T60004-L2025-W622 [ETC]

NaNOcRysTallINE VITROPERM;
T60004-L2025-W622
型号: T60004-L2025-W622
厂家: ETC    ETC
描述:

NaNOcRysTallINE VITROPERM

文件: 总16页 (文件大小:4474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NaNOcRysTallINE  
VITROPERM  
EMc PROducTs  
adVaNcEd MaTERIals – THE KEy TO PROGREss  
NaNOcRysTallINE  
VITROPERM  
EMc PROducTs  
VacuuMscHMElZE GmbH & co. KG (Vac)  
iꢀ ꢁ ꢂeꢁꢃing gꢂobꢁꢂ mꢁnꢄfꢁꢅtꢄrer of moꢃern  
mꢁgnetiꢅ ꢁꢂꢂoꢆꢀ, ꢅoreꢀ ꢁnꢃ inꢃꢄꢅtive ꢅompo-  
nentꢀ. Vac hꢁꢀ ꢀꢄppꢂieꢃ innovꢁtive ꢀoꢂꢄtionꢀ  
for eꢂeꢅtromꢁgnetiꢅ ꢅompꢁtibiꢂitꢆ (EMc) pro-  
teꢅtion for more thꢁn 30 ꢆeꢁrꢀ.  
2
NaNOcRysTallINE VITROPERM / EMc PROducTs  
VITROPERM :  
extending the possibilities of iron  
Nꢁnoꢅrꢆꢀtꢁꢂꢂine VITROPERM ꢁꢂꢂoꢆꢀ ꢁre bꢁꢀeꢃ on Fe with si ꢁnꢃ B with Nb ꢁnꢃ cꢄ ꢁꢃꢃi-  
tiveꢀ. Vac pioneereꢃ the ꢃeveꢂopment of rꢁpiꢃ ꢀoꢂiꢃifiꢅꢁtion teꢅhnoꢂogꢆ reꢀꢄꢂting in the  
proꢃꢄꢅtion of thin tꢁpeꢀ or ribbonꢀ ꢁpproximꢁteꢂꢆ 20 μm thiꢅk. speꢅiꢁꢂ ꢀꢂitting ꢁnꢃ ꢅore  
winꢃing mꢁꢅhineꢀ proꢃꢄꢅe tꢁpe-woꢄnꢃ ꢅoreꢀ with externꢁꢂ ꢃiꢁmeterꢀ rꢁnging from 2  
mm to 600 mm. a ꢀꢄbꢀeqꢄent heꢁt treꢁtment ꢁt ꢁroꢄnꢃ 500 – 600 °c trꢁnꢀformꢀ the ini-  
tiꢁꢂꢂꢆ ꢁmorphoꢄꢀ miꢅroꢀtrꢄꢅtꢄre of the tꢁpe into the ꢃeꢀireꢃ nꢁnoꢅrꢆꢀtꢁꢂꢂine ꢀtꢁte. Thiꢀ  
being ꢁ two-phꢁꢀe ꢀtrꢄꢅtꢄre with fine ꢅrꢆꢀtꢁꢂꢂine grꢁinꢀ (ꢁverꢁge grꢁin ꢃiꢁmeter of 10-40  
nm) embeꢃꢃeꢃ in ꢁn ꢁmorphoꢄꢀ reꢀiꢃꢄꢁꢂ phꢁꢀe.  
VITROPERM nanocrystalline alloys are optimized to  
combine highest permeability and lowest coercive  
field strength. The combination of very thin tapes and  
the relatively high electrical resistance (1.1 – 1.2  
μΩm) ensure minimal eddy current losses and an  
outstanding frequency vs. permeability behaviour.  
Along with saturation flux density of 1.2 T and wide  
operational temperature range, these features com-  
bine to make VITROPERM a universal solution for  
most common EMC problems and vastly superior in  
many aspects to commonly used ferrite and amor-  
phous iron materials.  
Fig.1:Rapidsolidificationtechnologyisusedtoproducethinmetaltapeswithanamorphousstructure(metallicglass).  
Fig2:Crystallinestructure,amorphousstructure,nanocrystallinemicrostructure  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
3
cꢀmmꢀꢁ mꢀꢂꢃ  
cꢄꢀkꢃꢅ &  
tape-wound ꢆores  
Nꢁnoꢅrꢆꢀtꢁꢂꢂine ꢅoreꢀ ꢁre wiꢃeꢂꢆ ꢄꢀeꢃ in ꢅommon moꢃe ꢅhoke (cMc) ꢁppꢂiꢅꢁtionꢀ ꢃꢄe to their ꢄniqꢄe  
ꢅombinꢁtion of propertieꢀ. Bꢆ ꢄtiꢂiꢀing ꢂow-ꢅoꢀt rꢁw mꢁteriꢁꢂꢀ (Fe-bꢁꢀeꢃ) ꢁnꢃ moꢃern, ꢂꢁrge-ꢀꢅꢁꢂe pro-  
ꢃꢄꢅtion, VITROPERM iꢀ ꢁ verꢆ ꢅompetitive ꢀoꢂꢄtion for ꢁ wiꢃe rꢁnge of ꢁppꢂiꢅꢁtionꢀ. Keꢆ ꢁreꢁꢀ of ꢁppꢂi-  
ꢅꢁtion ꢁre:  
• switꢅheꢃ-moꢃe  
power ꢀꢄppꢂieꢀ (sMPs)  
Our CMCs feature high attenuation which is  
maintained across a wide frequency range offe-  
• soꢂꢁr inverterꢀ  
ring extremely broadband attenuation. In many  
cases, this characteristic can allow a reduction  
• Freqꢄenꢅꢆ ꢅonverterꢀ  
of the number of filter stages in multistage EMC  
filter configurations to reduce complexity, cost  
• EMc fiꢂterꢀ  
and filter volume. Ohmic (copper) losses are  
also reduced increasing the efficiency and lowe-  
• Weꢂꢃing eqꢄipment  
ring component temperature.  
• Winꢃ generꢁtorꢀ  
stꢁnꢃꢁrꢃ 2-ꢀtꢁge EMI-Fiꢂter Optimizeꢃ 1-ꢀtꢁge EMc-Fiꢂ-  
ter with VITROPERM  
• Inꢃꢄꢅtion hobꢀ  
• aꢄtomotive ꢁppꢂiꢅꢁtionꢀ  
• uninterrꢄptꢁbꢂe  
power ꢀꢄppꢂieꢀ (uPs)  
NF stꢁge  
HF stꢁge  
Fig.3:Nanocrystallinechokesallowareductionoffilterstages  
50  
40  
30  
20  
10  
0
VACUUMSCHMELZE has extensive practical and theo-  
retical expertise in the design of CMCs and filter confi-  
guration using nanocrystalline cores and components.  
At higher frequencies, the winding configuration has a  
major effect on the parameters of winding capacitance  
and leakage inductance and is therefore carefully con-  
sidered in our choke designs. Figure 4 shows a compa-  
rison of insertion loss for two chokes which differ only  
in their winding configuration (core material, number of  
turns and wire thickness are identical in both cases).  
This illustrates how our design expertise can improve  
filter efficiency, maximize reliability and reduce costs.  
1-phase CMC  
Core: VITROPERM 500F  
25 x 20 x 10mm  
N = 2 x 28 turns  
(0.71mm / AWG 21)  
separator: 5 mm  
HF optimized winding  
design, Cw = 4pF  
16dB  
simple winding  
design, CW=21pF  
0.001  
0.01  
0.1  
1
10  
frequency [MHz]  
Fig. 4:Optimizedchokedesign:improvedattenuationofupto16dB(ormore)at4MHz.  
4
NaNOcRysTallINE VITROPERM / EMc PROducTs  
Features & benefits  
of VITRꢀPꢃRm  
nanoꢆrystalline ꢆhoꢇes  
High μ, high B  
• smꢁꢂꢂ ꢀize  
s
High μ, high B , suitable core geometries  
s
• sꢄitꢁbꢂe for high ꢅꢄrrentꢀ  
ꢁnꢃ/or high voꢂtꢁgeꢀ  
Extremely broadband attenuation behaviour,  
high permeability, low-capacitance design,  
moderate reduction of μ up to high frequen-  
cies, low Q-factor in 150 kHz range  
• singꢂe ꢀtꢁge fiꢂter ꢃeꢀignꢀ poꢀꢀibꢂe  
Low number of turns required for high L,  
reduction of filter stages  
• High effiꢅienꢅꢆ, ꢂow power ꢂoꢀꢀ  
• "Green“, environmentꢁꢂꢂꢆ frienꢃꢂꢆ  
Low power loss, reduced use of material  
High Curie temperature, material properties  
(μ, Bs, λs) nearly independent of temperature  
• sꢄitꢁbꢂe for high ꢁnꢃ ꢂow ꢁmbient  
temperꢁtꢄreꢀ ꢁnꢃ high operꢁting  
temperꢁtꢄreꢀ  
Material properties (μ, B , λ) nearly indepen-  
• “Eꢁꢀꢆ fiꢂter ꢃeꢀign”  
s s  
dent of temperature, linear magnetization curve  
delivers stable impedance across a broad  
range of common mode currents – VAC choke  
design software available  
• ul-ꢅompꢂiꢁnt ꢃeꢀignꢀ  
Suitable plastic materials meet UL1446 insula-  
tion requirements  
• Optimizeꢃ ꢀoꢂꢄtionꢀ for ꢁ vꢁrietꢆ  
of ꢃifferent ꢁppꢂiꢅꢁtionꢀ  
A range of μ levels and VITROPERM alloys  
available  
• No operꢁting noiꢀe  
Material is practically magnetostriction-free  
• Beꢀt ꢀꢄiteꢃ for winꢃing of thiꢅk wireꢀ  
Material is practically magnetostriction-free,  
coatings/casings are resistant against mecha-  
nical stress  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
5
VITROPERM  
vs. ferrite  
dꢄe to the optimizeꢃ high-freqꢄenꢅꢆ propertieꢀ the inꢀertion ꢂoꢀꢀ of oꢄr  
nꢁnoꢅrꢆꢀtꢁꢂꢂine ꢅommon moꢃe ꢅhokeꢀ iꢀ ꢀꢄperior ꢅompꢁreꢃ to thꢁt of  
ꢁ tꢆpiꢅꢁꢂ ferrite ꢅhoke in the reꢂevꢁnt freqꢄenꢅꢆ rꢁnge.  
50  
1- phase CMC, core:  
25 x 20 x 10 mm (VITROPERM)  
25 x 15 x 10 mm (ferrite)  
VITROPERM CMC  
40  
30  
20  
The properties of VITROPERM are very much diffe-  
rent from conventional ferrites. This has to be consi-  
dered in the filter design for optimal solutions. The  
main physical and magnetic characteristics are illus-  
trated in the following diagrams.  
10  
typical ferrite CMC  
0
0.001  
0.01  
0.1  
1
10  
frequency [MHz]  
Fig.5:ComparisonofinsertionlossofVITROPERMandferrite  
permeꢁbiꢂitꢆ  
100,000  
VITROPERM 500F  
The permeability of VITROPERM 500F is signifi-  
cantly higher than ferrite in the low frequency range.  
At higher frequencies the μ of both nanocrystalline  
materials remains above that of ferrites. A high  
choke impedance is preferred for a high attenuation.  
This can be achieved more effectively by using high  
permeability core materials than by increasing the  
number of turns, as a lower number of turns results  
in lower winding capacitance and hence improved  
HF properties.  
10,000  
1,000  
100  
VITROPERM 250F  
typical Mn-Zn ferrite  
10  
0.001  
0.01  
0.1  
1
10  
100  
frequency [MHz]  
Fig. 6: Frequency response of the permeability of VITROPERM 500F (μ=40 000) and VITROPERM 250F  
(μ=5000)incomparisontoatypicalMnZnferrite(μ=5000).  
6
NaNOcRysTallINE VITROPERM / EMc PROducTs  
Permeꢁbiꢂitꢆ  
& ꢈagnetization ꢆurve  
100,000  
10,000  
1,000  
100  
VITROPERM 500F, !=100 000  
The frequency dependence of the permeability, μ(f)  
of VITROPERM 500F and ferrites differ fundamen-  
tally. μ(f) of μ=5 000 ferrites offer a flat and linear  
characteristic up to approximately 1 MHz (ferrites  
with μ=10 000 range up to approximately 200 kHz).  
In this flat range, the attenuation properties are de-  
termined by μ’ and the impedance |Z| is dominated  
by the inductance L. If the self resonance of the  
choke is within this frequency range, the attenuation  
curve is narrow-band and attenuation is primarily  
caused by reflection of the interference signal.  
Above 1 MHz (or 200 kHz) Re(Z) takes the major  
share of attenuation and μ’’ becomes the dominant  
factor. If the self resonance of the choke is in this fre-  
quency range the attenuation characteristic beco-  
mes increasingly broadband.  
|!|  
!''  
|!|  
typical ferrite, !=5500  
!''  
!'  
!'  
0.001  
0.01  
0.1  
1
10  
frequency [MHz]  
Fig.7:DifferencesinthebalancebetweenμandμforVITROPERMandferriteleadtodifferent  
attenuationmechanisms  
mꢁgnetizꢁtion ꢅꢄrve  
1.5  
VITROPERM is basically similar in this respect. The  
flat sector of μ(f) of VITROPERM 500F ranges (de-  
pending on the initial permeability level) to frequen-  
cies of several 10 kHz (20 kHz in this example), only.  
Consequently, attenuation (or |Z|) is already domi-  
nated by Re(Z) and is always broadband in the  
whole EMC-relevant range above 150 kHz. In-  
ductance plays a minor role and describes the atte-  
nuation only partially. The determining factor is the  
total impedance. The approximation |Z|=ωL is valid  
for ferrite chokes. For VITROPERM chokes |Z|>>ωL  
applies. Attenuation primarily does not result from a  
reflection of the interference signal, but from its ab-  
sorption.  
VITROPERM 500F  
! = 80 000  
1.0  
! = 30 000  
! = 20 000  
VITROPERM 250F  
! = 5000  
0.5  
0.0  
typical ferrite  
-0.5  
-1.0  
-1.5  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
H [A/cm]  
Fig.8a:HysteresisloopsforvarioustypesofVITROPERMandtypicalMnZnferrite.  
1.5  
VITROPERM 500F  
! = 80 000  
! = 30 000  
VITROPERM 250F  
It is only when these different characteristics are  
taken into consideration that the design of optimized,  
compact and low-cost nanocrystalline chokes is pos-  
sible. However, VITROPERM 250F is an exception,  
because the flat μ(f) sector range is similar to  
μ=5 000 ferrites to frequencies of up to 1 MHz and  
the attenuation is primarily inductive.  
1.0  
0.5  
0.0  
! = 5000  
! = 20 000  
typical  
ferrite  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
H [A/cm]  
Fig.8b:MagnetizationcurveofVITROPERM500FandVITROPERM250Fincomparisonto  
typicalMnZnferrite,showingnoticeabledifferencesinpermeability  
(slopeofthecurve)andsaturationfluxdensity(B )  
s
NaNOcRysTallINE VITROPERM / EMc PROducTs  
7
Thermꢁꢂ  
properties  
1.4  
1.2  
1
nanocrystalline  
VITROPERM®  
The saturation flux density of VITROPERM changes  
by only a few percent in the operating temperature  
range of up to 150 °C, while MnZn ferrites decline  
up to 40 % at temperatures above 100 °C. The high  
Curie temperature of VITROPERM alloys (above  
600 °C), allows short term maximum operating tem-  
peratures as high as 180 – 200 °C 1).  
0.8  
0.6  
0.4  
0.2  
0
typical  
Mn-Zn ferrite  
1)Maximumcontinuoustemperaturedependsonthecasing/coatingmaterialsused.Please  
0
100  
200  
300  
Temperature [ °C ]  
400  
500  
600  
contactVACformoredetailedinformation.  
Fig.9:Temperaturedependenceofsaturationfluxdensity B (T)  
s
80%  
60%  
typical MnZn ferrites  
! = 5000 … 10 000  
40%  
20%  
0%  
The permeability of VITROPERM typically changes  
by less than 10 % in the temperature range  
from -40 °C to 120 °C, while the permeability of  
MnZn ferrites can drift in a range of ± 40 – 60 %  
around the room temperature value.  
nanocrystalline  
VITROPERM®  
! = 30 000  
nanocrystalline  
VITROPERM®  
! = 80 000  
-20%  
-40%  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature [°C]  
Fig.10:RelativechangeofμT)atf=100kHz,normalizedforroomtemperature  
Insertion loss (and impedance) of a CMC made of VITROPERM 500F is almost temperature-independent in the tempe-  
rature range of – 40 °C to above 150 °C. In contrast, ferrite chokes feature a significant drop of insertion loss with increa-  
sing temperature.  
40  
30  
20  
10  
0
30  
VITROPERM  
CMC  
VITROPERM  
CMC  
20  
10  
0
+120°C  
+150°C  
- 40°C  
+ 25°C  
+120°C  
+150°C  
+160°C  
- 40°C  
+ 20°C  
+100°C  
+120°C  
+160°C  
+120°C  
+100°C  
- 40°C  
typical ferrite  
CMC (high TC)  
typical ferrite  
CMC  
+ 20°C  
+ 20°C  
- 40°C  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
frequency [MHz]  
frequency [MHz]  
Fig.11a:Comparisonoftemperaturedependenceofinsertionlossofa  
VITROPERMCMCandachokewithstandardMnZnferritecore  
Fig.11b:Comparisonoftemperaturedependenceofinsertionlossupto160°Cofa  
VITROPERMCMCandaMnZnchokeusingahighCurietemperatureferritematerial  
8
NaNOcRysTallINE VITROPERM / EMc PROducTs  
sꢁtꢄrꢁtion behꢁvioꢄr  
Highpermeabilitynanocrystallinecoresenableveryhighin-  
Fig. 12b shows permeability characteristics under DC bias  
fieldforaVITROPERM500Fcore(μ=20000)and2typical  
MnZn ferrites (μ=5 000 and μ=8 000, respectively). The  
diagram shows the significantly higher permeability and a  
ductancelevelsinextremelycompactcoreorchokedimen-  
sions.However,asaconsequenceanincreasedsensitivity  
to asymmetric magnetization conditions caused by com-  
monmode,unbalancedorleakagecurrentshastobecon-  
sidered. These currents may occur as low-frequency  
leakage currents (50 Hz) or as medium or high-frequency  
interference currents. These are caused for example by  
longmotorcableswithdifferentcapacitanceoftheindividual  
conductors to earth, or by resonances which occur (com-  
monly due to bearing currents) in such cables leading to  
short, extremely high and rapidly declining current peaks  
squareμ(H )characteristicofthenanocrystallinematerial  
DC  
in comparison to the rounded properties of the two ferrite  
cores. This behaviour complies to the linear magnetization  
curve of VITROPERM (Figs. 8a / 8b) and leads to nearly  
constantinductanceoverawiderangeoftheDCbiasfields.  
VITROPERM 250F is always used where highly satura-  
tion-resistantsolutionsarerequiredforapplicationswithvery  
high common mode or unbalanced currents. However, it  
cannot equal the high attenuation of VITROPERM 500F.  
withamplitudesofuptoseveral10A  
peak  
andpulsewidths  
in the nanosecond range (1 … several 100 ns). If these  
common mode currents exceed the saturation level of the  
choke or core, the attenuation of the choke breaks down  
and the choke becomes less effective.  
100  
10  
1
The saturation behaviour of ferrite is less sensitive due to  
itslowerpermeability.Forapplicationswithhigherimbalance  
currents, the advantages of VITROPERM with 1.2Tsatu-  
ration flux density (approximately 3 times higher than ferri-  
tes) can still be realised since VITROPERM is available in  
arangeofpermeabilitylevelsbetween4000and150000.  
In these cases, a lower μ level may have to be selected in  
order to find the optimum saturation-resistant solution. Fig.  
12ashowsacomparisonofsaturationcurrentsfordifferent  
VITROPERM designs with a typical ferrite core of similar  
dimensions. Itcanbeseenthatthesaturationbehaviourof  
the MnZn ferrite (μ=6 000) is comparable with that of  
VITROPERM500F(μ=17000)uptofrequenciesofappro-  
ximately 50 kHz. At higher frequencies, however, the  
VITROPERM design is becoming more advantageous.  
VITROPERM 250F, 40 x 25 x 15 mm  
!i=4 500, AL(100kHz)=4.6!H  
VITROPERM 500F, 40 x 25 x 15 mm  
!i=17 000, AL(100kHz)=14!H  
MnZn ferrite, 40 x 24 x 16 mm  
!i=6000, AL(100kHz)=9.5!H  
VITROPERM 500F, 40 x 25 x 15 mm  
!i=110 000, AL(100kHz)=24!H  
0.1  
0.001  
0.01  
0.1  
1
10  
frequency [MHz]  
Fig.12a:ComparisonofsaturationbehaviourofVITROPERM500F,VITROPERM250FandMnZnferrite  
The VITROPERM solution offers a 50 % higher A value  
L
at 100 kHz and a significantly higher impedance (note that  
the impedance of VITROPERM is determined to a small  
partbyinductanceLinthisfrequencyrange).Highpermea-  
bilityVITROPERM500Fcoresarecharacterizedbyanex-  
tremely high attenuation or impedance at low frequencies,  
andtheyareclearlysuperioragainstferritesathighfrequen-  
cies. However, the price of this superior performance is a  
moresensitivesaturationbehaviour,whichisimprovingwith  
increasingfrequencybutstillmorecriticalthanthatofother  
core materials. It should be noted that Fig. 12a shows the  
saturationcurrentsofthecoreswithoutwinding.Depending  
20000  
VITROPERM 500F, !=20000  
15000  
10000  
typical MnZn ferrite, !=8000  
5000  
typical MnZn ferrite, !=5000  
onthenumberofturns,theI valuesofchokesaresome  
cm  
10 mA to several 100 mA, only (see tables of standard  
series).  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
DC bias HDC [A/cm  
Fig.12b:ComparisonofpermeabilitycharacteristicsunderDCbiasfieldsforVITROPERM500F  
andtwotypicalMnZnferrites.  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
9
deꢀign ꢁꢃvꢁntꢁgeꢀ  
with VITROPERM  
The superior material properties of nanocrystalline  
VITROPERM enable common mode chokes with  
high inductance/impedance with a small number of  
turns, resulting in reduced copper losses, low win-  
ding capacitance and excellent HF performance.  
Due to the high initial permeability, low winding ca-  
pacitance and a low Q-factor (above 100 kHz)  
VITROPERM CMCs offer a broadband insertion loss  
curve ranging from 10 kHz up to several MHz and  
improved attenuation behaviour at both low and high  
frequencies in comparison to conventional ferrite  
chokes with similar core dimensions and identical  
windings (see Fig. 13).  
Better attenuation properties and an extended ope-  
rating temperature range allow a reduction of the  
component volume by a factor of up to 3 or more  
under similar conditions. Note that the insertion loss  
curve of the small VITROPERM choke in Fig. 14 is  
similar to that of ferrite materials at frequencies of  
about 600 kHz – 1 MHz and is superior below 500  
kHz and above 1 MHz.  
Fig.13:ComparisonofinsertionlosscurveofaVITROPERM500FCMC(redcurve)andferriteCMC  
(bluecurve)ofsimilarsizeandwiththesamenumberofturns.  
The excellent attenuation of VITROPERM CMCs  
simplifies the filter design in a wide frequency range.  
For laboratory tests, VAC offers different sample kits  
with selected standard cores and chokes.  
Fig.14:ComparisonofthedimensionsofaVITROPERM500FCMC(redcurve)andferriteCMC  
(bluecurve)withsimilarattenuationpropertiesinthe1MHzrange  
VITROPERM – tꢆpiꢅꢁꢂ ꢃꢁtꢁ  
Max. operational temperature  
Continuous-epoxy  
Continuous-plastic casing  
short-term  
Permeability  
T
=
max  
Saturation flux density  
Coercivity (static)  
Saturation magnetostriction  
VITROPERM 500F  
VITROPERM 250F  
B = 1.2 T  
s
c
120 °C 1)  
H < 3 A/m  
130/155 °C 1)  
180 °C 1)  
μ =  
λ=  
s
10-8....10-6  
≈ 8 x 10-6  
i
VITROPERM 500F  
VITROPERM 250F  
Core losses (100 kHz, 0.3 T)  
15 000...150 000  
4 000... 6 000  
PFe = 80 W/kg (typ.)  
Specific electrical resistance  
Curie temperature  
≈115 μcm  
T > 600 °C  
c
1) PleasecontactVACformoredetailedinformationaboutthetemperaturelimitsofourcasingandcoatingmaterials.  
10  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
ꢅTꢉꢁꢂꢉRꢂ ꢅꢃRIꢃꢅ  
ꢀF VITRꢀPꢃRm cꢀRꢃꢅ  
Oꢄr VITROPERM ꢅoreꢀ ꢁre ꢁvꢁiꢂꢁbꢂe with ꢃifferent a -ꢂeveꢂꢀ for mꢁnꢆ ꢅore  
ꢀizeꢀ. Thꢄꢀ, ꢀꢁtꢄrꢁtion-reꢀiꢀtꢁnt ꢀoꢂꢄtionꢀ ꢁre ꢁvꢁiꢂꢁbꢂe for vꢁrioꢄꢀ fieꢂꢃꢀ  
l
of ꢁppꢂiꢅꢁtionꢀ. common moꢃe ꢅꢄrrentꢀ mꢁꢆ oꢅꢅꢄr ꢁꢀ interferenꢅe ꢅꢄr-  
rentꢀ, biꢁꢀ ꢅꢄrrentꢀ or, primꢁriꢂꢆ, ꢄnbꢁꢂꢁnꢅeꢃ ꢅꢄrrentꢀ. If the ꢅommon  
moꢃe ꢅꢄrrentꢀ exꢅeeꢃ the ꢀꢁtꢄrꢁtion ꢅꢄrrentꢀ (I ) of the ꢅoreꢀ or ꢅhokeꢀ,  
ꢅm  
ꢅoreꢀ with higher ꢀꢁtꢄrꢁtion reꢀiꢀtꢁnꢅe mꢄꢀt be ꢄꢀeꢃ. High a vꢁꢂꢄeꢀ  
l
(high μ) ꢁre more ꢀꢄitꢁbꢂe for tꢆpiꢅꢁꢂ ꢀingꢂe-phꢁꢀe ꢁppꢂiꢅꢁtionꢀ with ꢂow  
ꢄnbꢁꢂꢁnꢅeꢃ ꢅꢄrrent (e.g. ꢀwitꢅheꢃ-moꢃe power ꢀꢄppꢂieꢀ), whiꢂe ꢅoreꢀ with  
ꢂower a vꢁꢂꢄeꢀ ꢁre often ꢄꢀeꢃ in 3-phꢁꢀe ꢁppꢂiꢅꢁtionꢀ with high ꢄnbꢁꢂꢁn-  
l
AFe  
ꢅeꢃ ꢅꢄrrentꢀ (e.g. freqꢄenꢅꢆ ꢅonverterꢀ with ꢂong motor ꢅꢁbꢂeꢀ).  
OD  
Nꢁnoꢅrꢆꢀtꢁꢂꢂine VITROPERM ꢅoreꢀ  
with epoxꢆ reꢀin ꢅoꢁting  
da  
di  
ID  
Although the epoxy resin coating is suitable for direct winding, we recommend additional insula-  
tion between core and winding for enhanced insulation requirements. The epoxy resin is suitable  
for continuous operational temperatures of up to 120 °C and complies with the UL94-V0 standard  
(UL file number: E214934), class A (105 °C).  
h
H
*
AL  
nominal core  
dimensions  
limiting dimensions  
(incl. coating)  
iron cross  
section  
mean path  
length  
weight  
saturation current  
Icm**, typical  
10 kHz  
100 kHz  
OD  
ID  
H
nominal  
µH  
10 kHz  
100 kHz  
part number  
da x di x h  
AFe  
cm2  
0,08  
lFe  
mFe  
g
mm x mm x mm  
16 x 12.5 x 6  
22 x 17 x 6  
25 x 20 x 10  
mm  
mm  
mm  
cm  
A
2,6  
2,6  
15,0  
4,8  
3,9  
0,5  
1,1  
0,8  
1,7  
T60004-L2016-W620  
T60004-L2016-W619  
17,8  
24,0  
27,3  
10,7  
15,2  
17,5  
8
4,5  
6,1  
7,1  
6,0  
8,0  
12,3  
0,12  
0,19  
5,4  
16,4  
4,3  
0,6  
1,2  
T60004-L2022-W867  
9,9  
9,9  
22,5  
9,0  
7,2  
5,8  
0,7  
1,7  
1,4  
2,7  
T60004-L2025-W622  
T60004-L2025-W621  
30 x 25 x 15  
30 x 20 x 10  
32,3  
32,5  
22,7  
17,8  
17,5  
12,5  
0,27  
0,40  
8,6  
7,9  
17,4  
23,1  
26,5  
56,0  
8,5  
0,9  
0,6  
1,7  
1,2  
T60004-L2030-W676  
T60004-L2030-W911  
13,4  
36  
36  
32,5  
13,0  
10,3  
8,4  
1,1  
2,8  
2,2  
4,3  
T60004-L2040-W624  
T60004-L2040-W623  
40 x 32 x 15  
45 x 32 x 15  
50 x 40 x 20  
42,3  
47,3  
52,3  
29,1  
29,8  
37,1  
17,8  
17,8  
22,8  
0,44  
0,71  
0,73  
11,3  
12,1  
14,1  
63,3  
19,7  
12,8  
3,0  
4,6  
T60004-L2045-W886  
76  
76  
43,0  
17,0  
13,8  
11,2  
1,4  
3,6  
2,7  
5,4  
T60004-L2050-W626  
T60004-L2050-W625  
124  
124  
18,0  
11,5  
11,6  
10,4  
4,4  
6,9  
6,7  
8,7  
T60004-L2063-W627  
T60004-L2063-W721  
63 x 50 x 20  
80 x 63 x 20  
100 x 80 x 20  
65,5  
83  
46,6  
59,5  
75  
22,8  
22,8  
23  
0,95  
1,24  
1,46  
17,8  
22,5  
28,3  
205  
205  
18,5  
11,9  
12,0  
10,7  
5,6  
8,7  
8,5  
11,0  
T60004-L2080-W628  
T60004-L2080-W722  
303  
303  
17,3  
11,2  
11,2  
10,0  
7,1  
10,9  
10,7  
13,8  
T60004-L2100-W629  
T60004-L2100-W723  
104  
2,85  
2,74  
36,1  
36,1  
757  
727  
727  
50,0  
25,4  
16,4  
19,4  
16,5  
14,7  
4,8  
9,0  
14,0  
8,5  
13,6  
17,7  
T60004-L2130-W567  
T60004-L2130-W630  
T60004-L2130-W587  
130 x 100 x 25  
134,5  
95,0  
28,5  
2,74  
36,1  
917  
917  
20,1  
13,0  
13,1  
11,7  
11,3  
17,6  
17,1  
22,3  
T60004-L2160-W631  
T60004-L2160-W720  
160 x 130 x 25  
194 x 155 x 25  
165  
200  
125  
149  
28,5  
28,5  
2,74  
45,6  
1490  
1490  
45,3  
14,7  
14,7  
13,2  
6,9  
20,7  
12,5  
26,4  
T60004-L2194-V105  
T60004-L2194-W908  
3,71  
54,8  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
11  
Nꢁnoꢅrꢆꢀtꢁꢂꢂine VITROPERM  
ꢅoreꢀ in pꢂꢁꢀtiꢅ ꢅꢁꢀing  
The plastic cases are suitable for direct winding and offer good mechanical  
protection of the nanocrystalline core material. This enables the best mag-  
netic properties and highest permeability levels to be maintained. Additional  
winding protection is optional for heavy wire windings, where there may be  
a danger of core damage. The plastic materials comply with the standards  
UL94-V0 (UL file number: E41871), class B (130 °C) and UL94-V0 (UL file  
number E41938), class F (155 °C).  
*
AL  
nominal core  
dimensions  
limiting dimensions  
(incl. case)  
iron cross  
section  
mean path  
length  
weight  
saturation current  
Icm**, typical  
10 kHz  
100 kHz  
OD  
mm  
11,2  
14,1  
14,3  
17,1  
ID  
mm  
5,1  
6,6  
8,5  
7,9  
H
nominal  
µH  
10 kHz  
100 kHz  
part number  
da x di x h  
mm x mm x mm  
9.8 x 6.5 x 4.5  
12 x 8 x 4.5  
12.5 x 10 x 5  
15 x 10 x 4.5  
AFe  
lFe  
mFe  
g
cm2  
0,06  
mm  
5,8  
6,3  
7,0  
6,5  
cm  
2,6  
3,1  
3,5  
3,9  
A
1,1  
1,7  
1,3  
2,6  
25,5  
6,4  
6,8  
3,6  
6,7  
0,2  
0,2  
0,4  
0,3  
0,4  
0,4  
0,8  
0,5  
T60006-L2009-W914  
T60006-L2012-W902  
T60006-L2012-W498  
T60006-L2015-W865  
0,07  
0,05  
0,09  
28,0  
10,0  
27,0  
4
4
43,0  
11,7  
10,1  
6,5  
0,3  
1,2  
0,6  
1,7  
T60006-L2016-W403  
T60006-L2016-W308  
16 x 10 x 6  
17,9  
8,1  
8,1  
0,14  
4,1  
17.5 x 12.6 x 6  
19 x 15 x 10  
19,0  
21,2  
11,0  
13,0  
8,0  
0,12  
0,16  
4,7  
5,3  
4,1  
6,3  
30,0  
36,1  
6,9  
8,8  
0,3  
0,4  
0,7  
0,7  
T60006-L2017-W515  
T60006-L2019-W838  
12,3  
9,0  
9,0  
55,2  
14,3  
13,6  
9,1  
0,4  
1,4  
0,7  
2,1  
T60006-L2020-W409  
T60006-L2020-W450  
20 x 12.5 x 8  
25 x 20 x 10  
22,6  
27,6  
10,3  
17,4  
10,2  
12,8  
0,24  
0,20  
5,1  
7,1  
10,4  
28,4  
7,3  
0,6  
1,1  
T60006-L2025-W523  
17  
17  
17  
65,5  
17,0  
3,2  
15,5  
11,5  
3,1  
0,4  
1,7  
9,3  
0,9  
2,6  
9,6  
T60006-L2025-W380  
T60006-L2025-W451  
T60006-L2025-W980  
25 x 16 x 10  
27,9  
13,6  
12,5  
0,36  
6,4  
23  
23  
23  
59,3  
15,5  
2,9  
14,0  
11,1  
2,8  
0,5  
2,1  
1,0  
3,1  
T60006-L2030-W423  
T60006-L2030-W358  
T60006-L2030-W981  
30 x 20 x 10  
30 x 20 x 15  
40 x 32 x 15  
32,8  
32,8  
43,1  
17,6  
17,5  
28,7  
12,5  
17,8  
18,5  
0,40  
0,57  
0,46  
7,9  
7,9  
11,4  
11,8  
33  
88,0  
20,0  
0,5  
1,1  
T60006-L2030-W514  
38  
38  
38  
47,2  
12,2  
2,3  
11,1  
7,9  
0,8  
3,7  
1,5  
5,1  
T60006-L2040-W422  
T60006-L2040-W452  
T60006-L2040-W964  
11,3  
2,2  
16,6  
17,1  
64  
64  
101,0  
25,4  
23,1  
17,2  
0,7  
2,9  
1,4  
4,2  
T60006-L2040-W424  
T60006-L2040-W453  
40 x 25 x 15  
45 x 30 x 15  
50 x 40 x 20  
63 x 50 x 25  
43,1  
48,3  
53,5  
67,3  
22,5  
26,4  
36,3  
46,5  
18,5  
18,2  
23,4  
28,6  
0,86  
0,86  
0,76  
1,24  
10,2  
11,8  
14,1  
17,8  
74  
74  
74  
87,5  
24,3  
15,7  
20,3  
15,9  
14,3  
0,8  
3,0  
4,6  
1,6  
4,5  
5,8  
T60006-L2045-V102  
T60006-L2045-V118  
T60006-L2045-V101  
79  
79  
45,3  
18,0  
14,0  
10,0  
1,4  
3,5  
2,7  
5,3  
T60006-L2050-W516  
T60006-L2050-W565  
161  
161  
163  
58,6  
23,3  
3,3  
18,1  
13,5  
3,2  
1,8  
4,4  
3,5  
6,7  
T60006-L2063-W517  
T60006-L2063-V110  
T60006-L2063-W985  
30,2  
30,9  
342  
347  
35,0  
9,6  
24,0  
9,2  
5,5  
26,4  
8,2  
27,3  
T60006-L2080-W531  
T60006-L2080-V091  
80 x 50 x 20  
90 x 60 x 20  
100 x 80 x 25  
86,0  
95,4  
44,7  
54,7  
75,0  
25,7  
24,7  
29,6  
2,28  
2,28  
1,90  
20,4  
23,6  
28,3  
395  
400  
81,0  
4,6  
25,1  
4,5  
2,4  
40,9  
4,5  
41,8  
T60006-L2090-W518  
T60006-L2090-W984  
379  
379  
56,3  
14,5  
16,9  
13,1  
2,8  
10,9  
5,3  
13,8  
T60006-L2100-V082  
T60006-L2100-V081  
105,5  
508  
508  
515  
68,8  
19,1  
4,3  
21,6  
17,2  
4,2  
3,8  
10,7  
47,4  
6,7  
13,6  
48,5  
T60006-L2102-W468  
T60006-L2102-V080  
T60006-L2102-W947  
102 x 76 x 25  
160 x 130 x 25  
108,1  
70,0  
30,3  
30,5  
2,47  
28,0  
2,74  
2,74  
2,74  
2,85  
45,6  
45,6  
45,6  
45,6  
917  
917  
917  
967  
26,8  
20,1  
12,9  
3,0  
13,7  
13,1  
11,7  
2,9  
8,4  
13,6  
17,1  
22,3  
81,1  
T60006-L2160-V074  
T60006-L2160-V088  
T60006-L2160-V066  
T60006-L2160-W982  
11,3  
17,6  
79,3  
166,9 123,9  
* AL = inductance for N = 1 (tolerance +45 % / -25 %) ** Icm : the listed saturation currents are guidelines, only. They are  
calculated for nominal core dimensions at room temperature and for approx. 70 % saturation flux density. The frequency-  
dependent saturation behaviour is demonstrated in Fig. 12.  
12  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
core ꢀtꢁꢅk ꢁꢀꢀembꢂieꢀ  
with  
nꢁnoꢅrꢆꢀtꢁꢂꢂine ꢅoreꢀ  
Single-turn chokes employing a number of nanocry-  
stalline cores assembled in a stack are an effective  
solution for bearing current problems or extremely  
high common mode noise from other causes in  
large-scale variable speed drives, wind generators  
and other applications in which resonance pheno-  
mena cause high-amplitude interference currents  
(with peak values ranging from several 10 A to over  
100 A). These generally take the form of short and  
thus high-frequency current peaks. For these appli-  
cations, VAC offers assembled core stacks which  
can be easily and securely integrated into existing  
applications with the minimum of effort.  
1
0
.
.
.
1
0
0
A
p
e
a
k
<
1
µ
s
1
0
0
µ
s
I
n
v
e
r
t
e
r
M
o
t
o
r
The core stacks are available in two sizes with two  
different through-hole diameters. They are custom-  
designed, allowing an individual selection of core  
type and the number of stacked cores (up to 7 pie-  
ces) depending on the required saturation level and  
the required inductance.  
h
i
g
h
v
o
l
t
a
g
e
o
v
e
r
b
e
a
r
i
n
g
s
P
E
size 1  
120  
130  
70  
size 2  
180  
190  
a (mm)  
b (mm)  
c (mm)  
d (mm)  
s (mm)  
130  
> 118  
10  
~ 70  
7
n = number of stacked cores  
H = maximum core height  
y = 9.5 for epoxy coated cores, T60004...  
y = 10.2 for cased cores, T60006...  
The inductance L of a core stack can be calculated by multiplying  
the number of stacked cores with the AL-value of the single core.  
A
I
: inductance of single core  
: maximum permissible leakage or common mode current.  
L
cm  
Calculated guideline for nominal core dimensions at room tempera-  
ture and for approximately 70 % saturation flux density.  
Dimensions of the core stack assemblies  
core data  
data of core stack  
example for 5 stacked cores  
nominal core  
dimensions  
limit core dimensions  
(incl. Case/coating)  
L (10 kHz) L (100 kHz)  
AL (10 kHz) AL (100 kHz)  
Icm (10 kHz)  
typical  
A
Icm(100 kHz)  
typical  
A
core part number  
OD  
ID  
H
nominal  
µH  
nominal  
µH  
size  
nominal  
µH  
nominal  
µH  
da x di x h  
mm x mm x mm mm  
mm  
mm  
T60004-L2100-W629  
T60004-L2100-W723  
T60006-L2100-V082  
T60006-L2100-V081  
T60006-L2102-W468  
T60006-L2102-V080  
T60006-L2102-W947  
T60006-L2160-V074  
T60006-L2160-V088  
T60006-L2160-V066  
T60006-L2160-W982  
100 x 80 x 20  
100 x 80 x 20  
100 x 80 x 25  
100 x 80 x 25  
102 x 76 x 25  
102 x 76 x 25  
102 x 76 x 25  
160 x 130 x 25  
160 x 130 x 25  
160 x 130 x 25  
160 x 130 x 25  
104,0  
104,0  
105,5  
105,5  
108,1  
108,1  
108,1  
166,9  
166,9  
166,9  
166,9  
75,0  
75,0  
23,0  
23,0  
29,6  
29,6  
30,3  
30,3  
30,3  
30,5  
30,5  
30,5  
30,5  
17,3  
11,2  
56,3  
14,5  
68,8  
19,1  
4,3  
11,2  
10,0  
16,9  
13,1  
21,6  
17,2  
4,2  
1
1
1
1
1
1
1
2
2
2
2
7,1  
10,9  
2,8  
10,7  
13,8  
5,3  
86,5  
56,0  
56,0  
50,0  
84,5  
65,5  
108,0  
86,0  
21,0  
68,5  
65,5  
58,5  
14,3  
75,0  
281,5  
72,5  
75,0  
10,9  
3,8  
13,8  
6,7  
70,0  
344,0  
95,5  
70,0  
10,7  
47,4  
8,4  
13,6  
48,5  
13,6  
17,1  
22,3  
81,1  
70,0  
21,5  
123,9  
123,9  
123,9  
123,9  
26,8  
20,1  
12,9  
3,0  
13,7  
13,1  
11,7  
2,9  
134,0  
100,5  
64,5  
11,3  
17,6  
79,3  
15,0  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
13  
coꢈꢈon ꢈode ꢆhoꢇes  
UL1446 ꢅTꢉꢁꢂꢉRꢂ ꢅꢃRIꢃꢅ  
Generꢁꢂ informꢁtion  
Chokes are designed, manufactured and tested in compliance with  
EN50178.  
Plastic materials comply with the following UL standards:  
UL94 (file number E41871)  
UL1446 (file number OBJY2.E329745)  
Temperature class B (130 °C)  
IN  
UN OVCat III / II  
LN  
Ambient temperature Ta = – 40°C...+70°C (short-term +90°C)  
Operating temperature Top = – 40°C...+130°C (short-term +150°C)  
= nominal current in each winding  
= operating voltage for overvoltage category III / II  
= nominal inductance, tolerance +50% / -30 %  
The standard chokes are designed for a temperature rise of  
ΔT = 45….60 K at Ta=70 °C and I=IN in each winding. Data  
derating is necessary for deviating ambient temperature or  
deviating nominal current. Please contact VAC for further de-  
tailed information.  
stꢁnꢃꢁrꢃ ꢀerieꢀ cMcꢀ for ꢀingꢂe-phꢁꢀe ꢁppꢂiꢅꢁtionꢀ  
|Z|  
RCu  
fR  
Icm  
LN  
IN  
A
design  
UN  
dimensions  
b
part number  
OVCat III / II 10 kHz  
100 kHz  
typ.  
m!  
100kHz  
!
typ.  
MHz  
10 kHz  
mA  
l
h
V
mH  
mm  
mm  
mm  
2
upright  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
300 / 600  
2x12.1  
2x10.8  
2x28.3  
2x29.1  
2x16.4  
2x11.4  
2x11.4  
2x11.4  
2x11.4  
2x8.6  
2x12.9  
2x6  
2x2.8  
2x2.5  
2x6.6  
2x6.7  
2x3.7  
2x2.6  
2x2.6  
2x2.6  
2x2.6  
2x2.2  
2x3.1  
2x1.5  
2x0.7  
2x0.4  
2x1.6  
2x1  
101  
27,5  
36  
3000  
2320  
6500  
8500  
4200  
3200  
3150  
2950  
2950  
2250  
3000  
1600  
830  
3,6  
1.2  
0,4  
0,25  
0,5  
0,7  
0.7  
0,7  
0,7  
1,1  
3.0  
1.0  
3,3  
11,5  
5,7  
7,1  
2,4  
4,9  
7.0  
4.0  
8,2  
6,7  
9,3  
1,6  
17  
12  
18  
14  
20  
16  
16  
22  
22  
28  
37  
35  
60  
40  
35  
50  
55  
50  
50  
65  
90  
110  
150  
200  
22  
22  
27  
35  
35  
35  
35  
38  
35  
35  
40  
38  
36  
35  
43  
12  
12  
17  
21  
21  
35  
21  
22  
35  
35  
40  
21  
21  
35  
43  
25 T60405-R6131-X402  
25 T60405-R6131-X204  
29 T60405-R6161-X504  
37 T60405-R6166-X206  
36,5 T60405-R6166-X208  
23 T60405-R6123-X210  
37 T60405-R6166-X210  
35 T60405-R6126-X212  
25 T60405-R6123-X213  
22 T60405-R6122-X100  
24 T60405-R6123-X616  
38 T60405-R6166-X033  
38 T60405-R6166-X039  
23,5 T60405-R6123-X220  
24 T60405-R6123-X221  
25 T60405-R6123-X226  
32 T60405-R6123-X227  
40 T60405-R6128-X225  
29 T60405-R6123-X232  
50 T60405-R6128-X031  
32 T60405-R6123-X241  
32 T60405-R6123-X248  
32 T60405-R6123-X263  
40 T60405-R6123-X285  
4
upright  
upright  
4.5  
6
upright  
37,6  
19,1  
12,2  
12,7  
8.9  
8
upright  
10  
10  
12  
12  
13  
16  
16  
16  
20  
20  
25  
25  
25  
30  
30  
40  
48  
63  
85  
low profile  
upright  
upright  
low profile  
low profile  
low profile  
upright  
8,8  
6,3  
5,7  
4,6  
upright  
2x2.9  
2x1.8  
2x6.6  
2x4.2  
2x12  
3,9  
low profile  
low profile  
low profile  
3,2  
500  
2.9  
1470  
970  
1.9  
42,5 42,5  
low profile 600 / 1000  
upright  
300 / 600  
low profile 600 / 1000  
upright  
600 / 1000  
2x2.8  
2x1  
3,5  
2900  
970  
52  
42  
52  
51  
52  
52  
52  
27  
52  
27  
52  
52  
2x4.2  
2x3.9  
2x3.9  
2x3.6  
2x2.5  
2x1.6  
2x1.6  
1.9  
2x0.9  
2x0.9  
2x0.8  
2x0.6  
2x0.4  
2x0.5  
2.4  
920  
2,3  
900  
low profile 600 / 1000  
low profile 600 / 1000  
low profile 600 / 1000  
low profile 600 / 1000  
1.4  
870  
0.75  
0,5  
660  
390  
53,5 53,5  
73 73  
0.6  
510  
RCu: winding resistance per winding |Z| : choke impedance fR : choke resonance frequency  
For more detailed technical information please see our product data sheets at www.vꢁꢅꢄꢄmꢀꢅhmeꢂze.ꢅom. Custom  
CMCs for other nominal currents, in different designs and with other properties are available on request.  
14  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
3- and 4-phase cmcs  
T
±
(
o
l
e
r
a
n
z
d
e
r
S
t
i
f
t
a
b
s
t
ä
n
B
d
e
e
s
c
h
r
i
f
t
u
n
g
e
D
C
=
D
a
t
e
C
o
d
e
T
r
n
n
s
t
F
=
F
a
c
t
o
r
y
( m  
0
,
3
m
m
a
r
k
i
n
g
)
(
s
e
p
a
r
a
T
o
l
e
r
a
n
c
e
s
g
r
i
d
d
i
s
t
a
n
c
e
)
³
5
.
5
m
m
3
x
1
2
0
°
1
3
0
°
F
D
C
5
1
6
3
0
°
4
2
3
x
1
2
0
°
3
Ø
2
0
,
9
Ø
5
3
£
3
3
4
.
5
±
0
,
5
Ø
5
9
We provide more detailed technical information (data sheets) for all standard products on our web-page  
www.vꢁꢅꢄꢄmꢀꢅhmeꢂze.ꢅom. Example outline of the 3-phase CMC T60405-S6123-X332.  
standard series 3-phase chokes for 3-phase applications  
|Z|  
RCu  
fR  
Icm  
LN  
IN design  
A
UN  
OVCat III / II  
V
dimensions  
b
part number  
10 kHz  
100 kHz  
100kHz  
!
10 kHz  
mA  
l
h
mH  
m!  
MHz  
mm  
mm  
mm  
7
10  
11  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
3x31.8  
3x13.9  
3x10.6  
3x5.7  
3x4.8  
3x9.4  
3x10.6  
3x2  
3x7.4  
3x3.2  
3x2.5  
3x3.7  
3x3.1  
3x2.2  
3x2.4  
3x1.3  
3x1.1  
3x0.8  
3x0.6  
3x0.8  
3x0.5  
3x0.5  
3x0.6  
24,6  
14  
8650  
3500  
2600  
2650  
2500  
2400  
2650  
1000  
1150  
600  
0,23  
1,5  
0,8  
0,48  
0,65  
1,45  
0,9  
2,8  
2
27  
30  
40,5 40,5 32,5 T60405-S6123-X306  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
low profile  
51  
42  
51  
59  
51  
42  
51  
59  
32 T60405-S6123-X310  
32 T60405-S6123-X308  
32 T60405-S6123-X312  
32 T60405-S6123-X316  
34 T60405-S6123-X317  
33 T60405-S6123-X320  
33 T60405-S6123-X325  
32 T60405-S6123-X326  
33 T60405-S6123-X332  
33 T60405-S6123-X140  
37 T60405-S6123-X240  
42 T60405-S6123-X363  
53 T60405-S6123-X370  
57 T60405-S6123-X311  
8,5  
40  
12  
16  
16  
20  
25  
25  
32  
40*  
40*  
63  
70  
110  
11,8  
6,5  
150  
200  
35  
5,9  
51,5 51,5  
4,1  
60  
59  
60  
59  
60  
2,27  
2,1  
380  
60  
3x4.9  
3x1.2  
3x2.5  
3x1.5  
3x1.6  
3x0.8  
3x0.7  
51,5 51,5  
1,4  
4,9  
4,7  
4
480  
100  
380  
190  
900  
1750  
59  
52  
59  
52  
1,2  
600  
1,72  
0,72  
0,86  
0,63  
680  
70  
70  
500  
1
70  
70  
415  
1,45  
1,4  
85  
85  
430  
135  
135  
standard series 4-fold chokes  
10**  
12  
16**  
20  
24**  
30  
600 / 1000  
600 / 1000  
600 / 1000  
600 / 1000  
4x6.9  
4x3.6  
4x3.2  
4x1.4  
4x1.6  
4x0.8  
4x0.7  
4x0.3  
7,66  
2,75  
1,5  
1500  
860  
750  
360  
1,7  
3,4  
3,5  
7
40  
90  
51  
51  
33 T60405-S6123-X400  
33 T60405-S6123-X401  
33,5 T60405-S6123-X402  
33 T60405-S6123-X403  
low profile  
low profile  
low profile  
low profile  
51,5 51,5  
100  
160  
60  
60  
60  
60  
32**  
40  
0,82  
* for Ta ! 60°C  
** for Ta ! 85°C  
NaNOcRysTallINE VITROPERM / EMc PROducTs  
15  
VacuuMscHMElZE GMBH & cO. KG  
GRÜNER WEG 37  
D 63450 HANAU / GERMANY  
PHONE +49 6181 38 0  
FAX +49 6181 38 2645  
INFO@VACUUMSCHMELZE.COM  
WWW.VACUUMSCHMELZE.COM  
Vac salEs usa llc  
2935 DOLPHIN DRIVE / SUITE 102  
42701 ELIZABETHTOWN KY / USA  
PHONE +1 270 769-1333  
FAX +1 270 765 3118  
INFO-USA@VACUUMSCHMELZE.COM  
VacuuMscHMElZE salEs OFFIcE sINGaPuR  
61 KAKI BUKIT AVENUE 1  
#04-16 SHUN LI INDUSTRIAL PARK  
SINGAPORE 417943  
PHONE (+65) 63 91 26 00  
Fax: (+65) 63 91 26 01  
VACSINGAPORE@VACUUMSCHMELZE.COM  
PKB-EMc Eꢃition 2010  
All rights reserved.  
VITROPERM® is a registered trademark of VACUUMSCHMELZE  
GmbH & Co. KG in Germany, Austria and Switzerland. As far as pa-  
tents or other rights of third parties are concerned, liability is only as-  
sumed for product per se, not for applications, processes and circuits  
implemented whithin theses products. The information describes the  
type of product and shall not be considered as assured characteris-  
tics. Terms of delivery and right to change design reserved.  
adVaNcEd MaTERIals – THE KEy TO PROGREss  

相关型号:

T60004-L2030-W676

NaNOcRysTallINE VITROPERM
ETC

T60004-L2030-W911

NaNOcRysTallINE VITROPERM
ETC

T60004-L2040-W623

NaNOcRysTallINE VITROPERM
ETC

T60004-L2040-W624

NaNOcRysTallINE VITROPERM
ETC

T60004-L2045-W886

NaNOcRysTallINE VITROPERM
ETC

T60004-L2050-W625

NaNOcRysTallINE VITROPERM
ETC

T60004-L2050-W626

NaNOcRysTallINE VITROPERM
ETC

T60004-L2063-W627

NaNOcRysTallINE VITROPERM
ETC

T60004-L2063-W721

NaNOcRysTallINE VITROPERM
ETC

T60004-L2080-W628

NaNOcRysTallINE VITROPERM
ETC

T60004-L2080-W722

NaNOcRysTallINE VITROPERM
ETC

T60004-L2100-W629

NaNOcRysTallINE VITROPERM
ETC