SI8261 [ETC]

5 KV LED EMULATOR INPUT, 4.0 A ISOLATED GATE DRIVERS; 5 KV LED仿真器输入, 4.0隔离栅极驱动器
SI8261
型号: SI8261
厂家: ETC    ETC
描述:

5 KV LED EMULATOR INPUT, 4.0 A ISOLATED GATE DRIVERS
5 KV LED仿真器输入, 4.0隔离栅极驱动器

驱动器 栅极 输入元件 栅极驱动
文件: 总42页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si826x  
5 KV LED EMULATOR INPUT, 4.0 A ISOLATED GATE DRIVERS  
Features  
Pin Assignments:  
Pin-compatible, drop-in upgrades for Robust protection features  
See page 24  
popular high speed opto-coupled  
gate drivers  
Low power diode emulator simplifies  
design-in process  
Multiple UVLO ordering options  
(5, 8, and 12 V) with hysteresis  
60 ns propagation delay,  
VDD  
VO  
1
2
8
7
UVLO  
independent of input drive current  
0.6 and 4.0 Amp peak output drive  
current  
Wide VDD range: 5 to 30 V  
ANODE  
3.75 and 5 kV reinforced isolation  
UL, CSA, VDE  
AEC-Q100 qualified  
e
Rail-to-rail output voltage  
Performance and reliability  
advantages vs. opto-drivers  
Resistant to temperature and age  
10x lower FIT rate for longer  
service life  
14x tighter part-to-part matching  
Higher common-mode transient  
immunity: >50 kV/µs typical  
CATHODE  
NC  
3
4
6
5
VO  
Wide operating temperature range  
–40 to +125 °C  
RoHS-compliant packages  
SOIC-8 (Narrow body)  
DIP8 (Gull-wing)  
GND  
SOIC-8, DIP8, LGA8  
Industry Standard Pinout  
SDIP6 (Stretched SO-6)  
LGA8  
VDD  
VO  
1
2
3
6
5
4
ANODE  
NC  
UVLO  
Applications  
e
IGBT/ MOSFET gate drives  
Industrial, HEV and renewable  
energy inverters  
Variable speed motor control in  
consumer white goods  
Isolated switch mode and UPS  
power supplies  
CATHODE  
GND  
AC, Brushless and DC motor  
controls and drives  
SDIP6  
Industry Standard Pinout  
Safety Regulatory Approvals (Pending)  
Patent pending  
UL 1577 recognized  
VDE certification conformity  
IEC60747-5-2/VDE0884 Part 10  
(basic/reinforced insulation)  
CQC certification approval  
GB4943.1  
Up to 5000 Vrms for 1 minute  
CSA component notice 5A approval  
IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
Description  
The Si826x isolators are pin-compatible, drop-in upgrades for popular opto-  
coupled gate drivers, such as 0.6 A ACPL-0302/3020, 2.5 A HCPL-3120/ACPL-  
3130, HCNW3120/3130, and similar opto-drivers. The devices are ideal for driving  
power MOSFETs and IGBTs used in a wide variety of inverter and motor control  
applications. The Si826x isolated gate drivers utilize Silicon Laboratories'  
proprietary silicon isolation technology, supporting up to 5.0 kVRMS withstand  
voltage per UL1577. This technology enables higher-performance, reduced  
variation with temperature and age, tighter part-to-part matching, and superior  
common-mode rejection compared to opto-coupled gate drivers. While the input  
circuit mimics the characteristics of an LED, less drive current is required,  
resulting in higher efficiency. Propagation delay time is independent of input drive  
current, resulting in consistently short propagation times, tighter unit-to-unit  
variation, and greater input circuit design flexibility. As a result, the Si826x series  
offers longer service life and dramatically higher reliability compared to opto-  
coupled gate drivers.  
Preliminary Rev. 0.9 4/13  
Copyright © 2013 by Silicon Laboratories  
Si826x  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si826x  
Functional Block Diagram  
Diode  
Emulator  
VDD  
A1  
Output Driver  
REC  
XMIT  
OUT  
IF  
C1  
GND  
Diode Emulator Model and I-V Curve  
10  
Anode  
2.2 V  
700   
Cathode  
2
Preliminary Rev. 0.9  
Si826x  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.1. Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.2. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.3. Under Voltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.1. Input Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.2. Output Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.3. Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.4. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.5. Parametric Differences between Si826x and HCPL-0302 and HCPL-3120  
Opto Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6. Pin Descriptions (SOIC-8, DIP8, LGA8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
7. Pin Descriptions (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
11. Package Outline: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
12. Land Pattern: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
13. Package Outline: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
14. Land Pattern: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
15. Package Outline: LGA8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
16. Land Pattern: LGA8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
17. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
17.1. Si826x Top Marking (Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
17.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
17.3. Si826x Top Marking (DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
17.4. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
17.5. Si826x Top Marking (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
17.6. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
17.7. Si826x Top Marking (LGA8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
17.8. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Preliminary Rev. 0.9  
3
Si826x  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
Min  
5
Typ  
Max  
30  
Unit  
V
V
DD  
Input Current  
I
6
30  
mA  
°C  
F(ON)  
Operating Temperature (Ambient)  
T
–40  
125  
A
Table 2. Electrical Characteristics 1  
VDD = 15 V or 30 V, GND = 0 V, IF = 6 mA, TA = –40 to +125 °C; typical specs at 25 °C  
Parameter  
DC Parameters  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
2
Supply Voltage  
V
I
(V – GND)  
5
30  
V
DD  
DD  
I = 10 mA  
F
V
V
= 15 V  
= 30 V  
1.8  
2.0  
2.4  
2.7  
mA  
mA  
Supply Current (Output High)  
Supply Current (Output Low)  
DD  
DD  
DD  
V = –0.3 to +1.5 V  
F
I
V
V
= 15 V  
= 30 V  
1.5  
1.7  
2.1  
2.4  
mA  
mA  
DD  
DD  
DD  
Input Current Threshold  
Input Current Hysteresis  
I
6
mA  
mA  
F(TH)  
I
0.34  
HYS  
Input Forward Voltage (OFF)  
V
Measured at ANODE with  
respect to CATHODE.  
1
V
F(OFF)  
Input Forward Voltage (ON)  
Input Capacitance  
V
Measured at ANODE with  
respect to CATHODE.  
1.6  
2.8  
V
F(ON)  
C
f = 100 kHz,  
I
15  
15  
pF  
V = 0 V,  
F
V = 2 V  
F
Si826xAxx devices  
15  
2.6  
5.0  
0.8  
5.1  
Output Resistance High  
(Source)  
R
OH  
3
Si826xBxx devices (I = -1 A)  
OH  
Si826xAxx devices  
3
R
Output Resistance Low (Sink)  
OL  
Si826xBxx devices (I = 2 A)  
2.0  
OL  
Notes:  
1. See "8.Ordering Guide" on page 25 for more information.  
2. Minimum value of (VDD - GND) decoupling capacitor is 1 µF.  
3. Both VO pins are required to be shorted together for 4.0 A compliance.  
4. When performing this test, it is recommended that the DUT be soldered to avoid trace inductances, which may cause  
over-stress conditions.  
4
Preliminary Rev. 0.9  
Si826x  
Table 2. Electrical Characteristics (Continued)1  
VDD = 15 V or 30 V, GND = 0 V, IF = 6 mA, TA = –40 to +125 °C; typical specs at 25 °C  
Parameter  
Symbol  
Test Conditions  
Si826xAxx devices (I = 0),  
Min  
Typ  
Max Units  
F
(t  
< 250 ns)  
0.4  
PW_IOH  
(see Figure 2)  
3,4  
I
A
Output High Current (Source)  
OH  
Si826xBxx devices (I = 0),  
F
(t  
< 250 ns),  
PW_IOH  
(V – V = 4 V)  
(see Figure 2)  
0.5  
1.8  
0.6  
DD  
O
Si826xAxx devices  
(I = 10 mA),  
F
(t  
< 250 ns)  
PW_IOL  
(see Figure 1)  
3,4  
I
A
Output Low Current (Sink)  
OL  
Si826xBxx devices  
(I = 10 mA),  
F
(t  
< 250 ns),  
PW_IOL  
1.2  
4.0  
(V - GND = 2.5 V)  
O
(see Figure 1)  
Si826xAxx devices  
(I  
V
DD  
0.4  
= –100 mA)  
OUT  
Si826xBxx devices  
(I = –100 mA)  
V
0.25  
DD  
V
0.5  
DD  
V
V
High-Level Output Voltage  
OH  
OUT  
Si826xBxx devices  
(I = 0 mA),  
V
DD  
OUT  
(I = 0 mA)  
F
Si826xAxx devices  
(I = 100 mA),  
320  
OUT  
(I = 10 mA)  
F
V
mV  
200  
Low-Level Output Voltage  
OL  
Si826xBxx devices  
(I = 100 mA),  
5
80  
5.6  
5.3  
300  
OUT  
(I = 10 mA)  
F
UVLO Threshold +  
(Si826xxAx mode)  
VDD  
VDD  
See Figure 10 on page 17.  
rising  
6.3  
6.0  
V
V
UV+  
V
DD  
UVLO Threshold –  
(Si826xxAx mode)  
4.7  
See Figure 10 on page 17.  
falling  
UV–  
V
DD  
UVLO lockout hysteresis  
(Si826xxAx mode)  
mV  
VDD  
HYS  
Notes:  
1. See "8.Ordering Guide" on page 25 for more information.  
2. Minimum value of (VDD - GND) decoupling capacitor is 1 µF.  
3. Both VO pins are required to be shorted together for 4.0 A compliance.  
4. When performing this test, it is recommended that the DUT be soldered to avoid trace inductances, which may cause  
over-stress conditions.  
Preliminary Rev. 0.9  
5
Si826x  
Table 2. Electrical Characteristics (Continued)1  
VDD = 15 V or 30 V, GND = 0 V, IF = 6 mA, TA = –40 to +125 °C; typical specs at 25 °C  
Parameter  
UVLO Threshold +  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
VDD  
See Figure 11 on page 17.  
7.5  
8.4  
9.4  
V
UV+  
V
rising  
(Si826xxBx mode)  
DD  
UVLO Threshold –  
(Si826xxBx mode)  
VDD  
See Figure 11 on page 17.  
falling  
6.9  
7.9  
8.9  
V
UV–  
V
DD  
UVLO lockout hysteresis  
(Si826xxBx mode)  
500  
12  
mV  
V
VDD  
VDD  
HYS  
UVLO Threshold +  
(Si826xxCx mode)  
See Figure 12 on page 17.  
rising  
10.5  
13.5  
UV+  
V
DD  
UVLO Threshold –  
(Si826xxCx mode)  
VDD  
See Figure 12 on page 17.  
falling  
9.4  
10.7  
1.3  
12.2  
V
V
UV–  
HYS  
V
DD  
UVLO lockout hysteresis  
(Si826xxCx mode)  
VDD  
AC Switching Parameters  
Propagation delay (Low-to-High)  
Propagation delay (High-to-Low)  
Pulse Width Distortion  
Propagation Delay Difference  
Rise time  
t
t
C = 200 pF  
20  
10  
40  
30  
10  
60  
50  
20  
15  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
PLH  
L
C = 200 pF  
PHL  
L
PWD  
PDD  
|t  
– t  
|
PLH  
PHL  
|t  
– t  
|
PHLMAX  
PLHMIN  
t
C = 200 pF  
5.5  
8.5  
16  
R
L
Fall time  
t
C = 200 pF  
L
F
Device Startup Time  
t
START  
Common Mode  
Transient Immunity  
CMTI  
Output = low or high  
kV/µs  
(V  
= 1500 V), (I > 6 mA)  
CM  
F
35  
50  
(See Figure 3)  
Notes:  
1. See "8.Ordering Guide" on page 25 for more information.  
2. Minimum value of (VDD - GND) decoupling capacitor is 1 µF.  
3. Both VO pins are required to be shorted together for 4.0 A compliance.  
4. When performing this test, it is recommended that the DUT be soldered to avoid trace inductances, which may cause  
over-stress conditions.  
6
Preliminary Rev. 0.9  
Si826x  
VDD = 15 V  
SCHOTTKY  
VDD  
10  
IN  
OUT  
Si826x  
+
9 V  
VSS  
100 µF  
_
1 µF  
INPUT  
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
IF  
GND  
200 ns  
INPUT WAVEFORM  
Figure 1. IOL Sink Current Test Circuit  
VDD = 15 V  
VDD  
10  
IN  
OUT  
Si826x  
SCHOTTKY  
+
VSS  
100 µF  
1 µF  
5.5 V  
_
INPUT  
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
IF  
GND  
200 ns  
INPUT WAVEFORM  
Figure 2. IOH Source Current Test Circuit  
Preliminary Rev. 0.9  
7
Si826x  
15 V  
Supply  
267  
Si826x  
ANODE  
VDD  
VO  
Input Signal  
Switch  
5V  
Isolated  
Supply  
Oscilloscope  
GND  
CATHODE  
Isolated  
Ground  
Output  
High Voltage  
Differential Probe  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 3. Common Mode Transient Immunity Characterization Circuit  
8
Preliminary Rev. 0.9  
Si826x  
2. Regulatory Information  
Table 3. Regulatory Information (Pending)*  
CSA  
The Si826x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 V reinforced insulation working voltage; up to 600 V basic insulation working voltage.  
RMS  
RMS  
60950-1: Up to 1000 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
RMS  
60601-1: Up to 250 V  
reinforced insulation working voltage; up to 500 V  
basic insulation working voltage.  
RMS  
RMS  
VDE  
The Si826x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 1414 V  
for reinforced insulation working voltage.  
peak  
UL  
The Si826x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V  
isolation voltage for basic protection.  
RMS  
CQC  
The Si826x is certified under GB4943.1-2011. For more details, see File number pending.  
Rated up to 1000 V reinforced insulation working voltage; up to 1000 V basic insulation working voltage.  
RMS  
RMS  
*Note: Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec.  
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see "8.Ordering Guide" on page 25.  
Table 4. Insulation and Safety-Related Specifications  
Value  
Parameter  
Symbol Test Condition  
Unit  
SOIC-8  
DIP8  
SDIP6  
LGA8  
L(IO1)  
L(IO2)  
4.7 min  
7.2 min  
9.6 min 10.0 min  
8.3 min 10.0 min  
mm  
mm  
Nominal Air Gap (Clearance)  
Nominal External Tracking  
(Creepage)  
3.9 min  
0.016  
7.0 min  
0.016  
Minimum Internal Gap  
(Internal Clearance)  
0.016  
0.016  
mm  
V
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
600  
600  
600  
0.031  
0.031  
0.057  
0.021  
mm  
Erosion Depth  
12  
12  
12  
12  
R
10  
10  
10  
10  
Resistance (Input-Output)*  
Capacitance (Input-Output)*  
IO  
C
1
1
1
1
pF  
IO  
*Note: To determine resistance and capacitance, the Si826x is converted into a 2-terminal device. Pins 1–4 (1–3, SDIP6) are  
shorted together to form the first terminal, and pins 5–8 (4–6, SDIP6) are shorted together to form the second terminal.  
The parameters are then measured between these two terminals.  
Preliminary Rev. 0.9  
9
Si826x  
Table 5. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Specification  
DIP8 SDIP6  
Parameter  
Test Conditions  
SOIC-8  
LGA8  
Basic Isolation Group  
Material Group  
Rated Mains Voltages <  
I
I
I
I
I-IV  
I-IV  
I-IV  
I-IV  
150 V  
RMS  
Rated Mains Voltages <  
300 V  
I-IV  
I-III  
I-III  
I-IV  
I-III  
I-III  
I-IV  
I-IV  
I-IV  
I-IV  
I-IV  
I-IV  
I-III  
RMS  
Installation  
Classification  
Rated Mains Voltages <  
450 V  
RMS  
Rated Mains Voltages <  
600 V  
RMS  
Rated Mains Voltages <  
1000 V  
RMS  
Table 6. IEC 60747-5-2 Insulation Characteristics*  
Characteristic  
DIP8 SDIP6  
Symbol  
Test Condition  
Unit  
Parameter  
SOIC-8  
LGA8  
Maximum Working  
Insulation Voltage  
V
630  
891  
1140  
1414  
V peak  
V peak  
IORM  
Method b1  
(V  
x 1.875 = V  
100%  
,
PR  
IORM  
Input to Output Test  
Voltage  
V
1181  
1671  
2138  
2652  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
V
V
t = 60 sec  
6000  
10  
6000  
10  
8000  
10  
8000  
10  
V peak  
Transient Overvoltage  
Surge Voltage  
IOTM  
1.2 s rise, 50 s fall 50%  
kV peak  
IOSM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
2
2
2
2
Insulation Resistance at  
9
9
9
9
R
>10  
>10  
>10  
>10  
S
T , V = 500 V  
S
IO  
*Note: This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety  
data is ensured by protective circuits. The Si826x provides a climate classification of 40/125/21.  
10  
Preliminary Rev. 0.9  
Si826x  
Table 7. IEC Safety Limiting Values*  
Max  
Parameter  
Symbol  
Test Condition  
Unit  
SOIC-8  
140  
DIP8  
140  
SDIP6  
140  
LGA8  
Case Temperature  
Input Current  
T
I
140  
185  
°C  
S
= 110 °C/W (SOIC-8),  
110 °C/W (DIP8),  
105 °C/W (SDIP6),  
220 °C (LGA8),  
370  
370  
390  
mA  
S
JA  
V = 2.8 V, T = 140 °C,  
F
J
T = 25 °C  
A
Output Power  
P
1
1
1
0.5  
W
S
*Note: Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 4, 5, 6, and 7.  
Preliminary Rev. 0.9  
11  
Si826x  
Table 8. Thermal Characteristics  
Typ  
Parameter  
Symbol  
Unit  
SOIC-8  
DIP8  
SDIP6  
LGA8  
IC Junction-to-Air Thermal  
Resistance  
110  
110  
105  
220  
ºC/W  
JA  
1200  
1000  
800  
Psꢀꢀ(mW)  
600  
Is(mA)  
400  
200  
0
0
20  
40  
60  
80  
100  
120  
140  
TsꢀͲ CaseTemperature(°C)  
Figure 4. (SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
1200  
1000  
Psꢀꢀ(mW)  
800  
600  
Is(mA)  
400  
200  
0
0
20  
40  
60  
80  
100  
120  
140  
TsꢀͲ CaseTemperature(°C)  
Figure 5. (DIP8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
12  
Preliminary Rev. 0.9  
Si826x  
1200  
1000  
800  
600  
400  
200  
0
Psꢀꢀ(mW)  
Is(mA)  
0
20  
40  
60  
80  
100  
120  
140  
TsꢀͲ CaseTemperature(°C)  
Figure 6. (SDIP6) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
600  
500  
Psꢀꢀ(mW)  
400  
300  
Is(mA)  
200  
100  
0
0
20  
40  
60  
80  
100  
120  
140  
TsꢀͲ CaseTemperature(°C)  
Figure 7. (LGA8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Preliminary Rev. 0.9  
13  
Si826x  
Table 9. Absolute Maximum Ratings*  
Parameter  
Storage Temperature  
Symbol  
Min  
–65  
–40  
Max  
+150  
+125  
+140  
30  
Units  
°C  
T
STG  
Operating Temperature  
T
°C  
A
Junction Temperature  
T
°C  
J
Average Forward Input Current  
I
mA  
A
F(AVG)  
Peak Transient Input Current  
(< 1 µs pulse width, 300 ps)  
I
1
FTR  
Peak Output Current (t  
Peak Output Current (t  
Reverse Input Voltage  
Supply Voltage  
= 10 µs) (Si826xA)  
= 10 µs) (Si826xB)  
I
I
0.6  
4.0  
0.3  
36  
A
A
PW  
PW  
OPK  
OPK  
V
V
R
VDD  
–0.5  
–0.5  
V
Output Voltage  
V
36  
V
OUT  
Output Current  
I
10  
mA  
mW  
mW  
mW  
O(AVG)  
Input Power Dissipation  
Output Power Dissipation  
Total Power Dissipation  
P
75  
I
P
225  
300  
O
P
T
(all packages limited by thermal derating curve)  
Lead Solder Temperature (10 s)  
HBM Rating ESD  
4
260  
°C  
kV  
V
Machine Model ESD  
300  
2000  
CDM  
V
Maximum Isolation Voltage (1 s) SOIC-8  
Maximum Isolation Voltage (1 s) DIP8  
Maximum Isolation Voltage (1 s) SDIP6  
Maximum Isolation Voltage (1 s) LGA8  
4500  
6500  
6500  
6500  
V
V
V
V
RMS  
RMS  
RMS  
RMS  
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions specified in the operational sections of this data sheet.  
14  
Preliminary Rev. 0.9  
Si826x  
3. Functional Description  
3.1. Theory of Operation  
The Si826x is a functional upgrade for popular opto-isolated drivers, such as the Avago HPCL-3120, HPCL-0302,  
Toshiba TLP350, and others. The operation of an Si826x channel is analogous to that of an opto coupler, except an  
RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires  
no special considerations or initialization at start-up. A simplified block diagram for the Si826x is shown in Figure 8.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
VDD  
Semiconductor-  
Based Isolation  
Barrier  
LED  
Emulator  
MODULATOR  
DEMODULATOR  
A
B
0.6 to 4.0 A  
peak  
Gnd  
Figure 8. Simplified Channel Diagram  
Preliminary Rev. 0.9  
15  
Si826x  
4. Technical Description  
4.1. Device Behavior  
Truth tables for the Si826x are summarized in Table 10.  
Table 10. Si826x Truth Table Summary*  
Input  
V
V
O
DD  
OFF  
OFF  
ON  
> UVLO  
< UVLO  
> UVLO  
< UVLO  
LOW  
LOW  
HIGH  
LOW  
ON  
*Note: This truth table assumes VDD is powered. If VDD is below UVLO, see "4.3.Under Voltage  
Lockout (UVLO)" on page 17 for more information.  
4.2. Device Startup  
Output V is held low during power-up until V  
rises above the UVLO+ threshold for a minimum time period of  
DD  
O
t
. Following this, the output is high when the current flowing from anode to cathode is > I  
. Device startup,  
START  
F(ON)  
normal operation, and shutdown behavior is shown in Figure 9.  
UVLO+  
VDDHYS  
UVLO-  
VDD  
IF(ON)  
IHYS  
IF  
tPHL  
tPLH  
tSTART  
tSTART  
VO  
Figure 9. Si826x Operating Behavior (IF > IF(MIN) when VF > VF(MIN)  
)
16  
Preliminary Rev. 0.9  
Si826x  
4.3. Under Voltage Lockout (UVLO)  
The UVLO circuit unconditionally drives V low when V is below the lockout threshold. Referring to Figures 10  
O
DD  
through 12, upon power up, the Si826x is maintained in UVLO until VDD rises above VDD  
. During power down,  
UV+  
the Si826x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD < VDD  
UV+  
VDD  
).  
HYS  
VDDUV+ (Typ)  
VDDUV+ (Typ)  
3.5  
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0  
Supply Voltage (VDD - GND) (V)  
Supply Voltage (VDD - GND) (V)  
Figure 10. Si826xxAx UVLO Response (5 V)  
Figure 12. Si826xxCx UVLO Response (12 V)  
VDDUV+ (Typ)  
6.0  
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
Supply Voltage (VDD - GND) (V)  
Figure 11. Si826xxBX UVLO Response (8 V)  
Preliminary Rev. 0.9  
17  
Si826x  
5. Applications  
The following sections detail the input and output circuits necessary for proper operation. Power dissipation and  
layout considerations are also discussed.  
5.1. Input Circuit Design  
Opto driver manufacturers typically recommend the circuits shown in Figures 13 and 14. These circuits are  
specifically designed to improve opto-coupler input common-mode rejection and increase noise immunity.  
Si826x  
Vdd  
N/C  
1
2
R1  
ANODE  
Control  
Input  
3
4
CATHODE  
N/C  
Open Drain or  
Collector  
Figure 13. Si826x Input Circuit  
Vdd  
Si826x  
N/C  
1
2
ANODE  
Control  
Input  
Q1  
3
4
CATHODE  
N/C  
R1  
Figure 14. High CMR Si826x Input Circuit  
The optically-coupled driver circuit of Figure 13 turns the LED on when the control input is high. However, internal  
capacitive coupling from the LED to the power and ground conductors can momentarily force the LED into its off  
state when the anode and cathode inputs are subjected to a high common-mode transient. The circuit shown in  
Figure 14 addresses this issue by using a value of R1 sufficiently low to overdrive the LED, ensuring it remains on  
during an input common-mode transient. Q1 shorts the LED off in the low output state, again increasing common-  
mode transient immunity.  
Some opto driver applications recommend reverse-biasing the LED when the control input is off to prevent coupled  
noise from energizing the LED. The Si826x input circuit requires less current and has twice the off-state noise  
margin compared to opto couplers. However, high CMR opto coupler designs that overdrive the LED (see  
Figure 14) may require increasing the value of R1 to limit input current I to its maximum rating when using the  
F
Si826x. In addition, there is no benefit in driving the Si826x input diode into reverse bias when in the off state.  
Consequently, opto coupler circuits using this technique should either leave the negative bias circuitry unpopulated  
18  
Preliminary Rev. 0.9  
Si826x  
or modify the circuitry (e.g., add a clamp diode or current limiting resistor) to ensure that the anode pin of the  
Si826x is no more than –0.3 V with respect to the cathode when reverse-biased.  
New designs should consider the input circuit configurations of Figure 15, which are more efficient than those of  
Figures 13 and 14. As shown, S1 and S2 represent any suitable switch, such as a BJT or MOSFET, analog  
transmission gate, processor I/O, etc. Also, note that the Si826x input can be driven from the I/O port of any MCU  
or FPGA capable of sourcing a minimum of 6 mA (see Figure 15B). Additionally, note that the Si826x propagation  
delay and output drive do not significantly change for values of I between I  
and I  
.
F
F(MIN)  
F(MAX)  
Si826x  
Si826x  
N/C  
+5V  
S1  
1
2
N/C  
1
2
Control  
Input  
R1  
S2  
MCU I/O  
Port pin  
ANODE  
ANODE  
R1  
3
4
CATHODE  
CATHODE  
3
4
N/C  
N/C  
A
B
Figure 15. Si826x Other Input Circuit Configurations  
5.2. Output Circuit Design  
GND can be biased at, above, or below ground as long as the voltage on V with respect to GND is a maximum  
DD  
of 30 V. V  
decoupling capacitors should be placed as close to the package pins as possible. The optimum  
DD  
values for these capacitors depend on load current and the distance between the chip and its power source. It is  
recommended that 0.1 and 10 µF bypass capacitors be used to reduce high-frequency noise and maximize  
performance.  
5.3. Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the V  
lines. Care must be taken to  
DD  
minimize parasitic inductance in these paths by locating the Si826x as close as possible to the device it is driving.  
In addition, the V supply and ground trace paths must be kept short. For this reason, the use of power and  
DD  
ground planes is highly recommended. A split ground plane system having separate ground and V  
power devices and small signal components provides the best overall noise performance.  
planes for  
DD  
Preliminary Rev. 0.9  
19  
Si826x  
5.4. Power Dissipation Considerations  
Proper system design must assure that the Si826x operates within safe thermal limits across the entire load range.  
The Si826x total power dissipation is the sum of the power dissipated by bias supply current, internal switching  
losses, and power delivered to the load, as shown in Equation 1.  
PD = IF VF DC + VDD  IDDQ + Qd + CL VDD  f  
where: PD is the total device power dissipation (W)  
IF is the diode current (30 mA max)  
VF is the diode anode to cathode voltage (2.8 V max)  
DC is duty cycle (0.5 typical)  
VDD is the driver-side supply voltage (30 V max)  
IDDQ is the driver maximum bias current (2.5 mA)  
Qd is 3 nC  
CL is the load capacitance  
f is the switching frequency (Hz)  
Equation 1.  
The maximum allowable power dissipation for the Si826x is a function of the package thermal resistance, ambient  
temperature, and maximum allowable junction temperature, as shown in Equation 2.  
T
jmax TA  
---------------------------  
PDmax  
where:  
ja  
PDmax is the maximum allowable power dissipation (W)  
Tjmax is the maximum junction temperature (140 °C)  
TA is the ambient temperature (°C)  
ja is the package junction-to-air thermal resistance (110 °C/W)  
Equation 2.  
Substituting values for P  
T
, T , and  
into Equation 2 results in a maximum allowable total power  
ja  
Dmax jmax  
A
dissipation of 1.0 W. Note that the maximum allowable load is found by substituting this limit and the appropriate  
datasheet values from Table 2 on page 4 into Equation 1 and simplifying. Graphs are shown in Figures 16 and 17.  
All points along the load lines in these graphs represent the package dissipation-limited value of C for the  
L
corresponding switching frequency.  
20  
Preliminary Rev. 0.9  
Si826x  
Figure 16. (SOIC-8, DIP8, SDIP6) Maximum Load vs. Switching Frequency (25 °C)  
Figure 17. (LGA8) Maximum Load vs. Switching Frequency (25 °C)  
Preliminary Rev. 0.9  
21  
Si826x  
5.5. Parametric Differences between Si826x and HCPL-0302 and HCPL-3120  
Opto Drivers  
The Si826x is designed to directly replace HCPL-3120 and similar opto drivers. Parametric differences are  
summarized in Tables 11 and 12 below.  
Table 11. Parametric Differences of Si8261 vs. HCPL-3120  
Parameter  
Si8261  
HCPL-3120  
Units  
Max supply voltage  
30  
6 to 30  
30  
7 to 16  
–0.3 to +0.8  
–5  
V
mA  
V
ON state forward input current  
OFF state input voltage  
–0.6 to +1.6  
–0.3  
Max reverse input voltage  
UVLO threshold (rising)  
V
5 to 10.5  
4.7 to 9.4  
0.3 to 1.3  
100  
11.0 to 13.5  
9.7 to 12.0  
1.6  
V
UVLO threshold (falling)  
V
UVLO hysteresis  
V
Rise/fall time into 10 in series with 10 nF  
100  
ns  
Table 12. Parametric Differences of Si8261 vs. HCPL-0302  
Parameter  
Si8261  
HCPL-0302  
Units  
Max supply voltage  
30  
6 to 30  
30  
7 to 16  
–0.3 to +0.8  
–5  
V
mA  
V
ON state forward input current  
OFF state input voltage  
–0.6 to +1.6  
–0.3  
Max reverse input voltage  
UVLO threshold (rising)  
V
5 to 10.5  
4.7 to 9.4  
0.3 to 1.3  
100  
11.0 to 13.5  
9.7 to 12.0  
1.6  
V
UVLO threshold (falling)  
V
UVLO hysteresis  
V
Rise/fall time into 10 in series with 10 nF  
100  
ns  
5.5.1. Input Diode Differences  
The Si826x input circuit requires less current and has twice the off-state noise margin compared to opto drivers.  
However, high CMR opto driver designs that overdrive the LED (see Figure 14) may require increasing the value of  
R1 to limit input current I to its maximum rating when using the Si826x. In addition, there is no benefit in driving  
F
the Si826x input diode into reverse bias when in the off state. Consequently, opto driver circuits using this  
technique should either leave the negative bias circuitry unpopulated or modify the circuitry (e.g. add a clamp diode  
or current limiting resistor) to ensure that the anode pin of the Si826x is no more than –0.3 V with respect to the  
cathode when reverse-biased. For more information on configuring the input, see “AN677: Using the Si826x Family  
of Isolated Gate Drivers”.  
5.5.2. Supply Voltage and UVLO Considerations  
The supply voltage of the Si826x is limited to 30 V, from which the UVLO voltage thresholds are scaled accordingly.  
Opto replacement applications should limit their supply voltages to 30 V or less.  
22  
Preliminary Rev. 0.9  
Si826x  
6. Pin Descriptions (SOIC-8, DIP8, LGA8)  
VDD  
VO  
NC  
1
2
8
7
UVLO  
ANODE  
e
CATHODE  
NC  
3
4
6
5
VO  
GND  
SOIC-8, DIP8, LGA8  
Industry Standard Pinout  
Figure 18. Pin Configuration  
Table 13. Pin Descriptions (SOIC-8, DIP8, LGA8)  
Description  
Pin  
1
Name  
NC*  
No connect.  
2
ANODE Anode of LED emulator. V follows the signal applied to this input with respect to the  
O
CATHODE input.  
3
4
5
CATHODE Cathode of LED emulator. V follows the signal applied to ANODE with respect to this input.  
O
NC*  
No connect.  
GND  
External MOSFET source connection and ground reference for V . This terminal is typically  
DD  
connected to ground but may be tied to a negative or positive voltage.  
6
7
8
V
V
Output signal. Both V pins are required to be shorted together for 4.0 A compliance.  
O
O
O
Output signal. Both V pins are required to be shorted together for 4.0 A compliance.  
O
V
Output-side power supply input referenced to GND (30 V max).  
DD  
*Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be  
connected to the ground plane.  
Preliminary Rev. 0.9  
23  
Si826x  
7. Pin Descriptions (SDIP6)  
VDD  
VO  
1
2
3
6
5
4
ANODE  
UVLO  
e
NC  
CATHODE  
GND  
SDIP6  
Industry Standard Pinout  
Figure 19. Pin Configuration  
Table 14. Pin Descriptions (SDIP6)  
Description  
Pin  
Name  
1
ANODE Anode of LED emulator. V follows the signal applied to this input with respect to the  
O
CATHODE input.  
2
3
4
NC*  
No connect.  
CATHODE Cathode of LED emulator. V follows the signal applied to ANODE with respect to this input.  
O
GND  
External MOSFET source connection and ground reference for V . This terminal is typically  
DD  
connected to ground but may be tied to a negative or positive voltage.  
5
6
V
O
Output signal.  
V
Output-side power supply input referenced to GND (30 V max).  
DD  
*Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be  
connected to the ground plane.  
24  
Preliminary Rev. 0.9  
Si826x  
8. Ordering Guide  
Table 15. Si826x Ordering Guide1,2,3  
Ordering Options  
New Ordering  
Part Number  
Output  
Cross  
Reference Voltage  
UVLO Insulation  
Rating  
Temp Range  
Pkg Type  
SOIC-8  
SOIC-8  
DIP8/GW  
DIP8/GW  
SDIP6  
(OPN)  
Configuration  
Si8261AAC-C-IS  
(Sampling)  
0.6 A driver  
HCPL-0314  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
Si8261BAC-C-IS  
(Sampling)  
4.0 A driver  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
Si8261AAC-C-IP  
(Sampling)  
HCPL-3140  
Si8261BAC-C-IP  
(Sampling)  
TLP 350  
HCPL-3120  
Si8261AAD-C-IS  
(Sampling)  
ACPL-W314  
TLP 700F  
Si8261BAD-C-IS  
(Sampling)  
SDIP6  
Si8261AAD-C-IM  
(Sampling)  
LGA8  
Si8261BAD-C-IM  
(Sampling)  
HCNW-3120  
LGA8  
Notes:  
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260 °C according  
to the JEDEC industry standard classifications and peak solder temperature.  
2. “Si” and “SI” are used interchangeably.  
3. AEC-Q100 qualified.  
Preliminary Rev. 0.9  
25  
Si826x  
Table 15. Si826x Ordering Guide1,2,3  
Ordering Options  
New Ordering  
Part Number  
(OPN)  
Output  
Cross  
Reference Voltage  
UVLO Insulation  
Rating  
Temp Range  
Pkg Type  
SOIC-8  
SOIC-8  
DIP8/GW  
DIP8/GW  
SDIP6  
Configuration  
Si8261ABC-C-IS  
(Sampling)  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
HCPL-0314  
8 V  
8 V  
8 V  
8 V  
8 V  
8 V  
8 V  
8 V  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
Si8261BBC-C-IS  
(Sampling)  
Si8261ABC-C-IP  
(Sampling)  
HCPL-3140  
Si8261BBC-C-IP  
(Sampling)  
TLP 350  
HCPL-3120  
Si8261ABD-C-IS  
(Sampling)  
ACPL-W314  
TLP 700F  
Si8261BBD-C-IS  
(Sampling)  
SDIP6  
Si8261ABD-C-IM  
(Sampling)  
LGA8  
Si8261BBD-C-IM  
(Sampling)  
HCNW-3120  
LGA8  
Notes:  
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260 °C according  
to the JEDEC industry standard classifications and peak solder temperature.  
2. “Si” and “SI” are used interchangeably.  
3. AEC-Q100 qualified.  
26  
Preliminary Rev. 0.9  
Si826x  
Table 15. Si826x Ordering Guide1,2,3  
Ordering Options  
New Ordering  
Part Number  
(OPN)  
Output  
Cross  
Reference Voltage  
UVLO Insulation  
Rating  
Temp Range  
Pkg Type  
SOIC-8  
SOIC-8  
DIP8/GW  
DIP8/GW  
SDIP6  
Configuration  
Si8261ACC-C-IS  
(Sampling)  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
0.6 A driver  
4.0 A driver  
HCPL-0314  
12 V  
12 V  
12 V  
12 V  
12 V  
12 V  
12 V  
12 V  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
3.75 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
5.0 kVrms –40 to +125 °C  
Si8261BCC-C-IS  
(Sampling)  
Si8261ACC-C-IP  
(Sampling)  
HCPL-3140  
Si8261BCC-C-IP  
(Sampling)  
TLP 350  
HCPL-3120  
Si8261ACD-C-IS  
(Sampling)  
ACPL-W314  
TLP 700F  
Si8261BCD-C-IS  
(Sampling)  
SDIP6  
Si8261ACD-C-IM  
(Sampling)  
LGA8  
Si8261BCD-C-IM  
(Sampling)  
HCNW-3120  
LGA8  
Notes:  
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260 °C according  
to the JEDEC industry standard classifications and peak solder temperature.  
2. “Si” and “SI” are used interchangeably.  
3. AEC-Q100 qualified.  
Preliminary Rev. 0.9  
27  
Si826x  
9. Package Outline: 8-Pin Narrow Body SOIC  
Figure 20 illustrates the package details for the Si826x in an 8-pin narrow-body SOIC package. Table 16 lists the  
values for the dimensions shown in the illustration.  
Figure 20. 8-Pin Narrow Body SOIC Package  
Table 16. 8-Pin Narrow Body SOIC Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
1.75  
A
A1  
A2  
B
1.35  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0  
6.20  
0.50  
1.27  
8  
L
28  
Preliminary Rev. 0.9  
Si826x  
10. Land Pattern: 8-Pin Narrow Body SOIC  
Figure 21 illustrates the recommended land pattern details for the Si826x in an 8-pin narrow-body SOIC. Table 17  
lists the values for the dimensions shown in the illustration.  
Figure 21. 8-Pin Narrow Body SOIC Land Pattern  
Table 17. 8-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Preliminary Rev. 0.9  
29  
Si826x  
11. Package Outline: DIP8  
Figure 22 illustrates the package details for the Si826x in a DIP8 package. Table 18 lists the values for the  
dimensions shown in the illustration.  
Figure 22. DIP8 Package  
Table 18. DIP8 Package Diagram Dimensions  
Dimension  
Min  
Max  
4.19  
0.75  
3.43  
0.55  
1.78  
1.14  
0.33  
9.90  
7.87  
6.60  
9.90  
A
A1  
A2  
b
0.55  
3.17  
0.35  
1.14  
0.76  
0.20  
9.40  
7.37  
6.10  
9.40  
b2  
b3  
c
D
E
E1  
E2  
e
2.54 BSC.  
L
0.38  
0.89  
0.25  
aaa  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
30  
Preliminary Rev. 0.9  
Si826x  
12. Land Pattern: DIP8  
Figure 23 illustrates the recommended land pattern details for the Si826x in a DIP8 package. Table 19 lists the  
values for the dimensions shown in the illustration.  
Figure 23. DIP8 Land Pattern  
Table 19. DIP8 Land Pattern Dimensions*  
Dimension  
Min  
Max  
C
E
X
Y
8.85  
8.90  
2.54 BSC  
0.60  
1.65  
0.65  
1.70  
*Note: This Land Pattern Design is based on the IPC-7351 specification.  
Preliminary Rev. 0.9  
31  
Si826x  
13. Package Outline: SDIP6  
Figure 24 illustrates the package details for the Si826x in an SDIP6 package. Table 20 lists the values for the  
dimensions shown in the illustration.  
Figure 24. SDIP6 Package  
Table 20. SDIP6 Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
E
4.58 BSC  
11.50 BSC  
7.50 BSC  
1.27 BSC  
E1  
e
L
0.40  
0.25  
1.27  
0.75  
h
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
32  
Preliminary Rev. 0.9  
Si826x  
Table 20. SDIP6 Package Diagram Dimensions (Continued)  
Dimension  
Min  
0°  
Max  
8°  
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
Preliminary Rev. 0.9  
33  
Si826x  
14. Land Pattern: SDIP6  
Figure 25 illustrates the recommended land pattern details for the Si826x in an SDIP6 package. Table 21 lists the  
values for the dimensions shown in the illustration.  
Figure 25. SDIP6 Land Pattern  
Table 21. SDIP6 Land Pattern Dimensions*  
Dimension  
Min  
Max  
C
E
X
Y
10.45  
10.50  
1.27 BSC  
0.55  
2.00  
0.60  
2.05  
*Note: This Land Pattern Design is based on the IPC-7351 specification.  
34  
Preliminary Rev. 0.9  
Si826x  
15. Package Outline: LGA8  
Figure 26 illustrates the package details for the Si826x in an LGA8 package. Table 22 lists the values for the  
dimensions shown in the illustration.  
Figure 26. LGA8 Package  
Table 22. Package Diagram Dimensions  
Dimension  
Min  
0.74  
1.15  
Nom  
0.84  
Max  
0.94  
1.25  
A
b
1.20  
D
10.00 BSC.  
2.54 BSC.  
12.50 BSC.  
1.10  
e
E
L
1.05  
0.05  
1.15  
0.15  
0.10  
0.10  
0.10  
0.10  
L1  
aaa  
bbb  
ccc  
ddd  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Preliminary Rev. 0.9  
35  
Si826x  
16. Land Pattern: LGA8  
Figure 27 illustrates the recommended land pattern details for the Si826x in an LGA8 package. Table 23 lists the  
values for the dimensions shown in the illustration.  
Figure 27. LGA8 Land Pattern  
Table 23. LGA8 Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
11.80  
2.54  
C1  
E
X1  
Y1  
1.30  
Pad Length  
1.80  
Notes:  
1. This Land Pattern Design is based on IPC-7351 specifications.  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
36  
Preliminary Rev. 0.9  
Si826x  
17. Top Markings  
17.1. Si826x Top Marking (Narrow Body SOIC)  
17.2. Top Marking Explanation  
Customer Part Number  
826 = ISOdriver product series  
C = Input configuration  
1 = Opto input type  
I = Peak output current  
A = 0.6 A; B = 4.0 A  
Line 1 Marking:  
U = UVLO level  
A = 5 V; B = 8 V; C = 12 V  
V = Isolation rating  
C = 3.75 kV; D = 5.0 kV  
RTTTTT = Mfg Code  
Manufacturing Code from the Assembly Purchase  
Order form.  
Line 2 Marking:  
“R” indicates revision.  
Circle = 43 mils Diameter  
“e4” Pb-Free Symbol  
Left-Justified  
Line 3 Marking:  
YY = Year  
Assigned by the Assembly House. Corresponds to  
the year and work week of the mold date.  
WW = Work Week  
Preliminary Rev. 0.9  
37  
Si826x  
17.3. Si826x Top Marking (DIP8)  
17.4. Top Marking Explanation  
Customer Part Number  
Si826 = ISOdriver product series  
C = Input configuration  
1 = Opto input type  
I = Peak output current  
A = 0.6 A; B = 4.0 A  
Line 1 Marking:  
U = UVLO level  
A = 5 V; B = 8 V; C = 12 V  
V = Isolation rating  
C = 3.75 kV; D = 5.0 kV  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to  
the year and work week of the mold date.  
Line 2 Marking:  
Line 3 Marking:  
RTTTTT = Mfg Code  
Manufacturing Code from the Assembly Purchase  
Order form.  
“R” indicates revision.  
Circle = 51 mils Diameter  
Center-Justified  
“e4” Pb-Free Symbol  
CO = Country of Origin  
Country of Origin  
ISO Code Abbreviation  
38  
Preliminary Rev. 0.9  
Si826x  
17.5. Si826x Top Marking (SDIP6)  
17.6. Top Marking Explanation  
Device  
Si826 = ISOdriver product series  
C = Input configuration  
1 = Opto input type  
Line 1 Marking:  
Device Rating  
I = Peak output current  
A = 0.6 A; B = 4.0 A  
U = UVLO level  
Line 2 Marking:  
A = 5 V; B = 8 V; C = 12 V  
V = Isolation rating  
C = 3.75 kV; D = 5.0 kV  
RTTTTT = Mfg Code  
Manufacturing Code from the Assembly Purchase  
Order form.  
Line 3 Marking:  
“R” indicates revision.  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the  
year and work week of the mold date.  
Line 4 Marking:  
Preliminary Rev. 0.9  
39  
Si826x  
17.7. Si826x Top Marking (LGA8)  
17.8. Top Marking Explanation  
Device Part Number  
Si826 = ISOdriver product series  
C = Input configuration  
1 = Opto input type  
I = Peak output current  
A = 0.6 A; B = 4.0 A  
Line 1 Marking:  
U = UVLO level  
A = 5 V; B = 8 V; C = 12 V  
V = Isolation rating  
C = 3.75 kV; D = 5.0 kV  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corre-  
sponds to the year and work week of the  
assembly release.  
Line 2 Marking:  
RTTTTT = Mfg Code  
Manufacturing Code from the Assembly Pur-  
chase Order form.  
“R” indicates revision.  
Circle = 1.6 mm Diameter  
“e4” Pb-Free Symbol  
Center-Justified  
Line 3 Marking:  
CO = Country of Origin  
Country of Origin  
ISO Code Abbreviation  
Circle = 0.75 mm Diameter  
Lower Left-Justified  
Pin 1 Identifier  
Line 4 Marking:  
40  
Preliminary Rev. 0.9  
Si826x  
NOTES:  
Preliminary Rev. 0.9  
41  
Si826x  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
42  
Preliminary Rev. 0.9  

相关型号:

SI8261AAC-C-IS

Buffer/Inverter Based MOSFET Driver,
SILICON

SI8261AAD-C-IS

Buffer/Inverter Based MOSFET Driver,
SILICON

SI8261ABC-C-IP

Buffer/Inverter Based MOSFET Driver,
SILICON

SI8261ABC-C-IPR

Buffer/Inverter Based MOSFET Driver,
SILICON

SI8261ABC-C-IS

Buffer/Inverter Based MOSFET Driver,
SILICON

SI8261ABD-C-IS

Buffer/Inverter Based MOSFET Driver,
SILICON

Si8261ACC-C-IP

Rail-to-rail output voltage
SILICON

SI8261ACC-C-IS

Buffer/Inverter Based MOSFET Driver,
SILICON

Si8261ACD-C-IM

Rail-to-rail output voltage
SILICON

Si8261ACD-C-IS

Rail-to-rail output voltage
SILICON

SI8261BAC-C-IP

Buffer/Inverter Based MOSFET Driver,
SILICON

SI8261BAC-C-ISR

Buffer/Inverter Based MOSFET Driver,
SILICON