S1D19105 [ETC]

S1D19105d01b000;
S1D19105
型号: S1D19105
厂家: ETC    ETC
描述:

S1D19105d01b000

文件: 总122页 (文件大小:1015K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S1D19105 Series  
Rev.1.1  
NOTICE  
No part of this material may be reproduced or duplicated in any form or by any means without the written  
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.  
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material  
or due to its application or use in any product or circuit and, further, there is no representation that this material  
is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to  
any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty  
that anything made in accordance with this material will be free from any patent or copyright infringement of a  
third party. This material or portions thereof may contain technology or the subject relating to strategic  
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export  
license from the Ministry of International Trade and Industry or other approval from another government  
agency.  
All other product names mentioned herein are trademarks and/or registered trademarks of their respective  
companies.  
©SEIKO EPSON CORPORATION 2005, All rights reserved.  
Configuration of product number  
DSE1VICESD  
19105 D 00B0  
00  
Packing specifications  
Specifications  
Shape (D: Chip, T:TCP, F : QFP)  
Model number  
Model name (D : LCD Driver)  
Product classification  
(S1:Semiconductors)  
CONTENTS  
1. DESCRIPTION....................................................................................................................................1  
2. FEATURES .........................................................................................................................................2  
3. BLOCK DIAGRAM .............................................................................................................................3  
4. PIN ASSIGNMENT..............................................................................................................................4  
4.1 S1D19105 Specifications of Chip...............................................................................................4  
4.2 Bump Center Coordinates..........................................................................................................6  
5. PIN DESCRIPTION...........................................................................................................................10  
5.1 External Power Pins.................................................................................................................10  
5.2 Built-in Power Pins ...................................................................................................................10  
5.3 1st Booster Pins .......................................................................................................................11  
5.4 The 2nd Booster Pins...............................................................................................................11  
5.5 The 3rd Booster Pins................................................................................................................12  
5.6 The 4th Booster Pins................................................................................................................12  
5.7 VCOM Generation Pins..............................................................................................................13  
5.8 Control Pins..............................................................................................................................14  
5.9 γ Reference Output Pin ............................................................................................................15  
5.10 RGB Interface Signal Pins........................................................................................................16  
5.11 LCD Output Pins.......................................................................................................................16  
5.12 Test Pins ...................................................................................................................................17  
5.13 Dummy Output Pins .................................................................................................................17  
6. FUNCTIONAL DESCRIPTION .........................................................................................................18  
6.1 MPU Interface...........................................................................................................................18  
6.1.1 MPU Interface Selection.............................................................................................18  
6.1.2 Parallel MPU Interface................................................................................................18  
6.1.3 Serial Interface............................................................................................................19  
6.1.4 Internal Data Bus Expansion of Display Data ............................................................21  
6.1.5 Access to Display Data RAM and Internal Register via MPU Interface.....................23  
6.1.6 VSYNC Interface ........................................................................................................24  
6.2 RGB Interface...........................................................................................................................25  
6.2.1 RGB Interface Selection.............................................................................................25  
6.2.2 RGB Interface Operation Modes................................................................................26  
6.2.3 Internal Data Bus of RGB Interface............................................................................29  
6.2.4 Access to Display Data RAM via RGB Interface........................................................30  
6.3 Write Speed to Display Data RAM ...........................................................................................32  
6.4 Display Data RAM ....................................................................................................................34  
6.4.1 Display Data RAM ......................................................................................................34  
6.4.2 Source Line Drive Output Pins and RAM Data..........................................................34  
6.4.3 Row Address Circuit/Column Address Circuit............................................................35  
6.4.4 Area Scrolling .............................................................................................................36  
6.4.5 Partial Display.............................................................................................................37  
6.4.6 AC Operation Drive ....................................................................................................38  
6.5 Oscillation Circuit......................................................................................................................39  
6.6 Setting Gate Line Scan Mode ..................................................................................................40  
6.7 How to Connect to the External Power Supply........................................................................42  
Rev.1.1  
EPSON  
i
6.8 Description of Operation of Built-in Power Supply...................................................................45  
6.9 Power Supply for LCD and Main Specifications for Power Supply..........................................46  
6.9.1 Basic Configuration Diagram of Built-in Power Supply..............................................47  
6.9.2 The 1st Booster Circuit...............................................................................................48  
6.9.3 The 2nd Booster Circuit..............................................................................................49  
6.9.4 The 3rd Booster Circuit...............................................................................................50  
6.9.5 The 4th Booster Circuit...............................................................................................51  
6.9.6  
VCOM Generation Circuit.............................................................................................53  
6.10 Connection Diagram of External Parts.....................................................................................54  
6.11 Gray scale Voltage Generation Circuit.....................................................................................58  
6.11.1 Adjusting Gray Scale Voltage.....................................................................................59  
6.11.2 Amplitude Adjustment.................................................................................................59  
6.11.3 Tilt Adjustment ............................................................................................................59  
6.11.4 Fine Adjustment of Gray Scale Voltage......................................................................59  
6.12 Calculation of Gray Scale Voltage............................................................................................60  
6.13 Resetting...................................................................................................................................64  
7. COMMANDS.....................................................................................................................................65  
7.1 Command List ..........................................................................................................................66  
7.2 Initial Values of a Single-Byte Command.................................................................................67  
7.3 Parameter Initial Value List.......................................................................................................68  
7.4 Explanation of Commands .......................................................................................................70  
7.5 Instruction Setup Example (Reference) ...................................................................................99  
7.5.1 Initial Setup to Display-ON (VCORE forceful ON, VCORE forceful OFF) ......................99  
7.5.2 Initial Setup to Display-ON (Normal use of VCORE)..................................................100  
7.5.3 Power OFF Sequence..............................................................................................101  
7.5.4 Initial Setup to Display-ON (Normal use of , VDC4 is less than 2.3V).....................102  
7.5.5 Power OFF sequence...............................................................................................103  
8. ABSOLUTE MAXIMUM RATINGS.................................................................................................104  
9. RECOMMENDED OPERATING CONDITIONS .............................................................................105  
10. DC CHARACTERISTICS................................................................................................................106  
11. AC CHARACTERISTICS................................................................................................................107  
11.1 Oscillation Frequency.............................................................................................................107  
11.2 Parallel Interface.....................................................................................................................107  
11.2.1 The 80-Series MPUs ................................................................................................107  
11.2.2 The 68-Series MPUs ................................................................................................109  
11.3 Serial Interface ....................................................................................................................... 111  
11.4 Resetting.................................................................................................................................112  
11.5 Source Output ........................................................................................................................112  
11.6 RGB Interface.........................................................................................................................113  
12. NOTES ............................................................................................................................................114  
ii  
EPSON  
Rev.1.1  
1. DESCRIPTION  
1. DESCRIPTION  
The S1D19105 series is a 1-chip driver for driving amorphous Si-TFT with built-in data RAM that contains 176  
RGB × 220 dots, supporting 262k-color display. Since this series contains all power circuits necessary for the  
220-output gate driver, 176-RGB output source driver, and the display, the TFT color panel module of a  
maximum of 176 RGB × 220 dots can be constructed with a minimum of components.  
The S1D19105 incorporates 8/9/16/18-bit parallel interface that can be directly attached to the micro computer  
(hereafter referred to as MPU) bus. The 3-line serial interface can also be used. The S1D19105 series receives  
parallel or serial display data from the microprocessor, stores it in the display data RAM, and outputs resource  
line drive signals, gate driver drive signals, and AC operation timing signals independent from MPU operations.  
Also, for movie display, 6/16/18-bit RGB interface and VSYNC synchronization function are provided.  
The S1D19105 series has the low current consumption, source line drive circuit (including reference voltage  
adjustment resistor and bias circuit for reference voltage circuit), high-efficiency power circuit and the CR  
oscillation circuit for fully-built-in display clock that does not require external parts. In addition, power can be  
controlled more finely using command control, as this series supports 8-color display mode and partial display  
mode. The S1D19105 series provides  
a high-performance but handy display system with a minimum of  
components in the minimum power consumption.  
S1D19105 Series (Rev.1.1)  
EPSON  
1
2. FEATURES  
2. FEATURES  
Supports 176 RGB × 220 dots and 262,144 colors amorphous Si-TFT color panel.  
RAM capacity 176 × 3 × 220 × 6 = 696,960 bits  
Display function  
Display of 262k-color at a time  
Area scrolling  
Partial display  
8-color display mode  
Interface function  
Selection from 8/9/16/18-bit parallel MPU interface.  
Direct attachment to either of 80- and 68-series MPUs.  
262k-color display via 16-bit interface by selecting 2+16 and 16+2 modes.  
___  
Serial interface 3 signal lines (CS, SCL, and SI signals)  
Selection from 6/16/18-bit RGB interface specifically for moving picture display, etc.  
VSYNC synchronization function provides flicker-free moving picture display.  
176 × 3 source line drive output A 6-bit D/A converter is included.  
A 110 output each is placed on the right and left sides of the 220 gate line drive output chip. Also,  
supports interlace drive.  
CR oscillation circuit (External clocks can also be used.)  
Common electrode drive signal outputs (VCOM signals)  
Allows 1-frame/3-line interlace/n-line reverse driving.  
Low supply voltage operation  
DDI- VSSSS= 2.3 to 3.1V (power supply for internal logic power supply)  
V
V
- V = 1.65 to 3.3V (interface I/O power supply)  
VDD - V = 2.3 to 3.1V (power supply for built-in power circuits)  
VDDDDC2 ORES-SVSS = 2.3 to 3.1V (internal logic power supply)  
Source voltage = Max.5.5V  
Gate voltage = Max.30V  
BUMP layout appropriate for COG assembly  
Package models available: Au bump chip and COF  
2
EPSON  
S1D19105 Series (Rev.1.1)  
3. BLOCK DIAGRAM  
3. BLOCK DIAGRAM  
GD1 to 4  
Gate driver  
Gate driver  
4
V
V
V
OUT  
DC1  
LD0  
V
V
V
V
V
V
V
V
V
V
V
DD  
Source driver  
DDI  
C11N  
C11P  
DD2  
Display data latch circuit  
VDC2  
SS  
C12N  
C12P  
REG  
DDHS  
ONREG  
OFREG  
CORE  
OSC  
LDO  
VOUTM  
VDC3  
Display data RAM  
C31N  
C31P  
C33N  
C32N  
C32P  
176  
U3  
U220U6  
VEE  
Column address  
Control logic  
VDC4  
VDC5  
C41N  
C41P  
VDDHG  
OSCI  
VCOM  
VSWIN  
OSCO  
CWN  
CWP  
COMW  
FBW  
V
VCOMH  
FBH  
V
V
V
COMH2  
COML  
DDRH  
DDRL  
TEST1 to 5  
RGB interface  
System interface  
5
V
8
3
18  
Fig.1 S1D19105 Series Block Diagram  
S1D19105 Series (Rev.1.1)  
EPSON  
3
4. PIN ASSIGNMENT  
4. PIN ASSIGNMENT  
4.1 S1D19105 Specifications of Chip  
Table 1 Specifications of Chip  
Dimensions  
Parameter  
Unit  
X
Y
Chip size  
19.56  
2.49  
mm  
µm  
µm  
µm  
µm  
µm  
Chip thickness  
Bump pitch  
Bump size  
400  
Min.50  
No.1 to 205  
No.206 to 978  
54  
24  
100  
105  
Bump height  
Typ.15  
Note: These values are given for reference only.  
Table 2 Bump Assignment Drawing  
(0,0)  
REV **  
(Coordinate 1: -9593.0, -1079.1)  
(Coordinate 2: 9593.0, -1079.1)  
The alignment mark is put on two locations.  
25  
30  
40  
150  
50  
30  
25  
40  
25  
30  
30  
25  
50  
150  
Unit: µm  
Fig.2 Alignment Mark  
4
EPSON  
S1D19105 Series (Rev.1.1)  
4. PIN ASSIGNMENT  
(-7060.0, -152.6)  
REV **  
(-7220.0, -200.6)  
Unit: µm  
Fig.3 Revision Coordinate Mark  
105  
S1 to S528  
25  
40  
50  
G1 to G220  
105  
24 26 24  
Area = 2520µ  
m2  
54  
I/O Pins  
100  
(for different potentials)  
Min.80  
Area = 5400  
µ
m2  
Unit: µm  
Fig.4 Bump Size and Assignment Drawing  
S1D19105 Series (Rev.1.1)  
EPSON  
5
4. PIN ASSIGNMENT  
4.2 Bump Center Coordinates  
Table 3 Bump Center Coordinates  
Unit: µm  
Y
BUMP No. Signal name  
X
Y
BUMP No. Signal name  
X
1
2
3
4
5
6
7
8
ADUMMY  
BDUMMY  
DUMMY  
-9429.2  
-9349.2  
-9269.2  
-9189.2  
-9109.2  
-9029.2  
-8949.2  
-8869.2  
-8789.2  
-8709.2  
-8629.2  
-8549.2  
-8469.2  
-8389.2  
-8309.2  
-8229.2  
-8149.2  
-8039.2  
-7929.2  
-7819.2  
-7739.2  
-7649.2  
-7569.2  
-7435.5  
-7355.5  
-7275.5  
-7195.5  
-7115.5  
-7025.5  
-6945.5  
-6865.5  
-6785.5  
-6705.5  
-6571.8  
-6491.8  
-1098.6  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
V
V
V
V
V
V
V
V
V
V
C86  
IF1  
CORE  
CORE  
CORE  
CORE  
-6411.8  
-6331.8  
-6251.8  
-6171.8  
-6091.8  
-6011.8  
-5931.8  
-5851.8  
-5771.8  
-5691.8  
-5611.8  
-5531.8  
-5451.8  
-5371.8  
-5291.8  
-5211.8  
-5131.8  
-5051.8  
-4971.8  
-4891.8  
-4811.8  
-4731.8  
-4651.8  
-4571.8  
-4491.8  
-4411.8  
-4331.8  
-4251.8  
-4171.8  
-4091.8  
-4011.8  
-3931.8  
-3851.8  
-3771.8  
-3691.8  
-1098.6  
V
V
COM  
COM  
DDI  
DUMMY  
DDI  
V
V
DDHG  
SS  
SS  
SS  
SS  
DDHG  
9
DUMMY  
C41P  
C41P  
DUMMY  
C41N  
C41N  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
IF2  
IF3  
DUMMY  
DUMMY  
V
ONREG  
V63  
V
V
DC4  
DC5  
V
V
8
7
6
5
4
3
2
1
0
V
V
V
OFREG  
DC3  
OUTDM  
V
V
V
V
V
V
V
C32P  
C32P  
C32N  
C32N  
DUMMY  
DUMMY  
____  
V
EE  
RES  
V
EE  
DUMMY  
___  
C33N  
C33N  
DUMMY  
C31N  
C31N  
C31P  
CS  
DUMMY  
A0  
DUMMY  
___  
WR  
DUMMY  
___  
C31P  
RD  
6
EPSON  
S1D19105 Series (Rev.1.1)  
4. PIN ASSIGNMENT  
Unit: µm  
Y
BUMP No. Signal name  
X
Y
BUMP No. Signal name  
X
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
DUMMY  
D0  
-3611.8  
-3531.8  
-3371.8  
-3211.8  
-3051.8  
-2891.8  
-2731.8  
-2571.8  
-2411.8  
-2251.8  
-2091.8  
-1931.8  
-1771.8  
-1611.8  
-1451.8  
-1291.8  
-1131.8  
-971.8  
-811.8  
-651.8  
-491.8  
-331.8  
-171.8  
-91.8  
-1098.6  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
SD  
868.2  
-1098.6  
EECK  
EEDA  
EECS  
1028.2  
1188.2  
1348.2  
1508.2  
1668.2  
1748.2  
1828.2  
1908.2  
1988.2  
2068.2  
2148.2  
2228.2  
2308.2  
2388.2  
2468.2  
2548.2  
2628.2  
2708.2  
2798.2  
2908.2  
2998.2  
3088.2  
3168.2  
3248.2  
3328.2  
3408.2  
3488.2  
3568.2  
3648.2  
3728.2  
3808.2  
3888.2  
3968.2  
4048.2  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
VEP  
TEST1  
DUMMY  
TEST2  
DUMMY  
TEST3  
DUMMY  
TEST4  
DUMMY  
TEST5  
DUMMY  
TRI  
OSCO  
OSCI  
D17  
V
OSC  
DDRL  
DDRH  
REG  
DUMMY  
VSYNCO2  
VSYNCO  
VSYNCI  
DUMMY  
HSYNC  
DUMMY  
DCK  
DUMMY  
ENABLE  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
SCL  
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
-11.8  
68.2  
148.2  
228.2  
308.2  
388.2  
468.2  
548.2  
V
V
V
V
V
V
VDDI  
VDDI  
VDDI  
VDDI  
628.2  
708.2  
788.2  
DUMMY  
VCORE  
S1D19105 Series (Rev.1.1)  
EPSON  
7
4. PIN ASSIGNMENT  
Unit: µm  
Y
BUMP No. Signal name  
X
Y
BUMP No. Signal name  
X
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
V
V
V
V
V
V
V
CORE  
CORE  
CORE  
CORE  
CORE  
CORE  
CORE  
4128.2  
4208.2  
4288.2  
4368.2  
4448.2  
4528.2  
4608.2  
4688.2  
4768.2  
4848.2  
4928.2  
5008.2  
5088.2  
5168.2  
5248.2  
5328.2  
5408.2  
5488.2  
5568.2  
5648.2  
5728.2  
5808.2  
5888.2  
5968.2  
6048.2  
6128.2  
6208.2  
6288.2  
6368.2  
6448.2  
6528.2  
6608.2  
6688.2  
6768.2  
6848.2  
-1098.6  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
6928.2  
7008.2  
7088.2  
7168.2  
7248.2  
7328.2  
7408.2  
7488.2  
7578.2  
7658.2  
7791.9  
7871.9  
7961.9  
8041.9  
8121.9  
8201.9  
8335.6  
8415.6  
8495.6  
8575.6  
8655.6  
8735.6  
8815.6  
8895.6  
8975.6  
9109.3  
9189.3  
9269.3  
9349.3  
9429.3  
-1098.6  
V
V
DDHS  
DDHS  
V
V
C21P  
C21P  
C21N  
C21N  
DC2  
DC2  
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
C11N  
C11N  
C11N  
C11N  
C11P  
C11P  
C11P  
C11P  
V
OUTM  
OUTM  
COML  
COML  
V
V
V
DD2  
DD2  
DD2  
DD2  
DD2  
DD2  
DD2  
DD2  
DC1  
DC1  
LDO  
LDO  
V
COMH2  
FBH  
V
REG  
V
COMH  
FBW  
V
COMW  
CWP  
CWN  
V
SWIN  
V
V
COM  
COM  
DUMMY  
CDUMMY  
DDUMMY  
8
EPSON  
S1D19105 Series (Rev.1.1)  
4. PIN ASSIGNMENT  
Unit: µm  
Y
BUMP No. Signal name  
X
Y
BUMP No. Signal name  
X
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
DUMMY  
DUMMY  
9650  
9625  
9600  
9575  
9550  
9525  
9500  
9475  
9450  
9425  
9400  
9375  
9350  
9325  
9300  
9275  
9250  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
333  
334  
335  
336  
337  
S6  
S7  
S8  
S9  
S10  
6475  
6450  
6425  
6400  
6375  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
V
V
COM  
COM  
DDUMMY  
CDUMMY  
GD1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
S526  
S527  
S528  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
GD3  
G111  
G112  
G113  
-6525  
-6550  
-6575  
-6600  
-6625  
-6650  
-6675  
-6700  
-6725  
-6750  
-6775  
-6800  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
G10  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
G109  
G110  
GD2  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
S1  
6775  
6750  
6725  
6700  
6675  
6650  
6625  
6600  
6575  
6550  
6525  
6500  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
970  
971  
972  
973  
974  
975  
976  
977  
978  
G219  
G220  
GD4  
BDUMMY  
ADUMMY  
-9450  
-9475  
-9500  
-9525  
-9550  
-9575  
-9600  
-9625  
-9650  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
1103.8  
958.8  
S2  
S3  
S4  
S5  
VCOM  
VCOM  
DUMMY  
DUMMY  
X coordinates of Gm pin (m = 1 to 110): (110-m) × 25 + 6750  
µ
m
Y coordinates: m = 1103.8  
X coordinates of Sm pin (m=1 to 528): (528-m) × 25 -6575  
Y coordinates: m = 1103.8 m for odd number m = 958.8  
X coordinates of Gm pin (m=111 to 220): (220-m) × 25 -9475  
Y coordinates: m = 1103.8 m for odd number m = 958.8 m for even number  
µ
m for odd number m = 958.8  
µ
m for even number  
µm  
µ
µm for even number  
µ
m
µ
µ
S1D19105 Series (Rev.1.1)  
EPSON  
9
5. PIN DESCRIPTION  
5. PIN DESCRIPTION  
5.1 External Power Pins  
Table 4 External Power Pins  
Connected  
To  
External  
power  
Number of  
Pin Name  
V
I/O  
Description  
pins  
DD2  
Power supply  
I
Power pins for built-in power circuits.  
Used for built-in power supply.  
8
Used as the reference power supply for the 1st booster.  
Supply external power.  
See section 6.7 How to Connect to External Power Supply.  
Power pins for VCORE generation built-in power circuits.  
V
DD  
Power supply  
I
External  
power  
8
6
It is common to the VDD2  
.
Supply external power.  
See section 6.7 How to Connect to External Power Supply.  
Power pins dedicated to interface.  
Power supply for interface pins.  
Supply external power.  
V
DDI  
Power supply  
I
External  
power  
See section 6.7 How to Connect to External Power Supply.  
They are ground pins.  
The 0V pin connected to the system ground.  
Used as the IC board potential.  
V
SS  
Power supply  
I
External  
power  
12  
5.2 Built-in Power Pins  
Table 5 Built-in Power Pins  
Connected  
To  
Capacity  
External  
power  
Number of  
Pins  
Pin Name  
I/O  
Description  
V
CORE  
I/O  
Logic and RAM power supplies.  
12  
Generated by a built-in power supply or connected to an  
external power. Connect it to external power basically.  
See section 6.7 How to Connect to External Power Supply.  
Reference voltage for built-in power supply.  
V
REG  
O
O
O
Capacity  
Capacity  
Capacity  
2
2
1
V
V
DDHS  
Voltage for generating source driver drive voltage.  
Voltage for adjusting VDDHG.  
Connect it to capacity if it used.  
Set it to open if it is not used.  
ONREG  
V
DC4  
Open  
V
OFREG  
O
Capacity  
Voltage for adjusting VEE  
.
1
V
DC3  
Connect it to capacity if it used.  
Open  
Open  
Set it to open if it is not used.  
V
V
OSC  
LDO  
O
O
Voltage for CR oscillation circuit  
Used as the reference voltage for the 1st booster.  
Used to control the 1st booster voltage. Fixed it to open  
basically.  
1
2
Capacity  
Open  
V
V
DDRH  
DDRL  
O
O
Capacity  
Capacity  
Reference voltage for V  
0
generation for γ correction resistor.  
1
1
Reference voltage for V63 generation for γ correction  
resistor.  
10  
EPSON  
S1D19105 Series (Rev.1.1)  
5. PIN DESCRIPTION  
5.3 1st Booster Pins  
Table 6 1st Booster Pins  
Connected  
To  
Capacity  
Number of  
Pin Name  
I/O  
Description  
The 1st booster voltage.  
Pins  
V
OUT  
O
4
Outputs double VDC1 voltage for built-in power  
circuits.  
The 1st booster reference voltage input pin.  
V
DC1  
I
V
DD2  
LDO  
2
V
Connect either VDD2 or VLDO  
.
Connect it to VDD2  
basically.  
C11N  
C11P  
I/O  
I/O  
Capacity  
Capacity  
Flying capacitor for generating VOUT output  
Connecting pins on the negative side  
Flying capacitor for generating VOUT output  
Connecting pins on the positive side  
4
4
5.4 The 2nd Booster Pins  
Table 7 The 2nd Booster Pins  
Connected  
To  
Number of  
Pin Name  
I/O  
Description  
Pins  
V
DC2  
I
V
DD2  
The 2nd booster reference voltage input pin.  
Connect either VDD2 or VOUT.  
2
V
OUT  
C21P  
C21N  
I/O  
I/O  
O
Capacity  
Capacity  
Capacity  
Flying capacitor for generating VOUTM output  
Connecting pins on the positive side  
Flying capacitor for generating VOUTM output  
Connecting pins on the negative side  
Voltage for generating VCOML  
2
2
2
V
OUTM  
Outputs the voltage obtained by multiplying VDD2 or VOUT  
by a factor of (-1).  
S1D19105 Series (Rev.1.1)  
EPSON  
11  
5. PIN DESCRIPTION  
5.5 The 3rd Booster Pins  
Table 8 The 3rd Booster Pins  
Connected  
To  
Number of  
Pin Name  
I/O  
Description  
Pins  
V
DC3  
I
V
DD2  
OUTDM  
OFREG  
DC3  
The 3rd booster reference voltage input pin.  
Connect it to either VOUTDM or VOFREG.  
1
V
V
Connect it to VOFREG at the time of –3 times boosting.  
Outputs VOUT  
Used to input VOUT to VDC3  
V
OUTDM  
O
O
V
.
1
2
2
2
2
2
2
Open  
.
C31P  
C31N  
C33N  
C32P  
C32N  
Capacity  
1 Flying capacitor for generating VEE output  
Connecting pins on the positive side  
I/O  
I/O  
I/O  
I/O  
O
Capacity  
Capacity  
Capacity  
Capacity  
Capacity  
1 Flying capacitor for generating VEE output  
Connecting pins on the negative side  
3 Flying capacitor for generating VEE output  
Connecting pins on the negative side  
2 Flying capacitor for generating VEE output  
Connecting pins on the positive side  
2 Flying capacitor for generating VEE output  
Connecting pins on the negative side  
V
EE  
VEE output pin  
Gate off voltage  
Outputs the voltage obtained by multiplying VDD2 or VOUT by  
a factor of (-1 to -3).  
5.6 The 4th Booster Pins  
Table 9 The 4th Booster Pins  
Number of  
Pin Name  
I/O  
Connected To  
Description  
Pins  
V
DC4  
I
V
DD2  
SS  
ONREG  
DD2  
SS  
ONREG  
The 4th booster reference voltage input pin.  
1
V
Connect it to VDD2, VSS or VONREG. It should be connected  
to VSS. Because It is for discharge pin of the VDDHG.  
The 4th booster reference voltage input pin.  
V
V
DC5  
I
V
V
1
Connect it to VDD2, VSS or VONREG.  
V
C41P  
C41N  
I/O  
I/O  
O
Capacity  
Capacity  
Capacity  
Flying capacitor connecting pins on the positive side for  
generating VEE output  
Flying capacitor connecting pins on the negative side for  
generating VEE output  
2
2
2
V
DDHG  
V
DDHG output pin. Gate on voltage  
Outputs double boosted voltage between VDC4 and VEE to  
V
DC5.  
12  
EPSON  
S1D19105 Series (Rev.1.1)  
5. PIN DESCRIPTION  
5.7 VCOM Generation Pins  
Table 10 VCOM Generation Pins  
Connected  
Number of  
Pin Name  
I/O  
Description  
To  
Pins  
V
SWIN  
O
I/O  
I/O  
O
I
O
Open  
Open  
Open  
Open  
Open  
Capacity  
Resistor  
This pin. Fix it to open.  
This pin. Fix it to open.  
This pin. Fix it to open.  
This pin. Fix it to open.  
This pin. Fix it to open.  
1
1
1
1
1
CWN  
CWP  
V
COMW  
FBW  
V
COMH  
Voltage output pin on the side of high voltage level of the VCOM  
signal.  
2
The twice of voltage inputted into the FBH pin are outputted. It is  
possible to adjust VCOMH voltage, maintaining VCOM amplitude  
by connecting variable resistance between VREG to VSS and  
inputting arbitrary voltage into FBH pin. Adjustment by the built-in  
electronic control is also possible.  
FBH  
I
VCOMH2 It is an adjustment voltage input pin in the case of adjusting  
1
Resistor  
Capacity  
VCOMH voltage.  
When adjusting by external resistance, it is possible to adjust  
VCOMH voltage, maintaining VCOM amplitude by connecting  
variable resistance between VREG to VSS and inputting arbitrary  
voltage into FBH pin. The twice as many voltage inputted into the  
FBH pin as this is outputted to VCOMH. To adjust it using the  
built-in electronic control, connect it to the VCOMH2 pin.  
Connect capacity about it between VSS to decrease the influence  
of the noise.  
V
COMH2  
O
O
FBH  
Open  
Capacity  
This pin is used for connecting to FBH to adjust the VCOMH voltage  
with the built-in electronic control.  
Voltage output pin on the side of low voltage level of the VCOM  
signal.  
1
2
V
COML  
V
COML=VCOMH – VCA × 2  
Outputs voltage by the above equation.  
VCA is the value of the built-in electronic control used for  
determining the amplitude of VCOM  
.
S1D19105 Series (Rev.1.1)  
EPSON  
13  
5. PIN DESCRIPTION  
5.8 Control Pins  
Table 11 Control Pins  
Connected  
To  
Number of  
Pin Name  
I/O  
Description  
Pins  
___  
CS  
I
MPU  
Chip Select pin.  
1
___  
When CS= LOW, the pin is active and data or command input is  
___  
enabled. In the test mode, clock input from the CS pin is  
enabled.  
A0  
I
MPU  
Data/command identification pin  
1
When using the parallel interface, usually the least significant bit of  
the MPU address bus is connected to identify the data or  
command.  
When using the 9-bit serial interface, fix it for LOW or HIGH.  
A0= HIGH : The display data or command parameters are  
entered in the Data Bus pins.  
A0= LOW : The commands are entered in the Data Bus pins.  
Read pin. (If connected to the 80-series MPU)  
___  
RD  
I
I
MPU  
MPU  
1
1
(E)  
While this signal is kept LOW, the data bus is output enabled at the  
___  
RD signal pin of 80-series MPU.  
Enable clock pin. (If connected to the 68-series MPU)  
This is the Enable Clock input pin of the 68-series MPU.  
When the serial interface is selected, fix VDDI or VSS for the level.  
___  
WR  
__  
Write pin. (If connected to the 80-series MPU)  
___  
(R/W)  
Used for connecting 80-series MPU’s WR signal. A signal on the  
___  
data bus is latched at the rising edge of the WR signal.  
Read or write pin. (If connected to the 68-series MPU)  
This is the Read/Write signal input pin of the 68-series MPU.  
__  
R/W = HIGH: Read  
__  
R/W = LOW: Write  
When the serial interface is selected, fix VDDI or VSS for the level.  
Data bus pin.  
D0 to D17  
I/O  
MPU  
18  
Controller 18-bit bi-directional data bus. Used as data bus for both parallel  
MUP interface and RGB interface.  
When the parallel MPU interface is selected and the Chip Select is  
in the non-active state, operations of all pins stop, disabling both  
input and output. The following signal pins are used for each  
mode. Unused pins can be set open.  
8-bit mode D17 to D10  
9-bit mode D17 to D9  
16-bit mode D17 to D2  
18-bit mode D17 to D0  
Input pins used when the RGB interface is selected.  
The following signal pins are used for each mode. Unused pins can  
be set open.  
6-bit mode D17 to D12  
16-bit mode D17 to D2  
18-bit mode D17 to D0  
14  
EPSON  
S1D19105 Series (Rev.1.1)  
5. PIN DESCRIPTION  
Connected  
To  
Number of  
Pin Name  
I/O  
Description  
Pins  
SCL  
I
MPU  
Serial clock pin.  
1
Serial clock input pins used when the serial interface is selected.  
When not choosing a serial interface, it is possible to make it to  
open.  
SD  
I/O  
MPU  
Serial data input/output pin.  
1
Serial data input/output pin used when the serial interface is  
selected.  
When not choosing a serial interface, it is possible to make it to  
open.  
MPU interface switching pin.  
C86= HIGH : The 68-series MPU interface  
C86= LOW : The 80-series MPU interface  
MPU interface switching pin.  
C86  
I
I
V
V
SS  
/
1
3
DDI  
IF1, IF2  
IF3  
V
V
SS  
/
DDI  
IF3  
IF2  
IF1  
Interface  
16-bit parallel  
18-bit parallel  
8-bit parallel  
9-bit parallel  
9-bit serial  
LOW LOW LOW  
LOW LOW HIGH  
LOW HIGH LOW  
LOW HIGH HIGH  
HIGH HIGH HIGH  
____  
RES  
I
I
MPU  
Reset pin.  
Resets if set to LOW.  
Clock input pin.  
Test pin. Connect it to either VSS or VDDI  
When the built-in oscillation circuit is used, set (P17 data set  
command is “0”) and connect it to VSS or VDDI When the built-in  
1
1
OSCI  
V
V
SS  
/
DDI  
.
.
oscillation circuit is used, set (P17 data set command is “1”) and  
enter an external clock.  
Clock output pin.  
Test pin. Set open.  
OSCO  
O
Open  
1
Outputs oscillation clocks when the built-in oscillator circuit is  
used.  
Verifies the oscillation out when testing.  
5.9 γ Reference Output Pin  
Table 12 γ Reference Output Pin  
Connected  
Number of  
Pin Name  
I/O  
Description  
To  
Pins  
V
0
O
O
O
Capacity  
Capacity  
Open  
MSB of the gray scale voltage  
LSB voltage of the gray scale voltage  
Test pin. Set open.  
1
1
1
V
63  
V8 to V1  
S1D19105 Series (Rev.1.1)  
EPSON  
15  
5. PIN DESCRIPTION  
5.10 RGB Interface Signal Pins  
Table 13 RGB Interface Signal Pins  
Connected  
To  
Number of  
Pin Name  
I/O  
Description  
Vertical synchronization input pins.  
Pins  
VSYNCI  
I
MPU  
1
Enters the vertical synchronization signal when set for the VSYNC  
interface, RGB transfer 2 or 3 using the Set Display Data Interface  
command.  
If it is not set, no entry operation takes place. So it is possible to  
set it open.  
Vertical synchronization output pins.  
Outputs the vertical synchronization signal.  
Vertical synchronization output pins.  
VSYNCO  
O
O
MPU  
1
1
VSYNCO2  
Open  
Outputs the vertical synchronization divided into 1/2.  
As it is a test pin, set it open.  
Horizontal synchronization pins.  
HSYNC  
I
MPU  
1
Enters the horizontal synchronization signal when set for the RGB  
transfer 3 using the Set Display Data Interface command.  
If it is not set, no entry operation takes place. So it is possible to  
set it open.  
DOTCLK  
I
MPU  
RGB interface dot clock pin.  
1
Enters the dot clock when using the RGB interface.  
At the rising edge or falling edge of this signal, the RGB data  
entered in D0 to D17 is read.  
When the RGB interface is not used, it is possible to set open.  
When the RGB transfer 3 is set, it becomes the display reference  
clock signal and the reference clock of a booster clock.  
RGB Interface enable pin.  
ENABLE  
I
MPU  
1
This is the data enable signal when using the RGB interface.  
When the RGB interface is not used, it is possible to set open.  
5.11 LCD Output Pins  
Table 14 LCD Output Pins  
Connected  
To  
Number of  
Pins  
Pin Name  
I/O  
Description  
S1 to S528  
O
LCD  
Source line drive output pins.  
528  
Converts digital display data into analog form (D/A conversion) and  
outputs it.  
Gate line drive output pins.  
Outputs gate line selection level: VDDHG and non-selection level:  
G1 to 220  
GD1 to 4  
O
LCD  
220  
V
EE.  
O
O
LCD  
LCD  
Dummy gate line drive output pins.  
Continuously outputs VEE voltage level.  
4
8
V
COM  
V
COM signal output pin.  
Used as the common electrode signal for the TFT panel.  
16  
EPSON  
S1D19105 Series (Rev.1.1)  
5. PIN DESCRIPTION  
5.12 Test Pins  
Table 15 Test Pins  
Connected  
To  
Number of  
Pin Name  
I/O  
Description  
Pins  
TEST1  
I
GND  
Test pin  
1
The customer cannot use it. Be sure to enter LOW.  
HIGH: Test mode (adjustment of oscillation frequency and VREG  
LOW: Normal operation mode  
)
TEST2  
TEST3  
I
I
GND  
Test pin  
1
1
The customer cannot use it. Be sure to enter LOW.  
HIGH: Test mode (Built-in power output is not discharged.)  
LOW: Normal operation mode. (Built-in power output is  
discharged.)  
V
DDI  
VCORE disable pin  
Set HIGH when supplying an external power supply to the VCORE  
pin.  
HIGH: Forcefully turns VCORE OFF. (Not discharged.)  
LOW: Normal operation mode. (Discharge is carried out when  
VCORE OFF.)  
See section 6.7 How to Connect to External Power Supply.  
Connect it to VDDI to connect with external power supply basically.  
TEST4  
TEST5  
I
I
GND  
GND  
VCORE force enable pin  
1
1
Used to not discharge VCORE in the sleep in state.  
HIGH: Forcefully turns VCORE ON. (Not discharged.)  
LOW: Normal operation mode. (Discharge is carried out when  
VCORE OFF.)  
See section 6.7 How to Connect to External Power Supply.  
Connect it to GND to connect with external power supply basically.  
Test pin  
(The customer cannot use it. Be sure to enter LOW. )  
HIGH: Test mode LOW: Normal operation mode  
Test pin. Internal constant current adjustment pin. Fix it to open.  
Test pin. Fix it to open.  
TRI  
O
O
O
O
O
Open  
Open  
Open  
Open  
Open  
1
1
1
1
1
EECK  
EEDA  
EECS  
VEP  
Test pin. Fix it to open.  
Test pin. Fix it to open.  
Test pin. Fix it to open.  
5.13 Dummy Output Pins  
Table 16 Dummy Output Pins  
Connected  
Number of  
Pins  
Pin Name  
I/O  
Description  
To  
DUMMY  
Open  
Dummy pin  
42  
Do not connect the voltage to the DUMMY pin.  
There are two pins that are connected by aluminum winding.  
When it is used, connect it within VSS to VOUT  
There are two pins that are connected by aluminum winding.  
When it is used, connect it within VEE to VDDHG  
There are two pins that are connected by aluminum winding.  
When it is used, connect it within VEE to VDDHG  
There are two pins that are connected by aluminum winding.  
When it is used, connect it within VSS to VOUT  
ADUMMY  
BDUMMY  
CDUMMY  
DDUMMY  
Open  
Open  
Open  
Open  
2
2
2
2
.
.
.
.
S1D19105 Series (Rev.1.1)  
EPSON  
17  
6. FUNCTIONAL DESCRIPTION  
6. FUNCTIONAL DESCRIPTION  
6.1 MPU Interface  
This IC is provided with 8/9/16/18-bit MPU interface and 9-bit serial interface for command and display data  
transfer from the MPU. When you have selected the 16-bit MPU interface, you can select 2 + 16-bit or 16 + 2-bit  
mode using the data set command. Also, for display data transfer, 6/16/18-bit RGB interface is provided. In  
addition, with the VSYNC synchronization function newly provided, the system best suited to displaying both  
still pictures and moving pictures simultaneously can be built.  
6.1.1 MPU Interface Selection  
The MPU interface can be used for transferring commands and display data, and can be selected with the MPU  
interface select pins (IF3, IF2 and IF1) as shown in the table below.  
Table 17 MPU Interface Selection  
IF3  
IF2  
IF1  
Interface  
16-bit parallel  
18-bit parallel  
8-bit parallel  
9-bit parallel  
9-bit serial  
RAM Write  
Enable  
Enable  
Enable  
Enable  
RAM Read  
Enable  
Enable  
Enable  
Enable  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
Disable  
Disable  
6.1.2 Parallel MPU Interface  
Depending on the C86 pin setting, 80-series or 68-series MPU can be connected.  
Table 18 C86 Test Pins  
___  
RD  
___  
C86  
WR  
__  
HIGH: 68-series MPU bus  
LOW: 80-series MPU bus  
E
R/W  
___  
___  
RD  
WR  
Signals on the parallel MPU interface are identified by combination with the data/command identification pin  
(A0).  
Table 19 MPU Interface Identification  
68-Series MPU  
80-Series MPU  
__  
___  
___  
A0  
Function  
R/W  
E
RD  
WR  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
Revision read  
RAM data read  
RAM data, command parameter write  
Command write  
D17 to D0, DR and DB are used as 8/9/16/18-bit width bus according to the setting of the MPU interface select  
pins IF1, IF2 and IF3, and unused pins are set open. For commands and parameters, MSB 8 bits (D17 to D10) are  
used.  
18  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Table 20 MPU Parallel Interface (Except for Display Data)  
Data type  
Parallel MPU interface Dxx  
Bus width  
A0  
17 16 15 14 13 12 11 10 9  
Command  
8
7
6
5
4
3
2
1
0
18-bit mode  
Command  
Parameter  
Command  
Parameter  
Command  
Parameter  
Command  
Parameter  
Command  
Parameter  
Command  
Parameter  
0
1
0
1
0
1
0
1
0
1
0
1
Parameter  
Command  
Parameter  
Command  
Parameter  
Command  
Parameter  
Command  
16-bit mode  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
2+16-bit mode  
*
16 + 2-bit mode  
*
9-bit mode  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Parameter  
Command  
Parameter  
8-bit mode  
Z
Z
* 2+16bit mode and 16+2bit mode are chosen by the data set command(BCh).  
indicates invalid data.  
Z indicates disable. Set the disabled pins open.  
6.1.3 Serial Interface  
___  
The serial interface supports 9-bit mode. The 9-bit mode consists of three lines: chip select (CS), serial clock  
(SCL), and serial data input (SI). When the serial interface is selected, data can be input/output by clocks while  
___  
the chip is active (CS=LOW). Data is transferred in the unit of 9 bits. At input, data is read in order from MSB at  
the clock rising edge. MSB is the data/command identification data (D/C) equivalent to the A0 signal of the  
parallel interface. It is the command when set to “0” and the parameter when set to “1”.  
___  
To prevent malfunction due to noise, it is recommended to set the CS signal to HIGH every 9 bits. (The serial  
___  
counter is reset at the falling edge of the CS signal.)  
Table 21 9-bit Serial Interface (Except for Display Data)  
Serial interface bit position  
Data type  
DC 17 16 15 14 13 12 11 10  
Command  
Parameter  
0
1
Command  
Parameter  
D/C: Data/command identification bit  
indicates invalid data.  
Processing starts when the serial transfer clock D10 LSB is input. Writing to or reading from the display data  
RAM is disabled. If any parameter exceeding the number of parameters defined for each command is entered, it  
is invalid.  
S1D19105 Series (Rev.1.1)  
EPSON  
19  
6. FUNCTIONAL DESCRIPTION  
The interface examples are given below. (The intermediate level of SD in the following diagram indicates the  
state of high impedance.)  
When writing  
CS  
SCL  
SD  
D/C C17 C16 C15 C14 C13 C12 C11 C10 D/C P17 P16 P15 P14 P13 P12 P11 P10  
D/C C17 C16 C15 C14 C13 C12 C11 C10  
D/C: A0  
Cn: Command Bit n  
Pn: Parameter Bit n  
___  
The 9-bit serial data (1 packet) must be kept at the LOW level during transfer. When CS sets to LOW, SCL  
___  
should be in the state of LOW. If CS is set HIGH during 1-packet transfer, the packet in the process of  
___  
transfer is cancelled. Setting LOW for CS again brings the state of accepting retransfer of the packet.  
CS  
SCL  
SD  
D/C C17 C16 C15 C14 C13 C12 C11 C10 D/C C17 C16 C15 C14 C13 C12 C11 C10 D/C P17 P16 P15 P14 P13 P12 P11 P10  
Ignore Input  
D/C: A0  
Cn: Command Bit n  
Pn: Parameter Bit n  
When reading  
___  
When data is read using the status read and revision read commands, the following situation occurs. When CS  
sets to LOW, SCL should be in the state of LOW. When transfer of read data up to final bit is completed, the  
internal process exits the read state to the state of accepting commands.  
CS  
SCL  
SD  
D/C C17 C16 C15 C14 C13 C12 C11 C10 R7 R6 R5 R4 R3 R2 R1 R0 D/C C17 C16 C15 C14 C13  
Read Command Input  
D/C: A0  
Read Data Output  
Cn: Command Bit n  
Command Input  
Rn: Read Data Bit n  
___  
___  
If CS is set HIGH during read data transfer, the read state is cancelled. Setting LOW for CS again brings the  
state of accepting commands.  
CS  
SCL  
SD  
D/C C17 C16 C15 C14 C13 C12 C11 C10 R7 R6 R5 R4 R3 R2  
D/C C17 C16 C15 C14 C13  
Read Command Input  
D/C: A0  
Read Data Output  
Cn: Command Bit n  
Command Input  
Rn: Read Data Bit n  
SCL pin should be LOW state, when CS is changed to LOW.  
20  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.1.4 Internal Data Bus Expansion of Display Data  
Display data read or written in the parallel MPU interface is expanded to 18-bit internal data bus and RGB data  
as shown in the table below.  
For display data transfer in 8-bit, 9-bit, 2 +1 6-bit or 16 + 2-bit mode, two accesses are needed for a single dot.  
Write operation to the display RAM is executed when the second data has been transferred. Therefore, be sure  
to transfer data twice at a time. Otherwise, the data last transferred is not written to the display RAM. The data  
count is reset at RAM Write or RAM Read command identification.  
Sequence of transfer from external data bus to internal data bus  
MPU external bus  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2  
16 bits  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.5 Parallel MPU Interface External Data Bus 16 bits  
The 1st  
The 2nd time  
time  
MPU external bus  
2 + 16 bits  
D3 D2 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.6 Parallel MPU Interface External Data Bus 2 + 16 bits  
The 2nd  
The 1st time  
time  
MPU external bus  
16 + 2 bits  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D17 D16  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.7 Parallel MPU Interface External Data Bus 16 + 2 bits  
S1D19105 Series (Rev.1.1)  
EPSON  
21  
6. FUNCTIONAL DESCRIPTION  
MPU external bus  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
18 bits  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.8 Parallel MPU Interface External Data Bus 18 bits  
1st time  
2nd times  
MPU external bus  
8 bits  
D17 D16 D15 D14 D13 D12 D11 D10  
D17 D16 D15 D14 D13 D12 D11 D10  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.9 Parallel MPU Interface External Data Bus 8 bits  
1st time  
2nd times  
MPU external bus  
9 bits  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D17 D16 D15 D14 D13 D12 D11 D10 D9  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.10 Parallel MPU Interface External Data Bus 9 bits  
22  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.1.5 Access to Display Data RAM and Internal Register via MPU Interface  
When data is transferred to or from the MPU, a kind of pipeline operation is performed, generating the internal  
pulse for each access. Therefore, access from the MPU does not require the reference clock, providing low power  
consumption. Also, an access succeeds if it ends within the cycle time. No weight is required and high-speed  
data transfer can be realized.  
For example, when the MPU writes data to the display data RAM, the data is temporarily held by the write bus  
holder. Then, it is written to the internal RAM with the internal pulse (Write signal) by the time the next Write  
Data cycle starts. Also, when the MPU reads display data in the internal RAM, the data is read in the first Read  
data cycle (dummy) and is held by the read bus holder with the internal pulse (Read signal), then the data is read  
in the system bus from the read bus holder in the next Read data cycle.  
A single dummy read is always required after the Read command.  
A0  
__  
WR  
N+1  
N+2  
Write  
command  
N
DATA  
command  
N
N+2  
N+1  
Bus holder  
Write signal  
Fig.11 MPU Interface Write Operation Example  
A0  
___  
WR  
DUMMY read  
last data  
Data read  
n
Data read  
n+1  
__  
RD  
Read  
command  
DATA  
Read signal  
increment N+1  
n
N
N+2  
Column address  
Bus holder  
last data  
n+1  
n+2  
Fig.12 MPU Interface Read Operation Example  
S1D19105 Series (Rev.1.1)  
EPSON  
23  
6. FUNCTIONAL DESCRIPTION  
6.1.6 VSYNC Interface  
The VSYNC is included as the means of smoothly displaying moving pictures while using the MPU interface.  
Moving pictures can be smoothly displayed without using the RGB interface.  
In the VSYNC interface, the display timing is determined by the built-in oscillation clock and frame  
synchronization signal (VSYNCI). If VSYNC is not entered, all the display timings are determined by the  
built-in oscillation clock. Once VSYNCI is entered, however, the display timing synchronizes with VSYNCI  
and it is set at the head (the first line of the back poaching) of a frame. The RAM address (column address and  
row address) is also set to the start address.  
To obtain smooth moving pictures on the moving picture display, relationship between the lower limit of the  
RAM read speed and built-in oscillation clock must be considered.  
To prevent display distortion, the display RAM write operation must be performed at the speed high enough not  
to be passed by the relevant line data read operation speed at the display timing. See also section 6.3 Write  
Speed to Display Data RAM.  
1 frame  
Wait  
FP FP FP BP BP  
1
2
219 220 FP FP FP  
FP FP BP BP  
1
2
Line number  
VSYNCI  
External signal 1 frame  
Forcefully  
synchronized  
by the VSYNCI  
rising edge.  
Internal clock  
FP  
FP  
BP  
Line number  
VSYNCI  
Delay in synchronization =  
2H clock  
Fig.13 VSYNC Interface Example  
24  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.2 RGB Interface  
This IC is provided with the RGB interface best suited to displaying moving pictures, in addition to the MPU  
interface used to connect to the MPU. As with the MPU interface, the display RAM write address is a rectangle  
area defined by the Set Start Address and Set End Address commands.  
Only the display RAM write operation is enabled via the RGB interface Command input, display RAM read or  
status read operations are disabled. Command access from the MPU interface can be accepted at any time.  
However, those commands accessing the display RAM (RAM Write, RAM Read and Read Modify Write) cannot  
be entered. Be sure to perform the operation after access via the RGB interface has been completed.  
6.2.1 RGB Interface Selection  
The RGB interface bus width can be selected according to the settings of the Set Display Data Interface  
command parameter as shown below.  
Table 22 RGB Interface Selection  
P15  
0
0
1
1
P14  
0
1
0
1
RGB interface bus width  
18-bit, transfer once  
16-bit, transfer once  
6-bit, transfer three times  
Setting disabled  
S1D19105 Series (Rev.1.1)  
EPSON  
25  
6. FUNCTIONAL DESCRIPTION  
6.2.2 RGB Interface Operation Modes  
By setting the RGB interface status using the Set Display Interface command, the best suited interface to the  
display status can be used for data transfer to the display RAM.  
Table 23 RGB Interface Operation Modes  
Display timing  
Reference clock  
Internal oscillation  
Internal oscillation  
DOTCLK  
ENABLE  
D17 to 0  
Valid  
Valid  
Valid  
Data transfer mode  
DOTCLK  
VSYNCI  
VSYNCO  
HSYNC  
RGB transfer 1  
RGB transfer 2  
RGB transfer 3  
Valid  
Valid  
Valid  
Invalid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Valid  
RGB transfer 1  
To write data to the display RAM, access it using D17 to 0, ENABLE and DOTCLK.  
As timing signals necessary for display operation, the signals generated inside the IC are used.  
Since vertical synchronization signals generated in the internal timing are output from the VSYNCO,  
flicker-free display is achieved by transferring the display data from the RGB interface synchronizing with  
these signals.  
RGB transfer 2  
To write data to the display RAM, access it using D17 to 0, ENABLE and DOTCLK.  
As timing signals necessary for display operation, internal signals of the IC are used. These signals are  
forcedly synchronized with the frame top by VSYNCI entered externally. Set the RAM address to the start  
address. VSINCI must be continuously supplied externally.  
VSYNCI must be entered during the period of front poaching (FP).  
RGB transfer 3  
To write data to the display RAM, access it using D17 to 0, ENABLE and DOTCLK.  
As timing signals necessary for display operation, all the external signals are used. VSYNCI, HSYNC and  
DOTCLK must be continuously supplied externally. The RAM address is set to the start address by the  
VSYNCI input.  
If DOTCLK is faster than the clock frequency (1MHz) of the built-in oscillation circuit, it is recommended to set  
to the value close to 1MHz by dividing DOTCLK by P2 of the display data interface set. Division is valid only  
for the clock used for the display timing (to reduce current consumption). Write clock to RAM is not divided.  
To switch from the MPU interface to RGB transfer 3, the following command must be set according to the  
display timing externally entered.  
Display set (command code: CAh)  
P1 and P2 Number of clocks during 1H  
It is set as the short number of clocks more than the number  
of 1 clocks rather than the cycle of HSYNC.  
(Used for calculation of frequency setting of the boosting  
clock set at P4. If the cycle changes, set in the shortest  
cycle. )  
P7  
Number of back poaching line (BP) Set the value longer than the timing at which write to RAM  
starts.  
Display timing set (command code: A1h)  
P1 to P4, P6 and P7 Various timings  
It is set as the number of clocks of DOTCLK within the  
number of clocks of 1H set up by the display set. (When  
dividing, the clock after dividing is reference clock.)  
26  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
ENABLE  
(L = Enable 1)  
DOTCLK  
(Read at rising edge)  
Don’t care  
Don’t care  
D0 to D17  
Write to Write to Write to Write to Write to  
RAM RAM RAM RAM RAM  
Fig.14 Write to RAM (Common to RGB transfer 1 to 3)  
Wait  
1 frame  
FP FP FP BP BP  
1
2
219 220 FP FP FP  
FP FP BP BP  
1
2
Line number  
VSYNCI  
Forcefully  
External signal 1 frame  
synchronized  
by the VSYNCI  
rising edge.  
Internal clock  
FP  
FP  
BP  
Line number  
VSYNCI  
Delay in synchronization  
= 2H clock  
Fig.15 Example of RGB Transfer 2 (VSYNC Synchronization)  
74  
75  
1
2
3
4
5
6
DOTCLK  
(Rising edge)  
HSYNC  
(L=ENABLE)  
Fig.16 Example of RGB Transfer 3 HSYNC and DOTCLK timing  
S1D19105 Series (Rev.1.1)  
EPSON  
27  
6. FUNCTIONAL DESCRIPTION  
Display interface set  
Display data interface set  
Switch to internal  
VSYNC  
Switch to external VSYNC  
MPU  
RGB  
RGB MPU  
VSYNCO  
External VSYNCI  
IC internal vertical  
synchronization  
timing  
To switch from RGB transfer  
3 to MPU interface, enter at  
least one VSYNCI after  
command input.  
External VSYNC waiting time  
Fig.17 Example of Switching Display Timing between RGB Transfer 3 and MPU Interface  
Period of overwriting the  
moving picture display area  
Period of overwriting the  
still picture display area  
Period of overwriting the  
moving picture display  
VSYNCI  
HSYNC  
DOTCLK  
ENABLE  
D17-0  
Data  
Data  
Don’t Care  
Data  
Don’t Care  
Serial  
Interface  
RAM write  
command  
RAM write command  
Address set command  
MPU data transfer mode  
Address set command  
RGB transfer 3 mode  
Fig.18 Example of Overwriting the Still Picture Display Area  
During Moving Picture Display Operations  
28  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.2.3 Internal Data Bus of RGB Interface  
Data entered from the RGB interface data pin is read by DOTCLK as display data.  
The display data is expanded into the 18-bit internal data bus as shown below. In 6/16-bit mode, set unused pins  
to open.  
RGB Interface  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
External Data Bus  
18 bits  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Assignment  
Fig.19 RGB Interface External Data Bus 18 bits  
RGB Interface  
External Data Bus  
16 bits  
D17 D16 D15 D14 D13  
D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.20 RGB Interface External Data Bus 16 bits  
MPU Interface  
External Data  
Bus 6 bits  
1st  
2nd  
3rd  
D17 D16 D15 D14 D13 D12 D17 D16 D15 D14 D13 D12 D17 D16 D15 D14 D13 D12  
ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0  
RGB  
Assignment  
R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0  
Fig.21 RGB Interface External Data Bus 6 bits  
S1D19105 Series (Rev.1.1)  
EPSON  
29  
6. FUNCTIONAL DESCRIPTION  
6.2.4 Access to Display Data RAM via RGB Interface  
With the RGB interface, the display data is read and written to the built-in display RAM at the rising edge of  
DOTCLK signal. DOTCLK and ENABLE are used for writing to the display RAM. In the 16/18-bit mode, a  
single dot is read at a time. In the 6-bit mode, a single dot is read as the display data in three steps, in the order  
of R, G and B. By combining with the wind address, display data in a rectangle area can be transferred. The  
display RAM data and addresses are updated only while the ENABLE signal is LOW. When using the RGB  
interface, scroll display function is available. But it does not recommend using. Because the reading order to  
the internal RAM changes writing data is passed to the reading of the internal RAM and the image sometimes  
scrambles.  
ENABLE  
DOTCLK  
D17-0  
N-1  
N+1  
N+2  
N
Latched data  
N-1  
N
N+1  
N+2  
Write signal  
HSYNC  
DOTCLK  
ENABLE  
D17-0  
Front Poaching  
VSYNCI  
HSYNC  
ENABLE  
Back poaching  
Fig.22 Example of Writing Data into Display Data RAM  
When using the RGB interface, back poaching starts after 2H from the falling edge of VSYNCI, and then display  
operation is performed. After the display operation, front poaching is performed. Front poaching can be set to 1  
to 4096. Back poaching can be set to 1 to 256.  
In case of VSINCI is Low enable; raising edge sets RAM address. In case of VSINCI is High enable; falling  
edge sets RAM address. Then RAM writing should start after it.  
30  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Back poaching  
Still picture display area  
Moving picture  
display area  
Front poaching  
HSYNC  
DOTCLK  
ENABLE  
Fig.23 Moving Picture and Still Display Area  
S1D19105 Series (Rev.1.1)  
EPSON  
31  
6. FUNCTIONAL DESCRIPTION  
6.3 Write Speed to Display Data RAM  
In moving picture display via VSYNC interface, RGB transfer 1 or RGB transfer 2, the display RAM write  
operation must be performed at a speed not to be caught up by the line data read operation speed at display timing  
to prevent display distortion. When the back poaching is not specified, even if the RAM write operation is  
performed at a high speed, it is caught up with by the display timing in the first line. Specify back poaching of  
2 lines or more. Please pay attention because the following calculation is not able to apply in the case that the  
scrolling function is used.  
Example when passing of the display timing does not take place  
RAM write  
start  
Back poaching  
Display area  
Line 220  
Line 1  
Line 110  
RAM write  
Display timing  
Period of display  
Period of back poaching  
Fig.24 Write Speed to Display Data RAM  
The display data must be written to RAM at the speed faster than that calculated from the relational expression  
shown below.  
Number of clocks in 1H =  
(1 /((Number of display lines + back poaching + front poaching) × Number of frame  
frequency / Oscillation frequency)  
176 × Number of display lines  
Minimum RAM  
>
(Number of display lines + Back poaching) × Number of clocks in 1H  
write speed  
× 0.9 s - Start time of write operation from VSYNCO or VSYNCI  
µ
An example of setting the RAM write speed based on the above relation expression is given below.  
Number of display lines: 220 lines  
Back poaching: 15 lines  
Front poaching: 4 lines  
Number of data in 1H: 176 (when using 16/18-bit bus)  
Start time of write operation from VSYNCO or VSYNCI: 20µs  
Oscillation frequency: 1MHz 10% (oscillation frequency 1µs 10%)  
Frame frequency: 60Hz  
Number of clocks in 1H =  
(1 / ((220 +15 + 4) × 60Hz)) / 1µs = 69.7 So, it makes 70 clocks.  
To make RAM write completion time < Display read completion time true.  
176 × 220  
Write speed  
>
( 220 + 15 ) × 70 × 0.9µs - 20µs  
2.62MHz  
Therefore, for write operation at 2.62MHz or over, screen distortion can be eliminated.  
32  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Oscillation frequency  
+10% -10%  
2.62MHz  
RAM write speed  
TBDMHz  
Line220  
Normal range of RAM write  
TBDms  
18.33ms  
Back poaching  
15.0ms  
Fig.25 Write Speed to Display Data RAM  
Start the writing to RAM after a back porch period start. Cautions, a start address is reset at the time of a front  
porch and a back porch change.  
S1D19105 Series (Rev.1.1)  
EPSON  
33  
6. FUNCTIONAL DESCRIPTION  
6.4 Display Data RAM  
6.4.1 Display Data RAM  
RAM that stores dot data for display. One dot consists of three dots (R, G and B), and one dot holds 6-bit  
display data. 18 bits of the internal data bus correspond to R dots (R5, R4, R3, R2, R1 and R0), G dots (G5, G4,  
G3, G2, G1 and G0) and B dots (B5, B4, B3, B2, B1 and B0). Maximum display size is 176 × 220 dots and the  
RAM capacity is 696,960 bits (176 × 220 × 18). Correspondence between display data and gray scale are shown.  
(000000): Gray scale 0 (0%, black) Normally white liquid crystal VCOM = LOW  
(000001): Gray scale 1  
:
(111110): Gray scale 62  
(111111): Gray scale 63 (100%, RGB)  
Table 24 Display Data Memory Map  
Row Address  
Dot  
Line  
Normal Reverse  
R
R5  
to  
G
G5  
to  
B
B5  
to  
R
G
B
R
G
B
Address  
0
1
219  
218  
0
1
R0  
G0  
B0  
218  
219  
1
0
218  
219  
Column Normal  
Address  
0
175  
1
174  
175  
0
Reverse  
S1  
S2  
S3  
S4  
S5  
S6  
S526 S527 S528  
The MPU and RGB interfaces access the display RAM in the unit of one dot. To the source output, at the  
internal display timing independent of the MPU or RGB interface, display data read for each line specified with  
line address for line cycle is sent.  
Normal or reverse setup of row and column addresses are specified with the Set Data command parameters.  
6.4.2 Source Line Drive Output Pins and RAM Data  
The output destination of R, G and B dot data of display data RAM can be switched by the Set Data command  
according to the LCD color filter layout.  
Table 25 Source Line Drive Output Pins and RAM Data  
Output pin  
Normal  
Reverse  
S1  
R
B
S2  
G
G
S3  
B
R
S4  
R
B
S5  
G
G
S6  
B
R
ꢁꢁꢁ  
ꢁꢁꢁ  
ꢁꢁꢁ  
S528  
B
R
34  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.4.3 Row Address Circuit/Column Address Circuit  
An access area of the RAM is defined by a rectangle having the vertex identified by the start address and end  
address. Assume that the start address has column address C1 and row address R1, and that the end address has  
start address C2 and row address R2. The display data is written in address (C1, R1) and subsequent addresses,  
and if the address is in the column direction, the column address is incremented by +1 automatically for each  
Write or Read pulse. After the data has been written in column address C2, the row address is incremented by  
+1 and the column address is returned to C1. After the end address of (C2, R2) has been written, it is returned  
to the start address.  
During the RAM access via the MPU interface, when a RAM Write command or RAM Read command is entered,  
the column and row addresses are set to the start address automatically.  
During the RAM access via the RGB interface, the column and row addresses are set to the start address  
automatically at the beginning of the frame (VSYNC timing).  
The address direction of a column or a row address and the address scan direction can be inverted by Set Data  
command.  
Table 26 Row /Column Display Sequence  
Address  
P10=0 Row address normal  
P10=1 Row address reverse  
transition  
Display  
start  
position  
C1,R1  
P11=0  
Column address  
normal  
P11=1  
Column address  
reverse  
P11=0  
Column address  
normal  
P11=1  
Column address  
reverse  
Display  
end  
position  
C2,R2  
Line  
Line  
Line  
Line  
C1,R1  
Addr  
Addr  
Addr  
Addr  
0
0
0
0
P13=0  
Scan  
direction  
right and  
left  
C2,R2  
219  
219  
219  
219  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
Line  
Line  
Line  
Addr  
Addr  
Addr  
C2,R2  
0
0
0
Line  
Addr  
0
P13=1  
Scan direction  
up and down  
C1,R1  
219  
219  
219  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
219  
S1ꢁ ꢁ ꢁ ꢁ ꢁ S528  
S1D19105 Series (Rev.1.1)  
EPSON  
35  
6. FUNCTIONAL DESCRIPTION  
6.4.4 Area Scrolling  
The RAM can be divided into a maximum of three sections in the row direction and the fixed display and  
scrolling areas can be created.  
Center area scrolling  
P1  
Top area scrolling  
Bottom area scrolling  
P1  
Entire screen scrolling  
P1  
0
P1  
P2  
P3  
P3  
P2  
*
1
P2  
P2  
*
1
P1: Line start address to be assigned to the scroll area  
P2: Line end address to be assigned to the scroll area  
P3: Number of line to the bottom fixed area.  
: Fix area  
*
1: Number of display lines (P4 of the Set Display Command)  
: Scroll area  
Fig. 26 Area Scrolling  
Concept of area scrolling display  
Updating the display start line in a certain cycle can scroll the screen.  
Fig.27 Concept of Area Scrolling Display  
36  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.4.5 Partial Display  
When the RAM display area is specified by the Partial Display In command, partial display areas consisting of  
any number of lines can be created in any position of the LCD screen. The source line drive waveforms of the  
RAM data appear within the partial display area, while minimum voltage level (V , V63) output against the VCOM  
0
signal or power supply voltage of VDDHS/VSS in the non-display area. In the non-display area, power  
consumption can be reduced in proportion to the number of non-display lines to stop circuits that generates gray  
scale voltage. By specifying the 8-color mode, power consumption can also be reduced. By selecting the  
refresh rate of a non-display area the further low power is possible. It is possible to set the power supply control  
of the term that does not do the refreshing of a non-display area in detail with a partial power control. By  
setting an display area to 8 color modes and the reduction of the consumption power be possible.  
Partial Display In  
n frame  
1 frame  
Command input  
VSYNCO  
Non-display area  
Non-display area  
Non-display area  
Source output  
V
P63  
V
N63  
VN63  
V
COM  
Frame reverse drive example  
Outputs the display area data.  
Outputs the voltage of the non-display area color  
Fig.28 Partial Display (refresh rate 1/1)  
The driving method of front poaching period(FP) and back poaching period(BP) during partial display are as  
follows. The front poaching becomes being the same as that of a non-displaying area. The back poaching  
becomes being the same as that of display area.  
S1D19105 Series (Rev.1.1)  
EPSON  
37  
6. FUNCTIONAL DESCRIPTION  
6.4.6 AC Operation Drive  
With this IC, the following AC operation modes can be used.  
(1) Frame reverse driving: Reverses the AC operation signals once for each frame.  
(2) n-line reverse driving: Reverses the AC operation signals for every 1 to 16-line frame display.  
(3) Interlace drive: Reverses the AC operation signals three times for each frame with 3-line interlace drive.  
Display line  
Frame  
reverse  
driving  
1 frame  
1 frame  
Display line  
n-line  
reverse  
driving  
n=5  
1 frame  
1 frame  
Display line  
Interlace  
drive  
1 frame  
Fig.30 AC Operation Drive  
38  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.5 Oscillation Circuit  
This is a fully built-in CR-type oscillator to generate display clocks. The oscillation starts when the sleep state  
is canceled by the Sleep Out command. The oscillation stops when the sleep state is set by the Sleep In  
command.  
When it is set by the Set Data command P17 that the built-in oscillator is not used, the oscillation circuit does not  
function. In such a case, the OSCI pin functions as the input pin of external clocks.  
S1D19105 Series (Rev.1.1)  
EPSON  
39  
6. FUNCTIONAL DESCRIPTION  
6.6 Setting Gate Line Scan Mode  
You can select two-side driving or two-side up and down driving.  
The drive mode is specified with the Set Gate Line Scan Mode command parameter. Set the gate driver scan  
start and end lines. There is a gate line of a maximum of 220 lines. And the gate line of 110 lines is in right and  
left. When using it by less than 220 lines, it assigns equally (right and left of the number of use lines) from G110  
pin G111 pin most located in the middle. The number of lines on either side is surely made the same.  
The value set up in Gate Line scan mode set is the output signal of a gate driver, and is the gate line number  
which begins from G1. The gate line number at the very end of the use line continuously assigned from G110  
pin G111 pin is set up. Please take care that this is not a line address. And the number of display set of  
P5(number of dots) and the number of use lines need to be completely in agreement.  
Setting example:  
Conditions is P5 of display set (number of dots) = 208 line  
The number of use lines of one side =208/2=104 lines  
Scanning start line number =111-104=7  
Scanning end line number =110+104=214  
Regardless of interlace driving and Two-side up and down driving 1/2, it becomes like the above-mentioned  
example of calculation.  
Two-side interlace driving 1  
TFT panel  
Two-side interlace driving 2  
TFT panel  
S1D19105  
S1D19105  
Scan order  
Normal direction  
Reverse direction  
G1  
G111  
G220  
G110  
G2  
G219ꢁ ꢁ ꢁ G110  
G111  
G112  
G109ꢁ ꢁ ꢁ G220  
G1  
220-line display example: Start line = 1, end line = 220  
Scan order  
G12 G209ꢁ ꢁ ꢁ G110  
G112  
Normal direction  
Reverse direction  
G11  
G111  
G210  
G110  
G111  
G11  
G109ꢁ ꢁ ꢁ G210  
200-line display example: Start line = 11, end line = 210  
40  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Two-side up and down driving 1  
TFT panel  
Two-side up and down driving 1  
TFT panel  
S1D19105  
S1D19105  
Scan order  
Normal direction  
Reverse direction  
G1  
G111  
G110  
G220  
G111  
G1  
G220  
G110  
220-line display example: Start line = 1, end line = 220  
Scan order  
G110 G210  
G210 G110  
Normal direction  
Reverse direction  
G11  
G111  
G111  
G11  
200-line display example: Start line = 11, end line = 210  
Two-side up and down driving 2  
TFT panel  
Two-side up and down driving 2  
TFT panel  
S1D19105  
S1D19105  
Scan order  
Normal direction  
Reverse direction  
G220  
G110  
G111  
G1  
G220  
G110  
G1  
G111  
220-line display example: Start line = 1, end line = 220  
Scan order  
G111 G11  
G11 G111→  
Normal direction  
Reverse direction  
G210  
G110  
G210  
G110  
200-line display example: Start line = 11, end line = 210  
Fig.31 Gate Line Scan Mode  
S1D19105 Series (Rev.1.1)  
EPSON  
41  
6. FUNCTIONAL DESCRIPTION  
6.7 How to Connect to the External Power Supply  
Case (1) Two power supplies (2.3V or more)  
(Example AVDD = 2.8V, DVDD = 2.75V)  
TEST3=H TEST4=L (VCORE is normally OFF) : This connection should be used basically.  
V
V
DD2  
DD  
2.8V  
2.75V  
V
DDI  
V
CORE  
TEST3=L TEST4=H (VCORE is normally ON)  
V
V
DD2  
DD  
2.8V  
2.75V  
V
DDI  
V
CORE  
V
SS  
TEST3=L TEST4=L (VCORE automatic stop, automatic start)  
V
V
DD2  
DD  
2.8V  
2.75V  
V
DDI  
V
CORE  
V
SS  
Fig.32 How to Connect to the External Power Supply Case (1)  
42  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Case (2) Two power supplies (One power supply is 1.65 to 2.3V.)  
(Example AVDD = 2.8V, DVDD = 1.8V)  
TEST3=H TEST4=L (VCORE is normally OFF) : This connection should be used basically.  
V
V
DD2  
DD  
2.8V  
1.8V  
V
DDI  
V
CORE  
TEST3=L TEST4=H (VCORE is normally ON)  
V
V
DD2  
DD  
2.8V  
1.8V  
V
DDI  
V
CORE  
V
SS  
TEST3=L TEST4=L (VCORE automatic stop, automatic start)  
V
V
DD2  
DD  
2.8V  
1.8V  
V
DDI  
V
CORE  
V
SS  
Fig.33 How to Connect to the External Power Supply Case (2)  
S1D19105 Series (Rev.1.1)  
EPSON  
43  
6. FUNCTIONAL DESCRIPTION  
Case (3) One power supply (2.3V or more is required)  
(Example AVDD = 2.8V)  
TEST3=H TEST4=L (VCORE is normally OFF) : This connection should be used basically.  
V
V
DD2  
DD  
2.8V  
V
DDI  
V
CORE  
TEST3=L TEST4=H (VCORE is normally ON)  
V
V
DD2  
DD  
2.8V  
V
DDI  
V
CORE  
V
SS  
TEST3=L TEST4=L (VCORE automatic stop, automatic start)  
V
V
DD2  
DD  
2.8V  
V
DDI  
V
CORE  
V
SS  
Fig.34 How to Connect to the External Power Supply Case (3)  
44  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.8 Description of Operation of Built-in Power Supply  
All bias voltages required for liquid crystal drive can be generated by single power input. The following voltage  
levels are generated.  
Power supply for oscillation circuit: VOSC  
Reference power supply for 1st-boosting: VLDO (It is not used and VDD2 is used usually)  
Power supply: VOUT,RVEG  
Reference voltage: V  
Source driver voltage: VODUDTHMS, VDDRH, VDDRL and V  
to V63  
0
Voltage for opposed elDecDtHroGde:EVECOMH and VCOML  
Gate driver voltage: V  
, V , VONREG and VOFREG  
The built-in electronic control function allows adjustment of each output voltage. The electronic control can be  
controlled by commands. The built-in reference voltage circuit permits continuously stable LCD power supply  
without depending on the system power supply. Built-in 1st, 2nd, 3rd, and 4th boosters provide high-precision  
constant voltage.  
V
DDHG  
DDHG  
V
(Note 1) [1st booster circuit]  
DD2  
V
OUT  
V =  
Max.6.2V  
LDO  
V
=2.5 to 3V  
DDHS  
V
=2.7 to 5.8V  
=3.5V  
× 2  
V
DC3 (Note 3)  
REG  
COMH  
V
V
DC1  
V
V
DD  
V
DC2 (Note 2)  
V
DC5  
DDRH  
OFREG  
V
ONREG  
V
V
V
=2.7 to 5.8V  
DDRL  
=0 to 1.55V  
V
CORE=2.5V  
OSC=1.5V  
(Note 5)  
=2.5 to 5.1V  
=0 to 6.2V  
V
DC4  
V
SS  
COML  
V
V
=0V  
(Note 4)  
× -1 to -3  
× -1 to -3  
OUTM  
V
× 2  
[2nd booster circuit]  
Note 1: VDC1 is connected to VDD2 or VLDO  
DC2 OUT DD2  
.
.
V
EE  
EE  
×
V
=-18.6 to –10( -3)  
Note 2: V  
Note 3: VDC3 is connected to VOFREG or VOUT or VDD2  
DC4 DD2 ONREG OUTDM  
.
is connected to V  
or V  
.
[3rd booster circuit]  
[4th booster circuit]  
Note 4: V  
Note 5: VDC5 is connected to VSS or VDD2 or VONREG or VOUTDM.  
Note 6: Please use it not to exceed recommended operation conditions.  
is connected to V  
or V  
or V  
Fig.35 Voltage Relational Diagram  
S1D19105 Series (Rev.1.1)  
EPSON  
45  
6. FUNCTIONAL DESCRIPTION  
6.9 Power Supply for LCD and Main Specifications for Power Supply  
Table 27 S1D19105 Power Supply for LCD and Main Specifications for Power Supply  
No.  
1
2
Parameter  
Number of source lines for TFT panel  
Number of gate lines for TFT panel  
Structure of TFT panel holding capacity  
S1-S528  
S1D19105  
528 (176 RGB)  
220  
Cst structure  
3
V0 to V63 (analog 64 gray scale)  
G1-G220  
Gate ON voltage: VDDHG  
Gate OFF voltage: VEE  
V
COM  
Common HIGH voltage VCOMH  
Adjustment with the electronic control or  
external R  
4
5
LCD output  
Common LOW voltage VCOML  
Automatic setting with VCOMH - VCA  
× 2  
Common amplitude: VCA  
electronic control  
× 2 Adjustment with  
V
V
DDI  
IO power supply  
Input power supply  
DD  
Power supply for VCORE generation  
Reference power supply for booster circuit  
Reference power supply for 1st boosting  
RAM and logic power supply.  
V
DD2  
V
LDO  
V
CORE  
V
V
OSC  
OUT  
Power supply for oscillation  
Power supply for source and VCOM generation  
VDD2 × double:  
(1st booster  
output)  
V
REG  
Reference voltage  
V
DDHS  
Source driver power supply  
Maximum gray scale voltage  
Minimum gray scale voltage  
V
DDRH  
V
DDRL  
COMH  
OFREG  
ONREG  
OUTM  
V
VCOM signal HIGH power supply  
Internal power  
supply output  
V
Reference voltage for VEE generation  
Reference voltage for VDDHG generation  
Power supply for VCOML generation  
-1 time boosting  
6
V
V
(2nd booster  
output)  
V
COML  
VCOM signal LOW power supply  
V
EE  
Gate OFF voltage  
-1 to 3 times boosting  
(3rd booster  
output)  
V
DDHG  
Gate ON voltage  
Double boosting  
(4th booster  
output)  
46  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.9.1 Basic Configuration Diagram of Built-in Power Supply  
The S1D19105 contains a power supply circuit for liquid crystal drive. Select the external circuit configuration  
appropriate for your specifications by referring to the recommended basic circuits provided for stable use of  
built-in power circuit.  
V
0
V
OUT  
DC1  
V0 regulator  
V
V
V
63 regulator  
V
LDO  
VDDRH  
DDRH regulator  
V
DDRL  
DDHS  
V
DDRL regulator  
C11N  
C11P  
1st booster  
circuit  
V
V
V
DDHS regulator  
ONREG regulator  
V
ONREG  
OFREG  
V
DC2  
V
V
OFREG regulator  
V
SWIN  
COM  
V
OUT  
V
C21P  
C21N  
2nd booster  
circuit  
V
OUTM  
DC3  
V
COM  
V
REG  
generation  
circuit  
V
V
COMH  
V
OUT  
FBH  
V
COMH2  
C31P  
C31N  
C33N  
V
COML  
3rd booster  
circuit  
V
CORE  
V
V
CORE regulator  
OSC regulator  
C32P  
V
OSC  
LDO  
V
EE  
V
V
LDO regulator  
V
DC4  
V
DC5  
V
ONREG  
Power control  
circuit  
(register,  
timer, etc.)  
V
V
V
DD2  
C41P  
C41N  
DD  
SS  
4th booster circuit  
V
DDHG  
Fig. 36 Basic Configuration Diagram of Built-in Power Circuits  
S1D19105 Series (Rev.1.1)  
EPSON  
47  
6. FUNCTIONAL DESCRIPTION  
6.9.2 The 1st Booster Circuit  
The 1st booster circuit, comprised of a charge pump type DC/DC converter, can be selected by external  
connection switching of the boost reference power supply. The booster converts the selected input power  
voltage (VDC1) to the power supply for the liquid crystal power circuit (VOUT) by doubling the voltage.  
V
OUT = 2 × VDC1 [V]  
The desired booster circuit is provided by changing the connection corresponding to 1 in the basic configuration  
diagram of the internal power circuit.  
V
V
V
DC1  
DD2  
LDO  
V
OUT  
V
OUT  
DD2=VDC1  
SS  
V
C11N  
V
SS  
V
C11P  
Double boosting (VDC1 = VDD2  
)
V
V
V
DC1  
DD2  
LDO  
OUT  
V
V
OUT  
LDO=VDC1  
SS  
V
C11N  
V
SS  
V
C11P  
Double boosting (VDC1 = VLDO  
)
Fig.37 The 1st Booster Circuit (Connection Example)  
DDCC11should be selected VDD2 usually.  
[V  
Select Voltage]  
V
48  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.9.3 The 2nd Booster Circuit  
The 2nd booster circuit, comprised of a charge pump type DC/DC converter, is a reverse booster circuit that can  
be selected by external connection switching of the boost reference power supply. The booster converts the  
multiplying the voltage by -1 time with refDeCre2nce to VSS  
.
selected input power voltage (between V  
and VSS) to the power voltage (VOUTM) for the VCOM circuit by  
V
OUTM  
=
-1 × VDC2 [V]  
The desired circuit is provided by changing the connection corresponding to 2 in the basic configuration  
diagram of the internal power circuit as shown below.  
V
DC2  
V
DC2  
V
OUT=VDC2  
V
DD2  
V
DD2  
V
V
V
DD2=VDC2  
SS  
V
OUT  
V
OUT  
V
V
SS  
V
SS  
VSS  
C21P  
C21N  
OUTM  
C21P  
C21N  
V
OUTM  
V
OUTM  
OUTM  
Reverse boosting (VDC2 = VOUT  
)
Reverse boosting (VDC2 = VDD2  
)
Fig.38 The 2nd Booster Circuit (Connection Example)  
[VDC2 Select Voltage]  
For VDC2, VDD2 or VOUT can be freely selected.  
S1D19105 Series (Rev.1.1)  
EPSON  
49  
6. FUNCTIONAL DESCRIPTION  
6.9.4 The 3rd Booster Circuit  
The 3rd booster circuit, comprised of a charge pump type DC/DC converter, can be selected by external  
connection switching of the boost reference power supply. The booster converts the selected input power  
voltage (between VDC3 and VSS) to the gate driver negative power voltage (VEE) by -N times. Boosting by the  
magnifying power of -1, -2 and -3 is available through external connection.  
V
EE = N × VDC3 [V] : [N = -1, -2, -3]  
The desired circuit is provided by changing the connection corresponding to 3 in the basic configuration  
diagram of the internal power circuit as shown below.  
V
DC3  
DD2  
OUTDM  
OFREG  
V
DC3  
DD2  
OUTDM  
OFREG  
V
V
V
V
V
V
V
OUTDM=VDC3  
V
OFREG=VDC3  
C31P  
C31P  
C31N  
C31N  
V
SS  
VSS  
C33N  
C32P  
C33N  
C32P  
V
EE  
C32N  
C32N  
V
EE  
V
EE  
VEE  
V
SS  
VSS  
- 1 time boosting (VDC3 = VOFREG  
)
-2 boosting (VDC3 = VOUT)  
V
DC3  
DD2  
OUTDM  
OFFREG  
V
V
It is also possible to connect VOUT instead of  
VOUTDM. Because of VOUTDM and VOUT are  
connected inside IC.  
V
V
OFREG=VDC3  
C31P  
C31N  
V
SS  
C33N  
C32P  
C32N  
V
EE  
V
EE  
V
SS  
-3 boosting (VDC3 = VOFRE, only)  
Fig.39 The 3rd Booster Circuit (Connection Example)  
[VDC3 Select Voltage]  
For V , select V , V  
and V  
so that VDDHG - VEE 30.0V can be satisfied in any magnifying  
powerDoCf3 boosting.DD2–3 tOimUeTsDMboostingOFshRoEGuld be set  
V
DC3 = VOFRE. Setting to V  
= V  
allows fine  
adjustment of the VEE output voltage using the built-in regulator. The variable rangeOoFfRvEoGltage iDsCa3s follows.  
V
OFREG output pin  
2.0 to 5.1[V] (0.1 V step)  
Built-in regulator output  
50  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.9.5 The 4th Booster Circuit  
The 4th booster circuit, comprised of a charge pump type DC/DC converter, is a reverse booster circuit that can  
be selected by external connection switching of the boost reference power supply. The booster converts the  
selected input power voltage (between VDC4 and VEE) to the gate driver positive power voltage (VDDHG) by 1  
time with reference to VDC5  
.
V
DDHG = VDC5 + 1 × (VDC4-VEE) [V]  
The desired circuit is provided by changing the connection corresponding to 4 in the basic configuration  
diagram of the internal power circuit as shown below.  
V
DC5  
SS  
V
V
DC5  
SS  
V
V
OUT  
V
OUT  
V
DDHG  
V
ONREG  
V
ONREG  
V
DDHG  
V
V
DD2  
DC4  
V
V
DD2  
DC4  
V
DC4 =VOUT  
V
DC4 =VDD2  
DC5=VSS  
C41P  
C41P  
V
VDC5=VSS  
C41N  
C41N  
V
DDHG  
V
DDHG  
V
EE  
V
EE  
V
SS  
V
SS  
Reverse boosting (VDC4 = VDD2), (VDC5 = VSS  
)
Reverse boosting (VDC4 = VOUT), (VDC5 = VSS)  
V
V
DC5  
SS  
V
V
DC5  
SS  
V
OUT  
V
OUT  
V
V
V
C41P  
ONREG  
VONREG  
V
DDHG  
V
DDHG  
DD2  
DC4  
V
V
DD2  
DC4  
V
V
DC4=VONREG  
DC5 =VSS  
C41P  
V
DC5 =VONREG  
DC4=VONREG  
V
V
C41N  
V
C41N  
SS  
DDHG  
V
DDHG  
V
EE  
V
EE  
V
SS  
V
SS  
Reverse boosting (VDC4, VDC5 = VONREG  
)
Reverse boosting (VDC4 = VONREG), (VDC5 = VSS  
)
Fig.40 The 4th Booster Circuit (Connection Example)  
S1D19105 Series (Rev.1.1)  
EPSON  
51  
6. FUNCTIONAL DESCRIPTION  
[VDC4 Select Voltage]  
For VDC4, VDD2, VSS ,VONREG and VOUT can be freely selected. In doing so, select the voltage to satisfy  
V
DDHG - VEE 30.0V. Using VONREG allows fine adjustment of the VDDHG voltage using the built-in regulator.  
VDC4 pin should connect more than 2.3V. When VDC4 pin needs to be used less than 2.3V, please connect with  
VONREG, set up VONREG more than 2.3V only at the time of boosting starting, and put in the processing  
adjusted to the target voltage by the electronic volume command or the power control command after the 4th  
boosting starting.  
[VDC5 Select Voltage]  
For VDC5, VDD2, VSS ,VONREG and VOUT can be freely selected. In doing so, select the voltage to satisfy  
The variablEeErange of the voltage OisNaRsEfGollows.  
V
DDHG - V 30.0V. Using V  
allows fine adjustment of the VDDHG voltage using the built-in regulator.  
V
ONREG output pin  
0.0 to 6.2[V] (0.2 V step)  
Built-in regulator output  
52  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.9.6 VCOM Generation Circuit  
The VCOM generation circuit generates the voltage of VCOMH and VCOML needed for generating VCOM output  
voltage. Setting of each voltage can be combined as follows.  
V
V
COMH: Electronic control register setting using the built-in resistor  
Adjustment of output voltage through external resistor  
COML: VCOML = VCOMH - VCA × 2 [V]  
V
V
COMH  
REG  
V
V
COMH  
REG  
FBH  
FBH  
V
COMH2  
V
COMH2  
V
COML  
V
COML  
V
SS  
VSS  
External resistor for adjusting VCOMH  
Use of built-in resistor for adjusting VCOMH  
Fig.41 VCOM Generation Circuit (Connection Example)  
V
COMH output pin  
2.0 to 5.975[V] (0.075 V step)  
Built-in regulator output  
S1D19105 Series (Rev.1.1)  
EPSON  
53  
6. FUNCTIONAL DESCRIPTION  
6.10 Connection Diagram of External Parts  
External Circuit Connection Example 1  
Specifications: 1st booster circuit [VDC1 select = VDD2  
]
3rd booster circuit [V DC2select = V DD2, -double boosting mode]  
2nd booster circuit [V  
select = V  
]
4th booster circuit [VDC3 select = VDODU2T, V  
select = VSS]  
V
COM generation circDuCit4[Specifications foDr Ce5xternal resistor for adjusting VCOMH  
]
Example) Assuming that VDD2 = 2,85V, each voltage with no load is as follows.  
= 2 × VDD2  
=
=
=
=
5.7[V]  
-2.85[V]  
-11.4[V]  
14.25[V]  
VOUT  
V
= -1 × V  
VOUTM  
= -2 × VODUD2T  
VDEEDHG  
= VDC5 + 1 × (VDC4 - VEE)  
CB16  
CB17  
V
V
0
VOUT  
V
0
regulator  
63 regulator  
DDRH regulator  
DDRL regulator  
CB1  
63  
VDC1  
VLDO  
V
VDD2  
CB5  
CB6  
CB7  
V
DDRH  
V
V
DDRL  
V
C11N  
CP1  
1st booster  
C11P  
VDDHS  
circuit  
V
DDHS regulator  
VONREG  
VONREG regulator  
V
DC2  
V
OFREG  
V
DD2  
VOFREG regulator  
VOUT  
CP2  
CB2  
C21P  
C21N  
2nd booster  
circuit  
VOUTM  
V
COM generation  
circuit  
V
DC3  
CB11  
CB13  
V
V
COMH  
REG  
VOUTDM  
VOFREG  
RB1  
FBH  
CB18  
RA1  
V
COMH2  
C31P  
C31N  
C33N  
CP3_1  
CP3_2  
CB12  
V
COML  
3rd booster  
circuit  
CB14  
VCORE  
C32P  
C32N  
V
CORE regulator  
OSC regulator  
V
OSC  
V
V
EE  
VLDO  
CB3  
VDD2  
V
LDO regulator  
VDC4  
Power supply  
control circuit  
(register, timer,  
etc.)  
VDC5  
V
SS  
C41P  
C41N  
CP4  
VDD2  
4th booster circuit  
VDD  
VSS  
V
DDHG  
CB4  
Fig.42 External Circuit Connection Example 1  
54  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
External Circuit Connection Example 2  
Specifications: 1st booster circuit [VDC1 select = VLDO  
]
3rd booster circuit [V DC2select = V OUT , -triple boosting mode]  
2nd booster circuit [V  
select = V  
]
4th booster circuit [VDDCC34 select = VOFREG  
VDC5 select = VSS]  
V
COM generation circuit [SpecificatiOoNnsREfoGr, built-in resistor for adjusting VCOMH  
]
Example) Assuming that VDD2 = 2.85V, each voltage with no load is as follows.  
= 2.55V(Typ.)  
= 4.0V  
[Regulator output]  
VLDO  
V
[Regulator output (Electronic control setting)]  
[Regulator output (Electronic control setting)]  
VOFREG  
= 3.0V  
VONREG = 2 × VLDO  
=
=
5.1[V]  
VOUT  
= -1 × V  
-5.1[V]  
VOUTM  
VDEEDHG  
= -3 × VOOUFRTEG  
= -12.0[V]  
= VONREG - VEE  
=
15.0[V]  
CB16  
CB17  
V0  
VOUT  
CB1  
V0 regulator  
V
63  
VDC1  
VLDO  
V63 regulator  
CB5  
CB6  
CB7  
V
DDRH  
V
DDRH regulator  
VDDRL  
V
DDRL regulator  
C11N  
CP1  
1st booster  
C11P  
V
DDHS  
circuit  
VDDHS regulator  
V
ONREG  
CB8  
CB9  
V
ONREG regulator  
V
DC2  
V
OFREG  
V
OFREG regulator  
VOUT  
C21P  
C21N  
CP2  
CB2  
2nd booster  
circuit  
V
OUTM  
V
COM generation  
CB13  
VREG  
VDC3  
circuit  
CB11  
CB18  
VOUTDM  
VCOMH  
FBH  
V
OFREG  
CP3_1  
C31P  
C31N  
C33N  
V
COMH2  
CB12  
CB14  
V
COML  
3rd booster  
circuit  
CP3_3  
CP3_2  
VCORE  
C32P  
C32N  
V
CORE regulator  
OSC regulator  
V
OSC  
V
CB15  
V
EE  
VLDO  
CB3  
V
LDO regulator  
VDC4  
V
ONREG  
VDC5  
Power supply  
control circuit  
(register, timer,  
etc.)  
VSS  
C41P  
C41N  
CP4  
V
DD2  
4th booster circuit  
VDD  
CB4  
VDDHG  
V
SS  
Fig.43 External Circuit Connection Example 2  
S1D19105 Series (Rev.1.1)  
EPSON  
55  
6. FUNCTIONAL DESCRIPTION  
Table 28 Recommended Capacity Value  
Capacitor Capacity value Maximum value of voltage biased to both  
Circuit name  
name  
CP1  
[µF]  
1.0 to 2.2  
1.0 to 2.2  
1.0 to 2.2  
1.0 to 2.2  
1.0  
ends of the capacitor  
1st booster output  
V
V
V
V
V
V
V
V
V
V
DD2, VLDO  
CB1  
CP2  
CB2  
CP3_1  
CP3_2  
CP3_3  
CB3  
CP4  
CB4  
CB18  
CB11  
CB12  
CB13  
CB5  
CB6  
CB7  
CB8  
CB9  
DD2 2, VLDO×2  
×
2nd booster output  
3rd booster output  
DD2, VOUT  
DD2, VOUT  
DD2, VOUT, VOFREG  
1.0  
1.0  
1.0  
DD2  
OFREG  
DD2  
DC4 - VEE  
DC5 + (VDC4 - VEE  
×2, VOUT  
×
2, VOFREG  
×
2
3
×3  
×2, VOUT  
×2, VOFREG  
×
4th booster output  
0.1 to 1.0  
0.1 to 1.0  
0.01 to 0.1  
1.0 to 2.2  
1.0 to 2.2  
0.1 to 1.0  
1.0  
)
V
COM generation circuit  
FBH  
V
V
V
V
V
V
V
V
V
V
V
V
COMH  
COML  
REG  
Regulator  
DDRH  
DDRL  
DDHS  
ONREG  
OFREG  
CORE  
LDO  
0.1  
1.0 to 2.2  
0.1 to 1.0  
0.1 to 1.0  
1.0 to 2.2  
1.0 to 2.2  
0.1  
Power supply  
Gray scale  
CB14  
CB15  
CB16  
CB17  
0
0.1  
63  
The maximum voltage can be set when using the built-in electronic control if VREG = 3.5V.  
include variations.  
VREG does not  
The capacity of the capacitor is the recommended value. When selecting a capacitor, check the appearance  
quality of indication with the actual equipment and set to the capacity value that makes the voltage of liquid  
crystal drive stable.  
Use the B characteristics for capacitor.  
A tolerance voltage should be selected aiming at 70% of the standard.  
56  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Table 30 Recommended Value for Wiring Resistor when Installing COG  
Pin type  
Pin name, etc.  
Pin number  
40, 41, 136 to 139  
42 to 45, 128 to 135  
36 to 39, 140 to 147  
148 to 163  
Resistor value  
Power pins  
V
V
V
V
DDI  
10Ω  
or less  
SS  
CORE  
DD, VDD2  
Booster series pins  
1st booster pins  
164 to 179  
10  
20  
30  
20  
or less  
or less  
or less  
or less  
or less  
2nd booster pins  
182 to 189  
3rd and 4th booster pins  
7 to 35(Except DUMMY)  
198 to 200  
V
COM auxiliary pins, etc.  
___ ___ ___  
Other logic signal pins  
WR, RD, CS  
D0 to D17,VDD,VSS, etc.  
Others  
100Ω  
The above values are recommended, however, it does not mean that the resistor does not function if they are not  
satisfied.  
Since the booster-series pins are effective for power conversion efficiency, the lower the value is, the better the  
efficiency becomes.  
Since impedance is high in wiring to the FBH pin, carry out wiring as short as possible to prevent the influence of  
noise.  
Also, prevent wiring from crossing other signals.  
S1D19105 Series (Rev.1.1)  
EPSON  
57  
6. FUNCTIONAL DESCRIPTION  
6.11 Gray scale Voltage Generation Circuit  
This circuit generates 64 levels by 2 series (positive and negative poles) of voltages according to the polarity  
inversion for AC operation. The circuit incorporates a function to correct the gray scale voltage curve according  
to the characteristics of panel to be connected. Setting can be changed using the Set Gamma Correction  
Characteristics command. However, care should be taken, because power consumption is so high that can cause  
departure from the default γ ratio. The reference voltage circuit (positive pole) configuration diagram is shown  
below. Negative pole also serves as an equivalent composition figure.  
With electronic control  
Amplitude  
Tilt adjust  
register  
Fine adjust register  
3/  
adjust register  
5/  
5/  
4/  
3/  
3/  
3/  
3/  
4/  
3/  
3/  
3/  
3/  
V
DDRH  
3/  
V
0
V
RP0  
16 to 1  
8 to 1  
Selector  
P1  
V
OP1  
V
1
2
3
4
5
6
V
V
RP1  
V
V
8 to 1  
V
V
V
VOP2  
VOP3  
VOP4  
VOP5  
8 to 1  
Selector  
V
P2  
8 to 1  
Selector  
V
P3  
8 to 1  
Selector  
V
P4  
8 to 1  
Selector  
V
P5  
8 to 1  
V
OP6  
OP7  
Selector  
V
V
V
V
V
V
V
V
55  
56  
57  
58  
59  
60  
61  
62  
V
P6  
V
8 to 1  
Selector  
P7  
V
V
RP2  
VOP8  
8 to 1  
8 to 1  
Selector  
P8  
V
V
RP3  
16 to 1  
V
DDRL  
V
63  
Fig.44 Reference Voltage Circuit Configuration Diagram (Positive Pole)  
58  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
6.11.1 Adjusting Gray Scale Voltage  
Adjustment of gray scale voltage and tilt as well as fine adjustment are available in accordance with  
characteristics of liquid crystal panel or color creation.  
On the positive pole/  
negative pole side  
On the positive pole/  
negative pole side  
V
DDRH  
V
P1 to VP8  
V
RP3 to VRP0  
V
RN0 to VRN3  
V
N1 to VN8  
V
DDRL  
Gray scale level  
Fine adjustment  
Gray scale level  
Gray scale level  
Tilt adjustment  
Amplitude adjustment  
Fig.45 Gray scale Voltage Slope Adjustment  
6.11.2 Amplitude Adjustment  
Determines with the electronic control command.  
6.11.3 Tilt Adjustment  
Adjusts the tilt of the gray scale voltage for four points of the gray scale level.  
6.11.4 Fine Adjustment of Gray Scale Voltage  
Fine-adjusts the gray scale voltage for eight points of the gray scale level. At each point, fine adjustment is  
made by selecting one of 8 types (4 or 3 bits) of the voltage generated by the resistance string.  
S1D19105 Series (Rev.1.1)  
EPSON  
59  
6. FUNCTIONAL DESCRIPTION  
6.12 Calculation of Gray Scale Voltage  
Specifying the gray scale voltage involves three registers. The amplitude register determines the entire  
difference of voltage, the tilt adjust register determines a tilt of gray scale curve by selecting internal fixed  
resistor, and the voltage fine-adjust register for fine adjusting the gray scale voltage.  
Amplitude Adjustment  
The Set Electronic Control commands allows adjustment of amplitude of VDDRH and VDDRL (5 bits: Specify a  
value of 0 to 31). Therefore, the value to be changed is within VDDRH - VDDRL  
.
DDDDRRLH : 0.00V to 1.55V  
V
V
: 2.70V to 5.80V  
Tilt Adjust Register  
Specify the resistor value using VRP0 (4 bits), VRP1 (3 bits), VRP2 (3 bits) and VRP3 (4 bits).  
Table 30 Tilt Adjust Register Value and Resistor Value (Colored items indicate the standard value.)  
Resistor  
value  
1R  
Resistor  
value  
0R  
Tilt adjust register  
0000  
Tilt adjust register  
000  
001  
010  
011  
100  
101  
110  
111  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
000  
3R  
5R  
7R  
9R  
4R  
8R  
12R  
16R  
20R  
25R  
30R  
1R  
3R  
5R  
7R  
9R  
12R  
16R  
21R  
27R  
34R  
42R  
52R  
64R  
78R  
96R  
120R  
V
RP2<2:0>  
12R  
16R  
21R  
27R  
34R  
42R  
52R  
64R  
78R  
96R  
120R  
0R  
4R  
8R  
12R  
16R  
20R  
25R  
30R  
V
RP0<3:0>  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
V
RP3<3:0>  
001  
010  
011  
100  
V
RP1<2:0>  
101  
110  
111  
60  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Voltage Fine-Adjust Register  
Select the reference voltage VOP1 to VOP8 to the gray scale amplifier with the fine-adjust register (3 bits). The  
expression for calculation is shown below. SUMRP of the expression means the value of four variable resistors  
for tilt adjustment with the basic R added.  
Tilt adjust  
resistor  
Min.  
Max.  
Typ.  
V
V
V
V
RP0  
RP1  
RP2  
RP3  
1R  
0R  
0R  
1R  
120R  
30R  
30R  
5R  
0R  
0R  
120R  
7R  
Basic R  
126R  
SUMRP = VRP0 + VRP1 + VRP2 + VRP3 + Basic R  
Fine-adjust register Expression for calculation  
V
DDRH  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDRH  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
DDRH-(VDDRH-VDDRL  
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(VRP0+0R)/SUMRP  
(VRP0+2R)/SUMRP  
(VRP0+4R)/SUMRP  
(VRP0+6R)/SUMRP  
(VRP0+8R)/SUMRP  
(VRP0+10R)/SUMRP  
(VRP0+12R)/SUMRP  
(VRP0+14R)/SUMRP  
V
OP1  
OP2  
OP3  
OP4  
V
V
V
V
P1<2:0>  
P2<2:0>  
P3<2:0>  
P4<2:0>  
(VRP0+16R+VRP1)/SUMRP  
(VRP0+18R+VRP1)/SUMRP  
(VRP0+20R+VRP1)/SUMRP  
(VRP0+22R+VRP1)/SUMRP  
(VRP0+24R+VRP1)/SUMRP  
(VRP0+26R+VRP1)/SUMRP  
(VRP0+28R+VRP1)/SUMRP  
(VRP0+30R+VRP1)/SUMRP  
(VRP0+32R+VRP1)/SUMRP  
(VRP0+34R+VRP1)/SUMRP  
(VRP0+36R+VRP1)/SUMRP  
(VRP0+38R+VRP1)/SUMRP  
(VRP0+40R+VRP1)/SUMRP  
(VRP0+42R+VRP1)/SUMRP  
(VRP0+44R+VRP1)/SUMRP  
(VRP0+46R+VRP1)/SUMRP  
(VRP0+48R+VRP1)/SUMRP  
(VRP0+50R+VRP1)/SUMRP  
(VRP0+52R+VRP1)/SUMRP  
(VRP0+54R+VRP1)/SUMRP  
(VRP0+56R+VRP1)/SUMRP  
(VRP0+58R+VRP1)/SUMRP  
(VRP0+60R+VRP1)/SUMRP  
(VRP0+62R+VRP1)/SUMRP  
V
V
V
S1D19105 Series (Rev.1.1)  
EPSON  
61  
6. FUNCTIONAL DESCRIPTION  
Fine-adjust register  
000  
001  
010  
011  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
OP5  
OP6  
OP7  
OP8  
V
V
V
V
P5<2:0>  
P6<2:0>  
P7<2:0>  
P8<2:0>  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
V
V
V
V
V
V
V
V
V
DDRL  
V
DDRL  
62  
EPSON  
S1D19105 Series (Rev.1.1)  
6. FUNCTIONAL DESCRIPTION  
Gray Scale Voltage  
The expression for calculating the gray scale voltage is shown below.  
Gray scale  
voltage  
Gray scale  
voltage  
Expression for calculation  
Expression for calculation  
V
V
V
V
V
V
0
1
2
3
4
5
V
V
DDRH  
OP1  
VOP5  
V
V
V
V
V
V
V
V
V
V
V
V
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
V
V
V
V
V
V
V
V
V
V
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
)
)
)
)
)
)
)
)
)
)
*
*
*
*
*
*
*
*
*
*
(36/38)  
(33/38)  
(30/38)  
(27/38)  
(24/38)  
(22/38)  
(19/38)  
(16/38)  
(13/38)  
(10/38)  
V
V
V
OP2+(VOP1-VOP2  
OP2+(VOP1-VOP2  
OP2+(VOP1-VOP2  
)
)
)
*
*
*
(27/38)  
(19/38)  
(12/38)  
V
OP2+(VOP1-VOP2  
)
*
(5/38)  
V
OP2  
V
V
V
V
6
7
8
9
V
V
V
V
V
OP3+(VOP2-VOP3  
OP3+(VOP2-VOP3  
OP3+(VOP2-VOP3  
OP3+(VOP2-VOP3  
OP3+(VOP2-VOP3  
)
*
*
*
*
*
(37/38)  
(31/38)  
(24/38)  
(19/38)  
(13/38)  
)
)
)
)
)
)
V
V
V
10  
11  
12  
V
V
OP6+(VOP5-VOP6  
OP6+(VOP5-VOP6  
)
)
*
*
(6/38)  
(3/38)  
V
V
OP3+(VOP2-VOP3  
OP3+(VOP2-VOP3  
*
*
(8/38)  
(3/38)  
VOP6  
V
OP3  
V
V
V
V
V
V
V
V
V
V
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
V
V
V
V
V
V
V
V
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
)
*
*
*
*
*
*
*
*
(38/38)  
(34/38)  
(31/38)  
(27/38)  
(23/38)  
(20/38)  
(16/38)  
(12/38)  
V
V
V
V
V
V
V
V
V
V
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
V
V
V
V
V
V
V
V
V
V
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
OP4+(VOP3-VOP4  
)
*
*
*
*
*
*
*
*
*
*
(36/38)  
(31/38)  
(27/38)  
(23/38)  
(19/38)  
(15/38)  
(12/38)  
(8/38)  
(5/38)  
(2/38)  
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
V
V
OP7+(VOP6-VOP7  
OP7+(VOP6-VOP7  
)
)
*
*
(7/38)  
(2/38)  
VOP7  
V
OP4  
V
V
V
V
V
V
58  
59  
60  
61  
62  
63  
V
V
V
V
OP8+(VOP7-VOP8  
OP8+(VOP7-VOP8  
OP8+(VOP7-VOP8  
OP8+(VOP7-VOP8  
)
*
*
*
*
(35/38)  
(28/38)  
(21/38)  
(12/38)  
V
V
V
V
V
V
V
V
V
V
V
V
V
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
V
V
V
V
V
V
V
V
V
V
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
)
*
*
*
*
*
*
*
*
*
*
(37/38)  
(34/38)  
(31/38)  
(28/38)  
(24/38)  
(21/38)  
(18/38)  
(16/38)  
(13/38)  
(10/38)  
)
)
)
)
)
)
)
)
)
)
)
)
V
OP8  
V
DDRL  
The constant 38 in the expression for  
calculation indicates the total number of  
bits in the tilt register and fine-adjust  
register.  
V
V
V
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
OP5+(VOP4-VOP5  
)
)
)
*
*
*
(7/38)  
(4/38)  
(1/38)  
S1D19105 Series (Rev.1.1)  
EPSON  
63  
6. FUNCTIONAL DESCRIPTION  
6.13 Resetting  
____  
____  
When the power is turned on, resetting by the RES pin is necessary. Following the rest by the RES pin, each  
input pin must be normally controlled. For connection of the LOW pulse width for reset, continue 1  
µs or more.  
If it is 100ns or less, it is rejected.  
For the default value of the command and parameter after reset, see  
(1) 7.2 Initial Values of a Single-Byte Command  
(2) 7.3 Parameter Initial Value List.  
____  
During reset (RES = LOW), no data is output even if revision read operation is performed. It becomes Hi-Z.  
64  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
7. COMMANDS  
___  
___  
__  
The data bus signal is identified by combination of A0, RD (E) and WR (R/W) pins. All commands are  
interpreted and executed independent from external clocks. When A0 is LOW, data existing on the data bus is  
considered to be a command. When A0 is HIGH, data is considered to be a command parameter or the data of  
display data RAM.  
Each of commands and parameters is defined in a single byte (8 bits) long. Pins D0 to D9 are invalid for 16-bit or  
18-bit parallel interfacing. Eight bits after the D/C are valid for serial interfacing.  
There are two types of commands: multiple-byte commands having parameters, and single-byte commands  
having no parameters. To issue a multiple-byte command, enter its single-byte command code and enter the  
specified number of bytes of parameters. If there are two or more parameters, all parameters must be entered, in  
principle. Another command can also be entered during parameter entry if A0 is set to LOW by accessing via  
___  
WR or E signal. However, it should be noted that for parameters to be executed in synchronization with  
VSYNC, those parameters entered partway are not executed. The parameter to be executed in synchronization  
with VSYNC is executed in synchronization with the first VSYNC after all the parameters have been entered.  
The RAM Write and RAM Read commands have not restriction in the number of parameter bytes. The command  
ends automatically when A0 is set to LOW and when the next command is entered.  
___  
The 80-series MPU interface starts reading when LOW signal is entered in the RD pin, and it starts writing  
___  
when LOW signal is entered in the WR pin. The 68-series MPU starts reading when HIGH signal is entered in  
__  
__  
the R/W pin, and it starts writing when LOW signal is entered in the R/W pin. The HIGH signal must be  
entered in the E pin.  
For serial interfacing, data signals are processed as explained in Paragraph 6.1.3.  
Any other code not described here must not be used.  
S1D19105 Series (Rev.1.1)  
EPSON  
65  
7. COMMANDS  
7.1 Command List  
Table 31 Command List  
Command Instruction Command  
No.  
Command name  
Display ON  
Code  
(Hex)  
AF  
length  
execution  
timing  
Function  
(Byte)  
1
2
1
1
VSYNC Turns the LCD display ON.  
Immediately Turns the LCD display OFF.  
afterward  
Display OFF  
AE  
3
Sets display  
CA  
10  
VSYNC Number of clocks in 1H and number of  
display lines  
Normally white or normally black, etc.  
VSYNC Sets the display timing.  
Immediately RGB array, access direction,  
afterward built-in oscillator, etc.  
Immediately Sets the RAM access start address.  
afterward Start Column Address, Start Row  
Address  
Immediately Sets the RAM access end address.  
afterward End Column Address, End Row  
Address  
4
5
Set Display Timing  
Set Data  
A1  
BC  
8
2
6
7
Set Start Address  
Set End Address  
15  
75  
3
3
8
9
RAM Write  
RAM Read  
5C  
5D  
E0  
Immediately Writes data into the RAM.  
afterward  
Immediately Reads data from the RAM.  
afterward  
Immediately Sets to the read-modify-write state.  
afterward  
10 Read-Modify-Write  
11 Set Area Scrolling  
12 Set Display Start Line  
AA  
AB  
5
2
VSYNC Sets the area scroll state.  
VSYNC Starts display of the scrolling area.  
Set Line Address  
13 Partial Display In  
A8  
4
VSYNC Sets the partial display state and starts  
partial display.  
14 Partial Display Out  
A9  
31  
8B  
6F  
8C  
20  
1
3
5
4
3
8
VSYNC Cancels partial display.  
VSYNC Sets the display data interface.  
VSYNC Sets the display color state.  
VSYNC Sets the gate line scan mode.  
VSYNC Sets the AC operation drive state.  
Immediately Sets the power supply.  
afterward  
15 Set Display Data Interface  
16 Set Display Color Mode  
17 Gate Line Scan Mode  
18 Set AC Operation Drive  
19 Set Electronic Control  
20 Set  
γ
Correction Characteristics  
22  
7
Immediately Sets the  
afterward  
γ correction value.  
21 Set Power Control  
22 Set Partial Power Control  
21  
23  
14  
8
VSYNC Controls the power circuit.  
VSYNC Controls power supply in partial  
non-display area.  
23 Sleep In  
95  
94  
1
1
Immediately Execute Automatic Off Sequence  
afterward command  
24 Sleep Out  
VSYNC Execute Automatic On Sequence  
command  
66  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
Command Instruction Command  
No.  
Command name  
Code  
(Hex)  
97  
length  
(Byte)  
1
execution  
timing  
Function  
25  
V
OSC OFF  
Immediately Stops VCORE and VOSC  
afterward  
.
26 Turns VOSC ON  
27 Stops oscillation  
28 Starts oscillation  
29 Test  
96  
93  
1
1
1
8
1
3
1
1
Immediately Starts up VCORE and VOSC  
afterward  
Immediately Stops the built-in oscillation circuit.  
afterward  
Immediately Starts the built-in oscillation circuit.  
afterward  
Immediately Command for testing  
afterward  
This is the no-operation command that  
does not affect the system operation.  
Immediately Reads the status.  
afterward  
Immediately Reads revision.  
afterward  
.
92  
FF  
0
30 NOP  
31 Status Read  
32 Revision Read  
33 Soft Reset  
E8  
-(E9)  
99  
Immediately Soft Reset  
afterward  
7.2 Initial Values of a Single-Byte Command  
Display OFF  
Partial Display Out (Normal display)  
Sleep In  
High-Speed RAM Write Out  
StOoSpCs oscillation.  
V
OFF  
S1D19105 Series (Rev.1.1)  
EPSON  
67  
7. COMMANDS  
7.3 Parameter Initial Value List  
Table 32 Parameter Initial Value List  
Code (Bin)  
Deci  
mal  
0
No.  
Command  
Sets display  
Parameter  
Initial state  
1H=74 clocks  
D17 D16 D15 D14 D13 D12 D11 D10  
3
P1  
P2  
P3  
P4  
P5  
P6  
P7  
0
0
0
*
1
0
0
0
1
0
1
1
0
0
0
0
*
0
0
0
0
0
0
*
0
1
0
0
*
1
*
*
1
0
0
*
0
0
0
0
1
0
1
0
1
0
0
1
0
0
0
*
1
0
0
0
73 1H=74 clocks  
Liquid crystal type, etc.  
Boosting clock frequency  
219 220-line display  
0
2
All pins enabled.  
Number of back poaching  
lines 3  
Number of front poaching  
lines 2  
All pins enabled.  
Source output ON at the  
1st clock  
P8  
0
0
0
0
0
0
0
1
1
P9  
P1  
*
0
*
0
*
0
*
0
*
0
0
0
0
0
0
0
0
0
4
Set Display Timing  
P2  
P3  
P4  
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
70 Source output OFF at 71st  
clock  
4
Gate output ON at the 5th  
clock  
68 Gate output OFF at the  
69th clock  
P5  
P6  
P7  
P1  
P1  
P2  
P1  
P2  
P1  
P2  
P3  
P4  
*
0
0
0
0
0
1
1
0
1
0
*
*
0
0
0
0
0
0
1
0
1
0
*
*
0
0
0
0
0
1
0
0
0
0
*
*
1
0
0
0
0
0
1
0
1
0
*
0
0
1
0
0
0
1
1
0
1
0
*
0
0
0
0
0
0
1
0
0
0
0
*
0
1
0
0
0
0
1
1
0
1
0
1
0
1
1
0
0
0
1
1
0
1
0
1
0
19  
9
Drive mode switch  
COM boost timing  
Drive mode switch timing  
Row address normal setup  
Start Column Address  
Start Row Address  
V
5
6
Set Data  
Set Start Address  
0
0
7
Set End Address  
175 End Column Address  
219 End Row Address  
11 Set Area Scrolling  
0
Start address  
219 End address  
0
Number of scroll lines 0  
The full-screen can be  
scrolled.  
12 Display Start Line  
13 Partial Display In  
P1  
P1  
P2  
P3  
P1  
P2  
P1  
0
0
0
0
0
*
*
0
0
0
0
0
*
*
0
0
0
0
0
*
*
0
0
0
0
0
*
*
0
0
0
0
0
*
*
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Display Start Line 0  
Area 1 Start Line 0  
Area 1 End Line 0  
Non-display refresh rate  
MPU interface 18 bits  
Division is not done.  
Select voltage and display  
color  
15 Set Display Data  
Interface  
0
0
16 Set Display Color  
Mode  
P2  
P3  
P4  
P1  
*
*
*
*
0
1
1
*
0
0
0
*
1
0
0
*
*
*
*
0
0
1
1
*
0
0
0
0
1
0
0
0
Gray scale amplifier ability  
Bias setting  
Boosting clock frequency  
Normal direction, interlace  
drive  
17 Set Gate Line  
Scan Mode  
P2  
P3  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
Scan start line  
219 Scan end line  
68  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
Code (Bin)  
Deci  
mal  
No.  
Command  
Parameter  
Initial state  
D17 D16 D15 D14 D13 D12 D11 D10  
18 Set AC Operation  
Drive  
19 Set Electronic  
P1  
P2  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P1  
P2  
P3  
P4  
P5  
P6  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
*
*
*
*
*
*
*
*
*
*
0
*
*
*
*
*
0
0
*
0
0
0
*
0
*
*
*
*
*
*
*
*
*
*
0
0
1
1
1
1
0
0
*
0
0
0
1
0
*
*
*
0
*
*
*
*
*
*
1
0
0
0
0
0
0
0
*
*
0
0
0
0
*
*
*
0
0
0
0
0
0
0
0
*
0
*
*
*
*
*
0
0
0
0
0
*
*
0
*
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
*
n-line reverse  
n-line set 1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
1
0
0
0
0
0
1
1
*
V
V
DDHS  
Control  
COMH  
VCA  
DDRH  
V
V
V
V
V
V
V
V
V
V
V
DDRL  
ONREG  
OFREG  
LDO  
RP3  
RP2  
P2  
20 Set  
γ
Correction  
V
V
RP0  
RP1  
Characteristics  
V
V
V
V
P1  
P3  
P5  
P7  
P4  
P6  
P8  
21 Set Power Control  
Wait1, 2  
Wait3, 4  
Booster circuit  
Regulator 1  
Regulator 2  
Regulator 3  
0
0
*
0
0
1
0
0
0
0
0
Pre-buffer ability setting  
Gray scale amplifier control  
1
P9  
PA  
PB  
*
0
*
*
0
*
*
0
*
*
0
*
*
0
*
*
0
*
0
0
0
0
0
0
0
0
0
Gray scale amplifier control  
2
Gray scale amplifier output  
Hz1  
Gray scale amplifier output  
Hz2  
PC  
PD  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P1  
P2  
*
*
*
*
*
0
0
*
*
*
*
0
1
*
1
*
0
0
0
1
*
*
0
0
*
0
*
0
0
0
0
0
*
1
0
0
0
0
*
*
1
0
0
*
*
*
*
*
0
0
*
*
*
0
0
0
1
0
1
0
0
*
0
1
0
0
0
0
0
0
0
0
*
0
0
0
0
1
0
1
0
0
0
*
1
0
0
0
Gray scale amplifier ability  
Bias setting  
22 Set Partial Power  
Control  
VCOM ability setting  
Boosting clock frequency  
Regulator 1  
Regulator 2  
Regulator 3  
Gray scale amplifier ability  
Bias setting  
29 Test  
VREG adjustment  
Constant current  
adjustment  
P3  
*
*
*
0
0
0
0
0
Oscillation frequency  
adjustment  
P4  
P5  
P6  
P7  
P1  
*
0
*
0
0
0
0
*
0
0
0
*
0
0
0
*
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
Discharge control 1  
Discharge control 2  
Gate driver test  
Detector test  
00H  
*
32 Revision Read  
0
0
0
S1D19105 Series (Rev.1.1)  
EPSON  
69  
7. COMMANDS  
7.4 Explanation of Commands  
(1) Display ON (Command code: AFh, Parameter: None)  
This command converts the display data stored in the built-in RAM to the gray scale voltage and displays on the  
LCD panel. The Sleep Out command be entered beforehand. The Display On is waited until it is ready for  
starting display after Sleep Out. When it is ready, the command is executed.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Display ON  
1
0
1
0
1
1
1
1
(2) Display OFF (Command code: AEh, Parameter: None)  
Turns the LCD display OFF. After receiving the command, display is canceled from the next frame at once.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Display OFF  
1
0
1
0
1
1
1
0
Enter Display OFF  
command.  
Source output  
Gate scan  
Frame  
Data  
1 frame  
Discharge  
After receiving the Display OFF command, source output and VCOM output produce an output of VSS and display  
white (in case of normally white liquid crystal) while turning the gate line on for a period of 1 frame or more.  
Then, they discharge the power circuits.  
70  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(3) Set Display (Command code: CAh, Parameter: 9 bytes)  
This command sets the display conditions. P3 and P6 execute immediately. P1, P2, P4, P5, P7 and P8 execute  
in synchronization with the first VSYNC after P9 was entered.  
D17 D16  
D15  
0
P15  
P25  
*
D14  
0
P14  
P24  
*
D13  
1
*
P23  
*
*
D12  
0
*
P22  
*
P42  
D11  
1
P11  
P21  
P31  
P41  
D10  
Function  
Set Command Display  
1
1
0
P17 P16  
P27 P26  
P37 P36  
P10 Parameter 1 (P1) Number of clocks in 1H (MSB)  
P20 Parameter 2 (P2) Number of clocks in 1H (LSB)  
P30 Parameter 3 (P3) Liquid crystal type  
*
P46  
P45  
P44  
P40 Parameter 4 (P4) Sets boosting clock frequency.  
Parameter 5 (P5) Number of display dots Y  
(number of display lines)  
P57 P56  
P55  
P54  
P53  
P52  
P51  
P50  
P67 P66  
P77 P76  
P87 P86  
P65  
P75  
P85  
*
P64  
P74  
P84  
*
P63  
P73  
P83  
*
P62  
P72  
P82  
0
P61  
P71  
P81  
0
P60 Parameter 6 (P6) Source output Hi-Z control  
P70 Parameter 7 (P7) Back poaching line  
P80 Parameter 8 (P8) Front poaching line  
*
*
0
Parameter 9 (P9) Reserved parameter  
Parameter 1 (P1): Sets MSB bits of the number of clocks in 1H and the number of display dots. Sets the  
expansion MSB bits of front poaching.  
P11 to P10: Sets MSB 2 bits of the number of clocks required during 1H (a single-line select period) subtracted  
by 1.  
P17 to P14: Sets MSB 4 bits of the front poaching. (The LSB 8 bits are set by P8).  
Parameter 2 (P2): Sets LSB 8 bits of the number of clocks required during 1H (a single-line select period)  
subtracted by 1. Notice change of the number of clocks of 1H about a relation with display  
timing set. Please be sure to set up to become longer than the various timing set up by the  
source timing set. When making a setting value small during display turn ON, it  
recommends changing display timing set previously.  
Example: If the frame frequency is 60Hz, the number of display lines is 220, back poaching is 3 lines, front  
poaching is 2 lines and the single clock cycle is 1µs:  
1 / 60 / (220+2+3) = 74µs (1H)  
Set value = 74-1 = 73  
P1=00H, P2=49H  
Parameter 3 (P3): Sets the address location of RAM and liquid panel type.  
P31 and P30: Sets the divided ratio of a built-in oscillation.  
P31  
0
0
P30  
0
1
Divided ratio  
Non divided (1MHz)  
1/2 (0.5MHz)  
1
1
0
1
1/4 (0.25MHz)  
Setting disabled  
P36: Automatically sets the RAM’s column address location linked with the P6 source output Hi-Z.  
0: Manual No change of RAM address  
1: Automatic Automatically changes the column address location of RAM.  
P37: Sets the type of the LCD panel to be used.  
0: Normally white  
1: Normally black  
Parameter 4 (P4): Sets frequency of the boosting clock of the 1st to 4th booster in displaying 262k-color display  
of display area.  
S1D19105 Series (Rev.1.1)  
EPSON  
71  
7. COMMANDS  
P42 to P40: Sets frequency of the boosting clock of the 1st and 2nd boosters in displaying 262k-color display.  
P46 to P44: Sets frequency of the boosting clock of the 3rd and 4th boosters in displaying 262k-color display.  
Determine while checking the display.  
P42/P46  
P41/P45  
P40/P44  
Frequency  
= Stop (disable)  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H / 2  
= Frequency in 1H / 4  
= Frequency in 1H / 8  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
×
×
×
×
8
4
2
1
Parameter 5 (P5): Sets the number of dots to be displayed in the direction of Y subtracted by 1. Odd lines  
cannot be set up.  
Example) To use a 176RGB × 220-dot LCD panel:  
Set value = 220-1 = 219  
Parameter 6 (P6): Sets source output not to be used to Hi-Z. Sets a maximum of 16 outputs to Hi-Z and allows  
160-dot display.  
P63  
0
1
P62  
*
0
P61  
*
0
P60  
*
0
Pins set to Hi-Z  
All pins enabled  
S1-S3  
1
1
0
0
0
1
1
0
S1-S6  
S1-S9  
1
1
0
1
1
0
1
0
S1-S12  
S1-S15  
1
1
1
1
0
1
1
0
S1-S18  
S1-S21  
1
1
1
1
S1-S24  
P67  
0
1
P66  
*
0
P65  
*
0
P64  
*
0
Pins set to Hi-Z  
All pins enabled  
S528-S526  
1
1
0
0
0
1
1
0
S528-S523  
S528-S520  
1
1
0
1
1
0
1
0
S528-S517  
S528-S514  
1
1
1
1
0
1
1
0
S528-S511  
S528-S508  
1
1
1
1
S528-S505  
Parameter 7 (P7): Sets the number of lines for back poaching subtracted by 1.  
P77 to P70: Sets the number of lines for back poaching in the range from 1 to 256.  
It recommends that is making a change of the number of lines before sleep out. When it changes  
during display turn on, a display may be abnormal a moment. Since it may be VCOM is same  
voltage potential 2-frame period. (Attention follows coincidence becomes abnormal. Odd lines to  
even lines and even lines to odd lines. Odd lines to odd lines and even lines to even lines are not  
happen)  
Parameter 8 (P8): Sets the number of lines of front poaching subtracted by 1.  
P87 to P80: Sets the number of lines for front poaching in the range from 2 to 4096 by combining with MSB 4  
72  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
bits of P1. 1 line (00h) is prohibition of a setup.  
Parameter 9 (P9): Test parameter Specify 000.  
P92 to 90: Specifying 1 sets all source outputs to Hi-Z.  
(4) Set Display Timing (Command code: A1h, Parameter: 7 bytes)  
With the clock setting of the display timing, the output timing best-suited to the characteristics of the panel to be  
connected can be obtained.  
1H  
BP  
1 line  
2 lines  
3 lines  
Source output  
Gate output  
Source output  
OFF timing  
Source output  
ON timing  
Gate output  
OFF timing  
Gate output  
ON timing  
Fig.46 Display Timing Control  
Enable the source output (S1 to S528 pins) and set the timing of Hi-Z and ON/OFF timing of the LCD output of  
the gate driver. Set the timing within the range of the number of clocks required during 1H (a single-line select  
period) subtracted by 1, which was set by 0 - Set Display P1. Set the timing to be changed subtracted by 1.  
It is the number of clocks of the oscillator when using the built-in oscillator for the display timing, or the number  
of DOTCLKs when using the DOTCLK. It becomes the DOTCLK number that was divided in the case that it  
divided with P2 of the display data interface set.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Display Timing  
1
0
1
0
0
0
0
1
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Source Output ON Timing  
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Source Output OFF Timing  
P37 P36 P35 P34 P33 P32 P31 P30 Parameter 3 (P3) Gate Signal “Select” Timing  
P47 P46 P45 P44 P43 P42 P41 P40 Parameter 4 (P4) Gate Signal “Non-select” Timing  
*
*
*
*
P53 P52 P51 P50 Parameter 5 (P5) Sets selection of drive mode  
P67 P66 P65 P64 P63 P62 P61 P60 Parameter 6 (P6) COMH and VCOML boost timing  
V
P77 P76 P75 P74 P73 P72 P71 P70 Parameter 7 (P7) Sets the switching timing of drive mode  
Parameter 1 (P1): Sets the turn-ON (enabling) timing of source outputs (S1 to S528 pins) to the number of clocks  
from the beginning of the line subtracted by 1.  
Parameter 2 (P2): Sets the turn-OFF (Hi-Z) timing of source outputs (S1 to S528 pins) to the number of clocks  
from the beginning of the line subtracted by 1.  
It sets up so that it may surely become source on timing < source off timing. Moreover, it is  
necessary to set up source of timing by the less than -2 CK number of 01h to 1H.  
Parameter 3 (P2): Sets the turn-ON (VDDHG) timing of gate outputs (G1 to G220 pins) to the number of clocks  
from the beginning of the line subtracted by 1.  
S1D19105 Series (Rev.1.1)  
EPSON  
73  
7. COMMANDS  
Parameter 4 (P4): Sets the turn-OFF (VEE) timing of gate outputs (G1 to G220 pins) to the number of clocks from  
the beginning of the line subtracted by 1.  
It sets up so that it may surely become gate on timing < gate off timing. Moreover, it is  
necessary to set up gate of timing by the less than -1 CK number of 01h to 1H.  
Parameter 5 (P5): Selects the source drive mode, power down for the gray scale generation circuit after the source  
output Hi-Z and the VCOMH and VCOML ability control.  
P53: Selects whether or not to UP (boost) the ability of VCOMH and V  
. The boosting timing is set by P6.  
This command is valid when power control command of P56 setCsOtoML1.  
0: Not boost  
1: Boost  
P52: Selects whether or not to enable power saving of the gray scale voltage generation circuit after the source  
OFF timing.  
0: Not enable power saving  
1: Enable power saving  
P52 generally uses not to power save. Power-save may be used to reduce power by decreasing the frame  
frequency.  
Carefully check the indication before using it.  
P51 and P50: Select the source drive mode.  
P51 P50  
Switch mode  
Switches between pre-buffer drive and  
centralized DAC drive at the timing set  
by P7.  
Centralized DAC drive throughout the  
period of source output enable. P7 is  
ignored.  
Pre-buffer drive throughout the period  
of source output enable. P7 is  
ignored.  
0
0
1
1
0
1
0
1
Setting disabled  
Parameter 6 (P6): With P67 to P60, sets the timing of bringing UP (boost) the ability of the regulator of the  
built-in power supply to the number of clocks from the beginning of the line subtracted by 1.  
If it is being boosted by the Power Control command, the above setting is invalid.  
Parameter 7 (P7): With P77 to P70, sets the timing of switching between pre-buffer drive and centralized DAC  
drive to the number of clocks from the beginning of the line subtracted by 1.  
In pre-buffer + concentration DAC drive (P51, P50= 0,0), change timing is surely set as  
source ON timing <P7< source OFF timing. Moreover, in any drive systems, 00h is  
prohibition of a setup.  
74  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
Setup Example  
Source Output On Timing P1 = 3  
Source Output Off Timing P2 = 71  
Gate Signal Select Timing P3 = 4  
Gate Signal Non-select Timing P4 = 70  
Source Drive Mode, etc. P5 = 00  
Drive Mode SCwOitMchLing Timing P7 = 6 (P51, P50 = 0, 0)  
V
COMH and V  
Boost Timing P6 = 19 (invalid)  
Clock  
1
2
3
4
5
6
7
68  
69  
70  
71  
72  
73  
Hi-Z  
74  
1
2
Source output  
Gate output  
Hi-Z  
Enable  
V
COM  
Drive mode switching  
(Internal signal)  
Pre-buffer drive  
DAC drive  
S1D19105 Series (Rev.1.1)  
EPSON  
75  
7. COMMANDS  
(5) Set Data (Command code: BCh, Parameter: 1 byte)  
Sets display data conditions. Change the display RAM address direction and the scan direction while the Display  
OFF is set, and wait for 1ms or more after changing. When only parameters not related to the display RAM are  
changed, the setting is immediately enabled. In this case, there is no need to wait.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Data  
1
0
1
1
1
1
0
0
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Controls  
built-in oscillator  
Parameter 1 (P1)  
P10: Row address normal/reverse  
0: Normal  
1: Reverse  
P11: Column address normal/reverse  
0: Normal (S1 to 3: Address 0, S526 to S528: Address 175)  
1: Reverse (S1 to 3: Address 175, S526 to S528: Address 0)  
P12: Selects oscillation clock output built into the OSCO pin  
Usually, it is used by Hi-Z. When making it output, It recommends connecting the capacitor of 1uF to  
VOSC pin.  
0: Hi-Z  
1: Output  
P13: Selects the address scan direction when display data is written into (or read from) the RAM from the  
MPU interface. When the RGB interface is used, select “Incremented when written (or read) in the  
column address direction”.  
0: Incremented when written (or read) in the column address direction.  
1: Incremented when written (or read) in the row address direction.  
P14: Sets the assignment order of RGB corresponding to the order of S1, S2, S3….pins.  
0: RGB (S1:R S2:G S3:B ꢁ ꢁ ꢁ S528:B)  
1: BGR (S1:B S2:G S3:R ꢁ ꢁ ꢁ S528:R)  
P15: Selects the number of bits of display data when display data is written into (or read from) the RAM when  
the MPU interface is 16-bit parallel.  
0: 16 bits × 1 time  
1: 16 bits × 2 times  
With P16:15, select each data format of the 1st and 2nd transfer when set to 16 bits × two times.  
0: 1st transfer 2 bits, 2nd transfer 16 bits  
1: 1st transfer 16 bits, 2nd transfer 2 bits  
P17: Selects oscillator.  
0: Uses the built-in oscillator.  
1: Does not use the built-in oscillator (but enters external clocks via the OSCI pin. It is an object for a  
test.)  
76  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(6) Set Start Address (Command code: 15h, Parameter: 2 bytes)  
Sets the access start address of the display RAM.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Start Address  
0
0
0
1
0
1
0
1
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Column Address  
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Row Address  
P17 P16 P15 P14 P13 P12 P11 P10  
Column address  
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
0
0
1
0
1
0
00H  
01H  
02H  
:
1
1
0
0
0
1
0
0
1
1
1
1
1
1
0
1
AEH  
AFH  
P27 P26 P25 P24 P23 P22 P21 P20  
Row address  
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
0
0
1
0
1
0
00H  
01H  
02H  
:
1
1
0
1
1
0
0
1
1
1
1
0
1
1
0
1
DAH  
DBH  
(7) Set End Address (Command code: 75h, Parameter: 2 bytes)  
Sets the access end address of the display RAM. After receiving the command, the setting is enabled  
immediately.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set End Address  
0
1
1
1
0
1
0
1
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Column Address  
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Row Address  
The setting range is the same as the start address. However, the start address < the end address must be true.  
(8) RAM Write (Command code: 5Ch, Parameter: unlimited)  
___  
Automatically increments the address based on the WR signal after command input, and writes parameters as  
the data into the display data RAM. When a command is entered, the column and row addresses are set to their  
start address. Any number of bytes of parameters can be written until the next command is entered. When the  
write address reaches the end address, it is returned to the start address.  
The relationship between the parameter (display data) bit length and pins varies depending on the interface used  
as described in 6.2.3.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
0
1
0
1
1
1
0
0
Command RAM Write  
*
*
*
*
*
*
*
*
Parameter Specifies data to be written into the display RAM.  
S1D19105 Series (Rev.1.1)  
EPSON  
77  
7. COMMANDS  
(9) RAM Read (Command code: 5Dh, Parameter: unlimited)  
___  
Automatically increments the address based on the RD signal after command input, and reads data from the  
display RAM. When a command is entered, the column and row addresses are set to their start address. The data  
reading is continued until the next command is entered. Any number of bytes of data can be read. When the read  
address reaches the end address, it is returned to the start address.  
The relationship between the parameter (display data) bit length and pins varies depending on the interface used  
as described in 6.2.3.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
0
1
0
1
1
1
0
1
Command RAM Read  
Parameter Specifies data to be read from the display RAM  
*
*
*
*
*
*
*
*
(10) Read-Modify-Write (Command code: E0h, Parameter: unlimited)  
This command makes both RAM Write and RAM Read executable and reduces the CPU load when the RAM  
area data is repeated to change. If the memory is set to the Read-Modify-Write status by the  
___  
Read-Modify-Write command, the addresses are NOT incremented automatically by the read signal (RD for  
___  
80-series) until it is released. It is incremented only by the write signal (WR for 80-series). This state is  
canceled when another command is entered. When the Read-Modify-Write status is released, control is returned  
to the address specified by the Set Start Address command before status change.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Read-Modify-Write  
1
1
1
0
0
0
0
0
Set Start Address  
Set End Address  
Read-Modify-Write In  
Dummy Read  
Read Data  
Write Data  
NO  
End the change?  
YES  
Next command  
78  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(11) Set Area Scrolling (Command code: AAh, Parameter: 4 bytes)  
Makes settings for partially scrolling the screen in the row direction. With this command and the following 4  
parameters, type of area scroll, fixed area and scroll area can be set.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Area Scrolling  
1
0
1
0
1
0
1
0
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Scroll Start Line Address  
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Scroll End Line Address  
P37 P36 P35 P34 P33 P32 P31 P30 Parameter 3 (P3) Number of Scroll Lines  
*
*
*
*
*
*
P41 P40 Parameter 4 (P4) Scroll Mode  
Parameter (P1): Specifies the scroll start line address of the RAM to be assigned to the scroll area. For top area  
and the full-screen scrolling, set it to the 0 address. The display start line address is also set to  
this scroll start line address until it is set with the Display Start Line command.  
Parameter 2 (P2): Specifies the scroll end line address of the RAM to be assigned to the scroll area. For bottom  
area and the full-screen scrolling, set it to the 219 addresses. Keep the scroll start line address  
< scroll end line address true.  
Parameter 3 (P3): Sets the value to the number of scroll lines.  
Sets the value to the number of display lines (set by P3 of Set Display) subtracted by the  
number of display lines in the bottom fixed area. For the bottom area and the full-screen  
scrolling, set it to any value (the set value is ignored).  
Parameter (P4): Selects an area scroll mode.  
P41  
0
0
1
1
P40  
0
1
0
1
Area scroll type  
The center area can be scrolled  
The top area can be scrolled  
The bottom area can be scrolled  
The full-screen can be scrolled  
An area can be scrolled only after the Set Area Scroll command has been issued and the display start address has  
been set by the Display Start Line command.  
[Area scroll setup example]  
Conditions: Set the number of display lines to 220 and scroll the center window. Also, select 16 lines for the top  
fixed area and 8 lines for the bottom fixed area.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Set Area Scrolling  
Scroll start address (16)  
Scroll end address (219 - 8 = 211)  
Number of scroll lines (219 - 8 = 211)  
Scroll mode  
1
0
1
1
*
0
0
1
1
*
1
0
1
0
*
0
1
0
0
*
1
0
1
0
*
0
0
1
1
*
1
0
1
1
0
0
0
1
1
0
S1D19105 Series (Rev.1.1)  
EPSON  
79  
7. COMMANDS  
(12) Set Display Start Line (Command code: ABh, Parameter: 1 byte)  
Sets the display start line address of the display RAM. From the scroll area addresses specified by this  
command, select the display start address. If this command is repeated in a certain cycle, the window can be  
scrolled dynamically.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Display Start Line  
1
0
1
0
1
0
1
1
P17 P16 P15 P14 P13 P12 P11 P10 Parameter Display start line address  
(13) Partial Display In (Command code: A8h, Parameter: 3 bytes)  
Used to partially display the screen (by line division) to reduce the power consumption.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Partial In  
1
0
1
0
1
0
0
0
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Partial Display Start Line  
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Partial Display End Line  
P37 P36 P35 P34 P33 P32 P31 P30 Parameter 3 (P3) Frame frequency in the  
non-display area  
From the number of display lines specified by parameter P3 of the Set Display command, set the partial display  
address using P1 and P2. (It is NOT the line address. It is the display line of the panel, beginning from line  
number 0. See below.) P3 sets the number of off voltage write frames during the period of the partial non-display  
and the partial type.  
Line 1  
Line 2  
Line 3  
Line 4  
ꢁꢁꢁ  
Line 219  
Line 220  
When the number of display lines is 220  
Parameter 1 (P1): Specifies the partial display start line number subtracted by 1 of the above line.  
Example: To start partial display at line 1, specify 0.  
To start partial display at line 4, specify 3.  
Parameter 2 (P2): Specifies the partial display end line number subtracted by 1 of the above line.  
Example: To end partial display at line 15, specify 14.  
Parameter 3 (P3): Sets the non-display area refresh rate and drive voltage at the time of refreshment.  
P36 to 30: Sets the frame frequency that refreshes the partial non-display area to 1/N in the display area. For  
both source and common, the drive voltage when not refreshed is set to Hi-Z state.  
0000000 : 1  
0000001 : 1/3  
0000010 : 1/5  
0000011 : 1/7  
1111110 : 1/253  
1111111 : Does not refresh  
80  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
P37: Switches mode between VDDHS/VSS mode and V /V63 mode. Since no gray scale amplifier is used in  
0 to6V3 62 gray scale voltage is stopped.  
V
DDHS/VSS mode, power consumption is lowered.0 In V /V mode, display with less power used is also  
possible, because the gray scale amplifier that generates V  
1
D/DVH6S3 mSoSde.  
0: Sets to V  
1: Sets to V  
/V mode.  
0
(14) Partial Display Out (Command code: A9h, Parameter: None)  
The Partial Out command cancels the partial display and returns to the normal display mode. After receiving the  
command, the setting is enabled from the next frame.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Partial Display Out  
1
0
1
0
1
0
0
1
(15) Set Display Data Interface (Command code: 31h, Parameter: 1 byte)  
Sets the operation state of the display interface. After receiving the command, the setting is enabled immediately.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
0
0
1
1
0
0
0
1
Command Set Display Data Interface  
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Sets display interface  
P22 P21 P20 Parameter 2 (P2) Dividing ratio of DOTCLK  
*
*
*
*
*
Parameter 1 (P1): Sets the operation mode and bus width of the display interface.  
P12 to P10:  
P12  
0
0
P11  
0
0
P10  
0
1
Data transfer mode  
Normal MPU data transfer  
0
1
1
1
1
0
0
1
1
0
1
1
VSYNC Interface  
RGB transfer 1  
RGB transfer 2  
RGB transfer 3  
Setting disabled  
*
1
0
The period beyond 1H is required for the change of a display interface between the last  
display line and VSYNCI.  
P13 0: At the rising edge of the DOTCLK, data is read.  
1: At the falling edge of the DOTCLK, data is read.  
P15, P14:  
P15  
0
0
1
1
P14  
0
1
0
1
RGB interface bus width  
18 bits (1 dot transferred in 1 step)  
16 bits (1 dot transferred in 1 step)  
6 bits (1 dot transferred in 3 steps)  
Setting disabled  
P16: ENABLE  
0: LOW enabled.  
1: HIGH enabled.  
P17: HSYNC, VSYNC  
0: LOW enabled.  
1: HIGH enabled.  
S1D19105 Series (Rev.1.1)  
EPSON  
81  
7. COMMANDS  
Parameter 2 (P2): Determines the dividing ratio of DOTCLK.  
If the display RAM is written at a high speed using DOTCLK as display clock, the display  
timing may not be set properly. In this case, set the division ratio to specify an appropriate  
value for the display timing. The clock to be set for each command parameter is a clock after  
division. The count value of division is reset at the beginning of each line.  
P22  
0
0
P21  
0
0
P20  
0
1
Division ratio  
Division is not done.  
1/2 division  
0
0
1
1
0
1
1/3 division  
1/4 division  
1
1
0
0
0
1
1/5 division  
1/6 division  
1
1
1
1
0
1
1/7 division  
1/8 division  
(16) Set Display Color Mode (Command code: 8Bh, Parameter: 4 bytes)  
Sets the maximum number of display colors. After receiving the command, the setting is enabled from the next  
frame.  
Switching between 262K-color mode and 8-color mode is available using the Set Display Color Mode command  
parameter. Only the MSB in the display RAM is used as the gray scale data used for display.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
1
*
*
*
*
0
0
0
1
*
*
*
*
0
1
1
Command Set Display Color Mode  
*
*
*
P12 P11 P10 Parameter 1 (P1) Maximum number of display color  
P22 P21 P20 Parameter 2 (P2) Sets gray scale amplifier ability  
P32 P31 P30 Parameter 3 (P3) Sets bias circuit ability  
P26 P25 P24  
P36 P35 P34  
P46 P45 P44  
P42 P41 P40 Parameter 4 (P4) Sets the boosting frequency.  
Parameter 1 (P1):  
P11, 10: Switches mode between VDDHS/VSS mode and V /V mode. Since no gray scale amplifier is used  
also DpoDsHsSible, because the gray scale amplifier that generates 0V to V62 gray scale voltage is stopped.  
in V  
/VSS mode, power consumption is lowered.0 I6n3V /V63 mode, display with less power used is  
D/DVHS mSoSde when P11 is set to 1. It is invalid when P11 is set to 0.  
P10: 0 Specifies 8-color V  
/V mode when P11 is set to 11. It is invalid when P11 is set to 0.  
P11:0 Sets the maximum num6b3er of display colors to 262K colors.  
P10: 1 Specifies 8-color V  
0
P11:1 Sets the maximum number of display colors to 8 colors.  
P12: Sets whether or not to boost VCOMH and V  
in the 8-color-display area similarly to P53 (boosting  
of VCOMH and VCOML) of Set Display TimiCnOg.ML  
0: Not boost  
1: Boost  
Parameter 2 (P2) to Parameter 3 (P3): Sets power control of the 8-color display. It is valid only when P11 = 1.  
Parameter 2 (P2): See PC of power control.  
Parameter 3 (P3): See PD of power control.  
Parameter 4 (P4): Sets frequency of the boosting clock of the 1st - 4th booster in 8-color display area.  
P42 to P40: Sets frequency of the boosting clock of the 1st and 2nd boosters in the 8-color display area.  
P46 to P44: Sets frequency of the boosting clock of the 3rd and 4th boosters in the 8-color display area.  
Determine while checking the display.  
P42, P46 P41, P45 P40, P44  
Frequency  
82  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
= Stop (disable)  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H / 2  
= Frequency in 1H / 4  
= Frequency in 1H / 8  
×
×
×
×
8
4
2
1
(17) Set Gate Line Scan Mode (Command code: 6Fh, Parameter: 3 bytes)  
Sets the line scan mode of the gate driver.  
Be sure to enter before the Sleep Out command.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Gate Line Scan Mode  
P11 P10 Parameter 1 (P1) Scan Mode  
0
*
1
*
1
*
0
*
1
P13  
1
*
1
1
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Number of Scan Start Line  
P37 P36 P35 P34 P33 P32 P31 P30 Parameter 3 (P2) Number of Scan End Line  
Parameter 1 (P1): Sets the gate line scan mode.  
P11  
0
0
1
1
P10  
0
1
0
1
Mode  
Interlace drive  
Up and down drive 1  
Up and down drive 2  
Setting disabled  
P13: 0 Normal direction scan  
1 Reverse direction scan  
Parameter 2 (P2): Sets the gate scan start line subtracted by 1.  
Parameter 3 (P3): Sets the gate scan end line subtracted by 1.  
S1D19105 Series (Rev.1.1)  
EPSON  
83  
7. COMMANDS  
G1  
G110  
G220  
G1  
P2  
Middle  
point  
G110  
G220  
P3  
Interlace drive  
(normal direction)  
Up and down drive  
(normal direction)  
It needs to be completely in agreement with P5 (the number of display dots) of display set command. It cannot  
respond to the panel of odd lines. Refer to the 6.6th clause for the details about the setting method.  
(18) Set AC Operation Drive (Command code: 8Ch, Parameter: 2 bytes)  
Sets the AC operation drive state. After receiving the command, the setting is enabled from the next frame.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
1
*
*
0
*
*
0
*
*
0
*
*
1
1
0
0
Command Set AC Operation Drive  
*
*
P11 P10 Parameter 1 (P1) AC operation mode  
P23 P22 P21 P20 Parameter 2 (P2) n-line reverse  
Parameter 1 (P1): Sets the AC operation mode.  
P11  
0
0
P10  
0
1
AC operation mode  
n-line reverse driving  
Frame reverse driving  
Interlace drive  
1
0
1
1
Setting disabled  
Parameter 2 (P2): Sets the number of lines for n-line reverse driving subtracted by 1.  
84  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(19) Set Electronic Control (Command code: 20h, Parameter: 7 bytes)  
Determines the output voltage of each voltage regulator of the built-in power circuit.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Electronic Control  
0
*
*
*
*
*
*
*
*
0
*
*
*
*
*
*
*
*
1
0
0
0
0
0
*
P14 P13 P12 P11 P10 Parameter 1 (P1)  
V
V
DDHS  
P25 P24 P23 P22 P21 P20 Parameter 2 (P2)  
COMH  
*
*
*
*
*
*
P34 P33 P32 P31 P30 Parameter 3 (P3) VCA, VCOMW  
P44 P43 P42 P41 P40 Parameter 4 (P4)  
P54 P53 P52 P51 P50 Parameter 5 (P5)  
P64 P63 P62 P61 P60 Parameter 6 (P6)  
P74 P73 P72 P71 P70 Parameter 7 (P7)  
VONREG  
VOFREG  
VDDRH  
VDDRL  
VLDO  
*
*
P82 P81 P80 Parameter 7 (P8)  
Parameter 1 (P1) to Parameter 7 (P8): Sets the output voltage of each voltage reagulator  
.
EVR  
0
V
COMH  
V
DDHS  
V
DDRH  
V
OFREG  
V
COMW  
VCA  
1.5  
V
ONREG  
V
DDRL  
V
LDO  
EVR  
32(20h)  
V
COMH  
2
2.7  
2.7  
2
3.0  
0.0  
0
3
4.4  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2.075  
2.15  
2.225  
2.8  
2.9  
3
2.8  
2.9  
3
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5
3.1  
3.2  
3.3  
1.55  
1.6  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
2
2.05  
2.1  
2.15  
2.2  
2.25  
2.3  
2.35  
2.4  
2.45  
2.5  
2.55  
2.6  
2.65  
2.7  
2.75  
2.8  
2.85  
2.9  
2.95  
3
3.05  
0.2  
0.4  
0.05  
0.1  
2.95  
2.9  
33(21h) 4.475  
34(22h) 4.55  
35(23h) 4.625  
36(24h) 4.7  
37(25h) 4.775  
38(26h) 4.85  
39(27h) 4.925  
40(28h)  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.55  
0.6  
0.65  
0.7  
0.75  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
1.15  
1.2  
1.25  
1.3  
1.35  
1.4  
1.45  
1.5  
2.8  
2.7  
2.6  
2.55  
2.5  
2.3  
2.375  
2.45  
2.525  
2.6  
2.675  
2.75  
2.825  
2.9  
2.975  
3.05  
3.125  
3.2  
3.275  
3.35  
3.425  
3.5  
3.575  
3.65  
3.725  
3.8  
3.875  
3.95  
4.025  
4.1  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.1  
5
41(29h) 5.075  
42(2Ah) 5.15  
43(2Bh) 5.225  
44(2Ch)  
5.3  
45(2Dh) 5.375  
46(2Eh) 5.45  
47(2Fh) 5.525  
48(30h)  
49(31h) 5.675  
50(32h) 5.75  
51(33h) 5.825  
52(34h) 5.9  
5.6  
53(35h) 5.975  
54(36h) 5.975  
55(37h) 5.975  
56(38h) 5.975  
57(39h) 5.975  
58(3Ah) 5.975  
59(3Bh) 5.975  
60(3Ch) 5.975  
61(3Dh) 5.975  
62(3Eh) 5.975  
63(3Fh) 5.975  
4.175  
4.25  
4.325  
5.1  
1.55  
The above values are calculated values only and no guarantee on them is offered. In reality, since computations  
are performed based on VREG and output to the regulator, variations in V  
and regulators are included.  
For VCOMH, the output voltage can be adjusted with the external resistoRr.EG There is connection way that can be  
half voltage of VCOMW.  
S1D19105 Series (Rev.1.1)  
EPSON  
85  
7. COMMANDS  
(20) Set γ Correction Characteristics (Command code: 22h, Parameter: 12 bytes)  
Sets gray scale voltage according to the γ characteristics of the LCD panel.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
γ Correction Characteristics  
0
0
1
0
0
0
1
0
Command Set  
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1)  
V
V
V
V
V
V
RP3  
RP2  
P2  
V
V
RP0  
*
*
*
*
*
P26 P25 P24  
P36 P35 P34  
P46 P45 P44  
P56 P55 P54  
P66 P65 P64  
*
*
*
*
*
P22 P21 P20 Parameter 2 (P2)  
P32 P31 P30 Parameter 3 (P3)  
P42 P41 P40 Parameter 4 (P4)  
P52 P51 P50 Parameter 5 (P5)  
P62 P61 P60 Parameter 6 (P6)  
RP1  
V
V
V
V
P1  
P3  
P5  
P7  
P4  
P6  
P8  
Parameter 1 (P1): Positive polarity side tilt adjustment register VRP3 and VRP0  
Parameter 2 (P2): Positive polarity side tilt adjustment register VRP2 and VRP1  
Parameter 3 (P3): Positive polarity side fine adjustment selector VP2 and VP1  
Parameter 4 (P4): Positive polarity side fine adjustment selector VP4 and VP3  
Parameter 5 (P5): Positive polarity side fine adjustment selector VP6 and VP5  
Parameter 6 (P6): Positive polarity side fine adjustment selector VP8 and VP7  
Setting the positive polarity automatically sets the negative polarity to be symmetrical.  
For details on how to set, see section 6.11 “Gray scale Voltage Generation Circuit”.  
86  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(21) Set Power Control (Command code: 21h, Parameter: 13 bytes)  
Sets ON or OFF of a function and ability of power circuit. The setup is performed automatically and sequentially  
with the Sleep Out command in accordance with the setting of this command.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command Set Power Control  
0
0
1
0
0
0
0
1
P17 P16 P15 P14 P13 P12 P11 P10 Parameter 1 (P1) Wait 1 and 2 (Sleep Out)  
P27 P26 P25 P24 P23 P22 P21 P20 Parameter 2 (P2) Wait 3 and 4 (Sleep Out)  
*
*
*
*
*
P33 P32 P31 P30 Parameter 3 (P3) Booster circuit control, etc.  
P47 P46  
P44 P43 P42 P41 P40 Parameter 4 (P4) Regulator circuit control 1  
P57 P56 P55 P54 P53 P52 P51 P50 Parameter 5 (P5) Regulator circuit control 2  
P67 P66 P65  
*
*
*
*
*
*
Parameter 6 (P6) Regulator circuit control 3  
*
P76 P75 P74  
P72 P71 P70 Parameter 7 (P7) Sets pre-buffer ability  
P87 P86 P85 P84 P83 P82 P81 P80 Parameter 8 (P8) Gray scale amplifier control 1  
P91 P90 Parameter 9 (P9) Gray scale amplifier control 2  
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Parameter A (PA) Gray scale amplifier output Hz1  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
PB1 PB0 Parameter B (PB) Gray scale amplifier output Hz2  
PC6 PC5 PC4  
PD6 PD5 PD4  
PC2 PC1 PC0 Parameter C (PC) Sets gray scale amplifier ability  
PD2 PD1 PD0 Parameter D (PD) Sets bias circuit ability  
Parameter 1 (P1): Sets Wait 1 or 2 during Sleep Out  
Parameter 2 (P2): Sets Wait 3 or 4 during Sleep Out  
P10 to P13: Wait 1  
P14 to P17: Wait 2  
P20 to P23: Wait 3  
P24 to P27: Wait 4  
0000: No wait  
0001: 1 frame  
0010: 2 frames  
1111: 15 frames  
Parameter 3 (P3): P33 to P30 booster circuit VLDO ON/OFF control  
P30: 0  
: 1  
V
LDO OFF  
V
LDO ON  
0: Booster circuit OFF  
1: Booster circuit ON  
P31: 1st and 2nd booster circuit  
P32: 3rd booster circuit  
P33: 4th booster circuit  
Parameter 4 (P4): Regulator circuit ON/OFF control 1  
0: Regulator OFF  
1: Regulator ON (Cancels discharge and turns the regulator ON.)  
P41: VDDHS  
P40: V  
P42: VOFREG  
P43: VONREG  
P44: VDDDDRRLH  
S1D19105 Series (Rev.1.1)  
EPSON  
87  
7. COMMANDS  
P47, P46: Sets the reference voltage. Sets to VREG1  
.
P47  
0
0
1
1
P46  
0
1
0
1
Reference voltage  
V
REG Voltage  
Setting  
Valid  
Setting disabled  
Setting disabled  
Setting disabled  
V
V
V
REG1  
REG2  
REG3  
3.5V  
3.5V  
3.5V  
-
Setting disabled  
Parameter 5 (P5): Regulator circuit ON/OFF control 2  
0: Regulator OFF  
1: Regulator ON (Cancels discharge and turns the regulator ON.)  
P50: VCOMH  
P51: Set to 0.  
P53: VCCOOMML  
P52: V  
For testing.  
P54: Fixes at 0 (Resistor built into VCOMH is ON.)  
COMH and VCOML ability adjustment (for testing) Specify 0. For testing.  
V
P55: 1 CCUT2 With no guaranteed phase capacityC(OVMCHOMH only)  
P56: 0 BST2 Normal  
P55: 0 CCUT2 With guaranteed phase capacity (V  
only)  
P56: 1 BST2 Ability UP  
P57: 0 LPOW2 Normal  
P57: 1 LPOW2 Low power  
Parameter 6 (P6): Regulator circuit ability control 3  
V
ONREG and VOFREG ability adjustment (for testing) Set to 0. For testing.  
P65: 0 CCUT1 With guaranteed phase capacity  
P65: 1 CCUT1 With guaranteed phase capacity  
P66: 0 BST1 Normal  
P66: 1 BST1 Ability UP  
P67: 0 LPOW1 Normal  
P67: 1 LPOW1 Low power  
Parameter 7 (P7): Sets the pre-buffer ability of each source output pin. Specify 100.  
P72 to P70: P bias  
P76 to P74: N bias  
P72/P76 P71/P75 P70/P74 Pre-buffer current consumption ratio  
0
0
0
0
0
1
0
1
0
3
2.5  
2
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
1.5  
1
0.75  
0.5  
0.25  
88  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
Parameter 8 (P8): Gray scale amplifier control 1  
Enables 10 gray scale amplifiers by combining with the parameter A.  
Specify 1 for all.  
P87  
V
P86  
V
P85  
V
P84  
V
P83  
V
P82  
V
P81  
V
P80  
VOP1  
OP8  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
Parameter 9 (P9): Gray scale amplifier control 2  
Enables 10 gray scale amplifiers by combining with the parameter B.  
Specify 1 for all.  
P91  
P90  
VOPH  
V
OPL  
Parameter A (PA): Gray scale amplifier output Hz control 1  
Enables 10 gray scale amplifiers by combining with the parameter 8.  
Specify 1 for all.  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
VOP1  
V
OP8  
V
OP7  
V
OP6  
V
OP5  
V
OP4  
V
OP3  
V
OP2  
Parameter B (PB): Gray scale amplifier output Hz control 2  
Enables 10 gray scale amplifiers by combining with the parameter 9.  
Specify 1 for all.  
PB1  
PB0  
VOPH  
V
OPL  
Parameter C (PC): Set gray scale amplifier ability  
Sets the ability of the gray scale amplifier.  
Specify 001.  
PC2 to PC0: Auxiliary  
PC6 to PC4: Main  
PC2/PC6 PC1/PC5 PC0/PC4 Gray scale amplifier current consumption ratio  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
1
0.0 (Stop)  
1
1
2
0.5  
1.5  
2.5  
Parameter D (PD): Set bias circuit ability  
Sets the bias ability given to the gray scale amplifier.  
Please set it to follows. PD2 to PD0 : 100, PD6 to PD4: 100  
S1D19105 Series (Rev.1.1)  
EPSON  
89  
7. COMMANDS  
PD2 to PD0 : for VREFN  
PD2  
PD1  
0
PD0  
0
Gray scale amplifier current consumption ratio  
0
0.0 (Stop)  
0
0
0
1
1
0
4
2
0
1
1
0
1
0
1.33  
1
1
1
1
0
1
1
1
0
1
0.8  
0.67  
0.57  
PD6 to PD4 : for VREFP  
PD6  
0
PD5  
0
PD4  
0
Gray scale amplifier current consumption ratio  
0.0 (Stop)  
0
0
0
1
1
0
4
2
0
1
1
0
1
0
1.33  
1
1
1
1
0
1
1
1
0
1
0.8  
0.67  
0.57  
(22) Set Partial Power Control (Command code: 23h, Parameter: 7 bytes)  
Power supply setup of the non-display area at the time of partial display is performed. P1 to P5 can set the state  
of the power supply circuit of the period for which non-display area is not refreshed etc. P6 and P7 can set the  
state of the power supply circuit of the refreshment period of non-display area etc.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
0
*
*
*
0
1
0
0
*
*
0
1
1
Command Partial Power control  
*
*
P14  
P12 P11 P10 Parameter 1 (P2) Sets VCOM ability  
P22 P21 P20 Parameter 2 (P2) Sets the boosting cycle  
P26 P25 P24  
*
*
P34 P33 P32 P31 P30 Parameter 3 (P3) Regulator circuit control 1  
*
*
Parameter 1 (P1): Sets the recovery time and partial mode.  
P12 to P10: Specifies the time at which power control returns, i.e., how many hours before driving the display  
line.  
000: 0H  
001: 1H  
010: 2H  
111: 7H  
P14: Sets whether or not to boost VCOMH and VCOML in the non-display area similarly to P53 (boosting of  
V
COMH and VCOML) of Set Display Timing.  
0: Not boost  
1: Boost  
Parameter 2 (P2): Sets frequency of the boosting clock of the 1st - 4th booster in the non-display area.  
P22 to P20: Sets frequency of the boosting clock of the 1st and 2nd boosters in the non-display area.  
P26 to P24: Sets frequency of the boosting clock of the 3rd and 4th boosters in the non-display area.  
90  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
Determine while checking the display.  
P22/P26  
P21/P25  
P20/P24  
Frequency  
= Stop  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H  
= Frequency in 1H / 2  
= Frequency in 1H / 4  
= Frequency in 1H / 8  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
×
×
×
×
8
4
2
1
Parameter 3 (P3) to Parameter 7 (P7): Sets power control of non-display area.  
Discharge is not carried out even if it is set to OFF.  
Parameter 3 (P3): See P4 of power control. However, VREG of P47 and P46 cannot be selected.  
Parameter 4 (P4): See P5 of power control. However, VCOMH built-in resistor On of P54 cannot be selected.  
same VCOM sCigOnMaHl as a display area is genCeOraMted.  
When P40(V  
) P42(VCOML) P43 (V  
) is set to 1, also in a non-displaying area, the  
A non-displaying area is set to Hi-Z when P43 (VCOM) is set to 0.  
Parameter 5 (P5): See P6 of power control.  
Parameter 6 (P6): See PC of power control.  
Parameter 7 (P7): See PD of power control.  
S1D19105 Series (Rev.1.1)  
EPSON  
91  
7. COMMANDS  
(23) Sleep In (Command code: 95h, Parameter: none)  
Automatic command that executes multiple commands. Turns the display off, discharges power supply after  
displaying white, stops oscillation and puts into sleep state. After receiving the command, execution takes place  
immediately.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: Sleep In command  
1
0
0
1
0
1
0
1
Sleep In  
Display OFF  
Discharge  
White display (in case of normally white)  
1 Frame  
Stops the built-in power circuit and resets  
the Discharge Power Control Register.  
Oscillation stops  
After this, in the state of VOSC stop  
V
OSC STOP  
Fig.47 Sleep In Time Chart  
Sleep In  
VSYNCO  
Frame  
S1 to S528  
V
SS  
SS  
V
SS  
SS  
VCOM  
V
V
G1 to G220  
VSS 0V  
VOSC  
OSC  
In VSYNC interface, RGB transfer 2 and RGB transfer 3, no Sleep In takes place with no external clock entered.  
Be sure to enter the external clock. Change the MPU interface mode to cause Sleep In.  
92  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(24) Sleep Out (Command code: 94h, Parameter: none)  
Automatic command that executes multiple commands. Starts VOSC and sequentially executes the Start  
Oscillation and Power Control command. When the Display ON command is received following startup of the  
built-in power supply. Displays starts from the beginning of the frame. If the Display ON command is received  
before the built-in power supply starts, wait is set automatically and the frame is displayed from the beginning  
after the built-in power supply is started. The boosting clock at the time of boost starting starts by 33h  
irrespective of the setting value (P4) of the display set. Before Wait4 end, it changes into the setting value of a  
display set automatically.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: Sleep Out command  
1
0
0
1
0
1
0
0
Sleep Out  
V
OSC ON  
V
OSC starts  
Oscillation starts.  
Power Control 1  
Power Control 2  
Power Control 3  
Oscillation starts  
Wait1  
(Oscillation circuit  
stabilization time)  
The 1st and 2nd booster operation starts.  
Wait2  
(Booster circuit  
stabilization time)  
The operation of the VREG ON  
and regulator starts.  
Wait3  
(Regulator circuit  
stabilization time)  
The operation of the 3rd and 4th booster starts.  
Wait4  
(Booster circuit  
stabilization time)  
When the Display On command is received, the  
state of displaying from the beginning of a frame  
is resulted from synchronization with the internal  
frame.  
State of display enabled  
Set Start Address  
Set End Address  
RAM Write  
Other setting  
Display ON  
Displays RAM data.  
Once the Display ON command is issued, the display appears.  
However, if the Display ON command is issued during the startup, the display appears after the startup of the  
power supply (following the state of display enabled). If the Display On command is not issued, the state of  
display enabled continues.  
In VSYNC interface, RGB transfer 2 and RGB transfer 3, Sleep Out does not take place with no external clock  
entered. To execute Sleep Out, it is recommended to start in MPU interface mode and switch to other mode  
after Wait4.  
S1D19105 Series (Rev.1.1)  
EPSON  
93  
7. COMMANDS  
1
Power  
2
Power  
Sleep Out  
(standby)  
Oscillation start  
Wait1  
3
Power  
Display ON  
Wait2  
Wait3  
Wait4  
S1 to S528  
VCOM  
G1 to G220  
VSS  
VOSC  
OSC  
VDDHS  
VOUT  
VOUM  
VOUT /VOUM  
VDDHG  
VDDHG /VEE  
VEE  
Fig.48 Sleep Out Time Chart  
94  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
(25) V  
OFF (Command code: 97h, Parameter: none)  
Stop VOCSOCRE regulator, VOSC and VREG1 to V  
. To set standby with the IC powered, enter this command to  
place in the state of low consumption. To RcEhGa3nge from the state of low consumption to the state of normal  
operation, enter the VOSC On command.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: VOSC OFF command  
1
0
0
1
0
1
1
1
TEST3,4=HIGH, LOW: VCORE is normally OFF(VCORE is outside input)  
the halt of VOCSOCRaEnd VREG1 to VREG3  
.
Constantly V  
is OFF then it does not do the control of VCORE. It does only  
TEST3,4=LOW, LOW: VCORE automatic control(VCORE is inside generation)  
It does the halt of VCORE, VOSC and VREG1 to VREG3  
.
TEST3,4=LOW, HIGH: VCORE is normally ON (V  
is inside generation)  
the halt of VOCSOCRaEnd VREG1 to VREG3  
.
Constantly V  
is ON thenCitOdRoEes not do the control of VCORE. It does only  
(26) VOSC ON (Command code: 96h, Parameter: none)  
entereCdOfRoEr 10ms after entering the command.  
Set V  
to the state of normal operation and start VOSC and VREG1 to VREG3  
.
Other commands cannot be  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: VOSC ON command  
1
0
0
1
0
1
1
0
TEST3,4=HIGH, LOW: VCORE is normally OFF(VCORE is outside input)  
the halt of VOCSOCRaEnd VREG1 to VREG3  
.
Constantly V  
is OFF then it does not do the control of VCORE. It does only  
TEST3,4=LOW, LOW: VCORE automatic control(VCORE is inside generation)  
VOCOSCRE is operating, it does only VOSC ON.  
V
and VREG1 to VREG3 are ON in the command input when VCORE stop. In case of  
TEST3,4=LOW, HIGH: VCORE is normally ON (V  
is inside generation)  
the halt of VOCSOCRaEnd VREG1 to VREG3  
.
Constantly V  
is ON thenCitOdRoEes not do the control of VCORE. It does only  
(27) Stop Oscillation (Command code: 93h, Parameter: none)  
Stops oscillation of the built-in oscillation circuit.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command : Stop Oscillation  
1
0
0
1
0
0
1
1
(28) Start Oscillation (Command code: 92h, Parameter: none)  
Starts oscillation of the built-in oscillation circuit.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command : Start Oscillation  
1
0
0
1
0
0
1
0
S1D19105 Series (Rev.1.1)  
EPSON  
95  
7. COMMANDS  
(29) Test (Command code: FFh, Parameter: 7 bytes)  
Sets the function test mode. This is used for testing at shipping. The customer cannot use this command.  
P1 to P3 are enabled when the TEST 1 pin is set to HIGH.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
1
*
*
*
*
1
*
*
*
1
1
1
1
1
1
Command Test  
P15 P14 P13 P12 P11 P10 Parameter 1 (P1) For VREG adjustment (TEST 1)  
*
*
*
P23 P22 P21 P20 Parameter 1 (P2) Constant current adjustment (TEST 1)  
P34 P33 P32 P31 P30 Parameter 3 (P3) Oscillation frequency adjustment (TEST 1)  
P46 P45 P44 P43 P42 P41 P40 Parameter 4 (P4) Discharge control 1  
P57 P56 P55 P54 P53 P52 P51 P50 Parameter 5 (P5) Discharge control 2  
*
P77  
*
*
P65 P64 P63 P62 P61 P60 Parameter 6 (P6) Gate driver test  
P73 P72 P71 P70 Parameter 7 (P7) Detector test  
*
*
Parameter 1 (P1): For VREG adjustment (When TEST 1 pin = LOW, this is disabled.)  
Parameter 2 (P2): For internal constant current adjustment (When TEST 1 pin = LOW, this is disabled.)  
Parameter 3 (P3): For oscillation frequency adjustment (When TEST 1 pin = LOW, this is disabled.)  
Parameter 4 (P4): Individual control of discharge function  
0: Discharge  
1: No discharge  
P40: VLDO  
P41: 1st and 2nd boosters  
P42: 3rd booster  
P43: 4th booster  
P45: VOSC  
P44: V  
P46: VRCOEGRE  
Parameter 5 (P5): Individual control of discharge function  
0: Discharge  
1: No discharge  
P51: VDDHS  
P50: V  
P52: VOFREG  
P53: VONREG  
P54: VDDRH  
P55: VDDRL  
P56: VCOMH  
P57: VCCOOMML  
Parameter 6 (P6) Test function of gate driver (The customer cannot use this pin.)  
P60: All-pin HIGH  
P61: Test 1  
0: Normal operation 1: All-pin VDDHG (with time difference)  
0: Normal operation 1: 1, 5, 9 …pin VDDHG  
P63: Test 3  
0: Normal operation 1: 3, 7, 11 …pin VDDHG  
0: Normal operation 1: 2, 6, 10 …pin V  
P62: Test 2  
P64: Test 4  
0: Normal operation 1: 4, 8, 12 …pin VDDDDHHGG  
0: Normal operation 1: Full-output logic reverse  
P65: Reverse  
Parameter 7 (P7): Test function of detector and VSYNC synchronization cancellation function (The customer  
cannot use this pin.)  
P70: VDD2-series detector power saving  
0: OFF  
1: Normal operation  
96  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
P71: VDD2-series detector power saving  
0: Power-up  
1: Normal operation  
1: Normal operation  
1: Normal operation  
P72: VDD2-series detector power saving  
0: OFF  
P73: VDDI-series detector power-up  
0: Power-up  
P77: Cancels the function execution in synchronization with VSYNC of all commands.  
0: Synchronized with VSYNC 1: Exectes immediately.  
(30) NOP (Command code: 00h, Parameter: 0 byte)  
This is a non-operation command. This command does not affect the system operation at all.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: Non Operation command  
0
0
0
0
0
0
0
0
(31) Status Read (Command code: E8h, Parameter: 3 bytes)  
The internal state of the IC can be read.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: Status Read  
1
1
1
0
1
0
0
0
P17 P16 P15 P14 P13 P12 P11 P10 Status 1 (P1)  
P27 P26 P25 P24 P23 P22 P21 P20 Status 2 (P2)  
*
P36 P35 P34 P33 P32 P31 P30 Status 3 (P3)  
Parameter 1 (P1):  
P10: 1: Turns the display ON.  
0: Turns the display OFF.  
P11: 1: Sleep Out  
0: Sleep In  
P12: 1: Partial In  
0: Partial Out  
P13: 1: High-speed RAM write mode  
0: Normal RAM Write  
P14: 1: 8-color display mode  
0: 262k-color display mode  
P15: 1: Scans in row direction.  
0: Scans in column direction.  
P16: Area scroll mode P40  
P17: Area scroll mode P41  
Parameter 2 (P2):  
P20 to 27: RAM line address  
Parameter 3 (P3):  
S1D19105 Series (Rev.1.1)  
EPSON  
97  
7. COMMANDS  
P30: 1: Source ON  
0: Source OFF  
P31: 1: Pre-buffer drive.  
0: DAC drive:  
0: VCOM boost OFF  
P32: 1: V  
boost ON  
P33: WaitC1OM  
P34: Wait 2  
P35: Wait 3  
P36: Wait 4  
(32) Revision Read (Command code: E9, Parameter: none)  
The command code is valid only at the serial interface mode.  
___  
Revision of the IC can be read. For the parallel interface, revision can be read by setting A0 to LOW and RD  
to LOW without setting the command code.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command: Revision Read  
1
1
1
0
1
0
0
1
(33) Soft Reset (Command code: 99, Parameter: none)  
The same reset as hard reset can be used with this command without hard resetting.  
D17 D16 D15 D14 D13 D12 D11 D10  
Function  
Command : Soft Reset  
1
0
0
1
1
0
0
1
98  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
7.5 Instruction Setup Example (Reference)  
7.5.1 Initial Setup to Display-ON (VCORE forceful ON, VCORE forceful OFF, VDC4 is 2.3V or more)  
___  
Reset  
Set the RES pin to LOW.  
Power (VDD and VDD2) ON  
Release reset  
1ms or more  
___  
Set the RES pin to HIGH.  
1µs or more  
Starting,  
V
and reference voltage  
of VREG1
to
OVSRC
EG3  
V
OSC ON  
100µ s or more  
Set Gate Line Scan Mode  
Set Data  
Set Display  
Initial setup before  
turning on power  
Set Display Timing  
Set Electronic Control  
Set Power Control  
Sleep Out  
Set Start Address  
Set End Address  
RAM Write  
Wait4 = 4 frame or  
more *1  
Other Setting  
State of Display ON enabled  
After the state of Display ON enabled, display is enabled at any time. If the Display ON command is received  
before the state of display enabled, wait takes place automatically until the state of Display ON enabled is  
reached.  
*1: Wait 4 is for reference. This value depends on the LCD panel lode, it should be decided after evaluation.  
S1D19105 Series (Rev.1.1)  
EPSON  
99  
7. COMMANDS  
7.5.2 Initial Setup to Display-ON (VCORE forceful ON, VCORE forceful OFF, VDC4 is less than 2.3V,  
V
ONREG is used)  
___  
Set the RES pin to LOW.  
Reset  
Power (VDD and VDD2) ON  
Release reset  
1ms or more  
___  
Set the RES pin to HIGH.  
1µs or more  
Starting, VOSC and reference voltage  
of VREG1 to VREG3  
V
OSC ON  
100µs or more  
Set Gate In Scan Mode  
Set Data  
Initial setup  
before turning  
on power  
Set Display  
Set Display Timing  
Set Electronic Control (VONREG 2.3V)  
Set Power Control  
Sleep Out  
150ms or more  
V
ONREG changes into the target voltage  
Electronic Control  
or  
Power Control  
after 3rd and 4th boosting (VDDHG and  
VEE) stabilized. When making it 0V,  
V
ONREG is turned off by the power control  
command.  
Wait4 = 4 frame or  
more *1  
Set Start Address  
Set End Address  
RAM Write  
Other setup  
State of Display ON enabled  
It can display at any time after which can be display turned on state. It is necessary for the state which can be  
display turned on to have set VCONREG as the target voltage by the electronic volume or power control command.  
The display ON command should perform after changing into the target voltage of VCONREG. However, when the  
time of a display ON command being executed is during the automatic wait period after sleep out, it waits  
automatically until a wait period expires.  
*1: Wait 4 is for reference. This value depends on the LCD panel lode, it should be decided after evaluation.  
100  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
7.5.3 Initial Setup to Display-ON (Normal use of VCORE, VDC4 is 2.3V or more)  
___  
Set the RES pin to LOW.  
Reset  
Power (VDD and VDD2) ON  
Release reset  
1ms or more  
___  
Set the RES pin to HIGH.  
1µs or more  
V
OSC ON  
Starting VOSC  
100µs or more  
1µs or more  
Soft reset  
Set Gate In Scan Mode  
Set Data  
Initial setup  
before turning  
on power  
Set Display  
Set Display Timing  
Set Electronic Control  
Set Power Control  
Sleep Out  
Other setup  
Set Start Address  
Set End Address  
RAM Write  
Wait4 = 4 frame or  
more *1  
State of Display ON enabled  
After the state of Display ON enabled, display is enabled at any time. If the Display ON command is received  
before the state of display enabled, wait takes place automatically until the state of Display ON enabled is  
reached.  
*1: Wait 4 is for reference. This value depends on the LCD panel lode, it should be decided after evaluation.  
S1D19105 Series (Rev.1.1)  
EPSON  
101  
7. COMMANDS  
7.5.4 Initial Setup to Display-ON (Normal use of VCORE, VDC4 is less than 2.3V and VONREG is  
used)  
__  
Set the RES pin to LOW.  
Reset  
Power (VDD and VDD2) ON  
Release reset  
1ms or more  
__  
Set the RES pin to HIGH.  
1µs or more  
Starting VOSC  
V
OSC ON  
100µs or more  
1µs or more  
Soft reset  
Set Gate In Scan Mode  
Set Data  
Initial setup  
before turning  
on power  
Set Display  
Set Display Timing  
Set Electronic Control  
Set Power Control  
Sleep Out  
150 ms or more  
V
ONREG changes into the target voltage  
Electronic Control  
or  
Power Control  
after 3rd and 4th boosting (VDDHG and  
VEE) stabilized. When making it 0V,  
V
ONREG is turned off by the power control  
command.  
Wait4 = 4 frame or  
more *1  
Set Start Address  
Set End Address  
RAM Write  
Other setup  
State of Display ON enabled  
It can display at any time after which can be display turned on state. It is necessary for the state which can be  
display turned on to have set VCONREG as the target voltage by the electronic volume or power control command.  
The display ON command should perform after changing into the target voltage of VCONREG. However, when the  
time of a display ON command being executed is during the automatic wait period after sleep out, it waits  
automatically until a wait period expires.  
*1: Wait 4 is for reference. This value depends on the LCD panel lode, it should be decided after evaluation.  
102  
EPSON  
S1D19105 Series (Rev.1.1)  
7. COMMANDS  
7.5.5 Power OFF Sequence  
Sleep In  
Display OFF  
Discharge  
White display (for normally white)  
4 frames or more  
Automatic execution  
The stop of a built-in power supply circuit,  
reset of a discharge power control register  
Stop oscillation  
Stop VOSC  
After this, the state of VOSC OFF  
It becomes low power status (standby).  
Stop VREG1 to 3.  
V
OSC OFF  
For TEST3 = L and TEST4 = L, stop  
V
CORE and discharge.  
Power (VDD and VDD2) OFF  
Note: To turn ON power again, perform the power ON sequence from reset.  
S1D19105 Series (Rev.1.1)  
EPSON  
103  
8. ABSOLUTE MAXIMUM RATINGS  
8. ABSOLUTE MAXIMUM RATINGS  
Table 33 Absolute Maximum Ratings  
V
Unit  
SS=0V  
Parameter  
Symbol  
Rating  
-0.3 to +4.6  
-0.3 to +3.3  
-0.3 to +4.6  
-0.3 to +4.6  
-0.3 to +7.0  
-7.0 to +0.3  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to +18.0  
-18.0 to +0.3  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to +7.0  
-7.0 to +0.6  
-0.3 to +7.0  
-0.3 to VDDI+0.3  
-0.3 to VDDI+0.3  
-40 to +85  
Supply voltage (1)  
Supply voltage (2)  
Supply voltage (3)  
Supply voltage (4)  
Supply voltage (5)  
Supply voltage (6)  
Supply voltage (7)  
Supply voltage (8)  
Supply voltage (9)  
Supply voltage (10)  
Supply voltage (11)  
Supply voltage (12)  
Supply voltage (13)  
Supply voltage (14)  
Supply voltage (15)  
Supply voltage (16)  
Logic input voltage  
Logic output voltage  
Operating temperature  
Storage temperature  
V
DDI  
CORE  
DD2  
V
V
V
DD  
V
OUT  
VOUTM  
VDDHS  
VDDRH  
V
DDRL  
DDHG  
EE  
ONREG  
OFREG  
V
V
V
V
V
V
COMH  
V
COML  
V
COMW  
V
IN  
OUT  
opr  
stg  
V
T
T
°
C
-55 to +125  
Notes:  
1
2
Unless otherwise noted, all voltages are specified based on VSS=0V.  
If the IC exceeds its absolute maximum ratings, it may be damaged. Also, if the IC is operated with the absolute  
maximum ratings for a long time, its reliability may drop.  
3
4
5
The power voltage (5) to (14) cannot be used by turning on the external power supply.  
The VDD2 absolute maximum ratings of 4.6V is standards when it DuDseHsGit befEoEre 1st boosting or doesn’t use  
the boosting power supply. As for the VDD2, 3.5V is maximum that is 1/2 of the VOUT absolute maximum  
ratings.  
The absolute maximum rating of the potential difference between V  
to V is 33V.  
104  
EPSON  
S1D19105 Series (Rev.1.1)  
9. RECOMMENDED OPERATING CONDITIONS  
9. RECOMMENDED OPERATING CONDITIONS  
Table 34 Recommended Operating Conditions  
V
SS=0V  
Operating  
voltage  
Parameter  
Symbol  
Unit  
Supply voltage (1)  
Supply voltage (2)  
Supply voltage (3)  
Supply voltage (4)  
Supply voltage (5)  
Supply voltage (6)  
Supply voltage (7)  
Supply voltage (8)  
Supply voltage (9)  
Supply voltage (10)  
Supply voltage (11)  
Supply voltage (12)  
Supply voltage (13)  
Supply voltage (14)  
Supply voltage (15)  
Supply voltage (16)  
V
V
V
DDI  
CORE  
DD  
1.65 to 3.3  
2.3 to 3.1  
2.3 to 3.1  
2.3 to 3.1  
4.6 to 6.2  
-6.2 to 0  
T.B.D. to 5.5  
T.B.D. to 5.5  
0.0 to 1.55  
7.0 to 17.0  
-15.0 to -5.0  
2.9 to 5.5  
0 to 5.1  
V
DD2  
V
OUT  
V
OUTM  
V
V
DDHS  
DDRH  
V
V
DDRL  
DDHG  
EE  
ONREG  
OFREG  
V
V
V
V
V
COMH  
3.0 to 5.5  
V
COML  
V
OUTM to 0.0  
V
COMW  
1.5 to 3.05  
Notes:  
1
2
3
4
5
The IC operations are guaranteed under the recommended operating conditions only.  
To prevent noise, a bypass capacitor must be inserted into the line close to power pins.  
These operations are not guaranteed if a quick voltage change occurs during IC operation.  
The power voltage (5) to (14) cannot be used by turning on the external power supply.  
The recommended operating rating of the potential difference between VDDHG to VEE is 30V.  
S1D19105 Series (Rev.1.1)  
EPSON  
105  
10. DC CHARACTERISTICS  
10. DC CHARACTERISTICS  
Table 35 DC Characteristics  
V
SS=0V, VDDI=1.65 to 3.3V, VCORE=1.65 to 3.1V, T =-40 to +85°C  
a
Rating  
Parameter  
Symbol  
Condition  
Unit Applicable Pin  
Min.  
Typ.  
Max.  
0.3  
LOW level input voltage  
HIGH level input voltage  
Input leak current (1)  
V
IL  
IH  
LI1  
V
SS  
DDI  
×
V
DDI  
Logic-series  
input voltage  
V
V
0.7  
×
-1.0  
V
V
DDI  
I
V
IN=VDDI or VSS  
1.0  
Logic-series  
µ
A
input voltage  
Logic-series  
input voltage  
Input capacity  
C
IN  
Ta=25°C, f=1MHz  
25  
pF  
V
LOW level output voltage  
HIGH level output voltage  
V
OL1  
V
DD=2.8V  
OL=0.06mA  
OH=-0.06mA  
DD=2.8V,  
=25  
DD2=2.8V  
OUT=5.6V  
=25  
DD2=2.8V  
DC1=VDD2  
DD2=2.8V  
DC2=VDD2  
DD2=2.8V  
OFREG=5V  
DC3=VOFREG  
DD2=2.8V  
OFREG=5V  
DC3=VOFREG  
V
SS  
V
SS+0.3  
VDDI  
Logic series  
output voltage  
I
I
V
OH1  
V
DDI -0.3  
V
REG voltage  
V
T
a
°C  
V
REG  
3.45  
3.5  
3.55  
V
VREG  
V
V
Output voltage deviation(DAC)  
1st booster ability  
V
S
T
a
°
C
10  
20  
mV  
S1 to S528  
R
VOUT12  
V
190  
240  
V
OUT  
(Internal resistor) *1  
V
2nd booster ability  
R
R
R
VOUT2  
VOUT3  
VOUT4  
V
220  
600  
275  
900  
V
OUTM  
(Internal resistor) *1  
V
3rd booster ability  
V
(-double) (Internal resistor) *1  
V
VEE  
V
4th booster ability  
(Internal resistor) *1  
V
V
400  
1500  
VDDHG  
V
Static current consumption 1  
I
DDIQ  
COREQ  
DDQ  
DD2Q  
DDI1  
CORE1  
DD1  
DD21  
DDI2  
CORE2  
DD2  
DD22  
0.1  
1.0  
0.1  
0.1  
0.1  
100  
30  
1.0  
2.0  
mA  
mA  
mA  
mA  
V
DDI  
*2  
I
V
V
DDI =VCORE  
DD =VDD2=2.8V  
=
V
CORE  
I
I
1.0  
V
DD  
DD2  
DDI  
CORE  
DD  
DD2  
DDI  
CORE  
DD  
DD2  
1.0  
V
Dynamic current consumption 1  
I
1.0  
µ
A
A
A
A
V
*
5
*3  
I
150  
45  
µ
µ
V
V
V
V
V
DDI =VCORE  
=
I
DD =VDD2=2.8V  
I
1560  
30  
1000  
20  
85  
2400  
45  
1500  
40  
130  
µ
Dynamic current consumption 3  
I
µ
µ
A
A
V
*
6
*4  
I
V
V
V
DDI =VCORE  
=
I
µ
µ
A
A
V
V
DD =VDD2=2.8V  
I
*1  
T = 25°C, Capacitance = 1uF, Boosting frequency =1H x 1  
a
*2 After resetting, current consumption in the state of initial value of the command.  
Ta  
=25°C  
or VSS, since current flows into the input circuit when the input level  
is at the intermediate voltage level.)DDI  
(For CMOS, fix the input level at V  
*3 Current consumption during still picture display (built-in power supply used, without access to RAM)  
T
=25°C.  
___  
*4 Caurrent consumption during access to RAM (WR) (display is OFF) T =25°C.  
*5 After resetting, commands other than Sleep Out, Power Control AllaON, RAM Write and Display ON are  
initial values. RAM data is the state in which the following data is written alternately.  
R(101010)G(101010)B(101010), R(010101)G(010101)B(010101)  
*6 Current consumption when the following display data is continuously written to RAM alternately at the  
frequency of 2.5MHz.  
R(101010)G(101010)B(101010), R(010101)G(010101)B(010101)  
106  
EPSON  
S1D19105 Series (Rev.1.1)  
11. AC CHARACTERISTICS  
11. AC CHARACTERISTICS  
11.1 Oscillation Frequency  
The following defines the clock frequencies to enter the oscillation frequency of built-in oscillator and external  
clocks into OSC pin.  
Table 36 Oscillation Frequency  
V
SS=0V, VDDI=1.65 to 3.3V, VCORE=VDD=VDD2=2.3 to 3.1V, T =25°C  
a
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min.  
Typ.  
1000  
1000  
Max.  
1050  
1100  
Oscillation frequency  
External clock input frequency fOOSSCCI  
f
When built-in oscillator circuit is used 950  
900  
kHz  
kHz  
11.2 Parallel Interface  
11.2.1 The 80-Series MPUs  
A0  
__  
CS  
t
CYCR8, tCYCW8  
,
t
CW8  
*
1
2
t
AS8  
t
AH8  
__  
WR  
___  
RD  
t
CCLR,  
t
CCLW  
t
CCHR, tCCHW  
___  
CS  
*
__  
WR  
___  
RD  
t
DS8  
t
DH8  
D0 to D17,  
(Write)  
t
ACC8  
t
OH8  
D0 to D17,  
(Read)  
Fig.49 The 80-Series MPUs  
___ ___  
___  
*1 If CS = LOW and if accessed by WR or RD signal  
___  
___  
*2 If WR=LOW and if accessed by CS signal  
S1D19105 Series (Rev.1.1)  
EPSON  
107  
11. AC CHARACTERISTICS  
Normal write mode  
V
SS=0V, VDDI=1.65 to 3.3V, VCORE=2.7 to 3.1V, T  
a
=-40 to +85°C  
Parameter  
A0 hold time  
A0 setup time  
Symbol  
Condition  
Min.  
10  
Max.  
Unit  
t
AH8  
ns  
t
AS8  
10  
100  
Write system cycle time  
t
CYCW8  
___  
WR LOW level pulse width  
___  
t
CCLW  
40  
30  
500  
350  
50  
20  
10  
10  
WR HIGH level pulse width  
t
CCHW  
Read system cycle time  
t
CYCR8  
___  
RD LOW level pulse width  
t
CCLR  
___  
RD HIGH level pulse width  
t
CCHR  
___ ___  
___  
CS-WR and RD time  
Data setup time  
t
CW8  
t
DS8  
Data hold time  
t
DH8  
___  
RD access time  
t
ACC8  
OH8  
300  
50  
CL=50pF  
Output disable time  
t
5
Normal write mode  
V
SS=0V, VDDI=VCORE=1.65 to 2.7V, T  
a
=-40 to +85°C  
Parameter  
Symbol  
Condition  
Min.  
20  
Max.  
Unit  
A0 hold time  
t
AH8  
ns  
A0 setup time  
t
AS8  
20  
200  
80  
Write system cycle time  
t
CYCW8  
___  
WR LOW level pulse width  
t
CCLW  
___  
WR HIGH level pulse width  
t
CCHW  
60  
Read system cycle time  
t
CYCR8  
500  
350  
50  
30  
20  
___  
RD LOW level pulse width  
t
CCLR  
___  
___ ___  
RD HIGH level pulse width  
t
CCHR  
___  
CS-WR and RD time  
Data setup time  
t
CW8  
t
DS8  
Data hold time  
t
DH8  
20  
___  
RD access time  
t
ACC8  
OH8  
300  
100  
CL=50pF  
Output disable time  
t
10  
) of the input signal areDsDpIecified for less than 10ns. If high-speed system  
*3 All timings are specified based on the 20% and 80% of V  
.
*4 The rise and fall times (  
t
r
and  
t
f
cycle time is used,  
t
r
+
t
f
t
CYCW8  
-
t
CCLW  
-
t
CCHW or  
t
r
+
t
f
___  
t
CYCR8  
-
t
CCLR  
-
t
CCHR must be satisfied.  
___ ___  
LOW level. CCLR  
*5  
t
CCLW and  
t
are specified for the overlap period when CS is at LOW level and WR and RD are at  
108  
EPSON  
S1D19105 Series (Rev.1.1)  
11. AC CHARACTERISTICS  
11.2.2 The 68-Series MPUs  
A0  
__  
R/W  
___  
CS  
t
CYC6  
t
CW6  
*
1
2
t
AS6  
t
AH6  
E
tEWHR  
,
t
EWHW  
t
EWL  
,
t
EWLW  
__  
CS  
*
E
t
DS6  
t
DH6  
D0 to D17,  
(Write)  
t
ACC6  
t
OH6  
D0 to D17,  
(Read)  
Fig.50 The 68-Series MPUs  
___  
*1 If CS = LOW and if accessed by E signal  
___  
*2 If E = HIGH and if accessed by CS signal  
S1D19105 Series (Rev.1.1)  
EPSON  
109  
11. AC CHARACTERISTICS  
Normal write mode  
V
SS=0V, VDDI=1.65 to 3.3V, VCORE=2.7 to 3.1V, T  
a
=-40 to +85°C  
Parameter  
A0 hold time  
A0 setup time  
Write system cycle time  
E (Write) HIGH level pulse width  
E (Write) LOW level pulse width  
Read system cycle time  
E (Read) HIGH level pulse width  
Symbol  
Condition  
Min.  
10  
Max.  
Unit  
t
AH6  
AS6  
CYCW6  
EWHW  
ns  
t
10  
100  
40  
t
t
t
EWLW  
30  
t
CYCR6  
500  
350  
50  
20  
10  
t
EWHR  
EWLR  
CW6  
E (Read) LOW level pulse width  
t
___  
CS-E time  
t
Data setup time  
Data hold time  
Read access time  
Output disable time  
t
DS6  
t
DH6  
10  
t
ACC6  
OH6  
300  
50  
CL=50pF  
t
10  
Normal write mode  
V
SS=0V, VDDI=VCORE=1.65 to 2.7V, T  
a
=-40 to +85°C  
Parameter  
A0 hold time  
A0 setup time  
Write system cycle time  
E (Write) HIGH level pulse width  
E (Write) LOW level pulse width  
Read system cycle time  
E (Read) HIGH level pulse width  
Symbol  
t
Condition  
Min.  
20  
Max.  
Unit  
AH6  
AS6  
CYCW6  
EWHW  
ns  
t
20  
200  
80  
60  
500  
350  
50  
30  
20  
t
t
t
EWLW  
CYCR6  
t
t
EWHR  
EWLR  
CW6  
E (Read) LOW level pulse width  
t
___  
CS-E time  
t
Data setup time  
Data hold time  
Read access time  
Output disable time  
t
DS6  
t
DH6  
20  
t
ACC6  
OH6  
300  
100  
CL=50pF  
t
10  
) of the input signal are spDecDiIfied for less than 10ns.  
*3 All timings are specified based on the 20% and 80% of V  
.
*4 The rise and fall times (  
t
r
and  
t
f
If high-speed system cycle time is used,  
must be satisfied.  
t
r
+
t
f
t
CYC6  
-
t
EWLW  
___  
-
t
EWHW or  
t
r
+
t
f
tCYC6  
-
t
EWLR  
-
t
EWHR  
*5  
tEWLW and tEWLR are specified for the overlap period when CS is at LOW level and E is at HIGH level.  
110  
EPSON  
S1D19105 Series (Rev.1.1)  
11. AC CHARACTERISTICS  
11.3 Serial Interface  
t
CSH  
t
CSS  
___  
CS  
t
SCYC  
SCL  
SI  
t
SLW  
SDS  
t
SHW  
t
t
SDH  
Fig.51 Serial Interface  
V
SS=0V, VDDI=1.65 to 3.3V, VCORE=2.7 to 3.1V, T  
a
=-40 to +85°C  
Parameter  
SCL cycle  
SCL LOW level pulse width  
SCL HIGH level pulse width  
Data setup time  
Symbol  
Condition  
Min.  
50  
Max.  
Unit  
t
SCYC  
ns  
t
SLW  
10  
10  
10  
10  
t
SHW  
t
SDS  
Data hold time  
t
SDH  
___  
CS setup time  
t
CSS  
20  
___  
CS hold time  
t
CSH  
30  
V
SS=0V, VDDI=VDD=1.65 to 2.7V, T  
a
=-40 to +85°C  
Parameter  
Symbol  
Condition  
Min.  
100  
20  
20  
20  
20  
30  
45  
Max.  
Unit  
SCL cycle  
t
SCYC  
ns  
SCL LOW level pulse width  
SCL HIGH level pulse width  
Data setup time  
t
SLW  
t
SHW  
t
SDS  
SDH  
CSS  
CSH  
Data hold time  
t
___  
CS setup time  
t
t
___  
CS hold time  
) of the input signal are spDecDiIfied for less than 10ns.  
*1 All timings are specified based on the 20% and 80% of V  
.
*2 The rise and fall times (  
t
r
and  
t
f
S1D19105 Series (Rev.1.1)  
EPSON  
111  
11. AC CHARACTERISTICS  
11.4 Resetting  
t
RW  
____  
RESH  
t
R
Internal state  
Resetting  
Reset completed  
Fig.52 Resetting  
V
SS=0V, VDDI=VCORE=1.65 to 3.1V, T  
a
=-40 to +85°C  
Parameter  
Reset time  
Reset LOW level pulse width  
Symbol  
Condition  
Min.  
Max.  
Unit  
t
R
1
µs  
t
RW  
1
*1 All timings are specified based on the 20% and 80% of VDDI  
.
____  
*2 We recommend to hold the RES pin to LOW during power-on conditions.  
*3 Applied when resetting while the power supply is stabilized.  
11.5 Source Output  
Clock  
t
t
dLHtOD  
Sn  
dHLtOD  
Fig.53 Source Output  
V
SS=0V, VDDHS=4.5V, T  
a
=-40 to +85°C  
Parameter  
Clock Sn output delay time (LOW  
Symbol  
Condition  
Typ.  
Max.  
Unit  
HIGH)  
LOW)  
t
dLHtOD  
CL=20pF,  
30  
µs  
RL=1.1K  
Clock Sn output delay time (HIGH  
t
dHLtOD  
CL=20pF,  
30  
RL=1.1K  
*1 Specified based on the clock rise edge defined by the Set Display Timing command at P1.  
*2 Sn can be S1 to S528 outputs.  
*3 Clock Sn output delay time-2 is set to 50mV.  
112  
EPSON  
S1D19105 Series (Rev.1.1)  
11. AC CHARACTERISTICS  
11.6 RGB Interface  
t
DSYN  
VSYNCI  
HSYNC  
t
DCSS  
t
DCSH  
ENABLE  
DOTCLK  
t
DCYC  
t
DLW  
DDS  
t
DHW  
DDH  
t
t
D17 to 0  
Fig.54 RGB Interface  
SS=0V, VDDI=1.65 to 3.3V, VCORE=2.7 to 3.1V, T  
V
a
=-40 to +85°C  
Parameter  
DOTCLK cycle  
DOTCLK LOW level pulse width  
DOTCLK HIGH level pulse width  
Data setup time  
Data hold time  
ENABLE setup time  
ENABLE hold time  
VSYNC setup time  
Symbol  
Condition  
Min.  
100  
30  
30  
10  
20  
75  
75  
Max.  
Unit  
t
DCYC  
ns  
t
DLW  
t
DHW  
t
DDS  
t
DDH  
t
t
DCSS  
DCSH  
DSYV  
DSYH  
t
10  
10  
HSYNC setup time  
t
V
SS=0V, VDDI=VCORE=1.65 to 2.7V, T  
a
=-40 to +85°C  
Parameter  
DOTCLK cycle  
DOTCLK LOW level pulse width  
DOTCLK HIGH level pulse width  
Data setup time  
Data hold time  
ENABLE setup time  
ENABLE hold time  
Symbol  
Condition  
Min.  
200  
60  
60  
20  
Max.  
Unit  
t
DCYC  
ns  
t
DLW  
t
DHW  
t
DDS  
t
DDH  
40  
t
DCSS  
DCSH  
150  
150  
20  
t
VSYNC setup time  
HSYNC setup time  
t
DSYV  
DSYH  
t
20  
) of the input signal are spDecDiIfied for less than 10ns.  
*1 All timings are specified based on the 20% and 80% of V  
.
*2 The rise and fall times (  
t
r
and  
t
f
S1D19105 Series (Rev.1.1)  
EPSON  
113  
12. NOTES  
12. NOTES  
When using these development specifications, note the following points.  
1. The contents of these development specifications are subject to change without notice for improvement.  
2. There is no representation or warranty that anything made in accordance with this material will be free from  
any patent or copyright infringement of a third party.  
Examples shown in these development specifications are for understanding our products, and we are not  
responsible for any circuit problems that may occur when using them.  
When using the S1D19105 series, note the following points:  
IC handling notes against the light:  
As a semiconductor chip is principally identical to a solar cell, its performance may change if exposed to bright  
light. Therefore, the IC may malfunction if exposed to light.  
1
2
3
Design and mount the IC so that it is not exposed to light during actual operation.  
In the test process, check the design and mounting of the IC so that it is not exposed to light.  
Take all surfaces, top, bottom and sides, of the IC chip into consideration when blocking out light.  
IC handling notes on ambient noise and others:  
1
Though the S1D19105 series reserves the register settings, its internal state may change if excessive ambient  
noise is inserted. Measures are required to prevent noise generation or influence in terms of mounting and the  
system itself.  
2
It is recommended that you set the software to refresh the operating state (register reset) periodically to avoid  
spike noise.  
114  
EPSON  
S1D19105 Series (Rev.1.1)  
International Sales Operations  
AMERICA  
ASIA  
EPSON ELECTRONICS AMERICA, INC.  
HEADQUARTERS  
EPSON (CHINA) CO., LTD.  
23F, Beijing Silver Tower 2# North RD DongSanHuan  
ChaoYang District, Beijing, CHINA  
150 River Oaks Parkway  
San Jose, CA 95134, U.S.A.  
Phone: +1-408-922-0200  
Phone: 64106655  
FAX: 64107319  
FAX: +1-408-922-0238  
SHANGHAI BRANCH  
SALES OFFICES  
West  
7F, High-Tech Bldg., 900, Yishan Road,  
Shanghai 200233, CHINA  
1960 E.Grand Avenue  
El Segundo, CA 90245, U.S.A.  
Phone: +1-310-955-5300  
Phone: 86-21-5423-5577  
FAX: 86-21-5423-4677  
FAX: +1-310-955-5400  
FAX: +1-815-455-7633  
FAX: +1-781-246-5443  
EPSON HONG KONG LTD.  
20/F., Harbour Centre, 25 Harbour Road  
Wanchai, Hong Kong  
Phone: +852-2585-4600  
Telex: 65542 EPSCO HX  
Central  
101 Virginia Street, Suite 290  
Crystal Lake, IL 60014, U.S.A.  
Phone: +1-815-455-7630  
FAX: +852-2827-4346  
EPSON TAIWAN TECHNOLOGY & TRADING LTD.  
14F, No. 7, Song Ren Road,  
Taipei 110  
Northeast  
301 Edgewater Place, Suite 120  
Wakefield, MA 01880, U.S.A.  
Phone: +1-781-246-3600  
Phone: 02-8786-6688  
FAX: 02-8786-6660  
HSINCHU OFFICE  
No. 99, Jiangong Road,  
Hsinchu City 300  
Southeast  
3010 Royal Blvd. South, Suite 170  
Alpharetta, GA 30005, U.S.A.  
Phone: +886-3-573-9900  
FAX: +886-3-573-9169  
Phone: +1-877-EEA-0020  
FAX: +1-770-777-2637  
EPSON SINGAPORE PTE., LTD.  
401 Commonwealth Drive, #07-01  
Haw Par Technocentre, SINGAPORE 149598  
EUROPE  
EPSON EUROPE ELECTRONICS GmbH  
HEADQUARTERS  
Phone: +65-6586-3100  
FAX: +65-6472-4291  
Riesstrasse 15  
SEIKO EPSON CORPORATION  
KOREA OFFICE  
80992 Munich, GERMANY  
Phone: +49-(0)89-14005-0  
FAX: +49-(0)89-14005-110  
50F, KLI 63 Bldg., 60 Yoido-dong  
Youngdeungpo-Ku, Seoul, 150-763, KOREA  
DÜSSELDORF BRANCH OFFICE  
Altstadtstrasse 176  
Phone: 02-784-6027  
FAX: 02-767-3677  
51379 Leverkusen, GERMANY  
Phone: +49-(0)2171-5045-0  
GUMI OFFICE  
FAX: +49-(0)2171-5045-10  
6F, Good Morning Securities Bldg., 56 Songjeong-Dong,  
Gumi-City, Seoul, 730-090, KOREA  
UK & IRELAND BRANCH OFFICE  
Unit 2.4, Doncastle House, Doncastle Road  
Bracknell, Berkshire RG12 8PE, ENGLAND  
Phone: 054-454-6027  
- JAPAN -  
FAX: 054-454-6093  
SEIKO EPSON CORPORATION  
Phone: +44-(0)1344-381700  
FAX: +44-(0)1344-381701  
SEMICONDUCTOR OPERATION DIVISION  
FRENCH BRANCH OFFICE  
IC Sales Department  
1 Avenue de lAtlantique, LP 915 Les Conquerants  
IC International Sales Group  
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE  
Phone: +33-(0)1-64862350 FAX: +33-(0)1-64862355  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-(0)42-587-5814  
FAX: +81-(0)42-587-5117  
BARCELONA BRANCH OFFICE  
Barcelona Design Center  
Edificio Testa, Avda. Alcalde Barrils num. 64-68  
E-08190 Sant Cugat del Vall  
Phone: +34-93-544-2490  
è
s, SPAIN  
FAX: +34-93-544-2491  
Scotland Design Center  
Integration House, The Alba Campus  
Livingston West Lothian, EH54 7EG, SCOTLAND  
Phone: +44-1506-605040  
FAX: +44-1506-605041  
In pursuit of SavingTechnology, Epson electronic devices.  
Our lineup of semiconductors, displays and quartz devices  
assists in creating the products of our customersdreams.  
Epson IS energy savings.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY