SSD1306Z [ETC]

128 x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller;
SSD1306Z
型号: SSD1306Z
厂家: ETC    ETC
描述:

128 x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller

文件: 总65页 (文件大小:1839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SOLOMON SYSTECH  
SEMICONDUCTOR TECHNICAL DATA  
SSD1306  
Advance Information  
128 x 64 Dot Matrix  
OLED/PLED Segment/Common Driver with Controller  
This document contains information on a new product. Specifications and information herein are subject to change without  
notice.  
http://www.solomon-systech.com  
SSD1306  
Rev 1.1  
P 1/59  
Apr 2008  
Copyright © 2008 Solomon Systech Limited  
CONTENTS  
1
GENERAL DESCRIPTION .......................................................................................................6  
FEATURES...................................................................................................................................6  
ORDERING INFORMATION...................................................................................................6  
BLOCK DIAGRAM ....................................................................................................................7  
DIE PAD FLOOR PLAN ............................................................................................................8  
PIN ARRANGEMENT..............................................................................................................11  
2
3
4
5
6
6.1  
SSD1306TR1 PIN ASSIGNMENT.......................................................................................................................... 11  
7
8
PIN DESCRIPTION ..................................................................................................................13  
FUNCTIONAL BLOCK DESCRIPTIONS.............................................................................15  
8.1  
MCU INTERFACE SELECTION.............................................................................................................................. 15  
MCU Parallel 6800-series Interface.......................................................................................................... 15  
MCU Parallel 8080-series Interface.......................................................................................................... 16  
MCU Serial Interface (4-wire SPI)............................................................................................................ 17  
MCU Serial Interface (3-wire SPI)............................................................................................................ 18  
MCU I2C Interface..................................................................................................................................... 19  
COMMAND DECODER ......................................................................................................................................... 22  
OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR..................................................................................... 22  
FR SYNCHRONIZATION ....................................................................................................................................... 23  
RESET CIRCUIT................................................................................................................................................... 23  
SEGMENT DRIVERS / COMMON DRIVERS ............................................................................................................ 24  
GRAPHIC DISPLAY DATA RAM (GDDRAM)..................................................................................................... 25  
SEG/COM DRIVING BLOCK ............................................................................................................................... 26  
POWER ON AND OFF SEQUENCE ........................................................................................................................ 27  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9
COMMAND TABLE.................................................................................................................28  
9.1  
DATA READ / WRITE .......................................................................................................................................... 33  
10  
COMMAND DESCRIPTIONS .............................................................................................34  
10.1 FUNDAMENTAL COMMAND ................................................................................................................................ 34  
10.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh) .................................................34  
10.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh) ................................................34  
10.1.3 Set Memory Addressing Mode (20h).......................................................................................................... 34  
10.1.4 Set Column Address (21h) ......................................................................................................................... 35  
10.1.5 Set Page Address (22h).............................................................................................................................. 36  
10.1.6 Set Display Start Line (40h~7Fh) .............................................................................................................. 36  
10.1.7 Set Contrast Control for BANK0 (81h)...................................................................................................... 36  
10.1.8 Set Segment Re-map (A0h/A1h) ................................................................................................................. 36  
10.1.9 Entire Display ON (A4h/A5h).................................................................................................................. 37  
10.1.10  
10.1.11  
10.1.12  
10.1.13  
10.1.14  
10.1.15  
10.1.16  
10.1.17  
10.1.18  
10.1.19  
Set Normal/Inverse Display (A6h/A7h).................................................................................................. 37  
Set Multiplex Ratio (A8h)....................................................................................................................... 37  
Set Display ON/OFF (AEh/AFh) ........................................................................................................... 37  
Set Page Start Address for Page Addressing Mode (B0h~B7h)............................................................. 37  
Set COM Output Scan Direction (C0h/C8h).......................................................................................... 37  
Set Display Offset (D3h) ........................................................................................................................ 37  
Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)............................................................... 40  
Set Pre-charge Period (D9h) ................................................................................................................. 40  
Set COM Pins Hardware Configuration (DAh)..................................................................................... 40  
Set VCOMH Deselect Level (DBh) ........................................................................................................... 43  
Solomon Systech  
Apr 2008 P 2/59  
Rev 1.1 SSD1306  
10.1.20  
10.1.21  
NOP (E3h) ............................................................................................................................................. 43  
Status register Read ............................................................................................................................... 43  
10.2 GRAPHIC ACCELERATION COMMAND................................................................................................................. 44  
10.2.1 Horizontal Scroll Setup (26h/27h) ............................................................................................................. 44  
10.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah).....................................................................45  
10.2.3 Deactivate Scroll (2Eh).............................................................................................................................. 46  
10.2.4 Activate Scroll (2Fh).................................................................................................................................. 46  
10.2.5 Set Vertical Scroll Area(A3h) .................................................................................................................... 46  
11  
MAXIMUM RATINGS..........................................................................................................47  
DC CHARACTERISTICS.....................................................................................................48  
AC CHARACTERISTICS.....................................................................................................49  
APPLICATION EXAMPLE..................................................................................................55  
PACKAGE INFORMATION................................................................................................56  
12  
13  
14  
15  
15.1 SSD1306TR1 DETAIL DIMENSION..................................................................................................................... 56  
15.2 SSD1306Z DIE TRAY INFORMATION.................................................................................................................. 58  
SSD1306  
Rev 1.1  
P 3/59  
Apr 2008  
Solomon Systech  
TABLES  
TABLE 5-1 : SSD1306Z BUMP DIE PAD COORDINATES...................................................................................................... 10  
TABLE 6-1 : SSD1306TR1 PIN ASSIGNMENT TABLE.......................................................................................................... 12  
TABLE 7-1 : MCU BUS INTERFACE PIN SELECTION............................................................................................................ 14  
TABLE 8-1 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE ...................................................... 15  
TABLE 8-2 : CONTROL PINS OF 6800 INTERFACE................................................................................................................. 15  
TABLE 8-3 : CONTROL PINS OF 8080 INTERFACE................................................................................................................. 17  
TABLE 8-4 : CONTROL PINS OF 4-WIRE SERIAL INTERFACE................................................................................................. 17  
TABLE 8-5 : CONTROL PINS OF 3-WIRE SERIAL INTERFACE................................................................................................. 18  
TABLE 9-1: COMMAND TABLE ........................................................................................................................................... 28  
TABLE 9-2 : READ COMMAND TABLE................................................................................................................................. 33  
TABLE 9-3 : ADDRESS INCREMENT TABLE (AUTOMATIC) ................................................................................................... 33  
TABLE 10-1 : EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH NO REMAP.......................................... 38  
TABLE 10-2 :EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH REMAP ................................................ 39  
TABLE 10-3 : COM PINS HARDWARE CONFIGURATION ..................................................................................................... 40  
TABLE 11-1 : MAXIMUM RATINGS (VOLTAGE REFERENCED TO VSS)................................................................................ 47  
TABLE 12-1 : DC CHARACTERISTICS.................................................................................................................................. 48  
TABLE 13-1 : AC CHARACTERISTICS.................................................................................................................................. 49  
TABLE 13-2 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS......................................................... 50  
TABLE 13-3 : 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS......................................................... 51  
TABLE 13-4 : 4-WIRE SERIAL INTERFACE TIMING CHARACTERISTICS ................................................................................ 52  
TABLE 13-5 : 3-WIRE SERIAL INTERFACE TIMING CHARACTERISTICS ................................................................................ 53  
TABLE 13-6 :I2C INTERFACE TIMING CHARACTERISTICS.................................................................................................... 54  
Solomon Systech  
Apr 2008 P 4/59  
Rev 1.1 SSD1306  
FIGURES  
FIGURE 4-1 SSD1306 BLOCK DIAGRAM .............................................................................................................................. 7  
FIGURE 5-1 : SSD1306Z DIE DRAWING ............................................................................................................................... 8  
FIGURE 5-2 : SSD1306Z ALIGNMENT MARK DIMENSIONS .................................................................................................... 9  
FIGURE 6-1 : SSD1306TR1 PIN ASSIGNMENT ................................................................................................................. 11  
FIGURE 7-1 PIN DESCRIPTION............................................................................................................................................. 13  
FIGURE 8-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ....................................................................... 16  
FIGURE 8-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE......................................................... 16  
FIGURE 8-3 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE .......................................................... 16  
FIGURE 8-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ......................................................... 17  
FIGURE 8-5 : WRITE PROCEDURE IN 4-WIRE SERIAL INTERFACE MODE............................................................................... 18  
FIGURE 8-6 : WRITE PROCEDURE IN 3-WIRE SERIAL INTERFACE MODE............................................................................... 18  
FIGURE 8-7 : I2C-BUS DATA FORMAT .................................................................................................................................. 20  
FIGURE 8-8 : DEFINITION OF THE START AND STOP CONDITION ......................................................................................... 21  
FIGURE 8-9 : DEFINITION OF THE ACKNOWLEDGEMENT CONDITION ................................................................................... 21  
FIGURE 8-10 : DEFINITION OF THE DATA TRANSFER CONDITION ......................................................................................... 21  
FIGURE 8-11 : OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR .............................................................................. 22  
FIGURE 8-12 : SEGMENT OUTPUT WAVEFORM IN THREE PHASES ....................................................................................... 24  
FIGURE 8-13 : GDDRAM PAGES STRUCTURE OF SSD1306................................................................................................ 25  
FIGURE 8-14 : ENLARGEMENT OF GDDRAM (NO ROW RE-MAPPING AND COLUMN-REMAPPING)...................................... 25  
FIGURE 8-15 : IREF CURRENT SETTING BY RESISTOR VALUE ............................................................................................. 26  
FIGURE 8-16 : THE POWER ON SEQUENCE.......................................................................................................................... 27  
FIGURE 8-17 : THE POWER OFF SEQUENCE ........................................................................................................................ 27  
FIGURE 10-1 : ADDRESS POINTER MOVEMENT OF PAGE ADDRESSING MODE ..................................................................... 34  
FIGURE 10-2 : EXAMPLE OF GDDRAM ACCESS POINTER SETTING IN PAGE ADDRESSING MODE (NO ROW AND COLUMN-  
REMAPPING) ............................................................................................................................................................... 34  
FIGURE 10-3 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESSING MODE ......................................................... 35  
FIGURE 10-4 : ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESSING MODE.............................................................. 35  
FIGURE 10-5 : EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT .............................................................. 36  
FIGURE 10-6 :TRANSITION BETWEEN DIFFERENT MODES.................................................................................................... 37  
FIGURE 10-7 : HORIZONTAL SCROLL EXAMPLE: SCROLL RIGHT BY 1 COLUMN................................................................. 44  
FIGURE 10-8 : HORIZONTAL SCROLL EXAMPLE: SCROLL LEFT BY 1 COLUMN ................................................................... 44  
FIGURE 10-9 : HORIZONTAL SCROLLING SETUP EXAMPLE................................................................................................... 44  
FIGURE 10-10 : CONTINUOUS VERTICAL AND HORIZONTAL SCROLLING SETUP EXAMPLE.................................................. 45  
FIGURE 13-1 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS...................................................................... 50  
FIGURE 13-2 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS................................................................................ 51  
FIGURE 13-3 : 4-WIRE SERIAL INTERFACE CHARACTERISTICS............................................................................................. 52  
FIGURE 13-4 : 3-WIRE SERIAL INTERFACE CHARACTERISTICS............................................................................................. 53  
FIGURE 13-5 : I2C INTERFACE TIMING CHARACTERISTICS.................................................................................................. 54  
FIGURE 14-1 : APPLICATION EXAMPLE OF SSD1306Z ....................................................................................................... 55  
FIGURE 15-1 SSD1306TR1 DETAIL DIMENSION ................................................................................................................ 56  
FIGURE 15-2 : SSD1306Z DIE TRAY INFORMATION ............................................................................................................ 58  
SSD1306  
Rev 1.1  
P 5/59  
Apr 2008  
Solomon Systech  
1
GENERAL DESCRIPTION  
SSD1306 is a single-chip CMOS OLED/PLED driver with controller for organic / polymer light emitting  
diode dot-matrix graphic display system. It consists of 128 segments and 64commons. This IC is  
designed for Common Cathode type OLED panel.  
The SSD1306 embeds with contrast control, display RAM and oscillator, which reduces the number of  
external components and power consumption. It has 256-step brightness control. Data/Commands are  
sent from general MCU through the hardware selectable 6800/8000 series compatible Parallel Interface,  
I2C interface or Serial Peripheral Interface. It is suitable for many compact portable applications, such as  
mobile phone sub-display, MP3 player and calculator, etc.  
2
FEATURES  
Resolution: 128 x 64 dot matrix panel  
Power supply  
o
V
DD = 1.65V to 3.3V for IC logic  
CC = 7V to 15V for Panel driving  
o
V
For matrix display  
o
o
o
o
OLED driving output voltage, 15V maximum  
Segment maximum source current: 100uA  
Common maximum sink current: 15mA  
256 step contrast brightness current control  
Embedded 128 x 64 bit SRAM display buffer  
Pin selectable MCU Interfaces:  
o
o
o
8-bit 6800/8080-series parallel interface  
3 /4 wire Serial Peripheral Interface  
I2C Interface  
Screen saving continuous scrolling function in both horizontal and vertical direction  
RAM write synchronization signal  
Programmable Frame Rate and Multiplexing Ratio  
Row Re-mapping and Column Re-mapping  
On-Chip Oscillator  
Chip layout for COG & COF  
Wide range of operating temperature: -40°C to 85°C  
3
ORDERING INFORMATION  
Table 3-1: Ordering Information  
Ordering Part Number SEG COM Package Form Reference Remark  
o
o
o
o
o
o
Min SEG pad pitch : 47um  
Min COM pad pitch : 40um  
Die thickness: 300 +/- 25um  
35mm film, 4 sprocket hole, Folding TAB  
8-bit 80 / 8-bit 68 / SPI / I2C interface  
SEG, COM lead pitch 0.1mm x 0.997  
=0.0997mm  
SSD1306Z  
128  
104  
8
64  
48  
COG  
TAB  
SSD1306TR1  
11, 56  
o
Die thickness: 457 +/- 25um  
Solomon Systech  
Apr 2008 P 6/59  
Rev 1.1 SSD1306  
 
4
BLOCK DIAGRAM  
Figure 4-1 SSD1306 Block Diagram  
RES#  
CS#  
D/C#  
E (RD#)  
R/W#(WR#)  
BS2  
BS1  
BS0  
COM62  
COM60  
|
|
COM2  
COM0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEG0  
SEG1  
|
|
SEG126  
SEG127  
VDD  
VCC  
VSS  
VLSS  
COM1  
COM3  
|
|
COM61  
COM63  
SSD1306  
Rev 1.1  
P 7/59  
Apr 2008  
Solomon Systech  
 
5
DIE PAD FLOOR PLAN  
Figure 5-1 : SSD1306Z Die Drawing  
Pad 1  
Die size  
6.76mm x 0.86mm  
Die thickness  
300 +/- 25um  
60um  
Min I/O pad pitch  
Min SEG pad pitch  
Min COM pad pitch  
47um  
40um  
Bump height  
Nominal 15um  
Bump size  
Pad 1, 106, 124, 256  
80um x 50um  
Pad 2-18, 89-105, 107-123, 257-273  
25ium x 80um  
40um x 89um  
31um x 59um  
30um x 50um  
Pad 19-88  
Pad 125-255  
Pad 274-281 (TR pads)  
Alignment  
mark  
Position  
Size  
+ shape  
+ shape  
(-2973, 0)  
(2973, 0)  
75um x 75um  
75um x 75um  
R37.5um, inner 18um  
-
Circle  
(2466.665, 7.575)  
(-2862.35, 144.82)  
SSL Logo  
(For details dimension please see p.9 )  
Note  
(1)  
Diagram showing the Gold bumps face up.  
(2)  
(3)  
(4)  
Coordinates are referenced to center of the chip.  
Coordinate units and size of all alignment marks are in um.  
All alignment keys do not contain gold  
Y
X
SSD1306  
Pad 1,2,3,…->281  
Gold Bumps face up  
Solomon Systech  
Apr 2008 P 8/59  
Rev 1.1 SSD1306  
 
Figure 5-2 : SSD1306Z alignment mark dimensions  
T shape  
+ shape  
Circle  
*All units are in um  
SSD1306  
Rev 1.1  
P 9/59  
Apr 2008  
Solomon Systech  
 
Table 5-1 : SSD1306Z Bump Die Pad Coordinates  
Pad no. Pad Name X-pos  
Y-pos  
Pad no. Pad Name X-pos  
Y-pos  
Pad no. Pad Name X-pos Y-pos  
Pad no. Pad Name X-pos Y-pos  
1
2
NC  
-3315  
-377.5  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
VCOMH 1875.585 -352.83  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
SEG35  
1364.5  
356  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
SEG114 -2398.5  
SEG115 -2445.5  
SEG116 -2492.5  
SEG117 -2539.5  
SEG118 -2586.5  
SEG119 -2633.5  
SEG120 -2680.5  
SEG121 -2727.5  
SEG122 -2774.5  
SEG123 -2821.5  
SEG124 -2868.5  
SEG125 -2915.5  
SEG126 -2962.5  
SEG127 -3009.5  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
VSS  
-3084.77 -362.5  
VCC  
VCC  
VLSS  
VLSS  
VLSS  
NC  
1967.185 -352.83  
2027.185 -352.83  
2109.185 -352.83  
2169.185 -352.83  
2254.185 -352.83  
2314.185 -352.83  
2374.185 -352.83  
2444.77 -362.5  
SEG36 1317.5 356  
SEG37 1270.5 356  
SEG38 1223.5 356  
3
4
5
6
7
8
9
10  
11  
COM49 -3044.77 -362.5  
COM50 -3004.77 -362.5  
COM51 -2964.77 -362.5  
COM52 -2924.77 -362.5  
COM53 -2884.77 -362.5  
COM54 -2844.77 -362.5  
COM55 -2804.77 -362.5  
COM56 -2764.77 -362.5  
COM57 -2724.77 -362.5  
SEG39  
SEG40  
1176.5  
1129.5 356  
356  
SEG41 1082.5 356  
SEG42 1035.5 356  
NC  
VSS  
SEG43  
SEG44  
SEG45  
988.5  
941.5  
894.5  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
COM31 2484.77 -362.5  
COM30 2524.77 -362.5  
12  
13  
14  
15  
16  
17  
18  
COM58 -2684.77 -362.5  
COM59 -2644.77 -362.5  
COM60 -2604.77 -362.5  
COM61 -2564.77 -362.5  
COM62 -2524.77 -362.5  
COM63 -2484.77 -362.5  
VCOMH -2444.77 -362.5  
COM29 2564.77 -362.5  
COM28 2604.77 -362.5  
COM27 2644.77 -362.5  
COM26 2684.77 -362.5  
COM25 2724.77 -362.5  
COM24 2764.77 -362.5  
172  
173  
174  
175  
176  
177  
178  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
847.5  
800.5  
753.5  
706.5  
659.5  
612.5  
565.5  
NC  
NC  
-3056.5  
-3315 367.5  
COM32  
COM33  
-3315  
-3315  
315  
275  
COM23  
2804.77 -362.5  
19  
20  
21  
22  
23  
24  
25  
NC  
C2P  
C2P  
C2N  
C2N  
C1P  
C1P  
-2334.965 -352.83  
-2278.265 -352.83  
-2218.265 -352.83  
-2136.715 -352.83  
-2055.465 -352.83  
-1995.465 -352.83  
-1904.115 -352.83  
99  
COM22 2844.77 -362.5  
179  
180  
181  
182  
183  
184  
185  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
518.5  
471.5  
424.5  
377.5  
330.5  
283.5  
236.5  
356  
356  
356  
356  
356  
356  
356  
259  
260  
261  
262  
263  
264  
265  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
-3315  
-3315  
-3315  
-3315  
-3315  
-3315  
-3315  
235  
195  
155  
115  
75  
100  
101  
102  
103  
104  
105  
COM21  
COM20  
COM19  
COM18  
COM17  
VSS  
2884.77 -362.5  
2924.77 -362.5  
2964.77 -362.5  
3004.77 -362.5  
3044.77 -362.5  
3084.77 -362.5  
35  
-5  
26  
27  
28  
29  
30  
C1N  
C1N  
VBAT  
VBAT  
-1844.115 -352.83  
-1762.865 -352.83  
-1679.31 -352.83  
-1619.31 -352.83  
106  
107  
108  
109  
110  
NC  
3315  
3315  
3315  
3315  
3315  
-377.5  
-325  
-285  
-245  
-205  
186  
187  
188  
189  
190  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
189.5  
142.5  
95.5  
48.5  
1.5  
356  
356  
356  
356  
356  
266  
267  
268  
269  
270  
COM41  
COM42  
COM43  
COM44  
COM45  
-3315  
-3315  
-3315  
-3315  
-3315  
-45  
-85  
-125  
-165  
-205  
COM16  
COM15  
COM14  
COM13  
VBREF -1537.51 -352.83  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
BGGND -1477.51 -352.83  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
NC  
NC  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
3315  
-165  
-125  
-85  
-45  
-5  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
NC  
-45.5  
-92.5  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
271  
272  
273  
COM46  
COM47  
COM48  
-3315  
-3315  
-3315  
-245  
-285  
-325  
VCC  
VCC  
-1416.01 -352.83  
-1356.01 -352.83  
-139.5  
-186.5  
-233.5  
-280.5  
-327.5  
-374.5  
-421.5  
-468.5  
-515.5  
-562.5  
-609.5  
-656.5  
-703.5  
-750.5  
-797.5  
-844.5  
-891.5  
-940  
VCOMH -1266.955 -352.83  
VCOMH -1206.955 -352.83  
Pad no. Pad Name X-pos Y-pos  
VLSS  
VLSS  
VLSS  
VSS  
VSS  
VSS  
VDD  
VDD  
BS0  
VSS  
BS1  
VDD  
VDD  
BS2  
VSS  
FR  
-1125.155 -352.83  
-1043.355 -352.83  
-983.355 -352.83  
35  
75  
Pin#  
274  
275  
276  
277  
278  
279  
280  
281  
Pin name X-dir  
Y-dir  
TR0  
TR1  
TR2  
TR3  
VSS  
TR4  
TR5  
TR6  
2757.05 114.8  
2697.05 114.8  
2637.05 114.8  
2577.05 114.8  
2517.05 114.8  
2457.05 114.8  
2397.05 114.8  
2337.05 114.8  
115  
155  
195  
235  
275  
315  
367.5  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
356  
-920  
-856  
-796  
-352.83  
-352.83  
-352.83  
-732.645 -352.83  
-672.645 -352.83  
-595.655 -352.83  
-531.955 -352.83  
-467.655 -352.83  
-403.155 -352.83  
-342.555 -352.83  
-279.705 -352.83  
-215.705 -352.83  
-151.955 -352.83  
-89.815 -352.83  
-25.665 -352.83  
38.635 -352.83  
109.835 -352.83  
182.425 -352.83  
246.125 -352.83  
310.425 -352.83  
373.125 -352.83  
457.175 -352.83  
517.175 -352.83  
609.275 -352.83  
692.475 -352.83  
765.675 -352.83  
828.875 -352.83  
890.325 -352.83  
951.275 -352.83  
1013.315 -352.83  
1075.355 -352.83  
1137.395 -352.83  
1220.735 -352.83  
1280.735 -352.83  
1362.585 -352.83  
1425.285 -352.83  
1485.885 -352.83  
1553.185 -352.83  
1613.185 -352.83  
1684.585 -352.83  
1744.585 -352.83  
3315  
3055.5  
3009.5  
2962.5  
2915.5  
2868.5  
2821.5  
2774.5  
2727.5  
2680.5  
2633.5  
2586.5  
2539.5  
2492.5  
2445.5  
2398.5  
2351.5  
2304.5  
2257.5  
2210.5  
2163.5  
2116.5  
2069.5  
2022.5  
1975.5  
1928.5  
1881.5  
1834.5  
1787.5  
1740.5  
1693.5  
1646.5  
1599.5  
1552.5  
1505.5  
1458.5  
1411.5  
SEG84  
-988.5  
CL  
SEG85 -1035.5 356  
SEG86 -1082.5 356  
SEG87 -1129.5 356  
SEG88 -1176.5 356  
SEG89 -1223.5 356  
SEG90 -1270.5 356  
SEG91 -1317.5 356  
SEG92 -1364.5 356  
SEG93 -1411.5 356  
SEG94 -1458.5 356  
SEG95 -1505.5 356  
SEG96 -1552.5 356  
SEG97 -1599.5 356  
SEG98 -1646.5 356  
SEG99 -1693.5 356  
SEG100 -1740.5 356  
SEG101 -1787.5 356  
SEG102 -1834.5 356  
SEG103 -1881.5 356  
SEG104 -1928.5 356  
SEG105 -1975.5 356  
SEG106 -2022.5 356  
SEG107 -2069.5 356  
SEG108 -2116.5 356  
SEG109 -2163.5 356  
SEG110 -2210.5 356  
SEG111 -2257.5 356  
SEG112 -2304.5 356  
SEG113 -2351.5 356  
VSS  
CS#  
RES#  
D/C#  
VSS  
R/W#  
E
VDD  
VDD  
D0  
D1  
D2  
D3  
VSS  
D4  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
D5  
D6  
D7  
VSS  
VSS  
CLS  
VDD  
VDD  
VDD  
VDD  
IREF  
IREF  
VCOMH 1815.585 -352.83  
Solomon Systech  
Apr 2008 P 10/59  
Rev 1.1 SSD1306  
 
6
PIN ARRANGEMENT  
6.1 SSD1306TR1 pin assignment  
Figure 6-1 : SSD1306TR1 Pin Assignment  
Note:  
(1) COM sequence (Split) is under command setting: DAh, 12h  
SSD1306  
Rev 1.1  
P 11/59  
Apr 2008  
Solomon Systech  
 
Table 6-1 : SSD1306TR1 Pin Assignment Table  
Pin no.  
Pin Name  
Pin no.  
Pin Name  
SEG90  
SEG89  
SEG88  
SEG87  
SEG86  
SEG85  
Pin no.  
Pin Name  
SEG10  
SEG9  
SEG8  
SEG7  
1
2
3
4
5
6
NC  
81  
161  
VCC  
82  
162  
VCOMH  
IREF  
D7  
83  
84  
85  
163  
164  
165  
SEG6  
SEG5  
D6  
86  
166  
7
8
9
D5  
D4  
D3  
D2  
D1  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
SEG84  
SEG83  
SEG82  
SEG81  
SEG80  
SEG79  
SEG78  
SEG77  
SEG76  
SEG75  
SEG74  
SEG73  
SEG72  
SEG71  
SEG70  
SEG69  
SEG68  
SEG67  
SEG66  
SEG65  
SEG64  
SEG63  
SEG62  
SEG61  
SEG60  
SEG59  
SEG58  
SEG57  
SEG56  
SEG55  
SEG54  
SEG53  
SEG52  
SEG51  
SEG50  
SEG49  
SEG48  
SEG47  
SEG46  
SEG45  
SEG44  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
NC  
NC  
NC  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
D0  
E/RD#  
R/W#  
D/C#  
RES#  
CS#  
NC  
BS2  
BS1  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
COM0  
COM2  
COM4  
COM6  
COM8  
COM10  
COM12  
COM14  
COM16  
COM18  
COM20  
COM22  
COM24  
COM26  
COM28  
COM30  
COM32  
COM34  
COM36  
COM38  
COM40  
COM42  
COM44  
COM46  
NC  
VSS  
NC  
NC  
NC  
COM47  
COM45  
COM43  
COM41  
COM39  
COM37  
COM35  
COM33  
COM31  
COM29  
COM27  
COM25  
COM23  
COM21  
NC  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
COM19  
COM17  
COM15  
COM13  
COM11  
COM9  
COM7  
COM5  
COM3  
COM1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
SEG43  
SEG42  
SEG41  
SEG40  
SEG39  
SEG38  
SEG37  
SEG36  
SEG35  
SEG34  
SEG33  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
NC  
SEG103  
SEG102  
SEG101  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
SEG100  
SEG99  
SEG98  
SEG97  
SEG96  
SEG95  
SEG94  
SEG93  
SEG92  
SEG91  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
Solomon Systech  
Apr 2008 P 12/59  
Rev 1.1 SSD1306  
 
7
PIN DESCRIPTION  
Key:  
I = Input  
O =Output  
NC = Not Connected  
Pull LOW= connect to Ground  
I/O = Bi-directional (input/output) Pull HIGH= connect to VDD  
P = Power pin  
Figure 7-1 Pin Description  
Pin Name  
Type  
Description  
VDD  
P
Power supply pin for core logic operation.  
VCC  
P
Power supply for panel driving voltage. This is also the most positive power voltage  
supply pin.  
VSS  
P
P
O
This is a ground pin.  
VLSS  
VCOMH  
This is an analog ground pin. It should be connected to VSS externally.  
The pin for COM signal deselected voltage level.  
A capacitor should be connected between this pin and VSS.  
VBAT  
P
P
I
Reserved pin. It should be connected to VDD.  
BGGND  
Reserved pin. It should be connected to ground.  
Reserved pin. It should be kept NC.  
C1P/C1N  
C2P/C2N  
VBREF  
P
I
Reserved pin. It should be kept NC.  
BS[2:0]  
IREF  
MCU bus interface selection pins. Please refer to Table 7-1 for the details of setting.  
I
This is segment output current reference pin.  
A resistor should be connected between this pin and VSS to maintain the IREF current at  
12.5 uA. Please refer to Figure 8-15 for the details of resistor value.  
FR  
CL  
O
I
This pin outputs RAM write synchronization signal. Proper timing between MCU data  
writing and frame display timing can be achieved to prevent tearing effect.  
It should be kept NC if it is not used. Please refer to Section 8.4 for details usage.  
This is external clock input pin.  
When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be  
connected to VSS. When internal clock is disabled (i.e. LOW in CLS pin), this pin is the  
external clock source input pin.  
CLS  
I
This is internal clock enable pin. When it is pulled HIGH (i.e. connect to VDD), internal  
clock is enabled. When it is pulled LOW, the internal clock is disabled; an external clock  
source must be connected to the CL pin for normal operation.  
RES#  
CS#  
This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is  
executed. Keep this pin HIGH (i.e. connect to VDD) during normal operation.  
I
I
This pin is the chip select input. (active LOW).  
SSD1306  
Rev 1.1  
P 13/59  
Apr 2008  
Solomon Systech  
 
Pin Name  
Type  
Description  
D/C#  
I
This is Data/Command control pin. When it is pulled HIGH (i.e. connect to VDD), the data  
at D[7:0] is treated as data. When it is pulled LOW, the data at D[7:0] will be transferred  
to the command register.  
In I2C mode, this pin acts as SA0 for slave address selection.  
When 3-wire serial interface is selected, this pin must be connected to VSS.  
For detail relationship to MCU interface signals, please refer to the Timing Characteristics  
Diagrams: Figure 13-1 to Figure 13-5.  
E (RD#)  
I
I
When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E)  
signal. Read/write operation is initiated when this pin is pulled HIGH (i.e. connect to VDD  
and the chip is selected.  
)
When connecting to an 8080-series microprocessor, this pin receives the Read (RD#)  
signal. Read operation is initiated when this pin is pulled LOW and the chip is selected.  
When serial or I2C interface is selected, this pin must be connected to VSS.  
R/W#(WR#)  
This is read / write control input pin connecting to the MCU interface.  
When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write  
(R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH (i.e.  
connect to VDD) and write mode when LOW.  
When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write  
operation is initiated when this pin is pulled LOW and the chip is selected.  
When serial or I2C interface is selected, this pin must be connected to VSS.  
D[7:0]  
IO  
These are 8-bit bi-directional data bus to be connected to the microprocessor’s data bus.  
When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will  
be the serial data input: SDIN and D2 should be kept NC.  
When I2C mode is selected, D2, D1 should be tied together and serve as SDAout, SDAin in  
application and D0 is the serial clock input, SCL.  
TR0-TR6  
-
Testing reserved pins. It should be kept NC.  
SEG0 ~  
SEG127  
O
These pins provide Segment switch signals to OLED panel. These pins are VSS state when  
display is OFF.  
COM0 ~  
COM63  
O
-
These pins provide Common switch signals to OLED panel. They are in high impedance  
state when display is OFF.  
NC  
This is dummy pin. Do not group or short NC pins together.  
Table 7-1 : MCU Bus Interface Pin Selection  
I2C Interface 6800-parallel 8080-parallel 4-wire Serial  
3-wire Serial  
interface  
SSD1306  
Pin Name  
interface  
(8 bit)  
0
interface  
(8 bit)  
0
interface  
0
1
0
1
0
0
BS0  
BS1  
BS2  
0
0
0
0
1
1
1
Note  
(1) 0 is connected to VSS  
(2) 1 is connected to VDD  
Solomon Systech  
Apr 2008 P 14/59  
Rev 1.1 SSD1306  
 
8
FUNCTIONAL BLOCK DESCRIPTIONS  
8.1 MCU Interface selection  
SSD1306 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface  
mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[2:0] pins  
(please refer to Table 7-1 for BS[2:0] setting).  
Table 8-1 : MCU interface assignment under different bus interface mode  
Pin Name Data/Command Interface  
Bus  
Control Signal  
Interface  
8-bit 8080  
8-bit 6800  
3-wire SPI  
4-wire SPI  
I2C  
D7  
D6  
D5  
D4  
D3  
D[7:0]  
D[7:0]  
D2  
D1  
D0  
E
RD#  
E
R/W# CS#  
WR# CS#  
R/W# CS#  
D/C#  
D/C#  
D/C#  
Tie LOW RES#  
D/C#  
SA0  
RES#  
RES#  
RES#  
Tie LOW  
Tie LOW  
Tie LOW  
NC  
NC  
SDIN SCLK Tie LOW  
SDIN SCLK Tie LOW  
CS#  
CS#  
RES#  
RES#  
SDAOUT SDAIN SCL Tie LOW  
8.1.1 MCU Parallel 6800-series Interface  
The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.  
A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation.  
A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.  
The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.  
Table 8-2 : Control pins of 6800 interface  
Function  
E
R/W# CS#  
D/C#  
L
Write command  
Read status  
Write data  
L
H
L
H
L
L
L
L
L
H
Read data  
H
Note  
(1) stands for falling edge of signal  
H stands for HIGH in signal  
L stands for LOW in signal  
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline  
processing is internally performed which requires the insertion of a dummy read before the first actual display  
data read. This is shown in Figure 8-1.  
SSD1306  
Rev 1.1  
P 15/59  
Apr 2008  
Solomon Systech  
 
Figure 8-1 : Data read back procedure - insertion of dummy read  
R/W#  
E
N
n
n+1  
n+2  
Databus  
Write column  
address  
Dummy read  
Read 1st data  
Read 2nd data  
Read 3rd data  
8.1.2 MCU Parallel 8080-series Interface  
The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.  
A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.  
A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW.  
A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.  
Figure 8-2 : Example of Write procedure in 8080 parallel interface mode  
CS#  
WR#  
D[7:0]  
D/C#  
high  
RD#  
low  
Figure 8-3 : Example of Read procedure in 8080 parallel interface mode  
CS#  
RD#  
D[7:0]  
D/C#  
high  
WR#  
low  
Solomon Systech  
Apr 2008 P 16/59  
Rev 1.1 SSD1306  
 
Table 8-3 : Control pins of 8080 interface  
Function  
RD#  
H
WR#  
CS#  
L
L
L
L
D/C#  
L
L
H
H
Write command  
Read status  
Write data  
Read data  
H
H
H
Note  
(1) stands for rising edge of signal  
(2)  
H stands for HIGH in signal  
L stands for LOW in signal  
(3)  
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline  
processing is internally performed which requires the insertion of a dummy read before the first actual display  
data read. This is shown in Figure 8-4.  
Figure 8-4 : Display data read back procedure - insertion of dummy read  
WR#  
RD#  
Databus  
N
n
n+1  
n+2  
Write column  
address  
Dummy read  
Read 1st data  
Read 2nd data  
Read 3rd data  
8.1.3 MCU Serial Interface (4-wire SPI)  
The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode,  
D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to  
D7, E and R/W# (WR#)# can be connected to an external ground.  
Table 8-4 : Control pins of 4-wire Serial interface  
Function  
Write command Tie LOW  
Write data Tie LOW  
E(RD#)  
R/W#(WR#) CS# D/C# D0  
Tie LOW  
Tie LOW  
L
L
L
H
Note  
(1) H stands for HIGH in signal  
(2) L stands for LOW in signal  
SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C#  
is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data  
RAM (GDDRAM) or command register in the same clock.  
Under serial mode, only write operations are allowed.  
SSD1306  
Rev 1.1  
P 17/59  
Apr 2008  
Solomon Systech  
 
Figure 8-5 : Write procedure in 4-wire Serial interface mode  
CS#  
D/C#  
SDIN/  
SCLK  
DB1  
DB2  
DBn  
SCLK  
(D0)  
D0  
SDIN(D1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
8.1.4  
MCU Serial Interface (3-wire SPI)  
The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#.  
In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open.  
The pins from D3 to D7, R/W# (WR#)#, E and D/C# can be connected to an external ground.  
The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will  
be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first  
bit of the sequential data) will determine the following data byte in the shift register is written to the Display  
Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations  
are allowed.  
Table 8-5 : Control pins of 3-wire Serial interface  
Function  
E(RD#)  
R/W#(WR#) CS# D/C#  
D0  
Write command Tie LOW  
Tie LOW  
Tie LOW  
L
L
Tie LOW  
Tie LOW  
Note  
Write data  
Tie LOW  
(1) L stands for LOW in signal  
Figure 8-6 : Write procedure in 3-wire Serial interface mode  
CS#  
SDIN/  
SCLK  
DB1  
DB2  
DBn  
SCLK  
(D0)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D/C#  
SDIN(D1)  
Solomon Systech  
Apr 2008 P 18/59  
Rev 1.1 SSD1306  
 
8.1.5 MCU I2C Interface  
The I2C communication interface consists of slave address bit SA0, I2C-bus data signal SDA (SDAOUT/D2 for  
output and SDAIN/D1 for input) and I2C-bus clock signal SCL (D0). Both the data and clock signals must be  
connected to pull-up resistors. RES# is used for the initialization of device.  
a) Slave address bit (SA0)  
SSD1306 has to recognize the slave address before transmitting or receiving any information by the  
I2C-bus. The device will respond to the slave address following by the slave address bit (“SA0” bit)  
and the read/write select bit (“R/W#” bit) with the following byte format,  
b7 b6 b5 b4 b3 b2 b1 b0  
0 1 1 1 1 0 SA0 R/W#  
“SA0” bit provides an extension bit for the slave address. Either “0111100” or “0111101”, can be  
selected as the slave address of SSD1306. D/C# pin acts as SA0 for slave address selection.  
“R/W#” bit is used to determine the operation mode of the I2C-bus interface. R/W#=1, it is in read  
mode. R/W#=0, it is in write mode.  
b) I2C-bus data signal (SDA)  
SDA acts as a communication channel between the transmitter and the receiver. The data and the  
acknowledgement are sent through the SDA.  
It should be noticed that the ITO track resistance and the pulled-up resistance at “SDA” pin becomes  
a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid  
logic 0 level in “SDA”.  
“SDAIN” and “SDAOUT” are tied together and serve as SDA. The “SDAIN” pin must be connected to  
act as SDA. The “SDAOUT” pin may be disconnected. When “SDAOUT” pin is disconnected, the  
acknowledgement signal will be ignored in the I2C-bus.  
c) I2C-bus clock signal (SCL)  
The transmission of information in the I2C-bus is following a clock signal, SCL. Each transmission of  
data bit is taken place during a single clock period of SCL.  
SSD1306  
Rev 1.1  
P 19/59  
Apr 2008  
Solomon Systech  
 
8.1.5.1 I2C-bus Write data  
The I2C-bus interface gives access to write data and command into the device. Please refer to Figure 8-7 for  
the write mode of I2C-bus in chronological order.  
Figure 8-7 : I2C-bus data format  
Note:  
Co – Continuation bit  
D/C# – Data / Command Selection bit  
ACK – Acknowledgement  
SA0 – Slave address bit  
R/W# – Read / Write Selection bit  
S – Start Condition / P – Stop Condition  
Write mode  
Control byte  
Data byte  
Control byte  
Data byte  
0 1 1 1 1 0  
n 0 bytes  
MSB ……………….LSB  
Slave Address  
1 byte  
m 0 words  
0 1 1 1 1 0  
SSD1306  
Slave Address  
0 0 0 0 0 0  
Control byte  
8.1.5.2 Write mode for I2C  
1) The master device initiates the data communication by a start condition. The definition of the start  
condition is shown in Figure 8-8. The start condition is established by pulling the SDA from HIGH to  
LOW while the SCL stays HIGH.  
2) The slave address is following the start condition for recognition use. For the SSD1306, the slave  
address is either “b0111100” or “b0111101” by changing the SA0 to LOW or HIGH (D/C pin acts as  
SA0).  
3) The write mode is established by setting the R/W# bit to logic “0”.  
4) An acknowledgement signal will be generated after receiving one byte of data, including the slave  
address and the R/W# bit. Please refer to the Figure 8-9 for the graphical representation of the  
acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH  
period of the acknowledgement related clock pulse.  
5) After the transmission of the slave address, either the control byte or the data byte may be sent across  
the SDA. A control byte mainly consists of Co and D/C# bits following by six “0” ‘s.  
a. If the Co bit is set as logic “0”, the transmission of the following information will contain  
data bytes only.  
b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is  
set to logic “0”, it defines the following data byte as a command. If the D/C# bit is set to  
logic “1”, it defines the following data byte as a data which will be stored at the GDDRAM.  
The GDDRAM column address pointer will be increased by one automatically after each  
data write.  
6) Acknowledge bit will be generated after receiving each control byte or data byte.  
7) The write mode will be finished when a stop condition is applied. The stop condition is also defined  
in Figure 8-8. The stop condition is established by pulling the “SDA in” from LOW to HIGH while  
the “SCL” stays HIGH.  
Solomon Systech  
Apr 2008 P 20/59  
Rev 1.1 SSD1306  
 
Figure 8-8 : Definition of the Start and Stop Condition  
tSSTOP  
tHSTART  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 8-9 : Definition of the acknowledgement condition  
DATA OUTPUT  
BY TRANSMITTER  
Non-acknowledge  
DATA OUTPUT  
BY RECEIVER  
Acknowledge  
SCL FROM  
MASTER  
1
2
8
9
S
Clock pulse for acknowledgement  
START  
Condition  
Please be noted that the transmission of the data bit has some limitations.  
1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the “HIGH”  
period of the clock pulse. Please refer to the Figure 8-10 for graphical representations. Except in start or  
stop conditions, the data line can be switched only when the SCL is LOW.  
2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.  
Figure 8-10 : Definition of the data transfer condition  
SDA  
SCL  
Data line is  
stable  
Change  
of data  
SSD1306  
Rev 1.1  
P 21/59  
Apr 2008  
Solomon Systech  
 
8.2 Command Decoder  
This module determines whether the input data is interpreted as data or command. Data is interpreted based  
upon the input of the D/C# pin.  
If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM).  
If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to  
the corresponding command register.  
8.3 Oscillator Circuit and Display Time Generator  
Figure 8-11 : Oscillator Circuit and Display Time Generator  
Internal  
Oscillator  
Fosc  
M
U
X
CLK  
DCLK  
Divider  
Display  
Clock  
CL  
CLS  
This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated  
either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is  
pulled HIGH, internal oscillator is chosen and CL should be left open. Pulling CLS pin LOW disables  
internal oscillator and external clock must be connected to CL pins for proper operation. When the internal  
oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4].  
The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D”  
can be programmed from 1 to 16 by command D5h  
DCLK = FOSC / D  
The frame frequency of display is determined by the following formula.  
Fosc  
FFRM  
=
D× K × No.of Mux  
where  
D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to  
16.  
K is the number of display clocks per row. The value is derived by  
K = Phase 1 period + Phase 2 period + BANK0 pulse width  
= 2 + 2 + 50 = 54 at power on reset  
(Please refer to Section 8.6 “Segment Drivers / Common Drivers” for the details of the “Phase”)  
Number of multiplex ratio is set by command A8h. The power on reset value is 63 (i.e. 64MUX).  
FOSC is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register  
setting results in higher frequency.  
Solomon Systech  
Apr 2008 P 22/59  
Rev 1.1 SSD1306  
 
8.4 FR synchronization  
FR synchronization signal can be used to prevent tearing effect.  
One frame  
FR  
100%  
Memory  
Access  
Process  
0%  
Time  
Fast write MCU  
Slow write MCU  
SSD1306 displaying memory updates to OLED screen  
The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can  
finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs  
longer writing time to complete (more than one frame but within two frames), it is a slow write one.  
For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and  
should be finished well before the rising edge of the next FR pulse.  
For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR  
pulse and must be finished before the rising edge of the 3rd FR pulse.  
8.5 Reset Circuit  
When RES# input is LOW, the chip is initialized with the following status:  
1. Display is OFF  
2. 128 x 64 Display Mode  
3. Normal segment and display data column address and row address mapping (SEG0 mapped to  
address 00h and COM0 mapped to address 00h)  
4. Shift register data clear in serial interface  
5. Display start line is set at display RAM address 0  
6. Column address counter is set at 0  
7. Normal scan direction of the COM outputs  
8. Contrast control register is set at 7Fh  
9. Normal display mode (Equivalent to A4h command)  
SSD1306  
Rev 1.1  
P 23/59  
Apr 2008  
Solomon Systech  
 
8.6 Segment Drivers / Common Drivers  
Segment drivers deliver 128 current sources to drive the OLED panel. The driving current can be adjusted  
from 0 to 100uA with 256 steps. Common drivers generate voltage-scanning pulses.  
The segment driving waveform is divided into three phases:  
1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next  
image content display.  
2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the  
corresponding voltage level from VSS. The period of phase 2 can be programmed in length from 1 to  
15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required  
to charge up the capacitor to reach the desired voltage.  
3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the  
current drive stage.  
Figure 8-12 : Segment Output Waveform in three phases  
Segment  
VSS  
Time  
Phase: 1 2  
3
After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This three-  
step cycle is run continuously to refresh image display on OLED panel.  
In phase 3, if the length of current drive pulse width is set to 50, after finishing 50 DCLKs in current drive  
phase, the driver IC will go back to phase 1 for next row display.  
Solomon Systech  
Apr 2008 P 24/59  
Rev 1.1 SSD1306  
 
8.7 Graphic Display Data RAM (GDDRAM)  
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is  
128 x 64 bits and the RAM is divided into eight pages, from PAGE0 to PAGE7, which are used for  
monochrome 128x64 dot matrix display, as shown in Figure 8-13.  
Figure 8-13 : GDDRAM pages structure of SSD1306  
Row re-mapping  
PAGE0 (COM0-COM7)  
PAGE1 (COM8-COM15)  
PAGE2 (COM16-COM23)  
PAGE3 (COM24-COM31)  
PAGE4 (COM32-COM39)  
PAGE5 (COM40-COM47)  
PAGE6 (COM48–COM55)  
PAGE7 (COM56-COM63)  
PAGE0 (COM 63-COM56)  
PAGE1 (COM 55-COM48)  
PAGE2 (COM47-COM40)  
PAGE3 (COM39-COM32)  
PAGE4 (COM31-COM24)  
PAGE5 (COM23-COM16)  
PAGE6 (COM15-COM8)  
PAGE7 (COM 7-COM0)  
Page 0  
Page 1  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Page 7  
SEG0 ---------------------------------------------SEG127  
SEG127 ---------------------------------------------SEG0  
Column re-mapping  
When one data byte is written into GDDRAM, all the rows image data of the same page of the current  
column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0  
is written into the top row, while data bit D7 is written into bottom row as shown in Figure 8-14.  
Figure 8-14 : Enlargement of GDDRAM (No row re-mapping and column-remapping)  
....................  
COM16  
COM17  
LSB D0  
:
:
:
:
:
PAGE2  
....................  
COM23  
MSB D7  
Each box represents one bit of image data  
For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as  
shown in Figure 8-13.  
For vertical shifting of the display, an internal register storing the display start line can be set to control the  
portion of the RAM data to be mapped to the display (command D3h).  
SSD1306  
Rev 1.1  
P 25/59  
Apr 2008  
Solomon Systech  
 
8.8 SEG/COM Driving block  
This block is used to derive the incoming power sources into the different levels of internal use voltage and  
current.  
VCC is the most positive voltage supply.  
V
V
COMH is the Common deselected level. It is internally regulated.  
LSS is the ground path of the analog and panel current.  
I
REF is a reference current source for segment current drivers ISEG. The relationship between reference  
current and segment current of a color is:  
I
SEG = Contrast / 256 x IREF x scale factor  
in which  
the contrast (0~255) is set by Set Contrast command 81h; and  
the scale factor is 8 by default.  
The magnitude of IREF is controlled by the value of resistor, which is connected between IREF pin and  
VSS as shown in Figure 8-15. It is recommended to set IREF to 12.5 ± 2uA so as to achieve ISEG  
100uA at maximum contrast 255.  
=
Figure 8-15 : IREF Current Setting by Resistor Value  
SSD1306  
I
REF (voltage at  
IREF ~ 12.5uA  
R1  
this pin =  
VCC – 2.5)  
VSS  
Since the voltage at IREF pin is VCC – 2.5V, the value of resistor R1 can be found as below:  
For IREF = 12.5uA, VCC =12V:  
R1 = (Voltage at IREF – VSS) / IREF  
= (12 – 2.5) / 12.5uA  
= 760KΩ  
Solomon Systech  
Apr 2008 P 26/59  
Rev 1.1 SSD1306  
 
8.9 Power ON and OFF sequence  
The following figures illustrate the recommended power ON and power OFF sequence of SSD1306  
Power ON sequence:  
1. Power ON VDD  
2. After VDD become stable, set RES# pin LOW (logic low) for at least 3us (t1) (4) and then HIGH (logic  
high).  
(1)  
3. After set RES# pin LOW (logic low), wait for at least 3us (t2). Then Power ON VCC.  
4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms  
(tAF).  
Figure 8-16 : The Power ON sequence  
ON VCC Send AFh command for Display ON  
ON VDD RES#  
VDD  
OFF  
t1  
RES#  
GND  
t2  
VCC  
OFF  
tAF  
ON  
SEG/COM  
OFF  
Power OFF sequence:  
1. Send command AEh for display OFF.  
(1), (2), (3)  
2. Power OFF VCC.  
3. Power OFF VDD after tOFF  
.
(5) (Typical tOFF=100ms)  
Figure 8-17 : The Power OFF sequence  
Send command AEh for display OFF OFF VCC  
VCC  
OFF VDD  
OFF  
tOFF  
VDD  
OFF  
Note:  
(1) Since an ESD protection circuit is connected between VDD and VCC, VCC becomes lower than VDD whenever VDD is  
ON and VCC is OFF as shown in the dotted line of VCC in Figure 8-16 and Figure 8-17.  
(2)  
V
should be kept float (i.e. disable) when it is OFF.  
CC  
(3) Power Pins (VDD , VCC) can never be pulled to ground under any circumstance.  
(4) The register values are reset after t1.  
(5)  
V
should not be Power OFF before VCC Power OFF.  
DD  
SSD1306  
Rev 1.1  
P 27/59  
Apr 2008  
Solomon Systech  
 
9
COMMAND TABLE  
Table 9-1: Command Table  
(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)  
1. Fundamental Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
0
81  
1
0
0
0
0
0
0
1
Set Contrast Control Double byte command to select 1 out of 256  
contrast steps. Contrast increases as the value  
increases.  
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0  
(RESET = 7Fh )  
A4h, X0=0b: Resume to RAM content display  
(RESET)  
0
0
A4/A5  
A6/A7  
1
1
0
0
1
1
0
0
0
0
1
1
0
1
X0 Entire Display ON  
Output follows RAM content  
A5h, X0=1b: Entire display ON  
Output ignores RAM content  
A6h, X[0]=0b: Normal display (RESET)  
0 in RAM: OFF in display panel  
1 in RAM: ON in display panel  
A7h, X[0]=1b: Inverse display  
0 in RAM: ON in display panel  
1 in RAM: OFF in display panel  
AEh, X[0]=0b:Display OFF (sleep mode)  
(RESET)  
X0 Set Normal/Inverse  
Display  
0
AE  
AF  
1
0
1
0
1
1
1
X0 Set Display ON/OFF  
AFh X[0]=1b:Display ON in normal mode  
2. Scrolling Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
26h, X[0]=0, Right Horizontal Scroll  
27h, X[0]=1, Left Horizontal Scroll  
(Horizontal scroll by 1 column)  
A[7:0] : Dummy byte (Set as 00h)  
B[2:0] : Define start page address  
0
0
0
0
0
0
0
26/27  
0
0
*
*
*
0
1
0
0
*
*
*
0
1
1
0
*
*
*
0
1
0
0
*
*
*
0
1
0
0
*
*
*
0
1
1
0
B2  
C2  
D2  
0
1
0
B1  
C1  
D1  
0
X0 Continuous  
Horizontal Scroll  
Setup  
A[7:0]  
B[2:0]  
C[2:0]  
D[2:0]  
E[7:0]  
F[7:0]  
0
B0  
C0  
D0  
0
000b – PAGE0 011b – PAGE3 110b – PAGE6  
001b – PAGE1 100b – PAGE4 111b – PAGE7  
010b – PAGE2 101b – PAGE5  
1
1
1
C[2:0] : Set time interval between each scroll step in  
terms of frame frequency  
000b – 5 frames  
001b – 64 frames  
010b – 128 frames  
011b – 256 frames  
100b – 3 frames  
101b – 4 frames  
110b – 25 frame  
111b – 2 frame  
D[2:0] : Define end page address  
000b – PAGE0 011b – PAGE3 110b – PAGE6  
001b – PAGE1 100b – PAGE4 111b – PAGE7  
010b – PAGE2 101b – PAGE5  
The value of D[2:0] must be larger or equal  
to B[2:0]  
E[7:0] : Dummy byte (Set as 00h)  
F[7:0] : Dummy byte (Set as FFh)  
Solomon Systech  
Apr 2008 P 28/59  
Rev 1.1 SSD1306  
 
2. Scrolling Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
0
0
0
0
0
29/2A  
A[2:0]  
B[2:0]  
C[2:0]  
D[2:0]  
E[5:0]  
0
0
*
*
*
*
0
0
*
*
*
*
1
0
*
*
*
0
0
*
*
*
1
0
*
*
*
0
0
B2  
C2  
D2  
E2  
X1  
0
B1  
C1  
D1  
E1  
X0 Continuous  
29h, X1X0=01b : Vertical and Right Horizontal Scroll  
2Ah, X1X0=10b : Vertical and Left Horizontal Scroll  
Vertical and  
0
Horizontal Scroll (Horizontal scroll by 1 column)  
Setup  
B0  
C0  
D0  
E0  
A[7:0] : Dummy byte  
B[2:0] : Define start page address  
E5 E4 E3  
000b – PAGE0 011b – PAGE3 110b – PAGE6  
001b – PAGE1 100b – PAGE4 111b – PAGE7  
010b – PAGE2 101b – PAGE5  
C[2:0] : Set time interval between each scroll step in  
terms of frame frequency  
000b – 5 frames  
001b – 64 frames  
010b – 128 frames  
011b – 256 frames  
100b – 3 frames  
101b – 4 frames  
110b – 25 frame  
111b – 2 frame  
D[2:0] : Define end page address  
000b – PAGE0 011b – PAGE3 110b – PAGE6  
001b – PAGE1 100b – PAGE4 111b – PAGE7  
010b – PAGE2 101b – PAGE5  
The value of D[2:0] must be larger or equal  
to B[2:0]  
E[5:0] : Vertical scrolling offset  
e.g. E[5:0]= 01h refer to offset =1 row  
E[5:0] =3Fh refer to offset =63 rows  
Note  
(1)  
No continuous vertical scrolling is available.  
0
0
2E  
2F  
0
0
0
0
1
1
0
0
1
1
1
1
1
1
0
1
Deactivate scroll Stop scrolling that is configured by command  
26h/27h/29h/2Ah.  
Note  
(1)  
After sending 2Eh command to deactivate the scrolling  
action, the ram data needs to be rewritten.  
Activate scroll  
Start scrolling that is configured by the scrolling setup  
commands :26h/27h/29h/2Ah with the following valid  
sequences:  
Valid command sequence 1: 26h ;2Fh.  
Valid command sequence 2: 27h ;2Fh.  
Valid command sequence 3: 29h ;2Fh.  
Valid command sequence 4: 2Ah ;2Fh.  
For example, if “26h; 2Ah; 2Fh.” commands are  
issued, the setting in the last scrolling setup command,  
i.e. 2Ah in this case, will be executed. In other words,  
setting in the last scrolling setup command overwrites  
the setting in the previous scrolling setup commands.  
SSD1306  
Rev 1.1  
P 29/59  
Apr 2008  
Solomon Systech  
2. Scrolling Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
0
0
A3  
A[5:0]  
B[6:0]  
1
*
*
0
*
1
0
0
0
A2  
B2  
1
A1  
B1  
1
A0  
B0  
Set Vertical ScrollA[5:0] : Set No. of rows in top fixed area. The No. of  
Area  
A5 A4 A3  
rows in top fixed area is referenced to the  
B6 B5 B4 B3  
top of the GDDRAM (i.e. row 0).[RESET =  
0]  
B[6:0] : Set No. of rows in scroll area. This is the  
number of rows to be used for vertical  
scrolling. The scroll area starts in the first  
row below the top fixed area. [RESET = 64]  
Note  
(1) A[5:0]+B[6:0] <= MUX ratio  
(2)  
B[6:0] <= MUX ratio  
(3a) Vertical scrolling offset (E[5:0] in 29h/2Ah) <  
B[6:0]  
(3b) Set Display Start Line (X5X4X3X2X1X0 of  
40h~7Fh) < B[6:0]  
(4) The last row of the scroll area shifts to the first row  
of the scroll area.  
(5) For 64d MUX display  
A[5:0] = 0, B[6:0]=64 : whole area scrolls  
A[5:0]= 0, B[6:0] < 64 : top area scrolls  
A[5:0] + B[6:0] < 64 : central area scrolls  
A[5:0] + B[6:0] = 64 : bottom area scrolls  
3. Addressing Setting Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
00~0F  
0
0
0
0
X3 X2 X1 X0 Set Lower Column Set the lower nibble of the column start address  
Start Address for  
Page Addressing  
Mode  
register for Page Addressing Mode using X[3:0]  
as data bits. The initial display line register is  
reset to 0000b after RESET.  
Note  
(1) This command is only for page addressing mode  
0
10~1F  
0
0
0
1
X3 X2 X1 X0 Set Higher Column Set the higher nibble of the column start address  
Start Address for  
Page Addressing  
Mode  
register for Page Addressing Mode using X[3:0]  
as data bits. The initial display line register is  
reset to 0000b after RESET.  
Note  
(1) This command is only for page addressing mode  
0
0
20  
A[1:0]  
0
*
0
*
1
*
0
*
0
*
0
*
0
0
Set Memory  
A[1:0] = 00b, Horizontal Addressing Mode  
A[1:0] = 01b, Vertical Addressing Mode  
A[1:0] = 10b, Page Addressing Mode (RESET)  
A[1:0] = 11b, Invalid  
Addressing Mode  
A1 A0  
0
0
0
21  
A[6:0]  
B[6:0]  
0
*
*
0
1
0
0
0
0
1
Set Column Address Setup column start and end address  
A[6:0] : Column start address, range : 0-127d,  
(RESET=0d)  
A6 A5 A4 A3 A2 A1 A0  
B6 B5 B4 B3 B2 B1 B0  
B[6:0]: Column end address, range : 0-127d,  
(RESET =127d)  
Note  
(1) This command is only for horizontal or vertical  
addressing mode.  
Solomon Systech  
Apr 2008 P 30/59  
Rev 1.1 SSD1306  
3. Addressing Setting Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
0
0
22  
A[2:0]  
B[2:0]  
0
*
*
0
*
*
1
*
*
0
*
*
0
*
*
0
1
0
Set Page Address  
Setup page start and end address  
A[2:0] : Page start Address, range : 0-7d,  
(RESET = 0d)  
B[2:0] : Page end Address, range : 0-7d,  
(RESET = 7d)  
A2 A1 A0  
B2 B1 B0  
Note  
(1) This command is only for horizontal or vertical  
addressing mode.  
0
B0~B7  
1
0
1
1
0
X2 X1 X0 Set Page Start  
Address for Page  
Set GDDRAM Page Start Address  
(PAGE0~PAGE7) for Page Addressing Mode  
using X[2:0].  
Addressing Mode  
Note  
(1) This command is only for page addressing mode  
4. Hardware Configuration (Panel resolution & layout related) Command Table  
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
40~7F  
0
1
X5 X4 X3 X2 X1 X0 Set Display Start LineSet display RAM display start line register from  
0-63 using X5X3X2X1X0.  
Display start line register is reset to 000000b  
during RESET.  
0
A0/A1  
1
0
1
1
0
0
0
1
0
0
0
0
X0 Set Segment Re-map A0h, X[0]=0b: column address 0 is mapped to  
SEG0 (RESET)  
A1h, X[0]=1b: column address 127 is mapped to  
SEG0  
0
0
A8  
A[5:0]  
1
*
0
*
0
Set Multiplex Ratio Set MUX ratio to N+1 MUX  
N=A[5:0] : from 16MUX to 64MUX, RESET=  
A5 A4 A3 A2 A1 A0  
111111b (i.e. 63d, 64MUX)  
A[5:0] from 0 to 14 are invalid entry.  
0
C0/C8  
1
1
0
0
X3  
0
0
0
Set COM Output  
Scan Direction  
C0h, X[3]=0b: normal mode (RESET) Scan from  
COM0 to COM[N –1]  
C8h, X[3]=1b: remapped mode. Scan from  
COM[N-1] to COM0  
Where N is the Multiplex ratio.  
0
0
D3  
A[5:0]  
1
*
1
*
0
1
0
0
1
1
Set Display Offset  
Set vertical shift by COM from 0d~63d  
The value is reset to 00h after RESET.  
A5 A4 A3 A2 A1 A0  
0
0
DA  
A[5:4]  
1
0
1
0
0
1
1
0
0
0
1
1
0
0
Set COM Pins  
Hardware  
Configuration  
A[4]=0b, Sequential COM pin configuration  
A[4]=1b(RESET), Alternative COM pin  
configuration  
A5 A4  
A[5]=0b(RESET), Disable COM Left/Right  
remap  
A[5]=1b, Enable COM Left/Right remap  
SSD1306  
Rev 1.1  
P 31/59  
Apr 2008  
Solomon Systech  
5. Timing & Driving Scheme Setting Command Table  
D/C#Hex D7 D6 D5 D4 D3 D2 D1 D0 Command  
Description  
0
0
D5  
1
1
0
1
0
1
0
1
Set Display Clock  
Divide  
Ratio/Oscillator  
Frequency  
A[3:0] : Define the divide ratio (D) of the  
display clocks (DCLK):  
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0  
Divide ratio= A[3:0] + 1, RESET is  
0000b (divide ratio = 1)  
A[7:4] : Set the Oscillator Frequency, FOSC  
.
Oscillator Frequency increases with  
the value of A[7:4] and vice versa.  
RESET is 1000b  
Range:0000b~1111b  
Frequency increases as setting value  
increases.  
0
0
D9  
1
1
0
1
1
0
0
1
Set Pre-charge Period A[3:0] : Phase 1 period of up to 15 DCLK  
clocks 0 is invalid entry  
(RESET=2h)  
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0  
A[7:4] : Phase 2 period of up to 15 DCLK  
clocks 0 is invalid entry  
(RESET=2h )  
Hex  
code  
00h  
20h  
30h  
0
0
DB  
1
0
1
0
1
1
0
0
0
1
0
1
0
Set VCOMH Deselect  
Level  
A[6:4]  
V COMH deselect level  
A[6:4]  
A6 A5 A4  
000b  
010b  
011b  
~ 0.65 x VCC  
~ 0.77 x VCC (RESET)  
~ 0.83 x VCC  
0
E3  
1
1
1
0
0
0
1
1
NOP  
Command for no operation  
Note  
(1) “*” stands for “Don’t care”.  
Solomon Systech  
Apr 2008 P 32/59  
Rev 1.1 SSD1306  
Table 9-2 : Read Command Table  
Description  
Bit Pattern  
Command  
D7D6D5D4D3D2D1D0  
D[7] : Reserved  
Status Register Read  
D[6] : “1” for display OFF / “0” for display ON  
D[5] : Reserved  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
:
:
:
:
:
Note  
(1) Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected  
results can occur.  
9.1 Data Read / Write  
To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800-  
series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel  
mode. No data read is provided in serial mode operation.  
In normal data read mode the GDDRAM column address pointer will be increased automatically by one after  
each data read.  
Also, a dummy read is required before the first data read.  
To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both  
6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode.  
The GDDRAM column address pointer will be increased automatically by one after each data write.  
Table 9-3 : Address increment table (Automatic)  
D/C#  
R/W# (WR#)  
Comment  
Address Increment  
0
0
1
1
0
1
0
1
Write Command  
Read Status  
Write Data  
No  
No  
Yes  
Yes  
Read Data  
SSD1306  
Rev 1.1  
P 33/59  
Apr 2008  
Solomon Systech  
 
10 COMMAND DESCRIPTIONS  
10.1 Fundamental Command  
10.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)  
This command specifies the lower nibble of the 8-bit column start address for the display data RAM under  
Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section  
Table 9-1 and Section 10.1.3 for details.  
10.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh)  
This command specifies the higher nibble of the 8-bit column start address for the display data RAM under  
Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section  
Table 9-1 and Section 10.1.3 for details.  
10.1.3 Set Memory Addressing Mode (20h)  
There are 3 different memory addressing mode in SSD1306: page addressing mode, horizontal addressing  
mode and vertical addressing mode. This command sets the way of memory addressing into one of the above  
three modes. In there, “COL” means the graphic display data RAM column.  
Page addressing mode (A[1:0]=10xb)  
In page addressing mode, after the display RAM is read/written, the column address pointer is increased  
automatically by 1. If the column address pointer reaches column end address, the column address pointer is  
reset to column start address and page address pointer is not changed. Users have to set the new page and  
column addresses in order to access the next page RAM content. The sequence of movement of the PAGE  
and column address point for page addressing mode is shown in Figure 10-1.  
Figure 10-1 : Address Pointer Movement of Page addressing mode  
COL0  
:
COL 1  
:
…..  
:
COL 126 COL 127  
PAGE0  
PAGE1  
:
:
:
PAGE6  
PAGE7  
In normal display data RAM read or write and page addressing mode, the following steps are required to  
define the starting RAM access pointer location:  
Set the page start address of the target display location by command B0h to B7h.  
Set the lower start column address of pointer by command 00h~0Fh.  
Set the upper start column address of pointer by command 10h~1Fh.  
For example, if the page address is set to B2h, lower column address is 03h and upper column address is 10h,  
then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in  
Figure 10-2. The input data byte will be written into RAM position of column 3.  
Figure 10-2 : Example of GDDRAM access pointer setting in Page Addressing Mode (No row and column-  
remapping)  
SEG0  
SEG3 (Starting column)  
RAM access pointer  
SEG127  
COM16  
COM17  
LSB D0  
MSB D7  
Each lattice represents  
one bit of image data  
:
:
:
:
PAGE2  
(Starting page)  
....................  
:
COM23  
Solomon Systech  
Apr 2008 P 34/59  
Rev 1.1 SSD1306  
 
Horizontal addressing mode (A[1:0]=00b)  
In horizontal addressing mode, after the display RAM is read/written, the column address pointer is increased  
automatically by 1. If the column address pointer reaches column end address, the column address pointer is  
reset to column start address and page address pointer is increased by 1. The sequence of movement of the  
page and column address point for horizontal addressing mode is shown in Figure 10-3. When both column  
and page address pointers reach the end address, the pointers are reset to column start address and page start  
address (Dotted line in Figure 10-3.)  
Figure 10-3 : Address Pointer Movement of Horizontal addressing mode  
COL0  
COL 1  
…..  
COL 126 COL 127  
PAGE0  
PAGE1  
:
:
:
:
:
:
PAGE6  
PAGE7  
Vertical addressing mode: (A[1:0]=01b)  
In vertical addressing mode, after the display RAM is read/written, the page address pointer is increased  
automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset  
to page start address and column address pointer is increased by 1. The sequence of movement of the page  
and column address point for vertical addressing mode is shown in Figure 10-4. When both column and page  
address pointers reach the end address, the pointers are reset to column start address and page start address  
(Dotted line in Figure 10-4.)  
Figure 10-4 : Address Pointer Movement of Vertical addressing mode  
COL0  
COL 1  
…..  
…..  
…..  
:
COL 126 COL 127  
PAGE0  
PAGE1  
:
PAGE6  
PAGE7  
…..  
…..  
In normal display data RAM read or write and horizontal / vertical addressing mode, the following steps are  
required to define the RAM access pointer location:  
Set the column start and end address of the target display location by command 21h.  
Set the page start and end address of the target display location by command 22h.  
Example is shown in Figure 10-5.  
10.1.4 Set Column Address (21h)  
This triple byte command specifies column start address and end address of the display data RAM. This  
command also sets the column address pointer to column start address. This pointer is used to define the  
current read/write column address in graphic display data RAM. If horizontal address increment mode is  
enabled by command 20h, after finishing read/write one column data, it is incremented automatically to the  
next column address. Whenever the column address pointer finishes accessing the end column address, it is  
reset back to start column address and the row address is incremented to the next row.  
SSD1306  
Rev 1.1  
P 35/59  
Apr 2008  
Solomon Systech  
 
10.1.5 Set Page Address (22h)  
This triple byte command specifies page start address and end address of the display data RAM. This  
command also sets the page address pointer to page start address. This pointer is used to define the current  
read/write page address in graphic display data RAM. If vertical address increment mode is enabled by  
command 20h, after finishing read/write one page data, it is incremented automatically to the next page  
address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start  
page address.  
The figure below shows the way of column and page address pointer movement through the example: column  
start address is set to 2 and column end address is set to 125, page start address is set to 1 and page end  
address is set to 6; Horizontal address increment mode is enabled by command 20h. In this case, the graphic  
display data RAM column accessible range is from column 2 to column 125 and from page 1 to page 6 only.  
In addition, the column address pointer is set to 2 and page address pointer is set to 1. After finishing  
read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM  
location for next read/write operation (solid line in Figure 10-5). Whenever the column address pointer  
finishes accessing the end column 125, it is reset back to column 2 and page address is automatically  
increased by 1 (solid line in Figure 10-5). While the end page 6 and end column 125 RAM location is  
accessed, the page address is reset back to 1 and the column address is reset back to 2 (dotted line in Figure  
10-5). .  
Figure 10-5 : Example of Column and Row Address Pointer Movement  
Col 0  
Col 1  
Col 2  
…..  
……. Col 125 Col 126 Col 127  
PAGE0  
PAGE1  
:
:
:
PAGE6  
PAGE7  
10.1.6 Set Display Start Line (40h~7Fh)  
This command sets the Display Start Line register to determine starting address of display RAM, by selecting  
a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM  
row 1 is mapped to COM0 and so on.  
Refer to Table 10-1 for more illustrations.  
10.1.7 Set Contrast Control for BANK0 (81h)  
This command sets the Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The  
segment output current increases as the contrast step value increases.  
10.1.8 Set Segment Re-map (A0h/A1h)  
This command changes the mapping between the display data column address and the segment driver. It  
allows flexibility in OLED module design. Please refer to Table 9-1.  
This command only affects subsequent data input. Data already stored in GDDRAM will have no changes.  
Solomon Systech  
Apr 2008 P 36/59  
Rev 1.1 SSD1306  
 
10.1.9 Entire Display ON (A4h/A5h)  
A4h command enable display outputs according to the GDDRAM contents.  
If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents.  
In other words, A4h command resumes the display from entire display “ON” stage.  
A5h command forces the entire display to be “ON”, regardless of the contents of the display data RAM.  
10.1.10 Set Normal/Inverse Display (A6h/A7h)  
This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an  
“ON” pixel while in inverse display a RAM data of 0 indicates an “ON” pixel.  
10.1.11 Set Multiplex Ratio (A8h)  
This command switches the default 63 multiplex mode to any multiplex ratio, ranging from 16 to 63. The  
output pads COM0~COM63 will be switched to the corresponding COM signal.  
10.1.12 Set Display ON/OFF (AEh/AFh)  
These single byte commands are used to turn the OLED panel display ON or OFF.  
When the display is ON, the selected circuits by Set Master Configuration command will be turned ON.  
When the display is OFF, those circuits will be turned OFF and the segment and common output are in VSS  
state and high impedance state, respectively. These commands set the display to one of the two states:  
o
o
AEh : Display OFF  
AFh : Display ON  
Figure 10-6 :Transition between different modes  
AFh  
Normal mode  
Sleep mode  
AEh  
10.1.13 Set Page Start Address for Page Addressing Mode (B0h~B7h)  
This command positions the page start address from 0 to 7 in GDDRAM under Page Addressing Mode.  
Please refer to Table 9-1 and Section 10.1.3 for details.  
10.1.14 Set COM Output Scan Direction (C0h/C8h)  
This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module  
design. Additionally, the display will show once this command is issued. For example, if this command is  
sent during normal display then the graphic display will be vertically flipped immediately. Please refer to  
Table 10-3 for details.  
10.1.15 Set Display Offset (D3h)  
This is a double byte command. The second command specifies the mapping of the display start line to one of  
COM0~COM63 (assuming that COM0 is the display start line then the display start line register is equal to 0).  
For example, to move the COM16 towards the COM0 direction by 16 lines the 6-bit data in the second byte  
should be given as 010000b. To move in the opposite direction by 16 lines the 6-bit data should be given by  
64 – 16, so the second byte would be 100000b. The following two tables (Table 10-1, Table 10-2) show the  
example of setting the command C0h/C8h and D3h.  
SSD1306  
Rev 1.1  
P 37/59  
Apr 2008  
Solomon Systech  
 
Table 10-1 : Example of Set Display Offset and Display Start Line with no Remap  
Output  
64  
64  
64  
56  
56  
56  
Set MUX ratio(A8h)  
Normal  
0
0
Normal  
8
0
Normal  
0
8
Normal  
0
0
Normal  
8
0
Normal  
0
8
COM Normal / Remapped (C0h / C8h)  
Display offset (D3h)  
Display start line (40h - 7Fh)  
Hardware  
pin name  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
Row0  
RAM0  
RAM1  
RAM2  
RAM3  
RAM4  
RAM5  
RAM6  
RAM7  
RAM8  
RAM9  
Row8  
Row9  
RAM8  
RAM9  
Row0  
Row1  
RAM8  
RAM9  
Row0  
Row1  
RAM0  
RAM1  
RAM2  
RAM3  
RAM4  
RAM5  
RAM6  
RAM7  
RAM8  
RAM9  
Row8  
Row9  
RAM8  
RAM9  
Row0  
Row1  
RAM8  
RAM9  
Row1  
Row2  
Row3  
Row4  
Row5  
Row6  
Row7  
Row8  
Row9  
Row10 RAM10 Row2  
Row11 RAM11 Row3  
Row12 RAM12 Row4  
Row13 RAM13 Row5  
Row14 RAM14 Row6  
Row15 RAM15 Row7  
Row16 RAM16 Row8  
Row17 RAM17 Row9  
RAM10 Row2  
RAM11 Row3  
RAM12 Row4  
RAM13 Row5  
RAM14 Row6  
RAM15 Row7  
RAM16 Row8  
RAM17 Row9  
Row10 RAM10 Row2 RAM10  
Row11 RAM11 Row3 RAM11  
Row12 RAM12 Row4 RAM12  
Row13 RAM13 Row5 RAM13  
Row14 RAM14 Row6 RAM14  
Row15 RAM15 Row7 RAM15  
Row16 RAM16 Row8 RAM16  
Row17 RAM17 Row9 RAM17  
COM10 Row10 RAM10 Row18 RAM18 Row10 RAM18 Row10 RAM10 Row18 RAM18 Row10 RAM18  
COM11 Row11 RAM11 Row19 RAM19 Row11 RAM19 Row11 RAM11 Row19 RAM19 Row11 RAM19  
COM12 Row12 RAM12 Row20 RAM20 Row12 RAM20 Row12 RAM12 Row20 RAM20 Row12 RAM20  
COM13 Row13 RAM13 Row21 RAM21 Row13 RAM21 Row13 RAM13 Row21 RAM21 Row13 RAM21  
COM14 Row14 RAM14 Row22 RAM22 Row14 RAM22 Row14 RAM14 Row22 RAM22 Row14 RAM22  
COM15 Row15 RAM15 Row23 RAM23 Row15 RAM23 Row15 RAM15 Row23 RAM23 Row15 RAM23  
COM16 Row16 RAM16 Row24 RAM24 Row16 RAM24 Row16 RAM16 Row24 RAM24 Row16 RAM24  
COM17 Row17 RAM17 Row25 RAM25 Row17 RAM25 Row17 RAM17 Row25 RAM25 Row17 RAM25  
COM18 Row18 RAM18 Row26 RAM26 Row18 RAM26 Row18 RAM18 Row26 RAM26 Row18 RAM26  
COM19 Row19 RAM19 Row27 RAM27 Row19 RAM27 Row19 RAM19 Row27 RAM27 Row19 RAM27  
COM20 Row20 RAM20 Row28 RAM28 Row20 RAM28 Row20 RAM20 Row28 RAM28 Row20 RAM28  
COM21 Row21 RAM21 Row29 RAM29 Row21 RAM29 Row21 RAM21 Row29 RAM29 Row21 RAM29  
COM22 Row22 RAM22 Row30 RAM30 Row22 RAM30 Row22 RAM22 Row30 RAM30 Row22 RAM30  
COM23 Row23 RAM23 Row31 RAM31 Row23 RAM31 Row23 RAM23 Row31 RAM31 Row23 RAM31  
COM24 Row24 RAM24 Row32 RAM32 Row24 RAM32 Row24 RAM24 Row32 RAM32 Row24 RAM32  
COM25 Row25 RAM25 Row33 RAM33 Row25 RAM33 Row25 RAM25 Row33 RAM33 Row25 RAM33  
COM26 Row26 RAM26 Row34 RAM34 Row26 RAM34 Row26 RAM26 Row34 RAM34 Row26 RAM34  
COM27 Row27 RAM27 Row35 RAM35 Row27 RAM35 Row27 RAM27 Row35 RAM35 Row27 RAM35  
COM28 Row28 RAM28 Row36 RAM36 Row28 RAM36 Row28 RAM28 Row36 RAM36 Row28 RAM36  
COM29 Row29 RAM29 Row37 RAM37 Row29 RAM37 Row29 RAM29 Row37 RAM37 Row29 RAM37  
COM30 Row30 RAM30 Row38 RAM38 Row30 RAM38 Row30 RAM30 Row38 RAM38 Row30 RAM38  
COM31 Row31 RAM31 Row39 RAM39 Row31 RAM39 Row31 RAM31 Row39 RAM39 Row31 RAM39  
COM32 Row32 RAM32 Row40 RAM40 Row32 RAM40 Row32 RAM32 Row40 RAM40 Row32 RAM40  
COM33 Row33 RAM33 Row41 RAM41 Row33 RAM41 Row33 RAM33 Row41 RAM41 Row33 RAM41  
COM34 Row34 RAM34 Row42 RAM42 Row34 RAM42 Row34 RAM34 Row42 RAM42 Row34 RAM42  
COM35 Row35 RAM35 Row43 RAM43 Row35 RAM43 Row35 RAM35 Row43 RAM43 Row35 RAM43  
COM36 Row36 RAM36 Row44 RAM44 Row36 RAM44 Row36 RAM36 Row44 RAM44 Row36 RAM44  
COM37 Row37 RAM37 Row45 RAM45 Row37 RAM45 Row37 RAM37 Row45 RAM45 Row37 RAM45  
COM38 Row38 RAM38 Row46 RAM46 Row38 RAM46 Row38 RAM38 Row46 RAM46 Row38 RAM46  
COM39 Row39 RAM39 Row47 RAM47 Row39 RAM47 Row39 RAM39 Row47 RAM47 Row39 RAM47  
COM40 Row40 RAM40 Row48 RAM48 Row40 RAM48 Row40 RAM40 Row48 RAM48 Row40 RAM48  
COM41 Row41 RAM41 Row49 RAM49 Row41 RAM49 Row41 RAM41 Row49 RAM49 Row41 RAM49  
COM42 Row42 RAM42 Row50 RAM50 Row42 RAM50 Row42 RAM42 Row50 RAM50 Row42 RAM50  
COM43 Row43 RAM43 Row51 RAM51 Row43 RAM51 Row43 RAM43 Row51 RAM51 Row43 RAM51  
COM44 Row44 RAM44 Row52 RAM52 Row44 RAM52 Row44 RAM44 Row52 RAM52 Row44 RAM52  
COM45 Row45 RAM45 Row53 RAM53 Row45 RAM53 Row45 RAM45 Row53 RAM53 Row45 RAM53  
COM46 Row46 RAM46 Row54 RAM54 Row46 RAM54 Row46 RAM46 Row54 RAM54 Row46 RAM54  
COM47 Row47 RAM47 Row55 RAM55 Row47 RAM55 Row47 RAM47 Row55 RAM55 Row47 RAM55  
COM48 Row48 RAM48 Row56 RAM56 Row48 RAM56 Row48 RAM48  
COM49 Row49 RAM49 Row57 RAM57 Row49 RAM57 Row49 RAM49  
COM50 Row50 RAM50 Row58 RAM58 Row50 RAM58 Row50 RAM50  
COM51 Row51 RAM51 Row59 RAM59 Row51 RAM59 Row51 RAM51  
COM52 Row52 RAM52 Row60 RAM60 Row52 RAM60 Row52 RAM52  
COM53 Row53 RAM53 Row61 RAM61 Row53 RAM61 Row53 RAM53  
COM54 Row54 RAM54 Row62 RAM62 Row54 RAM62 Row54 RAM54  
COM55 Row55 RAM55 Row63 RAM63 Row55 RAM63 Row55 RAM55  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Row48 RAM56  
Row49 RAM57  
Row50 RAM58  
Row51 RAM59  
Row52 RAM60  
Row53 RAM61  
Row54 RAM62  
Row55 RAM63  
COM56 Row56 RAM56  
COM57 Row57 RAM57  
COM58 Row58 RAM58  
COM59 Row59 RAM59  
COM60 Row60 RAM60  
COM61 Row61 RAM61  
COM62 Row62 RAM62  
COM63 Row63 RAM63  
Row0  
Row1  
Row2  
Row3  
Row4  
Row5  
Row6  
Row7  
RAM0  
RAM1  
RAM2  
RAM3  
RAM4  
RAM5  
RAM6  
RAM7  
Row56 RAM0  
Row57 RAM1  
Row58 RAM2  
Row59 RAM3  
Row60 RAM4  
Row61 RAM5  
Row62 RAM6  
Row63 RAM7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Row0  
Row1  
Row2  
Row3  
Row4  
Row5  
Row6  
Row7  
RAM0  
RAM1  
RAM2  
RAM3  
RAM4  
RAM5  
RAM6  
RAM7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Display  
examples  
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(a)  
(b)  
(f)  
(c)  
(d)  
(RAM)  
(e)  
Solomon Systech  
Apr 2008 P 38/59  
Rev 1.1 SSD1306  
 
Table 10-2 :Example of Set Display Offset and Display Start Line with Remap  
Output  
64  
Remap  
0
0
64  
Remap  
8
0
64  
Remap  
0
8
48  
Remap  
0
0
48  
Remap  
8
0
48  
Remap  
0
8
48  
Remap  
8
Set MUX ratio(A8h)  
COM Normal / Remapped (C0h / C8h)  
Display offset (D3h)  
Display start line (40h - 7Fh)  
Hardware  
pin name  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
16  
Row63  
RAM63  
RAM62  
RAM61  
RAM60  
RAM59  
RAM58  
RAM57  
RAM56  
RAM55  
RAM54  
RAM53  
RAM52  
RAM51  
RAM50  
RAM49  
RAM48  
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
RAM15  
RAM14  
RAM13  
RAM12  
RAM11  
RAM10  
RAM9  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
Row0  
RAM7  
RAM6  
RAM5  
RAM4  
RAM3  
RAM2  
RAM1  
RAM0  
Row63  
RAM7  
RAM6  
RAM5  
RAM4  
RAM3  
RAM2  
RAM1  
RAM0  
Row47  
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
RAM15  
RAM14  
RAM13  
RAM12  
RAM11  
RAM10  
RAM9  
RAM8  
RAM7  
RAM6  
RAM5  
RAM4  
RAM3  
RAM2  
RAM1  
RAM0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Row47  
RAM55  
RAM54  
RAM53  
RAM52  
RAM51  
RAM50  
RAM49  
RAM48  
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
RAM15  
RAM14  
RAM13  
RAM12  
RAM11  
RAM10  
RAM9  
RAM8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Row62  
Row61  
Row60  
Row59  
Row58  
Row57  
Row56  
Row55  
Row54  
Row53  
Row52  
Row51  
Row50  
Row49  
Row48  
Row47  
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
Row62  
Row61  
Row60  
Row59  
Row58  
Row57  
Row56  
Row55  
Row54  
Row53  
Row52  
Row51  
Row50  
Row49  
Row48  
Row47  
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
Row8  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
Row0  
-
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
Row8  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
Row0  
-
COM7  
COM8  
COM9  
Row63  
Row62  
Row61  
Row60  
Row59  
Row58  
Row57  
Row56  
Row55  
Row54  
Row53  
Row52  
Row51  
Row50  
Row49  
Row48  
Row47  
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
RAM63  
RAM62  
RAM61  
RAM60  
RAM59  
RAM58  
RAM57  
RAM56  
RAM55  
RAM54  
RAM53  
RAM52  
RAM51  
RAM50  
RAM49  
RAM48  
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
RAM15  
RAM14  
RAM13  
RAM12  
RAM11  
RAM10  
RAM9  
RAM63  
RAM62  
RAM61  
RAM60  
RAM59  
RAM58  
RAM57  
RAM56  
RAM55  
RAM54  
RAM53  
RAM52  
RAM51  
RAM50  
RAM49  
RAM48  
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
RAM15  
RAM14  
RAM13  
RAM12  
RAM11  
RAM10  
RAM9  
Row47  
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
Row8  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
Row0  
-
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
RAM15  
RAM14  
RAM13  
RAM12  
RAM11  
RAM10  
RAM9  
RAM8  
RAM7  
RAM6  
RAM5  
RAM4  
RAM3  
RAM2  
RAM1  
RAM0  
-
Row47  
Row46  
Row45  
Row44  
Row43  
Row42  
Row41  
Row40  
Row39  
Row38  
Row37  
Row36  
Row35  
Row34  
Row33  
Row32  
Row31  
Row30  
Row29  
Row28  
Row27  
Row26  
Row25  
Row24  
Row23  
Row22  
Row21  
Row20  
Row19  
Row18  
Row17  
Row16  
Row15  
Row14  
Row13  
Row12  
Row11  
Row10  
Row9  
Row8  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
Row0  
-
RAM63  
RAM62  
RAM61  
RAM60  
RAM59  
RAM58  
RAM57  
RAM56  
RAM55  
RAM54  
RAM53  
RAM52  
RAM51  
RAM50  
RAM49  
RAM48  
RAM47  
RAM46  
RAM45  
RAM44  
RAM43  
RAM42  
RAM41  
RAM40  
RAM39  
RAM38  
RAM37  
RAM36  
RAM35  
RAM34  
RAM33  
RAM32  
RAM31  
RAM30  
RAM29  
RAM28  
RAM27  
RAM26  
RAM25  
RAM24  
RAM23  
RAM22  
RAM21  
RAM20  
RAM19  
RAM18  
RAM17  
RAM16  
-
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Row8  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
RAM8  
RAM7  
RAM6  
RAM5  
RAM4  
RAM3  
RAM2  
RAM1  
Row8  
Row7  
Row6  
Row5  
Row4  
Row3  
Row2  
Row1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Row0  
RAM0  
Row8  
RAM8  
Row0  
RAM8  
Display  
examples  
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(a)  
(b)  
(f)  
(c)  
(g)  
(d)  
(e)  
(RAM)  
SSD1306  
Rev 1.1  
P 39/59  
Apr 2008  
Solomon Systech  
 
10.1.16 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)  
This command consists of two functions:  
Display Clock Divide Ratio (D)(A[3:0])  
Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16,  
with reset value = 1. Please refer to section 8.3 for the details relationship of DCLK and CLK.  
Oscillator Frequency (A[7:4])  
Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit  
value results in 16 different frequency settings available as shown below. The default setting is  
1000b.  
10.1.17 Set Pre-charge Period (D9h)  
This command is used to set the duration of the pre-charge period. The interval is counted in number of  
DCLK, where RESET equals 2 DCLKs.  
10.1.18 Set COM Pins Hardware Configuration (DAh)  
This command sets the COM signals pin configuration to match the OLED panel hardware layout. The table  
below shows the COM pin configuration under different conditions (for MUX ratio =64):  
Table 10-3 : COM Pins Hardware Configuration  
Conditions  
COM pins Configurations  
ROW63  
1 Sequential COM pin configuration (DAh A[4] =0)  
COM output Scan direction: from COM0 to COM63 (C0h)  
Disable COM Left/Right remap (DAh A[5] =0)  
ROW32  
ROW31  
ROW0  
128x 64  
COM32  
COM0  
SSD1306Z  
COM31  
COM63  
Pad 1,2,3,…->126  
Gold Bumps face up  
2 Sequential COM pin configuration (DAh A[4] =0)  
COM output Scan direction: from COM0 to COM63 (C0h)  
Enable COM Left/Right remap (DAh A[5] =1)  
ROW63  
ROW32  
ROW31  
ROW0  
128 x 64  
COM0  
COM32  
SSD1306Z  
COM63  
Pad 1,2,3,…->126  
Gold Bumps face up  
Solomon Systech  
Apr 2008 P 40/59  
Rev 1.1 SSD1306  
 
Conditions  
COM pins Configurations  
ROW0  
3 Sequential COM pin configuration (DAh A[4] =0)  
COM output Scan direction: from COM63 to COM0 (C8h)  
Disable COM Left/Right remap (DAh A[5] =0)  
ROW31  
ROW32  
ROW63  
128 x 64  
COM32  
COM0  
SSD1306Z  
COM31  
COM63  
Pad 1,2,3,…->126  
Gold Bumps face up  
4 Sequential COM pin configuration (DAh A[4] =0)  
COM output Scan direction: from COM63 to COM0 (C8h)  
Enable COM Left/Right remap (DAh A[5] =1)  
ROW0  
ROW32  
ROW63  
ROW31  
128 x 64  
COM0  
COM32  
SSD1306Z  
COM63  
COM31  
Pad 1,2,3,…->126  
Gold Bumps face up  
ROW63  
ROW61  
5 Alternative COM pin configuration (DAh A[4] =1)  
COM output Scan direction: from COM0 to COM63 (C0h)  
Disable COM Left/Right remap (DAh A[5] =0)  
ROW62  
128 x 64  
ROW2  
ROW0  
ROW1  
COM32  
COM0  
COM1  
SSD1306Z  
COM62  
COM63  
COM31  
Pad 1,2,3,…->126  
Gold Bumps face up  
SSD1306  
Rev 1.1  
P 41/59  
Apr 2008  
Solomon Systech  
Conditions  
COM pins Configurations  
6 Alternative COM pin configuration (DAh A[4] =1)  
COM output Scan direction: from COM0 to COM63 (C0h)  
Enable COM Left/Right remap (DAh A[5] =1)  
ROW63  
ROW61  
ROW62  
128 x 64  
ROW2  
ROW0  
COM32  
ROW1  
COM0  
COM33  
SSD1306Z  
COM30  
COM31  
COM63  
Pad 1,2,3,…->126  
Gold Bumps face up  
ROW0  
ROW2  
7 Alternative COM pin configuration (DAh A[4] =1)  
COM output Scan direction: from COM63 to COM0(C8h)  
Disable COM Left/Right remap (DAh A[5] =0)  
ROW1  
128 x 64  
ROW61  
ROW62  
ROW63  
COM32  
COM0  
COM1  
SSD1306Z  
COM62  
COM63  
COM31  
Pad 1,2,3,…->126  
Gold Bumps face up  
ROW0  
8 Alternative COM pin configuration (DAh A[4] =1)  
COM output Scan direction: from COM63 to COM0(C8h)  
Enable COM Left/Right remap (DAh A[5] =1)  
ROW1  
ROW2  
128 x 64  
ROW61  
ROW62  
ROW63  
COM32  
COM0  
COM33  
SSD1306Z  
COM30  
COM31  
COM63  
Pad 1,2,3,…->126  
Gold Bumps face up  
Solomon Systech  
Apr 2008 P 42/59  
Rev 1.1 SSD1306  
10.1.19 Set VCOMH Deselect Level (DBh)  
This command adjusts the VCOMH regulator output.  
10.1.20 NOP (E3h)  
No Operation Command  
10.1.21 Status register Read  
This command is issued by setting D/C# ON LOW during a data read (See Figure 13-1 to Figure 13-2 for  
parallel interface waveform). It allows the MCU to monitor the internal status of the chip. No status read is  
provided for serial mode.  
SSD1306  
Rev 1.1  
P 43/59  
Apr 2008  
Solomon Systech  
 
10.2 Graphic Acceleration Command  
10.2.1 Horizontal Scroll Setup (26h/27h)  
This command consists of consecutive bytes to set up the horizontal scroll parameters and determines the  
scrolling start page, end page and scrolling speed.  
Before issuing this command the horizontal scroll must be deactivated (2Eh). Otherwise, RAM content may  
be corrupted.  
The SSD1306 horizontal scroll is designed for 128 columns scrolling. The following two figures (Figure 10-7,  
Figure 10-8, Figure 10-9) show the examples of using the horizontal scroll:  
Figure 10-7 : Horizontal scroll example: Scroll RIGHT by 1 column  
Original Setting  
After one scroll  
step  
Figure 10-8 : Horizontal scroll example: Scroll LEFT by 1 column  
Original  
Setting  
After one  
scroll step  
Figure 10-9 : Horizontal scrolling setup example  
Solomon Systech  
Apr 2008 P 44/59  
Rev 1.1 SSD1306  
 
10.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)  
This command consists of 6 consecutive bytes to set up the continuous vertical scroll parameters and  
determines the scrolling start page, end page, scrolling speed and vertical scrolling offset.  
The bytes B[2:0], C[2:0] and D[2:0] of command 29h/2Ah are for the setting of the continuous horizontal  
scrolling. The byte E[5:0] is for the setting of the continuous vertical scrolling offset. All these bytes together  
are for the setting of continuous diagonal (horizontal + vertical) scrolling. If the vertical scrolling offset byte  
E[5:0] is set to zero, then only horizontal scrolling is performed (like command 26/27h).  
Before issuing this command the scroll must be deactivated (2Eh). Otherwise, RAM content may be  
corrupted. The following figure (Figure 10-10 ) show the example of using the continuous vertical and  
horizontal scroll:  
Figure 10-10 : Continuous Vertical and Horizontal scrolling setup example  
SSD1306  
Rev 1.1  
P 45/59  
Apr 2008  
Solomon Systech  
 
10.2.3 Deactivate Scroll (2Eh)  
This command stops the motion of scrolling. After sending 2Eh command to deactivate the scrolling action,  
the ram data needs to be rewritten.  
10.2.4 Activate Scroll (2Fh)  
This command starts the motion of scrolling and should only be issued after the scroll setup parameters have  
been defined by the scrolling setup commands :26h/27h/29h/2Ah . The setting in the last scrolling setup  
command overwrites the setting in the previous scrolling setup commands.  
The following actions are prohibited after the scrolling is activated  
1.  
2.  
RAM access (Data write or read)  
Changing the horizontal scroll setup parameters  
10.2.5 Set Vertical Scroll Area(A3h)  
This command consists of 3 consecutive bytes to set up the vertical scroll area. For the continuous vertical  
scroll function (command 29/2Ah), the number of rows that in vertical scrolling can be set smaller or equal to  
the MUX ratio.  
Solomon Systech  
Apr 2008 P 46/59  
Rev 1.1 SSD1306  
 
11 MAXIMUM RATINGS  
Table 11-1 : Maximum Ratings (Voltage Referenced to VSS)  
Symbol  
VDD  
VCC  
Parameter  
Value  
-0.3 to +4  
0 to 16  
Unit  
V
V
Supply Voltage  
VSEG  
VCOM  
Vin  
TA  
Tstg  
SEG output voltage  
COM output voltage  
Input voltage  
Operating Temperature  
Storage Temperature Range  
0 to VCC  
V
V
V
ºC  
ºC  
0 to 0.9*VCC  
VSS-0.3 to VDD+0.3  
-40 to +85  
-65 to +150  
Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the  
limits in the Electrical Characteristics tables or Pin Description section  
This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal  
operation. This device is not radiation protected.  
SSD1306  
Rev 1.1  
P 47/59  
Apr 2008  
Solomon Systech  
 
12 DC CHARACTERISTICS  
Condition (Unless otherwise specified):  
Voltage referenced to VSS  
VDD = 1.65 to 3.3V  
TA = 25°C  
Table 12-1 : DC Characteristics  
Symbol Parameter  
Test Condition  
-
Min  
7
Typ  
-
Max  
15  
Unit  
V
VCC  
Operating Voltage  
V
VDD  
Logic Supply Voltage  
-
1.65  
-
3.3  
VOH  
VOL  
VIH  
VIL  
High Logic Output Level  
Low Logic Output Level  
High Logic Input Level  
Low Logic Input Level  
ICC, Sleep mode Current  
IOUT = 100uA, 3.3MHz  
IOUT = 100uA, 3.3MHz  
-
0.9 x VDD  
-
0.8 x VDD  
-
-
-
-
-
-
V
V
V
V
0.1 x VDD  
-
0.2 x VDD  
-
ICC, SLEEP  
VDD = 1.65V~3.3V, VCC = 7V~15V  
Display OFF, No panel attached  
VDD = 1.65V~3.3V, VCC = 7V~15V  
Display OFF, No panel attached  
-
-
-
-
10  
10  
uA  
uA  
IDD, Sleep mode Current  
IDD, SLEEP  
VCC Supply Current  
VDD = 2.8V, VCC = 12V,  
IREF = 12.5uA  
No loading, Display ON, All  
ON  
VDD Supply Current  
VDD = 2.8V, VCC = 12V,  
IREF = 12.5uA  
No loading, Display ON, All  
ON  
ICC  
-
-
430  
50  
780  
150  
uA  
Contrast = FFh  
IDD  
uA  
uA  
Segment Output Current  
Contrast=FFh  
Contrast=AFh  
Contrast=3Fh  
-
-
-
100  
69  
-
-
-
ISEG  
VDD=2.8V, VCC=12V,  
IREF=12.5uA, Display ON.  
25  
Dev = (ISEG – IMID)/IMID  
IMID = (IMAX + IMIN)/2  
ISEG[0:131] = Segment current at  
contrast = FFh  
Adj Dev = (I[n]-I[n+1]) /  
(I[n]+I[n+1])  
Segment output current  
uniformity  
Dev  
-3  
-2  
-
-
+3  
+2  
%
%
Adjacent pin output current  
uniformity (contrast = FF)  
Adj. Dev  
Solomon Systech  
Apr 2008 P 48/59  
Rev 1.1 SSD1306  
 
13 AC CHARACTERISTICS  
Conditions:  
Voltage referenced to VSS  
VDD=1.65 to3.3V  
TA = 25°C  
Table 13-1 : AC Characteristics  
Test Condition  
Symbol Parameter  
FOSC  
Min Typ  
Max Unit  
(1)  
Oscillation Frequency of Display VDD = 2.8V  
Timing Generator  
kHz  
333 370  
407  
Frame Frequency for 64 MUX  
Mode  
128x64 Graphic Display Mode,  
Display ON, Internal Oscillator  
Enabled  
FOSC x 1/(DxKx64)  
Hz  
FFRM  
-
-
(2)  
RES#  
Reset low pulse width  
us  
3
-
-
Note  
(1) FOSC stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is  
in default value.  
(2) D: divide ratio (default value = 1)  
K: number of display clocks (default value = 54)  
Please refer to Table 9-1 (Set Display Clock Divide Ratio/Oscillator Frequency, D5h) for detailed description  
SSD1306  
Rev 1.1  
P 49/59  
Apr 2008  
Solomon Systech  
 
Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics  
(VDD - VSS = 1.65V to 3.3V, TA = 25°C)  
Symbol  
Parameter  
Min Typ  
Max  
Unit  
tcycle  
Clock Cycle Time  
300  
0
-
-
-
-
-
-
-
-
-
ns  
tAS  
Address Setup Time  
Address Hold Time  
Write Data Setup Time  
Write Data Hold Time  
Read Data Hold Time  
Output Disable Time  
Access Time  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
0
-
tDSW  
tDHW  
tDHR  
tOH  
40  
7
-
-
20  
-
-
70  
140  
tACC  
-
Chip Select Low Pulse Width (read)  
Chip Select Low Pulse Width (write)  
Chip Select High Pulse Width (read)  
Chip Select High Pulse Width (write)  
120  
60  
60  
PWCSL  
PWCSH  
-
-
-
-
ns  
ns  
60  
tR  
tF  
Rise Time  
Fall Time  
-
-
-
-
40  
40  
ns  
ns  
Figure 13-1 : 6800-series MCU parallel interface characteristics  
D/C#  
tAS  
tAH  
R/W#  
E
tcycle  
PWCSH  
PWCSL  
tR  
CS#  
tF  
tDHW  
tDSW  
D[7:0](WRITE)  
Valid Data  
tACC  
tDHR  
D[7:0](READ)  
Valid Data  
tOH  
Solomon Systech  
Apr 2008 P 50/59  
Rev 1.1 SSD1306  
 
Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics  
(VDD - VSS = 1.65V to 3.3V, TA = 25°C)  
Symbol  
tcycle  
tAS  
Parameter  
Min  
300  
10  
0
Typ Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time  
Address Setup Time  
Address Hold Time  
Write Data Setup Time  
Write Data Hold Time  
Read Data Hold Time  
Output Disable Time  
Access Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tAH  
tDSW  
tDHW  
tDHR  
tOH  
40  
7
20  
-
-
70  
140  
-
-
-
tACC  
tPWLR  
tPWLW  
tPWHR  
tPWHW  
tR  
-
Read Low Time  
Write Low Time  
Read High Time  
Write High Time  
Rise Time  
120  
60  
60  
60  
-
-
40  
40  
-
-
-
tF  
Fall Time  
-
tCS  
tCSH  
tCSF  
Chip select setup time  
Chip select hold time to read signal  
Chip select hold time  
0
0
20  
Figure 13-2 : 8080-series parallel interface characteristics  
Write Cycle  
CS#  
tCSF  
tCS  
D/C#  
tAH  
tAS  
tR  
tF  
tcycle  
tPWHW  
tPWLW  
tDSW  
WR#  
tDHW  
D[7:0]  
Read cycle  
tCSH  
CS#  
tCS  
D/C#  
tAS  
tAH  
tR  
tF  
tcycle  
tPWHR  
tPWLR  
RD#  
tACC  
tDHR  
D[7:0]  
tOH  
SSD1306  
Rev 1.1  
P 51/59  
Apr 2008  
Solomon Systech  
 
Table 13-4 : 4-wire Serial Interface Timing Characteristics  
(VDD - VSS = 1.65V to 3.3V, TA = 25°C)  
Symbol  
tcycle  
tAS  
tAH  
tCSS  
tCSH  
tDSW  
tDHW  
tCLKL  
tCLKH  
tR  
Parameter  
Min  
100  
15  
15  
20  
10  
15  
15  
20  
20  
-
Typ  
Max Unit  
Clock Cycle Time  
Address Setup Time  
Address Hold Time  
Chip Select Setup Time  
Chip Select Hold Time  
Write Data Setup Time  
Write Data Hold Time  
Clock Low Time  
Clock High Time  
Rise Time  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
-
-
40  
40  
tF  
Fall Time  
-
Figure 13-3 : 4-wire Serial interface characteristics  
D/C#  
CS#  
tAS  
t AH  
tCSS  
tCSH  
tcycle  
tCLKL  
tCLKH  
0)  
1)  
SCLK(D  
SDIN(D  
tF  
tR  
tDSW  
Valid Data  
tDHW  
CS#  
SCLK(D0)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN(D1)  
Solomon Systech  
Apr 2008 P 52/59  
Rev 1.1 SSD1306  
 
Table 13-5 : 3-wire Serial Interface Timing Characteristics  
(VDD - VSS = 1.65V to 3.3V, TA = 25°C)  
Symbol  
tcycle  
tCSS  
tCSH  
tDSW  
tDHW  
tCLKL  
tCLKH  
tR  
Parameter  
Min  
100  
20  
10  
15  
15  
20  
20  
-
Typ  
Max Unit  
Clock Cycle Time  
Chip Select Setup Time  
Chip Select Hold Time  
Write Data Setup Time  
Write Data Hold Time  
Clock Low Time  
Clock High Time  
Rise Time  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
40  
40  
tF  
Fall Time  
-
Figure 13-4 : 3-wire Serial interface characteristics  
tCSS  
tCSH  
CS#  
tCYCLE  
tCLKH  
tCLKL  
SCLK  
tF  
tR  
tDSW  
Valid Data  
tDSH  
SDIN  
CS#  
SCLK  
SDIN  
D/C#  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SSD1306  
Rev 1.1  
P 53/59  
Apr 2008  
Solomon Systech  
 
Conditions:  
VDD - VSS = VDD - VSS = 1.65V to 3.3V  
TA = 25°C  
Table 13-6 :I2C Interface Timing Characteristics  
Symbol Parameter  
Min  
2.5  
Typ  
Max  
Unit  
us  
tcycle  
Clock Cycle Time  
-
-
-
-
-
-
-
-
-
-
-
-
tHSTART  
tHD  
Start condition Hold Time  
Data Hold Time (for “SDAOUT” pin)  
Data Hold Time (for “SDAIN” pin)  
Data Setup Time  
0.6  
0
us  
ns  
300  
100  
0.6  
ns  
tSD  
ns  
Start condition Setup Time (Only relevant for a repeated  
Start condition)  
tSSTART  
us  
tSSTOP  
tR  
Stop condition Setup Time  
0.6  
-
-
-
-
-
-
us  
ns  
ns  
us  
Rise Time for data and clock pin  
Fall Time for data and clock pin  
Idle Time before a new transmission can start  
300  
300  
-
tF  
-
tIDLE  
1.3  
Figure 13-5 : I2C interface Timing characteristics  
//  
//  
SDA  
SCL  
tIDLE  
tHD  
tR  
tF  
tHSTART  
tSSTART  
tSSTOP  
tSD  
tCYCLE  
Solomon Systech  
Apr 2008 P 54/59  
Rev 1.1 SSD1306  
 
14 Application Example  
Figure 14-1 : Application Example of SSD1306Z  
The configuration for 8080-parallel interface mode is shown in the following diagram:  
(VDD=2.8V, VCC =12V, IREF=12.5uA)  
DISPLAY PANEL  
128 x 64  
SSD1306Z  
BGGND  
VCC VCOMH IREF D[7:0] E (RD#) R/W#(W/R#) D/C# RES# CS# BS1 BS2 VDD VBAT VBREF FR  
VSS  
C1N C1P C2N C2P  
C3  
C2  
R1  
C1  
D[7:0] E (RD#) R/W# (W/R#) D/C# RES# CS#  
VDD  
VSS  
VCC  
VSS  
[GND]  
Pin connected to MCU interface: D[7:0], E, R/W#, D/C#, CS#, RES#  
Pin internally connected to VSS: BS0, CL  
Pin internally connected to VDD: CLS  
C2P, C2N, C1P, C1N, VBREF, FB should be left open.  
C1: 1.0uF (1)  
C2: 2.2uF (1)  
C3: 2.2uF (1)  
Voltage at IREF = VCC – 2.5V. For VCC = 12V, IREF = 12.5uA:  
R1 = (Voltage at IREF - VSS) / IREF  
= (12-2.5) / 12.5u  
=760KΩ  
Note  
(1) The capacitor value is recommended value. Select appropriate value against module application.  
SSD1306  
Rev 1.1  
P 55/59  
Apr 2008  
Solomon Systech  
 
15 PACKAGE INFORMATION  
15.1 SSD1306TR1 Detail Dimension  
Figure 15-1 SSD1306TR1 Detail Dimension  
Solomon Systech  
Apr 2008 P 56/59  
Rev 1.1 SSD1306  
 
SSD1306  
Rev 1.1  
P 57/59  
Apr 2008  
Solomon Systech  
15.2 SSD1306Z Die Tray Information  
Figure 15-2 : SSD1306Z die tray information  
Solomon Systech  
Apr 2008 P 58/59  
Rev 1.1 SSD1306  
 
Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without  
limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters,  
including “Typical” must be validated for each customer application by the customer’s technical experts. Solomon Systech does not con-  
vey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use  
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any  
other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and  
hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the  
part.  
All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) “Restriction of  
Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “电子信息产品污染控制标识要求 (SJ/T11364-2006)” with  
control Marking Symbol  
. Hazardous Substances test report is available upon requested.  
http://www.solomon-systech.com  
SSD1306  
Rev 1.1  
P 59/59  
Apr 2008  
Solomon Systech  
SOLOMON SYSTECH  
SEMICONDUCTOR APPLICATION NOTE  
SSD1306  
Application Note  
128 x 64 Dot Matrix  
OLED/PLED Segment/Common Driver with Controller  
This document contains information on a new product. Specifications and information herein are subject to  
change without notice.  
http://www.solomon-systech.com  
SSD1306 App Note  
Rev 0.4  
P 1/6  
Jan 2009  
Copyright 2008 Solomon Systech Limited  
TABLE OF CONTENTS  
1
2
INTRODUCTION  
3
CHARGE PUMP REGULATOR  
3
3
2.1  
Command Table for Charge Bump Setting  
3
SOFTWARE CONFIGURATION  
5
TABLE OF FIGURES  
Figure 1 : Application Example of SSD1306Z with charge bump...........................................................4  
Figure 2 : Software Initialization Flow Chart ...........................................................................................5  
Solomon Systech  
Jan 2009  
P 2/6  
Rev 0.4 SSD1306 App note  
1
Introduction  
This application note of SSD1306 is written to explain the charge pump regulator function of  
SSD1306. SSD1306 is a single-chip CMOS OLED/PLED driver with controller for organic / polymer  
light emitting diode dot-matrix graphic display system. It consists of 128 segments and 64 commons.  
This IC is designed for Common Cathode type OLED panel.  
For the detailed characteristics of the driver IC, please refer to SSD1306 datasheet.  
2
Charge Pump Regulator  
The internal regulator circuit in SSD1306 accompanying only 2 external capacitors can generate a  
7.5V voltage supply, VCC, from a low voltage supply input, VBAT. The VCC is the voltage supply to the  
OLED driver block. This is a switching capacitor regulator circuit, designed for handheld applications.  
This regulator can be turned on/off by software command setting.  
Power supply  
o
o
V
DD = 1.65V to 3.3V,<VBAT  
BAT = 3.3V to 4.2V  
for IC logic  
V
for charge pump regulator circuit  
Pins description for related pins of the charge pump regulator  
o
VBAT – Power supply for charge pump regulator circuit.  
Status  
Enable  
VBAT  
VDD  
VCC  
Connect to external Connect to external A capacitor should be connected  
charge pump VBAT source  
VDD source  
between this pin and VSS  
Disable  
Connect with VDD  
Connect to external Connect to external VCC source  
VDD source  
charge pump pin  
o
o
C1P/C1N – Pin for charge pump capacitor; Connect to each other with a capacitor  
C2P/C2N – Pin for charge pump capacitor; Connect to each other with a capacitor  
2.1 Command Table for Charge Bump Setting  
1. Charge Pump Command Table  
D/C#Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description  
0
0
8D  
1
*
0
*
0
0
0
1
1
0
1
0
0
1
0
Charge  
Pump  
A[2] = 0b, Disable charge  
pump(RESET)  
A[7:0]  
A2  
Setting  
A[2] = 1b, Enable charge pump  
during display on  
Note  
(1)  
The Charge Pump must be  
enabled by the following command:  
8Dh ; Charge Pump Setting  
14h ; Enable Charge Pump  
AFh; Display ON  
SSD1306 App Note Rev 0.4  
P 3/6  
Jan 2009  
Solomon Systech  
Figure 1 : Application Example of SSD1306Z with charge bump  
The configuration for 8080-parallel interface mode is shown in the following diagram:  
(VDD= 1.65V ~ 3.3V, < VBAT , VBAT=3.3V~4.2V, IREF=12.5uA)  
DISPLAY PANEL  
104 x 16  
SSD1306Z  
BGGND  
VCC VCOMH IREF D[7:0] E (RD#) R/W#(W/R#) D/C# RES# CS# BS1 BS2  
VDD VBAT VBREF FR  
VSS  
C1N C1P C2N C2P  
C1  
C4  
C3  
C2  
R1  
C6  
C7  
D[7:0] E (RD#) R/W# (W/R#) D/C# RES# CS#  
VDD VBAT  
VSS  
VSS  
[GND]  
Pin connected to MCU interface: D[7:0], E, R/W#, D/C#, CS#, RES#  
Pin internally connected to VSS: BS0, CL  
Pin internally connected to VDD: CLS  
VBREF, FR should be left open.  
C1, C4, C6, C7: 1.0uF (1)  
C2, C3: 2.2uF (1)  
Voltage at IREF = VCC – 2.5V. For VCC = 7.5V, IREF = 12.5uA:  
R1 = (Voltage at IREF - VSS) / IREF  
= (7.5-2.5) / 12.5u  
=400K  
Note  
(1) The capacitor value is recommended value. Select appropriate value against module application.  
Solomon Systech  
Jan 2009  
P 4/6  
Rev 0.4 SSD1306 App note  
3
Software Configuration  
SSD1306 has internal command registers that are used to configure the operations of the driver IC.  
After reset, the registers should be set with appropriate values in order to function well. The registers  
can be accessed by MPU interface in either 6800, 8080, SPI type with D/C# pin pull low or using I2C  
interface. Below is an example of initialization flow of SSD1306. The values of registers depend on  
different condition and application.  
Figure 2 : Software Initialization Flow Chart  
Set Contrast  
Control  
81h, 7Fh  
Disable Entire  
Display On  
A4h  
Set MUX  
Ratio  
A8h, 3Fh  
Set Display  
Offset  
Set Normal  
Display  
A6h  
D3h, 00h  
Set Display  
Start Line  
40h  
Set Osc  
Frequency  
D5h, 80h  
Enable charge  
pump regulator  
8Dh, 14h  
Set Segment  
re-map  
A0h/A1h  
Set COM Output  
Scan Direction  
C0h/C8h  
Display On  
AFh  
Set COM Pins  
hardware  
configuration  
DAh, 02  
SSD1306 App Note Rev 0.4  
P 5/6  
Jan 2009  
Solomon Systech  
Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including  
without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating  
parameters, including “Typical” must be validated for each customer application by the customer’s technical experts. Solomon  
Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended  
to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation  
where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Solomon Systech was negligent regarding the design or manufacture of the part.  
All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU)  
“Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “电子信息产品污染控制标识要求  
(SJ/T11364-2006)” with control Marking Symbol  
. Hazardous Substances test report is available upon requested.  
http://www.solomon-systech.com  
Solomon Systech  
Jan 2009  
P 6/6  
Rev 0.4 SSD1306 App note  

相关型号:

SSD1332

OLED/PLED Segment/Common Driver with Controller
ETC

SSD1332U1R1

OLED/PLED Segment/Common Driver with Controller
ETC

SSD1339

所罗门的OLED驱动IC
SSDI

SSD1339U3

132RGB x 132 with 2 smart Icon lines Dot Matrix OLED/PLED Segment/Common Driver with Controller
ETC

SSD1339Z

132RGB x 132 with 2 smart Icon lines Dot Matrix OLED/PLED Segment/Common Driver with Controller
ETC

SSD14N25-280D

N-Ch Enhancement Mode Power MOSFET
SECOS

SSD14N25_15

N-Ch Enhancement Mode Power MOSFET
SECOS

SSD15N10

N-Ch Enhancement Mode Power MOSFET
SECOS

SSD16

Circuit Protection Solutions Low Voltage Fuse Links Catalogue
COOPER

SSD1702

240-outputs LCD driver
ETC

SSD1702T1R1

240-outputs LCD driver
ETC

SSD1702T2R1

240-outputs LCD driver
ETC