STK11C88-S45I [ETC]

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM; 32K ×8的nvSRAM量子陷阱CMOS非易失性静态RAM
STK11C88-S45I
型号: STK11C88-S45I
厂家: ETC    ETC
描述:

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
32K ×8的nvSRAM量子陷阱CMOS非易失性静态RAM

静态存储器
文件: 总9页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK11C88  
32K x 8 nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
20ns, 25ns, 35ns and 45ns Access Times  
STORE to EEPROM Initiated by Software  
The Simtek STK11C88 is a fast static RAM with a  
nonvolatile, electrically erasable PROM element  
incorporated in each static memory cell. The SRAM  
can be read and written an unlimited number of  
times, while independent nonvolatile data resides in  
EEPROM. Data transfers from the SRAM to the  
EEPROM (the STORE operation), or from EEPROM to  
SRAM (the RECALL operation), take place using a  
software sequence. Transfers from the EEPROM to  
the SRAM (the RECALL operation) also take place  
automatically on restoration of power.  
RECALL to SRAM Initiated by Software or  
Power Restore  
10mA Typical ICC at 200ns Cycle Time  
Unlimited READ, WRITE and RECALL Cycles  
1,000,000 STORE Cycles to EEPROM  
100-Year Data Retention in EEPROM  
Commercial and Industrial Temperatures  
28-Pin PDIP and SOIC Packages  
The STK11C88 is pin-compatible with industry-  
standard SRAMs.  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
A
A
A
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
14  
EEPROM ARRAY  
2
12  
512 x 512  
3
A
A
A
A
7
6
5
4
3
2
13  
8
A5  
A6  
A7  
A8  
A
4
A
A
A
A
A
A
DQ  
DQ  
DQ  
5
9
STORE  
STORE/  
RECALL  
CONTROL  
6
11  
7
G
STATIC RAM  
ARRAY  
8
A
E
10  
RECALL  
A9  
9
1
0
A11  
A12  
A13  
A14  
512 x 512  
10  
11  
12  
13  
14  
DQ  
DQ  
7
6
5
28 - 300 PDIP  
28 - 600 PDIP  
28 - 300 SOIC  
28 - 350 SOIC  
0
DQ  
1
DQ  
DQ  
2
4
3
SOFTWARE  
DETECT  
A0 - A13  
V
SS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
PIN NAMES  
COLUMN DEC  
A
- A  
Address Inputs  
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+5V)  
Ground  
0
14  
W
A0 A1 A2 A3 A4A10  
DQ - DQ  
0
7
G
E
E
G
W
V
V
CC  
SS  
July 1999  
5-1  
STK11C88  
a
ABSOLUTE MAXIMUM RATINGS  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7 . . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
Note a: Stresses greater than those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
b
DC CHARACTERISTICS  
(V = 5.0V ± 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
c
I
110  
97  
80  
N/A  
100  
85  
mA  
mA  
mA  
mA  
t
t
t
t
= 20ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
1
= 25ns  
= 35ns  
= 45ns  
70  
70  
d
I
Average V Current during STORE  
3
3
mA  
All Inputs Dont Care, V = max  
CC  
CC  
CC  
2
c
I
Average V Current at t  
CC  
5V, 25°C, Typical  
= 200ns  
W (V 0.2V)  
All Others Cycling, CMOS Levels  
CC  
AVAV  
CC  
3
10  
10  
mA  
e
e
I
Average V Current  
(Standby, Cycling TTL Input Levels)  
35  
30  
25  
22  
N/A  
31  
26  
mA  
mA  
mA  
mA  
t
t
t
t
= 20ns, E V  
= 25ns, E V  
SB  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
IH  
IH  
1
= 35ns, E V  
= 45ns, E V  
IH  
IH  
23  
I
I
I
V
Standby Current  
E (V  
- 0.2V)  
CC  
SB  
CC  
2
750  
±1  
750  
±1  
µA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V 0.2V)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
±5  
±5  
= V to V , E or G V  
IN  
SS  
CC  
IH  
V
V
V
V
Input Logic 1Voltage  
Input Logic 0Voltage  
Output Logic 1Voltage  
Output Logic 0Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
V
.5  
0.8  
V .5  
SS  
0.8  
IL  
SS  
2.4  
2.4  
V
I
I
=4mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
= 8mA  
T
0
40  
°C  
A
Note b: The STK11C88-20 requires VCC = 5.0V ± 5% supply to operate at specified speed.  
Note c: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note d: ICC1 is the average current required for the duration of the STORE cycle (tSTORE ).  
Note e: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
5.0V  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
480 Ohms  
OUTPUT  
f
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
A
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
C
Input Capacitance  
Output Capacitance  
5
7
pF  
IN  
pF  
OUT  
Note f: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
July 1999  
5-2  
STK11C88  
b
SRAM READ CYCLES #1 & #2  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
STK11C88-20 STK11C88-25 STK11C88-35 STK11C88-45  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
20  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
g
20  
25  
35  
45  
AVAV  
RC  
AA  
h
3
Address Access Time  
22  
8
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
h
5
5
5
5
5
5
5
5
5
AXQX  
6
ELQX  
i
7
7
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
i
9
GHQZ  
f
10  
11  
ELICCH  
EHICCL  
e, f  
25  
PS  
Note g: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note h: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note i: Measured ± 200mV from steady state output voltage.  
g, h  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
g
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
July 1999  
5-3  
STK11C88  
b
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
STK11C88-20  
STK11C88-25  
STK11C88-35  
STK11C88-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
20  
15  
15  
8
MAX  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
0
DH  
AW  
t
t
t
15  
0
20  
0
25  
0
30  
0
AVWH  
AVEH  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
0
WHAX  
i, j  
EHAX  
WR  
t
t
7
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
k
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
k
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
14  
ELEH  
18  
AVEL  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
July 1999  
5-4  
STK11C88  
b
STORE INHIBIT/POWER-UP RECALL  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
STK11C88  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
V
l
RESTORE  
STORE  
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
SWITCH  
RESET  
V
3.9  
V
Note l: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE INHIBIT/POWER-UP RECALL  
V
CC  
5V  
24  
V
SWITCH  
25  
RESET  
V
STORE INHIBIT  
OWER-UP RECALL  
22  
RESTORE  
t
DQ (DATA OUT)  
POWER-UP  
BROWN OUT  
BROWN OUT  
BROWN OUT  
RECALL  
STORE INHIBIT  
STORE INHIBIT  
STORE INHIBIT  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
July 1999  
5-5  
STK11C88  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
m, n  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
m, n  
Nonvolatile RECALL  
Note m: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note n: While there are 15 addresses on the STK11C88, only the lower 14 are used to control software modes.  
o, p  
b
SOFTWARE STORE/RECALL CYCLE  
(V = 5.0V ± 10%)  
CC  
STK11C88-20  
STK11C88-25  
STK11C88-35  
STK11C88-45  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
20  
0
MAX  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
ns  
ns  
ns  
ns  
µs  
AVAV  
o
o
AVEL  
15  
15  
20  
20  
25  
20  
30  
20  
ELEH  
o
Address Hold Time  
ELAX  
o
RECALL Duration  
20  
20  
20  
20  
RECALL  
Note o: The software sequence is clocked with E controlled reads.  
Note p: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
p
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
23  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
July 1999  
5-6  
STK11C88  
DEVICE OPERATION  
The STK11C88 is a versatile memory chip that pro-  
SOFTWARE NONVOLATILE STORE  
vides several modes of operation. The STK11C88  
can operate as a standard 32K x 8 SRAM. It has a  
32K x 8 EEPROM shadow to which the SRAM infor-  
mation can be copied or from which the SRAM can  
be updated in nonvolatile mode.  
The STK11C88 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
NOISE CONSIDERATIONS  
Note that the STK11C88 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1µF connected between V  
cc  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
and V , using leads and traces that are as short as  
ss  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will  
help prevent noise problems.  
SRAM READ  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
The STK11C88 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-14 determines which of the 32,768 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of READ operations must be  
performed:  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
July 1999  
5-7  
STK11C88  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled  
an unlimited number of times.  
HARDWARE PROTECT  
The STK11C88 offers hardware protection against  
inadvertent STORE operation during low-voltage  
conditions. When VCC < VSWITCH, all software STORE  
operations are inhibited.  
LOW AVERAGE ACTIVE POWER  
POWER-UP RECALL  
The STK11C88 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on  
chip enable). Figure 3 shows the same relationship  
for WRITE cycles. If the chip enable duty cycle is  
less than 100%, only standby current is drawn  
when the chip is disabled. The overall average cur-  
rent drawn by the STK11C88 depends on the fol-  
lowing items: 1) CMOS vs. TTL input levels; 2) the  
duty cycle of chip enable; 3) the overall cycle rate  
for accesses; 4) the ratio of READs to WRITEs; 5)  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK11C88 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
the operating temperature; 6) the V level; and 7) I/  
O loading.  
100  
80  
cc  
60  
40  
TTL  
20  
CMOS  
150 200  
0
50  
100  
Cycle Time (ns)  
100  
July 1999  
5-8  
STK11C88  
ORDERING INFORMATION  
- W 25 I  
STK11C88  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (40 to 85°C)  
Access Time  
20 = 20ns (Commercial only)  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Package  
W = Plastic 28-pin 600 mil DIP  
P = Plastic 28-pin 300 mil DIP  
S = Plastic 28-pin 350 mil SOIC  
N = Plastic 28-pin 300 mil SOIC  
July 1999  
5-9  

相关型号:

STK11C88-SF25

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-SF25

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-SF25I

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-SF25I

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-SF25ITR

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-SF25ITR

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-SF25TR

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-SF25TR

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-SF45

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-SF45

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-SF45I

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-SF45I

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS