SPT774CCS [ETC]

FAST, COMPLETE 12-BIT UP COMPATIBLE A/D CONVERTER WITH SAMPLE/HOLD; 快速,完整的12位向上兼容A / D与采样/保持转换器
SPT774CCS
型号: SPT774CCS
厂家: ETC    ETC
描述:

FAST, COMPLETE 12-BIT UP COMPATIBLE A/D CONVERTER WITH SAMPLE/HOLD
快速,完整的12位向上兼容A / D与采样/保持转换器

转换器 光电二极管
文件: 总12页 (文件大小:117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPT774  
FAST, COMPLETE 12-BIT µP COMPATIBLE  
A/D CONVERTER WITH SAMPLE/HOLD  
FEATURES  
APPLICATIONS  
• Improved Higher Performance Version of the HADC574Z  
• Complete 12-Bit A/D Converter with Sample/Hold,  
Reference and Clock  
• Data Acquisition Systems  
• 8 or 12-Bit µP Input Functions  
• Process Control Systems  
• Low Power Dissipation (120 mW Max)  
• 12-Bit Linearity (Over Temp)  
• Test and Scientific Instruments  
• Personal Computer Interface  
• 8 µs Max Conversion Time  
• Single +5 V Supply  
• Full Bipolar and Unipolar Input Range  
The SPT774 has standard bipolar and unipolar input ranges  
of 10 V and 20 V that are controlled by a bipolar offset pin and  
lasertrimmedforspecifiedlinearity,gainandoffsetaccuracy.  
GENERAL DESCRIPTION  
The SPT774 is a complete, 12-bit successive approximation  
A/D converter manufactured in CMOS technology. The de-  
vice is an improved version of the HADC574Z. Included on  
chip are an internal reference, clock, and a sample-and-hold.  
The S/H is an additional feature not available on similar  
devices.  
The power supply is +5 V. The device also has an optional  
mode control voltage which may be used depending on the  
application. With a maximum dissipation of 120 mW at the  
specified voltages, power consumption is about five times  
lower than that of currently available devices.  
The SPT774 features 8 µs (max) conversion time of 10 or  
20 V input signals. Also, a three-state output buffer is added  
for direct interface to an 8-, 12- or 16-bit µP bus.  
The SPT774 is available in 28-lead ceramic sidebrazed DIP,  
PDIP and SOIC packages in the commercial temperature  
range.  
Output  
BLOCK DIAGRAM  
Nibble A  
Nibble B  
Nibble C  
Three-State Buffers And Control  
STS  
12-Bit SAR  
12-Bit  
Capacitance  
DAC  
+
Comp  
-
Clock  
Offset/Gain  
Trim  
20 V In  
10 V In  
BIP Off  
AGND  
Control Logic  
A
Ref  
12/8 CS  
o
R/C  
CE  
Ref Out  
Signal Processing Technologies, Inc.  
4755 Forge Road, Colorado Springs, Colorado 80907, USA  
Phone: (719) 528-2300 FAX: (719) 528-2370 Website: http://www.spt.com E-Mail: sales@spt.com  
ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur) 1 25 °C  
Supply Voltages  
Mode Control Voltage (V to DGND) ....................0 to +7 V  
Output  
Reference Output Voltage .............. Indefinite Short to GND  
Momentary Short to V  
EE  
Logic Supply Voltage (V  
to DGND) ...................0 to +7 V  
DD  
DD  
Analog to Digital Ground (AGND to DGND) .................±1 V  
Temperature  
Input Voltages  
Operating Temperature, Ambient .................... 0 to +70 °C  
Junction......................... +165 °C  
Control Input Voltages (to DGND)  
(CE, CS, Ao, 12/8, R/C) ......................... -0.5 to V  
Analog Input Voltage (to AGND)  
+0.5 V  
Lead Temperature, (Soldering 10 Seconds)........... +300 °C  
Storage Temperature....................................-65 to +150 °C  
DD  
(REF IN, BIP OFF, 10 V ) ......................................±16.5 V  
IN  
20 V V Input Voltage (to AGND) ..............................±24 V  
IN  
Note: Operation at any Absolute Maximum Rating is not implied. See Operating Conditions for proper nominal applied  
conditions in typical applications.  
ELECTRICAL SPECIFICATIONS  
T
= T  
to T  
, V = 0 to +5 V, V = +5 V, f = 117 kHz, f = 10 kHz, unless otherwise specified..  
A
MIN  
MAX EE  
DD  
S
IN  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT774C  
TYP  
SPT774B  
TYP  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNITS  
DC ELECTRICAL CHARACTERISTICS  
Resolution  
VI  
VI  
VI  
VI  
VI  
VI  
12  
12  
Bits  
Linearity Error  
T = 0 to +70 °C  
A
±1  
±0.5  
LSB  
Differential Linearity  
No Missing Codes  
12  
12  
Bits  
Unipolar Offset; 10 V, 20 V  
Bipolar Offset; ±5 V, ±10 V  
Full Scale Calibration Error  
Full Scale Calibration Error  
+25 °C Adjustable to Zero  
+25 °C Adjustable to Zero  
+25 °C Adjustable to Zero  
No Adjustment to Zero  
±2  
±10  
±2  
±4  
LSB  
LSB  
1
1
0.30  
0.30  
% of FS  
T = 0 to +70 °C  
A
V
0.47  
0.37  
% of FS  
Temperature Coefficients  
Unipolar Offset  
Using Internal Reference  
V
V
V
±1.0  
±2.0  
±12  
±1.0  
±2.0  
±12  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Offset  
Full Scale Calibration  
Power Supply Rejection  
Max change in full  
scale calibration  
VI  
±0.5  
±0.5  
LSB  
+4.75 V<V <+5.25 V  
DD  
Analog Input Ranges  
Bipolar  
VI  
VI  
VI  
VI  
-5  
-10  
0
+5  
+10  
+10  
+20  
-5  
-10  
0
+5  
+10  
+10  
+20  
Volts  
Volts  
Volts  
Volts  
Unipolar  
0
0
Input Impedance  
10 Volt Span  
VI  
VI  
8.5  
35  
12  
50  
8.5  
35  
12  
50  
kΩ  
kΩ  
20 Volt Span  
SPT774  
SPT  
2
8/1/00  
ELECTRICAL SPECIFICATIONS  
T
= T  
to T  
, V = 0 to +5 V, V = +5 V, f = 117 kHz, f = 10 kHz, unless otherwise specified.  
A
MIN  
MAX EE  
DD  
S
IN  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT774C  
TYP  
SPT774B  
TYP  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNITS  
DC ELECTRICAL CHARACTERISTICS  
Power Supplies Operating  
Voltage Range  
V
V
IV  
IV  
+4.5  
+5.5  
+4.5  
+5.5  
Volts  
Volts  
DD  
2
V
DD  
V
DD  
EE  
Operating Current  
I
I
IV  
IV  
15  
24  
15  
24  
mA  
DD  
2
EE  
V
= +5 V  
167  
167  
µA  
EE  
Power Dissipation  
VI  
75  
120  
2.6  
75  
120  
2.6  
mW  
Internal Reference  
Voltage  
VI  
VI  
2.4  
0.5  
2.5  
2.4  
0.5  
2.5  
Volts  
mA  
3
Output Current  
DIGITAL CHARACTERISTICS  
Logic Inputs  
(CE,  
, R/ , Ao, 12/ )  
C 8  
CS  
Logic 0  
Logic1  
VI  
VI  
-0.5  
2.0  
+0.8  
5.5  
-0.5  
2.0  
+0.8  
5.5  
Volts  
Volts  
Current  
VI  
V
-5.0  
0. 1  
5
5.0  
-5.0  
0. 1  
5
5.0  
µA  
Capacitance  
Logic Outputs  
(DB11-DB0, STS)  
Logic 0  
pF  
(I  
(I  
= 1.6 mA)  
VI  
VI  
VI  
+0.4  
+5  
+0.4  
+5  
Volts  
Volts  
µA  
Sink  
Logic 1  
= 500 µA)  
+2.4  
-5  
+2.4  
-5  
SOURCE  
Leakage  
(High Z State,  
0.1  
5
0.1  
5
DB11-DB0 Only)  
Capacitance  
AC Accuracy  
V
pF  
f =117 kHz, f =10 kHz  
S
IN  
Spurious Free Dyn. Range  
Total Harmonic Distortion  
Signal-to-Noise Ratio  
Signal-to-Noise & Distortion  
(SINAD)  
V
V
V
V
73  
78  
-77  
72  
76  
78  
-77  
72  
dB  
dB  
dB  
dB  
-72  
-75  
69  
68  
71  
70  
71  
71  
Intermodulation Distortion f =20 kHz;  
V
-75  
-75  
dB  
IN  
f
=23 kHz  
IN2  
Note 1: Fixed 50 resistor from REF OUT to REF IN and REF OUT to BIP OFF.  
Note 2: V is optional and is only used to set the mode for the internal sample/hold. When not using V , the pin should be treated  
EE  
EE  
as a no connect. If V is connected to 0 to -15 V, aperture delay (t ) will increase from 20 ns (typ) to 4000 ns (typ).  
EE  
AP  
Note 3: Available for external loads; external load should not change during conversion.  
SPT774  
SPT  
3
8/1/00  
ELECTRICAL SPECIFICATIONS  
T
= T  
to T  
, V = 0 to +5 V, V = +5 V, f = 117 kHz, f = 10 kHz, unless otherwise specified.  
MAX EE DD S IN  
A
MIN  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT774C  
TYP  
SPT774B  
TYP  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNITS  
4
AC ELECTRICAL CHARACTERISTICS  
Convert Mode Timing  
t
t
STS Delay from CE  
CE Pulse Width  
VI  
VI  
60  
30  
200  
60  
30  
200  
ns  
ns  
DSC  
HEC  
50  
50  
50  
50  
t
t
to CE Setup  
VI  
VI  
VI  
VI  
20  
20  
0
20  
20  
0
ns  
ns  
ns  
ns  
CS  
CS  
SSC  
Low during CE High  
50  
50  
50  
50  
50  
50  
HSC  
t
R/ to CE Setup  
C
SRC  
HRC  
t
R/ Low During CE High  
C
20  
20  
t
t
t
Ao to CE Setup  
VI  
VI  
0
50  
0
50  
ns  
ns  
SAC  
Ao Valid During CE High  
5
20  
20  
HAC  
Conversion Time  
12-Bit Cycle  
C
VI  
VI  
7.5  
5.5  
8
5.9  
7.5  
5.5  
8
5.9  
µs  
µs  
8-Bit Cycle  
Read Mode Timing  
t
t
t
Access Time from CE  
Data Valid After CE Low  
Output Float Delay  
VI  
VI  
VI  
75  
35  
100  
150  
150  
75  
35  
100  
150  
150  
ns  
ns  
ns  
DD  
HD  
HL  
25  
50  
25  
50  
t
to CE Setup  
VI  
0
0
ns  
CS  
SSR  
t
t
t
R/ to CE Setup  
VI  
VI  
VI  
0
50  
0
0
50  
0
ns  
ns  
ns  
C
SRR  
SAR  
HSR  
Ao to CE Setup  
25  
25  
Valid After CE Low  
CS  
t
R/ High After CE Low  
C
VI  
0
0
ns  
HRR  
t
t
STS Delay After Data Valid  
VI  
VI  
75  
50  
150  
375  
75  
50  
150  
375  
ns  
ns  
HS  
Ao Valid after CE Low  
HAR  
Note 4: Time is measured from 50% level of digital transitions.  
Note 5: Includes acquisition time.  
Figure 1 - Convert Mode Timing Diagram  
Figure 2 - Read Mode Timing Diagram  
CE  
CE  
CS  
tSSR  
t
t
HSR  
HRR  
tHEC  
t SSC  
CS  
R/C  
t HSC  
t SRC  
R/C  
t SRR  
t HRC  
Ao  
Ao  
t SAR  
t
HAR  
tSAC  
t HAC  
STS  
STS  
t DSC  
tC  
t HD  
t HS  
HIGH  
DATA  
VALID  
DB11-DB0  
IMPEDANCE  
High Impedance  
DB11-DB0  
tDD  
tHL  
SPT774  
SPT  
4
8/1/00  
ELECTRICAL SPECIFICATIONS  
T
= T  
to T  
, V = 0 to +5 V, V = +5 V, f = 117 kHz, f = 10 kHz, unless otherwise specified.  
MAX EE DD S IN  
A
MIN  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT774C  
TYP  
SPT774B  
TYP  
PARAMETER  
MIN  
MAX  
MIN  
MAX UNITS  
4
AC ELECTRICAL CHARACTERISTICS  
Stand-Alone Mode Timing  
t
t
Low R/ Pulse Width  
VI  
VI  
25  
25  
ns  
C
HRL  
STS Delay from R/  
200  
200 ns  
C
DS  
t
t
t
t
Data Valid After R/ Low  
VI  
VI  
VI  
VI  
25  
75  
25  
75  
ns  
375 ns  
ns  
C
HDR  
STS Delay After Data Valid  
150  
375  
150  
150  
HS  
High R/ Pulse Width  
100  
100  
C
HRH  
Data Access Time  
150 ns  
DDR  
Sample-and-Hold  
Aperture Delay  
Aperture Uncertainty Time  
V
V
= +5 V  
= +5 V  
IV  
V
20  
300  
20  
300  
ns  
ps, RMS  
EE  
EE  
TEST LEVEL  
TEST PROCEDURE  
100% production tested at the specified temperature.  
TEST LEVEL CODES  
All electrical characteristics are subject to the  
following conditions:  
I
II  
100% production tested at T =25 °C, and sample  
A
tested at the specified temperatures.  
All parameters having min/max specifications  
are guaranteed. The Test Level column indi-  
cates the specific device testing actually per-  
formed during production and Quality Assur-  
ance inspection. Any blank section in the data  
column indicates that the specification is not  
tested at the specified condition.  
III  
QA sample tested only at the specified temperatures.  
IV  
Parameter is guaranteed (but not tested) by design  
and characterization data.  
V
Parameter is a typical value for information purposes  
only.  
VI  
100% production tested at T = 25 °C. Parameter is  
A
guaranteed over specified temperature range.  
Figure 3 - Low Pulse for R/ - Outputs Enabled  
Figure 4 - High Pulse for R/ - Outputs Enabled While  
C
C
After Conversion  
R/ is High, Otherwise High Impedance  
C
t
HRL  
R/C  
R/C  
t
t
HRH  
DS  
t
DS  
STS  
t
C
t
t
STS  
DDR  
HDR  
t
C
t
t
HS  
HDR  
HIGH-Z  
HIGH-Z  
DATA VALID  
DB11-DB0  
DB11-DB0  
DATA VALID  
DATA VALID  
SPT774  
SPT  
5
8/1/00  
other 774 circuits will cause a transient load current on the  
sample-and-hold which will upset the buffer output and may  
add error to the conversion itself.  
CIRCUIT OPERATION  
The SPT774 is a complete 12-bit analog-to-digital converter  
that consists of a single chip version of the industry standard  
774. This single chip contains a precision 12-bit capacitor  
digital-to-analog converter (CDAC) with voltage reference,  
comparator, successiveapproximationregister(SAR), sample-  
and-hold, clock, output buffers and control circuitry to make it  
possible to use the SPT774 with few external components.  
Furthermore, the isolation of the input after the acquisition  
time in the SPT774 allows the user an opportunity to release  
the hold on an external sample-and-hold and start it tracking  
the next sample. This increases system throughput with the  
user’s existing components.  
WhenthecontrolsectionoftheSPT774initiatesaconversion  
command, the clock is enabled and the successive-approxi-  
mation register is reset to all zeros. Once the conversion  
cycle begins, it cannot be stopped or restarted and data is not  
available from the output buffers.  
TYPICAL INTERFACE CIRCUIT  
The SPT774 is a complete A/D converter that is fully opera-  
tional when powered up and issued a Start Convert Signal.  
Only a few external components are necessary as shown in  
figures 5 and 6. The two typical interface circuits are for  
operating the SPT774 in either an unipolar or bipolar input  
mode. Information on these connections and on conditions  
concerning board layout to achieve the best operation are  
discussed below.  
The SAR, timed by the clock, sequences through the conver-  
sion cycle and returns an end-of-convert flag to the control  
section of the ADC. The clock is then disabled by the control  
section, the output status goes low, and the control section is  
enabled to allow the data to be read by external command.  
For each application of this device, strict attention must be  
given to power supply decoupling, board layout (to reduce  
pickup between analog and digital sections), and grounding.  
Digital timing, calibration and the analog signal source must  
be considered for correct operation.  
The internal SPT774 12-bit CDAC is sequenced by the SAR  
starting from the MSB to the LSB at the beginning of the  
conversion cycle to provide an output voltage from the CDAC  
thatisequaltotheinputsignalvoltage(whichisdividedbythe  
input voltage divider network). The comparator determines  
whether the addition of each successively-weighted bit volt-  
age causes the CDAC output voltage summation to be  
greater or less than the input voltage; if the sum is less, the  
bit is left on; if more, the bit is turned off. After testing all the  
bits, the SAR contains a 12-bit binary code which accurately  
represents the input signal to within ±1/2 LSB.  
POWER SUPPLIES  
The supply voltage for the SPT774 must be kept as quiet as  
possiblefromnoisepickupandalsoregulatedfromtransients  
or drops. Because the part has 12-bit accuracy, voltage  
spikes on the supply lines can cause several LSB deviations  
on the output. Switching power supply noise can be a  
problem. Careful filtering and shielding should be employed  
to prevent the noise from being picked up by the converter.  
The internal reference provides the voltage reference to the  
CDACwithexcellentstabilityovertemperatureandtime. The  
reference is trimmed to 2.5 volts and can supply at least  
0.5 mA to an external load. Any external load on the SPT774  
reference must remain constant during conversion.  
V
DD  
should be bypassed with a 10 µF tantalum capacitor  
located close to the converter to filter noise and counter the  
problems caused by the variations in supply current. V is  
EE  
The sample-and-hold feature is a bonus of the CDAC archi-  
tecture. Therefore the majority of the S/H specifications are  
included within the A/D specifications.  
only used as a logic input and is immune to typical supply  
variation.  
GROUNDING CONSIDERATIONS  
Although the sample-and-hold circuit is not implemented in  
the classical sense, the sampling nature of the capacitive  
DAC makes the SPT774 appear to have a built-in sample-  
and-hold. This sample-and-hold action substantially in-  
creases the signal bandwidth of the SPT774 over that of  
similar competing devices.  
Resistance of any path between the analog and digital  
grounds should be as low as possible to accommodate the  
ground currents present with this device.  
To achieve specified accuracy, a double-sided printed circuit  
board with a copper ground plane on the component side is  
recommended. Keep analog signal traces away from digital  
lines. It is best to lay the PC board out such that there is an  
analog section and a digital section with a single point ground  
connection between the two through an RF bead located as  
closetothedeviceaspossible. Ifpossible, runanalogsignals  
between ground traces and cross digital lines at right angles  
only.  
Note that even though the user may use an external sample-  
and-hold for very high frequency inputs, the internal sample-  
and-hold still provides a very useful isolation function. Once  
the internal sample is taken by the CDAC capacitance, the  
input of the SPT774 is disconnected from the user’s sample-  
and-hold. This prevents transients occurring during conver-  
sion from affecting the attached sample-and-hold buffer. All  
SPT774  
SPT  
6
8/1/00  
The analog and digital common pins should be tied together  
as close to the package as possible to guarantee best  
performance. The code dependent currents flow through the  
Thegainadjustmentshouldbedoneatpositivefullscale.The  
ideal input corresponding to the last code change is applied.  
This is 1 and 1/2 LSB below the nominal full scale which is  
+9.9963 V for the 10 V range and +19.9927 V for the 20 V  
range. Adjust the gain potentiometer R2 for flicker between  
codes 1111 1111 1110 and 1111 1111 1111. If calibration is  
not necessary for the intended application, replace R2 with a  
50 , 1% metal film resistor and remove the network from the  
BIPOFFpin. ConnecttheBIPOFFpintoAGND. Connectthe  
analog input to the 10 V IN pin for the 0 to 10 V range or to the  
20 V IN pin for the 0 to 20 V range.  
V
DD  
terminal and not through the analog and digital common  
pins.  
RANGE CONSIDERATIONS  
The SPT774 may be operated by a microprocessor or in the  
stand-alone mode. The part has four standard input ranges:  
0 V to +10 V, 0 V to +20 V, ±5 V and ±10 V. The maximum  
errors that are listed in the specifications for gain and offset  
may be adjusted externally to zero as explained in the next  
two sections.  
BIPOLAR  
The gain and offset errors listed in the specification may be  
adjusted to zero using the potentiometers R1 and R2. (See  
figure 6.) If adjustment is not needed, either or both pots may  
be replaced by a 50 , 1% metal film resistor.  
CALIBRATION & CONNECTION PROCEDURES  
UNIPOLAR  
The calibration procedure consists of adjusting the  
converter’s most negative output to its ideal value for offset  
adjustment and then adjusting the most positive output to its  
ideal value for gain adjustment.  
Tocalibrate, connecttheanaloginputsignaltothe10VINpin  
for a ±5 V range or to the 20 V IN pin for a ±10 V range. First  
apply a DC input voltage 1/2 LSB above negative full scale  
which is -4.9988 V for the ±5 V range or -9.9976 V for the ±10  
V range. Adjust the offset potentiometer R1 for flicker be-  
tween output codes 0000 0000 0000 and 0000 0000 0001.  
Next, apply a DC input voltage 1 and 1/2 LSB below positive  
full scale which is +4.9963 V for the ±5 V range or +9.9927 V  
for the ±10 V range. Adjust the gain potentiometer R2 for  
flicker between codes 1111 1111 1110 and 1111 1111 1111.  
Starting with offset adjustment and referring to figure 5, the  
midpoint of the first LSB increment should be positioned at  
the origin to get an output code of all 0s. To do this, an input  
of +1/2 LSB or +1.22 mV for the 10 V range and +2.44 mV for  
the 20 V range should be applied to the SPT774. Adjust the  
offset potentiometer R1 for code transition flickers between  
0000 0000 0000 and 0000 0000 0001.  
Figure 5 - Unipolar Input Connections  
Figure 6 - Bipolar Input Connections  
Output Bits  
Output Bits  
R/C  
R/C  
CS  
Ao  
Nibble A  
Nibble B  
Nibble C  
CS  
Ao  
Nibble A  
Nibble B  
Nibble C  
Control  
Logic  
Control  
Logic  
Three-State Buffers And Control  
Three-State Buffers And Control  
12/8  
CE  
12/8  
CE  
12-Bits  
12-Bits  
STS  
V
12-Bit SAR  
Oscillator  
12-Bit SAR  
Oscillator  
STS  
V
+5 V  
+5 V  
R1  
DD  
DD  
100 k  
.1 µF  
DGND  
Strobe  
Strobe  
.1 µF  
-15 V  
+15 V  
12-Bits  
12-Bits  
DGND  
Comp  
Comp  
0 to 10 V  
CDAC  
Sample/Hold  
MSB  
±5 V  
CDAC  
10 V In  
20 V In  
Sample/Hold  
MSB  
10 V In  
LSB  
Analog  
Inputs  
LSB  
Analog  
Inputs  
100 kΩ  
20 V In  
BIP Off  
0 to 20 V  
BIP Off  
±10 V  
100 Ω  
100  
R1  
Offset/Gain  
Trim Network  
Offset/Gain  
Trim Network  
Ref  
Ref  
V
Out  
Ref  
Ref  
Amp  
V
Out  
Ref  
Amp  
Ref  
R2  
100 Ω  
(Calibration)  
100 Ω  
V
In  
R1  
Ref  
V
In  
Ref  
V
EE  
V
EE  
SPT774  
SPT  
7
8/1/00  
ALTERNATIVE  
Figure 7 - Interfacing the SPT774 to an 8-Bit Data Bus  
In some applications, a full scale of 10.24 V (for an LSB of  
2.5 mV)or20.48V(foranLSBof5.0mV)ismoreconvenient.  
In the unipolar mode of operation, replace R2 with a 200 Ω  
potentiometer and add 150 in series with the 10 V IN pin for  
10.24 V input range or 500 in series with the 20 V IN pin for  
20.48 V input range. In bipolar mode of operation, replace R1  
with a 500 potentiometer (in addition to the previous  
changes). The calibration will remain similar to the standard  
calibration procedure.  
Address Bus  
Ao  
~
STS  
MSB  
12/8  
Ao  
Data  
Bus  
CONTROLLING THE SPT774  
The SPT774 can be operated by most microprocessor sys-  
tems due to the control input pins and on-chip logic. It may  
alsobeoperatedinthestand-alonemodeandenabledbythe  
R/ input pin. Full µP control consists of selecting an 8 or  
C
12-bitconversioncycle,initiatingtheconversion,andreading  
the output data when ready. The output read has the options  
of choosing either 12-bits at once or 8 bits followed by  
4-bits in a left-justified format. AllfivecontrolinputsareTTL/  
LSB  
DIG  
COM  
CMOS compatible and include 12/ ,  
, Ao, R/ and CE.  
C
CS  
8
CONTROLLED OPERATION  
The use of these inputs in controlling the converter’s opera-  
tionsisshownintableI, andtheinternalcontrollogicisshown  
in a simplified schematic in figure 10.  
CONVERSION LENGTH  
A conversion start transition latches the state of Ao as shown  
in figure 7 and table I. The latched state determines if the  
conversion stops with 8 bits (Ao high) or continues for 12 bits  
(Aolow). Ifall12bitsarereadfollowingan8-bitconversion, the  
threeLSBswillbealogic0andDB3willbealogic1.Aoislatched  
because it is also involved in enabling the output buffers as  
will be explained later. No other control inputs are latched.  
STAND-ALONE OPERATION  
The simplest interface is a control line connected to R/ . The  
output controls must be tied to known states as follows: CE  
C
and12/ arewiredhigh, Aoand  
arewiredlow. Theoutput  
CS  
8
C
data arrives in words of 12-bits each. The limits on R/ duty  
cycle are shown in figures 3 and 4. It may have a duty cycle  
within and including the extremes shown in the specifica-  
C
tions. In general, data may be read when R/ is high unless  
CONVERSION START  
STS is also high, indicating a conversion is in progress.  
A conversion may be initiated by a logic transition on any of  
Table I - Truth Table for the SPT774 Control Inputs  
C
, R/ , as shown in table I. The last  
the three inputs: CE,  
CS  
of the three to reach the correct state starts the conversions,  
so one, two or all three may be dynamically controlled. The  
nominal delay from each is the same and all three may  
change state simultaneously. In order to assure that a par-  
ticular input controls the start of conversion, the other two  
should be set up at least 50 ns earlier. Refer to the convert  
modetimingspecifications.TheConvertStarttimingdiagram  
is illustrated in figure 1.  
Operation  
CE  
0
CS  
X
R/C  
X
12/8  
X
Ao  
X
X
0
None  
X
1
X
X
None  
0
0
X
Initiate 12 bit conversion  
Initiate 8 bit conversion  
Initiate 12 bit conversion  
Initiate 8 bit conversion  
Initiate 12 bit conversion  
Initiate 8 bit conversion  
Enable 12 bit Output  
Enable 8 MSB's Only  
0
0
X
1
1
1
1
1
1
1
1
0
X
0
0
X
1
0
0
0
0
0
X
0
The output signal STS is the status flag and goes high only  
when a conversion is in progress. While STS is high, the  
output buffers remain in a high impedance state so that data  
can not be read. Also, when STS is high, an additional Start  
Convert will not reset the converter or reinitiate a conversion.  
Note, if Ao changes state after a conversion begins, an  
additional Start Convert command will latch the new start of  
Ao and possibly cause a wrong cycle length for that conver-  
sion (8 versus 12 bits).  
X
1
1
1
1
1
X
0
0
0
1
Enable 4 LSB's Plus 4  
Trailing Zeroes  
SPT774  
SPT  
8
8/1/00  
READING THE OUTPUT DATA  
SAMPLE-AND-HOLD (S/H) CONTROL MODE  
Theoutputdatabuffersremaininahighimpedancestateuntil  
This control mode is provided to allow full use of the internal  
S/H, eliminating the need for an external S/H in most applica-  
tions. The SPT774 in the control mode also eliminates the  
need for one of the control signals, usually the convert  
command. The command that puts the internal S/H in the  
hold state also initiates a conversion, reducing time con-  
straints in many systems. As soon as the conversion is  
completed the internal S/H immediately begins slewing to  
track the input signal. See figure 9.  
C
the following four conditions are met: R/ is high, STS is low,  
CE is high, and is low. The data lines become active in  
CS  
response to the four conditions and output data according to  
8
the conditions of 12/ and Ao. The timing diagram for this  
8
process is shown in figure 2. When 12/ is high, all 12 data  
outputs become active simultaneously and the Ao input is  
ignored. This is for easy interface to a 12 or 16-bit data bus.  
The 12/ input is usually tied high or low, although it is  
8
8
TTL/CMOS compatible. When 12/ is low, the output is  
In the control mode it is assumed that during the required 1.4  
µs acquisition time the signal is not slewing faster than the  
slew rate of the SPT774. No assumption is made about the  
input level after the convert command arrives since the input  
signal is sampled and conversion begins immediately after  
the convert command. This means that the convert com-  
mand can be used to switch an input multiplexer or change  
gains on a programmable gain amplifier, allowing the input  
signal to settle before the next acquisition at the end of the  
conversion. Because aperture jitter is minimized by the  
internal S/H, a high input frequency can be converted without  
an external S/H. See table II.  
separated into two 8-bit bytes as shown below.  
8
Figure 8 - Output When 12/ Is Low  
BYTE 1  
BYTE 2  
X X X X  
X X X X  
X X X X O O O O  
MSB  
LSB  
This configuration makes it easy to connect to an 8-bit data  
bus as shown in figure 7. The Ao control can be connected to  
the least significant bit of the address bus in order to store the  
outputdataintotwoconsecutivememorylocations. WhenAo  
is pulled low, the 8 MSBs are enabled only. When Ao is high,  
the 4 MSBs are disabled, bits 4 through 7 are forced to a zero  
and the four LSBs are enabled. The two byte format is left  
justified data as shown above and can be considered to have  
a decimal point or binary to the left of byte 1.  
Table II - Conversion Timing (V = +5 V)  
EE  
S/H Control Mode  
Parameter  
Min  
Typ Max Units  
Throughput Time (t + )  
AQ tC  
12-Bit Conversions  
8-Bit Conversions  
8
6
8.5  
6.3  
µs  
µs  
Ao may be toggled without damage to the converter at any  
time. Break-before-make action is guaranteed between the  
two data bytes. This assures that the outputs in figure 7 will  
never be enabled at the same time.  
Conversion Time (t )  
C
12-Bit Conversions  
8-Bit Conversions  
6.4  
4.4  
1.4  
20  
µs  
µs  
µs  
ns  
ns  
Acquisition Time(t  
)
AC  
Aperture Delay (t  
)
AP  
In figure 2, it can be seen that a read operation usually begins  
after the conversion is completed and STS is low. If earlier  
access is needed, the read can begin no later than the  
Aperture Uncertainty (t )  
0.3  
J
addition of time t  
and t before STS goes low.  
HS  
DD  
Figure 9 - S/H Control Mode Timing (V = +5 V)  
EE  
R/C  
t
C
t
AP  
Signal Acquisition  
Conversion  
Signal Acquisition  
t
AQ  
SPT774  
SPT  
9
8/1/00  
Figure 10 - Control Logic  
Nibble B Zero  
Override  
Nibble A,B  
Input Buffers  
12/8  
CS  
Nibble C  
Read Control  
A
R/C  
CE  
H
D
Q
CK  
R
EOC8  
CK  
Delay  
Q
STS  
D
Q
AO Latch  
EOC12  
PACKAGE OUTLINES  
28-Lead PDIP  
INCHES  
MILLIMETERS  
MIN MAX  
SYMBOL  
MIN  
MAX  
0.250  
A
B
C
D
E
F
G
H
I
6.35  
5.08  
0.115  
0.200  
0.022  
0.100  
0.070  
0.015  
0.195  
0.625  
0.580  
1.565  
0.040  
2.92  
0.014  
0.36  
0.56  
2.54  
K
0.030  
0.008  
0.125  
0.600  
0.485  
1.380  
0.005  
0.76  
0.20  
1.78  
0.38  
28  
3.18  
4.95  
15.24  
12.32  
35.05  
0.13  
15.88  
14.73  
39.75  
1.02  
I
J
1
K
J
H
G
A
B
F
C
D
E
SPT774  
SPT  
10  
8/1/00  
PACKAGE OUTLINES  
28-Lead Sidebrazed  
28  
1
H
INCHES  
MILLIMETERS  
MIN MAX  
2.36  
SYMBOL  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
0.077  
0.016  
0.095  
0.093  
0.020  
0.105  
.050 typ  
0.060  
0.235  
1.412  
0.605  
0.012  
0.620  
1.96  
0.41  
2.41  
0.51  
2.67  
I
J
1.27 typ  
1.52  
0.040  
0.215  
1.388  
0.585  
0.009  
0.600  
1.02  
5.46  
G
5.97  
A
35.26  
14.86  
0.23  
35.86  
15.37  
0.30  
E
F
J
15.24  
15.75  
C
B
D
28-Lead SOIC  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
0.696  
0.004  
0.712  
0.012  
.050 typ  
0.019  
0.012  
0.104  
0.050  
0.419  
0.299  
17.68  
0.10  
18.08  
0.30  
28  
1.27 typ  
0.48  
0.014  
0.009  
0.080  
0.016  
0.394  
0.291  
0.36  
0.23  
2.03  
0.41  
10.01  
7.39  
I
H
0.30  
2.64  
1
1.27  
10.64  
7.59  
A
H
F
B
C
D
G
E
SPT774  
SPT  
11  
8/1/00  
PIN ASSIGNMENTS  
PIN FUNCTIONS  
NAME  
FUNCTION  
1
2
3
V
DD  
STS 28  
DB11 27  
DB10 26  
DB9 25  
DB8 24  
DB7 23  
DB6 22  
DB5 21  
DB4 20  
DB3 19  
DB2 18  
DB1 17  
DB0 16  
DGND 15  
V
Logic Supply Voltage, Nominally +5 V  
Data Mode Selection  
Chip Selection  
12/8  
CS  
DD  
12/  
CS  
Ao  
8
4
5
Ao  
Byte Address/Short Cycle  
Read/Convert  
R/C  
CE  
N/C  
R/  
C
6
7
CE  
Chip Enable  
V
Mode Control Voltage, Nominally +5 V  
Reference Output, Nominally +2.5 V  
Analog Ground  
EE  
8
9
REF OUT  
AGND  
REF OUT  
AGND  
10 REF IN  
11  
REF IN  
N/C  
Reference Input  
V
EE  
Pin Not Connected to Device  
Bipolar Offset  
12 BIP OFF  
13 10 V IN  
BIP OFF  
10 V IN  
20 V IN  
DGND  
10 Volt Analog Input  
20 Volt Analog Input  
Digital Ground  
14 20 V IN  
28-LEAD DIP/SOIC  
DB0 - DB11 Digital Data Output  
DB11 - MSB  
DB0 - LSB  
STS  
Status  
ORDERING INFORMATION  
LINEARITY ERROR  
PACKAGE  
TYPE  
PART NUMBER  
TEMPERATURE RANGE  
MAX  
SPT774BCN  
0 to +70 °C  
±1/2 LSB  
28L Plastic DIP  
SPT774BCJ  
SPT774BCS  
SPT774CCN  
SPT774CCJ  
SPT774CCS  
0 to +70 °C  
0 to +70 °C  
0 to +70 °C  
0 to +70 °C  
0 to +70 °C  
±1/2 LSB  
±1/2 LSB  
±1 LSB  
28L Sidebrazed DIP  
28L SOIC  
28L Plastic DIP  
28L Sidebrazed DIP  
28L SOIC  
±1 LSB  
±1 LSB  
SignalProcessingTechnologies,Inc.reservestherighttochangeproductsandspecificationswithoutnotice.Permissionisherebyexpressly  
granted to copy this literature for informational purposes only. Copying this material for any other use is strictly prohibited.  
WARNING - LIFE SUPPORT APPLICATIONS POLICY - SPT products should not be used within Life Support Systems without the specific  
written consent of SPT. A Life Support System is a product or system intended to support or sustain life which, if it fails, can be reasonably  
expected to result in significant personal injury or death.  
Signal Processing Technologies believes that ultrasonic cleaning of its products may damage the wire bonding, leading to device  
failure. It is therefore not recommended, and exposure of a device to such a process will void the product warranty.  
SPT774  
SPT  
12  
8/1/00  

相关型号:

SPT7750

8-BIT, 500 MSPS, FLASH A/D CONVERTER
FAIRCHILD

SPT7750

8-BIT, 500 MSPS, FLASH A/D CONVERTER
CADEKA

SPT7750AIK

8-BIT, 500 MSPS, FLASH A/D CONVERTER
FAIRCHILD

SPT7750AIK

8-BIT, 500 MSPS, FLASH A/D CONVERTER
CADEKA

SPT7750BCU

8-BIT, 500 MSPS, FLASH A/D CONVERTER
FAIRCHILD

SPT7750BIK

8-BIT, 500 MSPS, FLASH A/D CONVERTER
FAIRCHILD

SPT7750BIK

8-BIT, 500 MSPS, FLASH A/D CONVERTER
CADEKA

SPT7755

8-BIT, 750 MSPS, FLASH A/D CONVERTER
CADEKA

SPT7755AIK

8-BIT, 750 MSPS, FLASH A/D CONVERTER
CADEKA

SPT7755AIKX

A/D Converter, 8-Bit, 1 Func, Bipolar, PQFP80,
FAIRCHILD

SPT7755BCU

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, DIE
FAIRCHILD

SPT7755BIK

8-BIT, 750 MSPS, FLASH A/D CONVERTER
CADEKA