STK12C68-5P45 [ETC]

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM; 8K ×8 AutoStore⑩的nvSRAM QuantumTrap⑩ CMOS非易失性静态RAM
STK12C68-5P45
型号: STK12C68-5P45
厂家: ETC    ETC
描述:

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
8K ×8 AutoStore⑩的nvSRAM QuantumTrap⑩ CMOS非易失性静态RAM

内存集成电路 静态存储器 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总13页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK12C68  
STK12C68-M SMD#5962-94599  
8K x 8 AutoStore™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
• 25ns, 35ns, 45ns and 55ns Access Times  
The Simtek STK12C68 is a fast static RAM with a  
nonvolatile element incorporated in each static  
memory cell. The SRAM can be read and written an  
unlimited number of times, while independent, non-  
volatile data resides in Nonvolatile Elements. Data  
transfers from the SRAM to the Nonvolatile Elements  
(the STORE operation) can take place automatically  
on power down. A 68µF or larger capacitor tied from  
VCAP to ground guarantees the STORE operation,  
regardless of power-down slew rate or loss of power  
from “hot swapping”. Transfers from the Nonvolatile  
Elements to the SRAM (the RECALL operation) take  
place automatically on restoration of power. Initia-  
tion of STORE and RECALL cycles can also be soft-  
ware controlled by entering specific read  
sequences. A hardware STORE may be initiated with  
the HSB pin.  
• “Hands-off” Automatic STORE with External  
68µF Capacitor on Power Down  
STORE to Nonvolatile Elements Initiated by  
Hardware, Software or AutoStore™ on Power  
Down  
RECALL to SRAM Initiated by Software or  
Power Restore  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to Nonvolatile Ele-  
ments (Commercial/Industrial)  
• 100-Year Data Retention in Nonvolatile Ele-  
ments (Commercial/Industrial)  
• Commercial, Industrial and Military Tempera-  
tures  
• 28-Pin SOIC, DIP and LCC Packages  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
V
V
CAP  
CCX  
1
2
3
4
5
6
7
8
V
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CAP  
CCX  
A
W
12  
A
HSB  
7
6
POWER  
A
A
8
QUANTUM TRAP  
128 x 512  
A
A
5
9
CONTROL  
A
A
4
3
11  
G
A
A5  
A6  
A7  
A8  
A9  
A
A
E
2
10  
9
A
A
1
0
STORE  
10  
11  
12  
13  
14  
DQ  
7
STORE/  
RECALL  
DQ  
DQ  
6
0
1
2
SS  
HSB  
DQ  
DQ  
5
STATIC RAM  
DQ  
DQ  
4
CONTROL  
RECALL  
V
DQ  
3
ARRAY  
128 x 512  
28 - LCC  
28 - DIP  
A11  
A12  
28 - SOIC  
SOFTWARE  
DETECT  
A
- A  
12  
0
PIN NAMES  
DQ  
DQ  
DQ  
0
1
2
COLUMN I/O  
A
- A  
Address Inputs  
Data In/Out  
Chip Enable  
Write Enable  
Output Enable  
Hardware Store Busy (I/O)  
Power (+ 5V)  
Capacitor  
0
12  
COLUMN DEC  
DQ -DQ  
0
7
DQ  
3
4
E
W
G
DQ  
DQ  
DQ  
DQ  
5
6
7
A
A A  
A A  
1 4  
2 3  
A
10  
0
G
HSB  
E
W
V
V
V
CCX  
CAP  
SS  
Ground  
October 2003  
1
Document Control # ML0008 rev 0.4  
STK12C68  
ABSOLUTE MAXIMUM RATINGSa  
Voltage on Input Relative to VSS . . . . . . . . . .0.6V to (V + 0.5V)  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . .0.5V to (V + 0.5V)  
CC  
Temperature under Bias. . . . . . . . . . . . . . . . . . . . . .–55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .–65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . 15mA  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at con-  
ditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 7.0V  
CC  
DC CHARACTERISTICS  
(VCC = 5.0V ± 10%)e  
INDUSTRIAL/  
MILITARY  
COMMERCIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
85  
75  
65  
55  
90  
75  
65  
55  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns  
= 35ns  
= 45ns  
= 55ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
3
10  
10  
mA  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
c
I
I
Average V  
Current during  
CAP  
All Inputs Don’t Care  
CC  
4
2
2
mA  
AutoStore™ Cycle  
d
Average V Current  
(Standby, Cycling TTL Input Levels)  
27  
23  
20  
19  
28  
24  
21  
19  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
= 55ns, E V  
SB  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
IH  
1
d
I
I
I
V
Standby Current  
E (V – 0.2V)  
CC  
SB  
CC  
2
1.5  
±1  
±5  
2.5  
±1  
±5  
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
V
Input Logic “1” Voltage  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
Input Logic “0” Voltage  
V
– .5  
0.8  
V – .5  
SS  
0.8  
IL  
SS  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Logic “0” Voltage on HSB Output  
Operating Temperature  
2.4  
2.4  
V
I
I
I
=–4mA except HSB  
= 8mA except HSB  
= 3mA  
OH  
OL  
BL  
OUT  
OUT  
OUT  
0.4  
0.4  
70  
0.4  
0.4  
V
V
T
0
–40/-55  
85/125  
°C  
A
Note b: ICC and ICC are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC3 are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
Note e: VCC reference levels throughout this datasheet refer to VCCX if that is where the power supply connection is made, or VCAP if VCCX is con-  
nected to ground.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V  
5.0V  
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
480 Ohms  
OUTPUT  
30 pF  
CAPACITANCEf  
(TA = 25°C, f = 1.0MHz)  
255 Ohms  
INCLUDING  
SCOPE AND  
FIXTURE  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
pF  
OUT  
Note f: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
October 2003  
2
Document Control # ML0008 rev 0.4  
 
 
 
 
STK12C68  
SRAM READ CYCLES #1 & #2  
(VCC = 5.0V ± 10%)e  
SYMBOLS  
STK12C68-25  
STK12C68-35  
STK12C68-45  
STK12C68-55  
NO.  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
g
25  
35  
45  
55  
AVAV  
h
3
Address Access Time  
25  
10  
35  
15  
45  
20  
55  
35  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
h
5
5
5
5
5
5
5
5
5
AXQX  
6
ELQX  
i
7
10  
10  
25  
10  
10  
35  
12  
12  
45  
12  
12  
55  
EHQZ  
HZ  
8
0
0
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
i
9
GHQZ  
f
f
10  
11  
ELICCH  
EHICCL  
PS  
Note g: W and HSB must be high during SRAM READ cycles.  
Note h: Device is continuously selected with E and G both low.  
Note i: Measured ± 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledg, h  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
SRAM READ CYCLE #2: E Controlledg  
2
t
AVAV  
ADDRESS  
1
11  
EHICCL  
t
ELQV  
t
6
E
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
October 2003  
3
Document Control # ML0008 rev 0.4  
 
 
STK12C68  
SRAM WRITE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)e  
SYMBOLS  
STK12C68-25 STK12C68-35 STK12C68-45 STK12C68-55  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
45  
45  
25  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
AW  
t
t
t
20  
0
25  
0
30  
0
45  
0
AVWH  
AVEH  
t
t
t
AVWL  
AVEL  
EHAX  
AS  
t
t
t
0
0
0
0
WHAX  
WR  
i, j  
t
t
10  
13  
14  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
Note l: HSB must be high during SRAM WRITE cycles.  
SRAM WRITE CYCLE #1: W Controlledk, l  
12  
t
AVAV  
ADDRESS  
19  
14  
t
WHAX  
t
ELWH  
E
17  
t
AVWH  
18  
t
AVWL  
13  
t
W
WLWH  
15  
16  
t
t
DVWH  
WHDX  
DATA IN  
DATA VALID  
20  
t
WLQZ  
21  
t
WHQX  
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledk, l  
12  
t
AVAV  
ADDRESS  
14  
18  
19  
t
t
ELEH  
t
AVEL  
EHAX  
E
17  
t
AVEH  
13  
t
WLEH  
W
15  
16  
t
DVEH  
t
EHDX  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
October 2003  
4
Document Control # ML0008 rev 0.4  
 
 
 
 
STK12C68  
HARDWARE MODE SELECTION  
E
H
L
W
X
H
L
HSB  
A
- A (hex)  
0
MODE  
Not Selected  
I/O  
POWER  
NOTES  
12  
H
X
X
X
X
Output High Z  
Output Data  
Input Data  
Standby  
Active  
H
Read SRAM  
o
L
H
Write SRAM  
Active  
X
X
L
Nonvolatile STORE  
Output High Z  
l
m
CC  
2
0000  
1555  
0AAA  
1FFF  
10F0  
0F0F  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
Active  
L
L
H
H
H
H
n, o  
n, o  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
l
CC  
2
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
Active  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
Note m: HSB STORE operation occurs only if an SRAM WRITE has been done since the last nonvolatile cycle. After the STORE (if any) completes,  
the part will go into standby mode, inhibiting all operations until HSB rises.  
Note n: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note o: I/O state assumes G < VIL. Activation of nonvolatile cycles does not depend on state of G.  
HARDWARE STORE CYCLE  
(VCC = 5.0V ± 10%)e  
SYMBOLS  
STK12C68  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
22  
23  
24  
25  
26  
t
t
t
t
t
t
t
t
STORE Cycle Duration  
10  
ms  
µs  
ns  
ns  
ns  
i, p  
i, q  
p, r  
STORE  
DELAY  
RECOVER  
HLHX  
HLHZ  
HLQZ  
HHQX  
Time Allowed to Complete SRAM Cycle  
Hardware STORE High to Inhibit Off  
Hardware STORE Pulse Width  
1
700  
300  
15  
Hardware STORE Low to Store Busy  
HLBL  
Note p: E and G low for output behavior.  
Note q: E and G low and W high for output behavior.  
Note r: RECOVER is only applicable after tSTORE is complete.  
t
HARDWARE STORE CYCLE  
25  
t
HLHX  
HSB (IN)  
24  
t
RECOVER  
22  
t
STORE  
26  
t
HLBL  
HSB (OUT)  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DATA VALID  
23  
t
DELAY  
DQ (DATA OUT)  
DATA VALID  
October 2003  
5
Document Control # ML0008 rev 0.4  
 
STK12C68  
AutoStore™/POWER-UP RECALL  
(VCC = 5.0V ± 10%)e  
SYMBOLS  
STK12C68  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
550  
10  
27  
28  
29  
30  
31  
32  
t
t
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
ns  
µs  
V
s
RESTORE  
STORE  
VSBL  
t
t
p, q, t  
HLHZ  
BLQZ  
Low Voltage Trigger (V  
) to HSB Low  
300  
l
SWITCH  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
1
p
DELAY  
V
V
4.0  
4.5  
3.9  
SWITCH  
RESET  
Low Voltage Reset Level  
V
Note s: tRESTORE starts from the time VCC rises above VSWITCH  
.
Note t: HSB is asserted low for 1µs when VCAP drops through VSWITCH. If an SRAM WRITE has not taken place since the last nonvolatile cycle, HSB  
will be released and no STORE will take place.  
AutoStore™/POWER-UP RECALL  
V
CC  
31  
V
SWITCH  
32  
V
RESET  
TM  
AutoStore  
POWER-UP RECALL  
29  
28  
27  
t
VSBL  
t
t
STORE  
RESTORE  
HSB  
30  
t
DELAY  
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE  
(NO SRAM WRITES)  
BROWN OUT  
AutoStore™  
BROWN OUT  
AutoStore™  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
October 2003  
6
Document Control # ML0008 rev 0.4  
 
 
STK12C68  
SOFTWARE-CONTROLLED STORE/RECALL CYCLEv  
(VCC = 5.0V ± 10%)e  
SYMBOLS  
STK12C68-25 STK12C68-35 STK12C68-45 STK12C68-55  
NO.  
PARAMETER  
UNITS NOTES  
Standard Alternate  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
MIN  
55  
0
MAX  
33  
34  
35  
36  
37  
t
t
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
ns  
ns  
ns  
ns  
µs  
p
u
u
u
AVAV  
RC  
AS  
AVEL  
20  
20  
25  
20  
30  
20  
30  
20  
ELEH  
ELAX  
RECALL  
CW  
Address Hold Time  
RECALL Duration  
20  
20  
20  
20  
Note u: The software sequence is clocked with E controlled READs.  
Note v: The six consecutive addresses must be in the order listed in the Hardware Mode Selection Table: (0000, 1555, 0AAA, 1FFF, 10F0, 0F0F) for a  
STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0, 0F0E) for a RECALL cycle. W must be high during all six consecutive cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledv  
33  
AVAV  
33  
AVAV  
t
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
34  
AVEL  
35  
ELEH  
t
t
E
36  
ELAX  
t
28  
37  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA OUT)  
October 2003  
7
Document Control # ML0008 rev 0.4  
 
 
STK12C68  
DEVICE OPERATION  
The STK12C68 has two separate modes of opera-  
tion: SRAM mode and nonvolatile mode. In SRAM  
mode, the memory operates as a standard fast  
static RAM. In nonvolatile mode, data is transferred  
from SRAM to Nonvolatile Elements (the STORE  
operation) or from Nonvolatile Elements to SRAM  
(the RECALL operation). In this mode SRAM func-  
tions are disabled.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCAP < VRESET), an internal RECALL request will be  
latched. When VCAP once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK12C68 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
NOISE CONSIDERATIONS  
The STK12C68 is a high-speed memory and so  
must have a high-frequency bypass capacitor of  
approximately 0.1µF connected between VCAP and  
VSS, using leads and traces that are as short as pos-  
sible. As with all high-speed CMOS ICs, normal care-  
ful routing of power, ground and signals will help  
prevent noise problems.  
SOFTWARE NONVOLATILE STORE  
The STK12C68 software STORE cycle is initiated by  
executing sequential E controlled READ cycles from  
six specific address locations. During the STORE  
cycle an erase of the previous nonvolatile data is  
first performed, followed by a program of the nonvol-  
atile elements. The program operation copies the  
SRAM data into nonvolatile memory. Once a STORE  
cycle is initiated, further input and output are dis-  
abled until the cycle is completed.  
SRAM READ  
The STK12C68 performs a READ cycle whenever E  
and G are low and W and HSB are high. The  
address specified on pins A0-12 determines which of  
the 8,192 data bytes will be accessed. When the  
READ is initiated by an address transition, the out-  
puts will be valid after a delay of tAVQV (READ cycle  
#1). If the READ is initiated by E or G, the outputs will  
be valid at tELQV or at tGLQV, whichever is later (READ  
cycle #2). The data outputs will repeatedly respond  
to address changes within the tAVQV access time with-  
out the need for transitions on any control input pins,  
and will remain valid until another address change or  
until E or G is brought high, or W or HSB is brought  
low.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence, or the sequence will be  
aborted and no STORE or RECALL will take place.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
SRAM WRITE  
Valid READ  
Valid READ  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
Initiate STORE cycle  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
October 2003  
8
Document Control # ML0008 rev 0.4  
STK12C68  
Figure 2 shows the proper connection of capacitors  
for automatic store operation. A charge storage  
capacitor having a capacity of between 68µF and  
220µF (± 20%) rated at 6V should be provided.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of E controlled READ opera-  
tions must be performed:  
In system power mode (Figure 3), both VCCX and  
VCAP are connected to the + 5V power supply without  
the 68µF capacitor. In this mode the AutoStore™  
function of the STK12C68 will operate on the stored  
system charge as power goes down. The user must,  
however, guarantee that VCCX does not drop below  
3.6V during the 10ms STORE cycle.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
If an automatic STORE on power loss is not required,  
then VCCX can be tied to ground and + 5V applied to  
VCAP (Figure 4). This is the AutoStore™ Inhibit  
mode, in which the AutoStore™ function is disabled.  
If the STK12C68 is operated in this configuration,  
references to VCCX should be changed to VCAP  
throughout this data sheet. In this mode, STORE  
operations may be triggered through software con-  
trol or the HSB pin. It is not permissable to change  
between these three options “on the fly”.  
Internally, RECALL is a two-step procedure. First, the  
SRAM data is cleared, and second, the nonvolatile  
information is transferred into the SRAM cells. After  
the tRECALL cycle time the SRAM will once again be  
ready for READ and WRITE operations. The RECALL  
operation in no way alters the data in the Nonvolatile  
Elements. The nonvolatile data can be recalled an  
unlimited number of times.  
AutoStore™ OPERATION  
In order to prevent unneeded STORE operations,  
automatic STOREs as well as those initiated by  
externally driving HSB low will be ignored unless at  
least one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software-  
initiated STORE cycles are performed regardless of  
whether a WRITE operation has taken place. An  
optional pull-up resistor is shown connected to HSB.  
This can be used to signal the system that the  
AutoStore™ cycle is in progress.  
The STK12C68 can be powered in one of three  
modes.  
During normal AutoStore™ operation, the  
STK12C68 will draw current from VCCX to charge a  
capacitor connected to the VCAP pin. This stored  
charge will be used by the chip to perform a single  
STORE operation. After power up, when the voltage  
on the VCAP pin drops below VSWITCH, the part will  
automatically disconnect the VCAP pin from VCCX and  
initiate a STORE operation.  
1
28  
27  
26  
1
28  
27  
26  
1
28  
27  
26  
+
15  
15  
14  
14  
15  
14  
Figure 2: AutoStore™ Mode  
Figure 3: System Power Mode  
Figure 4: AutoStore™  
Inhibit Mode  
*If HSB is not used, it should be left unconnected.  
October 2003  
9
Document Control # ML0008 rev 0.4  
STK12C68  
HSB OPERATION  
PREVENTING STORES  
The STORE function can be disabled on the fly by  
holding HSB high with a driver capable of sourcing  
30mA at a VOH of at least 2.2V, as it will have to  
overpower the internal pull-down device that drives  
HSB low for 20µs at the onset of a STORE. When  
the STK12C68 is connected for AutoStore™ opera-  
tion (system VCC connected to VCCX and a 68µF  
capacitor on VCAP) and VCC crosses VSWITCH on the  
way down, the STK12C68 will attempt to pull HSB  
low; if HSB doesn’t actually get below VIL, the part  
will stop trying to pull HSB low and abort the STORE  
attempt.  
The STK12C68 provides the HSB pin for controlling  
and acknowledging the STORE operations. The HSB  
pin is used to request a hardware STORE cycle.  
When the HSB pin is driven low, the STK12C68 will  
conditionally initiate a STORE operation after tDELAY  
;
an actual STORE cycle will only begin if a WRITE to  
the SRAM took place since the last STORE or  
RECALL cycle. The HSB pin acts as an open drain  
driver that is internally driven low to indicate a busy  
condition while the STORE (initiated by any means)  
is in progress.  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK12C68 will  
HARDWARE PROTECT  
The STK12C68 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs dur-  
ing low-voltage conditions. When VCAP < VSWITCH, all  
externally initiated STORE operations and SRAM  
WRITEs are inhibited.  
continue SRAM operations for tDELAY. During tDELAY  
,
multiple SRAM READ operations may take place. If a  
WRITE is in progress when HSB is pulled low it will  
be allowed a time, tDELAY, to complete. However, any  
SRAM WRITE cycles requested after HSB goes low  
will be inhibited until HSB returns high.  
AutoStore™ can be completely disabled by tying  
VCCX to ground and applying + 5V to VCAP . This is the  
AutoStore™ Inhibit mode; in this mode, STOREs are  
only initiated by explicit request using either the soft-  
ware sequence or the HSB pin.  
The HSB pin can be used to synchronize multiple  
STK12C68s while using a single larger capacitor. To  
operate in this mode the HSB pin should be con-  
nected together to the HSB pins from the other  
STK12C68s. An external pull-up resistor to + 5V is  
required since HSB acts as an open drain pull down.  
The VCAP pins from the other STK12C68 parts can  
be tied together and share a single capacitor. The  
capacitor size must be scaled by the number of  
devices connected to it. When any one of the  
STK12C68s detects a power loss and asserts HSB,  
the common HSB pin will cause all parts to request  
a STORE cycle (a STORE will take place in those  
STK12C68s that have been written since the last  
nonvolatile cycle).  
LOW AVERAGE ACTIVE POWER  
The STK12C68 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 5  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 6 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK12C68 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
During any STORE operation, regardless of how it  
was initiated, the STK12C68 will continue to drive  
the HSB pin low, releasing it only when the STORE is  
complete. Upon completion of the STORE operation  
the STK12C68 will remain disabled until the HSB  
pin returns high.  
temperature; 6) the V level; and 7) I/O loading.  
cc  
If HSB is not used, it should be left unconnected.  
October 2003  
10  
Document Control # ML0008 rev 0.4  
STK12C68  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
20  
40  
20  
TTL  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 5: Icc (max) Reads  
Figure 6: Icc (max) Writes  
October 2003  
11  
Document Control # ML0008 rev 0.4  
STK12C68  
ORDERING INFORMATION  
- 5 P F 45 I  
STK12C68  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
M = Military (–55 to 125°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
55 = 55ns  
Lead Finish (Plastic only)  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
P = Plastic 28-pin 300 mil DIP  
W= Plastic 28-pin 600 mil DIP  
S = Plastic 28-pin 350 mil SOIC  
C = Ceramic 28-pin 300 mil DIP (gold lead finish)  
K = Ceramic 28-pin 300 mil DIP (solder dip finish)  
L = Ceramic 28 pin LCC  
Retention / Endurance  
6
Blank = Comm/Ind (100 years/10 cycles)  
5
5962-94599 01 MX X  
5 = Military (10 years/10 cycles)  
Lead Finish  
A = Solder DIP lead finish  
C = Gold lead DIP finish  
X = Lead finish “A” or “C” is acceptable  
Package  
MX = Ceramic 28 pin 300-mil DIP  
MY = Ceramic 28 pin LCC  
Access Time  
01 = 55ns  
02 = 45ns  
03 = 35ns  
October 2003  
12  
Document Control # ML0008 rev 0.4  
STK12C68  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
January 2003  
July 2003  
September 2003  
October 2003  
Summary  
Combined commercial, industrial and military datasheets. Removed 20 nsec device.  
Added 35 nsec SMD to order information  
Added “28 - SOIC” label to page 1 pinout drawing  
Added lead-free lead finish  
0.1  
0.2  
0.3  
0.4  
Restored “W” 600 mil DIP package to ordering information  
October 2003  
13  
Document Control # ML0008 rev 0.4  

相关型号:

STK12C68-5P45I

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5P45M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5P55

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5P55I

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5P55M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5PF25

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5PF25I

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5PF25M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5PF35

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5PF35I

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-5PF35M

Non-Volatile SRAM, 8KX8, 35ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIMTEK

STK12C68-5PF45

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC