to the processor. If the external  
thermal sensor detects a catastrophic processor temperature of 135°C (maximum), or if the  
THERMTRIP# signal is asserted, the VCC supply to the processor must be turned off within  
500 ms to prevent permanent silicon damage due to thermal runaway of the processor. Refer to  
Section 5.2 for more details on THERMTRIP#.  
2.5  
Signal Terminations, Unused Pins and TESTHI[11:0]  
All NC pins must remain unconnected. Connection of these pins to VCC, VSS, or to any other signal  
(including each other) can result in component malfunction or incompatibility with future Mobile  
Intel Celeron Processors. See Section 5.2 for a processor pin listing and the location of all NC pins.  
For reliable operation, always connect unused inputs or bidirectional signals that are not terminated  
on the die to an appropriate signal level. Note that on-die termination has been included on the  
Mobile Intel Celeron Processor to allow signals to be terminated within the processor silicon.  
Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on  
the processor silicon. Table 4 lists details on AGTL+ signals that do not include on-die termination.  
Unused active high inputs should be connected through a resistor to ground (VSS). Refer to the  
Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design Guide  
for the appropriate resistor values.  
Unused outputs can be left unconnected, however, this may interfere with some TAP functions,  
complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying  
bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability. For unused AGTL+ input or I/O signals that don’t have on-die  
termination, use pull-up resistors of the same value in place of the on-die termination resistors  
(RTT). See Table 16.  
The TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die  
termination. Inputs and used outputs must be terminated on the system board. Unused outputs may  
be terminated on the system board or left unconnected. Note that leaving unused outputs  
unterminated may interfere with some TAP functions, complicate debug probing, and prevent  
boundary scan testing. Signal termination for these signal types is discussed in the Mobile Intel  
Pentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design Guide.  
The TESTHI pins should be tied to the processor VCC using a matched resistor, where a matched  
resistor has a resistance value within + 20% of the impedance of the board transmission line traces.  
For example, if the trace impedance is 50 , then a value between 40 and 60 is required.  
The TESTHI pins may use individual pull-up resistors or be grouped together as detailed below. A  
matched resistor should be used for each group:  
1.TESTHI[1:0]  
2.TESTHI[5:2]  
251308-002  
18  
Datasheet  
Electrical Specifications  
3.TESTHI[10:8]  
4.TESTHI[11]  
Additionally, if the ITPCLKOUT[1:0] pins are not used then they may be connected individually to  
VCC using matched resistors or grouped with TESTHI[5:2] with a single matched resistor. If they  
are being used, individual termination with 1-kresistors is required. Tying ITPCLKOUT[1:0]  
directly to VCC or sharing a pull-up resistor to VCC will prevent use of debug interposers. This  
implementation is strongly discouraged for system boards that do not implement an onboard debug  
port.  
As an alternative, group 2 (TESTHI[5:2]), and the ITPCLKOUT[1:0] pins may be tied directly to  
the processor VCC. This has no impact on system functionality. TESTHI[0] may also be tied  
directly to processor VCC if resistor termination is a problem, but matched resistor termination is  
recommended. In the case of the ITPCLKOUT[1:0] pins, direct tie to VCC is strongly discouraged  
for system boards that do not implement an onboard debug port.  
Tying any of the TESTHI pins together will prevent the ability to perform boundary scan testing.  
Pullup/down resistor requirements for the VID[4:0] and BSEL[1:0] signals are included in the  
signal descriptions in Section 5.  
2.6  
System Bus Signal Groups  
In order to simplify the following discussion, the system bus signals have been combined into  
groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as  
a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as  
well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+  
output group as well as the AGTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals which are dependant upon the rising edge  
of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals  
which are relative to their respective strobe lines (data and address) as well as the rising edge of  
BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at  
any time during the clock cycle. Table 4 identifies which signals are common clock, source  
synchronous, and asynchronous.  
251308-002  
19  
Datasheet  
Electrical Specifications  
Table 4. System Bus Pin Groups  
1
Signal Group  
Type  
Signals  
Common  
clock  
2
AGTL+ Common Clock Input  
AGTL+ Common Clock I/O  
BPRI#, DEFER#, RESET# , RS[2:0]#, RSP#, TRDY#  
2
2
AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]# , BR0# ,  
DBSY#, DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#,  
MCERR#  
Synchronous  
Signals  
Associated Strobe  
5
REQ[4:0]#, A[16:3]#  
ADSTB0#  
5
A[35:17]#  
ADSTB1#  
AGTL+ Source Synchronous  
I/O  
Source  
Synchronous  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Common  
Clock  
AGTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
5
A20M#, DPSLP#, IGNNE#, INIT# , LINT0/INTR, LINT1/  
NMI, SMI# , SLP#, STPCLK#  
4,5  
Asynchronous GTL+ Input  
Asynchronous  
5
4
2
Asynchronous GTL+ Output  
Asynchronous FERR#/PBE#, IERR# , THERMTRIP#, PROCHOT#  
Synchronous  
4
TAP Input  
TCK, TDI, TMS, TRST#  
to TCK  
Synchronous  
TDO  
4
TAP Output  
to TCK  
3
System Bus Clock  
Power/Other  
N/A  
BCLK[1:0], ITP_CLK[1:0]  
VCC, VCCA, VCCIOPLL, VCCVID, VID[4:0], VSS, VSSA  
GTLREF[3:0], COMP[1:0], NC, TESTHI[5:0],  
TESTHI[10:8], TESTHI[11], ITPCLKOUT[1:0],  
,
N/A  
PWRGOOD, THERMDA, THERMDC, SKTOCC#,  
3
V
, V  
BSEL[1:0], DBR#  
CC_SENSE  
SS_SENSE,  
NOTES:  
1. Refer to Section 5.2 for signal descriptions.  
2. These AGTL+ signals do not have on-die termination. Refer to Section 2.5 for termination requirements.  
3. In processor systems where there is no debug port implemented on the system board, these signals are used  
to support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
4. These signal groups are not terminated by the processor. Signals not driven by the ICH3-M component must  
be terminated on the system board. Refer to Section 2.5 and the Mobile Intel Pentium 4 Processor-M and  
Intel 845MP/845MZ Chipset Platform Design Guide for termination requirements and further details.  
5. The value of these pins during the active-to-inactive edge of RESET# defines the processor configuration  
options. See Section 7.1 for details.  
251308-002  
20  
Datasheet  
Electrical Specifications  
2.7  
Asynchronous GTL+ Signals  
Mobile Intel Celeron Processor does not utilize CMOS voltage levels on any signals that connect to  
the processor. As a result, legacy input signals such as A20M#, IGNNE#, INIT#, LINT0/INTR,  
LINT1/NMI, SMI#, SLP#, and STPCLK# use GTL+ input buffers. Legacy output FERR#/PBE#  
and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) use GTL+ output buffers. All of  
these signals follow the same DC requirements as AGTL+ signals, however the outputs are not  
actively driven high (during a logical 0 to 1 transition) by the processor (the major difference  
between GTL+ and AGTL+). These signals do not have setup or hold time specifications in relation  
to BCLK[1:0]. However, all of the Asynchronous GTL+ signals are required to be asserted for at  
least two BCLKs in order for the processor to recognize them. See Section 2.11 and Section 2.13  
for the DC and AC specifications for the Asynchronous GTL+ signal groups.  
2.8  
2.9  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is  
recommended that the Mobile Intel Celeron Processor be first in the TAP chain and followed by  
any other components within the system. A translation buffer should be used to connect to the rest  
of the chain unless one of the other components is capable of accepting an input of the appropriate  
voltage level. Similar considerations must be made for TCK, TMS, and TRST#. Two copies of  
each signal may be required, with each driving a different voltage level.  
System Bus Frequency Select Signals (BSEL[1:0])  
The BSEL[1:0] are output signals used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 5 defines the possible combinations of the signals and the frequency  
associated with each combination. The required frequency is determined by the processor, chipset,  
and clock synthesizer. All agents must operate at the same frequency.  
The Mobile Intel Celeron Processor currently operates at a 400-MHz system bus frequency  
(selected by a 100-MHz BCLK[1:0] frequency). Individual processors will only operate at their  
specified system bus frequency.  
For more information about these pins refer to Section 5.2 and the appropriate platform design  
guidelines.  
Table 5. BSEL[1:0] Frequency Table for BCLK[1:0]  
BSEL1  
BSEL0  
Function  
L
L
L
H
L
100 MHz  
RESERVED  
RESERVED  
RESERVED  
H
H
H
251308-002  
21  
Datasheet  
Electrical Specifications  
2.10  
Maximum Ratings  
Table 6 lists the processor’s maximum environmental stress ratings. The processor should not  
receive a clock while subjected to these conditions. Functional operating parameters are listed in  
the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability.  
Furthermore, although the processor contains protective circuitry to resist damage from Electro  
Static Discharge (ESD), one should always take precautions to avoid high static voltages or electric  
fields.  
Table 6. Processor DC Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
TSTORAGE  
Processor storage temperature  
–40  
85  
°C  
2
Any processor supply voltage with respect to  
V
V
V
-0.3  
-0.1  
-0.1  
1.75  
1.75  
V
V
1
CC  
V
SS  
AGTL+ buffer DC input voltage with respect to  
VSS  
inAGTL+  
inAsynch_GTL+  
Asynch GTL+ buffer DC input voltage with  
respect to VSS  
1.75  
5
V
IVID  
Max VID pin current  
mA  
NOTES:  
1. This rating applies to any processor pin.  
2. Contact Intel for storage requirements in excess of one year.  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads) unless  
noted otherwise. See Section 5 for the pin signal definitions and signal pin assignments. Most of  
the signals on the processor system bus are in the AGTL+ signal group. The DC specifications for  
these signals are listed in Table 11.  
Previously, legacy signals and Test Access Port (TAP) signals to the processor used low-voltage  
CMOS buffer types. However, these interfaces now follow DC specifications similar to GTL+. The  
DC specifications for these signal groups are listed in Table 12 and Table 13.  
Table 7 through Table 15 list the DC specifications for the Mobile Intel Celeron Processor and are  
valid only while meeting specifications for junction temperature, clock frequency, and input  
voltages. Unless specified otherwise, all specifications for the Mobile Intel Celeron Processor are  
at TJ = 100°C. Care should be taken to read all notes associated with each parameter.  
251308-002  
22  
Datasheet  
Electrical Specifications  
Table 7. Voltage and Current Specifications  
1
Symbol  
Parameter  
for core logic  
Min  
Typ  
Max  
Unit  
Notes  
V
V
CC  
CC  
V
V
2, 3, 4, 5, 7, 8,11  
2, 12  
1.30  
1.20  
VCCVID  
VID supply voltage  
-5%  
+10%  
Current for V at core frequency  
CC  
1.80 GHz & 1.30 V  
1.70 GHz & 1.30 V  
1.60 GHz & 1.30 V  
1.50 GHz & 1.30 V  
1.40 GHz & 1.30 V  
31.0  
29.9  
28.7  
27.5  
26.3  
A
4, 5, 8, 9  
I
CC  
I
I
Current for VID supply  
300  
mA  
A
VCCVID  
I
Stop-Grant and I Sleep at  
CC  
CC  
SGNT, I  
SLP  
1.30 V  
Deep Sleep at  
10.1  
9.0  
6, 9  
I
CC  
I
DSLP  
1.30 V  
A
A
9
I
I
I
I
TCC active  
for PLL pins  
I
CC  
8
TCC  
CC  
CC  
60  
mA  
10  
CC PLL  
NOTES:  
1. Unless otherwise noted, all specifications in this table are based on latest post-silicon measurements  
available at the time of publication.  
2. These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required. See Section 2.4 and Table 3 for more information. The VID bits will set the  
typical V with the minimum being defined according to current consumption at that voltage.  
CC  
3. The voltage specification requirements are measured at the system board socket ball with a 100-MHz  
bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-Mminimum impedance. The maximum  
length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not  
coupled in the scope probe.  
4. Refer to Table 8 to Table 9 and Figure 4 to Figure 5 for the minimum, typical, and maximum V (measured  
CC  
at the system board socket ball) allowed for a given current. The processor should not be subjected to any  
V
and I combination wherein V exceeds V  
for a given current. Failure to adhere to this  
CC  
CC  
CC  
CC_MAX  
specification can affect the long term reliability of the processor.  
5. V is defined at I  
.
CC_MAX  
CC_MIN  
6. The current specified is also for AutoHALT State.  
7. Typical V indicates the VID encoded voltage. Voltage supplied must conform to the load line specification  
CC  
shown in Table 8 to Table 9.  
8. The maximum instantaneous current the processor will draw while the thermal control circuit is active as  
indicated by the assertion of PROCHOT# is the same as the maximum I for the processor.  
CC  
9. Maximum specifications for I Core, I Stop-Grant, I Sleep, and I Deep Sleep are specified at V  
CC  
CC  
CC  
CC  
CC  
Static Max. derived from the tolerances in Table 8 through Table 9, T Max., and under maximum signal  
J
loading conditions.  
10.The specification is defined per PLL pin.  
11.The voltage response to a processor current load step (transient) must stay within the Transient Voltage  
Tolerance Window. The voltage surge or droop response measured in this window is typically on the order of  
several hundred nanoseconds to several microseconds. The Transient Voltage Tolerance Window is defined  
as follows:  
Case a) Load Current Step Up: e.g., from Icc = I_leakage to Icc = Icc_max. Allowable Vcc_min is defined as  
minimum transient voltage at Icc = Icc_max for a period of time lasting several hundred nanoseconds to  
several microseconds after the transient event.  
Case b) Load Current Step Down: e.g., form Icc = Icc_max to Icc = I_leakage. Allowable Vcc_max is defined  
as the maximum transient voltage at Icc = I_leakage for a period of time lasting several hundred  
nanoseconds to several microseconds after the transient event.  
12.This specification applies to both static and transient components. The rising edge of VCCVID must be  
monotonic from 0 to 1.1 V. See Figure 1 for current requirements. In this case, monotonic is defined as  
251308-002  
23  
Datasheet  
Electrical Specifications  
continuously increasing with less than 50 mV of peak to peak noise for any width greater than 2 nS  
superimposed on the rising edge.  
Table 8. IMVP-III Voltage Regulator Tolerances for VID = 1.30 V Operating Mode  
V
Nominal  
(V)  
V
Static Min  
(V)  
V
Static Max  
(V)  
V
Transient  
Min (V)  
V
Transient  
Max (V)  
CC  
CC  
CC  
CC  
CC  
I
(A)  
CC  
0.0  
1.300  
1.298  
1.296  
1.294  
1.292  
1.290  
1.288  
1.286  
1.284  
1.282  
1.280  
1.278  
1.276  
1.274  
1.272  
1.270  
1.268  
1.266  
1.264  
1.262  
1.260  
1.258  
1.256  
1.254  
1.252  
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.234  
1.232  
1.275  
1.273  
1.271  
1.269  
1.267  
1.265  
1.263  
1.261  
1.259  
1.257  
1.255  
1.253  
1.251  
1.249  
1.247  
1.245  
1.243  
1.241  
1.239  
1.237  
1.235  
1.233  
1.231  
1.229  
1.227  
1.225  
1.223  
1.221  
1.219  
1.217  
1.215  
1.213  
1.211  
1.209  
1.207  
1.325  
1.323  
1.321  
1.319  
1.317  
1.315  
1.313  
1.311  
1.309  
1.307  
1.305  
1.303  
1.301  
1.299  
1.297  
1.295  
1.293  
1.291  
1.289  
1.287  
1.285  
1.283  
1.281  
1.279  
1.277  
1.275  
1.273  
1.271  
1.269  
1.267  
1.265  
1.263  
1.261  
1.259  
1.257  
1.255  
1.253  
1.251  
1.249  
1.247  
1.245  
1.243  
1.241  
1.239  
1.237  
1.235  
1.233  
1.231  
1.229  
1.227  
1.225  
1.223  
1.221  
1.219  
1.217  
1.215  
1.213  
1.211  
1.209  
1.207  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
1.193  
1.191  
1.189  
1.187  
1.345  
1.343  
1.341  
1.339  
1.337  
1.335  
1.333  
1.331  
1.329  
1.327  
1.325  
1.323  
1.321  
1.319  
1.317  
1.315  
1.313  
1.311  
1.309  
1.307  
1.305  
1.303  
1.301  
1.299  
1.297  
1.295  
1.293  
1.291  
1.289  
1.287  
1.285  
1.283  
1.281  
1.279  
1.277  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
21.0  
22.0  
23.0  
24.0  
25.0  
26.0  
27.0  
28.0  
29.0  
30.0  
31.0  
32.0  
33.0  
34.0  
251308-002  
24  
Datasheet  
Electrical Specifications  
Table 8. IMVP-III Voltage Regulator Tolerances for VID = 1.30 V Operating Mode  
V
Nominal  
(V)  
V
Static Min  
(V)  
V
Static Max  
(V)  
V
Transient  
Min (V)  
V
Transient  
Max (V)  
CC  
CC  
CC  
CC  
CC  
I
(A)  
CC  
35.0  
36.0  
37.0  
38.0  
39.0  
40.0  
1.230  
1.228  
1.226  
1.224  
1.222  
1.220  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
1.255  
1.253  
1.251  
1.249  
1.247  
1.245  
1.185  
1.183  
1.181  
1.179  
1.177  
1.175  
1.275  
1.273  
1.271  
1.269  
1.267  
1.265  
Figure 4. Illustration of VCC Static and Transient Tolerances (VID = 1.30 V)  
1.400  
Vcc Transient Maximum  
Vcc Static Maximum  
1.350  
1.300  
1.250  
1.200  
1.150  
1.100  
1.050  
Vcc Nominal  
Vcc Static Minimum  
Vcc Transient Minimum  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
Icc Maximum (A)  
Table 9. IMVP-III Deep Sleep State Voltage Regulator Tolerances (VID = 1.30 V, VID Offset =  
4.62%)  
V
Nominal  
(V)  
V
Static Min  
(V)  
V
Static Max  
(V)  
V
Transient  
Min (V)  
V
Transient  
Max (V)  
CC  
CC  
CC  
CC  
CC  
I
(A)  
CC  
0.0  
1.240  
1.238  
1.236  
1.234  
1.232  
1.230  
1.228  
1.226  
1.215  
1.213  
1.211  
1.209  
1.207  
1.205  
1.203  
1.201  
1.265  
1.263  
1.261  
1.259  
1.257  
1.255  
1.253  
1.251  
1.195  
1.193  
1.191  
1.189  
1.187  
1.185  
1.183  
1.181  
1.285  
1.283  
1.281  
1.279  
1.277  
1.275  
1.273  
1.271  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
251308-002  
25  
Datasheet  
Electrical Specifications  
Table 9. IMVP-III Deep Sleep State Voltage Regulator Tolerances (VID = 1.30 V, VID Offset =  
4.62%)  
V
Nominal  
(V)  
V
Static Min  
(V)  
V
Static Max  
(V)  
V
Transient  
Min (V)  
V
Transient  
Max (V)  
CC  
CC  
CC  
CC  
CC  
I
(A)  
CC  
8.0  
1.224  
1.222  
1.220  
1.199  
1.197  
1.195  
1.249  
1.247  
1.245  
1.179  
1.177  
1.175  
1.269  
1.267  
1.265  
9.0  
10.0  
Figure 5. Illustration of Deep Sleep VCC Static and Transient Tolerances (VID Setting = 1.30 V)  
1.300  
Vcc Transient Maximum  
1.280  
Vcc Static Maximum  
1.260  
1.240  
1.220  
1.200  
1.180  
1.160  
1.140  
1.120  
Vcc Nominal  
Vcc Static Minimum  
Vcc Transient Minimum  
0
1
2
3
4
5
6
7
8
9
10  
11  
Isb Maximum (A)  
251308-002  
26  
Datasheet  
Electrical Specifications  
Table 10. System Bus Differential BCLK Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure Notes  
Input Low  
Voltage  
V
-0.150  
0.000  
N/A  
V
V
V
9
9
L
Input High  
Voltage  
V
0.660  
0.710  
N/A  
0.850  
H
Absolute  
Crossing Point  
V
0.250  
0.550  
9, 10  
2,3,8  
2,3,8,9  
2,10  
CROSS(abs)  
0.250 +  
0.550 +  
Relative  
Crossing Point  
V
N/A  
N/A  
V
V
9, 10  
9, 10  
CROSS(rel)  
0.5(V  
- 0.710)  
0.5(V  
- 0.710)  
Havg  
Havg  
Range of  
Crossing Points  
V  
N/A  
0.140  
CROSS  
V
Overshoot  
N/A  
N/A  
N/A  
V
+ 0.3  
H
V
V
9
9
4
5
OV  
US  
V
Undershoot  
-0.300  
N/A  
N/A  
+ 0.100  
Ringback  
Margin  
V
0.200  
N/A  
N/A  
V
V
9
9
6
7
RBM  
Threshold  
Margin  
VTM  
V
- 0.100  
V
CROSS  
CROSS  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 equals the  
falling edge of BCLK1.  
3. V  
is the statistical average of the V measured by the oscilloscope.  
Havg  
H
4. Overshoot is defined as the absolute value of the maximum voltage.  
5. Undershoot is defined as the absolute value of the minimum voltage.  
6. Ringback Margin is defined as the absolute voltage difference between the maximum Rising Edge Ringback  
and the maximum Falling Edge Ringback.  
7. Threshold Region is defined as a region entered around the crossing point voltage in which the differential  
receiver switches. It includes input threshold hysteresis.  
8. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
9. V  
can be measured directly using "Vtop" on Agilent* scopes and "High" on Tektronix* scopes.  
Havg  
10.V  
is defined as the total variation of all crossing voltages as defined in note 2.  
CROSS  
251308-002  
27  
Datasheet  
Electrical Specifications  
Table 11. AGTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit Notes  
GTLREF  
VIH  
Reference Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
2/3 Vcc - 2%  
2/3 Vcc + 2%  
V
1.10*GTLREF  
VCC  
V
V
2,6  
VIL  
0.0  
N/A  
N/A  
N/A  
N/A  
7
0.9*GTLREF  
3,4,6  
VOH  
IOL  
Vcc  
50  
V
7
6
8
9
5
mA  
µA  
µA  
IHI  
100  
500  
11  
ILO  
RON  
Buffer On Resistance  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
4. VIH and VOH may experience excursions above V . However, input signal drivers must comply with the  
CC  
signal quality specifications in Section 3.  
5. Refer to processor I/O Buffer Models for I/V characteristics.  
6. The V referred to in these specifications is the instantaneous V  
.
CC  
CC  
7. Vol max of 0.450 Volts is guaranteed when driving into a test load of 50 as indicated in Figure 7.  
8. Leakage to V with pin held at V  
.
CC  
SS  
9. Leakage to V with pin held at 300 mV.  
CC  
251308-002  
28  
Datasheet  
Electrical Specifications  
Table 12. Asynchronous GTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit Notes  
Input High Voltage  
Asynch GTL+  
1.10*GTLREF  
VCC  
VIH  
V
V
3, 4, 5  
5
Input Low Voltage  
Asynch. GTL+  
VIL  
0
0.9*GTLREF  
VOH  
IOL  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
N/A  
N/A  
N/A  
N/A  
VCC  
50  
V
2, 3, 4  
6, 8  
9
mA  
µA  
µA  
I
100  
500  
HI  
I
10  
LO  
Buffer On Resistance  
Asynch GTL+  
Ron  
7
11  
5, 7  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. All outputs are open-drain.  
3. V and V  
may experience excursions above V . However, input signal drivers must comply with the  
IH  
OH  
CC  
signal quality specifications in Chapter 3.0.  
4. The V referred to in these specifications refers to instantaneous V  
.
CC  
CC  
5. This specification applies to the asynchronous GTL+ signal group.  
6. The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load shown in Figure 7.  
7. Refer to the processor I/O Buffer Models for I/V characteristics.  
8. Vol max of 0.270 Volts is guaranteed when driving into a test load of 50 as indicated in Figure 7 for the  
Asynchronous GTL+ signals.  
9. Leakage to V with pin held at V  
.
SS  
CC  
10. Leakage to V with pin held at 300 mV.  
CC  
251308-002  
29  
Datasheet  
Electrical Specifications  
Table 13. PWRGOOD and TAP Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit Notes  
VHYS  
Input Hysteresis  
200  
300  
mV  
V
8
5
Input Low to High  
Threshold Voltage  
VT+  
VT-  
1/2*(Vcc+VHYS_MIN)  
1/2*(Vcc-VHYS_MAX)  
1/2*(Vcc+VHYS_MAX)  
Input High to Low  
Threshold Voltage  
1/2*(Vcc-VHYS_MIN)  
V
5
VOH  
IOL  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
N/A  
N/A  
N/A  
N/A  
8.75  
VCC  
40  
V
mA  
µA  
µA  
2,3,5  
6,7  
9
I
100  
500  
13.75  
HI  
I
10  
4
LO  
Ron  
Buffer On Resistance  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. All outputs are open-drain.  
3. TAP signal group must comply with the signal quality specifications in Section 3.  
4. Refer to I/O Buffer Models for I/V characteristics.  
5. The V referred to in these specifications refers to instantaneous V  
.
CC  
CC  
6. The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load shown if Figure 7.  
7. Vol max of 0.320 Volts is guaranteed when driving into a test load of 50 Ohms as indicated in Figure 7 for the  
TAP Signals.  
8. VHYS represents the amount of hysteresis, nominally centered about 1/2 Vcc for all TAP inputs.  
9. Leakage to V with pin held at V  
.
SS  
CC  
10.Leakage to V with pin held at 300 mV.  
CC  
Table 14. ITPCLKOUT[1:0] DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Ron  
Buffer On Resistance  
27  
46  
2,3  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. See Figure 6 for ITPCLKOUT[1:0] output buffer diagram.  
251308-002  
30  
Datasheet  
Electrical Specifications  
Figure 6. ITPCLKOUT[1:0] Output Buffer Diagram  
Vcc  
Ron  
To Debug Port  
Processor Package  
Rext  
NOTES:  
1. See Table 14 for range of Ron.  
2. The Vcc referred to in this figure is the instantaneous Vcc.  
3. Refer to the appropriate platform design guidelines for the value of Rext.  
Table 15. BSEL [1:0] and VID[4:0] DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Ron  
(BSEL)  
Buffer On Resistance  
9.2  
14.3  
2
Ron  
(VID)  
Buffer On Resistance  
Pin Leakage Hi  
7.8  
12.8  
100  
2
3
I
N/A  
µA  
HI  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. Leakage to Vss with pin held at 2.50 V.  
2.12  
AGTL+ System Bus Specifications  
Routing topology recommendations may be found in the Mobile IntelPentium4 Processor-M  
and Intel845MP/845MZ Chipset Platform Design Guide. Termination resistors are not required  
for most AGTL+ signals, as these are integrated into the processor silicon.  
Valid high and low levels are determined by the input buffers that compare a signal’s voltage with a  
reference voltage called GTLREF (known as VREF in previous documentation).  
Table 16 lists the GTLREF specifications. The AGTL+ reference voltage (GTLREF) should be  
generated on the system board using high precision voltage divider circuits. It is important that the  
system board impedance is held to the specified tolerance, and that the intrinsic trace capacitance  
251308-002  
31  
Datasheet  
Electrical Specifications  
for the AGTL+ signal group traces is known and well-controlled. For more details on platform  
design see the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform  
Design Guide.  
Table 16. AGTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
Bus Reference  
Voltage  
GTLREF  
2/3 V -2%  
2/3 V  
2/3 V +2%  
V
2, 3, 6  
CC  
CC  
CC  
Termination  
Resistance  
RTT  
45  
50  
55  
4
5
COMP  
Resistance  
COMP[1:0]  
50.49  
51  
51.51  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
1. The tolerances for this specification have been stated generically to enable the system designer to calculate  
the minimum and maximum values across the range of V  
.
CC  
1. GTLREF should be generated from V by a voltage divider of 1% tolerance resistors or 1% tolerance  
CC  
matched resistors. Refer to the Mobile Intel Pentium 4 Processor-M and Intel 845MP/845MZ Chipset  
Platform Design Guide for implementation details.  
1. R is the on-die termination resistance measured at V of the AGTL+ output driver. Refer to processor I/O  
TT  
OL  
buffer models for I/V characteristics.  
1. COMP resistance must be provided on the system board with 1% tolerance resistors. See the Mobile Intel  
Pentium 4 Processor-M and Intel 845MP/845MZ Chipset Platform Design Guide for implementation  
details.  
1. The V referred to in these specifications is the instantaneous V  
.
CC  
CC  
2.13  
System Bus AC Specifications  
The processor system bus timings specified in this section are defined at the processor core  
(pads). See Section 5.2 for the Mobile Intel Celeron Processor pin signal definitions.  
Table 17 through Table 24 list the AC specifications associated with the processor system bus.  
All AGTL+ timings are referenced to GTLREF for both “0” and “1” logic levels unless otherwise  
specified.  
The timings specified in this section should be used in conjunction with the I/O buffer models  
provided by Intel. These I/O buffer models, which include package information, are available for  
the Mobile Intel Celeron Processor in IBIS format. AGTL+ layout guidelines are also available in  
the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset Platform Design  
Guide.  
Unless specified otherwise, all Mobile Intel Celeron Processor AC specifications are at TJ =  
100°C. Care should be taken to read all notes associated with a particular timing parameter.  
251308-002  
32  
Datasheet  
Electrical Specifications  
Table 17. System Bus Differential Clock Specifications  
1
T# Parameter  
System Bus Frequency  
Min  
Nom  
Max  
Unit  
Figure  
Notes  
100  
10.2  
200  
6.12  
6.12  
700  
700  
MHz  
ns  
T1: BCLK[1:0] Period  
10.0  
9
2
T2: BCLK[1:0] Period Stability  
T3: BCLK[1:0] High Time  
T4: BCLK[1:0] Low Time  
T5: BCLK[1:0] Rise Time  
T6: BCLK[1:0] Fall Time  
ps  
3
3.94  
3.94  
175  
175  
5
5
ns  
9
9
9
9
ns  
ps  
4
4
ps  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
1. The period specified here is the average period. A given period may vary from this specification as governed  
by the period stability specification (T2).  
1. In this context, period stability is defined as the worst case timing difference between successive crossover  
voltages. In other words, the largest absolute difference between adjacent clock periods must be less than  
the period stability.  
1. Slew rate is measured between the 35% and 65% points of the clock swing (V to V ).  
L
H
.
Table 18. System Bus Common Clock AC Specifications  
1,2,3  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T10: Common Clock Output Valid Delay  
T11: Common Clock Input Setup Time  
T12: Common Clock Input Hold Time  
T13: RESET# Pulse Width  
0.12  
0.65  
0.40  
1
1.55  
ns  
ns  
11  
11  
11  
12  
4
5
ns  
5
10  
ms  
6, 7, 8  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
1. Not 100% tested. Specified by design characterization.  
1. All common clock AC timings for AGTL+ signals are referenced to the Crossing Voltage (V  
) of the  
CROSS  
BCLK[1:0] at rising edge of BCLK0. All common clock AGTL+ signal timings are referenced at GTLREF at the  
processor core.  
1. Valid delay timings for these signals are specified into the test circuit described in Figure 7 and with GTLREF  
at 2/3 V ± 2%.  
CC  
1. Specification is for a minimum swing defined between AGTL+ V  
of 0.4 V/ns to 4.0 V/ns.  
to V  
. This assumes an edge rate  
IH_MIN  
IL_MAX  
1. RESET# can be asserted asynchronously, but must be deasserted synchronously.  
1. This should be measured after V and BCLK[1:0] become stable.  
CC  
1. Maximum specification applies only while PWRGOOD is asserted.  
.
251308-002  
33  
Datasheet  
Electrical Specifications  
Table 19. System Bus Source Synch AC Specifications AGTL+ Signal Group  
1,2,3,4  
T# Parameter  
Min  
Typ  
Max  
Unit  
Figure Notes  
T20: Source Synchronous Data Output  
Valid Delay (first data/address only)  
0.20  
1.20  
ns  
13, 14  
14  
5
T21: T  
: Source Synchronous Data  
VBD  
0.85  
0.85  
1.88  
1.88  
0.21  
0.21  
0.65  
ns  
ns  
5, 8  
5, 9  
5, 8  
5, 9  
6
Output Valid Before Strobe  
T22: T : Source Synchronous Data  
VAD  
14  
Output Valid After Strobe  
T23: T : Source Synchronous  
VBA  
ns  
13  
Address Output Valid Before Strobe  
T24: T : Source Synchronous  
VAA  
ns  
13  
Address Output Valid After Strobe  
T25: T : Source Synchronous Input  
SUSS  
ns  
13, 14  
13, 14  
13, 14  
13  
Setup Time to Strobe  
T26: T : Source Synchronous Input  
HSS  
ns  
6
Hold Time to Strobe  
T27: T : Source Synchronous Input  
SUCC  
ns  
7
Setup Time to BCLK[1:0]  
T28: T : First Address Strobe to  
FASS  
1/2  
n/4  
BCLK  
BCLK  
ns  
10  
Second Address Strobe  
T29: T : First Data Strobe to  
FDSS  
14  
11, 12  
13  
Subsequent Strobes  
T30: Data Strobe ‘n’ (DSTBN#) Output  
valid Delay  
8.80  
2.27  
10.20  
4.23  
14  
T31: Address Strobe Output Valid  
Delay  
ns  
13  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies and cache sizes.  
2. Not 100% tested. Specified by design characterization.  
3. All source synchronous AC timings are referenced to their associated strobe at GTLREF. Source  
synchronous data signals are referenced to the falling edge of their associated data strobe. Source  
synchronous address signals are referenced to the rising and falling edge of their associated address strobe.  
All source synchronous AGTL+ signal timings are referenced to GTLREF at the processor core.  
4. Unless otherwise noted these specifications apply to both data and address timings.  
5. Valid delay timings for these signals are specified into the test circuit described in Figure 7 and with GTLREF  
at 2/3 V ± 2%.  
CC  
6. Specification is for a minimum swing defined between AGTL+ V  
of 0.3 V/ns to 4.0V /ns.  
to V  
. This assumes an edge rate  
IH_MIN  
IL_MAX  
7. All source synchronous signals must meet the specified setup time to BCLK as well as the setup time to each  
respective strobe.  
8. This specification represents the minimum time the data or address will be valid before its strobe. Refer to the  
Mobile Intel Pentium 4 Processor-M and Intel 845MP/845MZ Chipset Platform Design Guide for more  
information on the definitions and use of these specifications.  
9. This specification represents the minimum time the data or address will be valid after its strobe. Refer to the  
Mobile Intel Pentium 4 Processor-M and Intel 845MP/845MZ Chipset Platform Design Guide for more  
information on the definitions and use of these specifications.  
10.The rising edge of ADSTB# must come approximately 1/2 BCLK period (5 ns) after the falling edge of  
ADSTB#.  
11.For this timing parameter, n = 1, 2, and 3 for the second, third, and last data strobes respectively.  
12.The second data strobe (falling edge of DSTBn#) must come approximately 1/4 BCLK period (2.5 ns) after  
the first falling edge of DSTBp#. The third data strobe (falling edge of DSTBp#) must come approximately 2/4  
BCLK period (5 ns) after the first falling edge of DSTBp#. The last data strobe (falling edge of DSTBn#) must  
come approximately 3/4 BCLK period (7.5 ns) after the first falling edge of DSTBp#.  
13.This specification applies only to DSTBN[3:0]# and is measured to the second falling edge of the strobe.  
251308-002  
34  
Datasheet  
Electrical Specifications  
Table 20. Miscellaneous Signals AC Specifications  
1,2,3,6  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T35: Asynch GTL+ Input Pulse Width  
2
1
BCLKs  
T36: PWRGOOD to RESET# de-assertion  
time  
10  
ms  
15  
T37: PWRGOOD Inactive Pulse Width  
T38: PROCHOT# pulse width  
10  
BCLKs  
15  
17  
18  
4
500  
us  
s
5
T39: THERMTRIP# to Vcc Removal  
0.5  
5
T40: FERR# Valid Delay from STPCLK#  
deassertion  
0
BCLKs  
19  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. All AC timings for the Asynch GTL+ signals are referenced to the BCLK0 rising edge at Crossing Voltage. All  
Asynch GTL+ signal timings are referenced at GTLREF. PWRGOOD is referenced to the BCLK0 rising edge  
at 0.5*V  
CC  
3. These signals may be driven asynchronously.  
4. Refer to the PWRGOOD definition for more details regarding the behavior of this signal.  
5. Length of assertion for PROCHOT# does not equal internal clock modulation time. Time is allocated after the  
assertion and before the deassertion of PROCHOT# for the processor to complete current instruction  
execution.  
6. See Section 7.2 for additional timing requirements for entering and leaving the low power states.  
Table 21. System Bus AC Specifications (Reset Conditions)  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T45: Reset Configuration Signals (A[31:3]#,  
BR0#, INIT#, SMI#) Setup Time  
4
BCLKs  
12  
1
2
T46: Reset Configuration Signals (A[31:3]#,  
BR0#, INIT#, SMI#) Hold Time  
2
20  
BCLKs  
12  
NOTES:  
1. Before the deassertion of RESET#.  
2. After clock that deasserts RESET#.  
251308-002  
35  
Datasheet  
Electrical Specifications  
Table 22. TAP Signals AC Specifications  
1,2,3  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T55: TCK Period  
60.0  
ns  
ns  
8
8
T56: TCK Rise Time  
T57: TCK Fall Time  
10.0  
10.0  
8.5  
4
4
ns  
8
T58: TMS Rise Time  
T59: TMS Fall Time  
T61: TDI Setup Time  
T62: TDI Hold Time  
ns  
8
4
8.5  
ns  
8
4, 9  
5, 7  
5, 7  
6
0
3
ns  
20  
20  
20  
17  
ns  
T63: TDO Clock to Output Delay  
T64: TRST# Assert Time  
3.5  
ns  
2
TCK  
8, 9  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Not 100% tested. Specified by design characterization.  
3. All AC timings for the TAP signals are referenced to the TCK signal at 0.5*V at the processor pins. All TAP  
CC  
signal timings (TMS, TDI, etc) are referenced at 0.5*V at the processor pins.  
CC  
4. Rise and fall times are measured from the 20% to 80% points of the signal swing.  
5. Referenced to the rising edge of TCK.  
6. Referenced to the falling edge of TCK.  
7. Specifications for a minimum swing defined between TAP V to V . This assumes a minimum edge rate of  
T-  
T+  
0.5 V/ns  
8. TRST# must be held asserted for 2 TCK periods to be guaranteed that it is recognized by the processor.  
9. It is recommended that TMS be asserted while TRST# is being deasserted.  
Table 23. ITPCLKOUT[1:0] AC Specifications  
1,2  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
T65: ITPCLKOUT Delay  
T66: Slew Rate  
400  
2
560  
8
ps  
21  
3
V/ns  
T67: ITPCLKOUT[1:0] High  
Time  
3.89  
3.89  
5
5
6.17  
6.17  
ns  
ns  
T68: ITPCLKOUT[1:0] Low  
Time  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. This delay is from rising edge of BCLK0 to the falling edge of ITPCLK0.  
251308-002  
36  
Datasheet  
Electrical Specifications  
.
Table 24. Stop Grant/Sleep/Deep Sleep AC Specifications  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T70: SLP# Signal Hold Time from Stop Grant  
Cycle Completion  
100  
BCLKs  
22  
T71: Input Signals Stable to SLP# Assertion  
T72: SLP# to DPSLP# Assertion  
10  
10  
0
BCLKs  
BCLKs  
µs  
22  
22  
22  
22  
1
2
T73: Deep Sleep PLL Lock Latency  
T74: SLP# Hold Time from PLL Lock  
30  
0
ns  
T75: STPCLK# Hold Time from SLP#  
Deassertion  
10  
10  
BCLKs  
BCLKs  
22  
22  
T76: Input Signal Hold Time from SLP#  
Deassertion  
NOTES:  
1. Input signals other than RESET# must be held constant in the Sleep state.  
1. The BCLK can be stopped after DPSLP# is asserted. The BCLK must be turned on and within specification  
before DPSLP# is deasserted.  
2.14  
Processor AC Timing Waveforms  
The following figures are used in conjunction with the AC timing tables, Table 17 through  
Table 24.  
Note: For Figure 8 through Figure 22, the following apply:  
5.All common clock AC timings for AGTL+ signals are referenced to the Crossing Voltage  
(VCROSS) of the BCLK[1:0] at rising edge of BCLK0. All common clock AGTL+ signal timings  
are referenced at GTLREF at the processor core.  
6.All source synchronous AC timings for AGTL+ signals are referenced to their associated strobe  
(address or data) at GTLREF. Source synchronous data signals are referenced to the falling edge  
of their associated data strobe. Source synchronous address signals are referenced to the rising  
and falling edge of their associated address strobe. All source synchronous AGTL+ signal  
timings are referenced at GTLREF at the processor core silicon.  
7.All AC timings for AGTL+ strobe signals are referenced to BCLK[1:0] at VCROSS. All AGTL+  
strobe signal timings are referenced at GTLREF at the processor core silicon.  
8.All AC timings for the TAP signals are referenced to the TCK signal at 0.5*VCC at the processor  
pins. All TAP signal timings (TMS, TDI, etc) are referenced at 0.5*VCC at the processor pins.  
The circuit used to test the AC specifications is shown in.  
251308-002  
37  
Datasheet  
Electrical Specifications  
Figure 7. AC Test Circuit  
VCC  
VCC  
Rload= 50 ohms  
2.4nH  
1.2pF  
420 mils, 50 ohms, 169 ps/in  
AC Timings test measurements made here.  
Figure 8. TCK Clock Waveform  
V2  
V3  
V1  
tr = T56, T58 (Rise Time)  
tf = T57, T59 (Fall Time)  
tp = T55 (TCK Period)  
V1,V2: For rise and fall times, TCK is measured  
between 20% to 80% points on the waveform  
V3: TCK is referenced to 0.5*Vcc  
251308-002  
38  
Datasheet  
Electrical Specifications  
.
Figure 9. Differential Clock Waveform  
Tph  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Crossing  
Voltage  
Crossing  
Voltage  
Ringback  
Margin  
Threshold  
Region  
Falling Edge  
Ringback,  
BCLK0  
VL  
Undershoot  
Tpl  
Tp  
Tp = T1 (BCLK[1:0] period)  
T2 = BCLK[1:0] Period stability (not shown)  
Tph =T3 (BCLK[1:0] pulse high time)  
Tpl = T4 (BCLK[1:0] pulse low time)  
T5 = BCLK[1:0] rise time through the threshold region  
T6 = BCLK[1:0] fall time through the threshold region  
251308-002  
39  
Datasheet  
Electrical Specifications  
Figure 10. Differential Clock Crosspoint Specification  
Crosspoint Specification  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
550 mV  
550 + 0.5 (VHavg - 710)  
250 + 0.5 (VHavg - 710)  
250 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
Vhavg (mV)  
Figure 11. System Bus Common Clock Valid Delay Timings  
T0  
T1  
T2  
BCLK1  
BCLK0  
TP  
Common Clock  
Signal (@ driver)  
valid  
valid  
TQ  
TR  
Common Clock  
Signal (@ receiver)  
valid  
TP = T10: TCO (Data Valid Output Delay)  
Q = T11: TSU (Common Clock Setup)  
T
TR = T12: TH (Common Clock Hold Time)  
251308-002  
40  
Datasheet  
Electrical Specifications  
Figure 12. System Bus Reset and Configuration Timings  
BCLK  
Tt  
Reset  
Tv  
Tx  
Tw  
Configuration  
A[31:3], SMI#,  
INIT#, BR[3:0]#  
Valid  
Tv = T13 (RESET# Pulse Width)  
Tw = T45 (Reset Configuration Signals Setup TIme)  
Tx = T46 (Reset Configuration Signals Hold TIme)  
Figure 13. Source Synchronous 2X (Address) Timings  
T1  
T2  
2.5 ns 5.0 ns 7.5 ns  
BCLK1  
BCLK0  
TP  
ADSTB# (@ driver)  
A# (@ driver)  
TR  
TH  
TJ  
TH  
TJ  
valid  
valid  
TS  
ADSTB# (@ receiver)  
A# (@ receiver)  
TK  
valid  
valid  
TN  
TM  
TH = T23: Source Sync. Address Output Valid Before Address Strobe  
TJ = T24: Source Sync. Address Output Valid After Address Strobe  
TK = T27: Source Sync. Input Setup to BCLK  
TM = T26: Source Sync. Input Hold Time  
TN = T25: Source Sync. Input Setup Time  
TP = T28: First Address Strobe to Second Address Strobe  
TS = T20: Source Sync. Output Valid Delay  
TR = T31: Address Strobe Output Valid Delay  
251308-002  
41  
Datasheet  
Electrical Specifications  
Figure 14. Source Synchronous 4X Timings  
T0  
T1  
T2  
2.5 ns 5.0 ns 7.5 ns  
BCLK1  
BCLK0  
DSTBp# (@ driver)  
DSTBn# (@ driver)  
TH  
TD  
TA TB TA  
D# (@ driver)  
TJ  
DSTBp# (@ receiver)  
DSTBn# (@ receiver)  
D# (@ receiver)  
TC  
TE TG TE TG  
TA = T21: Source Sync. Data Output Valid Delay Before Data Strobe  
TB = T22: Source Sync. Data Output Valid Delay After Data Strobe  
T
C = T27: Source Sync. Setup Time to BCLK  
TD = T30: Source Sync. Data Strobe 'N' (DSTBN#) Output Valid Delay  
TE = T25: Source Sync. Input Setup Time  
T
T
G = T26: Source Sync. Input Hold Time  
H = T29: First Data Strobe to Subsequent Strobes  
TJ = T20: Source Sync. Data Output Valid Delay  
251308-002  
42  
Datasheet  
Electrical Specifications  
Figure 15. Power Up Sequence  
BCLK  
Vcc  
PWRGOOD  
RESET#  
VCCVID  
Tc  
Td  
Ta  
Tb  
VID_GOOD  
VID[4:0],  
BSEL[1:0]  
Ta= 1us minimum (VCCVID > 1V to VID_GOOD high)  
Tb= 50ms maximum (VID_GOOD to Vcc valid maximum time)  
Tc= T37 (PWRGOOD inactive pulse width)  
Td= T36 (PWRGOOD to RESET# de-assertion time)  
Note: VID_GOOD is not a processor signal. This signal is routed to the  
output enable pin of the voltage regluator control silicon. For more  
information on implementation refer to the Intel Mobile Northwood  
Processor and Intel 845MP Platform RDDP.  
Figure 16. Power Down Sequence  
Vcc  
PWRGOOD  
VCCVID  
VID_GOOD  
VID[4:0]  
Note: VID_GOOD is not a processor signal. This signal is routed to the  
output enable pin of the voltage regluator control silicon. For more  
information on implementation refer to the Intel Mobile Northwood  
Processor and Intel 845MP Platform RDDP.  
1. This timing diagram is not intended to show specific times. Instead a  
general ordering of events with respect to time should be observed.  
2. When VCCVID is less than 1V, VID_GOOD must be low.  
3. Vcc must be disabled before VID[4:0] becomes invalid.  
4. VCCVID and Vcc regulator can be disabled simultaneously  
251308-002  
43  
Datasheet  
Electrical Specifications  
Figure 17. Test Reset Timings  
V  
TRST#  
T
q
Tq = T64 (TRST# Pulse Width), V=0.5*Vcc  
T38 (PROCHOT# Pulse Width), V=GTLREF  
Figure 18. THERMTRIP# to Vcc Timing  
T39  
THERMTRIP#  
Vcc  
T39 < 0.5 seconds  
Note: THERMTRIP# is undefined when RESET# is active  
Figure 19. FERR#/PBE# Valid Delay Timing  
BCLK  
system bus  
STPCLK#  
SG  
Ack  
Ta  
FERR#/  
PBE#  
FERR# undefined  
PBE#  
undefined FERR#  
Ta = T40 (FERR# Valid Delay from STPCLK# Deassertion)  
Note: FERR#/PBE# is undefined from STPCLK# assertion until the stop grant acknowledge is driven on the processor system  
bus. FERR#/PBE# is also undefined for a period of Ta from STPCLK# deassertion. Inside these undefined regions the PBE#  
signal is driven. FERR# is driven at all other times.  
251308-002  
44  
Datasheet  
Electrical Specifications  
Figure 20. TAP Valid Delay Timing  
V
TCK  
Tx  
Ts  
Th  
Signal  
V Valid  
Tx = T63 (Valid Time)  
Ts = T61 (Setup Time)  
Th = T62 (Hold Time)  
V = 0.5 * Vcc  
Figure 21. ITPCLKOUT Valid Delay Timing  
Tx  
BCLK  
ITPCLKOUT  
T65 = Tx = BCLK input to ITPCLKOUT output delay  
251308-002  
45  
Datasheet  
Electrical Specifications  
Figure 22. Stop Grant/Sleep/Deep Sleep Timing  
Stop  
Grant  
Stop  
Grant  
Normal  
Sleep  
Deep Sleep  
Sleep  
Normal  
BCLK[1:0]  
DPSLP#  
Tv  
STPCLK#  
Ty  
CPU bus  
SLP#  
stpgnt  
Tw  
Tx  
Tt  
Tu  
Changing  
Tz  
Compatibility  
Signals  
Changing  
Frozen  
V0011-02  
Tt = T70 (Stop Grant Acknowledge Bus Cycle Completion to SLP# Assertion Delay)  
Tu = T71 (Input Signals Stable to SLP# assertion requirement)  
Tv = T72 (SLP# to DPSLP# assertion)  
Tw = T73 (Deep Sleep PLL lock latency)  
Tx = T74 (SLP# Hold Time)  
Ty = T75 (STPCLK# Hold Time)  
Tz = T76 (Input Signal Hold Time)  
251308-002  
46  
Datasheet  
System Bus Signal Quality Specifications  
3 System Bus Signal Quality  
Specifications  
Source synchronous data transfer requires the clean reception of data signals and their associated  
strobes. Ringing below receiver thresholds, non-monotonic signal edges, and excessive voltage  
swing will adversely affect system timings. Ringback and signal non-monotinicity cannot be  
tolerated since these phenomena may inadvertently advance receiver state machines. Excessive  
signal swings (overshoot and undershoot) are detrimental to silicon gate oxide integrity, and can  
cause device failure if absolute voltage limits are exceeded. Additionally, overshoot and  
undershoot can cause timing degradation due to the build up of inter-symbol interference (ISI)  
effects. For these reasons, it is important that the designer work to achieve a solution that provides  
acceptable signal quality across all systematic variations encountered in volume manufacturing.  
This section documents signal quality metrics used to derive topology and routing guidelines  
through simulation and for interpreting results for signal quality measurements of actual designs.  
The Mobile Intel Celeron Processor IBIS models should be used while performing signal integrity  
simulations.  
3.1  
System Bus Clock (BCLK) Signal Quality  
Specifications and Measurement Guidelines  
Table 25 describes the signal quality specifications at the processor pads for the processor system  
bus clock (BCLK) signals. Figure 23 describes the signal quality waveform for the system bus  
clock at the processor pads.  
Table 25. BCLK Signal Quality Specifications  
1
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
BCLK[1:0] Overshoot  
N/A  
N/A  
0.20  
N/A  
0.30  
0.30  
N/A  
V
V
V
V
23  
23  
23  
23  
BCLK[1:0] Undershoot  
BCLK[1:0] Ringback Margin  
BCLK[1:0] Threshold Region  
2
0.10  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all Mobile Intel Celeron Processor frequencies.  
1. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the BCLK signal can dip back to after passing the VIH (rising) or VIL (falling) voltage limits. This  
specification is an absolute value.  
251308-002  
47  
Datasheet  
System Bus Signal Quality Specifications  
Figure 23. BCLK Signal Integrity Waveform  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Crossing  
Voltage  
Crossing  
Voltage  
Ringback  
Margin  
Threshold  
Region  
Falling Edge  
Ringback,  
BCLK0  
VL  
Undershoot  
3.2  
System Bus Signal Quality Specifications and  
Measurement Guidelines  
Various scenarios have been simulated to generate a set of AGTL+ layout guidelines which are  
available in the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset  
Platform Design Guide.  
Table 26 and Table 27 provides the signal quality specifications for all processor signals for use in  
simulating signal quality at the processor core silicon (pads).  
Mobile Intel Celeron Processor maximum allowable overshoot and undershoot specifications for a  
given duration of time are detailed in Table 28 through Table 31. Figure 24 shows the system bus  
ringback tolerance for low-to-high transitions and Figure 25 shows ringback tolerance for high-to-  
low transitions.  
Table 26. Ringback Specifications for AGTL+ and Asynchronous GTL+ Signal Groups  
Maximum Ringback  
(with Input Diodes Present)  
Notes  
Signal Group  
All Signals  
Transition  
Unit  
Figure  
0 →  
1 →  
1
0
GTLREF + 10%  
GTLREF - 10%  
V
V
24  
25  
1,2,3,4,5,6,7  
1,2,3,4,5,6,7  
All Signals  
NOTES:  
1. All signal integrity specifications are measured at the processor silicon (pads).  
1. Unless otherwise noted, all specifications in this table apply to all Mobile Intel Celeron Processor frequencies.  
1. Specifications are for the edge rate of 0.3 - 4.0 V/ns.  
1. All values specified by design characterization.  
1. Please see Section 3.3 for maximum allowable overshoot.  
1. Ringback between GTLREF + 10% and GTLREF - 10% is not supported.  
1. Intel recommends simulations not exceed a ringback value of GTLREF ± 200 mV to allow margin for other  
sources of system noise.  
251308-002  
48  
Datasheet  
System Bus Signal Quality Specifications  
Table 27. Ringback Specifications for PWRGOOD Input and TAP Signal Groups  
Maximum Ringback  
(with Input Diodes Present)  
Notes  
Signal Group  
Transition  
Unit  
Figure  
TAP and PWRGOOD  
TAP and PWRGOOD  
0 1  
1 0  
Vt+(max) TO Vt-(max)  
Vt-(min) TO Vt+(min)  
V
V
26  
27  
1,2,3,4  
1,2,3,4  
NOTES:  
1. All signal integrity specifications are measured at the processor silicon.  
2. Unless otherwise noted, all specifications in this table apply to all Mobile Intel Celeron Processor frequencies.  
3. Please see Section 3.3 for maximum allowable overshoot.  
4. Please see Section 2.11 for the DC specifications.  
Figure 24. Low-to-High System Bus Receiver Ringback Tolerance  
VCC  
Noise  
Margin  
+10% GTLREF  
GTLREF  
-10% GTLREF  
VSS  
Figure 25. High-to-Low System Bus Receiver Ringback Tolerance  
VCC  
+10% GTLREF  
GTLREF  
-10% GTLREF  
Noise  
Margin  
VSS  
251308-002  
49  
Datasheet  
System Bus Signal Quality Specifications  
Figure 26. Low-to-High System Bus Receiver Ringback Tolerance for PWRGOOD and TAP  
Buffers  
Vcc  
Threshold Region to switch  
receiver to a logic 1.  
Vt+ (max)  
Vt+ (min)  
0.5 * Vcc  
Vt- (max)  
Allowable Ringback  
Vss  
Figure 27. High-to-Low System Bus Receiver Ringback Tolerance for PWRGOOD and TAP  
Buffers  
Vcc  
Allowable Ringback  
Vt+ (min)  
0.5 * Vcc  
Vt- (max)  
Vt- (min)  
Threshold Region to switch  
receiver to a logic 0.  
Vss  
251308-002  
50  
Datasheet  
System Bus Signal Quality Specifications  
3.3  
System Bus Signal Quality Specifications and  
Measurement Guidelines  
3.3.1  
Overshoot/Undershoot Guidelines  
Overshoot (or undershoot) is the absolute value of the maximum voltage above the nominal high  
voltage (or below VSS) as shown in Figure 28. The overshoot guideline limits transitions beyond  
VCC or VSS due to the fast signal edge rates. The processor can be damaged by repeated overshoot  
or undershoot events on any input, output, or I/O buffer if the charge is large enough (i.e., if the  
over/undershoot is great enough). Determining the impact of an overshoot/undershoot condition  
requires knowledge of the magnitude, the pulse direction, and the activity factor (AF). Permanent  
damage to the processor is the likely result of excessive overshoot/undershoot.  
When performing simulations to determine impact of overshoot and undershoot, ESD diodes must  
be properly characterized. ESD protection diodes do not act as voltage clamps and will not provide  
overshoot or undershoot protection. ESD diodes modelled within Intel I/O buffer models do not  
clamp undershoot or overshoot and will yield correct simulation results. If other I/O buffer models  
are being used to characterize the Mobile Intel Celeron Processor system bus, care must be taken to  
ensure that ESD models do not clamp extreme voltage levels. Intel I/O buffer models also contain  
I/O capacitance characterization. Therefore, removing the ESD diodes from an I/O buffer model  
will impact results and may yield excessive overshoot/undershoot.  
3.3.2  
Overshoot/Undershoot Magnitude  
Magnitude describes the maximum potential difference between a signal and its voltage reference  
level. For the Mobile Intel Celeron Processor both are referenced to VSS. It is important to note that  
overshoot and undershoot conditions are separate and their impact must be determined  
independently.  
Overshoot/undershoot magnitude levels must observe the absolute maximum specifications listed  
in Table 28 through Table 31. These specifications must not be violated at any time regardless of  
bus activity or system state. Within these specifications are threshold levels that define different  
allowed pulse durations. Provided that the magnitude of the overshoot/undershoot is within the  
absolute maximum specifications, the pulse magnitude, duration and activity factor must all be  
used to determine if the overshoot/undershoot pulse is within specifications.  
3.3.3  
Overshoot/Undershoot Pulse Duration  
Pulse duration describes the total time an overshoot/undershoot event exceeds the overshoot/  
undershoot reference voltage (maximum overshoot = 1.700 V, maximum undershoot = -0.400 V).  
The total time could encompass several oscillations above the reference voltage. Multiple  
overshoot/undershoot pulses within a single overshoot/undershoot event may need to be measured  
to determine the total pulse duration.  
251308-002  
51  
Datasheet  
System Bus Signal Quality Specifications  
Note: Oscillations below the reference voltage can not be subtracted from the total overshoot/undershoot  
pulse duration.  
3.3.4  
Activity Factor  
Activity Factor (AF) describes the frequency of overshoot (or undershoot) occurrence relative to a  
clock. Since the highest frequency of assertion of any signal is every other clock, an AF = 1  
indicates that the specific overshoot (or undershoot) waveform occurs EVERY OTHER clock  
cycle. Thus, an AF = 0.01 indicates that the specific overshoot (or undershoot) waveform occurs  
one time in every 200 clock cycles.  
For source synchronous signals (address, data, and associated strobes), the activity factor is in  
reference to the strobe edge, since the highest frequency of assertion of any source synchronous  
signal is every active edge of its associated strobe. An AF = 1 indicates that the specific overshoot  
(undershoot) waveform occurs every strobe cycle.  
The specifications provided in Table 28 through Table 31 show the maximum pulse duration  
allowed for a given overshoot/undershoot magnitude at a specific activity factor. Each table entry is  
independent of all others, meaning that the pulse duration reflects the existence of overshoot/  
undershoot events of that magnitude ONLY. A platform with an overshoot/undershoot that just  
meets the pulse duration for a specific magnitude where the AF < 1, means that there can be no  
other overshoot/undershoot events, even of lesser magnitude (note that if AF = 1, then the event  
occurs at all times and no other events can occur).  
Note: 1: Activity factor for AGTL+ signals is referenced to BCLK[1:0] frequency.  
Note: 2: Activity factor for source synchronous (2x) signals is referenced to ADSTB[1:0]#.  
Note: 3: Activity factor for source synchronous (4x) signals is referenced to DSTBP[3:0]# and  
DSTBN[3:0]#.  
3.3.5  
Reading Overshoot/Undershoot Specification Tables  
The overshoot/undershoot specification for the Mobile Intel Celeron Processor is not a simple  
single value. Instead, many factors are needed to determine what the over/undershoot specification  
is. In addition to the magnitude of the overshoot, the following parameters must also be known: the  
width of the overshoot (as measured above VCC) and the activity factor (AF). To determine the  
allowed overshoot for a particular overshoot event, the following must be done:  
1. Determine the signal group a particular signal falls into. If the signal is an AGTL+ signal  
operating in the common clock domain, use Table 30. For AGTL+ signals operating in the 2x  
source synchronous domain, use Table 29. For AGTL+ signals operating in the 4x source  
synchronous domain, use Table 28. Finally, all other signals reside in the 100MHz domain  
(asynchronous GTL+, TAP, etc.) and are referenced in Table 31.  
2. Determine the magnitude of the overshoot (relative to VSS)  
3. Determine the activity factor (how often does this overshoot occur?)  
4. Next, from the appropriate specification table, determine the maximum pulse duration (in  
nanoseconds) allowed.  
251308-002  
52  
Datasheet  
System Bus Signal Quality Specifications  
5. Compare the specified maximum pulse duration to the signal being measured. If the pulse  
duration measured is less than the pulse duration shown in the table, then the signal meets the  
specifications.  
The above procedure is similar for undershoot after the undershoot waveform has been converted  
to look like an overshoot. Undershoot events must be analyzed separately from overshoot events as  
they are mutually exclusive.  
3.3.6  
Conformance Determination to Overshoot/Undershoot  
Specifications  
The overshoot/undershoot specifications listed in the following tables specify the allowable  
overshoot/undershoot for a single overshoot/undershoot event. However, most systems will have  
multiple overshoot and/or undershoot events that each have their own set of parameters (duration,  
AF and magnitude). While each overshoot on its own may meet the overshoot specification, when  
you add the total impact of all overshoot events, the system may fail. A guideline to ensure a  
system passes the overshoot and undershoot specifications is shown below.  
1. Ensure no signal ever exceeds VCC or -0.25 V OR  
2. If only one overshoot/undershoot event magnitude occurs, ensure it meets the over/undershoot  
specifications in the following tables OR  
3. If multiple overshoots and/or multiple undershoots occur, measure the worst case pulse  
duration for each magnitude and compare the results against the AF = 1 specifications. If all of  
these worst case overshoot or undershoot events meet the specifications (measured time <  
specifications) in the table (where AF=1), then the system passes.  
The following notes apply to Table 28 through Table 31.  
NOTES:  
1. Absolute Maximum Overshoot magnitude of 1.70 V must never be exceeded.  
2. Absolute Maximum Overshoot is measured relative to VSS, Pulse Duration of overshoot is measured relative  
to VCC  
.
3. Absolute Maximum Undershoot and Pulse Duration of undershoot is measured relative to VSS  
4. Ringback below VCC can not be subtracted from overshoots/undershoots.  
5. Lesser undershoot does not allocate longer or larger overshoot.  
6. OEM's are strongly encouraged to follow Intel provided layout guidelines.  
7. All values specified by design characterization.  
.
Table 28. Source Synchronous (400 MHz) AGTL+ Signal Group Overshoot/Undershoot  
Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse  
Pulse  
Pulse  
1,2  
Duration (ns) Duration (ns) Duration (ns)  
Notes  
AF = 1  
AF = 0.1  
AF = 0.01  
1.700  
1.650  
1.600  
1.550  
1.500  
-0.400  
-0.350  
-0.300  
-0.250  
-0.200  
0.11  
0.24  
0.53  
1.19  
5.00  
1.05  
2.40  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
251308-002  
53  
Datasheet  
System Bus Signal Quality Specifications  
Table 28. Source Synchronous (400 MHz) AGTL+ Signal Group Overshoot/Undershoot  
Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse  
Pulse  
Pulse  
1,2  
Duration (ns) Duration (ns) Duration (ns)  
Notes  
AF = 1  
AF = 0.1  
AF = 0.01  
1.450  
1.400  
1.350  
-0.150  
-0.100  
-0.050  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
NOTES:  
1. These specifications are measured at the processor core silicon.  
2. BCLK period is 10 ns.  
Table 29. Source Synchronous (200 MHz) AGTL+ Signal Group Overshoot/Undershoot  
Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse  
Pulse  
Pulse  
1,2  
Duration (ns) Duration (ns) Duration (ns)  
Notes  
AF = 1  
AF = 0.1  
AF = 0.01  
1.700  
1.650  
1.600  
1.550  
1.500  
1.450  
1.400  
1.350  
-0.400  
-0.350  
-0.300  
-0.250  
-0.200  
-0.150  
-0.100  
-0.050  
0.21  
0.48  
2.10  
4.80  
10.00  
10.00  
10.00  
10.00  
10.00  
10.00  
10.00  
10.00  
1.05  
10.00  
10.00  
10.00  
10.00  
10.00  
10.00  
2.38  
10.00  
10.00  
10.00  
10.00  
NOTES:  
1. These specifications are measured at the processor core silicon.  
2. BCLK period is 10 ns.  
Table 30. Common Clock (100 MHz) AGTL+ Signal Group Overshoot/Undershoot Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse  
Pulse  
Pulse  
1,2  
Duration (ns) Duration (ns) Duration (ns)  
Notes  
AF = 1  
AF = 0.1  
AF = 0.01  
1.700  
1.650  
1.600  
1.550  
1.500  
1.450  
1.400  
1.350  
-0.400  
-0.350  
-0.300  
-0.250  
-0.200  
-0.150  
-0.100  
-0.050  
0.42  
0.96  
4.20  
9.60  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
2.10  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
4.76  
20.00  
20.00  
20.00  
20.00  
251308-002  
54  
Datasheet  
System Bus Signal Quality Specifications  
NOTES:  
1. These specifications are measured at the processor core silicon.  
2. BCLK period is 10 ns.  
251308-002  
55  
Datasheet  
System Bus Signal Quality Specifications  
Table 31. Asynchronous GTL+, PWRGOOD Input, and TAP Signal Groups Overshoot/  
Undershoot Tolerance  
Absolute  
Maximum  
Overshoot  
(V)  
Absolute  
Maximum  
Undershoot  
(V)  
Pulse  
Pulse  
Pulse  
1,2  
Duration (ns) Duration (ns) Duration (ns)  
Notes  
AF = 1  
AF = 0.1  
AF = 0.01  
1.700  
1.650  
1.600  
1.550  
1.500  
1.450  
1.400  
1.350  
-0.400  
-0.350  
-0.300  
-0.250  
-0.200  
-0.150  
-0.100  
-0.050  
1.26  
2.88  
12.6  
28.8  
60.00  
60.00  
60.00  
60.00  
60.00  
60.00  
60.00  
60.00  
6.30  
60.00  
60.00  
60.00  
60.00  
60.00  
60.00  
14.28  
60.00  
60.00  
60.00  
60.00  
NOTES:  
1. These specifications are measured at the processor core silicon.  
2. BCLK period is 10 ns.  
Figure 28. Maximum Acceptable Overshoot/Undershoot Waveform  
Maximum  
Absolute  
Overshoot  
Time-dependent  
Overshoot  
VMAX  
VCC  
GTLREF  
VOL  
VSS  
VMIN  
Time-dependent  
Undershoot  
Maximum  
Absolute  
Undershoot  
000588  
251308-002  
56  
Datasheet  
Package Mechanical Specifications  
4 Package Mechanical  
Specifications  
The Mobile Intel Celeron Processor is packaged in a 478 pin Micro-FCPGA package. Different  
views of the package are shown in Figure 29 through Figure 31. Package dimensions are shown in  
Table 32.  
Figure 29. Micro-FCPGA Package Top and Bottom Isometric Views  
PACKAGE KEEPOUT  
CAPACITOR AREA  
DIE  
LABEL  
TOP VIEW  
BOTTOM VIEW  
251308-002  
57  
Datasheet  
Package Mechanical Specifications  
Figure 30. Micro-FCPGA Package - Top and Side Views  
0.286  
A
SUBSTRATE KEEPOUT ZONE  
DO NOT CONTACT PACKAGE  
INSIDE THIS LINE  
7 (K1)  
8 places  
5 (K)  
4 places  
1.25 MAX  
(A3)  
D1  
35 (D)  
Ø 0.32 (B)  
478 places  
A2  
E1  
2.03 ± 0.08  
35 (E)  
(A1)  
PIN A1 CORNER  
NOTE: All dimensions in millimeters. Values shown are for reference only.  
58  
251308-002  
Datasheet  
Package Mechanical Specifications  
Table 32. Micro-FCPGA Package Dimensions  
Symbol Parameter  
Min  
Max  
Unit  
A
-
Overall height, top of die to package seating plane  
1.81  
4.69  
1.95  
2.03  
5.15  
2.11  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
Overall height, top of die to PCB surface, including socket(1)  
A1  
A2  
A3  
B
Pin length  
Die height  
0.854  
Pin-side capacitor height  
Pin diameter  
-
1.25  
0.36  
35.1  
35.1  
0.28  
34.9  
34.9  
D
Package substrate length  
Package substrate width  
E
D1  
Die length  
11.62 (B0 Step)  
mm  
E1  
e
Die width  
11.34 (B0 Step)  
mm  
mm  
mm  
mm  
mm  
mm  
each  
kPa  
g
Pin pitch  
1.27  
K
Package edge keep-out  
Package corner keep-out  
Pin-side capacitor boundary  
Pin tip radial true position  
Pin count  
5
7
K1  
K3  
-
14  
<=0.254  
478  
N
Pdie Allowable pressure on the die for thermal solution  
-
689  
W
Package weight  
4.5  
Package Surface Flatness  
0.286  
mm  
NOTES:  
1. All Dimensions are Preliminary and subject to change. Values shown are for reference only.  
1. Overall height with socket is based on design dimensions of the Micro-FCPGA package and socket with no  
thermal solution attached. Values were based on design specifications and tolerances. This dimension is  
subject to change based on socket design, OEM motherboard design, or OEM SMT process.  
251308-002  
59  
Datasheet  
Package Mechanical Specifications  
Figure 31. Micro-FCPGA Package - Bottom View  
14 (K3)  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
14 (K3)  
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
25X 1.27  
(e)  
2
4
6
8
10 12 14 16 18 20 22 24 26  
25X 1.27  
(e)  
NOTE: All dimensions in millimeters. Values shown are for reference only.  
4.1  
Processor Pin-Out  
Figure 32 shows the top view pinout of the Mobile Intel Celeron Processor.  
60  
251308-002  
Datasheet  
Package Mechanical Specifications  
Figure 32.  
The Coordinates of the Processor Pins as Viewed From the Top of the Package.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
A
A
B
VSSSE VCCSE TESTHI  
VSS  
NC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
NC  
D#[2]  
VSS  
VSS  
D#[3]  
VSS  
VSS  
THERMTRIP#  
IGNNE#  
NSE  
NSE  
11  
B
C
THRMD  
A
FERR#/  
PBE#  
VSS  
SMI#  
VCC  
D#[0] D#[1]  
D#[6] D#[9]  
C
VSS PROCHOT#  
TDI  
THRMDC VSS A20M# VSS  
D#[4]  
VSS  
VSS  
D#[7] D#[8]  
VSS D#[12]  
D
D
LINT0 BPRI# VSS  
TCK  
VSS  
TDO  
VSS  
VCC  
D#[5] D#[13] VSS D#[15] D#[23]  
DSTBN#  
E
E
VSS DEFER#  
HITM#  
LINT1 TRST# VSS  
VCC DBI#[0]  
DSTBP#  
VSS D#[17] D#[21] VSS  
[0]  
F
F
RS#[0] VSS  
ADS# BNR#  
HIT# RS#[2] VSS GTLREF TMS  
VSS LOCK# RS#[1] VSS  
VCC GTLREF  
VSS D#[19] D#[20] VSS D#[22]  
[0]  
G
G
VSS D#[10] D#[18] VSS DBI#[1] D#[25]  
H
H
VSS DRDY# REQ#[4] VSS DBSY# BR0#  
REQ#[0] VSS REQ#[3]REQ#[2] VSS TRDY#  
D#[11] D#[16] VSS D#[26] D#[31] VSS  
DSTBP#  
J
J
D#[14] VSS  
D#[29] VSS DP#[0]  
[1]  
K
K
DSTBN#  
D#[30] VSS DP#[1] DP#[2]  
A#[6] A#[3]  
VSS  
A#[4] REQ#[1] VSS  
VSS  
[1]  
L
L
VSS ADSTB#[0]  
A#[5]  
VSS  
A#[9] A#[7]  
D#[24] D#[28] VSS COMP[0] DP#[3] VSS  
D#[27] VSS D#[32] D#[35] VSS D#[37]  
M
N
M
N
VSS A#[10] A#[11] VSS  
A#[8]  
A#[13]  
A#[12] A#[14] VSS A#[15] A#[16] VSS  
COMP[1] VSS A#[19] A#[20] VSS A#[24]  
VSS D#[33] D#[36] VSS D#[39] D#[38]  
DSTBP#  
TOP VIEW  
P
P
D#[34] VSS  
D#[41] VSS DBI#[2]  
[2]  
R
R
DSTBN#  
D#[40]  
A#[28]  
VSS A#[18] A#[21] VSS ADSTB#[1]  
VSS D#[43] D#[42] VSS  
[2]  
T
T
A#[17] A#[22] VSS A#[26] A#[30] VSS  
VSS D#[46] D#[47] VSS D#[45] D#[44]  
D#[52] VSS D#[50] D#[49] VSS D#[48]  
U
U
TESTHI  
A#[23] VSS A#[25] A#[31] VSS  
8
V
V
VSS A#[27] A#[32] VSS AP#[1] MCERR#  
DBI#[3] D#[53] VSS D#[54] D#[51] VSS  
DSTBP#  
VSS D#[57] D#[55]  
W
Y
W
Y
TESTHI  
9
VSS  
A#[29] A#[33] VSS  
INIT#  
VSS  
DSTBN#[3]  
[3]  
TESTHI  
A#[34] VSS  
10  
VSS BPM#[3]  
D#[60] VSS D#[58] D#[59] VSS D#[56]  
STPCLK#  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
ITPCLKOUT  
[0]  
VSS TESTHI1 BINIT# VSS BPM#[4] GTLREF VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
GTLREF  
VSS D#[63] D#[61] VSS  
D#[62]  
ITPCLKOU  
PWRGOODVSS RESET# SLP#  
A#[35] RSP#  
VSS  
VSS  
VCC  
VSS VSS  
BPM#[1]  
BPM#[5]  
T[1]  
AP#[0] VSS IERR# BPM#[2] VSS BPM#[0] VSS  
VSS TESTHI3 TESTHI2 VSS TESTHI5 TESTHI4 VSS ITP_CLK0  
TESTHI  
0
ITP_CL  
K1  
VSS  
VID4  
VSS  
NC  
NC  
VID2  
NC  
VSS  
VID1  
BSEL0 VCC  
VCC VCCA  
VSS  
NC  
VSSA  
VSS  
VSS  
DPSLP#  
DBR#  
NC  
BSEL1  
VID0  
VCCIO_  
PLL  
VID3  
VCC  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
SKTOC  
C#  
VCCVID VCC  
VCC BCLK[0] BCLK[1] NC  
VSS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
VSS  
VCC  
Other  
251308-002  
61  
Datasheet  
Package Mechanical Specifications  
This page intentionally left blank.  
62  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
5 Pin Listing and Signal Definitions  
5.1  
Mobile Intel Celeron Processor Pin Assignments  
Section 5.1 contains the preliminary pin list for the Mobile Intel Celeron Processor in Table 33 and  
Table 34. Table 33 is a listing of all processor pins ordered alphabetically by pin name. Table 34 is  
also a listing of all processor pins but ordered by pin number.  
251308-002  
63  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Table 33.  
Pin Listing by Pin Name  
Pin Name  
Direction  
Pin  
Number  
Signal Buffer  
Type  
AP#[0]  
AP#[1]  
BCLK[0]  
BCLK[1]  
BINIT#  
BNR#  
AC1  
V5  
Common Clock Input/Output  
Common Clock Input/Output  
Pin Name  
Direction  
A#[03]  
A#[04]  
A#[05]  
A#[06]  
A#[07]  
A#[08]  
A#[09]  
A#[10]  
A#[11]  
A#[12]  
A#[13]  
A#[14]  
A#[15]  
A#[16]  
A#[17]  
A#[18]  
A#[19]  
A#[20]  
A#[21]  
A#[22]  
A#[23]  
A#[24]  
A#[25]  
A#[26]  
A#[27]  
A#[28]  
A#[29]  
A#[30]  
A#[31]  
A#[32]  
A#[33]  
A#[34]  
A#[35]  
A20M#  
ADS#  
K2  
K4  
L6  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Asynch GTL+  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
AF22  
AF23  
AA3  
G2  
Bus Clock  
Bus Clock  
Input  
Input  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input  
K1  
L3  
BPM#[0]  
BPM#[1]  
BPM#[2]  
BPM#[3]  
BPM#[4]  
BPM#[5]  
BPRI#  
BR0#  
AC6  
AB5  
AC4  
Y6  
M6  
L2  
M3  
M4  
N1  
M1  
N2  
N4  
N5  
T1  
R2  
P3  
P4  
R3  
T2  
U1  
P6  
U3  
T4  
V2  
R6  
W1  
T5  
U4  
V3  
W2  
Y1  
AB1  
C6  
G1  
L5  
AA5  
AB4  
D2  
H6  
Common Clock Input/Output  
BSEL0  
BSEL1  
COMP[0]  
COMP[1]  
D#[0]  
AD6  
AD5  
L24  
P1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Output  
Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
B21  
B22  
A23  
A25  
C21  
D22  
B24  
C23  
C24  
B25  
G22  
H21  
C26  
D23  
J21  
D25  
H22  
E24  
G23  
F23  
F24  
D#[01]  
D#[02]  
D#[03]  
D#[04]  
D#[05]  
D#[06]  
D#[07]  
D#[08]  
D#[09]  
D#[10]  
D#[11]  
D#[12]  
D#[13]  
D#[14]  
D#[15]  
D#[16]  
D#[17]  
D#[18]  
D#[19]  
D#[20]  
Common Clock Input/Output  
ADSTB#[0]  
ADSTB#[1]  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
R5  
64  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Table 33.  
Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
D#[21]  
D#[22]  
D#[23]  
D#[24]  
D#[25]  
D#[26]  
D#[27]  
D#[28]  
D#[29]  
D#[30]  
D#[31]  
D#[32]  
D#[33]  
D#[34]  
D#[35]  
D#[36]  
D#[37]  
D#[38]  
D#[39]  
D#[40]  
D#[41]  
D#[42]  
D#[43]  
D#[44]  
D#[45]  
D#[46]  
D#[47]  
D#[48]  
D#[49]  
D#[50]  
D#[51]  
D#[52]  
D#[53]  
D#[54]  
D#[55]  
D#[56]  
D#[57]  
D#[58]  
D#[59]  
E25  
F26  
D26  
L21  
G26  
H24  
M21  
L22  
J24  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D#[60]  
Y21  
AA25  
AA22  
AA24  
E21  
G25  
P26  
V21  
AE25  
H5  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
D#[61]  
D#[62]  
D#[63]  
DBI#[0]  
DBI#[1]  
DBI#[2]  
DBI#[3]  
DBR#  
K23  
H25  
M23  
N22  
P21  
M24  
N23  
M26  
N26  
N25  
R21  
P24  
R25  
R24  
T26  
T25  
T22  
T23  
U26  
U24  
U23  
V25  
U21  
V22  
V24  
W26  
Y26  
W25  
Y23  
Y24  
DBSY#  
Common Clock Input/Output  
Common Clock Input  
DEFER#  
DP#[0]  
E2  
J26  
K25  
K26  
L25  
AD25  
H2  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
DP#[1]  
DP#[2]  
DP#[3]  
DPSLP#  
DRDY#  
DSTBN#[0]  
DSTBN#[1]  
DSTBN#[2]  
DSTBN#[3]  
DSTBP#[0]  
DSTBP#[1]  
DSTBP#[2]  
DSTBP#[3]  
FERR#/PBE#  
GTLREF  
GTLREF  
GTLREF  
GTLREF  
HIT#  
Asynch GTL+  
Input  
Common Clock Input/Output  
E22  
K22  
R22  
W22  
F21  
J23  
P23  
W23  
B6  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Asynch AGL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
AA21  
AA6  
F20  
F6  
Input  
Input  
Input  
Input  
F3  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Output  
HITM#  
E3  
IERR#  
AC3  
B2  
IGNNE#  
INIT#  
Asynch GTL+  
Asynch GTL+  
Power/Other  
Power/Other  
TAP  
Input  
W5  
Input  
ITPCLKOUT[0] AA20  
ITPCLKOUT[1] AB22  
Output  
Output  
input  
ITP_CLK0  
ITP_CLK1  
AC26  
AD26  
TAP  
input  
251308-002  
65  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Table 33.  
Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
LINT0  
D1  
Asynch GTL+  
Asynch GTL+  
Input  
Input  
TESTHI10  
TESTHI11  
THERMDA  
THERMDC  
THERMTRIP#  
TMS  
Y3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
TAP  
Input  
LINT1  
E5  
A6  
Input  
LOCK#  
MCERR#  
NC  
G4  
Common Clock Input/Output  
Common Clock Input/Output  
B3  
V6  
C4  
A22  
A7  
A2  
Output  
Input  
NC  
F7  
NC  
AD2  
AD3  
AE21  
AF3  
AF24  
AF25  
C3  
TRDY#  
TRST#  
VCC  
J6  
Common Clock Input  
NC  
E6  
TAP  
Input  
NC  
A10  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
NC  
VCC  
A12  
NC  
VCC  
A14  
NC  
VCC  
A16  
PROCHOT#  
PWRGOOD  
REQ#[0]  
REQ#[1]  
REQ#[2]  
REQ#[3]  
REQ#[4]  
RESET#  
RS#[0]  
RS#[1]  
RS#[2]  
RSP#  
Asynch GTL+  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Output  
VCC  
A18  
AB23  
J1  
Input  
VCC  
A20  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
VCC  
A8  
K5  
VCC  
AA10  
AA12  
AA14  
AA16  
AA18  
AA8  
AB11  
AB13  
AB15  
AB17  
AB19  
AB7  
AB9  
AC10  
AC12  
AC14  
AC16  
AC18  
AC8  
AD11  
AD13  
AD15  
AD17  
AD19  
J4  
VCC  
J3  
VCC  
H3  
VCC  
AB25  
F1  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
VCC  
VCC  
G5  
VCC  
F4  
VCC  
AB2  
AF26  
AB26  
B5  
VCC  
SKTOCC#  
SLP#  
Power/Other  
Asynch GTL+  
Asynch GTL+  
Asynch GTL+  
TAP  
Output  
VCC  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
VCC  
SMI#  
VCC  
STPCLK#  
TCK  
Y4  
VCC  
D4  
VCC  
TDI  
C1  
TAP  
VCC  
TDO  
D5  
TAP  
VCC  
TESTHI0  
TESTHI1  
TESTHI2  
TESTHI3  
TESTHI4  
TESTHI5  
TESTHI8  
TESTHI9  
AD24  
AA2  
AC21  
AC20  
AC24  
AC23  
U6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
W4  
VCC  
66  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Table 33.  
Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AD7  
AD9  
AE10  
AE12  
AE14  
AE16  
AE18  
AE20  
AE6  
AE8  
AF11  
AF13  
AF15  
AF17  
AF19  
AF2  
AF21  
AF5  
AF7  
AF9  
B11  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
VCCIOPLL  
VCCSENSE  
VCCVID  
VID0  
VID1  
VID2  
VID3  
VID4  
VSS  
D7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D9  
E10  
E12  
E14  
E16  
E18  
E20  
E8  
F11  
F13  
F15  
F17  
F19  
F9  
AD20  
AE23  
A5  
Output  
AF4  
AE5  
AE4  
AE3  
AE2  
AE1  
A11  
A13  
A15  
A17  
A19  
A21  
A24  
A26  
A3  
Input  
Output  
Output  
Output  
Output  
Output  
B13  
B15  
B17  
B19  
B7  
VSS  
B9  
VSS  
C10  
C12  
C14  
C16  
C18  
C20  
C8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A9  
D11  
VSS  
AA1  
AA11  
AA13  
AA15  
AA17  
D13  
D15  
D17  
D19  
VSS  
VSS  
VSS  
VSS  
251308-002  
67  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Table 33.  
Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA19  
AA23  
AA26  
AA4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE13  
AE15  
AE17  
AE19  
AE22  
AE24  
AE26  
AE7  
AE9  
AF1  
AF10  
AF12  
AF14  
AF16  
AF18  
AF20  
AF6  
AF8  
B10  
B12  
B14  
B16  
B18  
B20  
B23  
B26  
B4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AA7  
AA9  
AB10  
AB12  
AB14  
AB16  
AB18  
AB20  
AB21  
AB24  
AB3  
AB6  
AB8  
AC11  
AC13  
AC15  
AC17  
AC19  
AC2  
AC22  
AC25  
AC5  
AC7  
AC9  
B8  
AD1  
C11  
C13  
C15  
C17  
C19  
C2  
AD10  
AD12  
AD14  
AD16  
AD18  
AD21  
AD23  
AD4  
C22  
C25  
C5  
AD8  
C7  
AE11  
C9  
68  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Table 33.  
Pin Listing by Pin Name  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D10  
D12  
D14  
D16  
D18  
D20  
D21  
D24  
D3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J2  
J22  
J25  
J5  
K21  
K24  
K3  
K6  
D6  
L1  
D8  
L23  
L26  
L4  
E1  
E11  
E13  
E15  
E17  
E19  
E23  
E26  
E4  
M2  
M22  
M25  
M5  
N21  
N24  
N3  
E7  
N6  
E9  
P2  
F10  
F12  
F14  
F16  
F18  
F2  
P22  
P25  
P5  
R1  
R23  
R26  
R4  
F22  
F25  
F5  
T21  
T24  
T3  
F8  
G21  
G24  
G3  
T6  
U2  
U22  
U25  
U5  
G6  
H1  
H23  
H26  
V1  
V23  
251308-002  
69  
Datasheet  
Pin Listing and Signal Definitions  
Table 33.  
Pin Listing by Pin Name  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
VSS  
V26  
V4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A25  
D#[03]  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
VSS  
A26  
VSS  
VSS  
W21  
W24  
W3  
AA1  
VSS  
VSS  
AA2  
TESTHI1  
BINIT#  
VSS  
Input  
VSS  
AA3  
Common Clock Input/Output  
Power/Other  
VSS  
W6  
AA4  
VSS  
Y2  
AA5  
BPM#[4]  
GTLREF  
VSS  
Common Clock Input/Output  
VSS  
Y22  
Y25  
Y5  
AA6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
VSS  
AA7  
VSS  
AA8  
VCC  
VSSA  
VSSSENSE  
AD22  
A4  
AA9  
VSS  
Output  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
VCC  
VSS  
Table 34. Pin Listing by Pin Number  
VCC  
Pin  
Number  
Signal Buffer  
Type  
VSS  
Pin Name  
Direction  
Output  
VCC  
A2  
THERMTRIP# Asynch GTL+  
VSS  
A3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
A4  
VSSSENSE  
VCCSENSE  
TESTHI11  
NC  
Output  
Output  
Input  
VSS  
A5  
VCC  
A6  
VSS  
A7  
ITPCLKOUT  
[0]  
AA20  
Power/Other  
Output  
A8  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
GTLREF  
D#[62]  
VSS  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Input  
A9  
VSS  
Input/Output  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
VCC  
VSS  
D#[63]  
D#[61]  
VSS  
Input/Output  
Input/Output  
VCC  
VSS  
VCC  
A#[35]  
RSP#  
VSS  
Input/Output  
VSS  
AB2  
Common Clock Input  
Power/Other  
VCC  
AB3  
VSS  
AB4  
BPM#[5]  
BPM#[1]  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
VCC  
AB5  
VSS  
AB6  
VCC  
AB7  
VCC  
Power/Other  
VSS  
AB8  
VSS  
Power/Other  
NC  
AB9  
VCC  
Power/Other  
D#[02]  
VSS  
Source Synch  
Power/Other  
Input/Output  
AB10  
VSS  
Power/Other  
70  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 34. Pin Listing by Pin Number  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC23  
AC24  
AC25  
AC26  
AD1  
TESTHI5  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
TESTHI4  
VSS  
Input  
input  
ITP_CLK0  
VSS  
Power/Other  
AD2  
NC  
AD3  
NC  
AD4  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
TAP  
AD5  
BSEL1  
BSEL0  
VCC  
Output  
Output  
AD6  
AD7  
ITPCLKOUT  
[1]  
AD8  
VSS  
AB22  
Power/Other  
Output  
Input  
AD9  
VCC  
AB23  
AB24  
AB25  
AB26  
AC1  
PWRGOOD  
VSS  
Power/Other  
Power/Other  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
VSS  
VCC  
RESET#  
SLP#  
AP#[0]  
VSS  
Common Clock Input  
Asynch GTL+ Input  
VSS  
VCC  
Common Clock Input/Output  
Power/Other  
VSS  
AC2  
VCC  
AC3  
IERR#  
BPM#[2]  
VSS  
Common Clock Output  
Common Clock Input/Output  
Power/Other  
VSS  
AC4  
VCC  
AC5  
VSS  
AC6  
BPM#[0]  
VSS  
Common Clock Input/Output  
Power/Other  
VCC  
AC7  
VCCA  
VSS  
AC8  
VCC  
Power/Other  
AC9  
VSS  
Power/Other  
VSSA  
VSS  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
VCC  
Power/Other  
VSS  
Power/Other  
TESTHI0  
DPSLP#  
ITP_CLK1  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC  
Input  
VCC  
Power/Other  
Input  
VSS  
Power/Other  
input  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Output  
Output  
VSS  
Power/Other  
AE2  
VCC  
Power/Other  
AE3  
VSS  
Power/Other  
AE4  
VCC  
Power/Other  
AE5  
VSS  
Power/Other  
AE6  
TESTHI3  
TESTHI2  
VSS  
Power/Other  
Power/Other  
Power/Other  
Input  
Input  
AE7  
VSS  
AE8  
VCC  
AE9  
VSS  
251308-002  
71  
Datasheet  
Pin Listing and Signal Definitions  
Table 34. Pin Listing by Pin Number  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Input  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF1  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF23  
AF24  
AF25  
AF26  
B2  
BCLK[1]  
Bus Clock  
VSS  
NC  
VCC  
VSS  
NC  
SKTOCC#  
IGNNE#  
THERMDA  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
Asynch AGL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
TAP  
Output  
Input  
VCC  
VSS  
B3  
VCC  
VSS  
B4  
B5  
SMI#  
Input  
VCC  
VSS  
B6  
FERR#/PBE#  
VCC  
Output  
B7  
VCC  
NC  
B8  
VSS  
B9  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VSS  
VCCIOPLL  
VSS  
VCC  
VSS  
DBR#  
VSS  
Output  
VCC  
VSS  
VSS  
VCC  
AF2  
VCC  
NC  
VSS  
AF3  
VCC  
AF4  
VCCVID  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
Input  
VSS  
AF5  
VCC  
AF6  
VSS  
AF7  
VCC  
VSS  
D#[0]  
D#[01]  
VSS  
Input/Output  
Input/Output  
AF8  
AF9  
VCC  
VSS  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
D#[06]  
D#[09]  
VSS  
Input/Output  
Input/Output  
VCC  
VSS  
VCC  
VSS  
TDI  
Input  
C2  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
C3  
PROCHOT#  
THERMDC  
VSS  
Output  
C4  
VCC  
VSS  
C5  
C6  
A20M#  
VSS  
Input  
VCC  
VSS  
C7  
C8  
VCC  
VCC  
BCLK[0]  
C9  
VSS  
Input  
C10  
VCC  
72  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 34. Pin Listing by Pin Number  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Asynch GTL+  
D24  
D25  
D26  
E1  
VSS  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
VCC  
VSS  
D#[15]  
D#[23]  
VSS  
Input/Output  
Input/Output  
VCC  
VSS  
E2  
DEFER#  
HITM#  
VSS  
Common Clock Input  
Common Clock Input/Output  
Power/Other  
VCC  
VSS  
E3  
E4  
VCC  
VSS  
E5  
LINT1  
TRST#  
VSS  
Asynch GTL+  
TAP  
Input  
Input  
E6  
VCC  
D#[04]  
VSS  
E7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
E8  
VCC  
E9  
VSS  
D#[07]  
D#[08]  
VSS  
Input/Output  
Input/Output  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
VCC  
VSS  
VCC  
D#[12]  
LINT0  
BPRI#  
VSS  
Input/Output  
Input  
VSS  
VCC  
D2  
Common Clock Input  
Power/Other  
VSS  
D3  
VCC  
D4  
TCK  
TAP  
Input  
VSS  
D5  
TDO  
VSS  
TAP  
Output  
VCC  
D6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
VSS  
D7  
VCC  
VSS  
VCC  
D8  
DBI#[0]  
DSTBN#[0]  
VSS  
Input/Output  
Input/Output  
D9  
VCC  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
VCC  
VSS  
D#[17]  
D#[21]  
VSS  
Input/Output  
Input/Output  
VCC  
VSS  
RS#[0]  
VSS  
Common Clock Input  
Power/Other  
VCC  
VSS  
F2  
F3  
HIT#  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
VCC  
VSS  
F4  
RS#[2]  
VSS  
F5  
VCC  
VSS  
F6  
GTLREF  
TMS  
Power/Other  
TAP  
Input  
Input  
F7  
VSS  
F8  
VSS  
Power/Other  
Power/Other  
Power/Other  
D#[05]  
D#[13]  
Input/Output  
Input/Output  
F9  
VCC  
F10  
VSS  
251308-002  
73  
Datasheet  
Pin Listing and Signal Definitions  
Table 34. Pin Listing by Pin Number  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
H26  
J1  
VSS  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
VSS  
REQ#[0]  
VSS  
Input/Output  
VCC  
J2  
VSS  
J3  
REQ#[3]  
REQ#[2]  
VSS  
Input/Output  
Input/Output  
VCC  
J4  
VSS  
J5  
VCC  
J6  
TRDY#  
D#[14]  
VSS  
Common Clock Input  
VSS  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
VCC  
GTLREF  
DSTBP#[0]  
VSS  
Input  
DSTBP#[1]  
D#[29]  
VSS  
Input/Output  
Input/Output  
Input/Output  
D#[19]  
D#[20]  
VSS  
Input/Output  
Input/Output  
DP#[0]  
A#[06]  
A#[03]  
VSS  
Common Clock Input/Output  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
K2  
D#[22]  
ADS#  
BNR#  
VSS  
Input/Output  
K3  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
K4  
A#[04]  
REQ#[1]  
VSS  
Input/Output  
Input/Output  
G2  
K5  
G3  
K6  
G4  
LOCK#  
RS#[1]  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VSS  
G5  
DSTBN#[1]  
D#[30]  
VSS  
Input/Output  
Input/Output  
G6  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
VSS  
Power/Other  
D#[10]  
D#[18]  
VSS  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
DP#[1]  
DP#[2]  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
DBI#[1]  
D#[25]  
VSS  
Input/Output  
Input/Output  
L2  
A#[09]  
A#[07]  
VSS  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
L3  
L4  
H2  
DRDY#  
REQ#[4]  
VSS  
Common Clock Input/Output  
L5  
ADSTB#[0]  
A#[05]  
D#[24]  
D#[28]  
VSS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
H3  
Source Synch  
Power/Other  
Input/Output  
L6  
H4  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
M2  
H5  
DBSY#  
BR0#  
D#[11]  
D#[16]  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
H6  
H21  
H22  
H23  
H24  
H25  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
COMP[0]  
DP#[3]  
VSS  
Input/Output  
Common Clock Input/Output  
Power/Other  
D#[26]  
D#[31]  
Input/Output  
Input/Output  
A#[13]  
VSS  
Source Synch  
Power/Other  
Input/Output  
74  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 34. Pin Listing by Pin Number  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
M3  
A#[10]  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Input/Output  
Input/Output  
R6  
A#[28]  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
M4  
A#[11]  
VSS  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
D#[40]  
DSTBN#[2]  
VSS  
M5  
M6  
A#[08]  
D#[27]  
VSS  
Input/Output  
Input/Output  
M21  
M22  
M23  
M24  
M25  
M26  
N1  
D#[43]  
D#[42]  
VSS  
Input/Output  
Input/Output  
D#[32]  
D#[35]  
VSS  
Input/Output  
Input/Output  
A#[17]  
A#[22]  
VSS  
Input/Output  
Input/Output  
T2  
D#[37]  
A#[12]  
A#[14]  
VSS  
Input/Output  
Input/Output  
Input/Output  
T3  
T4  
A#[26]  
A#[30]  
VSS  
Input/Output  
Input/Output  
N2  
T5  
N3  
T6  
N4  
A#[15]  
A#[16]  
VSS  
Input/Output  
Input/Output  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
VSS  
N5  
D#[46]  
D#[47]  
VSS  
Input/Output  
Input/Output  
N6  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
VSS  
D#[33]  
D#[36]  
VSS  
Input/Output  
Input/Output  
D#[45]  
D#[44]  
A#[23]  
VSS  
Input/Output  
Input/Output  
Input/Output  
D#[39]  
D#[38]  
COMP[1]  
VSS  
Input/Output  
Input/Output  
Input/Output  
U2  
U3  
A#[25]  
A#[31]  
VSS  
Input/Output  
Input/Output  
U4  
P2  
U5  
P3  
A#[19]  
A#[20]  
VSS  
Input/Output  
Input/Output  
U6  
TESTHI8  
D#[52]  
VSS  
Input  
P4  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
Input/Output  
P5  
P6  
A#[24]  
D#[34]  
VSS  
Input/Output  
Input/Output  
D#[50]  
D#[49]  
VSS  
Input/Output  
Input/Output  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
DSTBP#[2]  
D#[41]  
VSS  
Input/Output  
Input/Output  
D#[48]  
VSS  
Input/Output  
V2  
A#[27]  
A#[32]  
VSS  
Input/Output  
Input/Output  
DBI#[2]  
VSS  
Input/Output  
V3  
V4  
R2  
A#[18]  
A#[21]  
VSS  
Input/Output  
Input/Output  
V5  
AP#[1]  
MCERR#  
DBI#[3]  
D#[53]  
Common Clock Input/Output  
Common Clock Input/Output  
R3  
V6  
R4  
V21  
V22  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
R5  
ADSTB#[1]  
Input/Output  
251308-002  
75  
Datasheet  
Pin Listing and Signal Definitions  
Table 34. Pin Listing by Pin Number  
Pin  
Number  
Signal Buffer  
Type  
Pin Name  
Direction  
V23  
V24  
V25  
V26  
W1  
VSS  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
D#[54]  
D#[51]  
VSS  
Input/Output  
Input/Output  
A#[29]  
A#[33]  
VSS  
Input/Output  
Input/Output  
W2  
W3  
W4  
TESTHI9  
INIT#  
Input  
Input  
W5  
W6  
VSS  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
VSS  
DSTBN#[3]  
DSTBP#[3]  
VSS  
Input/Output  
Input/Output  
D#[57]  
D#[55]  
A#[34]  
VSS  
Input/Output  
Input/Output  
Input/Output  
Y2  
Y3  
TESTHI10  
STPCLK#  
VSS  
Input  
Input  
Y4  
Y5  
Y6  
BPM#[3]  
D#[60]  
VSS  
Common Clock Input/Output  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Input/Output  
D#[58]  
D#[59]  
VSS  
Input/Output  
Input/Output  
D#[56]  
Input/Output  
76  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
5.2  
Alphabetical Signals Reference  
Table 35. Signal Description (Sheet 1 of 8)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address space. In sub-  
phase 1 of the address phase, these pins transmit the address of a transaction. In  
sub-phase 2, these pins transmit transaction type information. These signals must  
connect the appropriate pins of all agents on the Mobile Intel Pentium 4  
Processor-M system bus. A[35:3]# are protected by parity signals AP[1:0]#.  
A[35:3]# are source synchronous signals and are latched into the receiving buffers  
by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor samples a subset of  
the A[35:3]# pins to determine power-on configuration. See Section 7.1 for more  
details.  
If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/  
write transaction on the bus. Asserting A20M# emulates the 8086 processor's  
address wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
ADS#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
Input/ address on the A[35:3]# and REQ[4:0]# pins. All bus agents observe the ADS#  
Output activation to begin parity checking, protocol checking, address decode, internal  
snoop, or deferred reply ID match operations associated with the new transaction.  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling  
edges. Strobes are associated with signals as shown below.  
Input/  
Output  
Signals  
Associated Strobe  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#,  
A[35:3]#, and the transaction type on the REQ[4:0]#. A correct parity signal is high if  
an even number of covered signals are low and low if an odd number of covered  
signals are low. This allows parity to be high when all the covered signals are high.  
AP[1:0]# should connect the appropriate pins of all Mobile Intel Celeron Processor  
system bus agents. The following table defines the coverage model of these  
signals.  
Input/  
Output  
AP[1:0]#  
Request Signals  
A[35:24]#  
subphase 1  
AP0#  
subphase 2  
AP1#  
A[23:3]#  
AP1#  
AP0#  
REQ[4:0]#  
AP1#  
AP0#  
The differential pair BCLK (Bus Clock) determines the system bus frequency. All  
processor system bus agents must receive these signals to drive their outputs and  
latch their inputs.  
BCLK[1:0]  
Input  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing VCROSS  
.
251308-002  
77  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BINIT# (Bus Initialization) may be observed and driven by all processor system bus  
agents and if used, must connect the appropriate pins of all such agents. If the  
BINIT# driver is enabled during power-on configuration, BINIT# is asserted to  
signal any bus condition that prevents reliable future operation.  
If BINIT# observation is enabled during power-on configuration, and BINIT# is  
sampled asserted, symmetric agents reset their bus LOCK# activity and bus  
request arbitration state machines. The bus agents do not reset their IOQ and  
transaction tracking state machines upon observation of BINIT# activation. Once  
the BINIT# assertion has been observed, the bus agents will re-arbitrate for the  
system bus and attempt completion of their bus queue and IOQ entries.  
Input/  
Output  
BINIT#  
If BINIT# observation is disabled during power-on configuration, a central agent  
may handle an assertion of BINIT# as appropriate to the error handling architecture  
of the system.  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Input/  
Output  
BNR#  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals.  
They are outputs from the processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor performance. BPM[5:0]#  
should connect the appropriate pins of all Mobile Intel Celeron Processor system  
bus agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a  
processor output used by debug tools to determine processor debug readiness.  
Input/  
Output  
BPM[5:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is  
used by debug tools to request debug operation of the processor.  
Please refer to the Mobile Intel Pentium 4 Processor-M and Intel 845MP/  
845MZ Chipset Platform Design Guide for more detailed information.  
These signals do not have on-die termination and must be terminated on the  
system board.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor  
system bus. It must connect the appropriate pins of all processor system bus  
agents. Observing BPRI# active (as asserted by the priority agent) causes all other  
agents to stop issuing new requests, unless such requests are part of an ongoing  
locked operation. The priority agent keeps BPRI# asserted until all of its requests  
are completed, then releases the bus by deasserting BPRI#.  
BPRI#  
BR0#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the processor to  
request the bus. During power-on configuration this pin is sampled to determine the  
agent ID = 0.  
Input/  
Output  
This signal does not have on-die termination and must be terminated.  
BSEL[1:0] (Bus Select) are used to select the processor input clock frequency.  
Table 5 defines the possible combinations of the signals and the frequency  
associated with each combination. The required frequency is determined by the  
processor, chipset and clock synthesizer. All agents must operate at the same  
frequency. The Mobile Intel Celeron Processor operates at a 400-MHz system bus  
frequency (100-MHz BCLK[1:0] frequency). For more information about these pins,  
including termination recommendations refer to Section 2.9 and the appropriate  
platform design guidelines.  
BSEL[1:0]  
Output  
COMP[1:0] must be terminated on the system board using precision resistors.  
COMP[1:0]  
Analog Refer to the Mobile Intel Pentium 4 Processor-M and Intel 845MP/845MZ  
Chipset Platform Design Guide for details on implementation.  
78  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor system bus agents, and must connect the appropriate pins  
on all such agents. The data driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four times in a common  
clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and  
DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP#  
and one DSTBN#. The following table shows the grouping of data signals to data  
strobes and DBI#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Input/  
Output  
D[63:0]#  
Data Group  
DBI#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# pins determine the polarity of the data signals. Each group  
of 16 data signals corresponds to one DBI# signal. When the DBI# signal is active,  
the corresponding data group is inverted and therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of  
the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the data  
bus is inverted. The bus agent will invert the data bus signals if more than half the  
bits, within the covered group, would change level in the next cycle.  
DBI[3:0] Assignment To Data Bus  
Input/  
Output  
Bus Signal  
Data Bus Signals  
DBI[3:0]#  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Data Bus Reset) is used only in processor systems where no debug port is  
implemented on the system board. DBR# is used by a debug port interposer so that  
an in-target probe can drive system reset. If a debug port is implemented in the  
system, DBR# is a no connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the  
Input/ processor system bus to indicate that the data bus is in use. The data bus is  
Output released after DBSY# is deasserted. This signal must connect the appropriate pins  
on all processor system bus agents.  
DBSY#  
DEFER#  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility  
of the addressed memory or Input/Output agent. This signal must connect the  
Input  
appropriate pins of all processor system bus agents.  
DP[3:0]# (Data parity) provide parity protection for the D[63:0]# signals. They are  
driven by the agent responsible for driving D[63:0]#, and must connect the  
appropriate pins of all Mobile Intel Celeron Processor system bus agents.  
Input/  
Output  
DP[3:0]#  
DPSLP#  
DPSLP# when asserted on the platform causes the processor to transition from the  
Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP#  
must be deasserted and BCLK[1:0] must be running.  
Input  
251308-002  
79  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
Input/ indicating valid data on the data bus. In a multi-common clock data transfer, DRDY#  
Output may be deasserted to insert idle clocks. This signal must connect the appropriate  
pins of all processor system bus agents.  
DRDY#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FERR#/PBE# (floating point error/pending break event) is a multiplexed signal and  
its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/  
PBE# indicates a floating-point error and will be asserted when the processor  
detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/  
PBE# is similar to the ERROR# signal on the INTEL 387 coprocessor, and is  
included for compatibility with systems using MS-DOS*-type floating-point error  
reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that  
FERR#/PBE# Output the processor has a pending break event waiting for service. The assertion of  
FERR#/PBE# indicates that the processor should be returned to the Normal state.  
When FERR#/PBE# is asserted, indicating a break event, it will remain asserted  
until STPCLK# is deasserted. For additional information on the pending break  
event functionality, including the identification of support of the feature and enable/  
disable information, refer to volume 3 of the Intel Architecture Software Developer's  
Manual and the Intel Processor Identification and the CPUID Instruction application  
note.  
GTLREF determines the signal reference level for AGTL+ input pins. GTLREF  
should be set at 2/3 VCC. GTLREF is used by the AGTL+ receivers to determine if a  
GTLREF  
Input  
signal is a logical 0 or logical 1. Refer to the Mobile Intel Pentium 4 Processor-M  
and Intel 845MP/845MZ Chipset Platform Design Guide for more information.  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Any system bus agent may assert both HIT# and HITM# together to  
indicate that it requires a snoop stall, which can be continued by reasserting HIT#  
and HITM# together.  
HIT#  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the  
processor system bus. This transaction may optionally be converted to an external  
error signal (e.g., NMI) by system core logic. The processor will keep IERR#  
asserted until the assertion of RESET#.  
IERR#  
Output  
This signal does not have on-die termination and must be terminated on the  
system board.  
80  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside the processor  
without affecting its internal caches or floating-point registers. The processor then  
begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the appropriate pins  
of all processor system bus agents.  
INIT#  
Input  
If INIT# is sampled active on the active to inactive transition of RESET#, then the  
processor executes its Built-in Self-Test (BIST).  
ITPCLKOUT[1:0] is an uncompensated differential clock output that is a delayed  
copy of the BCLK[1:0], which is an input to the processor. This clock output can be  
Output used as the differential clock into the ITP port that is designed onto the  
motherboard. If ITPCLKOUT[1:0] outputs are not used, they must be terminated  
properly. Refer to Section 2.5 for additional details and termination requirements.  
ITPCLKOUT  
[1:0]  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where  
no debug port is implemented on the system board. ITP_CLK[1:0] are used as  
ITP_CLK[1:0]  
Input  
BCLK[1:0] references for a debug port implemented on an interposer. If a debug  
port is implemented in the system, ITP_CLK[1:0] are no connects in the system.  
These are not processor signals.  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus  
agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable  
interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR  
and NMI are backward compatible with the signals of those names on the Pentium  
processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC  
is enabled by default after Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur atomically. This signal  
must connect the appropriate pins of all processor system bus agents. For a locked  
sequence of transactions, LOCK# is asserted from the beginning of the first  
transaction to the end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of the processor  
system bus, it will wait until it observes LOCK# deasserted. This enables symmetric  
agents to retain ownership of the processor system bus throughout the bus locked  
operation and ensure the atomicity of lock.  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error  
without a bus protocol violation. It may be driven by all processor system bus  
agents.  
MCERR# assertion conditions are configurable at a system level. Assertion options  
are defined by the following options:  
Enabled or disabled.  
Input/  
Output  
MCERR#  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction after it  
observes an error.  
Asserted by any bus agent when it observes an error in a bus transaction.  
For more details regarding machine check architecture, please refer to the IA-32  
Software Developer’s Manual, Volume 3: System Programming Guide.  
251308-002  
81  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 6 of 8)  
Name  
Type  
Description  
The assertion of PROCHOT# (Processor Hot) indicates that the processor die  
temperature has reached its thermal limit. See Section 6 for more details.  
PROCHOT#  
Output  
PWRGOOD (Power Good) is a processor input. The processor requires this signal  
to be a clean indication that the clocks and power supplies are stable and within  
their specifications. ‘Clean’ implies that the signal will remain low (capable of  
sinking leakage current), without glitches, from the time that the power supplies are  
turned on until they come within specification. The signal must then transition  
monotonically to a high state. Figure 15 illustrates the relationship of PWRGOOD to  
the RESET# signal. PWRGOOD can be driven inactive at any time, but clocks and  
power must again be stable before a subsequent rising edge of PWRGOOD. It  
must also meet the minimum pulse width specification in Table 20, and be followed  
by a 1 to 10 ms RESET# pulse.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins of all processor  
system bus agents. They are asserted by the current bus owner to define the  
currently active transaction type. These signals are source synchronous to  
ADSTB0#. Refer to the AP[1:0]# signal description for details on parity checking of  
these signals.  
Input/  
Output  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known state and invalidates  
its internal caches without writing back any of their contents. For a power-on Reset,  
RESET# must stay active for at least one millisecond after VCC and BCLK have  
reached their proper specifications. On observing active RESET#, all system bus  
agents will deassert their outputs within two clocks. RESET# must not be kept  
asserted for more than 10 ms while PWRGOOD is asserted.  
RESET#  
RS[2:0]#  
Input  
Input  
A number of bus signals are sampled at the active-to-inactive transition of RESET#  
for power-on configuration. These configuration options are described in the  
Section 7.1.  
This signal does not have on-die termination and must be terminated on the  
system board.  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of all processor system bus agents.  
RSP# (Response Parity) is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#, the signals for  
which RSP# provides parity protection. It must connect to the appropriate pins of all  
processor system bus agents.  
RSP#  
Input  
A correct parity signal is high if an even number of covered signals are low and low  
if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also  
high, since this indicates it is not being driven by any agent guaranteeing correct  
parity.  
SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System  
board designers may use this pin to determine if the processor is present.  
SKTOCC#  
Output  
SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the  
Sleep state. During Sleep state, the processor stops providing internal clock signals  
to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in  
this state will not recognize snoops or interrupts. The processor will only recognize  
the assertion of the RESET# signal, deassertion of SLP#, and assertion of DPSLP#  
input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state  
and returns to Stop-Grant state, restarting its internal clock signals to the bus and  
processor core units. If the BCLK input is stopped or if DPSLP# is asserted while in  
the Sleep state, the processor will exit the Sleep state and transition to the Deep  
Sleep state.  
SLP#  
Input  
82  
251308-002  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
SMI# (System Management Interrupt) is asserted asynchronously by system logic.  
On accepting a System Management Interrupt, the processor saves the current  
state and enter System Management Mode (SMM). An SMI Acknowledge  
transaction is issued, and the processor begins program execution from the SMM  
handler.  
SMI#  
Input  
If SMI# is asserted during the deassertion of RESET# the processor will tristate its  
outputs.  
Assertion of STPCLK# (Stop Clock) causes the processor to enter a low power  
Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and  
stops providing internal clock signals to all processor core units except the system  
bus and APIC units. The processor continues to snoop bus transactions and  
service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the  
processor restarts its internal clock to all units and resumes execution. The  
assertion of STPCLK# has no effect on the bus clock; STPCLK# is an  
asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus (also known  
as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides  
the serial output needed for JTAG specification support.  
TDO  
Output  
TESTHI[11]  
TESTHI[10:8]  
TESTHI[11], TESTHI[10:8], and TESTHI[5:0] must be connected to a VCC power  
source through a resistor for proper processor operation. See Section 2.5 for more  
details.  
Input  
TESTHI[5:0]  
THERMDA  
THERMDC  
Other Thermal Diode Anode. See Section 6  
Other Thermal Diode Cathode. See Section 6  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a level beyond which permanent silicon damage may  
occur. Measurement of the temperature is accomplished through an internal  
thermal sensor which is configured to trip at approximately 135°C. Upon assertion  
of THERMTRIP#, the processor will shut off its internal clocks (thus halting program  
execution) in an attempt to reduce the processor junction temperature. To protect  
the processor, its core voltage (Vcc) must be removed following the assertion of  
THERMTRIP#. See Figure 18 and Table 20 for the appropriate power down  
sequence and timing requirements. Once activated, THERMTRIP# remains latched  
until RESET# is asserted. While the assertion of the RESET# signal will deassert  
THERMTRIP#, if the processor’s junction temperature remains at or above the trip  
level, THERMTRIP# will again be asserted.  
THERMTRIP# Output  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
tools.  
TMS  
Input  
Input  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive  
a write or implicit writeback data transfer. TRDY# must connect the appropriate pins  
of all system bus agents.  
TRDY#  
TRST#  
VCCA  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven  
low during power on Reset. This can be done with a 680 ohm pull-down resistor.  
VCCA provides isolated power for the internal processor core PLL’s. Refer to the  
Mobile Intel Pentium 4 Processor-M and Intel 845MP/845MZ Chipset Platform  
Design Guide for complete implementation details.  
V
CCIOPLL provides isolated power for internal processor system bus PLL’s. Follow the  
guidelines for VCCA, and refer to the Mobile Intel Pentium 4 Processor-M and  
Intel 845MP/845MZ Chipset Platform Design Guide for complete implementation  
VCCIOPLL  
Input  
details.  
251308-002  
83  
Datasheet  
Pin Listing and Signal Definitions  
Table 35. Signal Description (Sheet 8 of 8)  
Name  
VCCSENSE  
Type  
Description  
VCCSENSE is an isolated low impedance connection to processor core power (VCC). It  
can be used to sense or measure power near the silicon with little noise.  
Output  
Independent 1.2-V supply must be routed to VCCVID pin for the Mobile Intel  
Celeron Processor’s Voltage Identification circuit.  
VCCVID  
Input  
VID[4:0] (Voltage ID) pins are used to support automatic selection of power supply  
voltages (Vcc). Unlike some previous generations of processors, these are open  
drain signals that are driven by the Mobile Intel Celeron Processor and must be  
pulled up to 3.3 V (max.) with 1-Kohm resistors. The voltage supply for these pins  
VID[4:0]  
Output must be valid before the VR can supply Vcc to the processor. Conversely, the VR  
output must be disabled until the voltage supply for the VID pins becomes valid.  
The VID pins are needed to support the processor voltage specification variations.  
See Table 3 for definitions of these pins. The VR must supply the voltage that is  
requested by the pins, or disable itself.  
VSSA  
Input  
VSSA is the isolated ground for internal PLLs.  
SSSENSE is an isolated low impedance connection to processor core VSS. It can be  
V
VSSSENSE  
Output  
used to sense or measure ground near the silicon with little noise.  
84  
251308-002  
Datasheet  
Thermal Specifications and Design Considerations  
6 Thermal Specifications and  
Design Considerations  
In order to achieve proper cooling of the processor, a thermal solution (e.g., heat spreader, heat  
pipe, or other heat transfer system) must make firm contact to the exposed processor die. The  
processor die must be clean before the thermal solution is attached or the processor may be  
damaged.  
Table 36 provides the Thermal Design Power (TDP) dissipation and the minimum and maximum  
TJ temperatures for the Mobile Intel Celeron Processor. A thermal solution should be designed to  
ensure the junction temperature never exceeds the 100°C TJ specification while operating at the  
Thermal Design Power. Additionally, a secondary failsafe mechanism in hardware would be  
provided to shutdown the processor under catastrophic thermal conditions, as described in  
Section 2.4.2. TDP is a thermal design power specification based on the worst case power  
dissipation of the processor while executing publicly available software under normal operating  
conditions at nominal voltages. Contact your Intel Field Sales Representative for further  
information.  
Table 36. Power Specifications for the Mobile Intel Celeron Processor  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Thermal Design Power at  
1.80 GHz & 1.30 V  
1.70 GHz & 1.30 V  
1.60 GHz & 1.30 V  
1.50 GHz & 1.30 V  
1.40 GHz & 1.30 V  
W
At 100°C, Note 1  
30.0  
30.0  
30.0  
30.0  
30.0  
TDP  
Auto Halt/Stop Grant/Sleep  
Power at  
PAH  
PSGNT  
PSLP  
1.30 V  
7.5  
W
At 50°C, Note 2  
Deep Sleep Power at  
1.30 V  
PDSLP  
TJ  
5.0  
W
At 35°C, Note 2  
Note 3  
Junction Temperature  
0
100  
°C  
NOTES:  
1. TDP is defined as the worst case power dissipated by the processor while executing publicly available  
software under normal operating conditions at nominal voltages that meet the load line specifications. The  
TDP number shown is a specification based on ICC (maximum) at nominal voltages and indirectly tested by  
this ICC (maximum) testing. TDP definition is synonymous with the Thermal Design Power (typical)  
specification referred to in the previous EMTS. The Intel TDP specification is a recommended design point  
and is not representative of the absolute maximum power the processor may dissipate under worst case  
conditions.  
1. Not 100% tested. These power specifications are determined by characterization of the processor currents at  
higher temperatures and extrapolating the values for the temperature indicated.  
1. The maximum junction temperature (TJ) is specified as the hottest location on the die. The Thermal Monitor’s  
automatic mode is used to indicate that the maximum TJ has been reached. Refer to Section 6.1.1 for TJ  
measurement guidelines (refer to Section 6.1.2 for Thermal Monitor details).  
251308-002  
85  
Datasheet  
Thermal Specifications and Design Considerations  
6.1  
Thermal Specifications  
6.1.1  
Thermal Diode  
The Mobile Intel Celeron Processor incorporates two methods of monitoring die temperature, the  
Thermal Monitor and the thermal diode. The Thermal Monitor (detailed in Section 6.1.2) must be  
used to determine when the maximum specified processor junction temperature has been reached.  
The second method, the thermal diode, can be read by an off-die analog/digital converter (a thermal  
sensor) located on the motherboard, or a stand-alone measurement kit. The thermal diode may be  
used to monitor the die temperature of the processor for thermal management or instrumentation  
purposes but cannot be used to indicate that the maximum TJ of the processor has been reached.  
Table 37 and Table 38 provide the diode interface and specifications.  
Note: The reading of the thermal sensor connected to the thermal diode does not reflect the temperature  
of the hottest location on the die (TJ). This is due to inaccuracies in the thermal diode, on-die  
temperature gradients between the location of the thermal diode and the hottest location on the die,  
and time based variations in the die temperature. Time based variations can occur since the  
sampling rate of the sensor is much slower than the die level temperature changes.  
The offset between the thermal diode based temperature reading and the hottest location of the die  
(Thermal Monitor) may be characterized using the Thermal Monitor’s Automatic mode activation  
of thermal control circuit. This temperature offset must be taken into account when using the  
processor thermal diode to implement power management events.  
Table 37. Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
B3  
C4  
Thermal diode anode  
Thermal diode cathode  
Table 38. Thermal Diode Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
n
Forward Bias Current  
Diode Ideality Factor  
Series Resistance  
5
300  
µA  
1
1.0012  
1.0021  
3.86  
1.0030  
2, 3, 4  
2, 3, 5  
RT  
ohms  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias.  
2. Characterized at 100°C.  
3. Not 100% tested. Specified by design characterization.  
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
equation:  
I
FW=Is *(e(qVD/nkT) -1)  
Where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant,  
and T = absolute temperature (Kelvin).  
5. The series resistance, RT, is provided to allow for a more accurate measurement of the diode junction  
temperature. RT as defined includes the pins of the processor but does not include any socket resistance or  
board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by  
remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term.  
Another application is that a temperature offset can be manually calculated and programmed into an offset  
register in the remote diode thermal sensors as exemplified by the equation:  
86  
251308-002  
Datasheet  
Thermal Specifications and Design Considerations  
Terror = [RT*(N-1)*IFWmin]/[(nk/q)*ln N]  
Where Terror = sensor temperature error, N = sensor current ration, k = Boltzmann Constant, q = electronic  
charge.  
6.1.2  
Thermal Monitor  
The Thermal Monitor feature found in the Mobile Intel Celeron Processor allows system designers  
to design lower cost thermal solutions without compromising system integrity or reliability. By  
using a factory-tuned, precision on-die thermal sensor, and a fast acting thermal control circuit  
(TCC), the processor, without the aid of any additional software or hardware, can keep the  
processor’s die temperature within factory specifications under nearly all conditions. Thus, the  
Thermal Monitor allows the processor and system thermal solutions to be designed much closer to  
the power envelopes of real applications instead of being designed to the much higher maximum  
processor power envelopes.  
Thermal Monitor controls the processor temperature by modulating (starting and stopping) the  
processor core clocks. The processor clocks are modulated when the thermal control circuit (TCC)  
is activated. Thermal Monitor uses two modes to activate the TCC: Automatic mode and On-  
Demand mode. Automatic mode is required for the processor to operate within specifications  
and must first be enabled via BIOS. Once automatic mode is enabled, the TCC will activate only  
when the internal die temperature is very near the temperature limits of the processor. When TCC  
is enabled, and a high temperature situation exists (i.e. TCC is active), the clocks will be modulated  
by alternately turning the clocks off and on at a duty cycle specific to the processor (typically  
30-50%). Cycle times are processor speed dependent and will decrease linearly as processor core  
frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases  
and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/  
inactive transitions of the TCC when the processor temperature is near the trip point. Processor  
performance will be decreased by approximately the same amount as the duty cycle when the TCC  
is active, however, with a properly designed and characterized thermal solution, the TCC will only  
be activated briefly when running the most power intensive applications in a high ambient  
temperature environment.  
For automatic mode, the duty cycle is factory configured and cannot be modified. Also, automatic  
mode does not require any additional hardware, software drivers, or interrupt handling routines.  
The TCC may also be activated via On-Demand mode. If bit 4 of the ACPI Thermal Monitor  
Control Register is written to a "1", the TCC will be activated immediately, independent of the  
processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of the  
clock modulation is programmable via bits 3:1 of the same ACPI Thermal Monitor Control  
Register. In automatic mode, the duty cycle is fixed, however in On-Demand mode, the duty cycle  
can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-  
Demand mode may be used at the same time Automatic mode is enabled, however, if the system  
tries to enable the TCC via On-Demand mode at the same time automatic mode is enabled AND a  
high temperature condition exists, the duty cycle of the automatic mode will override the duty  
cycle selected by the On-Demand mode.  
An external signal, PROCHOT# (processor hot) is asserted when the processor die temperature has  
reached its thermal limit. If the TCC is enabled (note that the TCC must be enabled for the  
processor to be operating within spec), TCC will be active when the PROCHOT# signal is active.  
The temperature at which the thermal control circuit activates is not user configurable and is not  
software visible. Bus snooping and interrupt latching are active while the TCC is active.  
251308-002  
87  
Datasheet  
Thermal Specifications and Design Considerations  
Besides the thermal sensor and TCC, the Thermal Monitor feature also includes one ACPI register,  
performance monitoring logic, bits in three model specific registers (MSR), and one I/O pin  
(PROCHOT#). All are available to monitor and control the state of the Thermal Monitor feature.  
Thermal Monitor can be configured to generate an interrupt upon the assertion or de-assertion of  
PROCHOT#.  
If automatic mode is disabled, the processor will be operating out of specification. Regardless of  
enabling of the automatic or On-Demand modes, in the event of a catastrophic cooling failure, the  
processor will automatically shut down when the silicon has reached a temperature of  
approximately 135 °C. At this point the system bus signal THERMTRIP# will go active and stay  
active until RESET# has been initiated. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. If THERMTRIP# is asserted, processor core voltage  
(VCC) must be removed within the timeframe defined in Table 20.  
88  
251308-002  
Datasheet  
Configuration and Low Power Features  
7 Configuration and Low Power  
Features  
7.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Mobile Intel Celeron Processor  
samples its hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, please refer to Table 39.  
Frequency determination functionality will exist on engineering sample processors which means  
that samples can run at varied frequencies. Production material will have the bus to core ratio  
locked during manufacturing and can only be operated at the rated frequency.  
The sampled information configures the processor for subsequent operation. These configuration  
options cannot be changed except by another reset. All resets reconfigure the processor.  
Table 39. Power-On Configuration Option Pins  
Configuration Option  
Pin1  
Output tristate  
SMI#  
INIT#  
A7#  
Execute BIST  
In Order Queue pipelining (set IOQ depth to 1)  
Disable MCERR# observation  
Disable BINIT# observation  
APIC Cluster ID (0-3)  
A9#  
A10#  
A[12:11]#  
A15#  
Disable bus parking  
Symmetric agent arbitration ID  
BR0#  
NOTE: Asserting this signal during RESET# will select the corresponding option.  
7.2  
Clock Control and Low Power States  
The use of AutoHALT, Stop-Grant, Sleep, and Deep Sleep states is allowed in Mobile Intel Celeron  
Processor based systems to reduce power consumption by stopping the clock to internal sections of  
the processor, depending on each particular state. See Figure 33 for a visual representation of the  
processor low-power states.  
7.2.1  
Normal State  
This is the normal operating state for the processor.  
251308-002  
89  
Datasheet  
Configuration and Low Power Features  
7.2.2  
AutoHALT Powerdown State  
AutoHALT is a low-power state entered when the processor executes the HALT instruction. The  
processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#,  
LINT[1:0] (NMI, INTR), or PSB interrupt message. RESET# will cause the processor to  
immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or  
the AutoHALT Powerdown state. See the Intel Architecture Software Developer's Manual, Volume  
III: System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the AutoHALT Powerdown state.  
When the system deasserts the STPCLK# interrupt, the processor will return execution to the  
HALT state.  
While in AutoHALT Powerdown state, the processor will process bus snoops.  
Figure 33. Clock Control States  
SLP# asserted  
STPCLK# asserted  
Stop  
Grant  
Normal  
Sleep  
STPCLK# de-asserted  
SLP# de-asserted  
STPCLK#  
asserted  
halt  
break  
DPSLP#  
de-asserted  
DPSLP#  
asserted  
snoop  
serviced  
HLT  
snoop  
occurs  
STPCLK#  
de-asserted  
instruction  
snoop  
occurs  
HALT/  
Grant  
Snoop  
Deep  
Sleep  
Auto Halt  
snoop  
serviced  
V0001-04  
Halt break - A20M#, BINIT#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
7.2.3  
Stop-Grant State  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks  
after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.  
Since the AGTL+ signal pins receive power from the system bus, these pins should not be driven  
(allowing the level to return to VCC) for minimum power drawn by the termination resistors in this  
state. In addition, all other input pins on the system bus should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched  
and can be serviced by software upon exit from the Stop-Grant state.  
90  
251308-002  
Datasheet  
Configuration and Low Power Features  
RESET# will cause the processor to immediately initialize itself, but the processor will stay in  
Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the  
STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should  
only be deasserted ten or more bus clocks after the deassertion of SLP#.  
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the  
system bus (see Section 7.2.4). A transition to the Sleep state (see Section 7.2.5) will occur with the  
assertion of the SLP# signal.  
While in the Stop-Grant State, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one occurrence  
of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process a system bus snoop.  
7.2.4  
7.2.5  
HALT/Grant Snoop State  
The processor will respond to snoop transactions on the system bus while in Stop-Grant state or in  
AutoHALT Power Down state. During a snoop transaction, the processor enters the HALT/Grant  
Snoop state. The processor will stay in this state until the snoop on the system bus has been  
serviced (whether by the processor or another agent on the system bus). After the snoop is serviced,  
the processor will return to the Stop-Grant state or AutoHALT Power Down state, as appropriate.  
Sleep State  
The Sleep state is a low power state in which the processor maintains its context, maintains the  
phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can only be entered  
from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state upon  
the assertion of the SLP# signal. The SLP# pin should only be asserted when the processor is in the  
Stop Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of  
specification and may result in unapproved operation.  
Snoop events that occur while in Sleep State or during a transition into or out of Sleep state will  
cause unpredictable behaviour.  
In the Sleep state, the processor is incapable of responding to snoop transactions or latching  
interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or  
RESET#) are allowed on the system bus while the processor is in Sleep state. Any transition on an  
input signal before the processor has returned to Stop-Grant state will result in unpredictable  
behaviour.  
If RESET# is driven active while the processor is in the Sleep state, and held active as specified in  
the RESET# pin specification, then the processor will reset itself, ignoring the transition through  
Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP#  
and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the  
processor correctly executes the Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power state, the Deep  
Sleep state, by asserting the DPSLP# pin. (See Section 7.2.6.) Once in the Sleep or Deep Sleep  
states, the SLP# pin must be de-asserted if another asynchronous system bus event needs to occur.  
The SLP# pin has a minimum assertion of one BCLK period.  
When the processor is in Sleep state, it will not respond to interrupts or snoop transactions.  
251308-002  
91  
Datasheet  
Configuration and Low Power Features  
7.2.6  
Deep Sleep State  
Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep  
Sleep state is entered by asserting the DPSLP# pin. The DPSLP# pin must be de-asserted to re-  
enter the Sleep state. A period of 30 microseconds (to allow for PLL stabilization) must occur  
before the processor can be considered to be in the Sleep State. Once in the Sleep state, the SLP#  
pin can be deasserted to re-enter the Stop-Grant state.  
The clock may be stopped when the processor is in the Deep Sleep state in order to support the  
ACPI S1 state. The clock may only be stopped after DPSLP# is asserted and must be restarted  
before DPSLP# is deasserted. To provide maximum power conservation when stopping the clock  
during Deep Sleep, hold the BLCK0 input at VOL and the BCLK1 input at VOH  
.
While in Deep Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions of signals are allowed on the system bus while the  
processor is in Deep Sleep state. Any transition on an input signal before the processor has returned  
to Stop-Grant state will result in unpredictable behaviour.  
92  
251308-002  
Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
Please refer to the Mobile IntelPentium4 Processor-M and Intel845MP/845MZ Chipset  
Platform Design Guide for information regarding debug tools specifications.  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use  
in debugging Mobile Intel Celeron Processor systems. Tektronix* and Agilent* should be  
contacted to get specific information about their logic analyzer interfaces. The following  
information is general in nature. Specific information must be obtained from the logic analyzer  
vendor.  
Due to the complexity of Mobile Intel Celeron Processor systems, the LAI is critical in providing  
the ability to probe and capture system bus signals. There are two sets of considerations to keep in  
mind when designing a Mobile Intel Celeron Processor system that can make use of an LAI:  
mechanical and electrical.  
8.1.1  
8.1.2  
Mechanical Considerations  
The LAI is installed between the processor socket and the Mobile Intel Celeron Processor. The LAI  
pins plug into the socket, while the Mobile Intel Celeron Processor pins plug into a socket on the  
LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between  
the Mobile Intel Celeron Processor and a logic analyzer. The maximum volume occupied by the  
LAI, known as the keepout volume, as well as the cable egress restrictions, should be obtained  
from the logic analyzer vendor. System designers must make sure that the keepout volume remains  
unobstructed inside the system.  
Electrical Considerations  
The LAI will also affect the electrical performance of the system bus; therefore, it is critical to  
obtain electrical load models from each of the logic analyzer vendors to be able to run system level  
simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for  
electrical specifications and load models for the LAI solution they provide.  
251308-002  
93  
Datasheet  

相关型号:

RH80532NC021256/SL6FN

RISC Microprocessor, 64-Bit, 1500MHz, CMOS, CPGA478
INTEL

RH80532NC025256

Microprocessor
ETC

RH80532NC029256

Microprocessor
ETC

RH80532NC029256/SL6VG

RISC Microprocessor, 64-Bit, 1700MHz, CMOS, CPGA478
INTEL

RH80532NC033256

Microprocessor
ETC

RH80532NC033256/SL6J4

RISC Microprocessor, 64-Bit, 1800MHz, CMOS, CPGA478
INTEL

RH80532NC033256/SL6VH

RISC Microprocessor, 64-Bit, 1800MHz, CMOS, CPGA478
INTEL

RH80532NC041256

Microprocessor
INTEL
INTEL
INTEL
INTEL

RH80533NZ733128SL5SS

RISC Microprocessor, 32-Bit, 733MHz, CMOS, PBGA479
INTEL