STK12C68-C35IM [ETC]

NVRAM (EEPROM Based) ; NVRAM (基于EEPROM )\n
STK12C68-C35IM
型号: STK12C68-C35IM
厂家: ETC    ETC
描述:

NVRAM (EEPROM Based)
NVRAM (基于EEPROM )\n

内存集成电路 静态存储器 CD 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总10页 (文件大小:65K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK12C68-IM  
CMOS nvSRAM  
8K x 8 AutoStore™  
Nonvolatile Static RAM  
Industrial Temperature/Military Screen  
DESCRIPTION  
FEATURES  
• Industrial Temperature with Military Screening  
• 25, 35 and 45ns Access Times  
The Simtek STK12C68-IM is a fast static RAM (25, 35  
and 45ns), with a nonvolatile EEPROM element incor-  
porated in each static memory cell. The SRAM can be  
read and written an unlimited number of times, while  
independentnonvolatiledataresidesinEEPROM. Data  
transfers from the SRAM to the EEPROM (the STORE  
operation) take place automatically upon power down  
using charge stored in an external 100 µF capacitor.  
Transfers from the EEPROM to the SRAM (the RECALL  
operation) take place automatically on power up. Soft-  
ware sequences may also be used to initiate both  
STORE and RECALL operations. A STORE can also be  
initiated via a single pin.  
• 15 mA I at 200ns Access Speed  
CC  
• Automatic STORE to EEPROM on Power Down  
• Hardware or Software initiated STORE to  
EEPROM  
• Automatic STORE Timing  
• 100,000 STORE cycles to EEPROM  
• 10 year data retention in EEPROM  
• Automatic RECALL on Power Up  
• Software initiated RECALL from EEPROM  
• Unlimited RECALL cycles from EEPROM  
• Single 5V±10% Operation  
The STK12C68-IM is available in the following  
packages: a 28-pin 300 mil ceramic DIP and a 28-pad  
LCC. MIL-STD-883 and Standard Military Drawing  
(SMD 5962-94599) devices are also available.  
• Commercial and Industrial Temperatures  
• Available in multiple standard packages  
PIN CONFIGURATIONS  
LOGIC BLOCK DIAGRAM  
1
VCAP  
28  
VCCX  
2
3
27  
26  
W
A12  
A 7  
A 6  
A 5  
A 4  
A 3  
HSB  
A 8  
A 9  
A11  
G
EEPROM ARRAY  
256 x 256  
25  
24  
4
5
3
2
28 27  
26  
1
4
5
A 6  
A 5  
HSB  
A 8  
23  
22  
6
7
A3  
25  
24  
23  
22  
21  
6
A 4  
A 3  
A2  
A1  
A 9  
A11  
G
STORE  
A4  
8
9
7
21  
20  
A 2  
A 1  
A 0  
A 10  
8
TOP VIEW  
A5  
E
DQ 7  
RECALL  
STATIC RAM  
9
A10  
10  
11  
19  
18  
10  
20  
19  
18  
A6  
A0  
DQ0  
DQ1  
E
DQ  
DQ 6  
DQ 5  
ARRAY  
0
11  
12  
DQ7  
DQ6  
17  
16  
15  
12  
13  
14  
DQ  
1
A7  
A 0  
A12  
256 x 256  
13 14 15 16 17  
DQ  
DQ  
4
2
A8  
A9  
A
VSS  
DQ 3  
HSB  
STORE/  
RECALL  
CONTROL  
28 - LCC  
28 - 300 CDIP  
12  
DQ0  
DQ1  
DQ2  
DQ3  
PIN NAMES  
COLUMN I/O  
A
- A  
Address Inputs  
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+5V)  
Ground  
0
12  
COLUMN DECODER  
W
DQ - DQ  
0
7
DQ4  
DQ5  
DQ6  
DQ7  
E
A0  
A1  
A2  
A
A11  
10  
G
E
G
V
CCX  
V
SS  
V
Capacitor  
CAP  
W
HSB  
Hardware Store/Busy  
41  
STK12C68-IM  
a
ABSOLUTE MAXIMUM RATINGS  
Voltage on typical input relative to V . . . . . . . . . . . . . –0.6V to 7.0V Note a: Stresses greater than those listed under "Absolute Maximum  
SS  
Voltage on DQ and G. . . . . . . . . . . . . . . . . . .–0.5V to (V +0.5V)  
Ratings" may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions above  
those indicated in the operational sections of this specification is not  
implied. Exposuretoabsolutemaximumratingconditionsforextended  
0-7  
CC  
Temperature under bias . . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage temperature. . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W  
DC output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15mA periods may affect reliability.  
(One output at a time, one second duration)  
d
DC CHARACTERISTICS  
(V = 5.0V ± 10%)  
CC  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
b
I
Average V Current  
CC  
95  
85  
80  
7
mA  
mA  
mA  
mA  
t
t
t
= 25ns  
CC  
1
AVAV  
AVAV  
AVAV  
= 35ns  
= 45ns  
I
Average V Current During STORE  
CC  
All inputs 0.2V or (V  
- 0.2V)  
CC  
2
CC  
b
I
Average V Current  
CC  
15  
4
mA  
mA  
E 0.2V, W (V  
– 0.2V)  
CC  
CC  
3
at t  
= 200ns  
others 0.2V or (V – 0.2V)  
CC  
AVAV  
I
Average V current during AutoStore™ Cycle  
CC  
All inputs 0.2V or (V  
- 0.2V)  
CC  
4
CC  
c
I
Average V Current  
CC  
39  
35  
32  
mA  
mA  
mA  
t
= 25ns  
= 35ns  
= 45ns  
SB  
1
AVAV  
(Standby, Cycling TTL Input Levels)  
t
AVAV  
t
AVAV  
E V ; all others cycling  
IH  
c
I
Average V Current  
CC  
3
mA  
µA  
µA  
E (V – 0.2V)  
SB  
2
CC  
(Standby, Stable CMOS Input Levels)  
Input Leakage Current (Any Input)  
all others V 0.2V or (V – 0.2V)  
IN  
CC  
I
±1  
±5  
V
V
V
V
= max  
ILK  
3
CC  
= V to V  
SS  
IN  
CC  
I
Off State Output Leakage Current  
= max  
OLK  
CC  
= V to V  
CC  
OUT  
SS  
V
Input Logic "1" Voltage  
Input Logic "0" Voltage  
Output Logic "1" Voltage  
Output Logic "0" Voltage  
Operating Temperature  
2.2  
V
+.5  
CC  
V
V
All Inputs  
All Inputs  
IH  
V
IL  
V
–.5  
0.8  
SS  
V
2.4  
V
I
I
= –4mA except HSB  
= 8mA except HSB  
OH  
OUT  
V
0.4  
85  
V
OL  
OUT  
T
A
-40  
°C  
Note b: I  
and I  
are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
CC  
3
CC  
1
Note c: Bringing E V will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION table.  
IH  
Note d: V reference levels throughout this datasheet refer to V  
CC  
if that is where the power supply connection is made, or V  
if V  
is connected to ground.  
CCX  
CAP  
CCX  
AC TEST CONDITIONS  
5.0V  
Input Pulse Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS to 3V  
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels. . . . . . . . . . . . . . 1.5V  
Output Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
480 Ohms  
Output  
30pF  
INCLUDING  
SCOPE  
AND FIXTURE  
255 Ohms  
CAPACITANCEe (T =25°C, f=1.0MHz)  
A
SYMBOL  
PARAMETER  
Input Capacitance  
Output Capacitance  
MAX  
UNITS  
pF  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
8
7
IN  
Figure 1: AC Output Loading  
C
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
42  
STK12C68-IM  
SRAM MEMORY OPERATION  
d
(V = 5.0V ± 10%)  
CC  
READ CYCLES #1 & #2  
SYMBOLS  
NO.  
STK12C68-25-IM STK12C68-35-IM STK12C68-45-IM  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
AVAV  
AVQV  
GLQV  
AXQX  
ELQX  
EHQZ  
GLQX  
ACS  
t
t
t
t
t
t
t
t
t
t
t
25  
35  
45  
RC  
g
3
t
Address Access Time  
25  
10  
35  
20  
45  
25  
AA  
4
t
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
OE  
5
t
5
5
5
5
5
5
OH  
6
t
LZ  
h
h
7
t
10  
10  
25  
17  
17  
35  
20  
20  
45  
HZ  
8
t
0
0
0
0
0
0
OLZ  
9
t
GHQZ  
OHZ  
e
10  
11  
t
ELICCH  
EHICCL  
PA  
c,e  
t
PS  
Note c: Bringing E V will not produce standby currents until any nonvolatile cycle in progress has timed out. See MODE SELECTION table.  
IH  
Note e: Parameter guaranteed but not tested.  
Note f: For READ CYCLE #1 and #2, W is high for entire cycle.  
Note g: Device is continuously selected with E low and G low.  
Note h: Measured ± 200mV from steady state output voltage.  
f,g  
READ CYCLE #1  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (Data Out)  
DATA VALID  
f
READ CYCLE #2  
2
AVAV  
t
ADDRESS  
E
1
ELQV  
t
11  
EHICCL  
t
6
ELQX  
t
7
t
4
EHQZ  
t
GLQV  
G
8
9
t
t
GLQX  
GHQZ  
DQ (Data Out)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
I
STANDBY  
CC  
43  
STK12C68-IM  
WRITE CYCLES #1 & #2  
d
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
NO.  
STK12C68-25-IM STK12C68-35-IM STK12C68-45-IM  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
25  
20  
20  
10  
0
35  
30  
30  
18  
0
45  
35  
35  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WLEH  
ELEH  
DVEH  
EHDX  
AVEH  
AVEL  
EHAX  
WC  
t
Write Pulse Width  
WLWH  
ELWH  
DVWH  
WHDX  
AVWH  
AVWL  
WHAX  
WP  
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold After End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
Output Active After End of Write  
CW  
t
DW  
t
DH  
t
20  
0
30  
0
35  
0
AW  
t
AS  
t
0
0
0
WR  
h,j  
t
10  
17  
20  
WLQZ  
WHQX  
WZ  
t
5
5
5
OW  
Note h: Measured ±200mV from steady state output voltage.  
Note i: E or W must be V during address transitions.  
IH  
Note j: If W is low when E goes low, the outputs remain in the high impedance state.  
i
WRITE CYCLE #1: W CONTROLLED  
12  
AVAV  
t
ADDRESS  
14  
ELWH  
19  
t
t
WHAX  
E
17  
t
AVWH  
18  
AVWL  
13  
WLWH  
t
t
W
15  
DVWH  
16  
t
t
WHDX  
DATA IN  
DATA VALID  
20  
WLQZ  
21  
t
t
WHQX  
HIGH IMPEDANCE  
PREVIOUS DATA  
DATA OUT  
i
WRITE CYCLE #2: E CONTROLLED  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
14  
ELEH  
19  
t
t
t
EHAX  
E
17  
AVEH  
t
13  
WLEH  
t
W
DATA IN  
15  
DVEH  
16  
t
t
EHDX  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
44  
STK12C68-IM  
NONVOLATILE MEMORY OPERATION  
MODE SELECTION  
E
W
HSB  
A
- A (hex)  
0
MODE  
I/O  
POWER  
NOTES  
12  
H
L
L
L
X
H
L
H
H
H
H
X
Not Selected  
Read SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
Active  
Active  
X
l
X
Write SRAM  
H
0000  
1555  
0AAA  
1FFF  
10F0  
0F0F  
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
X
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output High Z  
k,l  
k,l  
k,l  
k,l  
k,l  
k
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
Read SRAM  
L
H
H
Active  
k,l  
k,l  
k,l  
k,l  
k,l  
k
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
STORE/Inhibit  
X
X
L
I
/Standby  
m
CC2  
Note k: The six consecutive addresses must be in order listed - (0000, 1555, 0AAA, 1FFF, 10F0, 0F0F) for a STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0,  
0F0E) for a RECALL cycle. W must be high during all six consecutive cycles. See STORE cycle and RECALL cycle tables and diagrams for further details.  
Note l: I/O state assumes that G V . Activation of nonvolatile cycles does not depend on the state of G.  
IL  
Note m: HSB initiated STORE operation actually occurs only if a WRITE has been done since last STORE operation. After the STORE (if any) completes, the  
part will go into standby mode inhibiting all operation until HSB rises.  
HARDWARE STORE /RECALL  
SYMBOLS  
NO.  
PARAMETER  
MIN  
MAX  
UNITS  
NOTES  
22  
23  
24  
25  
26  
t
t
t
t
t
RECALL Cycle Duration  
STORE Cycle Duration  
HSB Low to Inhibit On  
20  
10  
µs  
ms  
µs  
ns  
ns  
V
Note o  
RECALL  
t
t
t
V
4.5V  
STORE  
HLHH  
CC  
1
DELAY  
HLQZ  
HSB High to Inhibit Off  
External STORE Pulse Width  
Low Voltage Trigger Level  
HSB Output Low Current  
HSB Output High Current  
700  
4.5  
60  
Note e  
Note e  
RECOVER  
ASSERT  
HHQX  
t
250  
4.0  
3
HLHX  
V
I
SWITCH  
mA  
µA  
HSB = V , Note e, n  
OL  
HSB_OL  
HSB_OH  
I
5
HSB = V , Note e, n  
IL  
Note e: These parameters guaranteed but not tested.  
Note n: HSB is an I/O that has a weak internal pullup; it is basically an open drain output. It is meant to allow up to 32 STK12C68-IMs to be ganged together for  
simultaneous storing. Do not use HSB to pullup any external circuitry other than other STK12C68 HSB pins.  
Note o: A RECALL cycle is initiated automatically at power up when V exceeds V  
CC  
. t  
is measured from the point at which V exceeds 4.5V.  
CC  
SWITCH RESTORE  
HARDWARE STORE /RECALL  
V
SWITCH  
V
26  
ASSERT  
CAP  
24  
DELAY  
t
t
HSB  
W
22  
RECALL  
24  
DELAY  
25  
t
t
t
RECOVER  
RECALL  
STORE  
23  
STORE  
23  
STORE  
23  
t
t
t
STORE  
SRAM  
Inhibit  
Power Up RECALL Brown Out RECALL  
Power Down STORE  
HSB Initiated STORE  
Software STORE  
45  
STK12C68-IM  
SOFTWARE STORE/RECALL CYCLE  
d
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK12C68-25-IM STK12C68-35-IM STK12C68-45-IM  
NO.  
PARAMETER  
UNITS  
Std.  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
27  
28  
29  
30  
31  
32  
t
t
t
t
t
t
t
Store/Recall Initiation Cycle Time  
Chip Enable to Output Inactive  
Address Set-up to Chip Enable  
Chip Enable Pulse Width  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
µs  
AVAV  
RC  
p
650  
650  
650  
ELQZ  
t
t
t
0
20  
0
0
25  
0
0
35  
0
AVELN  
ELEHN  
AE  
EP  
EA  
p,q  
Chip Disable to Address Change  
Power-up Recall Duration  
EHAXN  
550  
550  
550  
RESTORE  
Note p: Once the software STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
Note q: Noise on the E pin may trigger multiple read cycles from the same address and abort the address sequence.  
Note r: If the Chip Enable Pulse Width is less than t (see READ CYCLE #2) but greater than or equal to t , then the data may not be valid at the end  
ELQV  
ELEHN  
of the low pulse, however the STORE or RECALL will still be initiated.  
Note s: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW throughout.  
Addresses #1 through #6 are found in the MODE SELECTION table. Address #6 determines whether the STK12C68-IM performs a STORE or RECALL.  
Note t: E must be used to clock in the address sequence for the Software STORE and RECALL cycles.  
q,r,t  
SOFTWARE STORE/RECALL CYCLE  
28  
AVAV  
28  
AVAV  
t
t
ADDRESS  
E
ADDRESS #1  
ADDRESS #2  
ADDRESS #6  
30  
AVELN  
32  
31  
ELEHN  
t
t
EHAXN  
t
23  
STORE  
22  
t
t
RECALL  
29  
t
ELQZ  
HIGH IMPEDANCE  
DQ(Data Out)  
VALID  
VALID  
46  
STK12C68-IM  
DEVICE OPERATION  
The STK12C68-IM has two separate modes of opera- address locations. By relying onREAD cycles only, the  
tion: SRAM mode and nonvolatile mode. In SRAM STK12C68-IMimplementsnonvolatileoperationwhile  
mode, the memory operates as a standard fast static remaining compatible with standard 8Kx8 SRAMs.  
RAM. In nonvolatile mode, data is transferred from During the STORE cycle, an erase of the previous  
SRAM to EEPROM (the STORE operation) or from nonvolatile data is first performed, followed by a pro-  
EEPROMtoSRAM (theRECALL operation). Inthismode gram of the nonvolatile elements. The program opera-  
SRAM functions are disabled.  
tion copies the SRAM data into the nonvolatile ele-  
ments. Once a STORE cycle is initiated, further input  
STORE cycles may be initiated under user control via a and output are disabled until the cycle is completed.  
software sequence or HSB assertion and are also  
automatically initiated when the power supply voltage Because a sequence of addresses is used for STORE  
level of the chip falls below V  
. RECALL opera- initiation, it is critical that no other read or write ac-  
SWITCH  
tions are automatically initiated upon power-up and cesses intervene in the sequence or the sequence will  
whenever the power supply voltage level rises above be aborted.  
V
. RECALL cycles may also be initiated by a  
SWITCH  
software sequence.  
To initiate the STORE cycle the following READ se-  
quence must be performed:  
SRAM READ  
TheSTK12C68-IMperformsaREAD cyclewheneverE  
andGareLOW andHSBandWareHIGH. Theaddress  
specified on pins A  
databyteswillbeaccessed. WhentheREADisinitiated  
by an address transition, the outputs will be valid after  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE Cycle  
determines which of the 8192  
0-12  
a delay of t  
outputs will be valid at t  
. If the READ is initiated by E or G, the  
AVQV  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
or at t , whichever is  
GLQV  
ELQV  
later. The data outputs will repeatedly respond to  
address changes within the t access time without  
the need for transitions on any control input pins, and  
will remain valid until another address change or until  
E or G is brought HIGH or W or HSB is brought LOW.  
AVQV  
valid. After the t  
cycle time has been fulfilled, the  
STORE  
SRAM will again be activated for READ and WRITE  
operation.  
SRAM WRITE  
A write cycle is performed whenever E and W are LOW  
andHSBishigh. Theaddressinputsmustbestableprior  
to entering the WRITE cycle and must remain stable  
untileitherEorWgoHIGHat the endof the cycle. The  
SOFTWARE RECALL  
A RECALL cycle of the EEPROM data into the SRAM is  
initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
data on pins DQ will be written into the memory if it  
0-7  
is valid t  
before the end of a W controlled WRITE  
DVWH  
or t  
before the end of an E controlled WRITE.  
DVEH  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000(hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL Cycle  
ItisrecommendedthatGbekeptHIGHduringtheentire  
WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers t  
after W goes LOW.  
WLQZ  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
SOFTWARE STORE  
TheSTK12C68-IMsoftwareSTORE cycleisinitiatedby  
executing sequential READ cycles from six specific  
47  
STK12C68-IM  
EEPROM cells. Thenonvolatiledatacanberecalledan  
unlimited number of times.  
may optionally be pulled to V  
resistor with a value such that the combined load of the  
resistor and all parallel chip connections does not  
via an external  
CCX  
AUTOMATIC RECALL  
exceed I  
at V . Do not connect this or any  
HSB_OL  
OL  
During power-up, or after any low power condition other pull-up to the V  
node.  
CAP  
(V  
< V  
), when V  
exceeds the sense  
CAP  
SWITCH  
CAP  
voltage of V  
be initiated.  
, a RECALL cycle will automatically If HSB is to be connected to external circuits other than  
other STK12C68-IMs, an external pull-up resistor  
should be used.  
SWITCH  
If the STK12C68-IM is in a WRITE state at the end of  
power-up RECALL , the SRAM data will be corrupted. During any STORE operation, regardless of how it was  
To help avoid this situation, a 10K Ohm resistor should initiated, the STK12C68-IM will continue to drive the  
be connected between W and system V  
.
HSB pin low, releasing it only when the STORE is  
complete. Upon completion of aSTORE operation, the  
part will be disabled until HSB actually goes HIGH.  
CC  
HARDWARE PROTECT  
The STK12C68-IM offers hardware protection against  
AUTOMATIC STORE OPERATION  
inadvertent STORE operation during low voltage  
conditions. When V  
< V  
all externally During normal operation, the STK12C68-IM will draw  
CAP  
SWITCH,  
initiated STORE operations will be inhibited.  
current from V  
to charge up a capacitor connected  
CCX  
to the V  
pin. This stored charge will be used by the  
CAP  
chip to perform a single STORE operation. After power  
up, when the voltage on the V pin drops below  
HSB OPERATION  
The Hardware Store Busy pin (HSB) is an open drain  
circuit acting as both input and output to perform two  
different functions. When driven low by the internal  
chip circuitry it indicates that a STORE operation (initi-  
ated via any means) is in progress within the chip.  
When driven low by external circuitry for longer than  
CAP  
V
V
, the part will automatically disconnect the  
SWITCH  
CAP  
pin from V  
and initiate a STORE operation.  
CCX  
Figure 1shows the proper connection of capacitors for  
automaticstoreoperation. Thechargestoragecapaci-  
tor should have a capacity of at least 100µF (± 20%) at  
6V. Each STK12C68-IM must have its own 100µF  
capacitor. Each STK12C68-IM must have a high  
quality, high frequency bypass capacitor of 0.1µF  
t , the chip will conditionally initiate a STORE  
ASSERT  
operation after t  
.
DELAY  
READ and WRITE operations that are in progress when  
HSB is driven low (either by internal or external cir-  
cuitry) will be allowed to complete before the STORE  
operation is performed, in the following manner. After  
HSB goes low, the part will continue normal SRAM  
connected between V  
and V , using leads and  
CAP  
SS  
traces that are as short as possible.  
If the AutoStore™ function is not required, then V  
should be tied directly to the power supply and V  
CAP  
operations for t  
. During t  
, a transition on  
DELAY  
CCX  
DELAY  
should be tied to ground. In this mode, STORE opera-  
tions may be triggered through software control or the  
any address or control signal will terminate SRAM  
operation and cause the STORE to commence. Note  
that if an SRAM write is attempted after HSB has been  
forced low, the write will not occur and the STORE  
operation will begin immediately.  
HSB pin. In either event, V  
(Pin 1) must always  
CAP  
have a proper bypass capacitor connected to it.  
In order to prevent unneededSTORE operations, auto-  
matic STOREs as well as those initiated by externally  
driving HSB LOW will be ignored unless at least one  
WRITEoperationhastakenplacesincethemostrecent  
STOREcycle. NotethatifHSBisdrivenlowviaexternal  
circuitry and no WRITEs have taken place, the part will  
still be disabled until HSB is allowed to return HIGH.  
SoftwareinitiatedSTORE cyclesareperformedregard-  
less of whether or not a WRITE operation has taken  
place.  
HARDWARE-STORE-BUSY (HSB) is a high speed,  
low drive capability bi-directional control line. In order  
to allow a bank of STK12C68-IMs to perform synchro-  
nized STORE functions, the HSB pin from a number of  
chips may be connected together. Each chip contains  
a small internal current source to pull HSB HIGH when  
it is not being driven low. To decrease the sensitivity  
of this signal to noise generated on the PC board, it  
48  
STK12C68-IM  
PREVENTING AUTOMATIC STORES  
The cycle time used in Figure 2 corresponds to the  
length of time from the later of the last address transi-  
tion or E going LOW to the earlier of E going HIGH or the  
next address transition. W is assumed to be HIGH,  
while the state of G does not matter. Additional current  
is consumed when the address lines change state  
while E is asserted. The cycle time used in Figure 3  
corresponds to the length of time from the later of W or  
E going LOW to the earlier of W or E going HIGH.  
The AutoStore™function can be disabled on the fly by  
holding HSB HIGH with a driver capable of sourcing  
15mA at a VOH of at least 2.2V as it will have to  
overpower the internal pull-down device that drives  
HSB low for 20µs at the onset of an AutoStore™.  
When the STK12C68-IM is connected for  
AutoStore™operation(systemV connectedtoV  
CC  
CCX  
crosses  
and a 100uF capacitor on V  
) and V  
CAP  
CC  
V
on the way down, the STK12C68-IM will  
SWITCH  
attempt to pull HSB low; if HSB doesn't actually get  
The overall average current drawn by the part depends  
on the following items: 1) CMOS or TTL input levels; 2)  
the time during which the chip is disabled (E HIGH); 3)  
the cycle time for accesses (E LOW); 4) the ratio of  
reads to writes; 5) the operating temperature; 6) the  
below V , the part will stop trying to pull HSB LOW and  
IL  
abort the AutoStore™attempt.  
LOW AVERAGE ACTIVE POWER  
V
CC  
level; and 7) output load.  
The STK12C68-IM has been designed to draw signifi-  
cantlylesspowerwhenEisLOW (chipenabled)butthe  
access cycle time is longer than 55ns. Figure 2 below  
shows the relationship between I and access times  
CC  
for READ cycles. All remaining inputs are assumed to  
cycle, and current consumption is given for all inputs at  
CMOS orTTLlevels. Figure3showsthesamerelation-  
ship for WRITE cycles. When E is HIGH, the chip  
consumes only standby currents, and these plots do  
not apply.  
V
CAP  
V
CCX  
Power  
Supply  
100  
80  
100  
80  
1
28  
26  
10K Ohms  
(optional)  
HSB  
60  
60  
40  
+
100uF  
± 20%  
0.1uF  
Bypass  
nvSRAM  
40  
20  
0
TTL  
TTL  
CMOS  
150 200  
20  
CMOS  
V
SS  
0
14  
50  
100  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2  
(Max) Reads  
Figure 3  
(Max) Writes  
Figure 1  
Schematic Diagram  
I
CC  
I
CC  
Note: Typical at 25° C  
49  
STK12C68-IM  
ORDERING INFORMATION  
STK12C68 - C 35 IM  
Temperature Range  
IM = Industrial (-40 to +85°C) with Military Screening  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Package  
C = Ceramic 28 pin 300 mil DIP with Gold Lead Finish  
K = Ceramic 28 pin 300 mil DIP with Solder DIP  
L = Ceramic 28 pin LCC  
50  

相关型号:

STK12C68-C35M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-C45

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-C45I

64 Kbit (8K x 8) AutoStore nvSRAM 25 ns, 35 ns, and 45 ns access times
CYPRESS

STK12C68-C45IM

NVRAM (EEPROM Based)
ETC

STK12C68-C45M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-C55

Non-Volatile SRAM, 8KX8, 55ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
SIMTEK

STK12C68-C55I

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-C55M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-CF25

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-CF25I

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-CF25ITR

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-CF25M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC