STN1110-I/SO [ETC]

Multiprotocol OBD to UART Interpreter;
STN1110-I/SO
型号: STN1110-I/SO
厂家: ETC    ETC
描述:

Multiprotocol OBD to UART Interpreter

文件: 总24页 (文件大小:612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STN1110  
Multiprotocol OBD to UART Interpreter  
Datasheet  
STN1110  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
4.1  
4.2  
5.0  
Overview.........................................................................................................................................................3  
Feature Highlights .........................................................................................................................................3  
Typical Applications......................................................................................................................................3  
Pinout..............................................................................................................................................................4  
Pinout Summary..........................................................................................................................................5  
Detailed Pin Descriptions ............................................................................................................................6  
Guidelines for Getting Started with STN1110 .............................................................................................8  
Basic Connection Requirements.................................................................................................................8  
Decoupling Capacitors ................................................................................................................................8  
5.1  
5.2  
5.2.1 Tank Capacitors ......................................................................................................................................8  
5.3  
AVDD and AVSS Pins...................................................................................................................................8  
Internal Voltage Regulator Filter Capacitor .................................................................................................8  
Device Reset Pin .........................................................................................................................................8  
Oscillator Pins..............................................................................................................................................9  
NVM Reset Input .........................................................................................................................................9  
Open Drain Outputs.....................................................................................................................................9  
Unused Inputs and Unused Open Drain Outputs........................................................................................9  
Reference Schematics.................................................................................................................................10  
Recommended Minimum Connection .......................................................................................................10  
Typical Configuration.................................................................................................................................11  
Electrical Characteristics............................................................................................................................15  
Absolute Maximum Ratings.......................................................................................................................15  
Electrical Characteristics ...........................................................................................................................15  
Packaging Diagrams and Parameters .......................................................................................................18  
SPDIP (SP) Package.................................................................................................................................18  
SOIC 300mil (SO) Package.......................................................................................................................19  
SOIC 300mil (SO) Land Pattern................................................................................................................20  
QFN-S (MM) Package...............................................................................................................................21  
QFN-S (MM) Land Pattern ........................................................................................................................22  
Ordering Information...................................................................................................................................23  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.1  
6.2  
7.0  
7.1  
7.2  
8.0  
8.1  
8.2  
8.3  
8.4  
8.5  
9.0  
Appendix A: Revision History..............................................................................................................................24  
Appendix B: Contact Information........................................................................................................................24  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your OBD Solutions  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced  
as new volumes and updates are introduced.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please visit our web site at http://www.obdsol.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last  
character of the literature number is the version number, (e.g., STN1110DSA is version A of document STN1110DS).  
All rights Reserved. Copyright © 2012 OBD Solutions  
Every effort is made to verify the accuracy of information provided in this document, but no representation or warranty can be given and no  
liability assumed by OBD Solutions with respect to the accuracy and/or use of any products or information described in this document. OBD  
Solutions will not be responsible for any patent infringements arising from the use of these products or information, and does not authorize  
or warrant the use of any OBD Solutions product in life support devices and/or systems. OBD Solutions reserves the right to make changes  
to the device(s) described in the document in order to improve reliability, function, or design.  
2 of 24  
www.obdsol.com  
STN1110DSB  
STN1110  
1.0 Overview  
This datasheet summarizes the features of the STN1110 device. It is not intended as a comprehensive reference source. To  
complement the information in this datasheet refer to the “STN1100 Family Reference and Programming Manual”.  
Please see the OBD Solutions website (www.obdsol.com) for the latest version of the STN1100 Family Reference Manual.  
The STN1110 is an OBD to UART interpreter IC  
designed to provide bi-directional half-duplex  
communication with the vehicle’s On-Board Diagnostic  
System (OBD-II). It supports all legislated OBD-II  
protocols  
A wealth of information can be obtained by tapping  
into the OBD bus, including the status of the  
malfunction indicator light (MIL), diagnostic trouble  
codes (DTCs), inspection and maintenance (I/M)  
information, freeze frames, VIN, hundreds of real-time  
parameters, and more.  
The STN1110 is fully compatible with the de facto  
industry standard ELM327 command set. Based on a  
16-bit processor core, the STN1110 offers more  
features and better performance than any other  
ELM327 compatible IC.  
2.0 Feature Highlights  
Stable, field-tested firmware  
Fully compatible with the ELM327 AT command set  
Extended ST command set  
UART interface (baud rates from 38 bps to 10 Mbps1)  
Secure bootloader for easy firmware updates  
Support for all legislated OBD-II protocols:  
o
o
o
o
o
ISO 15765-4 (CAN)  
ISO 14230-4 (Keyword Protocol 2000)  
ISO 9141-2 (Asian, European, Chrysler vehicles)  
SAE J1850 VPW (GM vehicles)  
SAE J1850 PWM (Ford vehicles)  
Support for non-legislated OBD protocols:  
o
o
ISO 15765  
ISO 11898 (raw CAN)  
Support for the heavy-duty SAE J1939 OBD protocol  
Superior automatic protocol detection algorithm  
Large memory buffer  
Sophisticated PowerSave Sleep/Wakeup Triggers  
Available in SPDIP, SOIC and QFN-S packages  
RoHS compliant  
Note 1: Maximum theoretical baud rate. Actual maximum baud rate is  
application dependent and may be limited by driver hardware.  
3.0 Typical Applications  
Vehicle telematics  
Fleet management and tracking applications  
Usage-based insurance (UBI)  
OBD data loggers  
Automotive diagnostic scan tools and code readers  
Digital dashboards  
STN1110DSB  
www.obdsol.com  
3 of 24  
 
 
 
STN1110  
4.0 Pinout  
28-Pin SPDIP, SOIC  
5V tolerant pins  
RESET  
ANALOG_IN  
PWM/VPW  
VPW_RX  
PWM_RX  
J1850_BUS+_TX  
J1850_BUS-_TX  
VSS  
1
28  
AVDD  
AVSS  
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ISO_L_TX  
ISO_K_TX  
UART_RX_LED  
UART_TX_LED  
4
5
6
7
OBD_RX_LED / INT  
OBD_TX_LED / RST_NVM  
VCAP  
8
OSC1  
9
OSC2  
10  
11  
12  
13  
14  
VSS  
ISO_RX  
PWR_CTRL  
UART_TX  
SLEEP  
VDD  
UART_RX  
CAN_RX  
CAN_TX  
28-Pin QFN-S(1)  
5V tolerant pins  
VPW_RX  
1
2
3
4
5
6
7
21 UART_RX_LED  
20 UART_TX_LED  
19 OBD_RX_LED / INT  
18 OBD_TX_LED / RST_NVM  
17 VCAP  
PWM_RX  
J1850_BUS+_TX  
J1850_BUS-_TX  
VSS  
STN1110-I/MM  
OSC1  
16 VSS  
OSC2  
15 PWR_CTRL  
Note 1. The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
4 of 24 www.obdsol.com STN1110DSB  
 
STN1110  
4.1 Pinout Summary  
Table 1: Pinout Summary  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
SOIC  
SPDIP  
QFN-S  
1
2
26  
27  
I, 5V  
A
Active low device reset input  
Analog voltage measurement input  
R¯E¯¯S¯E¯T  
ANALOG_IN  
SAE J1850 PWM/VPW Bus+ voltage select  
output  
3
28  
O, 4x  
PWM/¯V¯P¯W¯  
4
5
6
1
2
3
I
I
Active low J1850 VPW receive input  
SAE J1850 PWM receive input  
SAE J1850 Bus+ transmit output  
¯V¯P¯W¯_¯R¯X¯  
PWM_RX  
J1850_BUS+_TX  
O, 4x  
7
4
5
O, 4x  
Active low SAE J1850 Bus- transmit output  
Ground reference for logic and I/O pins  
16.000 MHz oscillator crystal input  
16.000 MHz oscillator crystal output  
Active low ISO 9141/ISO 14230 K-line input  
External sleep control input  
J¯1¯8¯5¯0¯_¯B¯U¯S¯-¯_¯T¯X  
VSS  
8
P
9
6
OSC1  
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
7
OSC2  
O
8
I
I
I¯S¯O¯_¯R¯X¯  
S¯L¯E¯E¯¯P  
9
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
P
Positive supply for logic and I/O pins  
CAN receive input  
CAN_RX  
CAN_TX  
UART_RX  
UART_TX  
PWR_CTRL  
VSS  
I, 5V  
OD, 5V, 4x CAN transmit output  
I, 5V UART receive input  
OD, 5V, 4x UART transmit output  
OD, 5V, 4x External power control output  
P
P
Ground reference for logic and I/O pins  
CPU logic filter capacitor connection  
VCAP  
Active low OBD transmit activity LED output and  
21  
22  
18  
19  
OD/I, 5V, 2x active low input to reset non-volatile settings to  
factory defaults  
¯O¯B¯D¯_¯T¯X¯_¯L¯E¯D¯ / ¯R¯S¯T¯_¯N¯V¯M¯  
Active low OBD receive activity LED or interrupt  
OD, 5V, 2x  
output  
¯O¯B¯D¯_¯R¯X¯_¯L¯E¯D¯ / ¯IN¯T¯  
23  
24  
25  
26  
27  
28  
20  
21  
O, 4x  
O, 4x  
O, 4x  
O, 4x  
P
Active low UART transmit activity LED output  
Active low UART transmit activity LED output  
Active low ISO 9141/ISO 14230 K-line output  
Active low ISO 9141/ISO 14230 L-line output  
Analog ground reference  
¯U¯A¯R¯T¯_¯T¯X¯_¯L¯E¯D¯  
¯U¯A¯R¯T¯_¯R¯X¯_¯L¯E¯D¯  
¯IS¯O¯_¯K¯_¯T¯X¯  
¯IS¯O¯_¯L¯_¯T¯X¯  
AVSS  
22  
23  
24  
25  
AVDD  
P
Analog positive supply  
PAD  
Thermal pad  
Legend:  
I
A
P
– Schmitt trigger input with CMOS levels  
– analog input  
– power pin  
O
– digital output  
2x – 2x source/sink driver  
4x – 4x source/sink driver  
OD – open drain output  
5V – 5 volt tolerant pin  
STN1110DSB  
www.obdsol.com  
5 of 24  
 
STN1110  
4.2 Detailed Pin Descriptions  
¯R¯E¯S¯E¯T¯  
J¯1¯8¯5¯0¯_¯B¯U¯S¯-¯_¯T¯X  
Device reset input. A logic low pulse (min 2 μs) on  
this pin will reset the device. Apply a continuous logic  
low to hold the device in reset. If your circuit does not  
use this functionality, connect this pin to VDD.  
Active low SAE J1850 Bus- transmit output. When  
the pin is high, Bus- should be low (dominant). This  
pin has a 4x current rating (see Table 6 “Output Pin  
DC Specifications”). Leave unconnected if unused.  
VSS  
ANALOG_IN  
Ground reference for logic and I/O pins.  
Analog voltage measurement input (AVDD max).  
By default, this input is calibrated for an external  
62 kΩ/10 kΩ voltage divider connected to battery  
positive. Connect to AVSS if unused.  
OSC1, OSC2  
16.000 MHz oscillator crystal connection.  
PWM / ¯V¯P¯W¯  
I¯S¯O¯_¯R¯X¯  
The firmware uses this pin to control the voltage  
level of the SAE J1850 PWM/VPW Bus+ supply.  
When the PWM protocol is selected, it outputs a logic  
high to switch the supply voltage to a nominal 5V.  
When the VPW protocol is selected, it outputs a logic  
low to switch the supply voltage to a nominal 8V. This  
pin has a 4x current rating (see Table 6 “Output Pin  
DC Specifications”). Leave unconnected if unused.  
Active low ISO 9141/ISO 14230 K-line receive  
input. When K-line is high (recessive), this pin should  
be at a logic low level. Connect to VSS if unused.  
S¯L¯E¯E¯¯P  
External sleep control input. When enabled in  
firmware, puts the device into low-power sleep mode.  
Polarity of this pin can be configured in firmware;  
default configuration is active low. Internal pull-up to  
VDD is enabled by default, but can be disabled in  
firmware. Leave unconnected if unused.  
¯V¯P¯W¯_¯R¯X¯  
Active low SAE J1850 VPW receive input. When  
the SAE J1850 Bus+ is in the recessive (low) state,  
this pin should be at a logic high level. When the  
SAE J1850 Bus+ is in the dominant (high) state, this  
pin should be at a logic low level. Pull up to VDD if  
unused.  
VDD  
Positive 3.0 – 3.6V supply for logic and I/O pins.  
PWM_RX  
CAN_RX  
SAE J1850 PWM receive input. When the  
SAE J1850 bus is in the recessive state (Bus+ is low,  
Bus- is high), this pin should be at a logic low level.  
When the SAE J1850 bus is in the dominant (Bus+ is  
high) state, this pin should be at a logic high level.  
Connect to VSS if unused.  
CAN receive input. Compatible with 3.3V and 5V  
logic. Pull up to VDD if unused.  
CAN_TX  
CAN transmit output. Open drain – requires a pull-  
up to VDD or 5V. This pin has a 4x current rating (see  
Table 6 “Output Pin DC Specifications”). Pull-up value  
depends on CAN baud rates used and the trace  
length (higher resistor values can be used with lower  
baud rates and shorter traces); recommended value is  
1 kΩ. Pull up to VDD via 100 kΩ resistor if unused.  
J1850_BUS+_TX  
SAE J1850 Bus+ transmit output. When the pin is  
high, Bus+ should be high (dominant). This pin has a  
4x current rating (see Table 6 “Output Pin DC  
Specifications”). Leave unconnected if unused.  
6 of 24  
www.obdsol.com  
STN1110DSB  
 
STN1110  
UART_RX  
UART receive input. Compatible with 3.3V and 5V  
This pin has a 4x current rating (see Table 6 “Output  
Pin DC Specifications”). Leave unconnected if un-  
used.  
logic.  
U¯¯A¯R¯T¯_¯R¯X¯_¯L¯E¯D¯  
UART_TX  
Active low UART transmit activity LED output.  
Voltage on the anode of the LED must not exceed  
VDD + 0.3V. This pin has a 4x current rating (see  
Table 6 “Output Pin DC Specifications”). Leave  
unconnected if unused.  
UART transmit output. Open drain – requires a  
pull-up to VDD or 5V. This pin has a 4x current rating  
(see Table 6 “Output Pin DC Specifications”). Pull-up  
value depends on UART baud rate and the trace  
length (higher resistor values can be used with lower  
baud rates and shorter traces); typical value is 1 kΩ.  
¯IS¯O¯_¯K¯_¯T¯X¯  
PWR_CTRL  
Active low ISO 9141/ISO 14230 K-line output.  
When the pin is logic high, K-line should be low. This  
pin has a 4x current rating (see Table 6 “Output Pin  
DC Specifications”). Leave unconnected if unused.  
External power control output. Used to switch  
external circuitry into low-power (sleep) state. Polarity  
can be configured in firmware; default configuration is  
active high (logic low = sleep mode). Open drain –  
requires a pull-up to VDD or 5V; be mindful of the fact  
that the pull-up will draw current in low-power state.  
This pin has a 4x current rating (see Table 6 “Output  
Pin DC Specifications”). Pull down to VSS via 100 kΩ  
resistor if unused.  
¯IS¯O¯_¯L¯_¯T¯X¯  
Active low ISO 9141/ISO 14230 L-line output.  
When the pin is logic high, L-line should be low. This  
pin has a 4x current rating (see Table 6 “Output Pin  
DC Specifications”). Leave unconnected if unused.  
VCAP  
CPU logic filter capacitor connection. Connect to a  
low-ESR (< 5 Ω) tantalum or ceramic capacitor.  
Minimum value is 4.7 μF; typical value is 10 μF.  
AVSS  
Analog ground reference. Must be connected to  
analog “clean” ground (between VSS - 0.3V and  
VSS + 0.3V) or VSS.  
¯O¯B¯D¯_¯T¯X¯_¯L¯E¯D¯ / ¯R¯S¯T¯_¯N¯V¯M¯  
Active low OBD transmit activity LED output and  
active low input to reset NVM to factory defaults.  
Open drain – requires a pull-up to VDD or 5V. This pin  
has a 2x current rating (see Table 6 “Output Pin DC  
Specifications”). Pull up to VDD via 100 kΩ resistor if  
unused.  
AVDD  
Analog positive supply. Must be connected to VDD  
or an external voltage reference (between VDD - 0.3V  
or 3.0V, whichever is greater and VDD + 0.3V or 3.6V,  
whichever is less). AVDD may be decoupled from  
digital supply by connecting it to VDD via a 10 Ω  
resistor or a small (10 μH – 47 μH) inductor.  
O¯¯B¯D¯_¯R¯X¯_¯L¯E¯D¯ / ¯IN¯T¯  
Active low OBD receive activity LED or interrupt  
output. Open drain – requires a pull-up to VDD or 5V  
when configured as interrupt. This pin has a 2x  
PAD  
The metal plane at the bottom of the device (QFN  
package only). It is not connected to any pins  
internally. Connect to VSS externally.  
current rating (see Table  
6
“Output Pin DC  
Specifications”). Pull up to VDD if unused.  
¯U¯A¯R¯T¯_¯T¯X¯_¯L¯E¯D¯  
Active low UART transmit activity LED output.  
Voltage on the anode of the LED must not exceed  
VDD + 0.3V.  
STN1110DSB  
www.obdsol.com  
7 of 24  
STN1110  
5.0 Guidelines for Getting Started with STN1110  
return traces to the decoupling capacitors first,  
5.1 Basic Connection  
Requirements  
Getting started with the STN1110 IC requires  
attention to a minimal set of device pin connections  
before proceeding with development. The following is  
a list of pin names, which must always be connected:  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
VDD and both VSS pins (see Section 5.2  
“Decoupling Capacitors”)  
5.2.1 Tank Capacitors  
On boards with power traces running longer than  
six inches in length, use a tank capacitor for  
integrated circuits, including STN1110, to supply a  
local power source. The value of the tank capacitor  
should be determined based on the trace resistance  
that connects the power supply source to the device,  
and the maximum current drawn by the device in the  
application. In other words, select the tank capacitor  
so that it meets the acceptable voltage sag at the  
device. Typical values range from 4.7 µF to 47 µF.  
AVDD and AVSS pins (see Section 5.2  
“Decoupling Capacitors” and Section 5.3 “AVDD  
and AVSS Pins”)  
VCAP (see Section 5.4 “Internal Voltage  
Regulator Filter Capacitor”)  
¯R¯E¯S¯E¯T¯ pin (see Section 5.5 “Device Reset Pin”)  
OSC1 and OSC2 pins (see Section 5.6  
“Oscillator Pins”)  
¯R¯S¯T¯_¯N¯V¯M¯ pin (see Section 5.7 “NVM Reset  
Input”)  
5.3 AVDD and AVSS Pins  
Open Drain Output Pull-ups (see Section 5.8  
“Open Drain Outputs”)  
As a minimum, AVDD must be connected directly  
to VDD and AVSS must be connected directly to VSS.  
It is recommended that AVDD be connected to to VDD  
via a 10 Ω resistor or a small (10 μH – 47 μH)  
inductor.  
AVSS should be connected to the electrically  
cleanest ground net (plane). For best results, analog  
circuitry should have a separate ground plane with a  
point connection to VSS ground plane as close as  
possible to the AVSS pin.  
5.2 Decoupling Capacitors  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS and AVDD,  
AVSS is required. Consider the following criteria when  
using decoupling capacitors:  
Value and type of capacitor: Recommendation  
of 1 μF, 10-20V. This capacitor should be a low-  
ESR and have resonance frequency in the range  
of 20 MHz and higher. It is recommended that  
ceramic capacitors be used.  
5.4 Internal Voltage Regulator  
Filter Capacitor  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within ¼”  
(6 mm) in length.  
A low-ESR (< 5 Ω) capacitor is required on the  
VCAP pin, which is used to stabilize the internal  
voltage regulator output voltage. The VCAP pin must  
not be connected to VDD, and must have a capacitor  
between 4.7 µF and 10 µF, 16V connected to ground.  
The type can be ceramic or tantalum. Refer to  
Section 7.2 “Electrical Characteristics” for additional  
information. The placement of this capacitor should  
be close to the VCAP pin. It is recommended that the  
trace length not exceed ¼” (6 mm).  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add  
a second ceramic-type  
capacitor in parallel to the above described  
decoupling capacitor. The value of the second  
capacitor can be in the range of 0.01 µF to  
0.001 µF. Place this second capacitor next to the  
primary decoupling capacitor.  
5.5 Device Reset Pin  
R¯E¯¯S¯E¯T pin must be logic high for STN1110 to  
run. If this pin is not controlled by the host controller,  
it must be connected to VDD.  
It is recommended to pull up R¯E¯¯S¯E¯T pin to VDD  
via a 10 kΩ resistor.  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
8 of 24  
www.obdsol.com  
STN1110DSB  
 
 
 
 
 
 
 
STN1110  
circuit. Leaving any of its inputs or open drain outputs  
floating may result in IC damage.  
Unused open drain outputs can only be  
terminated with a resistor connected to VDD or 5V.  
Unused inputs can be terminated via a resistor or  
direct connection to VSS or VDD.  
Unused inputs and open drain outputs should be  
connected as shown in Table 2. See section 4.2  
“Detailed Pin Descriptions” and section 6.1  
“Recommended Minimum Connection” for more  
information.  
5.6 Oscillator Pins  
The oscillator circuit should be placed on the  
same side of the board as the device. Also, place the  
oscillator circuit close to the oscillator pins, not  
exceeding one-half inch (12 mm) distance between  
them. The load capacitors should be placed next to  
the oscillator itself, on the same side of the board.  
Use a grounded copper pour around the oscillator  
circuit to isolate them from surrounding circuits. The  
grounded copper pour should be routed directly to  
the STN1110 ground. Do not run any signal traces or  
power traces inside the ground pour. Also, if using a  
two-sided board, avoid any traces on the other side  
of the board where the crystal is placed. A suggested  
layout is shown in Figure 1.  
Table 2 – Recommended Unused Input and  
Open Drain Output Connections  
Pin Number  
Pin Name  
Level  
SOIC  
SPDIP  
Figure 1 – Suggested Placement of the  
Oscillator Circuit  
QFN-S  
1
26  
27  
1
H
R¯E¯¯S¯E¯T  
L(1)  
H(1)  
L(1)  
L(1)  
2
ANALOG_IN  
¯V¯P¯W¯_¯R¯X¯  
PWM_RX  
I¯S¯O¯_¯R¯X¯  
4
Oscillator  
5
2
Guard Ring  
11  
12  
14  
15  
16  
17  
18  
8
(2)  
9
S¯L¯E¯E¯¯P  
11  
12  
13  
14  
15  
CAN_RX  
CAN_TX  
H
H(3)  
UART_RX  
UART_TX  
PWR_CTRL  
H
H(3)  
L(4)  
5.7 NVM Reset Input  
¯R¯S¯T¯_¯N¯V¯M¯ pin must be pulled up to VDD via a  
100 kΩ resistor for proper device operation.  
¯O¯B¯D¯_¯T¯X¯_¯L¯E¯D¯  
/ ¯R¯S¯T¯_¯N¯V¯M¯  
H(3)  
H(3)  
21  
22  
18  
19  
5.8 Open Drain Outputs  
¯O¯B¯D¯_¯R¯X¯_¯L¯E¯D¯ / ¯IN¯T¯  
All open drain outputs (as specified in section 4.1)  
that are in use must be pulled up to VDD or 5V.  
Specifically, UART_TX pin must be pulled up in order  
to be able to communicate with the device. See  
section 4.2 “Detailed Pin Descriptions” for more  
information.  
Note 1. These inputs may be connected to either VDD or  
VSS. However, the preferred level is shown.  
2.  
S¯L¯E¯E¯¯P input has internal pull-up to VDD enabled by  
default. Therefore, it can be left unconnected.  
3. These open drain outputs cannot be connected to  
VDD directly. They can only be connected to VDD or  
5V via a resistor.  
5.9 Unused Inputs and Unused  
Open Drain Outputs  
None of the unused inputs or unused open drain  
outputs (as specified in section 4.1) should be left  
unconnected. The STN1110 is a CMOS integrated  
4. This open drain output should not be connected to  
VSS directly. For reduced current consumption  
during sleep, when unused, this output should be  
connected to VSS via a resistor.  
STN1110DSB  
www.obdsol.com  
9 of 24  
 
 
 
 
 
 
STN1110  
6.0 Reference Schematics  
6.1 Recommended Minimum Connection  
Figure 2 shows the recommended minimum of components necessary to get the STN1110 to operate reliably,  
while minimizing power consumption. It is not a practical circuit; it is intended as a reference to show what to do  
with unused pins. Refer to the detailed pin descriptions (section 4.2) for more information.  
Figure 2 – Recommended Minimum Connection  
10 of 24  
www.obdsol.com  
STN1110DSB  
 
 
 
STN1110  
6.2 Typical Configuration  
This section contains schematics showing the typical configuration for the various circuit blocks. Pay special  
attention when choosing substitutes for components with specific part numbers, to make sure they have the same  
or better characteristics. Components without specific part numbers are generic. Use good engineering practices  
and common sense to make sure the specific parts you choose are appropriate for your application.  
Figure 3 – STN1110 IC  
Figure 4 – LEDs  
STN1110DSB  
www.obdsol.com  
11 of 24  
 
STN1110  
Figure 5 – Voltage Sense  
Figure 6 – Power Supplies  
Figure 7 – Switched Power Control  
12 of 24  
www.obdsol.com  
STN1110DSB  
STN1110  
Figure 8 – OBD Port Connector  
Figure 9 – ISO Transceiver  
Figure 10 – CAN Transceiver  
STN1110DSB  
www.obdsol.com  
13 of 24  
STN1110  
Important: Q4, Q5, and Q6 can only be substituted with transistors that have the same or better switching  
characteristics. OK to substitute fast-switching silicon diodes (e.g., 1N4148) for D10, D12 and D13. Also, note that  
the comparator IC4 is powered from DLC_SW.  
Figure 11 – J1850 Transceiver  
14 of 24  
www.obdsol.com  
STN1110DSB  
STN1110  
7.0 Electrical Characteristics  
This section provides an overview of STN1110 electrical characteristics. Additional information will be provided  
in future revisions of this document as it becomes available.  
The STN1110 is based on the PIC24HJ128GP502 device from Microchip Technology. For more detailed device  
specifications or clarification, refer to Microchip documentation, available at http://www.microchip.com.  
7.1 Absolute Maximum Ratings (1)  
Ambient temperature under bias ................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +160°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +4.0V  
(2)  
Voltage on any pin that is not 5V tolerant with respect to VSS ......................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD ≥ 3.0V(2) ......................................... -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(2) ........................................... -0.3V to 3.6V  
Maximum current sourced/sunk by any 2x output(3) ....................................................................................... 8 mA  
Maximum current sourced/sunk by any 4x output(3) ..................................................................................... 15 mA  
Note 1. Stresses beyond those listed here can cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not  
implied. Exposure to maximum rating conditions for extended periods can affect device reliability.  
2. See section 4.0 “Pinout” for the list of 5V tolerant pins.  
3. See section 4.1 “Pinout Summary” to determine current rating of individual pins.  
7.2 Electrical Characteristics  
Table 3: Thermal Operating Conditions  
Sym  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TJ Operating Junction Temperature  
TA Operating Ambient Temperature  
-40  
-40  
+125  
+85  
°C  
°C  
Table 4: Power Specifications  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VDD Supply Voltage  
3.0  
3.6  
V
V
VPOR VDD Start Voltage  
VSS  
to ensure internal power-on reset  
(POR) signal  
VDD Rise Rate(2)  
to ensure internal power-on reset  
(POR) signal  
SvDD  
0.03  
V/ms 0–3.0V in 0.1s  
AVDD Analog Supply Voltage  
Greater of  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AVSS Analog Ground Reference  
VSS – 0.3  
VSS + 0.3  
STN1110DSB  
www.obdsol.com  
15 of 24  
 
 
 
STN1110  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Brown-out Reset Voltage(3)  
VBOR  
2.40  
2.55  
V
on VDD transition high-to-low  
Operating Current(4)  
Average Sleep Current(4,6)  
68  
98  
300(5)  
82(5)  
210(5)  
710(5)  
IDD  
IPD  
mA  
μA TA = +25°C  
μA TA = +85°C  
External Filter Capacitor(7)  
CEFC  
4.7  
10  
μF  
ESR < 5 Ω  
connected to VCAP pin  
Note 1. Data in Typ column is at 3.3V, 25°C, unless otherwise stated.  
2. This spec must be met in order to ensure that a correct internal power-on reset (POR) occurs. It is easily achieved using most  
common types of supplies, but may be violated if a supply with slowly varying voltage is used, as may be obtained through direct  
connection to solar cells or some charge pump circuits.  
3. This parameter is for design guidance only and is not tested in manufacturing.  
4. STN1110 device current only. Does not include any load currents.  
5. Values are characterized, but not tested.  
6. All wakeup triggers are on and wakeup trigger inputs are in their inactive states.  
7. Typical VCAP voltage = 2.5V when VDD ≥ VDDMIN.  
Table 5: Input Pin DC Specifications  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL Input Low Voltage  
MS_CAN_RX pin  
VSS  
VSS  
0.3 VDD  
0.2 VDD  
V
V
all other inputs  
VIH Input High Voltage  
non-5V tolerant pins(2)  
5V tolerant pins(2)  
0.7 VDD  
0.7 VDD  
AVSS  
VDD  
5.5  
V
V
V
Ω
VIN ANALOG_IN Input Voltage  
AVDD  
200  
RIN Recommended ANALOG_IN  
Voltage Source Impedance  
IPU Internal Pull-up Current  
50  
0
250  
400  
-5(4,7)  
μA  
VDD = 3.3V, VPIN = VSS  
IICL Input Low Injection Current  
mA All pins, except VDD, VSS,  
AVDD, AVSS, R¯E¯¯S¯E¯T,  
VCAP, S¯L¯E¯E¯¯P, I¯S¯O¯_¯R¯X¯  
and ¯IS¯O¯_¯K¯_¯T¯X¯  
+5(5,6,7)  
IICH Input High Injection Current  
0
0
mA All pins, except VDD, VSS,  
AVDD, AVSS, R¯E¯¯S¯E¯T,  
VCAP, S¯L¯E¯E¯¯P, I¯S¯O¯_¯R¯X¯  
, ¯IS¯O¯_¯K¯_¯T¯X¯, and 5V tolerant  
designated pins  
20(8)  
ΣIICT Total Input Injection Current  
mA Absolute instantaneous sum  
of all ± input injection  
sum of all I/O and control pins  
currents from all I/O pins  
(|IICL| + |IICH|) ≤ ΣIICT  
Note 1. Data in Typ column is at 3.3V, 25°C, unless otherwise stated.  
2. See section 4.0 “Pinout” for the list of 5V tolerant pins.  
16 of 24  
www.obdsol.com  
STN1110DSB  
STN1110  
3. Negative current is defined as current sourced by the pin.  
4. VIL source < (VSS – 0.3). Characterized, but not tested.  
5. Non-5V tolerant pins: VIH source > (VDD + 0.3), 5V tolerant pins: VIH source > 5.5V. Characterized, but not tested.  
6. 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
7. Injection currents > 0 can affect the ADC results by approximately 4-6 counts.  
8. Any number and/or combination of inputs listed under IICL or IICH conditions are permitted, provided the mathematical “absolute  
instantaneous” sum of the input injection currents from all pins does not exceed the specified limit. Characterized, but not tested.  
Table 6: Output Pin DC Specifications  
Sym  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Output Low Voltage(1)  
2x Sink Driver Pins(2)  
4x Sink Driver Pins(2)  
Output High Voltage(1)  
2x Source Driver Pins(2)  
4x Source Driver Pins(2)  
Output High Voltage(1)  
2x Source Driver Pins(2)  
VOL  
0.4  
0.4  
V
V
IOL ≤ 3 mA, VDD = 3.3V  
IOL ≤ 6 mA, VDD = 3.3V  
VOH  
2.4  
2.4  
V
V
IOH -3 mA, VDD = 3.3V  
IOH -6 mA, VDD = 3.3V  
VOH1  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
V
V
V
V
V
V
IOH -6 mA, VDD = 3.3V  
IOH -5 mA, VDD = 3.3V  
IOH -2 mA, VDD = 3.3V  
IOH -12 mA, VDD = 3.3V  
IOH -11 mA, VDD = 3.3V  
IOH -3 mA, VDD = 3.3V  
4x Source Driver Pins(2)  
Note 1. Parameters are characterized, but not tested.  
2. See section 4.1 “Pinout Summary” for the output driver current rating designations.  
Table 7: I/O Pin Timing Requirements  
Sym  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TRST  
2
μs  
¯R¯E¯S¯E¯T¯ Pulse Width (low)  
TUWM Minimum UART Rx Pulse Width  
15  
1
20  
15  
ns  
μs  
μs  
user setting < 15  
user setting ≥ 15  
user setting = 0  
required for wakeup (user settable)  
65,534  
TSTM  
Minimum S¯L¯E¯E¯¯P Input Time  
to stay high before wakeup (user  
settable)  
65,534  
ms user setting > 0  
STN1110DSB  
www.obdsol.com  
17 of 24  
 
 
STN1110  
8.0 Packaging Diagrams and Parameters  
8.1 SPDIP (SP) Package  
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
N
NOTE 1  
E1  
1
2
3
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
INCHES  
NOM  
28  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
18 of 24  
www.obdsol.com  
STN1110DSB  
 
 
STN1110  
8.2 SOIC 300mil (SO) Package  
28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
D
N
E
E1  
NOTE 1  
1
2 3  
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
1.27 BSC  
Overall Height  
A
2.65  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
2.05  
0.10  
0.30  
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
7.50 BSC  
17.90 BSC  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle Top  
Lead Thickness  
Lead Width  
0°  
0.18  
0.31  
5°  
8°  
c
0.33  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-052B  
STN1110DSB  
www.obdsol.com  
19 of 24  
 
STN1110  
8.3 SOIC 300mil (SO) Land Pattern  
28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Contact Pitch  
E
C
1.27 BSC  
9.40  
Contact Pad Spacing  
Contact Pad Width (x28)  
Contact Pad Length (x28)  
Distance Between Pads  
Distance Between Pads  
X
0.60  
2.00  
Y
Gx  
G
0.67  
7.40  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2052A  
STN1110DSB  
20 of 24  
www.obdsol.com  
 
STN1110  
8.4 QFN-S (MM) Package  
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with  
0.40 mm Contact Length  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
N
e
28  
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
6.00 BSC  
3.70  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
3.65  
4.70  
6.00 BSC  
3.70  
D2  
b
3.65  
0.23  
0.30  
0.20  
4.70  
0.43  
0.50  
0.38  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-124B  
STN1110DSB  
www.obdsol.com  
21 of 24  
 
STN1110  
8.5 QFN-S (MM) Land Pattern  
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with  
0.40 mm Contact Length  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Contact Pitch  
E
W2  
T2  
C1  
C2  
X1  
Y1  
G
0.65 BSC  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
Contact Pad Spacing  
Contact Pad Width (x28)  
Contact Pad Length (x28)  
Distance Between Pads  
4.70  
4.70  
6.00  
6.00  
0.40  
0.85  
0.25  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2124  
STN1110DSB  
22 of 24  
www.obdsol.com  
 
STN1110  
9.0 Ordering Information  
TA  
Package  
SPDIP (SP)  
Part Number  
STN1110-I/SP  
STN1110-I/SO  
STN1110-I/MM  
SKU  
Tube  
Tube  
Tube  
365101  
365111  
365121  
-40°C to +85°C  
SOIC (SO)  
QFN-S (MM)  
STN1110DSB  
www.obdsol.com  
23 of 24  
 
STN1110  
Appendix A: Revision History  
Revision A (October 22, 2010)  
Initial release of this document.  
Revision B (July 13, 2012)  
Revised the “Overview”, “Feature Highlights”, and “Typical Applications” sections. Added current capability  
ratings to the “Pinout Summary” table and relevant pin descriptions. Changed recommended connections for  
unused pins. Deleted last sentence of NVM Reset Input description (RST_NVM needs a pullup whether an LED is  
connected or not). Added “Recommended ANALOG_IN Voltage Source Impedance” (RIN) specification to “Input  
Pin Specifications” table. Updated schematics, and added short descriptions to the “Recommended Minimum  
Connection” and “Typical Configuration” sections. Minor typographical and formatting changes.  
Appendix B: Contact Information  
OBD Solutions  
1819 W Rose Garden Ln Ste 3  
Phoenix, AZ 85027  
United States  
Phone: +1 623.434.5506  
Fax:  
+1 623.321.1628  
Email: sales@obdsol.com  
Web:  
www.obdsol.com  
24 of 24  
www.obdsol.com  
STN1110DSB  
 
 

相关型号:

STN1110-I/SP

Multiprotocol OBD to UART Interpreter
ETC

STN1802

LOW VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR
ETC

STN1810

STN1810 is the N-Channel logic enhancement mode power field effect transistor which is produced using high cell density, DMOS trench technology.
STANSON

STN1A60

Bi-Directional Triode Thyristor
SEMIWELL

STN1A60

Logic Level Bi-Directional Triode Thyristor
WINSEMI

STN1A60

Silicon Bidirectional Triode Thyristors
TGS

STN1A60S

Logic Level Bi-Directional Triode Thyristor
WINSEMI

STN1A80

Logic Level Bi-Directional Triode Thyristor
WINSEMI

STN1A80

Bi-Directional Triode Thyristor
SEMIWELL

STN1A80

Silicon Bidirectional Triode Thyristors
TGS

STN1HNC60

N-CHANNEL 600V - 7ohm - 0.4A - SOT-223 PowerMesh⑩II MOSFET
STMICROELECTR

STN1HNK60

N-CHANNEL 600V - 8-ohm - 1A DPAK/TO-92/IPAK/SOT-223 SuperMESH-TM MOSFET
STMICROELECTR