SSD1805 [ETC]

132 x 68 STN LCD Segment / Common Monochrome Driver with Controller; 132 X 68的STN LCD段/通用单色驱动器与控制器
SSD1805
型号: SSD1805
厂家: ETC    ETC
描述:

132 x 68 STN LCD Segment / Common Monochrome Driver with Controller
132 X 68的STN LCD段/通用单色驱动器与控制器

驱动器 控制器 CD
文件: 总52页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SOLOMON SYSTECH  
SEMICONDUCTOR TECHNICAL DATA  
SSD1805  
Advance Information  
132 x 68 STN  
LCD Segment / Common Monochrome Driver with Controller  
This document contains information on a new product. Specifications and information herein are subject to change  
without notice.  
http://www.solomon-systech.com  
SSD1805 Series  
Rev 1.1  
P 1/52  
Jun 2004  
Copyright 2004 Solomon Systech Limited  
TABLE OF CONTENTS  
1
GENERAL DESCRIPTION....................................................................................................................... 5  
FEATURES............................................................................................................................................... 5  
ORDERING INFORMATION.................................................................................................................... 5  
BLOCK DIAGRAM................................................................................................................................... 6  
DIE PAD FLOOR PLAN........................................................................................................................... 7  
PIN DESCRIPTION ................................................................................................................................ 11  
FUNCTIONAL BLOCK DESCRIPTIONS .............................................................................................. 16  
COMMAND TABLE................................................................................................................................ 24  
COMMAND DESCRIPTIONS................................................................................................................. 28  
MAXIMUM RATINGS............................................................................................................................. 36  
DC CHARACTERISTICS ....................................................................................................................... 37  
AC CHARACTERISTICS ....................................................................................................................... 39  
APPLICATION EXAMPLES................................................................................................................... 46  
PACKAGE INFORMATION ................................................................................................................... 49  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Solomon Systech  
Jun 2004 P 2/52  
Rev 1.1  
SSD1805 Series  
TABLE OF TABLES  
Table 1 - Ordering Information ............................................................................................................................5  
Table 2 - SSD1805 Series Bump Die Pad Coordinates (Bump center)..............................................................8  
Table 3 - Arrangement of common at different multiplex modes ......................................................................15  
Table 4 - Data Bus selection Modes..................................................................................................................17  
Table 5 - Graphic Display Data RAM (GDDRAM) Address Map with Display Start Line set to 18h.................18  
Table 6 - Gain Setting........................................................................................................................................20  
Table 7 - Temperature compensation coefficient..............................................................................................20  
Table 8 - Command Table.................................................................................................................................24  
Table 9 - Extended Command Table.................................................................................................................26  
Table 10 - Read Command Table .....................................................................................................................27  
Table 11 - Automatic Address Increment ..........................................................................................................28  
Table 12 - ROW pin assignment for COM signals for SSD1805 in an 68 MUX display ...................................35  
Table 13 - Maximum Ratings.............................................................................................................................36  
Table 14 - DC Characteristics ...........................................................................................................................37  
Table 15 - AC Characteristics............................................................................................................................39  
Table 16 - Parallel 6800-series Interface Timing Characteristics......................................................................40  
Table 17 - Parallel 6800-series Interface Timing Characteristics......................................................................41  
Table 18 - Parallel 8080-series Interface Timing Characteristics......................................................................42  
Table 19 - Parallel 8080-series Interface Timing Characteristics......................................................................43  
Table 20 - 4-wires Serial Interface Timing Characteristics................................................................................44  
Table 21 - 4-wires Serial Interface Timing Characteristics................................................................................45  
SSD1805 Series  
Rev 1.1  
P 3/52  
Jun 2004  
Solomon Systech  
TABLE OF FIGURES  
Figure 1 - SSD1805 Block Diagram.....................................................................................................................................6  
Figure 2 - SSD1805 Die Pad Floor Plan...............................................................................................................................7  
Figure 3 - Display Data Read with the insertion of dummy read .......................................................................................16  
Figure 4 - SSD1805 Hardware configuration .....................................................................................................................19  
Figure 5 - Contrast curve ....................................................................................................................................................21  
Figure 6 - TC 0 oscillator typical frame frequency with variation in temperature..............................................................22  
Figure 7 - LCD Driving Waveform ....................................................................................................................................23  
Figure 8 - Contrast Control Flow........................................................................................................................................29  
Figure 9 - OTP programming circuitry...............................................................................................................................31  
Figure 10 - Flow chart of OTP programming Procedure....................................................................................................32  
Figure 11 - Parallel 6800-series Interface Timing Characteristics (P/S = H, C68/80 = H).................................................40  
Figure 12 - Parallel 6800-series Interface Timing Characteristics (P/S = H, C68/80 = H).................................................41  
Figure 13 - Parallel 8080-series Interface Timing Characteristics (P/S = H, C68/80 = L) .................................................42  
Figure 14 - Parallel 8080-series Interface Timing Characteristics (P/S = H, C68/80 = L) .................................................43  
Figure 15 - 4-wires Serial Interface Timing Characteristics (P/S = L, C68/80 = L)...........................................................44  
Figure 16 - 4-wires Serial Interface Timing Characteristics (P/S = L, C68/80 = L)...........................................................45  
Figure 17 - Application Example I (4-wires SPI mode) .....................................................................................................46  
Figure 18 - Application Example II (6800 PPI mode)........................................................................................................47  
Figure 19 - Applications notes for VDD/VDDIO connection..................................................................................................48  
Figure 20 - SSD1805TR1 TAB Drawing (Copper view) ...................................................................................................50  
Figure 21 - SSD1805TR1 TAB Drawing (Detail view & pin assignment) ........................................................................51  
Solomon Systech  
Jun 2004 P 4/52  
Rev 1.1  
SSD1805 Series  
1
General Description  
SSD1805 is a single-chip CMOS LCD driver with controller for dot-matrix graphic liquid crystal display system.  
SSD1805 consists of 200 high-voltage driving output pins for driving maximum 132 Segments, 68 Commons /  
132 Segments, 64 Commons and 1 icon-driving Common / 132 Segments, 54 Commons and 1 icon-driving  
Common / 132 Segments, 32 Commons and 1 icon-driving Common. SSD1805 can also be switched among  
32, 54, 64 or 68 display multiplex ratios by hardware pin selection.  
SSD1805 consists of 132 x 68 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from  
common MCU through 8-bit 6800-series / 8080-series compatible Parallel Interface or 4-wires Serial  
Peripheral Interface by software program selections.  
SSD1805 embeds DC-DC Converter, On-Chip Oscillator and Bias Divider to reduce the number of external  
components. With the advance design, low power consumption, stable LCD operating voltage and flexible die  
package layout, SSD1805 is suitable for any portable battery-driven applications requiring long operation  
period with compact size.  
2
FEATURES  
Power Supply: VDD = 1.8V – 3.6V  
VDDIO = 1.8V – 3.6V  
VCI = 1.8V – 3.6V  
LCD Driving Output Voltage: VLCD = +12.5V  
Low Current Sleep Mode  
Pin selectable 68/64/54/32 multiplex ratio configuration. Maximum display size:  
o
o
o
o
132 columns by 68 rows  
132 columns by 64 rows with one icon line  
132 columns by 54 rows with one icon line  
132 columns by 32 rows with one icon line  
8-bit 6800-series / 8080-series Parallel Interface, 4-wires Serial Peripheral Interface  
On-Chip 132 X 68 = 8976 bits Graphic Display Data RAM  
Column Re-mapping and RAM Page scan direction control  
Vertical Scrolling by Common  
On-Chip Voltage Generator or External LCD Driving Power Supply Selectable  
Pin selectable 2X/3X/4X/5X On-Chip DC-DC Converter with internal flying capacitors.  
64 Levels Internal Contrast Control  
Programmable LCD Driving Voltage Temperature Compensation Coefficients  
On-Chip Bias Divider with internal compensation capacitors (except VOUT  
Programmable multiplex ratio: 1/9 to 1/68  
)
Programmable bias ratio: 1/4, 1/5, 1/6, 1/7, 1/8, 1/9  
Display Offset Control  
Non-Volatile Memory (OTP) for calibration  
3
ORDERING INFORMATION  
SEG  
COM  
Ordering Part Number  
Package Form  
Reference  
Remark  
64/54/32 +  
1 icon or  
68  
Figure 2 on  
Page 7  
SSD1805Z  
132  
Gold Bump Die  
-
Figure 20 on  
page 50  
SSD1805TR1  
132  
64 + 1 icon  
TAB  
-
Table 1 - Ordering Information  
SSD1805 Series  
Rev 1.1  
P 5/52  
Jun 2004  
Solomon Systech  
4
BLOCK DIAGRAM  
ICONS  
ROW0  
SEG0 ~ SEG131  
~ ROW67  
HV Buffer Cell Level Shifter  
Display Data Latch  
Level  
Selector  
MSTAT  
VF  
M
LCD Driving  
Voltage  
Display  
VCI  
Timing  
Generator  
2X/3X/4X/5X  
Regulated  
DC/DC  
Generator  
/DOF  
M/ S  
IRS  
VOUT  
Converter,  
Contrast  
B0  
CL  
CLS  
B1  
Oscillator  
Control, Bias  
Divider,  
C0  
C1  
VLREF  
VHREF  
VFS  
Temperature  
Compensation  
GDDRAM  
132 x 68 bits  
TEST0  
VDD  
VDDIO  
Command Decoder  
TEST22  
VSS  
VSS1  
Command Interface  
Parallel/Serial Interface  
D7 D6 D5 D4 D3 D2 D1 D0  
(SDA) (SCK)  
P/  
1 CS2 D/C E(RD) C68/(  
) R/  
(
)
WR  
RES  
S CS  
80  
W
Figure 1 - SSD1805 Block Diagram  
Solomon Systech  
Jun 2004 P 6/52  
Rev 1.1  
SSD1805 Series  
5
DIE PAD FLOOR PLAN  
Note:  
1. Diagram showing the die face up.  
2. Coordinates are reference to center of the chip.  
3. Unit of coordinates and Size of all alignment  
marks are in um.  
NC  
NC  
ROW21  
TEST22  
TEST21  
TEST20  
TEST19  
TEST18  
TEST17  
TEST16  
TEST15  
TEST14  
TEST13  
TEST12  
TEST11  
TEST10  
TEST9  
TEST8  
TEST7  
TEST6  
VDD  
ROW20  
ROW19  
:
:
:
4. All alignment keys do not contain gold bump.  
:
:
:
:
:
:
:
:
:
:
:
:
:
B0  
:
VSS  
:
B1  
:
VDD  
:
C0  
:
VSS  
:
C1  
:
VDD  
:
IRS  
:
VSS  
:
/HPM  
VDD  
25  
25  
25  
ROW2  
ROW1  
P/  
S
ROW0  
C68/(  
)
SEG0  
80  
SEG1  
VSS  
SEG2  
CLS  
:
M/  
S
:
25  
25  
VDD  
VF  
:
:
VOUT  
:
TEST5  
TEST4  
TEST3  
TEST2  
TEST1  
VDD  
:
100  
:
:
;
;
;
VFS  
;
25  
VFS  
;
VSS  
;
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VHREF  
VHREF  
VCI  
;
;
;
:
:
:
100  
:
:
:
:
:
:
:
:
25  
25  
25  
:
:
VCI  
:
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS  
:
;
;
:
25  
;
;
:
:
:
100  
;
50  
;
;
;
;
VSS  
;
VSS  
;
VSS  
;
VSS  
;
VSS  
;
VSS  
;
100  
VSS  
;
VSS  
;
VSS  
:
VLREF  
VLREF  
VCI  
:
:
;
VCI  
;
VCI  
;
75  
18  
VCI  
;
VCI  
;
VCI  
;
VCI  
:
VCI  
:
VCI  
:
VCI  
:
VCI  
SEG129  
VCI  
SEG130  
VCI  
SEG131  
VDD  
ROW34  
VDD  
ROW35  
VDD  
ROW36  
VDD  
:
VDD  
:
100  
VDD  
:
VDDIO  
VDDIO  
D7 (SDA)  
D6 (SCK)  
D5  
:
:
:
:
:
D4  
:
D3  
:
D2  
:
D1  
:
D0  
:
VDD  
:
100  
E(  
R/  
)
:
RD  
W
:
(
)
WR  
:
VSS  
:
D/C  
:
:
RES  
VDD  
11.06 X 1.21 mm2  
:
:
Die Size  
CS2  
:
1
CS  
:
VSS  
/DOF  
CL  
Die Thickness  
533±25  
µm  
µm  
:
:
:
Typical Bump Height 18  
M
ROW53  
ROW54  
ROW55  
NC  
MSTAT  
TEST0  
NC  
Bump Co-planarity  
< 3  
µm  
(within die)  
PIN1  
Figure 2 - SSD1805 Die Pad Floor Plan  
SSD1805 Series  
Rev 1.1  
P 7/52  
Jun 2004  
Solomon Systech  
Table 2 - SSD1805 Series Bump Die Pad Coordinates (Bump center)  
Pad #  
1
Signal  
X-pos Y-pos  
Pad #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Signal  
VSS  
X-pos Y-pos  
-1297.10 -448.50  
-1220.80 -448.50  
-1144.50 -448.50  
-1068.20 -448.50  
-991.90 -448.50  
-915.60 -448.50  
-839.30 -448.50  
-763.00 -448.50  
-686.70 -448.50  
-610.40 -448.50  
-534.10 -448.50  
-457.80 -448.50  
-381.50 -448.50  
-305.20 -448.50  
-228.90 -448.50  
-152.60 -448.50  
-76.30 -448.50  
Pad #
 
Signal X-pos  
Y-pos  
NC  
-5167.10 -448.50  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
CLS 2517.90 -448.50  
2
TEST0 -5035.80 -448.50  
MSTAT -4959.50 -448.50  
M
CL  
VSS  
VSS  
2594.20 -448.50  
2670.50 -448.50  
2746.80 -448.50  
2823.10 -448.50  
C68/(80  
)
3
VSS  
4
-4883.20 -448.50  
-4806.90 -448.50  
-4730.60 -448.50  
-4654.30 -448.50  
-4578.00 -448.50  
-4501.70 -448.50  
-4425.40 -448.50  
-4349.10 -448.50  
-4272.80 -448.50  
-4196.50 -448.50  
) -4120.20 -448.50  
-4043.90 -448.50  
-3967.60 -448.50  
-3891.30 -448.50  
-3815.00 -448.50  
-3738.70 -448.50  
-3662.40 -448.50  
-3586.10 -448.50  
-3509.80 -448.50  
VSS  
P/  
S
5
VSS  
VDD  
6
/DOF  
VSS  
VSS  
/HPM 2899.40 -448.50  
7
VSS  
VSS  
IRS  
VDD  
C1  
VSS  
C0  
VDD  
B1  
VSS  
B0  
VDD  
2975.70 -448.50  
3052.00 -448.50  
3128.30 -448.50  
3204.60 -448.50  
3280.90 -448.50  
3357.20 -448.50  
3433.50 -448.50  
3509.80 -448.50  
3586.10 -448.50  
3662.40 -448.50  
3738.70 -448.50  
8
1
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VSS1  
VCI  
CS  
9
CS2  
VDD  
RES  
D/C  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
(
RD  
R / W WR  
E(  
)
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
0.00  
-448.50  
TEST6 3815.00 -448.50  
TEST7 3891.30 -448.50  
TEST8 3967.60 -448.50  
TEST9 4043.90 -448.50  
TEST10 4120.20 -448.50  
TEST11 4196.50 -448.50  
TEST12 4272.80 -448.50  
TEST13 4349.10 -448.50  
TEST14 4425.40 -448.50  
TEST15 4501.70 -448.50  
TEST16 4578.00 -448.50  
TEST17 4654.30 -448.50  
TEST18 4730.60 -448.50  
TEST19 4806.90 -448.50  
TEST20 4883.20 -448.50  
TEST21 4959.50 -448.50  
TEST22 5035.80 -448.50  
76.30 -448.50  
152.60 -448.50  
228.90 -448.50  
305.20 -448.50  
381.50 -448.50  
457.80 -448.50  
534.10 -448.50  
610.40 -448.50  
686.70 -448.50  
763.00 -448.50  
839.30 -448.50  
915.60 -448.50  
991.90 -448.50  
1068.20 -448.50  
1144.50 -448.50  
1220.80 -448.50  
1297.10 -448.50  
1373.40 -448.50  
1449.70 -448.50  
1526.00 -448.50  
1602.30 -448.50  
1678.60 -448.50  
1754.90 -448.50  
VCI  
D6 (SCK) -3433.50 -448.50  
D7 (SDA) -3357.20 -448.50  
VHREF  
VHREF  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VSS  
VDDIO  
VDDIO  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VCI  
-3280.90 -448.50  
-3204.60 -448.50  
-3128.30 -448.50  
-3052.00 -448.50  
-2975.70 -448.50  
-2899.40 -448.50  
-2823.10 -448.50  
-2746.80 -448.50  
-2670.50 -448.50  
-2594.20 -448.50  
-2517.90 -448.50  
-2441.60 -448.50  
-2365.30 -448.50  
-2289.00 -448.50  
-2212.70 -448.50  
-2136.40 -448.50  
-2060.10 -448.50  
-1983.80 -448.50  
-1907.50 -448.50  
-1831.20 -448.50  
-1754.90 -448.50  
-1678.60 -448.50  
-1602.30 -448.50  
-1526.00 -448.50  
-1449.70 -448.50  
-1373.40 -448.50  
VCI  
VCI  
NC  
NC  
5167.10 -448.50  
5372.00 -376.00  
VCI  
VCI  
ROW33 5372.00 -318.00  
ROW32 5372.00 -260.00  
ROW31 5372.00 -202.00  
ROW30 5372.00 -144.00  
ROW29 5372.00 -86.00  
ROW28 5372.00 -28.00  
ROW27 5372.00 30.00  
ROW26 5372.00 88.00  
ROW25 5372.00 146.00  
ROW24 5372.00 204.00  
ROW23 5372.00 262.00  
ROW22 5372.00 320.00  
VCI  
VCI  
VFS  
VCI  
VFS  
VCI  
VDD  
VCI  
TEST1 1831.20 -448.50  
TEST2 1907.50 -448.50  
TEST3 1983.80 -448.50  
TEST4 2060.10 -448.50  
TEST5 2136.40 -448.50  
VCI  
VCI  
VCI  
VLREF  
VLREF  
VSS  
VSS  
VSS  
VOUT  
VF  
VDD  
2212.70 -448.50  
2289.00 -448.50  
2365.30 -448.50  
2441.60 -448.50  
NC  
NC  
5372.00 378.00  
5141.25 448.50  
M/  
S
Solomon Systech  
Jun 2004 P 8/52  
Rev 1.1  
SSD1805 Series  
Pad #  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Signal  
X-pos Y-pos  
Pad #  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
Signal  
X-pos Y-pos  
Pad #
 
Signal X-pos  
Y-pos  
ROW21 5083.25 448.50  
ROW20 5025.25 448.50  
ROW19 4967.25 448.50  
ROW18 4909.25 448.50  
ROW17 4851.25 448.50  
ROW16 4793.25 448.50  
ROW15 4735.25 448.50  
ROW14 4677.25 448.50  
ROW13 4619.25 448.50  
ROW12 4561.25 448.50  
ROW11 4503.25 448.50  
ROW10 4445.25 448.50  
ROW9 4387.25 448.50  
ROW8 4329.25 448.50  
ROW7 4271.25 448.50  
ROW6 4213.25 448.50  
ROW5 4155.25 448.50  
ROW4 4097.25 448.50  
ROW3 4039.25 448.50  
ROW2 3981.25 448.50  
ROW1 3923.25 448.50  
ROW0 3865.25 448.50  
SEG28 2175.00 448.50  
SEG29 2117.00 448.50  
SEG30 2059.00 448.50  
SEG31 2001.00 448.50  
SEG32 1943.00 448.50  
SEG33 1885.00 448.50  
SEG34 1827.00 448.50  
SEG35 1769.00 448.50  
SEG36 1711.00 448.50  
SEG37 1653.00 448.50  
SEG38 1595.00 448.50  
SEG39 1537.00 448.50  
SEG40 1479.00 448.50  
SEG41 1421.00 448.50  
SEG42 1363.00 448.50  
SEG43 1305.00 448.50  
SEG44 1247.00 448.50  
SEG45 1189.00 448.50  
SEG46 1131.00 448.50  
SEG47 1073.00 448.50  
SEG48 1015.00 448.50  
SEG49 957.00 448.50  
SEG50 899.00 448.50  
SEG51 841.00 448.50  
SEG52 783.00 448.50  
SEG53 725.00 448.50  
SEG54 667.00 448.50  
SEG55 609.00 448.50  
SEG56 551.00 448.50  
SEG57 493.00 448.50  
SEG58 435.00 448.50  
SEG59 377.00 448.50  
SEG60 319.00 448.50  
SEG61 261.00 448.50  
SEG62 203.00 448.50  
SEG63 145.00 448.50  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
SEG78 -725.00 448.50  
SEG79 -783.00 448.50  
SEG80 -841.00 448.50  
SEG81 -899.00 448.50  
SEG82 -957.00 448.50  
SEG83 -1015.00 448.50  
SEG84 -1073.00 448.50  
SEG85 -1131.00 448.50  
SEG86 -1189.00 448.50  
SEG87 -1247.00 448.50  
SEG88 -1305.00 448.50  
SEG89 -1363.00 448.50  
SEG90 -1421.00 448.50  
SEG91 -1479.00 448.50  
SEG92 -1537.00 448.50  
SEG93 -1595.00 448.50  
SEG94 -1653.00 448.50  
SEG95 -1711.00 448.50  
SEG96 -1769.00 448.50  
SEG97 -1827.00 448.50  
SEG98 -1885.00 448.50  
SEG99 -1943.00 448.50  
SEG100 -2001.00 448.50  
SEG101 -2059.00 448.50  
SEG102 -2117.00 448.50  
SEG103 -2175.00 448.50  
SEG104 -2233.00 448.50  
SEG105 -2291.00 448.50  
SEG106 -2349.00 448.50  
SEG107 -2407.00 448.50  
SEG108 -2465.00 448.50  
SEG109 -2523.00 448.50  
SEG110 -2581.00 448.50  
SEG111 -2639.00 448.50  
SEG112 -2697.00 448.50  
SEG113 -2755.00 448.50  
SEG114 -2813.00 448.50  
SEG115 -2871.00 448.50  
SEG116 -2929.00 448.50  
SEG117 -2987.00 448.50  
SEG118 -3045.00 448.50  
SEG119 -3103.00 448.50  
SEG120 -3161.00 448.50  
SEG121 -3219.00 448.50  
SEG122 -3277.00 448.50  
SEG123 -3335.00 448.50  
SEG124 -3393.00 448.50  
SEG125 -3451.00 448.50  
SEG126 -3509.00 448.50  
SEG127 -3567.00 448.50  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
3799.00 448.50  
3741.00 448.50  
3683.00 448.50  
3625.00 448.50  
3567.00 448.50  
3509.00 448.50  
3451.00 448.50  
3393.00 448.50  
3335.00 448.50  
3277.00 448.50  
SEG10 3219.00 448.50  
SEG11 3161.00 448.50  
SEG12 3103.00 448.50  
SEG13 3045.00 448.50  
SEG14 2987.00 448.50  
SEG15 2929.00 448.50  
SEG16 2871.00 448.50  
SEG17 2813.00 448.50  
SEG18 2755.00 448.50  
SEG19 2697.00 448.50  
SEG20 2639.00 448.50  
SEG21 2581.00 448.50  
SEG22 2523.00 448.50  
SEG23 2465.00 448.50  
SEG24 2407.00 448.50  
SEG25 2349.00 448.50  
SEG26 2291.00 448.50  
SEG27 2233.00 448.50  
SEG64  
SEG65  
87.00 448.50  
29.00 448.50  
SEG66 -29.00 448.50  
SEG67 -87.00 448.50  
SEG68 -145.00 448.50  
SEG69 -203.00 448.50  
SEG70 -261.00 448.50  
SEG71 -319.00 448.50  
SEG72 -377.00 448.50  
SEG73 -435.00 448.50  
SEG74 -493.00 448.50  
SEG75 -551.00 448.50  
SEG76 -609.00 448.50  
SEG77 -667.00 448.50  
SSD1805 Series  
Rev 1.1  
P 9/52  
Jun 2004  
Solomon Systech  
Pad #  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
Signal  
SEG128  
SEG129  
SEG130  
SEG131  
ROW34  
ROW35  
ROW36  
ROW37  
ROW38  
ROW39  
ROW40  
ROW41  
ROW42  
ROW43  
ROW44  
ROW45  
ROW46  
ROW47  
X-pos  
Y-pos  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
-3625.00  
-3683.00  
-3741.00  
-3799.00  
-3865.25  
-3923.25  
-3981.25  
-4039.25  
-4097.25  
-4155.25  
-4213.25  
-4271.25  
-4329.25  
-4387.25  
-4445.25  
-4503.25  
-4561.25  
-4619.25  
Bump Size  
PAD#  
X [um] Y [um] Pad pitch [um] (Min)  
Pad 1  
56  
56  
56  
92  
92  
92  
36  
89  
36  
131.3  
76.3  
131.3  
58  
Pad 2 - 134  
Pad 135  
Pad 136 - 149 89  
Pad 150 - 327 36  
Pad 328 - 341 89  
58  
58  
319  
ROW48  
-4677.25  
448.50  
320  
ROW49  
-4735.25  
448.50  
Pad pitch  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
ROW50  
ROW51  
ROW52  
ROW53  
ROW54  
ROW55  
NC  
-4793.25  
-4851.25  
-4909.25  
-4967.25  
-5025.25  
-5083.25  
-5141.25  
-5372.00  
-5372.00  
-5372.00  
-5372.00  
-5372.00  
-5372.00  
-5372.00  
-5372.00  
-5372.00  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
448.50  
378.00  
320.00  
262.00  
204.00  
146.00  
88.00  
Y
NC  
ROW56  
ROW57  
ROW58  
ROW59  
ROW60  
ROW61  
ROW62  
ROW63  
ROW64  
ROW65  
ROW66  
ROW67  
NC  
X
30.00  
-28.00  
-86.00  
-5372.00 -144.00  
-5372.00 -202.00  
-5372.00 -260.00  
-5372.00 -318.00  
-5372.00 -376.00  
Solomon Systech  
Jun 2004 P 10/52 Rev 1.1  
SSD1805 Series  
6
PIN DESCRIPTION  
6.1 MSTAT  
This pin is the static indicator driving output. The frame signal output pin, M, should be used as the back  
plane signal for the static indicator. The duration of overlapping could be programmable. See Extended  
Command Table for details.  
6.2  
M
This pin is the frame signal input/output. In master mode, the pin supplies frame signal to slave devices while  
in slave mode, the pin receives frame signal from the master device.  
6.3 CL  
This pin is the display clock input/output. In master mode with internal oscillator enabled (CLS pin pulled  
high), this pin supplies display clock signal to slave devices. In slave mode or when internal oscillator is  
disabled, the pin receives display clock signal from the master device or external clock source.  
6.4 /DOF  
This pin is display blanking control between master and slave devices. In master mode, this pin supplies  
on/off signal to slave devices. In slave mode, this pin receives on/off signal from the master device.  
6.5 CS1, CS2  
These pins are the chip select inputs. The chip is enabled for MCU communication only when both CS 1 is  
pulled low and CS2 is pulled high.  
6.6 RES  
This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse  
width for reset sequence is 20us.  
6.7 D/C  
This pin is Data/Command control pin. When the pin is pulled high, the data at D7 - D0 is treated as display  
data. When the pin is pulled low, the data at D7 - D0 will be transferred to the command register.  
6.8 R/
W
( WR )  
This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as Read/Write  
(R/W ) selection input. Read mode will be carried out when this pin is pulled high and write mode when low.  
When 8080 interface mode is selected, this pin is the Write ( WR ) control signal input. Data write operation is  
initiated when this pin is pulled low and the chip is selected. When serial interface mode is selected, this pin  
must be pulled low.  
6.9 E(RD )  
This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E)  
signal. Read/write operation is initiated when this pin is pulled high and the chip is selected. When 8080  
interface mode is selected, this pin is the Read (RD ) control signal input. Data read operation is initiated  
when this pin is pulled low and the chip is selected. When serial interface mode is selected, this pin must be  
pulled high.  
6.10 D7 - D0  
These pins are the 8-bit bi-directional data bus in parallel interface mode. D7 is the MSB while D0 is the LSB.  
When serial mode is selected, D7 is the serial data input (SDA) and D6 is the serial clock input (SCK).  
SSD1805 Series  
Rev 1.1 P 11/52  
Jun 2004  
Solomon Systech  
6.11 VDDIO  
This pin is the system power supply pin of bus IO buffer. Please refer to figure 19 on page 48 for connection  
example.  
6.12 VDD  
This pin is the system power supply pin of the logic block.  
6.13 VCI  
Reference voltage input for internal DC-DC converter. The voltage of generated VOUT equals to the multiple  
factor (2X, 3X, 4X or 5X) times VCI with respect to VSS1.  
Note: Voltage at this input pin must be larger than or equal to VDD.  
6.14 VSS  
The VSS is the ground reference of the system.  
6.15 VSS1  
Reference voltage input for internal DC-DC converter. The voltage of generated VOUT equals to the multiple  
factor (2X, 3X, 4X or 5X) times VCI with respect to VSS1.  
Note: Voltage at this input pin must be equal to VSS.  
6.16 VLREF  
This pin is the ground of internal operation amplifier. In normal power mode, it must connect to VSS. In low  
power mode, it must connect to VCI. Please refer to figure 19 on page 48 for the detail.  
6.17 VHREF  
This pin is the power supply pin of the internal operation amplifier. It must connect to VOUT  
.
6.18 VOUT  
This is the most positive voltage supply pin of the chip. It can be supplied externally or generated by the  
internal DC-DC converter. If the internal DC-DC converter generates the voltage level at VOUT, the voltage  
level is used for internal referencing only. The voltage level at VOUT pin is not used for driving external  
circuitry.  
6.19 VFS  
This is an input pin to provide an external voltage reference for the internal voltage regulator. The function of  
this pin is only enabled for the External Input chip models which are required special ordering. For normal  
chip model, please leave this pin NC (No connection).  
6.20 VF  
This pin is the input of the built-in voltage regulator for generating VOUT. When external resistor network is  
selected (IRS pulled low) to generate the LCD driving level, VOUT, two external resistors, R1 and R2, should be  
connected between VSS and VF, and VF and VOUT, respectively (see application circuit diagrams).  
6.21 M/S  
This pin is the master/slave mode selection input. When this pin is pulled high, master mode is selected,  
which CL, M, MSTAT and /DOF signals will be output for slave devices. When this pin is pulled low, slave  
mode is selected, which CL, M, /DOF are required to be input from master device. MSTAT will still be an  
output signal in slave mode.  
6.22 CLS  
This pin is the internal clock enable pin. When this pin is pulled high, internal clock is enabled. The internal  
clock will be disabled when it is pulled low, an external clock source must be input to CL pin for normal opera-  
tion.  
Solomon Systech  
Jun 2004 P 12/52 Rev 1.1  
SSD1805 Series  
6.23 C68/80  
This pin is MCU parallel interface selection input. When the pin is pulled high, 6800 series interface is  
selected and when the pin is pulled low, 8080 series interface is selected. If Serial Interface is selected (P/ S  
pulled low), the setting of this pin is ignored, but it must be connected to a known logic (either high or low).  
6.24 P/S  
This pin is serial/parallel interface selection input. When this pin is pulled high, parallel interface mode is  
selected. When it is pulled low, serial interface will be selected.  
Note1: For serial mode, R/W ( WR ) must be connected to Vss. E/(RD ) must be connected to VDD. D0 to D5  
and C68/80 can be connected to either VDD or VSS.  
Note2: Read Back operation is only available in parallel mode.  
6.25 /HPM  
This pin is the control input of High Power Current Mode. The function of this pin is only enabled for High  
Power model, which required special ordering. For normal models, High Power Mode is disabled.  
Note: This pin must be pulled to high. Leaving this pin floating is prohibited.  
6.26 IRS  
This is the input pin to enable the internal resistors network for the voltage regulator. When this pin is pulled  
high, the internal feedback resistors of the internal regulator for generating VOUT will be enabled. When it is  
pulled low, external resistors, R1 and R2, should be connected to VSS and VF, and VF and VOUT, respectively  
(see application circuit diagrams).  
6.27 C1, C0  
These pins are the Chip Mode Selection input. The chip mode is determined by multiplex ratio. Altogether  
there are four chip modes. Please see the following list for reference.  
C1  
0
C0  
0
Chip Mode  
32 MUX Mode  
54 MUX Mode  
64 MUX Mode  
68 MUX Mode  
0
1
1
0
1
1
Please refer to Table 3 on page 15 for detail description of common pins at different multiplex mode.  
6.28 B1, B0  
These pins are the Chip Mode Selection input. The chip mode is determined by default boosting level.  
Altogether there are four chip modes. Please see the following list for reference.  
B1  
0
B0  
0
Chip Mode  
3X as POR default  
4X as POR default  
5X as POR default  
2X as POR default  
0
1
1
0
1
1
5X, 4X, 3X or 2X booster level can be selected as POR default value of the device.  
6.29 ROW0 to ROW67  
These pins provide the Common driving signals to the LCD panel. See Table 3 on page 15 for the COM  
signal mapping in different multiplex mode of SSD1805. There are ICON pins on the chip when either 64 or  
54 or 32 Mux mode is selected. The ICON pins are located at the COM 0 pin and COM 67 pin.  
6.30 SEG0 to SEG131  
These pins provide the LCD segment driving signals. The output voltage level of these pins is VSS during  
sleep mode and standby mode.  
6.31 TEST0  
This pin is a test pin. It is recommended to connect to VSS in normal operation.  
SSD1805 Series  
Rev 1.1 P 13/52  
Jun 2004  
Solomon Systech  
6.32 TEST1 ~ TEST22  
These pins are test pins. Nothing should be connected to these pins, nor they are connected together.  
6.33 NC  
These pins are NC/no connection pins. Nothing should be connected to these pins, nor they are connected  
together.  
Solomon Systech  
Jun 2004 P 14/52 Rev 1.1  
SSD1805 Series  
Table 3 - Arrangement of common at different multiplex modes  
Remarks: “Non-select” means no common signal will be selected to support those output ROW pins.  
SSD1805 Series  
Rev 1.1 P 15/52  
Jun 2004  
Solomon Systech  
7
FUNCTIONAL BLOCK DESCRIPTIONS  
7.1 Microprocessor Interface Logic  
The Microprocessor Interface unit consists of three functional blocks for driving the 6800-series parallel  
interface, 8080-series parallel interface and 4-wires serial peripheral interface. The selection of different  
interfaces is done by P/ S pin and C68/80 pin. Please refer to the pin descriptions on page 8.  
a) MPU 6800-series Parallel Interface  
The parallel interface consists of 8 bi-directional data pins (D7-D0), R/W ( WR ), D/C , E(RD ),  
CS 1 and CS2. R/W ( WR ) input high indicates a read operation from the Graphic Display Data  
RAM (GDDRAM) or the status register. R/W ( WR ) input Low indicates a write operation to  
Display Data RAM or Internal Command Registers depending on the status of D/C input. The  
E(RD ) input serves as data latch signal (clock) when high provided that CS 1 and CS2 are low  
and high respectively. Please refer to Figure 11 & 12 on page 40 & 41 for Parallel Interface  
Timing Diagram of 6800-series microprocessors. In order to match the operating frequency of the  
GDDRAM with that of the MCU, some pipeline processing is internally performed which requires  
the insertion of a dummy read before the first actual display data read. This is shown in Figure 3.  
R/W(W R)  
E(RD)  
n+1  
data bus  
N
n
n+2  
write column address  
data read 3  
dummy read  
data read1  
data read 2  
Figure 3 - Display Data Read with the insertion of dummy read  
b) MPU 8080-series Parallel Interface  
The parallel interface consists of 8 bi-directional data pins (D7-D0), E( RD ), R/W ( WR ), D/ C ,  
CS 1 and CS2. E(RD ) input serves as data read latch signal (clock) when low provided that CS 1  
and CS2 are low and high respectively. Whether reading the display data from GDDRAM or  
reading the status from status register is controlled by D/C . R/W ( WR ) input serves as data write  
latch signal (clock) when low provided that CS 1 and CS2 are low and high respectively. Whether  
writing the display data to the GDDRAM or writing the command to the command register is  
controlled by D/ C . A dummy read is also required before the first actual display data read for  
8080-series interface. Please refer to figure 13 & 14 on page 42 & 43 for Parallel Interface Timing  
Diagram of 8080-series microprocessors.  
c) MPU 4-wires Serial Interface  
The 4-wires serial interface consists of serial clock SCK (D6), serial data SDA (D7), D/ C , CS 1  
and CS2. SDA is shifted into a 8-bit shift register on every rising edge of SCK in the order of data  
bit 7, data bit 6, …, data bit 0. D/ C is sampled on every eighth clock to determine whether the  
data byte in the shift register is written to the Display Data RAM or command register at the same  
clock. Please refer to figure 15 & 16 on page 43 & 44 for serial interface timing.  
Remarks: For SPI mode, it is necessary to add one time of software reset command (code: E2) in  
the first line of the initialization code.  
Solomon Systech  
Jun 2004 P 16/52 Rev 1.1  
SSD1805 Series  
6800-series Parallel Interface 8080-series Parallel Interface 4-wires Serial Peripheral Interface  
Data Read  
Data Write  
Command Read Status only  
Command Write Yes  
8-bits  
8-bits  
8-bits  
8-bits  
Status only  
Yes  
No  
8-bits  
No  
Yes  
Table 4 - Data Bus selection Modes  
7.2 Reset Circuit  
This block is integrated into the Microprocessor Interface Logic that includes Power On Reset circuitry and the  
hardware reset pin, RES . Both of these having the same reset function. Once RES receives a negative reset  
pulse, all internal circuitry will start to initialize. Minimum pulse width for completing the reset sequence is  
20us. Status of the chip after reset is given by:  
WhenRES input is low, the chip is initialized to the following:  
1) Display ON/OFF:  
2) Normal/Inverse Display:  
3) Com Scan Direction:  
4) Internal Oscillator:  
5) Internal DC-DC Converter:  
6) Bias Divider:  
Display is turned OFF  
Normal Display  
COM0 -> COM67  
Enable  
Disable  
Disable  
7) Booster level:  
Determine by pins [B0, B1]  
1/8 for 32 & 54 Mux mode  
1/9 for 64 & 68 Mux mode  
Determine by pins [C0, C1]  
20 hex  
8) Bias ratio:  
9) Multiplex ratio:  
10) Electronic volume control:  
11) Built-in resistance ratio:  
12) Average temperature gradient:  
13) Display data column address mapping:  
14) Display start line:  
24 hex  
-0.05%/oC  
Normal  
GDDRAM row 0  
00 hex  
15) Column address counter:  
16) Page address:  
00 hex  
17) Static indicator:  
Disable  
18) Read-modify-write mode:  
19) Test mode:  
Disable  
Disable  
20) Shift register data in serial interface:  
Clear  
Note: Please find more explanation in the Applications Note attached at the back of the specification.  
7.3 Command Decoder and Command Interface  
This module determines whether the input data is interpreted as data or command. Data is directed to this  
C
C
module based upon the input of the D/ pin. If D/ pin is high, data is written to Graphic Display Data RAM  
C
(GDDRAM). If D/ pin is low, the input at D0 – D7 is interpreted as a Command and it will be decoded. The  
decoded command will be written to the corresponding command register.  
7.4 Graphic Display Data RAM (GDDRAM)  
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 132  
x 68 = 8,976bits. Table 5 on page 18 is a description of the GDDRAM address map in which the display start  
line register is set at 18H. For mechanical flexibility, re-mapping on both Segment and Common outputs are  
provided. For vertical scrolling of display, an internal register storing the display start line can be set to control  
the portion of the RAM data mapped to the display. For those GDDRAM out of the display common range,  
they could still be accessed, for either preparation of vertical scrolling data or even for the system usage.  
Please be noticed that the display offset cannot be greater than the default mux mode for any circumstance.  
SSD1805 Series  
Rev 1.1 P 17/52  
Jun 2004  
Solomon Systech  
Remarks:  
DB0 – DB7 represent the data bit of the GDDRAM.  
“Non-select” means no common signal will be selected to support those output ROW pins.  
Table 5 - Graphic Display Data RAM (GDDRAM) Address Map with Display Start Line set to 18h  
Solomon Systech  
Jun 2004 P 18/52 Rev 1.1  
SSD1805 Series  
7.5 LCD Driving Voltage Generator and Regulator  
This module generates the LCD voltage required for display driving output. It takes a single supply input and  
generates necessary bias voltage. It consists of:  
1) 2X, 3X, 4X and 5X regulated DC-DC voltage converter  
The built-in DC-DC regulated voltage converter is used to generate the large positive voltage supply.  
SSD1805 can produce 2X, 3X, 4X or 5X boosting from the potential different between VSS1 - VCI. No  
external boosting capacitors are required for configuration. Please refer to the command table for detail  
description. The feedback gain control for LCD driving contrast curves can be selected by IRS pin to  
either internal (IRS pin = H) or external (IRS pin = L). If internal resistor network is enabled, eight settings  
can be selected through software command. If external control is selected, external resistors are required  
to connect between Vss and VF (R1), and between VF and VOUT (R2). See application circuit diagrams for  
detail connections.  
VOUT  
VHREF  
+
C2  
VDD  
Normal Power Mode  
Recommended capacitance value:  
C1: 1uF ~ 2.2uF  
SSD1805  
+
VCI  
C1  
C2: 2.2uF ~ 4.7uF  
VLREF  
VSS  
VOUT  
VHREF  
VDD  
+
C2  
Low Power Mode  
SSD1805  
+
VCI  
In Low Power Mode, TEST4 must > 4V  
C1  
Recommended capacitance value:  
C1: 1uF ~ 2.2uF  
VLREF  
VSS  
C2: 2.2uF ~ 4.7uF  
Figure 4 - SSD1805 Hardware configuration  
2) Bias Divider  
If the output op-amp buffer option in Set Power Control Register command is enabled, this circuit block  
will divide the regulator output (VOUT) to give the LCD driving levels. The divider does not require external  
capacitors to reduce the external hardware and pin counts.  
3) Bias Ratio Selection circuitry  
The software control circuit of 1/4 to 1/9 bias ratio in order to match the characteristic of LCD panel.  
SSD1805 Series  
Rev 1.1 P 19/52  
Jun 2004  
Solomon Systech  
4) Contrast Control (Voltages referenced to VSS)  
Software control of the 64 contrast voltage levels at each voltage regulator feedback gain. The equation  
of calculating the LCD driving voltage is given as:  
Command Set  
000  
001  
010  
011  
100  
101  
110  
111  
Gain = 1+R2/R1  
4.96  
5.70  
6.54  
7.41  
8.33  
8.95  
10.05  
11.01  
Table 6 - Gain Setting  
R
R
2   
1
Vout = 1+  
*Vcon  
121 α  
V = 1−  
*V  
con  
ref  
210  
where Vref = 1.6 and α = contrast setting  
Please refer to figure 5 on page 21 for the contrast curve with 8 sets of internal resistor network gain.  
5) Self adjust temperature compensation circuitry  
Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades.  
The grading can be selected by software control. Defaulted temperature coefficient (TC) value is –0.05%/°C.  
TC Settings  
TC0  
Temperature compensation coefficient [%/oC]  
Vref typical value [V]  
-0.05  
-0.15  
-0.20  
-0.25  
1.60  
1.70  
1.75  
1.85  
TC2  
TC4  
TC7  
Table 7 - Temperature compensation coefficient  
Solomon Systech  
Jun 2004 P 20/52 Rev 1.1  
SSD1805 Series  
Figure 5 - Contrast curve  
SSD1805 Series  
Rev 1.1 P 21/52  
Jun 2004  
Solomon Systech  
7.6 Oscillator Circuit  
This module is an On-Chip low power temperature compensation oscillator circuitry. The oscillator generates  
the clock for the DC-DC voltage converter. This clock is also used in the Display Timing Generator. Please  
refer to the figure 6 for the typical frame frequency at different temperature.  
Figure 6 - Oscillator typical frame frequency with variation in temperature  
7.7 Display Data Latch  
This block is a series of latches carrying the display signal information. These latches hold the data, which will  
be fed to the HV Buffer Cell and Level Selector to output the required voltage level. The numbers of latches of  
different members are given by:  
32 Mux mode: 132 + 33 = 165  
54 Mux mode: 132 + 55 = 187  
64 Mux mode: 132 + 65 = 197  
68 Mux mode: 132 + 68 = 200  
7.8 HV Buffer Cell (Level Shifter)  
This block is embedded in the Segment/Common Driver Circuits. HV Buffer Cell works as a level shifter,  
which translates the low voltage output signal to the required driving voltage. The output is shifted out with an  
internal FRM clock, which comes from the Display Timing Generator. The voltage levels are given by the level  
selector that is synchronized with the internal M signal.  
7.9 Level Selector  
This block is embedded in the Segment/Common Driver Circuits. Level Selector is a control of the display  
synchronization. Display voltage levels can be separated into two sets and used with different cycles.  
Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell, which in  
turn outputs the COM or SEG LCD waveform.  
Solomon Systech  
Jun 2004 P 22/52 Rev 1.1  
SSD1805 Series  
7.10 LCD Panel Driving Waveform  
Figure 7 is an example of how the Common and Segment drivers may be connected to a LCD panel. The  
waveforms provided illustrate the desired multiplex scheme.  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
TIME SLOT  
*
*
*
*
. . .  
. . .  
. . .  
. . .  
1
2 3 4 5 6 7 8 9  
1
2
3
4
5
6
7
8
9
N 1  
2
3
4
5
6
7
8
9
N
1
2
3
4
5
6
7
8
9
N
N
Vout  
VL5  
VL4  
VL3  
VL2  
VS S  
COM0  
COM1  
SEG0  
Vout  
VL5  
VL4  
VL3  
VL2  
VS S  
Vout  
VL5  
VL4  
VL3  
VL2  
VS S  
Vout  
VL5  
VL4  
VL3  
VL2  
VS S  
SEG1  
M
*Note: N is the number of multiplex ratio including Icon line if it is enabled; N is equal to 68 on POR.  
Figure 7 - LCD Driving Waveform  
SSD1805 Series  
Rev 1.1 P 23/52  
Jun 2004  
Solomon Systech  
8
COMMAND TABLE  
C
W
WR  
RD  
= 1) unless specific setting is stated)  
Table 8 - Command Table (D/ = 0, R/  
(
) = 0, E=1(  
Command  
X0 Set Lower  
D/C  
0
Hex  
00 – 0F  
D7 D6 D5 D4 D3  
D2  
X2  
D1  
X1  
D0  
Description  
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
0
0
X3  
X3  
0
Set the lower nibble of the column address register  
Column Address using X3X2X1X0 as data bits. The lower nibble of column  
address is reset to 0000b after POR.  
0
0
0
10 – 1F  
20 – 27  
28 – 2F  
40 – 7F  
X2  
X2  
X2  
X1  
X1  
1
X0 Set Higher  
Set the higher nibble of the column address register  
Column Address using X3X2X1X0 as data bits. The higher nibble of  
column address is reset to 0000b after POR.  
X0 Set Internal Gain Feedback gain of the internal regulated DC-DC  
Resistor Ratio  
converter for generating VOUT increases as X2X1X0  
increased from 000b to 111b. After POR, X2X1X0 =  
100b.  
1
X0 Set Power  
X0=0: turns off the output op-amp buffer (POR)  
Control Register X0=1: turns on the output op-amp buffer  
X2=0: turns off the internal voltage booster (POR)  
X2=1: turns on the internal voltage booster  
0
0
0
*
X5 X4  
X3  
Y3  
X2  
Y2  
X1  
Y1  
X0 Set Display Start For 68 MUX mode, set X5X4X3X2X1X0 = 111111 and set  
Y6 Y5 Y4  
Y0 Line  
the GDDRAM display start line register from 0-67 using  
Y6Y5Y4Y3Y2Y1Y0  
For 64/54/32 MUX modes, set GDDRAM display start  
line register from 0-63 using X5X4X3X2X1X0.  
There is no need to send the Y6Y5Y4Y3Y2Y1Y0  
parameters.  
Display start line register is reset to 000000 after POR  
for all MUX modes.  
0
84 – 87  
1
0
0
0
0
0
0
1
X1  
X0 Set Boost Level  
Set the DC-DC multiplying factor from 2X to 5X.  
X1X0:  
00: 3X  
01: 4X  
10: 5X  
11: 2X  
Remarks: The POR default boosting level is determined  
by hardware selection pin, B0 & B1.  
0
0
81  
1
0
0
0
0
0
0
1
Set Contrast  
Select contrast level from 64 contrast steps. Contrast  
X5 X4  
X3  
X2  
X1  
X0 Control Register increases (VOUT decreases) as X5X4X3X2X1X0 is  
increased from 000000b to 111111b. X5X4X3X2X1X0 =  
100000b after POR  
0
0
A0 – A1  
A2 – A3  
1
1
0
0
1
1
0
0
0
0
0
0
0
1
X0  
X0=0: column address 00h is mapped to SEG0 (POR)  
X0=1: column address 83h is mapped to SEG0  
Refer to Table 5 on page 16 for example.  
Set Segment Re-  
map  
X0 Set LCD Bias  
X0=0: POR default bias:  
32 MUX mode = 1/8  
54 MUX mode = 1/8  
64 MUX mode = 1/9  
68 MUX mode = 1/9  
X0=1: alternate bias:  
32 MUX mode = 1/6  
54 MUX mode = 1/6  
64 MUX mode = 1/7  
68 MUX mode = 1/7  
For other bias ratio settings, see “Set 1/4 Bias Ratio”  
and “Set Bias Ratio” in Extended Command Set.  
0
0
A4 – A5  
A6 – A7  
1
1
0
0
1
1
0
0
0
0
1
1
0
1
X0 Set Entire  
Display On/Off  
X0=0: normal display (POR)  
X0=1: entire display on  
X0=0: normal display (POR)  
X0 Set  
Normal/Reverse X0=1: reverse display  
Display  
Solomon Systech  
Jun 2004 P 24/52 Rev 1.1  
SSD1805 Series  
D/C  
Hex  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
Command  
Description  
0
AE – AF  
1
1
1
0
0
1
1
1
0
0
1
0
1
1
1
X0 Set  
Display X0=0: turns off LCD panel (POR)  
On/Off  
X0=1: turns on LCD panel  
0
0
B0 – B8  
C0 – C8  
X3  
X3  
X2  
*
X1  
*
X0 Set  
Page Set GDDRAM Page Address (0-8) for read/write using  
X3X2X1X0  
Address  
*
Set COM Output X3=0: normal mode (POR)  
Scan Direction  
X3=1: remapped mode,  
COM0 to COM [N-1] becomes COM [N-1] to COM0  
when Multiplex ratio is equal to N.  
See Table 5 on page 16 for detail mapping.  
0
E0  
1
1
1
0
0
0
0
0
Set Read-Modify- Read-Modify-Write mode will be entered in which the  
Write Mode  
column address will not be increased during display  
data read. After POR, Read-modify-write mode is  
turned OFF.  
0
0
E2  
EE  
1
1
1
1
1
1
0
0
0
1
0
1
1
1
0
0
Software Reset  
Initialize internal status registers.  
Set End of Read- Exit Read-Modify-Write mode. RAM Column address  
Modify-Write  
Mode  
before entering the mode will be restored. After POR,  
Read-modify-write mode is OFF.  
0
0
AC – AD  
1
*
0
*
1
*
0
*
1
*
1
*
0
X0 Indicator Display X0 = 0: indicator off (POR, second command byte is not  
Y1  
Y0 Mode  
required)  
X0 = 1: indicator on (second command byte required)  
Y1Y0 = 00: indicator off  
Y1Y0 = 01: indicator on and blinking at ~1 second  
interval  
Y1Y0 = 10: indicator on and blinking at ~1/2 second  
interval  
Y1Y0 = 11: indicator on constantly  
This second byte command is required ONLY when  
“Set Indicator On” command is sent.  
Command result in No Operation.  
Reserved for IC testing. Do NOT use.  
0
0
E3  
F0 – FF  
1
1
1
1
1
1
0
1
0
*
0
*
1
*
1
*
NOP  
Set Test Mode  
0
0
0
0
AE  
1
1
1
*
0
0
0
*
1
1
1
*
0
0
0
*
1
0
1
*
1
1
1
*
1
0
Set Power Save Either standby or sleep mode will be entered using  
A5  
0
1
Mode  
compound commands.  
0
X0  
X0  
Issue compound commands “Set Display Off” followed  
by “Set Entire Display On”. Standby mode will be  
entered when the static indicator is on constantly. Sleep  
mode will be entered when static indicator is off.  
X1  
SSD1805 Series  
Rev 1.1 P 25/52  
Jun 2004  
Solomon Systech  
EXTENDED COMMAND TABLE  
Table 9 - Extended Command Table(D/C = 0,R/
W
( WR ) = 0,E=1(RD = 1) unless specific setting is stated)  
D/C  
0
0
Hex  
82  
D7 D6 D5 D4 D3  
D2  
0
X2  
D1  
1
X1  
D0  
0
X0  
Command  
OTP Setting  
Description  
1
*
0
0
0
0
0
0
0
X3X2X1X0: OTP fuse value  
0000 : original contrast  
X3  
0001 : original contrast + 1 steps  
0010 : original contrast + 2 steps  
0011 : original contrast + 3 steps  
0100 : original contrast + 4 steps  
0101 : original contrast + 5 steps  
0110 : original contrast + 6 steps  
0111 : original contrast + 7 steps  
1000 : original contrast - 8 steps  
1001 : original contrast - 7 steps  
1010 : original contrast - 6 steps  
1011 : original contrast - 5 steps  
1100 : original contrast - 4 steps  
1101 : original contrast - 3 steps  
1110 : original contrast - 2 steps  
1111 : original contrast - 1 steps  
0
83  
A8  
1
0
0
0
1
0
0
0
0
1
1
0
OTP  
This command starts to program LCD driver with OTP  
offset value. Each bit can be programmed to 1 once.  
Detail of OTP programming procedure on page 31  
Programming  
0
0
1
0
1
0
0
Set Multiplex  
To select multiplex ratio N from 2 to the maximum  
multiplex ratio (POR value) for each member (including  
icon line for 65 MUX mode).  
X6 X5 X4  
X3  
X2  
X1  
X0 Ratio  
Max. MUX ratio:  
68 MUX: 68  
N = X6X5X4X3X2X1X0 + 1 + ICON*, (*ICON exist for  
64/54/32 MUX mode)  
e.g. N = 001111b + 2 = 17  
0
0
A9  
1
0
1
0
1
0
0
1
Set Bias Ratio  
MUX X1X0 = 00  
01  
10  
11  
P
X7 X6 X5 X4  
X3  
X2  
X1  
X0 Set TC Value  
Modify Osc.  
Freq.  
32 : 1/8 or 1/6(POR) 1/6 or 1/5 1/9 or 1/7  
54 : 1/8 or 1/6(POR) 1/6 or 1/5 1/9 or 1/7  
P
64 : 1/8 or 1/6  
68 : 1/8 or 1/6  
1/6 or 1/5 1/9 or 1/7(POR) P  
1/6 or 1/5 1/9 or 1/7(POR) P  
P stands for prohibited settings  
X4X3X2 = 000: (TC0) Typ. –0.05 (POR)  
X4X3X2 = 010: (TC2) Typ. –0.15  
X4X3X2 = 100: (TC4) Typ. –0.20  
X4X3X2 = 111: (TC7) Typ. –0.25  
Increase the value of X7X6X5 will increase the oscillator  
frequency and vice versa.  
Default Mode:  
X7X6X5  
000  
001  
010  
011  
100  
101  
110  
111  
Osc Frequency (Hz)  
61  
64  
68  
72 (POR)  
75  
80  
90  
98  
Remarks: By software program the multiplex ratio, the  
typical oscillator frequency is listed above.  
0
AA – AB  
1
0
1
0
1
0
1
X0  
X0 = 0: use normal setting (POR)  
Set ¼ Bias Ratio X0 = 1: fixed at 1/4 bias regardless of other bias setting  
commands  
Solomon Systech  
Jun 2004 P 26/52 Rev 1.1  
SSD1805 Series  
D/C  
0
Hex  
D0 – D1  
D7 D6 D5 D4 D3  
D2  
0
D1  
0
D0  
X0 Set icon enabled X0 = 0: icon is off.  
X0 = 1: icon is on. (POR)  
Command  
Description  
1
1
0
1
0
0
0
D3  
1
0
1
0
1
0
0
1
1
Set Display  
After POR, X6X5X4X3X2X1X0 = 0  
X6 X5 X4  
X3  
X2  
X1  
X0 Offset  
After setting MUX ratio less than default value, data will  
Set Total Frame be displayed at the beginning/towards the end of  
Phases  
display matrix.  
To move display towards Row 0 by L, X6X5X4X3X2X1X0  
= L  
To move display away from Row 0 by L,  
X6X5X4X3X2X1X0 = Y-L  
Note: max. value of L = POR default MUX ratio –  
display MUX  
Note: Y represents POR default MUX ratio  
The On/Off of the Static Icon is given by 3 phases / 1  
phase overlapping of the M and MSTAT signals. This  
command set total phases of the M/MSTAT signals for  
each frame.  
The more the total phases, the less the overlapping  
time and thus the lower the effective driving voltage.  
X5X4 = 00: 5 phases  
X5X4 = 01: 7 phases  
X5X4 = 10: 9 phases (POR)  
X5X4 = 11: 16 phases  
0
0
D4  
1
0
1
0
0
1
0
0
1
0
0
0
0
0
Set Display  
Offset  
After POR, X6X5X4X3X2X1X0 = 0  
After setting MUX ratio less than default value, data will  
be displayed at the beginning/towards the end of  
display matrix.  
X5 X4  
To move display towards Row 0 by L, X6X5X4X3X2X1X0  
= L  
To move display away from Row 0 by L,  
X6X5X4X3X2X1X0 = Y-L  
Note: max. value of L = POR default MUX ratio –  
display MUX  
Note: Y represents POR default MUX ratio  
READ COMMAND TABLE  
Table 10 - Read Command Table (D/C = 1, R/
W
( WR ) = 1, E=1(RD = 0) unless specific setting is stated)  
D/C  
1
Hex  
D7 D6 D5 D4 D3  
X3  
D2  
X2  
D1  
X1  
D0  
Command  
Description  
00 - FF X7 X6 X5  
0
X0 Status Register  
X7=0: indicates the driver is ready for command.  
X7=1: indicates the driver is Busy.  
X6=0: indicates normal segment mapping with  
column address.  
Read  
X6=1: indicates reverse segment mapping with  
column address.  
X5=0: indicates the display is ON.  
X5=1: indicates the display is OFF.  
X3X2X1X0 = 0010, the 4-bit is fixed to 0010 which could  
be used to identify as Solomon Systech Device.  
Note: Command patterns other than that given in Command Table and Extended Command Table are  
prohibited. Otherwise, unexpected result will occur.  
SSD1805 Series  
Rev 1.1 P 27/52  
Jun 2004  
Solomon Systech  
9
COMMAND DESCRIPTIONS  
9.1 Data Read / Write  
To read data from the GDDRAM, input High to R/W ( WR ) pin and D/ C pin for 6800-series parallel mode,  
input Low to E(RD ) pin and High to D/ C pin for 8080-series parallel mode. No data read is provided in serial  
interface mode. In normal data read mode, GDDRAM column address pointer will be increased by one  
automatically after each data read. However, no automatic increase will be performed in read-modify-write  
mode. Also, a dummy read is required before first valid data is read. See Figure 3 on page 15 in Functional  
Block Descriptions section for detail waveform diagram. To write data to the GDDRAM, input Low to  
R/W ( WR ) pin and High to D/ C pin for both 6800-series and 8080-series parallel mode. For serial interface  
mode, it is always in write mode. GDDRAM column address pointer will be increased by one automatically  
after each data write. It should be noted that, after the automatic column address increment, the pointer will  
NOT wrap round to 0. The pointer will exit the memory address space after accessing the last column.  
Therefore, the pointer should be re-initialized when progress to another page address.  
Action  
Auto Address Increment  
D/ C  
R/W ( WR )  
0
0
1
1
0
1
0
1
Write Command  
Read Status  
Write Data  
No  
No  
Yes  
Yes  
Read Data  
Table 11 - Automatic Address Increment  
9.2 Set Lower Column Address  
This command specifies the lower nibble of the 8-bit column address of the display data RAM. The column  
address will be increased by each data access after it is pre-set by the MCU.  
9.3 Set Higher Column Address  
This command specifies the higher nibble of the 8-bit column address of the display data RAM. The column  
address will be increased by each data access after it is pre-set by the MCU.  
9.4 Set Internal Gain Resistors Ratio  
This command is to enable any one of the eight internal resistor sets for different gains when using internal  
resistor network (IRS pin pulled high). In other words, this command is used to select which contrast curve  
from the eight possible selections. Please refer to Functional Block Descriptions section for detail calculation  
of the LCD driving voltage.  
9.5 Set Power Control Register  
This command turns on/off the various power circuits associated with the chip. There are two related power  
sub-circuits could be turned on/off by this command. Internal voltage booster is used to generate the positive  
voltage supply (VOUT) from the voltage input (VCI - VSS1). An external positive power supply is required if this  
option is turned off. Output op-amp buffer is the internal divider for dividing the different voltage levels from  
the internal voltage booster, VOUT. External voltage sources should be fed into this driver if this circuit is turned  
off.  
9.6 Set Display Start Line  
This command is to set Display Start Line register to determine starting address of display RAM to be  
displayed by selecting a value from 0 to 67. With value equals to 0, D0 of Page 0 is mapped to COM0. With  
value equals to 1, D1 of Page0 is mapped to COM0 and so on. Display start line values of 0 to 67 are  
assigned to Page 0 to 8. Please refer to Table 5 on Page 17 as an example for display start line set to 24  
(18h).  
Solomon Systech  
Jun 2004 P 28/52 Rev 1.1  
SSD1805 Series  
9.7 Set Boost level  
The internal DC-DC converter factor is set by this command. For SSD1805, 2X to 5X multiplying factors could  
be selected. The default POR internal DC-DC converter setting can be selected by hardware pin, B0 & B1.  
9.8 Set Contrast Control Register  
This command adjusts the contrast of the LCD panel by changing the LCD driving voltage, VOUT, provided by  
the On-Chip power circuits. VOUT is set with 64 steps (6-bit) in the contrast control register by a set of  
compound commands. See Figure 8 for the contrast control flow.  
Set Contrast Control Register  
Contrast Level Data  
No  
Changes  
Complete?  
Yes  
Figure 8 - Contrast Control Flow  
9.9 Set Segment Re-map  
This command changes the mapping between the display data column addresses and segment drivers. It  
allows flexibility in mechanical layout of LCD glass design. Please refer to Table 5 on Page 15 for example.  
9.10 Set LCD Bias  
This command is used to select a suitable bias ratio required for driving the particular LCD panel in use. The  
selectable values of this command for 68/64 MUX are 1/9 or 1/7, 54/32 MUX are 1/8 or 1/6. For other bias  
ratio settings, extended commands should be used.  
9.11 Set Entire Display On/Off  
This command forces the entire display, including the icon row, to be illuminated regardless of the contents of  
the GDDRAM. In addition, this command has higher priority than the normal/reverse display. This command  
is used together with “Set Display ON/OFF” command to form a compound command for entering power save  
mode. See “Set Power Save Mode” later in this section.  
9.12 Set Normal/Reverse Display  
This command turns the display to be either normal or reverse. In normal display, a RAM data of 1 indicates  
an illumination on the corresponding pixel. While in reverse display, a RAM data of 0 will turn on the pixel. It  
should be noted that the icon line will not affect, that is not reverse by this command.  
9.13 Set Display On/Off  
This command is used to turn the display on or off. When display off is issued with entire display is on, power  
save mode will be entered. See “Set Power Save Mode” later in this section for details.  
9.14 Set Page Address  
This command enters the page address from 0 to 8 to the RAM page register for read/write operations.  
Please refer to Table 5 on Page 17 for detail mapping.  
9.15 Set COM Output Scan Direction  
This command sets the scan direction of the COM output allowing layout flexibility in LCD module assembly.  
See Table 5 on Page 17 for the relationship between turning on or off of this feature. In addition, the display  
will have immediate effect once this command is issued. That is, if this command is sent during normal  
display, the graphic display will have vertical flipping effect.  
SSD1805 Series  
Rev 1.1 P 29/52  
Jun 2004  
Solomon Systech  
9.16 Set Read-Modify-Write Mode  
This command puts the chip in read-modify-write mode in which:  
1. Column address is saved before entering the mode  
2. Column address is increased only after display data write but not after display data read.  
This Read-Modify-Write mode is used to save the MCU’s loading when a very portion of display area is being  
updated frequently. As reading the data will not change the column address, it could be get back from the  
chip and do some operation in the MCU. Then the updated data could be written back to the GDDRAM with  
automatic address increment. After updating the area, “Set End of Read-Modify-Write Mode” is sent to restore  
the column address and ready for next update sequence.  
9.17 Software Reset  
Issuing this command causes some of the chip’s internal status registers to be initialized:  
Read-Modify-Write mode is off  
Static indicator is turned OFF  
Display start line register is cleared to 0  
Column address counter is cleared to 0  
Page address is cleared to 0  
Normal scan direction of the COM outputs  
Internal gain resistors Ratio is set to 4  
Contrast control register is set to 20h  
9.18 Set End of Read-Modify-Write Mode  
This command relieves the chip from read-modify-write mode. The column address before entering read-  
modify-write mode will be restored no matter how much modification during the read-modify-write mode.  
9.19 Set Indicator On/Off  
This command turns on or off the static indicator driven by the M and MSTAT pins.  
When the “Set Indicator On” command is sent, the second command byte “Indicator Display Mode” must be  
followed. However, the “Set Indicator Off” command is a single byte command and no second byte command  
is required.  
The status of static indicator also controls whether standby mode or sleep mode will be entered, after issuing  
the power save compound command. See “Set Power Save Mode” later in this section.  
9.20 NOP  
A command causing the chip takes No Operation.  
9.21 Set Test Mode  
This command forces the driver chip into its test mode for internal testing of the chip. Under normal operation,  
users should NOT use this command.  
9.22 Set Power Save Mode  
Entering Standby or Sleep Mode should be done by using a compound command composed of “Set Display  
ON/OFF” and “Set Entire Display ON/OFF” commands. When “Set Entire Display ON” is issued when display  
is OFF, either Standby Mode or Sleep Mode will be entered. The status of the Static Indicator will determine  
which power save mode is entered. If static indicator is off, the Sleep Mode will be entered:  
Internal oscillator and LCD power supply circuits are stopped  
Segment and Common drivers output VSS level  
The display data and operation mode before sleep are held  
Internal display RAM can still be accessed  
If the static indicator is on, the chip enters Standby Mode that is similar to sleep mode except addition with:  
Internal oscillator is on  
Static drive system is on  
Please also be noted that during Standby Mode, if the software reset command is issued, Sleep Mode will be  
entered. Both power save modes can be exited by the issue of a new software command or by pulling Low at  
hardware pin RES .  
Solomon Systech  
Jun 2004 P 30/52 Rev 1.1  
SSD1805 Series  
EXTENDED COMMANDS  
These commands are used, in addition to basic commands, to trigger the enhanced features designed for the  
chip.  
9.23 OTP setting and programming  
OTP (One Time Programming) is a method to adjust VOUT. In order to eliminate the variations of LCD module  
in term of contrast level, OTP can be used to achieve the best contrast of every LCD modules. OTP setting  
and programming should include two major steps. Find the OTP offset and OTP programming as following,  
Step 1. Find OTP offset  
Hardware Reset (sending an active low reset pulse to RES pin)  
Send original initialization routines  
Set and display any test patterns  
Adjust the contrast value 0x81, 0x00~0x3Funtil there is the best visual contrast  
OTP setting steps = Contrast value of the best visual contrast - Contrast value of original initialization  
Example 1  
Contrast value of original initialization = 0x20  
Contrast value of the best original initialization = 0x24  
OTP offset value = 0x24 - 0x20 = +4  
OTP setting command should be (0x82, 0x04)  
Example 2:  
Contrast value of original initialization = 0x20  
Contrast value of the best original initialization = 0x1B  
OTP setting = 0x1B - 0x20 = -6  
OTP setting command should be (0x82, 0x0A)  
Step 2. OTP programming  
Hardware Reset (sending an active low reset pulse to RES pin)  
Connect an external VOUT (see diagram below)  
Send OTP setting commands that we find in step 1 (0x82, 0x00~0X0F)  
Send OTP programming command (0x83)  
Wait at least 2 seconds  
Hardware Reset  
Verify the result by repeating step 1. (2) – (3)  
(8)  
SSD1805  
R
VOUT  
+
C
14.5-15.5V  
-
GND  
(1) & (6) &  
GND  
Note: R = 1K ~ 10k ohm  
C = 1u ~ 4.7u F  
RES  
Figure 9 - OTP programming circuitry  
SSD1805 Series  
Rev 1.1 P 31/52  
Jun 2004  
Solomon Systech  
Start  
Step 2  
Step 1  
i) Hardware reset  
i) Hardware reset  
ii) Send original initialization  
routines  
ii) Enable oscillator  
iii) Set and display any test  
patterns  
Connect an external  
voltage (14.5~15.5V)  
on VOUT pins  
Adjust the  
contrast level  
to the best  
visual level  
i) Send OTP setting  
commands  
ii) Send OTP programming  
command  
Accept the  
contrast level  
on panel?  
No  
iii) Wait > 2 sec  
iv) Hardware reset  
i) Send original initialization  
routines  
Yes  
ii) Set and display any test  
patterns  
OTP setting steps =  
Adjusted contrast value  
– Original contrast value  
iii) Inspect the contrast  
END  
Figure 10 - Flow chart of OTP programming Procedure  
Solomon Systech  
Jun 2004 P 32/52 Rev 1.1  
SSD1805 Series  
OTP Example program  
Find the OTP offset:  
Hardware reset by sending an active low reset pulse to RES pin  
0X2F \\ turn on the internal voltage booster & output op-amp buffer.  
0XA2 \\ Set Biasing ratio  
0XA9 \\ 1/9 for 68/64 MUX mode  
0X62  
0X81 \\Set target gain and contrast.  
0X20 \\ contrast = 20 Hex.  
0X24 \\ IR4 =>  
\\ Set target display contents  
0x00 \\ set start column address at 0000 binary for lower nibble  
0X10 \\ set start column address at 0000 binary for upper nibble  
0XB0 \\ set page address at page 0  
0xAF \\ display on  
OTP offset calculation… target OTP offset value is +6  
OTP programming:  
Hardware reset by sending an active low reset pulse to RES pin  
Connect a external VOUT (14.5V~15.5V)  
0X82 \\ Set OTP offset value to +6 (0110)  
0X06 \\ 0000 X3X2X1X0 , where X3X2X1X0 is the OTP offset value  
0X83 \\ Send the OTP programming command.  
Wait at least 2 seconds for programming wait time.  
Verify the result:  
After OTP programming, procedure 2 to 5 are repeated for inspection of the contrast on the panel.  
9.24 Set Multiplex Ratio  
This command switches default multiplex ratio to any multiplex mode from 2 to the maximum multiplex ratio  
(POR value), including the icon line.  
Max. MUX ratio:68 for 68 MUX mode  
65 for 64 MUX mode including icon line  
55 for 54 MUX mode including icon line  
33 for 32 MUX mode including icon line  
The chip pins ROW0 - ROW67 will be switched to corresponding COM signal output, see Table 12 on Page  
35 for examples with and without 8 lines display offset for different MUX. It should be noted that after  
changing the display multiplex ratio, the bias ratio need to be adjusted to make display contrast consistent.  
9.25 Set Bias Ratio  
Except the 1/4 bias, all other available bias ratios could be selected using this command plus the “Set LCD  
Bias” command. For detail setting values and POR default, please refer to the extended command table,  
Table 9 on Page 26.  
9.26 Set Temperature Coefficient (TC) Value  
One out of 4 different temperature coefficient settings is selected by this command in order to match various  
liquid crystal temperature grades. Please refer to the extended command table, Table 9 on Page 26, for  
detailed TC values.  
9.27 Modify Oscillator Frequency  
The oscillator frequency can be fine tuned by applying this command. Since the oscillator frequency will be  
affected by some other factors, this command is not recommended for general usage. Please contact  
Solomon Systech application engineers for more detail explanation on this command.  
SSD1805 Series  
Rev 1.1 P 33/52  
Jun 2004  
Solomon Systech  
9.28 Set 1/4 Bias Ratio  
This command sets the bias ratio directly to 1/4. This bias ratio is especially designed for use in under 12  
MUX display. In order to restore to other bias ratio, this command must be executed, with LSB=0, before the  
“Set Multiplex ratio” or “Set LCD Bias” command is sent.  
9.29 Set Icon Enabled  
This command enables or disables the icon. It should be noticed that the default setting (POR) will enable the  
icon.  
9.30 Set Display Offset  
This command should be sent ONLY when the multiplex ratio is set less than the default value.  
When a lesser multiplex ratio is set, the display will be mapped in the top (y-direction) of the LCD, see the no  
offset columns on Table 3 on Page 15. Use this command could move the display vertically within the 67  
commons. To make the Reduced-MUX Com 0 (Com 0 after reducing the multiplex ratio) towards the Row 0  
direction for L lines, the 7-bit data in second command should be given by L. An example for 8 line moving  
towards to Com 0 direction is given on Table 12 on Page 35. To move in the other direction by L lines, the 8-  
bit data should be given by 67-L. Please note that the display is confined within the default multiplex value.  
9.31 Set Total Frame Phases  
The total number of phases for one display frame is set by this command. The Static Icon is generated by the  
overlapping of M and MSTAT signals. These two pins output either VSS or VDD at same frequency but with  
phase different. To turn on the Static Icon, 3 phases overlapping is applied to these signals, while 1 phase  
overlapping is given to the off status. The more the total number of phases in one frame, the less the  
overlapping time. Thus the lower the effective driving voltage at the Static Icon on the LCD panel.  
9.32 Status register Read  
This command is issued by pulling D/ C Low during a data read (refer to Figure 11 on Page 40 and Figure 13  
on Page 42 for parallel interface waveforms). It allows the MCU to monitor the internal status of the chip. No  
status read is provided for serial mode.  
Solomon Systech  
Jun 2004 P 34/52 Rev 1.1  
SSD1805 Series  
Table 12 - ROW pin assignment for COM signals for SSD1805 in a 68 MUX display  
(including icon line without/with 8 lines display offset towards ROW0)  
Remarks: “Non-select” means no common signal will be selected to support those output ROW pins.  
SSD1805 Series  
Rev 1.1 P 35/52  
Jun 2004  
Solomon Systech  
10 MAXIMUM RATINGS  
Table 13 - Maximum Ratings (Voltage Referenced to VSS)  
Symbol  
VDD  
Parameter  
Value  
Unit  
V
-0.3 to +4.0  
-0.3 to + 4.0  
0 to +15.0  
VSS-0.3 to 4.0  
Supply Voltage  
VDDIO  
VOUT  
VCI  
V
V
V
Input Voltage  
Current Drain Per Pin Excluding VDD and  
VSS  
I
25  
mA  
TA  
Operating Temperature  
Storage Temperature  
Input Resistance  
-30 to +85  
-65 to +150  
1000  
oC  
Tstg  
Ron  
oC  
ohm  
Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical  
Characteristics tables or Pin Description section.  
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal  
precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is  
recommended that VCI and VOUT be constrained to the range VSS < or = (VCI or VOUT) < or = VDD. Reliability of operation is enhanced if unused input is  
connected to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. This device may be light sensitive. Caution  
should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.  
Solomon Systech  
Jun 2004 P 36/52 Rev 1.1  
SSD1805 Series  
11 DC CHARACTERISTICS  
Table 14 - DC Characteristics  
Test Condition  
Recommend Operating Voltage  
Possible Operating Voltage  
Recommend Operating Voltage  
Possible Operating Voltage  
Symbol  
Parameter  
Min  
Typ Max  
Unit  
System power supply pins of  
the logic block Range  
System power supply pins of  
the logic block Range  
Booster Reference Supply  
Voltage Range  
VDD  
1.8  
2.7  
3.6  
VDD  
3.6  
V
VDDIO  
VCI  
1.2  
-
-
V
V
Recommend Operating Voltage  
Possible Operating Voltage  
VDD = 2.7V, Voltage Generator On,  
4X DC-DC Converter Enabled,  
Write accessing, Tcyc =3.3MHz,  
Typ. Osc. Freq., Display On, no  
panel attached.  
VDD  
Access Mode Supply Current  
Drain (VDD Pins)  
IAC  
-
-
450 750  
µA  
µA  
V
DD = 2.7V, VOUT = 9V, regulated  
DC-DC Converter Disabled,  
IDP1  
Display Mode Supply Current  
Drain (VDD Pins)  
70  
150  
R/W ( WR ) Halt, Typ. Osc. Freq.,  
Display On, no panel attached.  
VDD = 2.7V, VOUT = 9V, Voltage  
Generator On, 4X DC-DC  
Display Mode Supply Current  
Drain (VDD Pins)  
IDP2  
-
-
400 700  
µA  
µA  
Converter Enabled, R/W ( WR )  
Halt, Typ. Osc. Freq., Display On,  
no panel attached.  
VDD = 2.7V, LCD Driving Waveform  
Standby Mode Supply Current  
Drain (VDD Pins)  
45  
70  
Off, Typ. Osc. Freq., R/W ( WR )  
ISB  
halt.  
ISLEEP  
VDD = 2.7V, LCD Driving Waveform  
Sleep Mode Supply Current  
Drain (VDD Pins)  
-
5
-
10  
µA  
V
Off, Oscillator Off, R/W ( WR ) halt.  
Display On, Voltage Generator  
Enabled, DC-DC Converter  
Enabled, Typ. Osc. Freq.,  
Regulator Enabled, Divider  
Enabled.  
LCD Driving Voltage Generator  
Output (VOUT Pin)  
1.8  
12.5  
VOUT  
93  
99  
-
-
%
V
VOUT Converter Efficiency  
5X boosting, no panel loading  
Voltage Generator Disabled.  
LCD Driving Voltage Input  
(VOUT Pin)  
VLCD  
1.8  
12.0  
VOH1  
VOL1  
VIH1  
VIL1  
Logic High Output Voltage  
Logic Low Output Voltage  
Logic High Input voltage  
Logic Low Input voltage  
Logic High Output Current  
Source  
IVOUT = -100uA  
IVOUT = 100uA  
0.9* VDDIO  
-
-
-
-
VDDIO  
V
V
V
V
0
0.1* VDDIO  
VDDIO  
0.8* VDDIO  
0
0.2* VDDIO  
IOH  
IOL  
IOZ  
VOUT = VDD-0.4V  
VOUT = 0.4V  
50  
-
-
-
-
-
µA  
µA  
µA  
Logic Low Output Current Drain  
Logic Output Tri-state Current  
Drain Source  
-50  
1
-1  
IIL/IIH  
CIN  
Logic Input Current  
Logic Pins Input Capacitance  
-1  
-
-
5
1
7.5  
µA  
pF  
Regulated DC-DC Converter  
Variation of VOUT Output (VDD is Enabled, Internal Contrast Control  
VOUT  
-2  
0
2
%
fixed)  
Enabled, Set Contrast Control  
Register = 0  
SSD1805 Series  
Rev 1.1 P 37/52  
Jun 2004  
Solomon Systech  
Symbol  
Parameter  
Test Condition  
Min  
Typ Max  
Unit  
Temperature Coefficient  
Compensation  
TC0  
0
-0.05 -0.10  
%/oC  
Flat Temperature Coefficient  
(POR)  
Regulated DC-DC Converter  
Enabled  
TC2  
TC4  
TC7  
Temperature Coefficient 2*  
Temperature Coefficient 4*  
Temperature Coefficient 7*  
-0.11  
-0.18  
-0.23  
-0.15 -0.17  
-0.20 -0.22  
-0.25 -0.27  
%/oC  
%/oC  
%/oC  
The formula for the temperature coefficient is:  
Vrefat50o C Vref at0o C  
1
TC(%) =  
x
x100%  
50o C 0o C  
Vref at25o C  
Solomon Systech  
Jun 2004 P 38/52 Rev 1.1  
SSD1805 Series  
12 AC CHARACTERISTICS  
Table 15 - AC Characteristics (Unless otherwise specified, Voltage Referenced to VSS, VDD =2.7V, TA = -30  
to 85°C)  
Symbol  
Fosc  
Parameter  
Oscillation Frequency of Display  
Timing Generator  
Test Condition  
Min  
Typ  
Max  
Unit  
Internal Oscillator Enabled (default),  
VDD = 2.7V  
Remark:  
4.4  
4.9  
5.4  
kHz  
Oscillation Frequency vs.  
Temperature change (-20°C to  
70°C): -0.05%/°C *  
132 x 68 Graphic Display Mode,  
Display ON, Internal Oscillator  
Enabled  
FFRM  
Frame Frequency  
72  
Hz  
Hz  
132 x 68 Graphic Display Mode,  
Display ON, Internal Oscillator  
Disabled, External clock with freq.,  
Fext, feeding to CL pin.  
653k  
Remarks:  
Fext stands for the frequency value of external clock feeding to the CL pin.  
Fosc stands for the frequency value of internal oscillator.  
Frequency limits are based on the software command set: set multiplex ratio to 68 MUX  
SSD1805 Series  
Rev 1.1 P 39/52  
Jun 2004  
Solomon Systech  
Table 16 - Parallel 6800-series Interface Timing Characteristics  
(TA = -35 to 85°C, VDD = VCI = 1.8V to 3.6V, VDDIO = 1.2V to VDD  
)
Symbol Parameter  
Min  
Typ  
Max  
Unit  
tcycle  
Clock Cycle Time  
200  
0
1000  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAS  
Address Setup Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
tAH  
Address Hold Time  
0
tDSW  
tDHW  
tDHR  
tOH  
Write Data Setup Time  
40  
10  
10  
-
-
Write Data Hold Time  
-
Read Data Hold Time  
50  
40  
-
Output Disable Time  
Access Time (RAM)  
15  
15  
500  
500  
100  
200  
100  
-
tACC  
Access Time (Command)  
Chip Select Low Pulse Width (read RAM)  
Chip Select Low Pulse Width (read Command)  
Chip Select Low Pulse Width (write)  
Chip Select High Pulse Width (read)  
Chip Select High Pulse Width (write)  
Rise Time  
-
-
PWCSL  
-
-
-
PWCSH  
-
tR  
tF  
10  
10  
Fall Time  
-
D/C  
tAS  
tAH  
R/ W  
tR  
tF  
CS  
E
tcycle  
PWCSH  
PWCSL  
tDHW  
tDSW  
D0~D7(Write)  
D0~D7(Read)  
Valid Data  
tACC  
tDHR  
Valid Data  
tOH  
The PWCSH timing reference is 50% of the rising / falling edge of E or  
pin.  
CS  
The tDSW and tDHW timing is reference to the 50% of rising / falling edge of E or  
pin.  
CS  
Figure 11 - Parallel 6800-series Interface Timing Characteristics (P/S = H, C68/80 = H)  
Solomon Systech  
Jun 2004 P 40/52 Rev 1.1  
SSD1805 Series  
Table 17 - Parallel 6800-series Interface Timing Characteristics  
(TA = -35 to 85°C, VDD = VCI = VDDIO = 1.8V to 3.6V)  
Symbol Parameter  
Min  
Typ  
Max  
Unit  
tcycle  
Clock Cycle Time  
100  
0
500  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAS  
Address Setup Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
tAH  
Address Hold Time  
0
tDSW  
tDHW  
tDHR  
tOH  
Write Data Setup Time  
30  
5
-
Write Data Hold Time  
-
Read Data Hold Time  
10  
-
50  
40  
-
Output Disable Time  
Access Time (RAM)  
15  
15  
250  
250  
50  
100  
50  
-
tACC  
Access Time (Command)  
Chip Select Low Pulse Width (read RAM)  
Chip Select Low Pulse Width (read Command)  
Chip Select Low Pulse Width (write)  
Chip Select High Pulse Width (read)  
Chip Select High Pulse Width (write)  
Rise Time  
-
-
PWCSL  
-
-
-
PWCSH  
-
tR  
tF  
10  
10  
Fall Time  
-
D/C  
tAS  
tAH  
R/ W  
tR  
tF  
CS  
E
tcycle  
PWCSH  
PWCSL  
tDHW  
tDSW  
D0~D7(Write)  
D0~D7(Read)  
Valid Data  
tACC  
tDHR  
Valid Data  
tOH  
The PWCSH timing reference is 50% of the rising / falling edge of E or  
pin.  
CS  
The tDSW and tDHW timing is reference to the 50% of rising / falling edge of E or  
pin.  
CS  
Figure 12 - Parallel 6800-series Interface Timing Characteristics (P/S = H, C68/80 = H)  
SSD1805 Series  
Rev 1.1 P 41/52  
Jun 2004  
Solomon Systech  
Table 18 - Parallel 8080-series Interface Timing Characteristics  
(TA = -35 to 85°C, VDD = VCI = 1.8V to 3.6V, VDDIO = 1.2V to VDD  
)
Symbol Parameter  
Min  
Typ  
Max  
Unit  
tcycle  
Clock Cycle Time  
200  
0
1000  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAS  
Address Setup Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
tAH  
Address Hold Time  
0
tDSW  
tDHW  
tDHR  
tOH  
Write Data Setup Time  
40  
10  
10  
-
-
Write Data Hold Time  
-
Read Data Hold Time  
50  
40  
-
Output Disable Time  
Access Time (RAM)  
15  
15  
500  
500  
100  
200  
100  
-
tACC  
Access Time (Command)  
Chip Select Low Pulse Width (read RAM)  
Chip Select Low Pulse Width (read Command)  
Chip Select Low Pulse Width (write)  
Chip Select High Pulse Width (read)  
Chip Select High Pulse Width (write)  
Rise Time  
-
-
PWCSL  
-
-
-
PWCSH  
-
tR  
tF  
10  
10  
Fall Time  
-
Write Cycle  
D/C  
tAH  
tAS  
tR  
CS  
tF  
tcycle  
PWCSH  
PWCSL  
WR  
RD  
tDHW  
tDSW  
Valid Data  
D0-D7(WRITE)  
The PWCSL timing reference is 50% of the rising / falling edge of  
The tDSW and tDHW timing is reference to the 50% of rising / falling edge of  
or  
pin.  
CS  
WR  
WR  
or  
pin.  
CS  
Read Cycle  
D/C  
tAH  
tAS  
tR  
CS  
tF  
WR  
tcycle  
PWCSH  
PWCSL  
RD  
tDHR  
tACC  
D0-D7(READ)  
Valid Data  
tOH  
The PWCSL timing reference is 50% of the rising / falling edge of  
The tDSW and tDHW timing is reference to the 50% of rising / falling edge of  
or  
pin.  
or  
RD  
CS  
RD  
pin.  
CS  
Figure 13 - Parallel 8080-series Interface Timing Characteristics (P/S = H, C68/80 = L)  
Solomon Systech  
Jun 2004 P 42/52 Rev 1.1  
SSD1805 Series  
Table 19 - Parallel 8080-series Interface Timing Characteristics  
(TA = -35 to 85°C, VDD = VCI = VDDIO = 1.8V to 3.6V)  
Symbol Parameter  
Min  
Typ  
Max  
Unit  
tcycle  
Clock Cycle Time  
100  
0
500  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAS  
Address Setup Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
tAH  
Address Hold Time  
0
tDSW  
tDHW  
tDHR  
tOH  
Write Data Setup Time  
30  
5
-
Write Data Hold Time  
-
Read Data Hold Time  
10  
-
50  
40  
-
Output Disable Time  
Access Time (RAM)  
15  
15  
250  
250  
50  
100  
50  
-
tACC  
Access Time (Command)  
Chip Select Low Pulse Width (read RAM)  
Chip Select Low Pulse Width (read Command)  
Chip Select Low Pulse Width (write)  
Chip Select High Pulse Width (read)  
Chip Select High Pulse Width (write)  
Rise Time  
-
-
PWCSL  
-
-
-
PWCSH  
-
tR  
tF  
10  
10  
Fall Time  
-
Write Cycle  
D/C  
tAH  
tAS  
tR  
CS  
tF  
tcycle  
PWCSH  
PWCSL  
WR  
RD  
tDHW  
tDSW  
Valid Data  
D0-D7(WRITE)  
The PWCSL timing reference is 50% of the rising / falling edge of  
The tDSW and tDHW timing is reference to the 50% of rising / falling edge of  
or  
pin.  
CS  
WR  
WR  
or  
pin.  
CS  
Read Cycle  
D/C  
tAH  
tAS  
tR  
CS  
tF  
WR  
tcycle  
PWCSH  
PWCSL  
RD  
tDHR  
tACC  
D0-D7(READ)  
Valid Data  
tOH  
The PWCSL timing reference is 50% of the rising / falling edge of  
The tDSW and tDHW timing is reference to the 50% of rising / falling edge of  
or  
pin.  
or  
RD  
CS  
RD  
pin.  
CS  
Figure 14 - Parallel 8080-series Interface Timing Characteristics (P/S = H, C68/80 = L)  
SSD1805 Series  
Rev 1.1 P 43/52  
Jun 2004  
Solomon Systech  
Table 20 - 4-wires Serial Interface Timing Characteristics  
(TA = -35 to 85°C, VDD = VCI = 1.8V to 3.6V, VDDIO = 1.2V to VDD  
)
Symbol  
tcycle  
Parameter  
Min  
Typ Max  
Unit  
ns  
Clock Cycle Time  
Address Setup Time  
Address Hold Time  
Write Data Setup Time  
Write Data Hold Time  
Clock Low Time  
111  
15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tAS  
-
ns  
tAH  
10  
-
ns  
tDSW  
tDHW  
TCLKL  
TCLKH  
60  
-
ns  
60  
-
ns  
55.5  
55.5  
-
ns  
Clock High Time  
-
ns  
-
tCSS  
Chip Select Setup Time (for D7 input)  
60  
ns  
-
-
tCSH  
Chip Select Hold Time (for D0 input)  
55.5  
ns  
-
tR  
tF  
Rise Time  
Fall Time  
-
-
10  
10  
ns  
ns  
D/C  
CS  
tAS  
tAH  
tCSS  
tCSH  
tcycle  
tCLKL  
tCLKH  
SCK(D6)  
tF  
tR  
tDSW  
tDHW  
SDA(D7)  
CS  
Valid Data  
SCK(D6)  
SDA(D7)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 15 - 4-wires Serial Interface Timing Characteristics (P/S = L, C68/80 = L)  
Solomon Systech  
Jun 2004 P 44/52 Rev 1.1  
SSD1805 Series  
Table 21 - 4-wires Serial Interface Timing Characteristics  
(TA = -35 to 85°C, VDD = VCI = VDDIO = 1.8V to 3.6V)  
Symbol  
tcycle  
Parameter  
Min  
58.8  
10  
Typ  
Max  
Unit  
ns  
Clock Cycle Time  
Address Setup Time  
Address Hold Time  
Write Data Setup Time  
Write Data Hold Time  
Clock Low Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tAS  
ns  
tAH  
5
ns  
tDSW  
30  
ns  
tDHW  
TCLKL  
TCLKH  
30  
ns  
29.4  
29.4  
ns  
Clock High Time  
ns  
tCSS  
Chip Select Setup Time (for D7 input)  
30  
ns  
tCSH  
Chip Select Hold Time (for D0 input)  
29.4  
ns  
tR  
tF  
Rise Time  
Fall Time  
-
-
10  
10  
ns  
ns  
D/C  
CS  
tAS  
tAH  
tCSS  
tCSH  
tcycle  
tCLKL  
tCLKH  
SCK(D6)  
SDA(D7)  
tF  
tR  
tDSW  
tDHW  
Valid Data  
CS  
SCK(D6)  
SDA(D7)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 16 - 4-wires Serial Interface Timing Characteristics (P/S = L, C68/80 = L)  
SSD1805 Series  
Rev 1.1 P 45/52  
Jun 2004  
Solomon Systech  
13 APPLICATION EXAMPLES  
COM0  
COM1  
:
:
:
:
:
:
:
COM32  
COM33  
DISPLAY PANEL SIZE  
132 X 68  
COM34  
COM35  
:
:
:
:
:
:
:
COM66  
COM67  
Row remapped  
command  
[command: C0H]  
ROW67 …….ROW34  
COL0 ………………………………………………………………………………….… COL131 ROW33 …………….ROW0  
SSD1805 IC (DIE FACE UP)  
C1  
C2  
VCI  
VSS VOUT  
VDD  
VDDIO  
SCK SDA  
CS  
RES  
D/C  
,where  
V
DD & VCI = 2.775V; VDDIO = 2.775V;  
C1 = 1uF ~2uF; C2 = 2.2uF ~ 4.7uF.  
Logic pin connections not specified above:  
Pins connected to VDD: IRS; M/S ; CLS; E(RD ); CS2; /HPM;  
Pins connected to VSS: P/S ; C68/(80 ); VSS1; VLREF; D0~D5; R/W ( WR ); TEST0;  
Pin connected to VOUT: VHREF  
;
Pins connected to Either VDD or VSS depending on configuration: C0; C1; B0; B1;  
Software initialization (For 68 MUX application)  
E2 //Software reset  
2F //Turn on regulated charge-pump and divider  
86 //Set 5X booster configuration  
24 //Set internal resistor gain to 24Hex  
81 //Set contrast level to 20Hex  
20 //  
A2 //Set normal bias ratio as 1/9 bias  
AF //Set Display On  
Figure 17 - Application Example I (4-wires SPI mode)  
Solomon Systech  
Jun 2004 P 46/52 Rev 1.1  
SSD1805 Series  
COM0  
COM1  
:
:
:
:
:
:
:
COM32  
COM33  
DISPLAY PANEL SIZE  
132 X 68  
COM34  
COM35  
:
:
:
:
:
:
:
COM66  
COM67  
Row remapped  
command  
[command: C0H]  
ROW67 …….ROW34  
COL0 ………………………………………………………………………………….… COL131 ROW33 …………….ROW0  
SSD1805 IC (DIE FACE UP)  
C1  
C2  
VCI VSS VOUT  
VDD  
VDDIO  
D0 … D7  
RES  
D/C  
R/W ( WR )CS  
E(RD )  
,where  
DD & VCI = 2.775V; VDDIO = 2.775V;  
C1 = 1uF ~2uF; C2 = 2.2uF ~ 4.7uF.  
Logic pin connections not specified above:  
V
Pins connected to VDD: IRS; M/S ; CLS; P/S ; C68/(80 ); CS2; /HPM;  
Pins connected to VSS: VSS1; VLREF; TEST0;  
Pin connected to VOUT: VHREF  
;
Pins connected to Either VDD or VSS depending on configuration: C0; C1; B0;  
B1;  
Figure 18 - Application Example II (6800 PPI mode)  
SSD1805 Series  
Rev 1.1 P 47/52  
Jun 2004  
Solomon Systech  
Figure 19 - Applications notes for VDD/VDDIO connection  
2.775V  
2.775V  
2.775V  
CLS  
M/S  
VDDIO VDD VCI  
VOUT  
VHREF  
/CS1  
/RES  
D/C  
R/W  
E
D0~D7  
MCU  
SSD1805  
VSS VSS1  
VLREF  
Normal Application  
2.775V  
or 1.8V  
1.8V  
1.8V 2.775V  
VDDIO VDD VCI  
CLS  
M/S  
VOUT  
VHREF  
/CS1  
/RES  
D/C  
R/W  
E
D0~D7  
MCU  
SSD1805  
VSS VSS1  
VLREF  
Low Voltage MCU  
Solomon Systech  
Jun 2004 P 48/52 Rev 1.1  
SSD1805 Series  
14 PACKAGE INFORMATION  
14.1 DIE TRAY DIMENSIONS  
Spec mm  
(mil)  
W1  
W2  
H
(1996)  
(1791)  
(160)  
50.70 0.2  
45.50 0.2  
4.05 0.2  
N/A  
K
E
N/A  
Px  
Py  
X
(559)  
(98)  
14.19 0.1  
2.48 0.1  
11.26 + 0.1  
1.41 + 0.1  
0.68 0.05  
51  
(443)  
(58)  
Y
Z
N
(27)  
SSD1805 Series  
Rev 1.1 P 49/52  
Jun 2004  
Solomon Systech  
14.2 TAB DRAWING  
Figure 20 - SSD1805TR1 TAB Drawing (Copper view)  
Solomon Systech  
Jun 2004 P 50/52 Rev 1.1  
SSD1805 Series  
34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
Figure 21 - SSD1805TR1 TAB Drawing (Detail view & pin assignment)  
SSD1805 Series  
Rev 1.1 P 51/52  
Jun 2004  
Solomon Systech  
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for  
each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of  
others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or  
manufacture of the part  
http://www.solomon-systech.com  
Solomon Systech  
Jun 2004 P 52/52 Rev 1.1  
SSD1805 Series  

相关型号:

SSD1805TR1

132 x 68 STN LCD Segment / Common Monochrome Driver with Controller
ETC

SSD1805Z

132 x 68 STN LCD Segment / Common Monochrome Driver with Controller
ETC

SSD1809

LCD SEGMENT / COMMON DRIVER WITH CONTROLLER CMOS
ETC

SSD1809T

LCD SEGMENT / COMMON DRIVER WITH CONTROLLER CMOS
ETC

SSD1809TR

LCD SEGMENT / COMMON DRIVER WITH CONTROLLER CMOS
ETC

SSD1812

LCD Segment / Common Driver with Controller CMOS
ETC

SSD1812TR

LCD Segment / Common Driver with Controller CMOS
ETC

SSD1812Z

LCD Segment / Common Driver with Controller CMOS
ETC

SSD1815

SEMICONDUCTOR TECHNICAL DATA
ETC

SSD1815B

LCD Segment / Common Driver with Controller
ETC

SSD1815BT

LCD Segment / Common Driver with Controller
ETC

SSD1815BT2

LCD Segment / Common Driver with Controller
ETC